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ABSTRACT 

 

The genus Castilleja (also known as ‘the paintbrushes’) is an iconic and widespread group of plants. 

Infrageneric classifications in this young and rapid radiation have long been fraught with difficulty, 

mostly attributed to high incidence of polyploidy and interspecific gene flow when species co-occur. 

Subsequently, taxonomies have nearly continuous morphological and ecological diagnostic 

characters across species boundaries. This has resulted in the genus Castilleja being notoriously 

taxonomically difficult. During the course of my dissertation I have applied species delimitation to 

small species complexes to explore the capability of current approaches to delimit species in the face 

of tremendous amounts of interspecific similarity. Each of these complexes has required the use of 

suites of methods and analytical tools, some applied in new and novel ways, to delimit species. 

Recently, the use of multiple, independent approaches to molecular delimitation has been advocated 

as a means of accommodating the limitations of a single approach; however, this can result in 

incongruent delimitation schemes (i.e., where one approach delimits differently than another) with 

no widely used objective way to mitigate incongruence. The first chapter discusses the application of 

post-hoc simulations to address the capability of each approach to correctly delimit, particularly in 

the face of small sample sizes. Chapter two examines the application of environmental variables to 

the question of species boundaries. Given robustly estimated species ranges (using occurrence data 

from museum collections), I estimated niche models and extracted climatic variables associated with 

focal taxa to corroborate molecular species boundaries. The final chapter considers morphology as a 

line of evidence to define species boundaries. By quantifying the amount of morphological similarity 

in the pilosa species complex, I show that morphological characters do not distinguish taxonomic 

entities, suggesting little to no morphological distinction among species in this particular group. My 

work shows that when validating species boundaries in incipient lineages, multiple lines of evidence 

should be carefully scrutinized. Additionally, it is still unclear how best to reconcile incongruent 

delimitation schemes across multiple lines of evidence. Currently, fully integrated analyses are 

advocated, but in some cases, these reduce data to transformed variables that are difficult to interpret 

biologically.
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CHAPTER 1: INCONGRUENCE IN MOLECULAR SPECIES DELIMITATION SCHEMES: WHAT TO DO WHEN 

ADDING MORE DATA IS DIFFICULT. 

 

with Casey Kristofferson, Simon Uribe-Convers, Maribeth Latvis, and David C. Tank 

 

Forthcoming in Molecular Ecology 

 

Abstract 

 

Using multiple, independent approaches to molecular species delimitation is advocated to 

accommodate limitations and assumptions of a single approach. Incongruence in delimitation 

schemes is a potential byproduct of employing multiple methods on the same data, and little 

attention has been paid to its reconciliation. Instead, a particular scheme is prioritized and/or 

molecular delimitations are coupled with additional, independent lines of evidence that mitigate 

incongruence. We advocate that incongruence within a line of evidence should be accounted for 

before comparing across lines of evidence, that can themselves be incongruent. Additionally, it is not 

uncommon for empiricists working in non-model systems to be data-limited, generating some 

concern for the adequacy of available data to address the question of interest. With conservation and 

management decisions often hinging on the status of species, it seems prudent to understand the 

capabilities of approaches we use given the data we have. Here we apply two molecular species 

delimitation approaches, spedeSTEM and BPP, to the Castilleja ambigua (Orobanchaceae) species 

complex, a relatively young plant lineage in western North America. Upon finding incongruence in 

our delimitation, we employed a post-hoc simulation study to examine the power of these approaches 

to delimit species. Given the data we collected, we find that spedeSTEM lacks the power to delimit 

while BPP is capable, thus allowing us to address incongruence before proceeding in delimitation. 

We suggest post-hoc simulation studies like this compliment empirical delimitation and serve as a 

means of exploring conflict within a line of evidence and dealing with it appropriately. 

 

Introduction 

 

Species are one of the basic units of scientific inquiry, and the way we define species can 

have far-reaching impact – e.g., our understanding of biodiversity (Agapow et al. 2004; Pimm et al. 

2014; Adams et al. 2014), our approaches to conservation (Myers et al. 2000; Hedrick 2001; 

Costello et al. 2013), and our understanding of evolutionary processes (Ruane et al. 2014; Morales et 
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al. 2016). Because of this, species delimitation is central to the biodiversity sciences (e.g., Sites & 

Marshall 2003; Wiens 2007; Leache & Fujita 2010; Camargo & Sites 2013; Carstens et al. 2013; 

Rannala 2015; Flot 2015). The advancement of molecular-based delimitation approaches through the 

incorporation of coalescent theory (e.g., Pons et al. 2006; Knowles & Carstens 2007; O'Meara 2010; 

Yang & Rannala 2010), has represented a huge step forward in our ability to robustly delimit 

species, especially at recent timescales. The past ten years have seen an explosion in molecular 

species delimitation approaches (e.g., Pons et al. 2006; Knowles & Carstens 2007; O'Meara 2010; 

Yang & Rannala 2010; Ence & Carstens 2010; Camargo et al. 2012; Grummer et al. 2014; Solís-

Lemus et al. 2015), empirical examples (e.g., Reeves & Richards 2010; Goldberg et al. 2011; Satler 

et al. 2013; Singh et al. 2015), and critical reviews (e.g., Leache & Fujita 2010; Camargo et al. 2012; 

Carstens et al. 2013). Most authors agree that the use of multiple lines of evidence (Schlick-Steiner 

et al. 2010; Yeates et al. 2010), multiple approaches in conjunction (Fujita 2012; Aguilar et al. 2013; 

Andújar et al. 2014), and when possible, integrated analyses (Padial et al. 2010; Zapata & Jiménez 

2012; Guillot et al. 2012; Edwards & Knowles 2014), are necessary to be objective in our 

delimitations.  

However, despite the amount of work in this area, few studies have specifically addressed 

how to handle conflict. Conflict occurs when independent approaches result in incongruent 

delimitations—i.e., the delimitation scheme of one approach differs from that of another. Possible 

explanations of incongruent delimitations might include different signals across different lines of 

evidence (e.g., morphological delimitation differs from molecular delimitation) or violation of 

assumptions and/or different degrees of statistical power of an analysis. Incongruence in delimitation 

across lines of evidence can be mediated by evaluating delimitation with each line of evidence 

independently and then determining which data source to rely on given biological and/or 

evolutionary explanations for disagreement across datasets (e.g., Schlick-Steiner et al. 2010; Yeates 

et al. 2010). The integration of multiple lines of evidence into unified species delimitation 

analyses—i.e., where all data are used simultaneously—may help alleviate this subjectivity (e.g., 

Edwards & Knowles 2014; Solís-Lemus et al. 2015). However, results of multiple analyses on the 

same dataset (for example, applying several molecular species delimitation methods on the same 

molecular dataset) can also differ, highlighting when the limitations of a particular approach may 

impact delimitation (e.g., Satler et al. 2013). 

For example, consider spedeSTEM (Ence & Carstens 2010) and BPP (Yang & Rannala 

2010), two commonly applied delimitation methods utilizing the multispecies coalescent that can 

disagree in practice; the likelihood-based approach spedeSTEM relies on highly informative gene 

trees to build a species tree, which is then used to test and rank all possible permutations of lineage 



 3 

composition, and the Bayesian approach BPP estimates the posterior probability of bifurcations on a 

guide tree that are collapsed to examine all possible combinations of putative lineages. The largely 

conservative spedeSTEM has been shown to under-delimit species (Ence & Carstens 2010), while 

BPP may over-delimit (Leache & Fujita 2010), especially in the case of inaccurate guide trees (but 

see Zhang et al. 2014) and/or misspecified priors (Giarla et al 2014). Therefore, if conflict occurs 

between these two approaches, it could mean that uninformative gene trees may be limiting 

spedeSTEM, and/or misinformed analytical parameters may be limiting BPP (e.g., Camargo et al 

2012, Carstens & Satler 2013, Pelletier et al 2014, Giarla et al 2014). Improvements to BPP have 

addressed this possibility by incorporating the estimation of the species tree topology in conjunction 

with species delimitation (Yang & Rannala 2014a). Recent theoretical work has highlighted the 

sensitivity of the multispecies coalescent and its use by BPP, highlighting the potential for detecting 

population structure, rather than what many delimitation analyses are aiming for, i.e., species 

boundaries (Sukumaran & Knowles 2017). Other methods employing the coalescent potentially risk 

this as well. It is apparent that now, more than ever, we should be addressing the capability of the 

methods we employ to perform the tasks that we expect they do. 

If we find incongruent delimitation schemes from analyses that use the same input data, it 

may suggest differing degrees of statistical power in the approaches we use. Additionally, because 

the parameter space associated with any question of species delimitation is complex and intractable, 

simplifying assumptions must be made on the part of the method to minimize the number of 

parameters considered; each analytical approach will simplify in different ways, and thus, each 

approach will have different implicit assumptions (Carstens et al 2013). Statistical power is a topic 

explored in methodological papers, and most often includes simulations and an empirical example to 

understand the limitations of the method. How the approach behaves in other systems is left to the 

exploration of the user. Incongruence across delimitations using the same input data is not 

uncommon, and has been shown to be particularly problematic in studies with small sample sizes 

(Carstens et al. 2013). When working with small or limited datasets, a knee-jerk reaction might be to 

increase sampling (loci or individuals). Several studies have documented the impact of small sample 

sizes on delimitation, and general ‘good practices’ of species delimitation suggest at least 10 

individuals per putative lineage and as many loci as possible (Carstens et al. 2013). Increasing the 

number of loci in a dataset has become easier to do (e.g., McCormack et al. 2013; Lemmon & 

Lemmon 2013), and there is a general consensus in the phylogenetics community that more loci 

typically result in increased resolution (Ruane et al. 2015; Blaimer et al. 2015). However, genome-

scale data are still time consuming and expensive to generate, particularly for non-model organisms, 

and there can be computational disadvantages to using hundreds of loci (Ruane et al. 2015). 
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Furthermore, for rare taxa—e.g., those known from only a few, often small, populations, and/or 

those that are spatially restricted—the incorporation of 10 individuals per putative lineage may not 

be possible (Lim et al. 2012). For these reasons, empirical studies, especially those dealing with rare 

or spatially restricted taxa, often begin with existing datasets (often Sanger sequenced data or data 

obtained from GenBank) that, in terms of individuals and loci sampled, are often smaller in size. 

When a researcher recovers conflicting delimitation schemes across approaches using a 

dataset that is limited in size, an alternative analytical tactic is an assessment of the data already at 

hand (i.e., less than ideal datasets). In other words, an assessment of the capability of each 

methodological approach to detect the signal of independent lineages in the data collected. This can 

be directly tested in empirical studies using post-hoc simulations. While this has been implied as an 

appropriate and important step in empirical delimitation (Carstens et al. 2013), and some studies 

have simulated data in order to compare methodological approaches (e.g., Camargo et al. 2012; 

Barley et al. 2017) or to specifically address sample size (e.g., Giarla et al. 2014; Hime et al. 2016), 

to our knowledge an assessment of inferential error has not been specifically done in any empirical 

study. 

In this study, we apply species delimitation approaches to a species complex in the plant 

genus Castilleja, a widespread and iconic wildflower that is most diverse in western North America. 

A recent, rapid radiation (Tank & Olmstead 2008), Castilleja is an important target for species 

delimitation, both theoretically and practically. Theoretically, the young age of this lineage affords 

us the opportunity to test the limits and capabilities of delimitation approaches in a group where 

molecular, morphological, ecological, and geographic boundaries between species are often ‘fuzzy’. 

Furthermore, Castilleja is known to have a rich history of hybridization and genome duplication 

events that have complicated the taxonomy and systematics of the genus (Heckard & Chuang 1977; 

Chuang & Heckard 1991; Tank & Olmstead 2008). Practically speaking, recent advances in 

sequence generation (e.g., Uribe-Convers et al. 2016) and analytical approaches (e.g., Morales et al. 

2016), combined with focused delimitation efforts, provide an opportunity to refine what we know 

about the evolutionary history and species composition of Castilleja. However, as is the case with 

many empiricists working in non-model systems, we are working towards becoming ‘data-rich’ in 

Castilleja, but to some degree we are still currently data-limited (i.e., we do not have tens to 

hundreds of loci). This is important from a conservation standpoint. Many species of Castilleja 

(including two taxa studied here) are only known from narrow ranges that are vulnerable to 

extirpation. Knowledge of their evolutionary relationships, and, if warranted, status as a species, will 

impact conservation and management efforts.  
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Here, we propose a strategy to species delimitation when data is limited. By simulating data 

comparable to the empirical data and under a known species tree topology, we can directly test the 

capability of molecular species delimitation approaches to delimit the known number of distinct 

evolutionary lineages. Given this information, we can address conflicting delimitations from an 

informed position using the data at hand. We think it is important to consider what can (and can not) 

be done with small, non-genomic datasets. We suggest an approach that allows us to address the 

assumption that a given species delimitation method is capable of delimiting species with the data 

that we currently have available to us. 

 

Methods 

 

Study System 

We focus our attention on two annual, diploid lineages of Castilleja: the polymorphic Castilleja 

ambigua Hook. & Arn. and a close relative, Castilleja victoriae Fairbarns and J.M. Egger (Fig. 1). 

Generally occurring in maritime locations, members of C. ambigua typically inhabit coastal bluffs, 

salt marshes, and grasslands of the western coast of North America, and are united by vegetative 

morphology and reproductive similarities (Egger et al. 2012; Wetherwax et al. 2016). There is, 

however, variability within the species that has led to the description of multiple intraspecific 

varieties that are primarily distinguished from one another by ecological preferences and geographic 

ranges, but also differ in some morphological characters (Fairbarns & Egger 2007; Egger et al. 

2012). 

 The typic and most widespread of these varieties, C. ambigua var. ambigua, has white and 

yellow flowers and occurs on coastal bluffs and grasslands along the Pacific coast from southern 

California north, into British Columbia (Fig. 1). C. ambigua var. humboldtiensis (D.D. Keck) J.M. 

Egger, is a fleshy, less-branched variety and has primarily pink to rose-purple flowers and a much 

narrower distribution. It occurs in salt marshes along the northern coast of California in Mendocino 

and Humboldt counties. Another narrow-ranged variety, C. ambigua var. insalutata (Jeps.) J.M. 

Egger is non-fleshy and its stems are highly branched. It, too, has pink-purple flower coloration and 

occurs in grassy coastal bluffs along the central California coast, between San Mateo and San Luis 

Obispo counties. More recently, Egger et al (2012) described the variety C. ambigua var. meadii 

J.M. Egger & Ruygt. Vegetative morphology, restricted range, and ecological preferences readily 

distinguish C. ambigua var. meadii from the other varieties; variety meadii is typically erect, with 

un-branched stems, and leaves and bracts with narrow, linear lobes. In addition, it is restricted to the 

Atlas Peak Plateau district of Napa County, California, where it occurs in seasonally wet places 



 6 

associated with freshwater, and is known from only four extant populations (a fifth being recently 

documented as extirpated (Egger et al. 2012)). 

 Another member of this complex described in 2007 (Fairbarns & Egger 2007), Castilleja 

victoriae, has been allied to C. ambigua. Both species share a coastal range, but C. victoriae is 

associated with edge habitat of fresh water seeps and vernal pools, and is restricted to southwestern 

British Columbia, Canada, and a single island in the San Juan Archipelago of extreme northwestern 

Washington State, USA. This species is formally known from only three extant populations (a fourth 

being recently documented as extirpated (Fairbarns & Egger 2007). Morphologically, C. victoriae 

tends toward a compact, single-stemmed habit and lacks the distinctive contrasting floral coloration 

of C. ambigua. A difference in stigma position at peak flowering time between C. ambigua 

(exserted) and C. victoriae (inserted) is also diagnostic. 

 Because of the morphological and ecological variation outlined above, in addition to the 

conservation and management implications of species status of the two range-restricted taxa, we 

focus on testing the distinctiveness of the following three taxa: Castilleja ambigua, C. ambigua var. 

meadii, and C. victoriae. For the purposes of this work we treat Castilleja ambigua varieties 

ambigua, insalutata, and humboldtiensis as part of Castilleja ambigua. 

 

Molecular Methods 

Taxon sampling and DNA extraction.—Thirteen accessions of Castilleja ambigua (including two 

accessions of var. insalutata and one of var. humboldtiensis), three accessions of C. ambigua var. 

meadii, and three accessions of C. victoriae were sampled throughout their ranges, and the closely 

related C. lacera (Tank & Olmstead 2008; Tank et al. 2009) was chosen to serve as outgroup for 

phylogenetic analyses (Fig. 1; Supplementary Table S1). Total genomic DNA was extracted from 

either silica-gel dried tissue or tissue sampled from herbarium specimens using a modified CTAB 

method (Doyle and Doyle 1987). 

 

Chloroplast dataset.—We used a set of Castilleja-specific chloroplast primers designed to amplify 

the most variable regions of the chloroplast genome (Latvis et al. 2017; Supplementary Table S2). 

Following Uribe-Convers et al. (2016), microfluidic PCR was performed on 45 primer pairs on the 

Fluidigm Access Array System (Fluidigm Co., San Francisco, California, USA). The resulting 

amplicons were sequenced on an Illumina MiSeq platform using the Reagent Kit v.3 (300 bp paired-

end reads; Illumina Inc., San Diego, California, USA). Microfluidic PCR, downstream quality 

control and assurance, and Illumina sequencing was performed in the University of Idaho Institute 

for Bioinformatics and Evolutionary Studies (IBEST) Genomics Resources Core Facility.  



 7 

Nuclear dataset.— The nuclear ribosomal sequences from the internal and external transcribed 

spacers (ITS and ETS, respectively) used here were collected in two ways—first, following 

traditional Sanger sequencing approaches, and second, using a targeted amplicon sequencing (TAS) 

strategy modified from (Bybee et al. 2011). Both approaches used ITS2, ITS3, ITS4, and ITS5 

primers from (Baldwin 1992) to amplify the entire ITS region, as well as the ETS-B (Beardsley & 

Olmstead 2002) and 18S-IGS primers (Baldwin & Markos 1998) to amplify a portion of the 3’ end 

of the ETS region. For Sanger sequenced products (Supplementary Table S1), PCR was performed 

following Tank and Olmstead (2008), and prior to sequencing, amplified PCR products were cleaned 

and purified by precipitation from 20% polyethylene glycol solution and washed in 70% ethanol. 

Both strands of the cleaned PCR products were sequenced using the BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, California, USA) with the same primers used 

during amplification on an ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster City, 

California, USA). For TAS, the ITS and ETS regions were amplified using a two-round PCR 

strategy (Supplementary Table S1). Following Uribe-Convers et al. (2016), each target-specific 

primer sequence contained a conserved sequence tag that was added to the 5' end at the time of 

oligonucleotide synthesis (CS1 for forward primers and CS2 for reverse primers), to provide an 

annealing site for the second pair of primers. After an initial round of PCR using the CS-tagged, 

target specific primers (PCR1), a second round of PCR was used to add sample-specific barcodes 

and high-throughput sequencing adapters to both the 5' and 3' ends of each PCR amplicon (PCR2). 

From 5' to 3’, the PCR2 primers included either Illumina P5 (CS1-tagged forward primers) or P7 

(CS2-tagged reverse primers) sequencing adapters, 8 bp sample-specific barcodes, and the reverse 

complement of the conserved sequence tags. Sequences for the CS1 and CS2 conserved sequence 

tags, barcodes, and sequencing adapters were taken from Uribe-Convers et al. (2016). Following 

PCR2, the resulting amplicons were pooled together and sequenced on an Illumina MiSeq platform 

using 300 bp paired-end reads, as with chloroplast sequencing. PCR conditions were as follows: 

PCR1—25 uL reactions included 2.5 uL of 10x PCR buffer, 3 uL of 25 mM MgCl2, 0.30 uL of 20 

mg/mL BSA, 1 uL of 10 mM dNTP mix, 0.125 uL 10 uM CS1-tagged target specific forward 

primer, 0.125 uL 10 uM CS2-tagged target specific reverse primer, 0.125 uL of 5000 U/ml Taq DNA 

polymerase, 1 uL template DNA, and PCR-grade H2O to volume; PCR1 cycling conditions - 95°C 

for 2 min. followed by 20 cycles of 95°C for 2 min., 50°C for 1 min., 68°C for 1 min., followed by a 

final extension of 68°C for 10 min.; PCR2 – 20 uL reactions included 2 uL of 10x PCR buffer, 3.6 

uL of 25 mM MgCl2, 0.60 uL of 20 mg/mL BSA, 0.40 uL of 10 mM dNTP mix, 0.75 uL of 2 uM 

barcoded primer mix, 0.125 uL of 5000 U/mL Taq DNA polymerase, 1 uL of PCR1 product as 

template, and PCR-grade H2O to volume; PCR2 cycling conditions—95°C for 1 min. followed by 15 
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cycles of 95°C for 30 sec., 60°C for 30 sec., 68°C for 1 min., followed by a final extension of 68°C 

for 5 min. 

 

Dataset preparation—For the chloroplast and TAS-generated nuclear ribosomal datasets, pooled 

reads from Illumina MiSeq runs were demultiplexed using the dbcAmplicons pipeline, and 

consensus sequences were generated using the R script reduce_amplicons.R 

(https://github.com/msettles/dbcAmplicons) following the workflow detailed in Uribe-Convers et al. 

(2016). Briefly, for each sample, read-pairs were identified, sample-specific dual barcodes and target 

specific primers were identified and removed, and each read was annotated to include the species 

name and read number for each gene region. To eliminate fungal contamination that may have been 

amplified for ITS, each read was screened against a reference file of annotated sequences retrieved 

from GenBank (using the “-screen” option in dbcAmplicons). Reads that mapped with default 

sensitivity settings were kept. Each read was reduced to the most frequent length variant, paired 

reads that overlapped by at least 10bp (default) were merged into a single continuous sequence, and a 

consensus sequences without ambiguities were produced (“-p consensus” in the R script 

reduce_amplicons.R from dbcAmplicons). Paired reads that did not overlap were concatenated 

together using Phyutility v.2.2.6 (Smith & Dunn 2008), and any merged segments were added to the 

concatenated reads (Supplementary Table S2). The resulting chromatograms from Sanger 

sequencing were edited and contigs were assembled using Sequencher v.4.7 (Gene Codes Corp., Ann 

Arbor, Michigan, USA). 

 

Phylogenetic Analyses 

Alignment and model selection—Each chloroplast (cp) and nuclear ribosomal (nr) DNA region was 

aligned separately using Muscle v.3.8.31 (Edgar 2004). Sequences from individual chloroplast 

regions were concatenated into a single dataset with Phyutility v.2.2.6 (Smith & Dunn 2008) and 

treated as a single locus. Likewise, the ITS and ETS regions are tightly linked in the nrDNA repeat 

and were also treated as a single locus. The best-fit partitioning schemes and models of molecular 

evolution for nucleotide alignments were selected using PartitionFinder (Lanfear et al. 2012), where 

predefined data blocks corresponded to each region of the chloroplast dataset (i.e., single-end reads 

or merged reads; Supplemental Table S2), and ITS and ETS, in the case of the nuclear dataset. The 

Bayesian information criterion (BIC), as implemented in PartitionFinder, was used to identify the 

highest-ranking models of molecular evolution. All downstream phylogenetic analyses used these 

partitioning schemes and models. 
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Gene trees—Maximum likelihood gene trees were estimated with cpDNA and nrDNA as 

implemented in the program Garli v.2.0 (Zwickl 2006). Twenty-five search replicates were 

performed, and subsequent log files were examined to ensure that each replicate search resulted in 

similar trees and log likelihood scores, thus indicating that the analyses consistently found the same 

topology. A bootstrap run of 1,000 replicates was conducted to assess nodal support. The SumTrees 

function of the DendroPy package v.4.0 (Sukumaran & Holder 2010) was used to summarize 

bootstrap results. 

 Bayesian phylogenetic analyses were conducted on cpDNA and nrDNA datasets using 

MrBayes v.3.2.1 (Ronquist et al. 2012). Each analysis consisted of four Markov chains (using 

default heating schemes), sampled every 10,000 generations for a total of 5,000,000 generations. To 

avoid false stationarity at local optima, we conducted four independent runs of each analysis. 

Stationarity of the chains and convergence of parameter estimates were determined by plotting the 

likelihood score and all other parameter values against the generation time using the computer 

program Tracer v.1.5 (Drummond et al. 2012). Stationarity was assumed when all parameter 

estimates and the likelihood had stabilized. Additionally, the likelihoods of the independent runs 

were considered indistinguishable when the average standard deviation of split frequencies was 

<0.01. Burn-in positions were visually assessed and a conservative initial 25% of trees were 

discarded, and the remaining trees and their associated values saved. The sump and sumt commands 

in MrBayes were used to summarize the estimated posterior distributions of both the parameter 

values and the trees across runs. A majority rule consensus tree showing all compatible partitions 

from the resulting posterior distribution of topologies was used to recover the posterior probabilities 

of nodes. 

 

Species tree—We performed a *BEAST analysis with BEAST v.2.0 (Bouckaert et al. 2014) via the 

CIPRES Science Gateway (Miller et al. 2010) using the nrDNA and the cpDNA dataset and 

previously identified partitioning schemes and nucleotide substitution models. Individuals were 

mapped to species according to taxonomic identification. We employed a strict molecular clock to 

estimate relative times of diversification events and a constant population size prior. Five 

independent analyses were conducted for 500 million generations each, sampling the posterior every 

10,000 generations. In addition, a run without data was performed to examine the influence of the 

priors on posterior parameter estimates. Convergence and stationarity of the chains was assessed the 

same way as with the mrBayes analyses. Burn-in was estimated from each trace file separately, the 

trees discarded, and then all analyses were combined using LogCombiner v.2.2.0 and a maximum 

clade credibility tree was summarized with TreeAnnotator v.2.2.0 (Drummond et al. 2012). 
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Molecular Species Delimitation 

Here we aim to test the delimitation of our focal taxa (C. ambigua, C. ambigua var. meadii, and C. 

victoriae) as distinct evolutionary lineages. We apply two independent coalescent-based species 

delimitation methods – the maximum-likelihood approach spedeSTEM (Ence & Carstens 2010), and 

the Bayesian approach BPP v.3.1 (Yang & Rannala 2014b). We use these methods in a validation 

context (as opposed to discovery (sensu Ence & Carstens 2010), as the assignment of individuals to a 

taxonomic group is done prior to the delimitation analysis. When referring to topological 

relationships in the following sections, we use the following acronyms for simplification: C. 

ambigua (AMB), C. ambigua var. meadii (MEA), C. victoriae (VIC), and C. lacera (LAC). 

 

Estimating theta and tau—Both molecular species delimitation approaches used here require an 

estimate of population size parameters, encompassed in the variable theta (θ); BPP also requires an 

estimate of divergence time, tau (τ). We used the program MIGRATE-N v.3.6 (Beerli & Felsenstein 

2001) to estimate a value of θ appropriate for our dataset. Sequences were organized into populations 

corresponding to their taxonomic identification; each taxon was treated as one population. Three 

independent analyses were conducted to ensure convergence on the same parameter estimates, each 

consisting of one long chain and 10 short chains (four of which were statically heated). We used 

analysis A00 (part of the BPP program, this analysis estimates both θ and τ parameters) of the 

program BPP to estimate τ. We modeled this parameter on the species tree topology from our 

*BEAST analysis and loosely informed the prior with our MIGRATE-N results. Multiple 

independent analyses were conducted to confirm results were stable across runs. This analysis also 

estimates θ, affording us the opportunity to compare our MIGRATE-N and BPP estimates of this 

parameter. Further details of both approaches can be found in the Supplementary Data S3. 

 

spedeSTEM—The maximum likelihood (ML) delimitation approach spedeSTEM (Ence & Carstens 

2010) calculates the ML species tree for all possible models of lineage- composition, given a set of 

gene trees and an estimate of θ. In our case, this corresponds to five models that reflect all possible 

combinations of our focal, a priori defined taxa: one model with three distinct lineages (AMB, VIC, 

MEA), three models with two distinct lineages (where the ‘_’ between acronyms indicates a 

combined lineage) [AMB_VIC, MEA], [AMB_MEA, VIC], and [MEA_VIC, AMB], and a final 

model of one distinct lineage [AMB_MEA_VIC]. Post likelihood calculations, the competing 

lineage-composition models are ranked and scored using information theory to identify the best 

model (further detail below). Because our sampling efforts were disproportionately weighted 

towards Castilleja ambigua, we used the replicated subsampling approach in STEM (Hird et al. 
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2010) to generate 100 sets of gene trees (a set composed of one chloroplast and one nuclear gene 

tree) with three alleles subsampled from our dataset per focal lineage (except C. lacera, which is 

represented in our dataset with a single allele only and is therefore present once in each gene tree). 

Our subsampling was constrained to three per focal lineage, given that we had three alleles only from 

C. victoriae and C. ambigua var. meadii from which to subsample. Hird et al (2010) demonstrated 

that as few as three to five alleles could produce accurate estimates of the species tree, provided 

enough loci. These subsampled gene trees were then used as input in 100 separate spedeSTEM 

analyses. At the end of the analysis, we are left with 100 likelihoods for each model of lineage 

composition. Following Ence and Carstens (2010), we then calculated the average likelihood for 

each model and used the Akaike Information Criterion (AIC) to calculate model differences (Δi) and 

weights (wi). This series of calculations describes the amount of information lost between a given 

model i and the next best model, and describes the probability that this model i is the best model 

(Anderson 2008). 

 

BPP—The Bayesian approach BPP v.3.1 (Yang & Rannala 2014b), when provided with sequence 

data and parameter estimates (that include θ, τ), examines support for various delimitation schemes 

by collapsing internal nodes of a species tree and calculating probabilities of those nodes. Previous 

versions of BPP (Rannala & Yang 2013) required the user to provide the species tree (called the 

guide tree). Simulations and empirical studies have suggested that incorrect guide-trees could lead to 

strongly supported, over-split lineages (e.g., Leache and Fujita 2010; but see (Zhang et al. 2014). 

The version used here retains the user-provided guide tree (called analysis A10, which can be 

beneficial when the species phylogeny is known because it is computationally more tractable), but 

also includes an analysis of delimitation that does not require an estimate of the species tree (called 

analysis A11). This analysis performs species delimitation and estimates the species phylogeny 

simultaneously. 

 Here, we applied both approaches. In the guided analysis (A10) we provided a guide tree 

representing our best estimate of the species tree from our *BEAST analysis ((AMB, VIC), MEA) 

(following (Leache & Fujita 2010), in addition to our taxonomic hypothesis, ((AMB, MEA), VIC) 

and the alternative topology, ((MEA, VIC), AMB). In both analyses (A10 (guided) and A11 

(unguided)), we performed a series of multiple replicates to ensure convergence across rjMCMC 

algorithms, species tree topology (the guide trees in A10; the starting trees in A11), and species 

model priors (in analysis A11). The guided analysis in BPP reports probabilities of distinction at 

each node of the guide tree (i.e., probability of speciation at each node of the user-provided guide 

tree topology). The unguided analysis in BPP reports posterior probabilities for the number of 
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species in the dataset and their probability of species delimitation (i.e., probability that an a priori 

defined taxon is a distinct lineage), and estimates a posterior distribution of species tree topologies. 

 

Post-hoc Simulation Study 

To test the capability of these approaches to delimit species in our dataset, we used a simulation 

approach (Fig. 2). We first simulated one genealogy per locus with the same number of tips and 

species designations as our empirical gene trees using the program ms (Hudson 2002). Next, using 

scaled versions of these genealogies as guide topologies, we simulated the evolution of nucleotide 

sequences along the genealogy to generate sequence alignments that are comparable to our empirical 

dataset using the program seq-gen (Rambaut & Grass 1997). The subsequent sequence alignments 

then become the input datasets for species delimitation with a known topology (i.e., a ‘known 

topology’ that we simulated data on), thus allowing us to directly test the capability of each 

delimitation approach to recover the ‘true’ delimitation (i.e., the known number of lineages that the 

data were simulated under). Furthermore, we performed this series of simulations on multiple 

topologies: the species tree topology (((AMB, VIC), MEA), LAC), the taxonomic topology (((AMB, 

MEA), VIC), LAC), the alternative of these two topologies (((MEA, VIC), AMB), LAC), and a ‘one 

lineage’ topology ((AMB_MEA_VIC), LAC). In this way, we can confirm the capability of each 

analysis to delimit, regardless of the biological or evolutionary reality of the underlying topology. 

Because a failure to delimit could be due to limitations of the analysis, or because the relationship 

among the tips in the simulation is incorrect, by modeling on several topologies, we can test the true 

capability of each analysis to delimit. We have outlined these simulation steps in further detail in the 

supplementary materials (Supplementary Data S4). 

  

Set up and expectations of the simulations—We simulated 100 datasets to test the capability of each 

delimitation approach to delimit correctly. If the delimitation approach correctly delimits (i.e., 

identifies the same number of lineages as simulated), we can assume that the approach is sensitive 

enough to delimit given a dataset with the size and amount of variability that we have collected. If 

the delimitation incorrectly delimits (i.e., identifies a number of lineages different form what we 

simulated), we conclude that the approach is not sensitive enough to delimit given the data we have 

collected. 

 

Post-hoc simulation study of molecular delimitation approaches—We have developed our own code 

that combines the simulation steps described above with the spedeSTEM analysis (available on 

Dryad). For each topology, this code simulates one genealogy per locus, simulates sequences on the 
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genealogy, and then performs all steps of the spedeSTEM approach (including the 100 subsampled 

replicates) using the same values of θ used in the empirical delimitation. We performed this 

simulation-plus-analysis procedure 100 independent times and report the proportion of models that 

are ranked in each position (first through fifth) across simulations. 

 For BPP, we randomly sampled 10 datasets from the 100 simulated datasets made during the 

spedeSTEM simulation study using R (R Development Core Team 2016), and performed the 

unguided delimitation analysis using the same prior settings for θ and divergence times used in our 

empirical analyses. We used species model prior ‘1’ in each analysis, which assigns equal 

probabilities across all rooted topologies. For each randomly sampled dataset, we performed two 

replicates to ensure convergence across independent analyses using different rjMCMC algorithms. 

We summarize the results by reporting the posterior probability of lineage distinction and the 

component models of the 95% credibility set of models. 

 

Results 

 

Phylogenetic reconstructions 

Gene trees and species trees—Maximum likelihood and Bayesian reconstructions of chloroplast and 

nuclear phylogenies were largely similar, varying mostly in the amount of topological support, with 

one primary exception. Bayesian nuclear reconstructions recovered Castilleja ambigua var. meadii 

as sister to the remaining taxa, while maximum likelihood reconstructions recovered it within C. 

ambigua + C. victoriae clade (Supplementary Data S5). To keep things simple, we refer only to the 

Bayesian reconstruction from here forward, noting that with the exception of the previous 

relationship, all results mentioned here apply to the ML reconstructions as well. 

 In both gene tree reconstructions, we recovered a monophyletic C. ambigua var. meadii and 

a monophyletic C. victoriae (Fig. 3a). Furthermore, in our nuclear reconstruction, both C. victoriae 

and C. ambigua var. meadii were placed on long branches relative to other taxa. The chloroplast 

reconstruction recovered C. ambigua as paraphyletic with respect to C. ambigua var. meadii and C. 

victoriae, while the nuclear reconstruction supported C. ambigua var. meadii as sister to a 

paraphyletic C. ambigua and C. victoriae. This paraphyletic relationship was also recovered in our 

estimate of the species tree (Fig. 3b), where C. ambigua var. meadii is sister to a clade composed of 

both C. victoriae and C. ambigua. Taken together, C. ambigua var. meadii and C. victoriae are each 

monophyletic, and their relationship to C. ambigua is difficult to place with certainty. 
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Molecular Species Delimitation 

Estimate of theta—Given the three independent MIGRATE-N analyses, we estimated an average 

nuclear θ of 0.0146, an average chloroplast θ of 0.0064, and a genome-wide average θ of 0.0105 

(Supplementary Table S3.1). After a series of preliminary tests to ensure the priors suited this dataset 

(see Supplementary Data S3 for details), four independent BPP A00 analyses estimated an averaged 

θ of 0.0326 for C. ambigua, 0.0055 for C. ambigua var. meadii, and 0.0054 for C. victoriae 

(Supplementary Table S3.1). We take these separate estimates of θ as corroborative of each other. 

While these estimates were not identical, they did fall within the same order of magnitude and locus-

wide averages were similarly close. 

 

Molecular delimitation with spedeSTEM and BPP—Results of spedeSTEM analyses, averaged over 

100 subsampled replicate analyses, strongly supported only one of five possible models of lineage 

composition (Table 1). This highest ranked model considers our three focal taxa as a single 

evolutionary lineage, (AMB_MEA_VIC). An extremely large Δi separated this best model from that 

of the next best. Therefore, this model composes all of the total model probabilities, indicating no 

support for other models of lineage composition. 

Results of the guided delimitation (analysis A10) with BPP recovered high probabilities of 

lineage divergence at each node in each of our guide topologies (Fig. 4a). The unguided delimitation 

in BPP (Analysis A11) reports high posterior probability for the presence of three distinct lineages 

(four, including the outgroup C. lacera, (Table 2)) and recovers high posterior probabilities for all 

taxonomic species. Across all replicates, the 95% credibility set of species tree topologies was 

composed of four topologies (Fig. 4b; Table 2). Among these, a sister relationship of C. ambigua and 

C. ambigua var. meadii was consistently the most highly supported model; however, it was rarely 

recovered with strong probability (6 of 22 replicates with probability of 0.95 or greater (Table 2)). 

It has been suggested that lineages be declared distinct only if posterior probabilities exceed 

thresholds of 95% or greater (Rannala & Yang 2013). The results of our independent molecular 

species delimitation approaches are in conflict; spedeSTEM supports a single-lineage model while 

BPP finds evidence of three distinct lineages. 

 

Post-hoc Simulation Study 

Delimitation with simulated data—Here we present the results of our simulation study of 

spedeSTEM and BPP, using 100 and 10 simulated datasets respectively, from four alternative 

topologies: our estimate of the species tree, ((AMB, VIC), MEA); the taxonomic hypothesis, ((AMB, 

MEA), VIC); the alternative three-lineage topology, ((MEA, VIC), AMB); the one-lineage topology 
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(AMB_MEA_VIC). We expect that an analysis will have sufficient power to delimit if it identifies 

the same number of lineages as modeled in the simulations. spedeSTEM reports results as support 

for lineage composition (i.e., how many lineages are present, and which taxa make up those lineages, 

with no comment on relationship of those lineages) and unguided BPP reports probabilities of 

lineage distinction, with an additional estimate of species phylogeny. 

 

spedeSTEM—In two of our three, three-lineage simulations spedeSTEM did not recover the correct 

number of lineages (Fig. 5, rows 1-2). In all simulations based on the species tree and taxonomic 

hypotheses, the highest ranked model was composed of a single lineage. In the alternative three-

lineage simulations, spedeSTEM most often ranked a one-lineage model as highest, therefore failing 

the majority of the time to identify the correct number of lineages (Fig. 5, row 3); however, in six of 

the 100 simulations, spedeSTEM ranked the three-lineage model as the highest (Supplemental Table 

S6). In our one-lineage simulations, spedeSTEM delimited the correct number of lineages 20 times 

out of 100. Most often it ranked a two-lineage model first (71 times), but also ranked a three-lineage 

model as first 9 times (Fig. 5, row 4; Supplemental Table S6). 

 

BPP—In two of our three, three-lineage simulations BPP correctly delimited (Fig. 6, rows 1-2). In 

simulations of the species tree and taxonomic hypotheses, BPP recovered very strong support for the 

delimitation of taxonomic species corresponding to our focal taxa. Furthermore, in all simulations, 

the 95% clade credibility set contained models corresponding to the simulated topology, indicating 

that BPP was reconstructing the topology correctly (Fig. 6, rows 1-2; Supplemental Table S7.1 and 

S7.2). In simulations of the alternative three-lineage topology, BPP incorrectly delimited a single 

species. This corresponds to no posterior support for taxonomic species and an incorrect topological 

reconstruction (Fig. 6, row 3; Supplemental Table S7.3). In our one-lineage simulations, BPP 

correctly delimits a single species, recovered very strong support for the delimitation of one species, 

and reconstructed the correct topology (Fig. 6, row 4). 

 

Discussion 

 

Initial phylogenetic analyses often hint at the conflict between taxonomy and phylogeny that 

may be present in a system, as we see here in the Castilleja ambigua species complex (Fig. 3). In 

cases such as these, where there is a need for species delimitation with limited data, it is important to 

explore the capability of the data and analyses at hand to address the question of interest. In our case, 

when individual gene trees are considered alongside the results of our species tree reconstruction, we 
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have reason to suspect 1) that we may have signal of distinct lineages that do not correspond with 

taxonomy, and 2) that the relationship between these lineages is poorly understood. The application 

of two independent molecular delimitation approaches results in incongruent delimitations (Table 1 

and 2); spedeSTEM ranks highest a one-lineage model, while BPP supports three distinct lineages. 

BPP results are further complicated by strong support for different topologies (guided analysis (A10) 

recovers high support for all three topologies tested (average over all replicates > 0.95, Fig. 4, a); 

unguided analysis (A11) moderately supports the taxonomic hypothesis (average over all replicates 

between 0.75 and 0.95; Fig. 4, b)). 

 Had we stopped here, we would be faced with a subjective decision about which delimitation 

to prioritize. We would have attempted to explain the conflict in a biological context to arrive at a 

delimitation decision. However, knowing that each approach has its own set of limitations casts 

doubt on the interpretations of the results. spedeSTEM is known to be more conservative; it is highly 

reliant on the phylogenetic certainty of gene trees and simulations have shown that the validity of 

shallower nodes is most difficult to establish (Ence & Carstens 2010). Guided BPP can over-delimit, 

given an incorrect guide tree (Leache & Fujita 2010) (but see Zhang et al. 2014) or misspecified 

prior settings (Giarla et al 2014). In addition to testing the impact of the prior settings on results, we 

also provided BPP with alternative topologies and found each was strongly supported with high 

probability, suggesting one or more may be incorrect. The unguided delimitation is intended to 

eliminate the need for a guide tree. We find this analysis strongly supports distinct lineages (for our 

focal taxa) and most often recovers a topology consistent with taxonomy—a hypothesis that is in 

conflict with one of our gene trees, as well as our species tree, and is only recovered six of 22 times 

with strong probability (Table 2). Furthermore, two of the 22 replicate unguided analyses recovered 

the species tree topology with noteworthy support, though moderate (pp = 0.86, results not shown). 

With such striking contrasts between delimitations, we find ourselves back at the starting point—

how many lineages do we have? Is it lack of signal in the data that causes spedeSTEM to fail to 

delimit, or are we somehow biasing our delimitation, resulting in over-delimitation with guided 

BPP? 

Pertinent to this conversation are the quality of the data we are using and the particular 

characteristics of the study system. Despite having many base pairs of data (25,351 bp of the most 

variable regions of Castilleja plastome, and 1,139 bp nrDNA totaling 26,490bp; Table S4.5), we are 

effectively delimiting with only two loci. In addition, the sampling of two of our focal taxa is small 

(three individuals for both Castilleja ambigua var. meadii and Castilleja victoriae). These small 

sample sizes could be impacting our results. If that is the case, an easy fix is to increase sample size, 

but generating more data by adding loci and/or increasing individuals sampled is difficult and 
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expensive. Furthermore, two of our focal taxa are extremely rare and known from only a few 

populations that are very spatially restricted (Fairbarns & Egger 2007; Egger et al. 2012) (Fig. 1). As 

such, incorporating additional individuals that will represent additional, currently unsampled 

molecular variation is unlikely, not to mention practically difficult. This is a common position for 

empiricists, especially those working in non-model systems with rare and/or spatially restricted taxa. 

While many of us are focused on gathering more data, it is important to remember that we do have 

other tools available to assess the suitability of the data already at hand. Post-hoc simulation studies 

can help us evaluate the adequacy of our data for addressing our question of interest.  

 

Simulations are useful in cases such as these—By simulating data on a known topology (i.e., a 

topology that we know for certain because we simulated it (rather than estimating it)) with variation 

similar to what we observe in our dataset, we can specifically test if there is signal in our data to 

delimit species, and if that signal is detectable with these analyses. In addition, by simulating data on 

multiple topologies (including our estimated species tree topology, as well as alternative 

relationships, therefore accommodating uncertainty in the underlying species level relationships), we 

can assess the sensitivity of these analyses to different topological relationships, therefore testing the 

ability of each approach to delimit, regardless of our knowledge of the true underlying species 

relationships. 

 In our simulation study, spedeSTEM fails to delimit in three of four cases where we see 

dominating support for a one-lineage model in our three, three-lineage simulations (Supplemental 

Table S6; Fig. 5). In the fourth case, the one-lineage simulation, spedeSTEM accurately delimits a 

single lineage 20 times, but also delimits a two or three lineage model 80 times (71 and 9, 

respectively). Unguided delimitation with BPP, on the other hand, correctly delimits in three of four 

cases (Fig. 6, Supplementary Table S7.1, S7.2, and S7.4), and fails when we simulate the alternative 

three-lineage topology (Fig. 6, Supplementary Table S7.3). Given the results of these simulations, 

we conclude that spedeSTEM is not suitable for delimitation with the dataset that we have collected 

here. BPP, on the other hand, appears to be sensitive enough to delimit the number of lineages, but 

perhaps not the evolutionary relationship of these lineages. 

 

Other reasons for conflict in delimitation—There are, of course, other explanations for conflicting 

delimitations, other than the limitations of the approaches as we have described them here. For 

example, we may have violated assumptions implicit in both approaches. Probably the assumption 

most in jeopardy of violation is that polymorphism present in the data are the result of incomplete 

lineage sorting (ILS) and not gene flow (Ence & Carstens 2010; Yang & Rannala 2014b). Breaking 
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this particular assumption has been shown to impact both approaches by homogenizing allele 

frequencies across lineage boundaries, thus impeding delimitation (e.g., Ence & Carstens 2011, 

Camargo et al 2012, Pelletier et al 2014). In this system, there are distinct floral differences that 

exists between C. victoriae and C. ambigua (including C. ambigua var meadii) that suggests the 

possibility that contemporary gene flow between these taxa is unlikely. In C. victoriae, stigmas are 

inserted at anthesis (i.e., female reproductive organs enclosed within the flower at peak flowering 

time), suggesting the possibility of self-pollination as a reproductive strategy. This is in direct 

contrast with all of C. ambigua where stigmas are exserted at anthesis (i.e., female reproductive 

organs held up and out of the flower at peak flowering times), which is the typical placement for an 

outcrossing mode of pollination. These differences are likely to be a strong functional barrier to 

cross-pollination. 

While floral morphological distinction between C. ambigua and C. ambigua var. meadii is 

less apparent, vegetative morphological variation is apparent and may reflect the ecological 

differentiation of these taxa. C. ambigua var. meadii is found further inland than most other C. 

ambigua (which are typically coastal) and is associated with freshwater (as opposed to salt water 

habitats where other members of C. ambigua occur) (Fig. 1). For these reasons, we consider 

contemporary gene flow unlikely in this particular complex of species; however, historical gene flow 

is something we cannot rule out and, given the young age of this lineage, something that may be 

relatively recent. 

 Hybridization has played, and may continue to play, a big role in the history of Castilleja, 

both at recent and deep time scales (e.g.,Heckard 1968; Heckard & Chuang 1977; Tank & Olmstead 

2009; Hersch-Green 2012; Clay et al. 2012). We have evidence of ongoing hybridization that we can 

observe in the field (e.g., Anderson & Taylor 1983; Hersch-Green & Cronn 2009), as well as 

signatures of hybridization deep in the history of the lineage (Hersch-Green & Cronn 2009; Tank & 

Olmstead 2009; Hersch-Green 2012). Furthermore, there is reason to expect gene flow at relatively 

shallow nodes in the phylogeny. Between the uplift of the Cascades and the Sierras between 2 – 5 

million years ago, and the last glacial maximum (LGM) that peaked around 20,000 years ago, 

western North America has seen many geographic changes and there are many examples of geologic 

impact on flora and fauna, including diversification (e.g., Hewitt 1996; Brunsfeld et al. 2001; Shafer 

et al. 2010; Espíndola et al. 2012; Folk et al. 2016; 2017). Therefore, it is not unreasonable to 

suggest that diversification of this species complex happened within this timeframe. Indeed, major 

north-south post-glacial re-colonization routes pass through extreme southwestern British Columbia 

and northwestern Washington state (Shafer et al. 2010) where current day C. victoriae occurs (Fig. 

1). As such, expecting a shallow node of divergence of both C. victoriae and C. ambigua var. meadii 
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from C. ambigua is perhaps realistic— this would explain the low amount of variation we recover in 

our sequence data and the difficulty spedeSTEM has detecting it. 

 While we consider the results of this work to confirm the distinction of three lineages 

corresponding to our focal taxa, there is still evidence wanting with respect to species delimitation. 

First, a robust delimitation must include additional lines of evidence that corroborate (or refute) the 

evidence presented here. For example, given the distinctive habitats of C. victoriae and C. ambigua 

var. meadii, we expect a signature of ecological differentiation in these lineages. This is especially 

important given recent criticism about the nature of what BPP— and coalescent-based, molecular 

species delimitation approaches, in general—is delimiting (i.e., population structure or species, 

(Sukumaran & Knowles 2017). Second, recent advances in modeling the complex history of lineages 

(including gene flow, alongside that of population subdivision, and/or population size differences) 

(e.g., Morales et al. 2016; Jackson et al. 2016) provide us with opportunities to examine the 

possibility of historical and contemporary gene flow in this system, and possibly rule out (or 

identify) potential causes of incongruence in our delimitation. Future work in the Castilleja ambigua 

species complex will address additional lines of evidence, and include more holistic species 

delimitation analyses (e.g., Solís-Lemus et al. 2015), and any formal changes to species limits will 

follow accordingly. 

Carstens et al (2013) report that only 30% of species delimitation studies make taxonomic 

recommendations and only 25% describe new species, and suggest that this could indicate a lack of 

confidence in the study, an inability to resolve incongruence across approaches, or acknowledgement 

of inadequacy of the data. Formal simulation studies, like ours, provide an avenue for researchers to 

address these concerns. Ultimately, empiricists have an obligation to use species delimitation 

approaches carefully and according to ‘manufacturer instructions.’ By carefully considering the 

assumptions and limitations of the approaches we use, we are off to a good start; by keeping abreast 

of both empirical and theoretical studies that refine our understanding of the limitations of these 

approaches, we are in an even better position to appropriately use the methods we employ. Finally, 

by performing simulation studies, such as those shown here, we have the opportunity to test if our 

approach is appropriate given our specific study system and the data at hand. This will be 

particularly important and useful in systems that are in the process of becoming data-rich (but 

currently have smaller, non-genomic datasets) and have pressing need for formal delimitations. 

Regardless, post-hoc simulation studies such as this can be important to success in species 

delimitation, especially at recent time scales where the depth of the nodes we are examining may be 

very shallow. It is likely that in many systems, such as this one, where we are interested in 

distinguishing incipient lineages, incongruence across delimitations will be common.
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FIGURE 1.1. Distributions and locations of sampled individuals for focal taxa considered here; (a)

the polymorphic Castilleja ambigua (purple) (which we treat as including varieties C. ambigua var.

ambigua, (b) C. ambigua var. insalutata, and (c) C. ambigua var. humboldtiensis), (d; green)

C. victoriae, and (e; orange) C. ambigua var. meadii. Filled circles are known localities of each

taxon; empty circles represent sampled localities. Photographs by J. Mark Egger.
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FIGURE 1.2. Schematic illustrating components of our empirical analyses (left) and simulations 

(right), highlighting the use of estimated models of nucleotide evolution, demographic parameters, 

and inferred species tree topology from empirical data in our simulations (dashed lines connecting 

the left side to the right). Solid arrows represent use of sequence data in each step of phylogenetic, 

species tree, and molecular species delimitation inference; dashed arrows indicate estimated models 

of nucleotide evolution and demographic parameters necessary for phylogenetic, species tree, and 

molecular species delimitation analyses. AMB = Castilleja ambigua, MEA = Castilleja ambigua var. 

meadii, VIC = Castilleja victoria.
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FIGURE 1.3. (a) Results of Bayesian gene tree inference (chloroplast reconstruction at left, nuclear 

reconstruction at right). Dots above branches indicate support > 0.95. Branch lengths are 

proportional to the number of substitutions per site, as measured by the scale bar. (b) Species tree 

estimation with posterior probabilities indicated at nodes. Dashed lines indicate median node heights 

used to inform timing of population splits in simulated genealogies.
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FIGURE 1.4. (a) Results of empirical molecular species delimitation using guided BPP. The three

topologies correspond to the species tree hypothesis (left), and its two alternative topologies.

Values at nodes represent lineage distinctiveness. (b) The set of models included in the 95%

credibility set of trees from unguided delimitation with BPP. Posterior probability for each

topology is reported beneath the tree. A - Castilleja ambigua; M - Castilleja ambigua var. meadii;

V - Castilleja victoriae; L - Castilleja lacera (outgroup).
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FIGURE 1.5. Results of simulation study of spedeSTEM. Here we report for each simulated

topology (left column), the model ranked highest across 100 independent simulations (middle

column) and the proportion of models at each rank position (right column) across the 100

simulations. lineage models are color coded according to their composition (linear key along the

bottom of figure). A - Castilleja ambigua; M - Castilleja ambigua var. meadii; V - Castilleja

victoriae; L - Castilleja lacera (outgroup). AMV - a single lineage composed of Castilleja

ambigua + Castilleja ambigua var. meadii + Castilleja victoriae.
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FIGURE 1.6. Results of simulation study of unguided BPP, averaged across 10 separate simulations.

For each simulated topology (left column), we report the posterior probability for lineage

distinctiveness (middle column), and the component models recovered in the 95% credibility

set of models (right column). Ranges of probabilities reported under the latter represent the range

of support across 10 independent simulations.
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TABLE 1.2. Results of empirical molecular species delimitation using BPP, analysis A11, averaged 

across 22 independent runs. Each panel represents a portion of the output of this analysis; the 

probability of the taxonomic species (first and second panel) and the best models found in the 95% 

credibility set of species tree topologies (third panel). 

	
	 Posterior	probabilities	 	

Best	Model	(ignoring	species	tree	
phylogeny)	 mean	 Min	 Max	

Number	reps	
above	0.95	
(out	of	22)	

		

4	distinct	lineages:	A,	M,	V,	L	 0.9610	 0.74	 0.99	 18	 	
	 	 	 	 	 	

Posterior	probability	of	taxonomic	
species	 mean	 Min	 Max	

Number	reps	
above	0.95	
(out	of	22)	

	

Castilleja	ambigua	 0.9713	 0.79	 0.99	 18	 	
Castilleja	ambigua	var.	meadii	 0.9845	 0.79	 0.99	 21	 	

Castilleja	victoriae	 0.9645	 0.75	 0.99	 18	 	
Castilleja	lacera	 0.9780	 0.74	 0.99	 20	 	

	 	 	 	 	 	

Best	models	in	95%	credibility	set	 mean	 Min	 Max	
Number	reps	
above	0.95	
(out	of	22)	

Number	reps	
occurred	in	
(out	of	22)	

(((A,	M),	V),	L)	 0.7434	 0.59	 0.99	 6	 22	
(((A,	V),	M),	L)	 0.1838	 0.02	 0.87	 0	 6	
(((M,	V),	A),	L)	 0.2401	 0.01	 0.34	 0	 6	
((A,	M),	(V,	L))	 0.1413	 0.02	 0.63	 0	 3	

 
A – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
M – Castilleja ambigua var. meadii 
V – Castilleja victoriae 
L – Castilleja lacera 
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SUPPLEMENTAL DATA S1 

 

SUPPLEMENTAL TABLE S1.1. Collection information and molecular sampling for individuals used in 

this study. Column 1) taxonomic identification, column 2) collector and collection number followed 

by the herbarium housing the collection voucher (represented by its acronym), and columns 3 

through 5) molecules sampled, indicated by an ‘X’. Individuals with an asterisk superscript indicate 

those sequences derived from dbc-amplicon approach. 

 
Scientific name Collector and Voucher location cpDNA ETS ITS 

Castilleja ambigua var. 
ambigua 

Egger 567   WTU X X X 
Egger 1463   WTU X X  
Egger 337   WTU X X X 
Gage and Rodman 375   WTU X X X 
Holmgren 2643   UC X X* X* 
Egger 578   WTU X X X 
Avis. s.n.    WTU X X  
Stansell s.n.   OSC X X*  
Halse 4905   WTU X X* X* 
Frenkel 1654 OSC X  X   

   
Castilleja ambigua var. 

humboldtiensis 
Egger 409   WTU X X*  

  
   

Castilleja ambigua var. 
insalutata 

Egger 528   WTU X X X 
Egger 523   WTU X X X   

   
Castilleja ambigua var. meadii Egger 1468 (#1)   WTU X X X 

Ruygt 5575 (#1)   WTU X X  
Ruygt 5575 (#2)   WTU X X    

   
Castilleja victoriae Egger s.n.   WTU X X X 

Egger s.n.   WTU X X X 
Calder and MacKay 29531   WTU X X*    

   
Castilleja lacera Egger 400   WTU X X X 

 
WTU – University of Washington, Burke Museum 
UC – University of California, Jepson Herbarium 
OSC – Oregon State University Herbarium 
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SUPPLEMENTAL DATA S3 

 

Estimating theta and tau 

We used an estimate of θ in this study in several analyses, each having its own assumptions 

about what theta represents. We used an estimate of θ in our empirical species delimitation as 1) an 

estimate of θ for all loci to be used by STEM (as part of spedeSTEM) to construct species trees, and 

2) by BPP as a prior estimate of the population size of modern and ancestral species used in the 

implementation of the multispecies coalescent model. We also used θ in our simulations in the 

program ms where we simulated genealogies under the multispecies coalescent. spedeSTEM and 

BPP expect the mutation rate component of θ to be representative across loci; ms, expects the 

mutation rate to be representative of the locus the genealogy is being modeled after (i.e., µ is the 

mutation rate for the specific locus being modeled). Furthermore, STEM (used by spedeSTEM to 

build species trees) requires a conversion of theta to a per-site mutation rate estimate. 

We used the program MIGRATE-N v.3.6 (Beerli and Felsenstein 2001) to estimate a value 

of θ appropriate for our dataset. Three independent Bayesian MIGRATE-N analyses were conducted 

to ensure convergence on the same parameter estimates. Sequences were organized into populations 

corresponding to their taxonomic identification; each taxon was treated as one population. Each 

analysis consisted of one long chain and 10 short chains (four of which were statically heated), 

replicated twice within each analysis. The results of these analyses are an estimate of theta for each 

taxon and locus (Table S3.1). At the end of our MIGRATE-N analyses, we averaged the estimates of 

θ across each run, and then averaged the estimates of θ for each locus (to be used in ms) and across 

loci (to be used in spedeSTEM and as priors for BPP) (Table S3.2). 

  We used analysis A00 of BPP v.3.1 (Yang and Rannala 2014) to estimate the divergence 

time parameter, τ, and the population size parameters for modern and ancestral species, θ. We 

modeled these parameters on the species tree topology from our *BEAST analysis, loosely informed 

by our MIGRATE-N results. Because we had little information available to guide the prior settings, 

we applied a diffuse setting to the alpha shape parameter (α=2) and then tested multiple β values 

such that the posterior estimate of gamma (calculated as α/β) was both above and below the estimate 

of theta from our MIGRATE-N analyses by multiple orders of magnitude  (following (Yang 2015)). 

To do so, we had to make some general assumptions about time of divergence (we used a 

conservative age of 1,000,000 years ago) and an estimate of the overall mutation rate in Castilleja 

(locus-wide estimate of theta 0.0105 / total number of base pairs 26490 = 0.000000396). During this 

exploratory period, we further confirmed that the posterior was insensitive to the prior.  
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Our exploratory runs sampled every two generations for a total of 20,000 samples, after an initial 

burn-in of 2,000 samples had been achieved. Once we had determined appropriate settings for the 

prior, we conducted four independent analyses from which to draw our posterior estimates of these 

parameters. These analyses sampled every ten generations for a total 200,000 samples, after a burn-

in of 2,000 samples. Analyses were conducted multiple times to confirm that results were stable 

across runs (Table S3.1 and Fig S3.1).
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SUPPLEMENTAL TABLE S1.3.1. Results of MIGRATE-N and BPP estimates of theta and tau. 

Migrate-n results are an average of three independent analyses; BPP results are an average of four 

independent analyses. The table below compares estimates of theta between MIGRATE-N and BPP 

A00 analyses. 

 

 Migrate-n results  BPP results 

 estimated theta averaged theta   averaged theta 

 nuclear chloroplast across loci     

C. ambigua 0.0233 0.0102 0.0167   0.0326 
C. ambigua v. meadii 0.0156 0.0009 0.0082   0.0055 

C. victoriae 0.0051 0.0084 0.0067   0.0054 
averaged theta  across 

species 0.0146 0.0064 0.0105 
  

0.0145 
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SUPPLEMENTAL TABLE S1.3.2. Theta estimates and locus specific length and variability used to 

calculate dataset-wide, per site mutation rate (bold box) and scaling factors for spedeSTEM (last 

column). 

 

 estimated 
theta 

length; site 
patterns 

per site 
mutation rate 

per locus 
variation 

scaling factor for 
spedeSTEM 

   (theta / length) (site patterns/ 
locus length) (nuc variation/chl variation) 

nuclear 0.0146 1139; 107 0.00001281 0.093942054 1 

chloroplast 0.0064 25351; 350 0.000000252 0.013806161 6.8043 
  26490 0.000000396   
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42

SUPPLEMENTAL FIGURE S1.3. Estimates (posterior ranges and means) of parameters obtained

from BPP A00 analysis. The node bars represent the 95% HPD intervals for divergence times,

with mean values represented at ends of dashed lines, and resulting theta values are placed along

each branch. There is only one sequence for LAC, and therefore no estimate of theta for this

lineage. AMB and A - Castilleja ambigua (including varieties ambigua, humboldtiensis, and

insalutata); VIC and V - Castilleja victoriae; MEA and M - Castilleja ambigua var. meadii.
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SUPPLEMENTAL DATA S4 

 

Further detail of simulation procedure 

To test the capability of these approaches to delimit species given our dataset, we used a 

simulation approach (Fig. 2, main text). We first simulated one genealogy per locus with the same 

number of tips and species designations as our empirical gene trees using the program ms (Hudson 

2002). Next, using scaled versions of these genealogies as guide topologies, we simulated the 

evolution of nucleotide sequences to generate sequence alignments that were comparable to our 

empirical dataset using the program seq-gen (Rambaut and Grass 1997). The subsequent sequence 

alignments then became the input for species delimitation of simulated data with a known topology. 

In the following outline, we specify demographic components modeled during genealogy 

simulation (Step 1, Fig S4.1), the way in which we scaled our genealogies (Step 2), and the methods 

used to evolve sequences along our genealogies (Step 3). Commands used to simulate genealogies 

and evolve sequences are included below. Detailed values for genealogy simulation (Supplemental 

Table S4.1 – Table S4.4) and molecular evolution (Supplemental Table S4.5) follow. 

 

Step 1. Components of demographic modeling for our genealogy simulation 

1. Number of populations and how many individuals within each population (Table S4.1). 

• Modeled after the dataset we collected: twenty total individuals from four 

populations where one population has 13 members (corresponds to AMB), two 

populations have three members (corresponds to VIC and MEA), and one 

population has one member (corresponds to LAC). In our ‘one lineage’ model, we 

identify 19 individuals belonging to lineage AMB_MEA_VIC, and one individual 

belonging to lineage LAC. 

2. The modern and ancestral sizes of the populations (corresponding to N0, N1, N2, N3, and 

N4 in Fig. S4.1) (Table S4.3). 

• Population sizes were set relative to the ancestral population common to all lineages 

(N0). We made the assumption that the AMB and LAC populations were both half 

the size of population N0; further, we assumed that the MEA and VIC populations 

were both 0.001 the size of the N0. We made a conservative estimate of the ancestral 

population size N0 to be 100,000 individuals. Therefore, AMB and LAC were each 

50,000 individuals and MEA and VIC were each 100 individuals.  

3. Timing of the merging of populations (corresponding to T1, T2, and T3 in Fig. S4.1) (Table 

S4.4). 
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• We used the median node heights of our preliminary empirical species tree (from 

*BEAST), which were estimated relative to one another, to inform the timing of 

these events; from oldest to most recent, these values were 0.0074, 0.0011, 0.0004 

(Fig 3, b, from main text). Population merging times were scaled by the ploidy of 

the locus and the ancestral population size. 

 

The following commands were used to simulate genealogies: 

• (((AMB, VIC), MEA), LAC) (species tree topology) 

i. chl genealogy: ./ms 20 100 -T -t 1232.5 -I 4 13 3 3 1 -n 1 0.5 -n 2 0.001 -n 3 

0.001 -n 4 0.5 -ej 0.2 3 1 -ej 0.55 2 1 -ej 3.7 4 1 

ii. nuc genealogy: ./ms 20 100 -T -t 5786.12 -I 4 13 3 3 1 -n 1 0.5 -n 2 0.001 -n 

3 0.001 -n 4 0.5 -ej 0.1 3 1 -ej 0.275 2 1 -ej 1.85 4 1 

• (((AMB, MEA), VIC), LAC) (taxonomic hypothesis) 

i. chl genealogy: ./ms 20 1 -T -t 1232.5 -I 4 13 3 3 1 -n 1 0.5 -n 2 0.001 -n 3 

0.001 -n 4 0.5 -ej 0.2 2 1 -ej 0.55 3 1 -ej 3.7 4 1 

ii. nuc genealogy: ./ms 20 1 -T -t 5786.12 -I 4 13 3 3 1 -n 1 0.5 -n 2 0.001 -n 3 

0.001 -n 4 0.5 -ej 0.1 2 1 -ej 0.275 3 1 -ej 1.85 4 1 

• (((MEA, VIC), AMB), LAC) (alternative three lineage topology) 

i. chl genealogy: ./ms 20 1 -T -t 1232.5 -I 4 3 3 13 1 -n 1 0.001 -n 2 0.001 -n 3 

0.5 -n 4 0.5 -ej 0.2 2 1 -ej 0.55 3 1 -ej 3.7 4 1 

ii. nuc genealogy: ./ms 20 1 -T -t 5786.12 -I 4 3 3 13 1 -n 1 0.001 -n 2 0.001 -n 

3 0.5 -n 4 0.5 -ej 0.1 2 1 -ej 0.275 3 1 -ej 1.85 4 1 

• ((AMB_MEA_VIC), LAC) (one lineage topology) 

i. chl genealogy: ./ms 20 1 -T -t 1232.5 -I 2 19 1 -n 1 0.5 -n 2 0.5 -ej 3.7 2 1 

ii. nuc genealogy: ./ms 20 1 -T -t 5786.12 -I 2 19 1 -n 1 0.5 -n 2 0.5 -ej 1.85 2 1 

 

Step 2. Genealogy Scaling 

1. Scaling factors for simulated genealogies. 

• The genealogies were simulated under the coalescent. Therefore, branch lengths are 

in coalescent units. Seq-gen, used in the next step to simulate sequences, expects 

branch lengths in units of substitutions per site. As a proxy for converting from 

coalescent units to substitutions per site, we calculated a scaling factor to be used as 

part of the sequence evolution step. Using the ape package in R (Paradis et al 2004; 

R Core Team 2016), we calculated the mean tree height of all trees from the burned 
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posterior distribution of empirical gene trees (mrbayes runs) and the mean tree 

height of simulated genealogies for each locus. The ratio of these lengths provided 

the scaling factor for the simulated sequences using the –s flag (see below). 

 

Step 3. Evolving Sequences 

1. Models of nucleotide evolution. 

• Nucleotide sequences were evolved along the simulated genealogies using the 

program seq-gen (Rambaut and Grass 1997). Parameters of nucleotide evolution 

estimated from our empirical model selection process (partitionfinder), and the 

branch length scaling factor mentioned above, served as simulation parameters. For 

each locus, partitions recovered during the model selection process were simulated 

separately and then concatenated to create sequence alignments with the same 

number and variability of nucleotides found in our empirical datasets. The following 

commands were used to simulate sequences on all simulated genealogies (regardless 

of topology). 

 

The following commands were used to evolve sequences on the simulated genealogies. Scaling of 

the branches occurs in this step with the –s flag. 

• Chloroplast sequences: 

par.1 -> ./seq-gen -mHKY -l4386 -i0.939 -f0.3033,0.1286,0.158,0.4101 -t0.5 -

s0.003  

par.2 -> ./seq-gen -mHKY -l11921 -i0.92 -f0.3496,0.177,0.1676,0.3059 -t0.5 -

s0.003  

par.3 -> ./seq-gen -mHKY -l1643 —a0.768 -g4 -i0.947 -f0.3408,0.1523,0.13,0.3769 

-t0.5 -s0.003  

par.4 -> ./seq-gen -mHKY -l6339 -i0.95 -f0.2738,0.1983,0.1837,0.3441 -s0.003  

par.5 -> ./seq-gen -mHKY -l508 —a0.272 -g4 -i0.252 -

f0.3409,0.1491,0.1503,0.3597 -t0.5 -s0.003  

par.6 -> ./seq-gen -mHKY -l554 -f0.3779,0.1557,0.1888,0.2776 -t0.5 -s0.003  

• Nuclear sequences: 

par.1 -> ./seq-gen -mGTR -l450 -a15.988 -g4 -f0.1579,0.2779,0.2859,0.2783 -

r0.91238,1.63328,2.78612,0.32558,1.63328,1 -s0.015  

par.2 -> ./seq-gen -mGTR -l689 —i0.763 -f0.1888,0.3222,0.3051,0.1839 -

r0.6289,1.0201,0.9926,0.0134,2.2502,1 -s0.015
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SUPPLEMENTAL FIGURE S1.4. Visual representation of simulated parameters including population 

sizes (N0, N1, N2, N3, and N4) and divergence times (T1, T2, and T3) modeled on the species tree 

topology. A – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata); V – 

Castilleja victoriae; M – Castilleja ambigua var. meadii; L – Castilleja lacera.

A V M L
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SUPPLEMENTAL TABLE S1.4.1.  Number of populations and associated individuals simulated for 

each topology. 

   
 Populations Number of individuals per lineage 
Species tree hypothesis: 
(((AMB, VIC), MEA), LAC) four 13 (AMB), 3 (VIC), 3 (MEA), 1 (LAC) 
Taxonomic hypothesis: 
(((AMB, MEA), VIC), LAC) four 13 (AMB), 3 (MEA), 3 (VIC), 1 (LAC) 
Alternative three lineage hypothesis: 
(((MEA, VIC), AMB), LAC) four 3 (MEA), 3 (VIC), 13 (AMB), 1 (LAC) 
One lineage hypothesis: 
((AMB_MEA_VIC), LAC) one 19 (AMB_VIC_MEA), 1 (LAC) 

 
AMB – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC – Castilleja victoriae 
MEA – Castilleja ambigua var. meadii. 
LAC – Castilleja lacera 
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SUPPLEMENTAL TABLE S1.4.2. Preliminary mutation rate estimates, locus length, ploidy values, and 

our estimate of ancestral population size used to calculate theta value used in genealogy simulation. 

 

      

 
Estimated 

mutation rate length of locus ploidy 
Ancestral population 

size (N0) theta for ms 
chloroplast 0.000000243 25351 2 100,000 1232.5 
nuclear 0.0000127 1139 4 100,000 5786.12 
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SUPPLEMENTAL TABLE S1.4.3. Population sizes of each lineage, relative to ancestral population. 

 

   

 
With respect to ancestral 

population size (N0=100,000) Implied size 
AMB 0.5 50,000 
MEA 0.001 100 
VIC 0.001 100 
LAC 0.5 50,000 

 

AMB – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC – Castilleja victoriae 
MEA – Castilleja ambigua var. meadii. 
LAC – Castilleja lacera
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SUPPLEMENTAL TABLE S1.4.4. Timing of population merging for each topology tested 

 

  Scaled by ploidy and N0 
  chloroplast nuclear 
Species tree hypothesis: (((AMB, VIC), MEA), LAC)   
VIC - AMB 40,000 generations ago 0.2 0.1 
VIC_AMB - MEA 110,000 generations ago 0.55 0.275 
VIC_AMB_MEA - LAC 740,000 generations ago 3.7 1.85 

Taxonomic hypothesis: (((AMB, MEA), VIC), LAC)  
MEA - AMB 40,000 generations ago 0.2 0.1 
MEA_AMB - VIC 110,000 generations ago 0.55 0.275 
MEA_AMB_VIC - LAC 740,000 generations ago 3.7 1.85 

Alternative three lineage hypothesis: (((MEA, VIC), AMB), LAC)   
MEA - VIC 40,000 generations ago 0.2 0.1 
MEA_VIC - AMB 110,000 generations ago 0.55 0.275 
MEA_VIC_AMB - LAC 740,000 generations ago 3.7 1.85 

One lineage hypothesis: ((AMB_MEA_VIC), LAC)   
MEA_VIC_AMB - LAC 740,000 generations ago 3.7 1.85 

 
AMB – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC – Castilleja victoriae 
MEA – Castilleja ambigua var. meadii. 
LAC – Castilleja lacera
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SUPPLEMENTAL TABLE S1.4.5. Results of estimation of nucleotide evolution for our dataset. These 

values were used directly to evolve sequences on our simulated genealogies (refer to command lines 

noted above). 

 

    frequency 

locus partition  bp model of selection A C G T 

cp 1 4386 F81 + I 0.3033 0.1286 0.158 0.4101 

 2 11921 F81 + I 0.3496 0.177 0.1676 0.3059 

 3 1643 F81 + I + G 0.3408 0.1523 0.13 0.3769 

 4 6339 HKY + I 0.2738 0.1983 0.1837 0.3441 

 5 508 F81 + I + G 0.3409 0.1491 0.1503 0.3597 
  6 554 F81 0.3779 0.1557 0.1888 0.2776 

Total bp 25351      
        

nuc 1 450 TVM + G 0.1579 0.2779 0.2859 0.2783 
  2 689 GTR + I 0.1888 0.3222 0.3051 0.1839 

Total bp 1139      
 

    rate matrix   

locus partition  p-inv gamma; 
# cat. a b c d e f 

cp 1 0.939        

 2 0.92        

 3 0.947 0.768; 4       

 4 0.95        

 5 0.252 0.272; 4       

  6         

Total bp 25351      
  

          

nuc 1  15.988; 4 0.91238 1.63328 2.78612 0.32558 1.63328 1 

  2 0.763  0.6289 1.0201 0.9926 0.0134 2.2502 1 

Total bp 1139        
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SUPPLEMENTAL DATA S5 

 

 
 

 

SUPPLEMENTAL FIGURE S1.5. Results of maximum likelihood (top) and Bayesian (bottom) 

reconstructions of chloroplast (left) and nuclear (right) datasets. Values at nodes reflect bootstraps 

(in the case of the maximum likelihood inference) and posterior probabilities (in the case of Bayesian 

inference). 
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SUPPLEMENTAL DATA S6 
 

SUPPLEMENTAL TABLE S1.6. Results of delimitation with spedeSTEM using simulated data. Here, 

for brevity, we report the final rankings of each simulation organized by topology modeled.  Rows 

represent the lineage composition model and columns represent the rank position, first through fifth. 

For each topology modeled, we performed 100 simulations.
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Taxonomic Hypothesis 
((AMB, MEA), VIC) 

 First Second Third Fourth Fifth 

AMB_MEA_VIC 100 0 0 0 0 

AMB_MEA, VIC 0 77 23 0 0 
AMB_VIC, MEA 0 23 77 0 0 

MEA_VIC, AMB 0 0 0 0 100 
AMB, MEA, VIC 0 0 0 100 0 

      
Species Tree Hypothesis 
((AMB, VIC), MEA) 

 First Second Third Fourth Fifth 

AMB_MEA_VIC 100 0 0 0 0 
AMB_MEA, VIC 0 37 63 0 0 

AMB_VIC, MEA 0 63 37 0 0 
MEA_VIC, AMB 0 0 0 0 100 

AMB, MEA, VIC 0 0 0 100 0 
      

Alternative Three-Lineage Hypothesis 
((MEA, VIC), AMB) 

 First Second Third Fourth Fifth 

AMB_MEA_VIC 94 6 0 0 0 
AMB_MEA, VIC 0 1 82 17 0 

AMB_VIC, MEA 0 0 18 82 0 
MEA_VIC, AMB 0 0 0 0 100 

AMB, MEA, VIC 6 93 0 1 0 
      

One Lineage Hypothesis 
(AMB_MEA_VIC) 

 First Second Third Fourth Fifth 

AMB_MEA_VIC 20 1 63 0 7 
AMB_MEA, VIC 0 68 27 5 2 

AMB_VIC, MEA 0 2 0 26 71 
MEA_VIC, AMB 71 29 10 0 0 

AMB, MEA, VIC 9 0 0 69 20 
AMB – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC – Castilleja victoriae 
MEA – Castilleja ambigua var. meadii. 
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SUPPLEMENTAL DATA S7 
 

Results of delimitation with BPP Analysis A11 (unguided delimitation), using simulated data. Each 

table below represents one of four topologies simulated. For each topology examined, ten 

independently simulated datasets were analyzed, each run twice to confirm stability across rjMCMC 

algorithms, for a total of 20 separate analyses per topology. For each topology, we report the best 

model recovered (the number of distinct lineages, ignoring phylogeny), the probability of taxonomic 

species, and all models included in the 95% credibility set of models. For each of these categories, 

we report the mean posterior probability across analyses, the minimum and maximum posterior 

probabilities recovered, and the number of independent analyses for which the posterior probability 

recovered was greater than 0.95. In the case of the alternative three-lineage and the one lineage 

topology, results of species delimitation recovered an alternative taxonomic species with high 

posterior probability. The last two tables (corresponding to those topological simulations) include 

information for these highly supported alternative species.
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SUPPLEMENTAL TABLE S1.7.1. Results of delimitation with BPP Analysis A11 using data simulated 

under our species tree hypothesis, (((AMB, VIC), MEA), LAC). 

 
 Posterior probabilities 

Best Model (ignoring species tree phylogeny) mean min max number reps (in 19) 
pp > 0.95 

4 distinct lineages: A, M, V, L 0.9997 0.9994 0.9998 19 
     

Posterior probability of taxonomic species mean min max number reps (in 19) 
pp > 0.95 

C.ambigua.ambigua 0.9999 0.9998 0.9999 19 
C.ambigua.meadii 0.9998 0.9996 0.9999 19 

C.victoriae 0.9997 0.9994 0.9998 19 
C.lacera 1.0000 1.0000 1.0000 19 

     

Best models in the 95% credibility set mean min max number reps (in 19) 
pp > 0.95 

(((A, V), M), L)  0.9745 0.9652 0.9810 19 
 
AMB and A – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC and V – Castilleja victoriae 
MEA and M – Castilleja ambigua var. meadii. 
LAC and L – Castilleja lacera



 

 

57 

37 

SUPPLEMENTAL TABLE S1.7.2. Results of delimitation with BPP Analysis A11 using data simulated 

under the taxonomic hypothesis, (((AMB, MEA), VIC), LAC). 

 
 Posterior probabilities 

Best Model (ignoring species tree phylogeny) mean min max number reps (in 20) 
pp > 0.95 

4 distinct lineages: A, M, V, L 0.9999 0.9997 1.0000 20 
     

Posterior probability of taxonomic species mean min max number reps (in 20) 
pp > 0.95 

C.ambigua.ambigua 0.9998 0.9997 1.0000 20 
C.ambigua.meadii 0.9998 0.9997 1.0000 20 

C.victoriae 1.0000 1.0000 1.0000 20 
C.lacera 1.0000 1.0000 1.0000 20 

     

Best models in the 95% credibility set mean min max number reps (in 20) 
pp > 0.95 

(((A, M), V), L)  0.9964 0.9929 0.9989 20 

 

AMB and A – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC and V – Castilleja victoriae 
MEA and M – Castilleja ambigua var. meadii. 
LAC and L – Castilleja lacera 
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SUPPLEMENTAL TABLE S1.7.3. Results of delimitation with BPP Analysis A11 using data simulated 

under the alternative three-lineage topology, (((MEA, VIC), AMB), LAC). 

 
 Posterior probabilities  

Best Model (ignoring species tree phylogeny) mean min max 
number reps 
(in 20) pp > 

0.95 
 

2 distinct lineages: AMV, L 0.9300 0.8511 0.9545 4  

      

Posterior probability of taxonomic species mean min max 
number reps 
(in 20) pp > 

0.95 
 

C.ambigua.ambigua 0.0503 0.0134 0.1340 0  

C.ambigua.meadii 0.0175 0.0029 0.0429 0  

C.victoriae 0.0035 0.0024 0.0067 0  

C.lacera 1.0000 0.9999 1.0000 20  
      

Posterior probability of alternative species mean min max 
number reps 
(in 20) pp > 

0.95 
occurrence 

C.ambigua.ambigua + C.ambigua.meadii + 
C.victoriae 0.9283 0.8418 0.9519 4 20 

 C.ambigua.meadii + C.victoriae 0.0644 0.0367 0.1323 0 13 
C.ambigua.ambigua + C.victoriae 0.0412 0.0392 0.0424 0 3 

      

Best models in the 95% credibility set mean min max 
number reps 
(in 20) pp > 

0.95 
occurrence 

(AMV, L) 0.9301 0.8512 0.9545 4 20 
((MV, A), L) 0.0644 0.0367 0.1323 0 13 
((AV, M), L) 0.0412 0.0392 0.0424 0 3 

 

AMB and A – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC and V – Castilleja victoriae 
MEA and M – Castilleja ambigua var. meadii. 
LAC and L – Castilleja lacera 
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SUPPLEMENTAL TABLE S1.7.4. Results of delimitation with BPP Analysis A11 using data simulated 

under the one lineage topology, (MEA_VIC_AMB), LAC). 

 
 Posterior probabilities 

Best Model (ignoring species tree phylogeny) mean min max number reps (in 20) 
pp > 0.95 

2 distinct lineages: AMV, L 0.9960 0.9857 0.9986 20 
     

Posterior probability of taxonomic species mean min max number reps (in 20) 
pp > 0.95 

C.ambigua.ambigua 0.0004 0.0000 0.0010 0 
C.ambigua.meadii 0.0033 0.0004 0.0132 0 

C.victoriae 0.0003 0.0000 0.0007 0 
C.lacera 1.0000 1.0000 1.0000 20 

     

Posterior probability of alternative species mean min max number reps (in 20) 
pp > 0.95 

C.ambigua.ambigua + C.ambigua.meadii + 
C.victoriae 

0.9960185 0.98576 0.99869 20 0.9960185 0.98576 0.99869 
     

Best models in the 95% credibility set mean min max number reps (in 20) 
pp > 0.95 

(AMV, L) 0.9960185 0.98576 0.99869 20 
 

AMB and A – Castilleja ambigua (including varieties ambigua, humboldtiensis, and insalutata) 
VIC and V – Castilleja victoriae 
MEA and M – Castilleja ambigua var. meadii. 
LAC and L – Castilleja lacera 
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CHAPTER 2: QUANTIFYING MORPHOLOGICAL VARIATION IN THE CASTILLEJA PILOSA SPECIES 

COMPLEX 

with Sarah Herzog and David C. Tank 

 

Abstract 

 

Robustly delimited species are of paramount importance, the identification of which relies on our 

ability to discern boundaries between one species and the next. This is not difficult to do when 

species are very distinct from one another. However, in recently evolved lineages where putative 

species may have relatively few diagnostic features (e.g., species complexes composed of very 

similar species, the boundaries between which are often unclear), defining species boundaries can be 

more challenging. Hence the field of species delimitation has widely advocated the use of multiple 

lines of evidence to delimit species, particularly in species complexes. Excessive taxonomic 

confusion, often the result of species descriptions that shift through time (e.g. during revisionary 

work and regional treatments), can further complicate the search for diagnostic features in species 

complexes. Here, as a first step in robustly delimiting species boundaries, we quantify and describe 

morphological variation in the Castilleja pilosa species complex. We first infer the morphospace of 

the complex and use fuzzy-clustering techniques to explore the morphological variation in the 

system. Next, we hypothesize the position of type specimens within morphospace. In so doing, we 

visualize the impact that regional treatments have had on the conceptualization of taxa through time. 

We find that there is limited morphological variation among members of this complex, and we 

determine that current species boundaries are no longer accurately represented by type specimens. 

 

Introduction 

 

Because they provide the basis for the recognition of one of the primary units of 

biodiversity, the species, classifications are the cornerstone of the biodiversity sciences. As such, 

classifications are vital to our understanding of biodiversity and the process of speciation. Therefore, 

the careful and robust delimitation of species is imperative. Species delimitation relies on our ability 

to define boundaries between one population and the next. Historically, this has been done using 

morphological evidence (Sneath and Sokal 1974), ecological evidence (Van Valen 1976), and more 

recently, in light of technical and analytical advances, molecular evidence (Baum and Shaw 1995). 

Each criterion has limitations for being widely applied across the tree of life (De Queiroz 2007), and 

no one criterion has been universally applied to defining species boundaries (De Queiroz 2009). 
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Instead, there has been a movement to include multiple lines of evidence in the delimitation of 

species (e.g., Padial et al. 2010; Schlick-Steiner et al. 2010; Carstens et al. 2013; Dejaco et al. 2016; 

Freudenstein et al. 2016). Species delimitation methods are often applied to existing classifications 

where species boundaries are poorly defined and/or sample assignment to species is difficult (e.g. 

Barley et al. 2013; Giarla et al. 2014). In these cases, species delimitation is used in a validation 

context (where taxonomic boundaries are validated—i.e., individuals are assigned to a group a priori 

(Ence and Carstens 2010)) and attempts to clarify species boundaries and which lines of evidence 

(morphological, ecological, molecular) do and do not describe species. 

Traditionally, species have been described and anchored by a type specimen and its 

corresponding morphological and ecological traits, providing a central point around which some 

amount of variation occurs (Fig. 1). However, the characteristics of this variation (the amount, the 

direction, etc.) are not static, and additional collections assigned to a species can shift the conceptual 

boundaries of the species, in particular how this is applied on-the-ground. For example, regional and 

floristic studies can result in treatments and species descriptions that incorporate variation observed 

in the field on a local scale. Revisionary work, typically happening at a broader scale (e.g. the Flora 

of North America), often recognizes overlapping variation between similar species and synonymizes 

names where appropriate. As a result, there can be a shift of species boundaries and known variation. 

In essence, these shifts can inflate or deflate the taxonomic conceptualization outside of the realm of 

its original description, and in some cases this can result in a type specimen that no longer serves as a 

central, anchoring point within the range of known variation for a species, and instead only 

represents a portion of that variation (Fig. 1).  

Often, the species involved in these taxonomic fluctuations are characterized as species 

complexes (i.e., groups of species that are difficult to distinguish from one another),and are already 

known to have overlapping variation that is difficult to classify. The shifting of recognized and 

ascribed variation through time and across treatments can further increase the fuzziness of species 

boundaries, making the identification of unknown individuals (and therefore the usefulness of the 

classification) even more difficult. This is further complicated when an unknown comes from a 

geographic boundary (or, conversely, one that is widespread but has varieties that occur in 

geographically restricted areas), served by two or more regional or localized treatments that have 

varying interpretations of variation within a taxon. This requires choices to be made by the identifier 

in preferring one treatment to another when treatments are in conflict (e.g., one treatment recognizes 

varieties, while another does not). Cases such as these—species complexes with a great deal of 

taxonomic confusion—are good targets for robust species delimitation. By clarifying and 
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determining which lines of evidence distinguish species, classifications can be updated to reflect 

more accurate estimates of species boundaries. 

 Recognizing species in the genus Castilleja Mutis ex L. f. (Orobanchaceae Vent.) is 

notoriously difficult, particularly in the field. These difficulties largely stem from a nearly 

continuous range of variation both within and across taxonomic boundaries (Cronquist et al. 1984). 

The source of this morphological continuity is likely a combination of the age of the lineage, the 

widespread and highly variable instances of polyploidy, and interspecific gene flow when species co-

occur (Heckard and Chuang 1977; Tank et al. 2008; Tank et al. 2009). This means that most often 

the characters that diagnose species are slight and often overlapping. A good example of these 

difficulties is the Castilleja pilosa species complex, composed of two taxonomic species, Castilleja 

nana Eastwood and Castilleja pilosa (S. Watson) Rydberg (with three named varieties), that are 

geographically distinct and morphologically very similar (Fig. 2a). All members of this complex 

belong to a wider group of Castilleja species whose tubular flowers have less-showy corollas with 

short beaks and a pouchy lower corolla lip, with somewhat petaloid teeth. The calyx lobes of these 

species are often subequal and the depth of the sinuses, and the corresponding size and shape of the 

calyx lobe segments, are often diagnostic (Fig. 2b) (Cronquist et al. 1984; Hitchcock et al. 1984; 

Wetherwax et al. 2012). 

Castilleja pilosa is composed of three taxonomically recognized varieties, distinguished 

primarily by geography, in addition to slight variations in a suite of morphological characters. 

Castilleja pilosa (S. Watson) Rydberg var. pilosa is found in the Sierra Nevada, north and east into 

Oregon; Castilleja pilosa (S.Watson) Rydb. var. steenensis (Pennell) N.H.Holmgren is endemic to 

the high ridges of Steens Mountain in southeastern Oregon; Castilleja pilosa (S.Watson) Rydb. var. 

longispica (A.Nelson) N.H.Holmgren occurs in the southern half of Idaho, east into western 

Wyoming and Montana, and has a disjunct population in northern Idaho. These varieties are 

distinguished by calyx length, herbage pubescence, elevation, and geographic position (Cronquist et 

al. 1984). Castilleja nana occurs throughout the central and southern Sierra Nevada range of eastern 

California and extends eastward on the high ridges of Nevada’s basin and range topography. 

Castilleja nana is primarily distinguished from C. pilosa by elevation; C. nana occurs between 2400 

and 4200 meters, while C. pilosa is found primarily at lower elevations, between 1200 and 3400 

meters. Additionally, C. nana is often a smaller plant with decumbent branches and smaller features. 

When Castilleja pilosa and Castilleja nana occur in sympatry and at the same elevation, it is 

often quite difficult to distinguish the two species. Additionally, many of the members of this 

complex occur across geographic and political boundaries and are represented in multiple, 

overlapping regional and floristic treatments (Cronquist et al. 1984; Hitchcock et al. 1984; 
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Wetherwax et al. 2012). Subsequently, there has been a great deal of taxonomic confusion, 

demonstrated by the number of synonyms associated with C. pilosa and C. nana. Several of these 

incorporations are centered in the Sierra Nevada where both species occur in sympatry, as well as 

northern California at the border with Oregon and Nevada. These regions also lie at the boundary 

between the Great Basin, the Pacific Northwest, and the Sierra Nevada and California floristic 

province, where a great deal of taxonomic work has been done. The taxonomic confusion in this 

group could be the result of any of the following factors: the young age of the lineage, the propensity 

for gene flow when species are sympatric, little to no morphological distinction between species, 

and/or the absence of species in the complex (i.e., the entire complex is actually a single lineage). As 

such, this complex is in great need for robust species delimitation. 

Here we begin this process by quantifying morphological variation in the complex and 

assessing its correlation (or not) with the current taxonomy. By sampling many populations across 

the known ranges of these entities, identifying them using regional treatments, and measuring and 

analyzing a suite of morphological traits, we test the assumption that there are morphological clusters 

that correspond to taxonomic entities. We perform principal coordinate analyses to understand the 

position of individuals in morphospace, and then apply a non-hierarchical clustering method to 

assess the signal of morphological similarity that exists among these entities. In this way, we aim to 

quantify and begin to characterize the morphological variation in this species complex, information 

that will ultimately become part of a robust delimitation of species boundaries in this group. 

 

Methods 

 

Sampling and Range Estimation—Both mounted and unmounted collections of Castilleja pilosa var. 

pilosa, C. pilosa var. longispica, C. pilosa var. steenensis, and C. nana were examined for this study, 

with emphasis placed on representing the known distributional ranges of these taxa. Prior to 

measurement, all collections were identified using the primary literature currently available—

regional floras and treatments ((Wetherwax et al. 2012) California; (Hitchcock et al. 1984), Oregon, 

Idaho, and adjacent Montana and Wyoming; (Cronquist et al. 1984), Great Basin). Species ranges 

were estimated based on loan material and specimen label data accessed through regional databases 

(Consortium of Pacific Northwest Herbaria (pnwherbaria.org); Southwest Environmental 

Information Network (SEINet; swbiodiversity.org); University and Jepson Herbaria Specimen Portal 

(webapps.cspace.berkeley.edu); New York Botanical Garden (NYBG; nybg.org); Rocky Mountain 

Herbarium (RM; rmh.uwyo.edu)). Latitude and longitude were taken directly from collection labels, 

when available. In some cases, coordinates were not provided on the collection label, in which case 
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they were estimated by hand based on locality information provided by the collector. For specimens 

whose identification we did not confirm (i.e., specimens not on loan), we only considered collections 

or identifications determined by collectors that we considered to have extensive expertise in 

Castilleja identification. All sampling information, including coordinates and voucher locations, can 

be found in Supplemental Table S1. 

 

Morphological Measurements—We used a combination of continuous and categorical traits to 

characterize morphology. These traits are known to be taxonomically informative and are widely 

used to identify and distinguish Castilleja species (Cronquist et al. 1984; Hitchcock et al. 1984; 

Chuang and Heckard 1991; Hersch-Green and Cronn 2009) (Table 1). Specimens were chosen for 

data collection based on the overall condition of the collection and maturity of the plant when it was 

collected, preferring specimens as close to peak maturity as possible. Multiple stems within each 

collection were measured in order to record a complete set of measurements for each collection. 

Floral measurements were taken from dissected flowers rehydrated with Pohl’s solution (Pohl 1965). 

Flowers at peak maturity were identified, removed from the indeterminate inflorescence, and 

saturated with Pohl’s solution for five minutes. The bract, calyx, and corolla were separated from 

one another, and measurements taken from the dissected tissues (Fig. 2b). Habit, inflorescence, and 

leaf characters were taken from the specimen without further dissection; surface textures were taken 

from stem midway between the inflorescence and the base of the plant. 

Nineteen continuous characters were measured from a total of 171 collections: Castilleja 

nana (n=50), C. pilosa var. longispica (n=34), C. pilosa var. pilosa (n=76), and C. pilosa var. 

steenensis (n=11). Several continuous variables were used in the auto-calculation of additional 

continuous variables, thus creating a composite variable (Table 1, characters 18, 27, and 28). To 

avoid pseudo-replication of traits in the dataset, we removed the component traits (Table 1, 

characters 16, 17, 20, 21, 22, and 27), leaving only the composite variables in the dataset, resulting in 

thirteen quantitative characters. Nine categorical characters were recorded from the same 171 

collections (Table 1). Three of these characters did not vary across individuals and were removed 

from the dataset (Table 1, characters 24, 25, and 26), leaving a total of six qualitative characters 

included in the analyses.  

 

Data Preparation and Quantification of Morphological Variation—When present, raw 

measurements from different stems of the same collection were combined to produce an average 

measurement for each individual for each trait examined. Individuals with missing data for any of 

the traits measured (indicating the tissue was unavailable for sampling, a total of 60 collections) were 
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removed from downstream analyses. We identified possible outliers in the dataset by calculating the 

multivariate normal density function of all continuous variables using the stats package in R (R Core 

Team 2016), resulting in the pruning of 10 collections. Continuous variables were log transformed, 

and presence/absence data were coded as binary variables. In order to quantify morphological 

measurements for each taxonomic entity, kernel density estimates for each continuous trait were 

generated with the density function in the R package stats (R core Team 2016) using a “gaussian” 

kernel and default bandwidth parameters. Categorical traits were summed across taxonomic groups. 

 

Principal Coordinate Analysis—To represent the morphological similarity in our dataset, we applied 

a metric, multidimensional scaling approach that positions each individual in a reduced dimension 

morphospace, preserving the distance relationship between individuals as well as possible (Gower 

1966). Because the categorical variables that we measured are taxonomically diagnostic, it was 

important to include them in a quantification of morpholospace in this species complex. We 

performed a principal coordinate analysis (PCoA), which can handle both quantitative and 

qualitative data by using measures of (dis)similarity calculated from mixed variables (Gower 1966; 

Legendre and Legendre 1998). We calculated a dissimilarity matrix based on our log-transformed 

continuous variables, our nominal categorical variables, and our symmetric dichotomous variables, 

using Gower’s dissimilarity coefficient (Gower 1971), as implemented using the daisy function in 

the R package cluster (Maechler et al. 2016). We then performed PCoA on the dissimilarity matrix 

using the function pcoa in the R package ape (Paradis et al. 2004). PCoA can sometimes result in 

negative eigenvalues when dealing with non-Euclidean distance measures (as we are doing here). As 

such, we used the Cailliez correction (Cailliez 1983), where a constant is added to each original 

measure of dissimilarity (except the diagonals). Because PCoA is based on a pairwise distance 

matrix, there are approximately as many dimensions as there are pairwise comparisons, and they are 

ordered by their eigenvalues. By plotting each individual at the first two to three principal 

coordinates, we can represent the best possible Euclidean approximation of the morphological 

distance between them (Gower 1982). 

 

Fuzzy Clustering—To explore and describe the signal of morphological similarity that we have 

quantified, we apply a clustering technique that can accommodate situations where cluster 

boundaries may not be clear-cut. Fuzzy clustering (Dunn 1976; Kaufman and Rousseeuw 2005) is a 

‘soft’ approach to clustering where individuals are assigned a probability of membership (the 

coefficient of membership) to each recovered cluster; this is in contrast to ‘hard’ clustering where an 

individual is assigned to a single cluster only. The benefit of this type of clustering approach is that it 
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can accommodate ambiguity in cluster assignments and provide more detailed information about the 

structure of the dataset.  

The objective of the fuzzy clustering algorithm is to minimize the within cluster variance 

and maximize between cluster variance; put another way, the objective is to minimize the distance 

between two objects belonging to the same cluster. This is accomplished through an iterative 

procedure where cluster membership is initiated and a coefficient of membership is calculated for 

each individual based on the distance of the individual to the centroid of each cluster. The process is 

repeated until new clustering iterations fail to maximize the objective. After clustering, a final 

coefficient of membership to each cluster is calculated for each individual. When an individual is 

assigned equal coefficients to all clusters, it is described as having ‘complete fuzziness’ and can be 

imagined as falling in the ‘middle ground’ between all clusters; when an individual has a 

membership close to 1 to a particular cluster, the clustering is essentially hard (i.e., it is a partition). 

Dunn’s normalized partition coefficient (1976) can be used to describe the overall fuzziness of an 

analysis, regardless of the number of clusters considered, where values close to 0 indicate high levels 

of fuzziness (near equal membership to all clusters) and values close to 1 indicate very low levels of 

fuzziness (i.e., hard partitions). After generating the coefficients of membership, one can find the 

hard partitioning scheme that most closely approximates the fuzzy clustering by assigning each 

individual to the cluster in which it has the largest membership. 

One way to visualize the results of fuzzy clustering is by examining silhouette plots of the 

hard clusters. These plots are constructed of horizontal bars representing the silhouette coefficient 

(s(i) – a measure of that individual’s similarity to other members of the same cluster) of each 

individual in the analysis, organized by hard cluster assignment. When s(i) is at its largest for an 

individual (close to 1), that means that the individual is much more similar to other members of its 

cluster than it is to individuals outside of the cluster. When s(i) is low for an individual (closer to 0), 

it means that the individual is equally similar to both members of its cluster and members of other 

clusters. When an individual has an s(i) value that is negative, the within cluster similarity is much 

smaller than the between cluster similarity. Finally, we can calculate the mean silhouette coefficient 

(i.e., the mean silhouette coefficient of all samples in the analysis) as a way of interpreting and 

validating the clustering. Kaufman and Rousseeuw (2005) suggest that datasets with silhouette 

coefficients less than or equal to 0.25 have no substantial structure, values between 0.26 and 0.50 

indicate weak structure that could be artificial and require additional methods to corroborate, values 

between 0.51 and 0.70 suggest reasonable structure, and values between 0.71 and 1.0 suggest strong 

structure has been found. 
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Fuzzy clustering analyses were run using the function fanny in the R package cluster 

(Maechler et al. 2016), and the same dissimilarity matrix for fuzzy clustering used for PCoA. Fuzzy 

clustering requires the user to define the number of clusters (k) to optimize. We chose to examine 

clustering of k = 4, 3, and 2 clusters. We begin at four because this corresponds with the number of 

named taxonomic entities focal to this study; three and two clusters were also examined to explore 

the morphological signature of the data. We further examined the effect of the membership exponent 

(a variable in the cluster optimization process) on our clustering results. It has been shown that 

higher values (near two) lead to greater fuzziness while lower values (near one) yield less fuzzy 

clustering (Kaufman and Rousseeuw 2005). We examined the effect of this variable on clustering 

results by adjusting its value between 1.1 and 1.7, by increments of 0.1. We ran all fuzzy clustering 

analysis for 100,000 iterations, to assure convergence. 

 

Estimating Position of Type Specimen in Morphospace—To explore the position of type specimens 

in morphospace, we took the geographic position of each type specimen and found the nearest 

population of the same species from which we took morphological measurements. We make the 

assumption that these populations would have similar morphologies. 

 

Results 

 

Sampling—A total of 171 individuals were examined for this study. While normality is not a strict 

assumption of the approaches used here, extremely non-normal traits may affect results in 

unpredictable ways. As a conservative measure, we eliminated from downstream analyses 

approximately the top 10% of individuals that deviated extremely from the natural variability in the 

data. The impact of outlier removal on downstream analyses was examined and found to have 

minimal influence (results not shown). After data cleaning and outlier removal, our final dataset 

consisted of Castilleja nana (n=29), C. pilosa var. longispica (n=23), C. pilosa var. pilosa (n=52), 

and C. pilosa var. steenensis (n=4), and covered the known ranges of each focal taxon (Fig. 2, open 

circles). Individuals measured, the housing herbarium of each collection, and associated raw data are 

available on Dryad. 

 

Quantifying Morphological Variation—Kernel density estimates of quantitative trait values grouped 

by taxonomic identity revealed a great deal of overlap in trait values for each taxon across many 

traits. In some cases, this overlap occurs across all focal taxa, as in bract width and leaf width (Fig. 

3), where all taxa have widely overlapping trait distributions. In other cases, the distribution of trait 
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values distinguishes one of the focal taxa from the remaining three. For example, C. pilosa var. 

steenensis has a larger beak to tube ratio than the remaining taxa (meaning that the difference in 

length between the tube and the beak is greater); C. nana has a longer bract than all varieties of C. 

pilosa; most C. pilosa var. longispica have shorter calyces than other varieties of C. pilosa and C. 

nana. There are also cases of interspecific overlapping trait distributions, as in plant height where C. 

nana and C. pilosa var. steenensis are generally shorter in height than C. pilosa var. longispica and 

C. pilosa var pilosa. We see a similar pattern of overlap in traits across taxa in our qualitative data 

(Fig.  3). With the exception of the decumbent habit, no one qualitative trait is found primarily in one 

taxon, let alone exclusively (Fig. 4). In general, pubescence traits were equally variable across taxa, 

C. nana was the only taxon that occasionally lacked lobes on the leaves, and C. pilosa var. pilosa 

and C. pilosa var. steenensis were the only focal taxa that were never scored as having broader, 

deltoid shaped calyx lobes. Summary statistics for raw values of continuous traits and raw counts of 

categorical traits can be found in the supplemental data (Table S1 and S2, respectively). 

 

Principal Coordinate Analysis—A Cailliez correction, equal to D’ = -0.5 * (D + 0.57237) ^ 2, was 

applied to all negative eigenvalues. The position of each individual in the first two and three 

principal coordinates are shown in Fig. 5, with 95% confidence ellipses around the mean position of 

each focal taxon in morphospace. The first 10 principal coordinate axes are required to account for 

50% of the corrected, relative eigenvalues. An examination of axes 4 through 10 does not change the 

interpretation of results presented here; the first two principal coordinate axes represent the 

maximum morphological distance among individuals sampled and the third axis reveals no further 

distinction (Fig. 5). 

 In general, and considering all three principal coordinate axes, individuals identified as 

Castilleja nana (yellow) occupy a different part of the scatterplot than those identified as C. pilosa, 

including its named varieties (blue (var. pilosa), orange (var. longispica), and red (var. steenensis)). 

Considering only those individuals identified as Castilleja pilosa, there is a large amount of overlap 

with no discernible position in morphospace unique to any variety (Fig. 5). Confidence ellipses lend 

support to this conclusion and further suggests a greater distinction of C. pilosa var. steenensis (in 

red) from any other focal taxon. The variation in distances of these individuals lies along a different 

axis than the rest of the focal taxa; however, the effect of sample size (n=4) cannot be discounted. 

 

Fuzzy Clustering—We performed seven fuzzy clustering analyses (corresponding to seven different 

values of the membership exponent variable; values between 1.1 and 1.7, in increments of 0.1) for 

each of three possible numbers of clusters (k=4, 3, and 2). Different values of the membership 
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exponent produced consistent results within each “k=X number” of clusters. For simplicity, we 

present the results from all clustering scenarios with a membership exponent of 1.3. 

Fuzzy clustering analyses, regardless of number of clusters considered, resulted in clusters 

with small silhouette coefficients (both within and across clusters), and low values for the 

normalized Dunn coefficient (Fig. 6, Table 2). As cluster number was reduced, there appeared to be 

some small improvement in these measures (average silhouette coefficient increased from 0.2 (k=4) 

to 0.22 (k=3), and to 0.25 (k=2) and normalized Dunn coefficient increased from 0.37 (k=4), to 0.38 

(k=3), and 0.44 (k=2)); however, overall these values are extremely low.  

A somewhat subjective approach to quantifying the structure in a dataset is to calculate the 

silhouette coefficient (SC) of the dataset (Kaufman and Rousseeuw 2005). This value is the 

maximum, average silhouette coefficient of all possible numbers of clusters, from k = 2 as a 

minimum, to k = n as a maximum (k = 108, in this study). At k=53, our standard 100,000 iterations 

of clustering were not enough to satisfy fuzzy clustering objectives, and we ran into convergence 

issues. However, considering k=2 through k=53 clusters, the average silhouette coefficients were 

highest at k=2 (average s(i) = 0.25), and steadily dropped as values of k increased.  

To visualize the taxonomic composition of clusters, we painted the silhouettes with colors 

corresponding to the taxonomic identity of each individual. Across all three clustering schemes, one 

cluster is consistently composed of mostly C. nana individuals with the remaining clusters being 

variously composed of all three varieties of C. pilosa. When we restrict the cluster number to two, 

the C. nana cluster begins to be more heavily composed of C. pilosa individuals (Fig. 6). 

 

Discussion 

 

Classifications are useful when they organize objects based on relationships, when they 

reflect similarities and differences among the constituent parts, and when they aid in the 

identification and placement of unknowns within the classification (Sokal 1974, de Queiroz and 

Donoghue 2011, de Queiroz and Donoghue 2013). The type specimen, as a central point of the 

species description, plays an important role in the creation and implementation of classifications, but 

with a reliance on it comes the challenge of tracing and managing type collections and species 

descriptions through time—a problem that we are still dealing with (Hitchcock 1905; Dayrat 2005). 

In addition, when objects are discrete and discontinuous, classifications are easy to build and use; 

however, when there is continuous variation in characters used in the classification, this becomes 

more difficult. 
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In this study we have closely examined morphology—a commonly used character for 

describing taxonomic boundaries—for four named taxa, from across their ranges, in a species 

complex known to be taxonomically difficult to diagnose. Here we have quantified a great deal of 

overlap in character traits that are typically used to diagnose species in Castilleja (Fig. 3, 4). In some 

cases, these traits are continuous across taxonomic boundaries (Fig. 3), emphasizing the extreme 

morphological similarity among these named entities. This is what we observe within C. pilosa, for 

example, where we are essentially incapable of distinguishing taxonomic varieties using morphology 

alone (Fig. 5), even in C. pilosa var. steenensis, considered the most distinctive of the three varieties 

due to its isolation on Steens Mountain in SE Oregon (Hitchcock et al. 1984). 

In other cases, the distinction between taxa is apparent despite the overall high levels of 

similarity, indicating some morphological distinction between C. nana and C. pilosa (Fig. 5). This is 

also supported by the results of fuzzy clustering analyses that, regardless of the number of clusters 

considered, recover a cluster composed primarily of C. nana, with C. pilosa individuals variously 

scattered among the remaining clusters (Fig. 6). Several continuous traits distinguish C. nana from 

C. pilosa (Fig.3; see also Supplemental Fig. S1), however, the overlapping tails of these 

distributions, and the nature of these distinguishing traits (i.e.—size and length traits that could be 

environmentally plastic), goes a long way towards explaining the morphological confusion that has 

plagued this complex historically.  

It is clear that geographic and ecological characters must have played a dominant role in 

shaping the species descriptions in this complex. This is apparent from the species descriptions 

included both in regional and genus-wide treatments (Cronquist et al. 1984; Hitchcock et al. 1984; 

Wetherwax et al. 2012), as well as the inferred species ranges (Fig. 2). For example, C. nana does 

not occur in the northern limits of the C. pilosa range. So, if you encounter a relatively small 

individual in Idaho, there is no way to confuse it with C. nana (a California and Nevada species), as 

the ranges do not overlap and the regional treatment does not consider C. nana (Hitchcock et al. 

1984). Similarly, C. pilosa var. steenensis only occurs on Steens Mountain in Eastern Oregon. If you 

found a relatively small individual in central Oregon, you could only classify it as C. pilosa var. 

pilosa, using these regional treatments. 

When species occur sympatrically, however, the distinction between named entities becomes 

much more difficult to parse. In the Sierra Nevada, C. pilosa var. pilosa (a moderate elevation taxon) 

and C. nana (a high elevation taxon) can co-occur at the limits of their elevational ranges (high and 

low, respectively) where environments are heterogeneous. Similarly, C. pilosa var. pilosa and C. 

pilosa var. steenensis can co-occur on the western slopes of Steens Mountain in the transition area 

between the high, exposed ridge and the surrounding lower elevation steppe. In heterogeneous 
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habitats and at ecological boundaries, phenotypes can be accentuated and variable (Van Kleunen and 

Fischer 2005), potentially in response to local microhabitat conditions such as light availability and 

precipitation (Schlichting 1986; Dorn et al. 2000; van Kleunen et al. 2000; Nicotra et al. 2010). As a 

result, it is possible that in these areas of sympatry that correspond with environmental transitions, 

individuals could experience extreme conditions that may affect the morphological traits that we 

examine when we try to identify unknowns. We see this in several individuals from the Sierra 

Nevada that have extreme values in the traits that distinguish C. nana and C. pilosa (Fig. 7). 

Furthermore, these are the individuals that occur in the region of overlap in morphospace between 

these two taxa (Fig. 7). 

In some cases, these regions of sympatry also correspond with hotspots of taxonomic 

synonymy historically—i.e., these sympatric areas are places where synonyms of currently accepted 

taxa were described (Fig. 8). For example, the area surrounding Lake Tahoe has seen the description 

of four distinct taxa (Castilleja jusselii Eastw. (Eastwood 1940), Orthocarpus pilosus S. Wats. 

(Watson 1871), Castilleja inconspicua A. Nels & Kennedy (Nelson and Kennedy 1906), Castilleja 

nana Eastw. (Eastwood 1902)), two of which (O. pilosus and C. nana) are the type specimens for 

Castilleja nana and Castilleja pilosa (Fig. 8). The remaining two taxa were incorporated into C. 

nana (C. inconspicua and C. pilosa (C. jusselii), effectively meaning that these entities are no 

different from C. nana and C. pilosa. However, when we place our best approximation of Castilleja 

inconspicua in morphospace (i.e., a specimen of the same taxon (C. inconspicua is a synonym of C. 

nana) that was measured by us that is as geographically close to the type collection of C. 

inconspicua as possible), we find that this collection occupies a region of morphospace very different 

from that of the type collection of C. nana (Fig. 8). By including this species into the concept of C. 

nana through synonymization in the Intermountain Flora (Cronquist et al. 1984), the amount of 

variation attributed to C. nana likely expanded. 

Areas of sympatry are not the only source of potential confusion in the taxonomic history of 

either taxon. For example, the synonymization of Castilleja lapidicola A.A. Heller (Heller 1912) in 

eastern Nevada with C. nana also expanded the region of morphospace attributed to C. nana  

((Cronquist et al. 1984), Fig. 8). Similarly, in northern California the inclusion of C. ochracea Eastw. 

(Eastwood 1941) and C. pisttacinus increased the area of morphospace occupied by C. pilosa 

((Cronquist et al. 1984); Fig. 8). Ultimately, the qualitative decisions made about species boundaries 

based on regional treatments has extended and inflated the morphological concepts of both taxa. By 

going through this procedure of quantifying morphological variation, we can visualize what 

morphological variation the taxonomy currently embodies. It is apparent that the morphological 

concept of both C. nana and C. pilosa have expanded through the incorporation of additional taxa as 



 

 

73 

37 

synonyms, and it is possible that the type collections of both taxa may no longer be centralizing or 

anchoring the features of either taxon.   

The inflation of morphological variation attributed to C. nana and C. pilosa during species 

level revisions, much of them regionally based, in addition to an apparent reliance on potentially 

plastic morphological characters to distinguish species in sympatry, has resulted in a great deal of 

morphological confusion in this complex. This likely contributes to the tumultuous taxonomic 

history of these taxa, and suggests that relying on morphology alone to define species boundaries in 

this complex is problematic. This is where molecular and ecological lines of evidence will be 

incredibly important to delimit species (e.g., Jacobs et al 2018 (Chapter 1), Jacobs et al 2018 in prep 

(Chapter 3)). In a robust and integrated delimitation of species, we may find that taxa that have been 

synonymized are not truly part of their corresponding taxa, or vice versa. Subsequent classifications 

should reflect these boundaries and highlight the similarities and differences between them. 

Here we have begun that process by quantifying morphological variation in this species 

complex and we have estimated the position of type specimens in that space. The next steps in this 

group will be to gather molecular and ecological evidence to contribute to a robust species 

delimitation that is based on multiple lines of evidence. With all data in hand, we can more 

confidently apply names, whether that is applying an old name, a new name, or combining them all 

in one.



Type B

Type A

Species “A” and “B” described, anchored by 
type collections “A” and “B”, and including 
variation around the type
(smaller, dark continuous lines)

Species descriptions of “A” and “B” are updated
in regional treatments and floristic studies
to incorporate variation observed in the field
(arrows and lighter, continuous lines)

Revisionary work recognizes overlap in
variation in species “A” and “B” and
synonymizes species “B” with species “A”.
(dark, most inclusive continuous line)

FIGURE 2.1. Schematic representing the amount of variation attributed to a species through time.
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FIGURE 2.2. Distribution of focal taxa (a) and diagrams of species morphology (b). Filled circles 

represent specimens used to estimate ranges only (accessed through regional databases Consortium 

of Pacific Northwest Herbaria (pnwherbaria.org); Southwest Environmental Information Network 

(SEINet; swbiodiversity.org); University and Jepson Herbaria Specimen Portal 

(webapps.cspace.berkeley.edu); New York Botanical Garden (NYBG; nybg.org); Rocky Mountain 

Herbarium (RM; rmh.uwyo.edu)); open circles are individuals measured in this study. Castilleja 

pilosa var. pilosa (blue), C. pilosa var. longispica (orange), C. pilosa var. steenensis (red), C. nana 

(yellow). Photos by J.M. Egger.
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FIGURE 2.3. Kernel density estimates of raw trait values for the continuous traits measured in this 

study. C. pilosa var. longispica (orange), C. pilosa var. pilosa (blue), C. pilosa var. steenensis (red), 

and C. nana (yellow). 
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FIGURE 2.4. Summary of counts for categorical characters measured here. Columns represent focal 

taxa whose area represents all individuals identified to that taxon in our dataset. Shading represents 

different character states scored for each individual. Dashes represent a character state unobserved in 

a particular taxon. For calyx lobe shapes, numbers are used in place of trait descriptions for 

simplicity. These correspond to: 1) linear, 2) lanceolate/linear, 3) lanceolate, 4) deltoid/lanceolate, 

and 5) deltoid.
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FIGURE 2.5. Results of Principle Coordinate Analysis (PCoA) considering the first two axes of 

variation (left), and including a third axis (right). Individuals are represented by points in 

morphospace, and colored according to species identification: Castilleja pilosa var. pilosa (blue), C. 

pilosa var. longispica (orange), C. pilosa var. steenensis (red), and C. nana (yellow). 
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FIGURE 2.6. Results of fuzzy clustering for k=4 clusters (left), k=3 clusters (center), and k=2 clusters 

(right). For each set of silhouettes, the width of each bar corresponds to the silhouette coefficient for 

that individual in the analysis; average silhouette coefficient for each analysis (k=4, 3, 2) is reported. 

Bars are painted with colors corresponding to species identification: Castilleja pilosa var. pilosa 

(blue), C. pilosa var. longispica (orange), C. pilosa var. steenensis (red), and C. nana (yellow). 
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FIGURE 2.7. Position of individuals with extreme trait values in morphospace (left) and in

geographic space (right). Individuals are color-coded according to taxonomic identification:

Castilleja pilosa var. pilosa (blue), C. pilosa var. longispica (orange), C. pilosa var.

steenensis (red), and C. nana (yellow). Histograms at the top of the diagram show trait

distributions for C. nana (yellow) and C. pilosa (including all varieties, for simplification; blue).

Vertical lines represent raw trait values and are color-coded corresponding to taxonomic

identification.
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FIGURE 2.8. Position of type collections of focal taxa and associated synonyms, within the known

ranges of each taxon (right) and the corresponding position of the nearest geographic individual

that we have measurements for in our dataset is identified in morphospace (left). Individuals are

color-coded according to taxonomic identification: Castilleja pilosa var. pilosa (blue), C. pilosa

var. longispica (orange), C. pilosa var. steenensis (red), and C. nana (yellow).
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TABLE 2.1. Morphological characters measured in Castilleja. The first column following the 

character name reflects the type of character measured: continuous (C), nominal (N), or dichotomous 

(D); the second column provides the unit of measurement, the number of levels for nominal or 

ordinal data, and (when necessary) the formula for character calculation. Asterisks (*) indicate 

characters were not directly included in analyses, but used to calculate composite variables. 

 

Character

1 Plant,height C cm

2 Decumbent,at,base N 3

3 Length,of,herbage,pubescence N 3

4 Recurved,hairs,present D 2

5 Glandular,hairs,present D 2

6 Number,of,racemes,per,stem C 8

7 Length,of,raceme C mm

8 Length,of,leaf C mm

9 Width,of,leaf C mm

10 Leaf,lobing D 2

11 Length,of,bract C mm

12 Width,of,bract C mm

13 Number,of,secondary,lobe,pairs C 4

14 Point,of,lobe,attachment C mm

15 Length,of,calyx C mm

16 Tip,of,calyx,to,sinus,1 C mm*

17 Tip,of,calyx,to,sinus,2 C mm*

18 Calyx,lobe,subequality C mm;,|,#16,O,#17,|

19 Shape,of,tip,of,calyx,segments N 5

20 Total,length C mm

21 Teeth,to,bottom,of,corolla C mm*

22 Sinus,of,beak,and,lower,lip,to,bottom C mm*

23 Tube,length C mm*

24 Lower,lip,pouchy D 2*

25 Teeth,petaloid D 2*

26 Stigmas,exserted D 2*

27 Length,of,beak C mm;,#20,O,#22*

28 Beak,length,to,tube,length,ratio C ratio;,#20,/,#27

Calyx:

Corolla:

Data,type

Habit:

Surface,textures:

Inflorescence:

Leaf:

Bract:
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TABLE 2.2. Results of fuzzy clustering analyses with k = 4, 3, and 2 clusters. Here we report average 

silhouette coefficients within and across clusters in analyses, as well as normalized Dunn coefficients 

for each analysis. Silhouette coefficients close to 0 represent less similarity, those close to 1 

represent high similarity, and negative silhouette coefficients indicate likely misassignment to a 

cluster. The normalized Dunn coefficient is a measure of the overall fuzziness of an analysis. Values 

close to 0 indicate high levels of fuzziness (near equal membership of individuals to all clusters) and 

values close to 1 indicate very low levels of fuzziness (i.e., hard partitions). 

 

 
 

 

n Avg s(i) stdev s(i) n Avg s(i) stdev s(i) n Avg s(i) stdev s(i)
Cluster 1 26 0.24 0.11 32 0.2 0.11 57 0.23 0.13
Cluster 2 24 0.28 0.11 47 0.21 0.08 51 0.27 0.1
Cluster 3 31 0.21 0.11 29 0.24 0.11
Cluster 4 27 0.1 0.09

Avg s(i) across analysis
normalized Dunn Coefficient

k = 2

0.25
0.4424

Table&XX.&Results&of&fuzzy&clustering&analyses&with&k&=&4,&3&and&2&clusters.&Here&we&report&average&silhouette&widths&within&
and&across&clusters&in&analyses,&as&well&as&normalized&Dunn&coefficients&for&each&analysis.&Silhouette&widths&are&calculated&
for&each&individual&in&the&analysis,&can&range&between&E1&and&1,&and&are&a&measure&of&the&similarity&of&the&individual&to&
other&members&of&its&cluster&as&well&as&the&closest&individual&of&a&different&cluster.&&Silhouette&widths&close&to&0&represent&
less&similarity&and&indicate&individuals&who&are&equally&similar&to&members&of&their&cluster&and&a&nonEcluster&member,&
those&close&to&1&represent&high&similarity,&and&negative&silhouette&widths&indicate&likely&misassignment&to&a&cluster.&The&
normalized&Dunn&coefficient&is&a&measure&of&the&overall&fuzziness&of&an&analysis.&Values&close&to&0&indicate&high&levels&of&
fuzziness&(near&equal&membership&of&individuals&to&all&clusters)&and&values&close&to&1&indicate&very&low&levels&of&fuzziness&
(i.e.&hard&partitions).

0.2
0.3768

k = 4

0.22
0.3879

k = 3
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SUPPLEMENTAL DATA 

 

SUPPLEMENTAL TABLE S2.1. Sampling information of individuals examined in this study, including 

where specimen is housed, the corresponding accession number, collector and collection number, 

and georeferenced coordinates. 

 

Herbarium 
Accession 
Number 

Collector/Collection 
number Latitude Longitude 

ID 119927 Atwood 20851 39.55826 
-
116.361459 

WTU 278959 Bafus 222 44.724404 
-
117.840999 

WTU 21167 Bradley 156 44.170637 
-
118.700144 

WTU 380570 Brainerd 1402 42.973617 
-
118.158967 

WTU 74153 Brunsfeld 1525 44.562468 
-
114.850573 

ID 73416 Brunsfeld 1626 44.638249 
-
114.610082 

WTU 174223 Chisaki 895 39.662819 
-
120.411063 

ID 99127 Cholewa 7244 47.08291 
-
115.966847 

WTU 335479 Colwell JM213B 42.4942 -119.7473 
WTU 258484 Cronquist 11001 38.87834 -117.37347 

IDS 1999.1.252 Cronquist 1214 44.402091 
-
111.792505 

IDS 1999.1.249 Cronquist 1593 44.402136 
-
111.893862 

ID 30654 Cronquist 2556 43.866995 
-
114.751467 

WTU 152443 Cronquist 7067 43.959874 
-
118.938616 

WTU 162435 Cronquist 7817 44.3798 -117.6981 
WTU 209154 Cronquist 8218 42.438501 -121.10985 

IDS 61166 Davis 148 32 44.078803 
-
111.496346 

IDS 1999.1.253 Davis 216 44.621132 
-
111.243147 

IDS 1999.1.250 Davis 556 43.82491 
-
114.096432 

WTU 335727 Denton  ALD 01 42.4797 -119.6291 

WTU 268085 Denton 3886 39.688241 
-
120.649019 

WTU 348839 Egger 1225 45.1845 -117.1164 
WTU 348837 Egger 1232 45.258597 -117.17627 

WTU 384656 Egger 1495 44.31238 
-
118.716611 
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WTU 331634 Egger 754 43.693363 
-
110.728604 

WTU 331633 Egger 755 44.930027 -109.72614 
WTU 335531 Egger 959a 44.676926 -117.87124 

WTU 335540 Egger 969a 44.699166 
-
118.101544 

WTU 335539 Egger 969b 44.699166 
-
118.101544 

WTU 335500 Egger 980d 43.782544 
-
114.484922 

WTU 335508 Egger 984a 44.254663 
-
114.673863 

OSC 320832 Ertter 5728 43.3455 -119.5668 
ID 101339 Ertter 8808 44.8974 -116.0962 

WTU 103860 Ferris 11084 37.425594 
-
118.752799 

ID 120919 Fox 689 46.992255 
-
116.108595 

ID 54448 Gentry 2138 38.896474 
-
120.136851 

ID in curation Gilman 2015 036 39.01257 -114.319 
ID in curation Gilman 2015 038 39.00898 -114.32142 

WTU 386085 Gross 717 41.688519 
-
118.877582 

WTU 286756 Halse 1831 43.532117 
-
119.433468 

WTU 56553 Hitchcock 5613 38.820664 
-
117.251792 

WTU 176670 Hitchcock s.n. 43.543687 
-
119.551075 

WTU 160066 Holmgren 10760 38.943519 
-
114.295626 

WTU 230347 Holmgren 1233 41.651488 
-
118.677257 

WTU 230595 Holmgren 1447 38.78018 -116.89771 
WTU 230630 Holmgren 1569 38.9881 -114.3151 

WTU 230633 Holmgren 1652 38.91183 
-
114.309944 

WTU 230640 Holmgren 2220 38.887057 
-
114.300574 

WTU 230343 Holmgren 2235 39.35013 -114.6038 
WTU 233890 Holmgren 2812 38.98767 -114.31367 
WTU 233889 Holmgren 2847 41.021822 -115.08902 
WTU 233957 Holmgren 2879 42.6324 -118.5768 

WTU 233874 Holmgren 2913 39.313734 
-
119.888309 

WTU 233866 Holmgren 2918 38.544999 
-
119.812862 

WTU 233867 Holmgren 2924 37.91705 -119.20943 

WTU 233950 Holmgren 2926 37.841297 
-
118.859258 
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WTU 233951 Holmgren 2936 37.471739 
-
118.712628 

ID 56238 Holmgren 3619 41.109412 
-
121.164038 

WTU 94776 Holmgren 3625 39.82831 -113.91981 

WTU 275648 Holmgren 4119 41.510036 
-
119.070733 

WTU 256063 Holmgren 5347 44.40222 -111.89306 
WTU 285160 Holmgren 8861 44.0328 -118.04 

WTU 305897 Holmgren 9484 40.73795 
-
120.317349 

WTU 160729 Holmgren 9618 43.547328 -119.51255 
ID 349961 Ionta 00 14 44.266667 -120.2 
ID in curation Jacobs 2015 072 39.68792 -120.64284 
ID in curation Jacobs 2015 073 39.65645 -120.64812 
ID in curation Jacobs 2015 075 39.34468 -120.35135 

ID in curation Jacobs 2015 076 38.852557 
-
120.113117 

ID in curation Jacobs 2015 084 38.68021 -119.59237 

ID in curation Jacobs 2015 093 37.564337 
-
118.969637 

ID in curation Jacobs 2015 096 37.551945 
-
118.961407 

ID in curation Jacobs 2015 102 37.419073 
-
118.755334 

ID in curation Jacobs 2015 106 42.666218 
-
118.565355 

OSC 150400 Johnson 850289 44.892117 -116.10818 
WTU 143805 Jones 295 46.5483 -114.9841 

ID 128680 Kemper 143 47.018594 
-
115.998474 

WTU 367767 Knoke 472 42.59365 -120.8771 

WTU 365965 Knoke 577 42.452567 
-
120.625933 

WTU 368420 Knoke 611 42.468317 
-
120.505333 

WTU 189100 Kruckeburg 4167 44.411086 
-
115.372201 

WTU 228033 Maguire 21128 39.004811 -114.3195 
WTU 168646 Maguire 25800 38.77045 -116.93213 
WTU 111723 Maguire 26487 43.575814 -119.57339 

ID 104936 Moseley 591 46.949266 
-
115.282459 

WTU 315673 Olmstead 717 42.788085 
-
118.873845 

WTU 315928 Olmstead 752 42.4069 -119.7079 

WTU 335334 Olmstead RGO96 54 42.5 
-
119.816667 

WTU 177720 Ownbey 3412 44.91425 -109.64321 
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WTU 283942 Packard 78 89 44.2934 -117.8399 

WTU 9558 Peck 18941 43.545277 
-
118.997542 

ID 51128 Peck 21406 42.808191 
-
118.900715 

WTU 155020 Pennell 22950 39.336482 
-
114.600028 

WTU 297774 Reveal 2428 42.761243 
-
118.725451 

WTU 297700 Reveal 2450 42.1268 -120.5973 
WTU 360722 Rodman 681 45.26246 -117.17709 

WTU 276444 Rogers 1006 41.845608 
-
119.555372 

IDS 1999.1.462 Tiehm 10589 40.95485 -119.56708 
ID 123943 Tiehm 13189 41.8071 -119.9558 

WTU 352396 Tiehm 13885 40.029279 
-
119.789141 

ID 85852 Tiehm 8790 41.532305 
-
119.549094 

IDS 1999.1.461 Tiehm 9598 41.52593 -119.30607 

WTU 133925 Train 4258 38.562339 
-
118.798346 

WTU 140726 Vollmer 229 37.633927 
-
118.255726 

IDS 2012.012 Whitehead 487 44.52329 
-
111.287024 

WTU 398549 Wilson s.n. 44.133539 -120.69683 

WTU 109153 Wolf 5217 38.614361 
-
119.924651 

WTU 370131 Zika 11219 42.7551 -118.7445 
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SUPPLEMENTAL TABLE S2.2. Mean and standard deviation of raw, continuous trait values for 

measured individuals, organized by taxon. 

 

C.#nana!(n=29) C.#pilosa#(all!varieties,!n=79)
var.!longispica!(n=23) var.!pilosa!(n=52) var.!steenensis!(n=4)

Habit

Plant!height!(cm) 10.87!(2.95) 21.37!(6.84) 21.27!(6.32) 21.82!(7.02) 16.13!(9.80)

Inflorescence

Number!racemes!per!stem 1.10!(0.41) 2.32!(1.70) 2.00!(1.28) 2.52!(1.89) 1.50!(1.00)

Length!of!raceme!(mm) 40.29!(15.08) 78.15!(33.39) 69.96!(33.34) 83.40!(34.80) 56.98!(26.23)

Leaf

Leaf!length!(mm) 16.95!(3.39) 35.27!(9.67) 32.82!(9.08) 36.50!(9.83) 33.39!(17.19)

Leaf!width!(mm) 2.35!(0.56) 2.63!(0.77) 2.55!(0.79) 2.68!(0.79) 2.43!(0.49)

Bract

Bract!length!(mm) 13.33!(2.41) 20.40!(4.47) 19.22!(3.74) 20.75!(4.69) 22.68!(5.39)

Bract!width!(mm) 3.75!(0.74) 4.41!(0.93) 4.70!(1.03) 4.27!(0.90) 4.55!(0.83)

Number!secondary!lobe!pairs 1.21!(0.41) 2.11!(0.71) 2.52!(0.73) 1.98!(0.70) 1.50!(0.58)

Point!of!lobe!attachment!(mm) 6.40!(1.29) 8.97!(2.03) 8.47!(1.78) 9.21!(2.16) 8.77!(1.93)

Calyx

Calyx!length!(mm) 14.47!(1.77) 14.29!(3.79) 11.14!(2.16) 15.36!(3.36) 18.60!(4.23)

Calyx!lobe!subequality!(mm) 0.42!(0.27) 0.98!(0.57) 0.81!(0.47) 1.02!(0.61) 1.49!(0.44)

Corolla

Total!corolla!length!(mm) 15.27!(1.97) 17.20!(2.81) 16.28!(2.28) 17.46!(3.02) 19.14!(3.06)

Beak!to!tube!ratio 4.01!(0.46) 4.11!(0.52) 4.01!(0.49) 4.11!(0.53) 4.64!(0.50)
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SUPPLEMENTAL TABLE S2.3. Raw counts of categorical traits scored for each individual, organized 

by taxon. 

 

C.#nana C.#pilosa!(all!varieties)
var.!pilosa var.!longispica var.!steenensis

Habit
Decumbent!base: both 5 2 1 0 1

no 8 70 45 22 3
yes 16 7 6 1 0

Surface!textures
Recurved!hair: absent 22 48 36 12 0

present 7 31 16 11 4
Glandular!hair: absent 6 50 36 10 4

present 23 29 16 13 0
Leaf
Leaf!lobing: absent 3 0 0 0 0

present 26 79 52 23 4
Calyx
Calyx!lobe!shape: deltoid 0 2 0 2 0

deltoid/lanceolate 0 3 1 2 0
lanceolate 21 54 39 15 0

lanceolate/linear 4 13 8 3 2
linear 4 7 4 1 2

Corolla
Lower!lip!pouchy: absent 0 0 0 0 0

present 29 79 52 23 4
Teeth!petaloid: absent 0 0 0 0 0

present 29 79 52 23 4
Stigmas!exserted: absent 0 0 0 0 0

present 29 79 52 23 4
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CHAPTER 3: INCORPORATING ENVIRONMENTAL EVIDENCE TO DELIMIT SPECIES IN THE CASTILLEJA 

AMBIGUA SPECIES COMPLEX. 

with David C. Tank 
Abstract 

 
 Delimiting species boundaries is an important contribution to the biodiversity sciences, 

particularly conservation, where the status of species carries great weight. The last decade of 

delimitation work has relied heavily on molecular data, but more recently it has been widely 

advocated to apply multiple lines of evidence. Environmental data have historically been used to 

define species, but it has only recently been more widely included in species delimitation studies. 

Here we apply environmental data to the question of species boundaries in the Castilleja ambigua 

species complex (two taxonomic species). Given robustly estimated species ranges (using occurrence 

data from museum collections), we estimated niche models and extract climatic variables associated 

with focal taxa to use as an environmental line of evidence to corroborate molecular species 

boundaries. Here, disparate lines of evidence (molecular and environmental) are examined for 

congruent signals of delimitation. 

 

Introduction 

 

Status as a species carries with it important conservation implications (e.g. Myers et al 2000, 

Agapow et al 2004). Subsequently, species delimitation plays an important role in the biodiversity 

sciences, where the explicit quantification of biodiversity is necessary. Recently, there has been 

heavy reliance on molecular data to determine the boundaries between species (e.g., Fujita et al 

2012, Pons et al 2006). However, it is clear that there are cases where molecular data alone are not 

sufficient for drawing species boundaries; for example, in incipient lineages that are in their earliest 

stages of diversification, and where any one line of evidence may provide a different signal of 

lineage boundaries than another. Moreover, these cases are often of particular interest and 

importance with respect to conservation implications. A common challenge associated with working 

in incipient systems is that newly diverged lineages often have restricted ranges and/or are relatively 

rare and known from very few populations. While they are commonly the target of management 

(Niemiller et al 2013), conservation decisions are frequently made with information from limited 

datasets. As such, analytical approaches that leverage publically available data with thorough 

analytical investigation are of great importance (Espíndola et al 2016). 

As an example, a recent study (Jacobs et al 2018) applied multiple, independent molecular 

species delimitation approaches to a species complex in the taxonomically challenging plant genus 
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Castilleja (also known as ‘the paintbrushes’) using a limited molecular data set. After recovering 

incongruent delimitation schemes, Jacobs et al (2018) applied a post-hoc simulation-based approach 

to assess inferential error in the methods they applied. This study determined that in cases of 

incipient speciation, where the node(s) of interest are relatively shallow and where datasets are often 

limited in size, the signal of diversification can be difficult to detect. In this study, the molecular 

species delimitation approach implemented in BPP v.3.1 (Bayesian Phylogenetics and 

Phylogeography; Yang and Rannala 2014) was more sensitive to the signal of divergence than 

spedeSTEM, an alternative maximum likelihood-based approach (Ence and Carstens 2010). This 

sensitivity has recently been discussed in the literature (e.g., Carstens et al 2013, Barley et al 2017, 

Sukumaran and Knowles 2017) with a clear cautionary warning that population structure can be 

easily mistaken for species boundaries. In cases such as these, it is widely advocated to apply 

multiple lines of evidence to the question of species boundaries. 

Ecological lines of evidence have long been used to infer species boundaries (Van Valen 

1976, Andersson 1990). In the absence of experimental work to understand the physiological 

tolerances of species, the environmental niche is often used as a proxy to describe the biotic and 

abiotic characteristics of species (e.g. McCormack et al 2009, Morales et al 2016, McKelvy and 

Burbrink 2017). Recently, this has been accomplished through the estimation of species ranges and 

distributions and the creation of models that describe them (i.e., species delimitation models – 

SDMs; Raxworthy et al 2007, Rissler and Apodaca 2007, Dowell and Hekkala 2016, Morales et al 

2016), thereby allowing one to predict or score novel regions as suitable or not for the species under 

question. The last decade has seen the widespread use of descriptive statistics and simulations to 

evaluate and compare environmental niches across different entities. More specifically, niche overlap 

has been a hallmark in the application of SDMs to the question of comparing species niches (Warren 

et al 2008).  

There are limitations to the application of SDM outputs for quantifying niche overlap, 

however. Because the output of an SDM is the projection of the model into some geographic space 

(resulting in the suitability scores for each part of that space), the subsequent quantification of niche 

overlap is tightly linked to the extent of that geographic space and the resolution at which 

environments are heterogeneous. Measures of niche equivalency and similarity, which use niche 

overlap as a comparison statistic, are similarly linked to the extent of the geographic space being 

considered. Broennimann et al (2012) provided a statistical framework that aimed to overcome these 

limitations by calculating niche overlap in the context of a gridded or binned space, where each 

division of the space represents a unique set of environmental conditions found in the study area. The 

density of occurrence of an entity within that space, and the overall occupancy of the entity across 
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the space, is then used as the basis for quantifying niche overlap when compared with other entities. 

The benefit of an approach like this is that the measure of overlap is no longer biased by spatial 

resolution, geographic extent, or environmental heterogeneity (Broennimann et al 2012). 

An additional contribution of Broennimann et al (2012), though (we think) underutilized, is 

the comparison of the quantification of the niche in climate space (through ordinations) versus 

geographic space (using SDM techniques sensu Warren et al 2008). In a simplified set of niche 

overlap simulations, Broennimann et al (2012) determine that ordination techniques typically 

outperform those of SDMs in accurately measuring niche overlap, but importantly lack, the often-

desired capability of ranking and selecting which variables are most important for describing the 

environmental niche. So, depending on the needs of the study and the underlying structure of the 

environment, the choice of technique may impact niche quantification. For example, if one wants to 

identify what variables best discriminate a niche, and are therefore (theoretically) closely linked to 

the processes underlying distributions, then the SDM approach is useful. This is because SDMs 

apply a weighting scheme to prioritize variables that are good at identifying known occurrences. 

However, environmental complexity and collinear predictor variables can lead to spurious results in 

SDMs, where correlated variables (but not necessarily causative variables) are identified as 

important for discrimination, thus making predictions into new areas inconsistent with actual 

biological requirements of the entity (Broennimann et al 2012). Ordination techniques, on the other 

hand, aim to maximize variance in the datasets by finding orthogonal axes (thereby dealing with 

collinear variables) that best discriminate occurrences based on environmental conditions, rather than 

prioritizing the best predictors (Broennimann et al 2012).  

Species delimitation studies have begun to incorporate ecological evidence in a number of 

ways. One can take a corroborative approach to delimitation where one examines congruence across 

lines of evidence to support species boundaries (e.g., Padial et al 2010, Schlick-Steiner et al 2010). 

Alternatively, one can fully integrate lines of evidence into a single analysis of species boundaries 

where, theoretically, each line of evidence contributes to the analysis of species boundaries (e.g. 

Gaussian clustering, Edwards and Knowles 2014; modelling approaches, Guillot et al 2012, Solis-

Lemus et al 2015). The former approach (corroborative evidence) has largely been applied in species 

delimitation studies using multiple types of data. For example, several studies have used climatic 

data as a corroborative line of evidence for species boundaries (e.g. Raxworthy et al 2007, Reeves et 

al 2011, Dagnino et al 2017, Gama et al 2017, Viera-barreto et al 2018). The later approach (fully 

integrated analyses) is, at present, limited to clustering techniques, though this has been met with 

some criticism (Meik et al 2015).  



 

 

102 

88 

In this study, we extend the application of species delimitation of the Castilleja ambigua 

species complex to include ecological evidence. We apply these data to corroborate (or not) 

molecular evidence from a previous study (Jacobs et al 2018), in combination with a qualitative 

assessment of morphology in the complex. Due to the restricted ranges of two of the three members 

of this complex, in addition to the generally close proximity of ranges of these entities to one 

another, we apply both ordination and SDM techniques within the framework proposed by 

Broennimann et al (2012). A benefit of applying both approaches is the opportunity to characterize 

the geographic space inhabited by these putative lineages (through the projection of SDMs across 

specific geographic extents), as well as the climate space that they occupy (through ordination 

techniques based on environmental variables). Additionally, the comparison of climatic niche 

quantifications resulting from both techniques could prove valuable in assessing the reliability of 

niche quantification, as these different approaches could provide disparate signals, especially given 

the small, and often overlapping, ranges of putative lineages.  

 

Methods	

 

Study system 

The Castilleja ambigua complex is composed of two annual, diploid lineages of Castilleja: the 

polymorphic Castilleja ambigua Hook. & Arn. and a close relative, Castilleja victoriae Fairbarns 

and J.M. Egger (Fig. 1). The members of this complex occur along the western coast of North 

America, from southern California to British Columbia, and the islands of the Puget Sound where 

they occur in a variety of coastal habitats. Members of this complex are generally united by floral 

morphology (Egger et al 2012; Wetherwax et al 2016)—they share a pouchy lower lip, reduced 

beak, and relatively non-showy bracts common to most annual species of Castilleja. However, 

variability in the polymorphic C. ambigua has led to the description of three additional varieties that 

differ in geographic position (and presumably ecological preferences) and geographically consistent 

morphological variation (mostly in bract color, e.g. C. ambigua var. humboldtiensis) (Fairbarns & 

Egger 2007; Egger et al 2012). 

The typic and most widespread of these varieties, C. ambigua var. ambigua, generally has 

white and yellow flowers and occurs on coastal bluffs and grasslands along the Pacific coast from 

southern California to British Columbia (Fig. 1). This typic variety can be divided into two main 

morpho groups that occur across the range: a fleshy morph with a single or few stems per plant that 

is found in marshy areas, and a less fleshy, often highly branched morph most often occurring in 

grasslands. Within each of these morpho groups there exists narrowly restricted populations of plants 
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that are consistently different in bract color that have been formally named as varieties. Castilleja 

ambigua var. humboldtiensis (D.D. Keck) J.M. Egger is a fleshy, less-branched variety that has 

primarily pink to rose-purple bracts. It occurs in salt marshes along the northern coast of California 

in Mendocino and Humboldt counties. The other, similarly narrow-ranged variety, C. ambigua var. 

insalutata (Jeps.) J.M. Egger, is non-fleshy, and its stems are highly branched. It, too, has pink-

purple flower coloration and occurs in grassy coastal bluffs along the central California coast, 

between San Mateo and San Luis Obispo counties. For the purposes of this study C. ambigua var. 

ambigua, C. ambigua var. insalutata, and C. ambigua var. humboldtiensis were modeled as a single 

species. Their ecological preferences and their geographic position (coastal, associated with 

grasslands and salt marshes; bounded to the north and the south by populations of C. ambigua var. 

ambigua) closely tie varieties insalutata and humboldtiensis to the typic form (var. ambigua), and 

previous phylogenetic work firmly place them within the C. ambigua var. ambigua lineage (Jacobs 

et al 2018). For these reasons, we do not consider these named varieties as putative lineages. 

Recently, Egger et al (2012) described the variety C. ambigua var. meadii J.M. Egger & 

Ruygt. Vegetative morphology, geography, and ecological preferences readily distinguish C. 

ambigua var. meadii from its conspecifics; variety meadii is typically erect, with un-branched stems, 

and has leaves and bracts with narrow, linear lobes. It is restricted to the Atlas Peak Plateau district 

of Napa County, California, where it occurs in seasonally wet places associated with freshwater, 

ephemeral seeps. This taxon is known from only four extant populations (a fifth being recently 

documented as extirpated (Egger et al. 2012)). Recent molecular evidence (phylogenetic inference 

and molecular species delimitation) indicates that variety meadii seems to be an independently 

evolving lineage separate from other varieties, in contrast to varieties insalutata and humboldtiensis. 

The final member of this complex described in 2007 (Fairbarns & Egger 2007), Castilleja 

victoriae, has been allied to C. ambigua. Both species share a coastal range, but C. victoriae is 

associated with edge habitat of fresh water seeps and vernal pools, and is restricted to southwestern 

British Columbia, Canada, and a single island in the San Juan Archipelago of extreme northwestern 

Washington State, USA. This species is formally known from only three extant populations (a fourth 

being recently documented as extirpated (Fairbarns & Egger 2007). Morphologically, C. victoriae 

has a short, compact, and single-stemmed habit with dull-brown vegetative coloration. The flowers 

of this species are yellow (in contrast to the bright, contrasting coloration of C. ambigua) and have a 

notable difference in position of the stigma at peak flowering time; C. ambigua exerts its stigma up 

and out of the corolla (a prominent feature in many outcrossing floral morphologies), while the 

stigma of C. victoriae remains inserted within the corolla, sitting low in the corolla tube. It has been 
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suggested that C. victoriae is self-compatible (capable of self-fertilization), though this has not been 

explicitly tested.  

The examination of species boundaries in this complex is motivated by the ecological and 

morphological variation described above, in addition to the conservation and management 

implications associated with species status of the two range-restricted taxa C. ambigua var. meadii 

and C. victoriae. In light of the molecular evidence from previous work (Jacobs et al 2018), we focus 

on testing the ecological distinctiveness of the following three taxa: Castilleja ambigua, C. ambigua 

var. meadii, and C. victoriae. 

 

Occurrence data—All known collections were assembled from regional herbaria (Stillinger 

Herbarium [ID], University of Washington Herbarium [WS]) and two online databases that 

collectively represent the known distributions of these three focal taxa (http://pnwherbaria.org, 

http://ucjeps.berkeley.edu). When present, GPS coordinates were taken directly from herbarium 

labels. However, in some cases, latitude and longitude were not provided by the collector, in which 

case, coordinates were estimated by hand using locality information and the GeoLocate web service 

(http://www.museum.tulane.edu/geolocate/default.html). Because the members of this complex are 

coastal, and coordinate estimates provided by software like GeoLocate are heavily impacted by the 

detail of the locality information provided, estimated latitude and longitude occasionally fell in 

uninhabitable areas (i.e., the ocean), or in city centroids (i.e. the result of poor detail in collection 

locality records). Therefore, final sets of coordinates for each putative lineage were loaded into 

Google Earth to visually confirm the position of the collection, and adjustments were made as 

necessary. Both C. ambigua var. meadii and C. victoriae are extremely range-restricted, known from 

only a few populations, and therefore poorly represented in herbaria and online databases. Therefore, 

we included historical records of now extirpated populations in our final dataset. 

 

Pseudo-absence and background data points—Because all models used in our species distribution 

modeling appraoch require both presence and absence data, and because we did not have formally 

measured absence data, we estimated pseudo-absences based on our occurrence records. We set a 

radius of 50 km around each occurrence point, and randomly sampled points within that radius. 

Additionally, we estimated background data by randomly sampling points across the entire study 

region. A map of occurrence, pseudo-absences, and background datapoints used in this study is 

available in the supplemental material (Supplemental Fig. 1). 
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Climatic variables— Nineteen bioclimatic variables were downloaded from the WorldClim database 

(http://www.worldclim.org; Hijmans et al 2005) at approximately 1km2 resolution (30 arc-second) 

for regions spanning the distribution of focal taxa. We assessed correlation of variables by 

calculating Pearson correlation coefficients for all pairwise combinations of variables given our 

occurrence dataset, and eliminated any whose correlation was above r = 0.8. 

 

Species distribution modeling—We used the ensemble modeling approach available in the R package 

Biomod2 (Thuiller et al 2009, Thuiller et al 2016) to generate species distribution models (SDMs) 

for each of our focal taxa. A combination of nine algorithms were used for initial model building: 

generalized linear models (GLM), generalized boosted models (GBM), generalized additive models 

(GAM), classification tree analysis (CTA), artificial neural networks (ANN), surface range envelope 

(SRE), flexible discriminant analysis (FDA), multivariate adaptive regression splines (MARS), and 

random forests (RF). Because we had relatively few presence points in close proximity for two of 

our focal taxa (C. ambigua var. meadii and C. victoriae), we were unable to parse a separate dataset 

to evaluate model performance. Instead, we performed a three-fold cross validation of each model by 

randomly splitting our data into two subsets (a training and a testing set consisting of 70% and 30% 

of the original data, respectively). In the ensemble modeling step, the outputs of these nine models 

were evaluated by the relative operating characteristic (ROC), Cohen’s kappa (KAPPA), and the true 

skill statistic (TSS), and only those meeting a threshold of 0.7 or greater were included in the final 

ensemble model projection (Araújo et al 2005). The SDM of each putative species was projected 

into the same area to calculate the probability of occurrence across the entire study area. 

 

Comparison of environmental niches—Within the framework proposed by Broennimann et al 

(2012), for each putative species we quantified niches in both climate space and geographic space. 

The statistics calculated in each of these spaces is exactly the same; the difference between these two 

backdrops of comparison lies in the data used to calibrate the niche and calculate the occurrence 

densities. In climate space the input data are the raw climatic variables extracted from our BioClim 

layers; in geographic space, the data are the predicted probabilities from the SDMs. Comparisons in 

both climate space and geographic space begin by dividing the space into a user-provided number of 

‘grids’ or ‘bins’ (i.e., the resolution of the space, r, here set to 100) that is bounded by the minimum 

and maximum values associated with the input data. The ‘grid cells’ or ‘bins’ within the space 

correspond to a unique set of environmental conditions present at one or more sites in the study area. 

The density of occurrence of an entity at each ‘bin’ is estimated using a kernel density function with 

standard Gaussian smoothing parameters, and describes how often each entity is found in ‘bins’ 
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corresponding to that particular set of environmental characteristics, scaled by the availability of that 

‘bin’ throughout the range of the study area. 

 Given the calibration of the environmental niche and the calculation of the occurrence 

densities as described above, we measured niche overlap using the D metric (Schoener 1968; Warren 

et al 2008), which varies from 0 (no overlap) to 1 (complete overlap). We then tested niche 

equivalency by determining if the measure of niche overlap remains constant if we randomly shuffle 

and reallocate the occurrences of both entities. By comparing our measured overlap to a distribution 

of simulated overlap measures calculated on reshuffled occurrences, we can test the null hypothesis 

of equivalent niches. Niche similarity tests were also performed where the niche of one entity was 

held constant, while the niche of the second entity was randomized. Here again, the empirical 

measure of niche overlap was compared to a distribution of simulated overlap measures, to test the 

null hypothesis of the two compared niches being more similar than expected by chance. 

For niche comparisons in climate space, we used the PCA-env approach (Broennimann et al 

2012) that uses the first two axes of a principal components analysis of the raw climatic variables. 

Here we calibrated the niche (i.e., divided the environmental space into a grid) based on the climatic 

variables from the combined range of each pair of putative species analyzed. We limited our 

environmental variables to the same variables used to create the SDMs; however, we also performed 

analyses on the complete suite of environmental variables with no change in the results or 

interpretation (not presented here). For our niche comparisons, we performed 1000 simulations of 

niche equivalency and niche similarity. 

Broennimann et al (2012) found that when calibrated on the ranges of both entities, SDMs 

consistently over-estimated niche overlap. Subsequently, for niche comparisons in geographic space, 

we used a vector of predicted probability of occurrences generated from an SDM of a single species 

only (i.e., the environmental space is calibrated on a single species). In this framework, the 

comparison of the overlap of the two entities is analyzed along a gradient of predictions resulting 

from the SDM of one of the species – i.e., the SDM of one species is ‘projected’ into the range of the 

other, and occurrence probabilities of the first entity’s SDM are extracted from the range positions of 

the second entity. Each directional, pairwise comparison was performed. For example, using the C. 

ambigua SDM predictions, we calculate the overlap of C. ambigua to C. ambigua var. meadii and C. 

ambigua to C. victoriae; the same was performed using the SDM of C. ambigua var. meadii and C. 

victoriae. For each analysis, we performed 1000 simulations of niche equivalency and niche 

similarity.  
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Results	

 

Taxon sampling, occurrence datasets, and climatic variables—Our final dataset consisted of 227 

individual occurrence records (C. ambigua (n=185), C ambigua var. meadii (n=25), and C. victoriae 

(n=17)), representing the known ranges of our focal taxa (Fig. 1). Of the nineteen BioClim variables 

examined, only three met our threshold of correlation: Bio2 – mean diurnal range (mean of the 

monthly (max temp-min temp), Bio3 – isothermality (mean diurnal range/annual temperature range), 

and Bio15 – precipitation seasonality (coefficient of variation). Given that these species are all spring 

annuals, precipitation in the wettest month is likely an important factor in the distribution of these 

species we therefore also included Bio13 – precipitation in wettest month – in downstream analyses. 

The distribution of raw climatic variables grouped by focal taxon (Fig. 2) reveals overlap in 

temperature and precipitation among the ranges of these taxa. However, the bulk of the distribution 

of values often differs (for example, Bio2 in Fig. 2, top-left panel), suggesting that there are some 

differences that are consistent with the ranges of these entities. 

 

Species distribution models—A visual assessment of the distribution models showed that our models 

predicted a high probability of occurrence in areas corresponding to known occurrences (dark red 

areas, Fig. 3). The contributions of each variable to models in the initial modeling steps show that 

Bio2 and bio3 primarily distinguish regions of high probability of occurrence for C. ambigua, bio2 

and bio13 distinguish regions of high probability of occurrence of C. ambigua var. meadii, and bio2, 

bio13, and bio 15 distinguish regions of high probability of occurrence of C. victoriae (Table 1). All 

combinations of models were compared to generally assess the differences in the modeled 

distributions of each putative species. Mean, standard deviation, and correlation of probability of 

occurrence scores were calculated for each pairwise comparison of SDMs (Fig. 4). These 

comparisons indicated that many regions of high probability for each putative species do not 

correspond with high probability for either of the other two focal taxa (regions that are dark red in 

both mean and standard deviation plots). Additionally, cell-by-cell correlation plots revealed no 

correlation of probability scores in any of our comparisons (i.e., in areas of high probability for one 

taxon, there was low probability of occurrence for another). 

 

Niche quantification and comparison—Figure 5 provides a visual interpretation of the quantified 

niches in climate space for each pairwise comparison of our three focal taxa. We see a great deal of 

overlap in the background environment in all three comparisons, reflecting the close proximity of the 

known range of each entity (discussed in detail below). The density of occurrence of each putative 
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lineage (the dark grey shading), however, occupies very different portions of climate space in each 

pairwise comparison. In all three PCA-env analyses, the first two axes accounted for ³ 85% of the 

total inertia. We find similar patterns in the niches quantified in geographic space (Fig. 6). In these 

comparisons, niches calibrated on individual SDMs have a higher density of high probability 

occurrences relative to the compared entity. This is especially the case with C. victoriae and C. 

ambigua var. meadii (Fig. 6b, 6c) where the compared entity has a density of occurrence equal to 

zero for all possible scores of occurrence probabilities. We do find that that C. victoriae and C. 

ambigua overlap to some degree, though this occurs in regions of low probability of occurrence in 

the SDM calibrated on both taxa (Fig. 6a, 6b).  

Niche overlap measures in both climate space and geographic space indicate little to no 

overlap in all pairwise comparisons of our focal taxa (Table 2). Additionally, we observed generally 

lower estimates of niche overlap in climate space, compared to that of geographic space. One 

exception to these general results is in the measure of overlap between C. ambigua and C. victoriae, 

which ranged from D = 0 (in climate space) to D = 0.442 (in geographic space calibrated on the C. 

victoriae SDM).  

The hypothesis of niche equivalency is rejected in all taxon-by-taxon comparisons using 

both geographic and climate space (Table 2), indicating that no one niche can be considered 

interchangeable with another. Finally, we fail to reject the hypothesis of niche similarity in all 

comparisons, save those considering C. victoriae and C. ambigua in geographic space. This indicates 

that there is a good deal of similarity of niches, more so than expected by chance. 

 

Discussion 

 

Depicting the niche using climatic data in both environmental and geographic space 

Niche quantification—Our measures of niche overlap are extremely low for all taxon comparisons in 

both environmental and geographic space; the only exception being our comparison of Castilleja 

ambigua and C. victoriae. In environmental space, we measure niche overlap at D=0.005, while in 

environmental space this measure ranges from D=0.04 to 0.442. We think this is largely an artifact of 

our use of the SDM probabilities in characterizing the niche in geographic space. For example, C. 

ambigua receives low to moderate values of probability of occurrence throughout the range of C. 

victoriae. As a result, they similarly occupy the same portions of the niche space—these portions 

have low probabilities for C. ambigua, but high probabilities for C. victoriae. This is also an example 

where the correction for prevalence of suitable habitat plays a big role in measurement of niche 

overlap. When we describe the niche in geographic space of the widespread (and therefore highly 
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represented) C. ambiguga and then project that model into the restricted range of C. victoriae where 

we know C. ambigua has low-moderate probabilities, we recover a larger degree overlap (D=0.215) 

than when we correct for the limited prevalence of C.victoriae suitable habitat in the comparison 

(D=0.041). Alternatively, when we describe the niche in geographic space using C. victoriae and 

project into the known range of C. ambigua, we measure very low niche overlap (D=0.075) until we 

correct for the prevalence of suitable habitat for C. ambigua, which increases the overlap measure 

(D=0.442). Had we filtered our SDMs by limiting the probabilities compared to only those greater 

than or equal to a probability of 0.7 (i.e., a high probability of occurrence), we would filter out much 

of the overlap areas and likely consistently measure a lower D between these two taxa (Supplemental 

Table 1, 2). 

 

Niche comparisons—Niche equivalency simulations similarly fall at the smaller end of the 

distribution in all comparisons, both in environmental and geographic spaces (Table 2). Rejecting the 

null hypothesis of equivalency suggests that the niches inhabited by each taxon are not 

interchangeable. Given the disparity in niche variance between taxa (i.e., C. ambigua occupies a 

great deal more niche space than either of the other two taxa), this is, perhaps, not surprising. And 

this makes further sense, given additional qualitative ecological characteristics that were not 

explicitly included in these analyses. For example, both of the range restricted taxa, C. ambigua var. 

meadii and C. victoriae, are associated with ephemeral freshwater seeps and vernal pools, in contrast 

to the salt-marsh and/or coastal grassland associated C. ambigua. 

 Niche similarity measures are more variable and have contrasting outcomes (relative to 

measures of niche equivalency) in both environmental and geographic space. In environmental 

space, we observe our statistic at fairly high ends of the distribution. Here, we think this outcome is 

largely driven by the close proximity of ranges to one another and their corresponding, largely 

overlapping ranges. This analysis proceeds by holding the occurrence density of one taxon constant 

and randomly repositioning the density of the second taxon within its known boundaries. Given the 

large degree of overlap in the background 50% and 100% of sampling points (Fig. 5, solid lines), the 

measure of overlap should regularly be much higher. We confirmed this by reducing our background 

sampling contribution in environmental space and reanalyzing niche similarity (Supplemental Table 

1, 2). In these analyses, we see little overlap in the 50% and 100% background samples and our 

observed statistic falls at a much lower end of the distribution. In geographic space, we think the 

results can be interpreted the same.  

 We think these results strongly support the environmental distinction of these taxa, despite 

the apparent inconsistencies in measures of similarity in environmental and geographic space. It is 
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clear, however, that the definition of range can influence the comparative measures we use here 

(especially niche similarity). We suggest the exploration of the impact that estimated ranges has on 

comparative measures is an important procedural step in quantifying or characterizing differences of 

niches between putative species using this approach. Additionally, either of these quantifications of 

niche (the environmental niche based on ordinations of raw climatic variables or the geographic 

niche based on probabilities from SDMs) would likely have been sufficient evidence to support the 

environmental distinction of these putative lineages; however, in our opinion, the congruence in 

these lines of evidence lends further weight to the distinction as it accommodates potential 

limitations of a single approach. 

 

Taxonomic implications—Jacobs et al (2018) outlines the case for molecular distinction of these 

three focal taxa that begins with a phylogenetic inference at odds with taxonomy. Through the 

application of multiple independent molecular species delimitation approaches, and the subsequent 

assessment of inferential error with post-hoc simulations, Jacobs et al (2018) determined that 

molecular evidence supports the distinction of C. ambigua var. meadii as an independent lineage. In 

acknowledgement of the importance of multiple lines of evidence for robust species delimitation, the 

present study provides corroborative evidence beginning with a qualitative assessment of 

morphology. Castilleja ambigua and C. ambigua var. meadii are distinguished morphologically from 

C. victoriae by a reproductive morphology that suggests (though it has not been explicitly tested) 

differences in pollination syndrome—namely, the conventional outcrossing morphology that 

includes an exserted stigma at peak-reproductive maturity in C. ambigua and C. ambigua var. 

meadii, versus a common self-pollinating morphology of an inserted stigma held within the floral 

tube at the peak maturity found in C. victoriae. Vegetative morphology further distinguishes C. 

ambigua var. meadii from the rest of C. ambigua—likely as a result of its freshwater associations, 

variety meadii lacks the thick, fleshy stems and leaves of its (largely) salt-water associated 

conspecifics. 

The primary contribution of this study to species delimitation in the Castilleja ambigua 

species complex is to provide a corroborative line of environmental evidence that these lineages are 

distinct from one another. The data we present here suggests different preferences for environmental 

and geographic spaces exhibited by these putative species. Geographically, the ranges of these taxa 

are very proximal—the widespread C. ambigua is flanked at the north by C. victoriae and to the 

southeast by C. ambigua var. meadii—but appear to be largely unsuitable for one-another in 

environmental space. We see this in the low correlation of probability of occurrences across SDMs 

of each taxon (Fig. 4), in addition to the mean and standard deviation of probabilities of occurrence 
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where a high probability in one taxon, in most cases, corresponds with a low probability of 

occurrence in another. Importantly, from the complementary nature of theses analyses in geographic 

and environmental spaces, we can conclude that this result is independent of the low prevalence of 

C. ambigua var. meadii and C. victoriae suitable habitat, as we recover the same results in our 

characterization of the niche of each entity in geographic space (Fig. 6), where we control for the 

frequency of suitable habitat. This signal is echoed in the characterization of environmental space in 

these three taxa (Fig. 5). Here, we observe again the proximity and overlap of these ranges 

(overlapping 50% and 100% background limits); however, the occupancy of regions of the niche are 

unique to each taxon (Fig. 5, non-overlapping areas with dark grey shading). 

Given each of these methods, we have consistent evidence that the current range of any one 

taxon is not strongly suitable for that of any of the others considered here. Despite the proximity of 

both C. victoriae and C. ambigua var. meadii to the widespread C. ambigua, we find very low 

support for co-occurrence of any of these taxa. This is corroborated by an examination of the 

environmental niche, and the inference of very different core-niche occupancy by each taxon (Fig. 

5). In so doing, we have generated a line of environmental evidence to corroborate species 

boundaries in the C. ambigua species complex. We consider the evidence provided here to support 

the recognition of three distinct lineages, and recommend the elevation of C. ambigua var. meadii to 

the status of species, which will be formally addressed in a subsequent publication. 

 

Conservation implications—From a conservation standpoint, this study has the potential to affect 

conservation and management of these species. By applying these three approaches, we have more 

formally characterized and described the ranges of these taxa. This may have conservation and 

management implications, beyond those resulting in the elevation of C. ambigua var. meadii to 

species, through the identification of areas with high probability of occurrence that are not currently 

part of the known ranges of these taxa. For example, C. ambigua var. meadii has a moderate 

probability of occurrence in the Klamath Mountains of southwestern Oregon. Directed search efforts 

in these areas would be a good place to search for new, currently unknown populations.  

From an evolutionary perspective, this study contributes to our knowledge of the early stages 

of the speciation process in this genus, specifically with respect to environmental characteristics of 

this species complex. While we have previously understood the range of C. ambigua to be much 

broader than that of the other two taxa, we can now add in this description a comment on the breadth 

of the niche occupied, relative to the other members of this complex. The extreme asymmetry in 

range size and niche breadth (as we have measured it here) could be in line with expectations 

associated with budding speciation (e.g. Grossenbacher et al 2014). However, one could not discount 
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the possibility that these range-restricted taxa could be remnant populations of a previously more 

widespread ancestor. The last two million years have seen extreme fluctuations in sea levels as a 

result of climatic fluctuations. As coastal species, these fluctuations would likely have impacted 

distributions. Demographic modeling of different scenarios (e.g. Ruffley et al 2018) could shed light 

on processes resulting in the current pattern of distribution and range size. 

 

Species delimitation with multiple lines of evidence—It could be argued that a stable taxonomy is a 

primary goal of much species delimitation work, especially with the heavily reliance on the species 

status in conservation (Agapow et al 2004, Isaac et al 2004, Mace 2004, Morrison et al 2009). The 

articulation of the generalized lineage concept (de Queiroz 1998, 2005, 2007) and its subsequent 

adoption by many working on species delimitation has promoted the search for properties that 

identify diverging lineages (i.e. evolutionary significant units), rather than relying on a single 

criterion (e.g. reproductive isolation and the biological species concept, Mayr 1942). This is 

important because stability in taxonomic ranks, particularly at the species level and especially in 

incipient lineages, might (arguably) be highest when species are diagnosable based on two or more 

characters (Padial et al 2010, Carstens et al 2013). 

When applying multiple lines of evidence to the question of species boundaries, one of two 

things can happen: either all the data point to the same conclusion, in which case congruent lines of 

evidence strengthen the support for the delimitation, or the data point to different delimitation 

schemes leaving the researcher to explore causes for incongruence. Ultimately, this can lead to 

subjectively prioritizing one scheme over another. Fully integrated analyses where multiple data 

types are combined into a single analysis (e.g. Guillot et al 2012, Zapata and Jiménez 2012, Edwards 

and Knowles 2014, Solis-Lemus et al 2014) provide an alternative that can bypass subjectivity in 

delimitations. Current methods and approaches that incorporate environmental data are limited in 

methodological scope (at present, only clustering methods are available). Meik et al (2015) argue, 

that because climatic variables are not intrinsic to the organism, they do not inherently reflect 

taxonomic signal. Furthermore, the interpretation of overlap between putative lineages based on 

independent lines of intrinsic and non-intrinsic data could be interpreted differently when combined 

and evaluated in the same statistical algorithm. Therefore, Meik et al (2015) suggest that climatic 

data should not be considered in clustering and ordination-based methods of integrated species 

delimitation. To our knowledge, there are no current methods that model the evolution of a species’ 

niche, in the style of iBPP (Solis-Lemus et al 2014), which models morphological traits along the 

guide tree. Here, we have congruent lines of evidence; however, in the case of incongruent 
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delimitation schemes that utilize environmental data, the integration of multiple types of data will 

need to be carefully considered. 



0km 100km 200km

a)    C. ambigua

b)    C. ambigua var. meadii

c)    C. victoriae
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FIGURE 3.1. Distribution of members of the Castilleja ambigua species complex along the western

coast of north America. (a) Castilleja ambigua (purple); (b) Castilleja ambigua var. meadii (orange);

(c) Castilleja victoriae (green). Photographs by J.M. Egger.
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FIGURE 3.2. Distribution of raw climatic variables across the ranges of the three putative species 

considered here. Here, the range is composed of known occurrence records, in addition to pseudo-

absences estimated within 50km of each known occurrence point. Castilleja ambigua (purple), C. 

ambigua var. meadii (orange), C. victoriae (green).
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FIGURE 3.3. Species distribution models (SDMs) for each focal taxon. Shaded areas correspond to

probability of occurrence where dark red colors correspond to high probabilities, and light orange

colors correspond to areas of low probability. Latitude and longitude are given on the y and x axes,

respectively. Left panel: Castilleja ambigua var. meadii and an inset panel zooming in on its known

distribution; middle panel: C. victoriae, and an inset panel zooming in on its known distribution;

right panel: C. ambigua.

Castilleja ambigua
var. meadii

Castilleja victoriae Castilleja ambigua
var. ambigua
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FIGURE 3.4. Mean, standard deviation, and model correlation of the three pairwise comparisons

of SDMs for the Castilleja ambigua species complex. In each row the first two columns are the

the mean (left) and standard deviation (middle) of SDM model probabilities. The third column (right)

is a correlation plot of cell-by-cell probability scores. At top, comparisons of C. ambigua and

C. ambigua var. meadii; in the middle, comparisons of C. ambigua and C. victoriae; on the bottom,

comparisons of C. ambigua var. meadii and C. victoriae.
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FIGURE 3.5. The representation of the niche of each focal taxon in climate space calibrated on each 

alternative member of the Castilleja ambigua species complex. In each pair of panels, the niche of 

each member of a pair of putative species is plotted along the first two axes of a PCA-env in 

calibrated on the ranges of both members of the pair. The grey shading shows the density of 

occurrences of the species by cell. The inner and outer lines indicate 50% and 100% of the available 

(background) environment, respectively. Within each niche, points corresponding to known 

occurrences of each entity are plotted in purple (C. ambigua), orange (C. ambigua var. meadii), and 

green (C. victoriae). Next to these plots, we show the contribution of variables to the axes of the 

PCA and the percentage of inertia explained by the two axes. In panel a) (top) Castilleja ambigua 

(left) and C. ambigua var. meadii (right); panel b) (middle) C. ambigua (left) and C. victoriae (right); 

panel c) (bottom) C. victoriae (left) and C. ambigua var. meadii (right). 
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FIGURE 3.6. The representation of the niche of each focal taxon in geographic space calibrated on a 

single putative species of the Castilleja ambigua species complex. The x-axis indicates the 

distribution of probabilities of occurrence found within the study area; the y-axis indicates the 

density of occurrence of a given entity at a given probability of occurrence within the study area. In 

each panel, the densities of the entity whose SDM calibrated the niche is plotted in dark grey and the 

compared entity is plotted in lighter grey, bordered by red. In panel a) (top) we compare C. ambigua 

(dark grey) with C. ambigua var. meadii (left) and C. victoriae (right); in panel b) (middle) we 

compare C. victoriae (dark grey) with C. ambigua (left) and C. ambigua var. meadii (right); in panel 

c) (bottom), we compare C. ambigua var. meadii (dark grey) with C. ambigua (left) and C. victoriae 

(right). 
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TABLE 3.1. Contribution of each variable used in species distribution modeling. These values are 

averaged across the three-fold cross-validation runs for each of nine different algorithms used in the 

initial modeling step of our ensemble projection. Bio2 – mean diurnal range (mean of the monthly 

(max temp-min temp); Bio3 – isothermality (mean diurnal range/annual temperature range); and 

Bio15 – precipitation seasonality (coefficient of variation); Bio13 – precipitation in wettest month. 

 

 
 

mean st.dev mean st.dev. mean st.dev.
bio2 0.64 0.37 0.75 0.04 0.92 0.10
bio3 0.79 0.02 0.58 0.04 0.23 0.24
bio13 0.23 0.01 0.77 0.04 0.82 0.14
bio15 0.19 0.03 0.21 0.02 0.43 0.32

C. victoriaeC. ambigua C. ambigua  var. meadii
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SUPPLEMENTAL DATA 

 

 
 

SUPPLEMENTAL FIGURE S3.1. Maps illustrating the geographic position of background points (grey), 

pseudo-absences (red), and occurrence (blue) for Castilleja ambigua (left panel), C. ambigua var. 

meadii (bottom-right panel), and C. victoriae (top-right panel). The range of each taxon is estimated 

by the occurrence records and the pseudo-absences.
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SUPPLEMENTAL TABLE S3.1. Occurrence records used for species distribution modeling and niche 

quantification.  

 

species Database identifier latitude longitude 

Castilleja ambigua OSC-VP-91580 42.453144 -124.425206 
Castilleja ambigua OSC-VP-135174 43.345 -124.3292 
Castilleja ambigua HSC-VP-77506 43.135362 -124.418191 
Castilleja ambigua OSC-VP-54887 43.324414 -124.387176 
Castilleja ambigua HSC-VP-90798 43.438655 -124.23692 
Castilleja ambigua OSC-VP-54879 43.5707 -124.2231 
Castilleja ambigua OSC-VP-24470 43.7964 -124.1475 
Castilleja ambigua OSC-VP-6242 43.886681 -124.111857 
Castilleja ambigua OSC-VP-54880 43.929787 -124.117491 
Castilleja ambigua OSC-VP-44694 43.95232 -124.119067 
Castilleja ambigua OSC-VP-54876 43.971074 -124.099421 
Castilleja ambigua OSC-VP-105489 44.054967 -124.128794 
Castilleja ambigua OSC-VP-84305 44.0932 -124.115 
Castilleja ambigua ID-VP-129728 44.09375 -124.122 
Castilleja ambigua UBC-VP-161646 44.09375 -124.122 
Castilleja ambigua OSC-VP-194855 44.308012 -124.101281 
Castilleja ambigua OSC-VP-56388 44.409124 -124.031903 
Castilleja ambigua OSC-VP-142481 44.515101 -124.065332 
Castilleja ambigua OSC-VP-101265 44.611778 -124.034742 
Castilleja ambigua OSC-VP-142478 44.614398 -124.043527 
Castilleja ambigua OSC-VP-54882 44.8086 -124.0619 
Castilleja ambigua OSC-VP-194936 45.174356 -123.967976 
Castilleja ambigua OSC-VP-194957 45.1808 -123.944 
Castilleja ambigua OSC-VP-54888 45.4083 -123.9583 
Castilleja ambigua OSC-VP-78980 45.372799 -123.967406 
Castilleja ambigua OSC-VP-117673 45.5319 -123.95 
Castilleja ambigua OSC-VP-88560 45.7013 -123.896 
Castilleja ambigua OSC-VP-38085 45.988776 -123.931646 
Castilleja ambigua WTU-VP-134930 46.618499 -124.064295 
Castilleja ambigua WTU-VP-20050 46.54917 -124.02694 
Castilleja ambigua WS-VP-79358 46.642056 -124.05306 
Castilleja ambigua WTU-VP-134805 46.70667 -123.98056 
Castilleja ambigua WTU-VP-134803 46.725435 -124.028629 
Castilleja ambigua WS-VP-79356 46.89959 -124.099407 
Castilleja ambigua WS-VP-79361 46.882527 -124.101014 
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Castilleja ambigua WTU-VP-134928 47.07111 -124.16472 
Castilleja ambigua WS-VP-79359 47.116815 -124.17554 
Castilleja ambigua WTU-VP-20048 48.044754 -122.211912 
Castilleja ambigua WTU-VP-134929 48.047059 -122.207159 
Castilleja ambigua UCSC1392 36.6085 -121.9588 
Castilleja ambigua UCD85171 36.632266 -121.74415 
Castilleja ambigua UCD84660 36.632807 -121.747575 
Castilleja ambigua UCD84651 36.640731 -121.751004 
Castilleja ambigua UCSC2497 36.9733 -122.0712 
Castilleja ambigua JEPS82395 36.983334 -122.066666 
Castilleja ambigua JEPS7866 37.227836 -122.410399 
Castilleja ambigua UC1537444 37.212304 -122.404044 
Castilleja ambigua UC406881 37.533699 -122.519124 
Castilleja ambigua GH365411 37.5371 -122.5192 
Castilleja ambigua JEPS9131 37.707499 -122.226184 
Castilleja ambigua JEPS9138 37.755061 -122.213197 
Castilleja ambigua CAS1034779 37.8291 -122.5341 
Castilleja ambigua UC27159 37.842408 -122.551708 
Castilleja ambigua UC27154 37.918724 -122.3855 
Castilleja ambigua JEPS3677 37.947991 -122.601674 
Castilleja ambigua JEPS34409 37.951183 -122.59675 
Castilleja ambigua UC1779741 38.0068 -122.3577 
Castilleja ambigua UC27158 38.022515 -122.141878 
Castilleja ambigua CHSC22508 38.027778 -122.960556 
Castilleja ambigua RSA120306 38.02659 -122.964646 
Castilleja ambigua RSA12228 38.0511 -122.9748 
Castilleja ambigua RSA189646 38.079923 -122.973277 
Castilleja ambigua JEPS77572 38.074852 -122.96424 
Castilleja ambigua humboldtiensis JEPS93142 38.0899 -122.8426 
Castilleja ambigua humboldtiensis JEPS93167 38.090295 -122.842877 
Castilleja ambigua JEPS66550 38.21154 -122.744995 
Castilleja ambigua CAS923156 38.2195 -122.9502 
Castilleja ambigua humboldtiensis JEPS93166 38.219852 -122.9499 
Castilleja ambigua JEPS110630 38.2211 -122.3087 
Castilleja ambigua JEPS110632 38.2211 -122.2904 
Castilleja ambigua JEPS86697 38.2561 -122.94151 
Castilleja ambigua JEPS20322 38.226249 -122.951332 
Castilleja ambigua UC726108 38.26784 -122.79573 
Castilleja ambigua POM179763 38.3103 -122.8532 
Castilleja ambigua GH365401 38.3127 -123.0647 
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Castilleja ambigua RSA19277 38.3772 -123.0784 
Castilleja ambigua POM179718 38.3781 -123.0796 
Castilleja ambigua JEPS110631 38.4234 -122.2538 
Castilleja ambigua POM44312 38.4561 -123.0558 
Castilleja ambigua JEPS15564 38.4563 -122.867153 
Castilleja ambigua JEPS20321 38.462137 -122.866185 
Castilleja ambigua UCD122116 38.5767 -123.3365 
Castilleja ambigua JEPS9142 38.694756 -123.42903 
Castilleja ambigua UCD122118 38.7288 -123.4771 
Castilleja ambigua JEPS76862 38.952451 -123.737452 
Castilleja ambigua JEPS76202 38.954382 -123.739488 
Castilleja ambigua JEPS21445 38.95251 -123.736465 
Castilleja ambigua humboldtiensis HSC66431 39.3002 -123.7558 
Castilleja ambigua RSA80859 39.3767 -123.8157 
Castilleja ambigua JEPS17434 39.452555 -123.810365 
Castilleja ambigua UC1178862 39.457441 -123.806719 
Castilleja ambigua UCR131854 39.45333 -123.81 
Castilleja ambigua JEPS9143 39.457134 -123.80487 
Castilleja ambigua JEPS76198 39.507026 -123.783455 
Castilleja ambigua JEPS17465 39.52175 -123.775509 
Castilleja ambigua humboldtiensis OBI9388 40.627823 -124.312938 
Castilleja ambigua humboldtiensis HSC70448 40.6444 -124.3031 
Castilleja ambigua humboldtiensis CHSC68560 40.689722 -124.219167 
Castilleja ambigua humboldtiensis SJSU8462 40.7524 -124.2349 
Castilleja ambigua humboldtiensis HSC95751 40.772791 -124.195421 
Castilleja ambigua humboldtiensis UC1222799 40.807007 -124.144109 
Castilleja ambigua humboldtiensis HSC90264 40.8085 -124.1778 
Castilleja ambigua humboldtiensis HSC90430 40.8102 -124.176 
Castilleja ambigua humboldtiensis HSC82968 40.840593 -124.081631 
Castilleja ambigua humboldtiensis HSC38444 40.8321 -124.1678 
Castilleja ambigua humboldtiensis HSC59457 40.8356 -124.083 
Castilleja ambigua humboldtiensis HSC37568 40.8394 -124.1693 
Castilleja ambigua humboldtiensis JEPS76823 40.8429 -124.1708 
Castilleja ambigua humboldtiensis CHSC19743 40.854444 -124.085 
Castilleja ambigua humboldtiensis HSC95070 40.8561 -124.0988 
Castilleja ambigua humboldtiensis UC1224687 40.851469 -124.081018 
Castilleja ambigua humboldtiensis HSC78957 40.8762 -124.1353 
Castilleja ambigua humboldtiensis HSC20839 40.8898 -124.1421 
Castilleja ambigua humboldtiensis HSC91171 40.8919 -124.1438 
Castilleja ambigua humboldtiensis RSA18017 41.162539 -124.108019 
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Castilleja ambigua UC278933 41.76528 -124.22972 
Castilleja ambigua UC1409070 41.824763 -124.225235 
Castilleja ambigua OSC-VP-170774 45.561699 -123.893289 
Castilleja ambigua OSC-VP-185809 45.584166 -123.947455 
Castilleja ambigua humboldtiensis UCR133050 38.1109 -122.891397 
Castilleja ambigua RSA491704 38.113674 -122.945825 
Castilleja ambigua JEPS66221 38.463342 -122.838954 
Castilleja ambigua SBBG34575 38.809129 -123.602057 
Castilleja ambigua humboldtiensis DS186867 40.806 -124.1432 
Castilleja ambigua humboldtiensis HSC32372 40.851 -124.0857 
Castilleja ambigua V-VP-9636 48.999535 -124.862104 
Castilleja ambigua V-VP-30974 49.112691 -124.825154 
Castilleja ambigua V-VP-42869 49.120193 -125.765118 
Castilleja ambigua V-VP-32275 49.253333 -124.816667 
Castilleja ambigua V-VP-62910 48.396815 -123.305572 
Castilleja ambigua V-VP-11812 48.424633 -123.304528 
Castilleja ambigua V-VP-2481 48.451266 -123.266019 
Castilleja ambigua V-VP-46011 48.882792 -125.033106 
Castilleja ambigua humboldtiensis UBC-VP-135665 40.627647 -124.312745 
Castilleja ambigua ID-VP-131829 43.362648 -124.30108 
Castilleja ambigua OSC-VP-6243 43.875031 -124.147976 
Castilleja ambigua HPSU-VP-7046 44.090273 -124.115452 
Castilleja ambigua WTU-VP-188084 44.574325 -123.969513 
Castilleja ambigua WTU-VP-188083 44.785577 -124.072843 
Castilleja ambigua WTU-VP-134809 44.83333 -124.06167 
Castilleja ambigua HPSU-VP-14113 45.52278 -123.88806 
Castilleja ambigua HPSU-VP-7151 46.012147 -123.911903 
Castilleja ambigua HPSU-VP-7045 46.015815 -123.927394 
Castilleja ambigua WTU-VP-193633 46.22538 -123.988629 
Castilleja ambigua WTU-VP-134810 46.882765 -124.103491 
Castilleja ambigua V-VP-83392 48.438431 -123.292811 
Castilleja ambigua insalutata PGM4557 36.590827 -121.964736 
Castilleja ambigua UC886452 35.666303 -121.274125 
Castilleja ambigua insalutata JEPS7430 35.708103 -121.30306 
Castilleja ambigua insalutata OBI32974 35.698606 -121.295152 
Castilleja ambigua RSA603985 36.508397 -121.940263 
Castilleja ambigua insalutata RSA603703 36.508407 -121.938689 
Castilleja ambigua insalutata PGM0376 36.595226 -121.961119 
Castilleja ambigua insalutata PGM0230 36.598681 -121.912281 
Castilleja ambigua insalutata PGM6961 36.578719 -121.862217 
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Castilleja ambigua insalutata JEPS75300 36.609054 -121.954601 
Castilleja ambigua insalutata JEPS77459 36.609241 -121.954766 
Castilleja ambigua insalutata UC761831 36.609841 -121.956929 
Castilleja ambigua insalutata GH365421 36.636554 -121.930004 
Castilleja ambigua UC27161 36.62457 -121.916221 
Castilleja ambigua insalutata GH365415 36.625841 -121.916327 
Castilleja ambigua insalutata GH365420 36.6245 -121.915893 
Castilleja ambigua insalutata JEPS9132 36.624057 -121.915079 
Castilleja ambigua UCSC5957 37.235416 -122.415577 
Castilleja ambigua UCSC6159 37.248349 -122.417634 
Castilleja ambigua SBBG40478 37.245895 -122.417992 
Castilleja ambigua SD88447 37.55058 -122.512763 
Castilleja ambigua GH365391 37.871777 -122.307489 
Castilleja ambigua CAS1007814 37.915591 -122.690156 
Castilleja ambigua CAS1024374 38.090704 -122.966138 
Castilleja ambigua CAS928204 38.029501 -122.901404 
Castilleja ambigua CAS928406 38.029418 -122.921986 
Castilleja ambigua CAS928104 38.082765 -122.835705 
Castilleja ambigua CAS525948 38.027732 -122.963945 
Castilleja ambigua GH365404 38.087888 -122.50778 
Castilleja ambigua JEPS9136 38.393354 -122.34504 
Castilleja ambigua UC1334851 38.373254 -122.30536 
Castilleja ambigua GH365403 38.943685 -123.732275 
Castilleja ambigua OBI2912 38.95545 -123.741477 
Castilleja ambigua UCD33136 39.471414 -123.804591 
Castilleja ambigua humboldtiensis GH365414 40.69632 -124.275451 
Castilleja ambigua humboldtiensis HSC90779 40.811495 -124.160496 
Castilleja ambigua insalutata JEPS77474 35.667009 -121.276252 
Castilleja ambigua insalutata JEPS78256 35.667185 -121.271023 
Castilleja ambigua insalutata JEPS77472 35.676251 -121.285504 
Castilleja ambigua GH365407 36.538312 -121.927759 
Castilleja ambigua insalutata PGM3734 36.573715 -121.932479 
Castilleja ambigua insalutata JEPS78253 36.609723 -121.95559 
Castilleja ambigua UCSC5953 38.078395 -122.972616 
Castilleja ambigua var. meadii JEPS 38.39646 -122.25977 
Castilleja ambigua var. meadii JEPS 38.396646 -122.256487 
Castilleja ambigua var. meadii unvouchered 38.397773 -122.257585 
Castilleja ambigua var. meadii unvouchered 38.396905 -122.247623 
Castilleja ambigua var. meadii JEPS 38.404831 -122.242608 
Castilleja ambigua var. meadii JEPS 38.404008 -122.242443 
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Castilleja ambigua var. meadii N/A 38.396575 -122.260132 
Castilleja ambigua var. meadii N/A 38.396437 -122.260027 
Castilleja ambigua var. meadii N/A 38.396111 -122.260029 
Castilleja ambigua var. meadii N/A 38.396351 -122.260255 
Castilleja ambigua var. meadii N/A 38.396496 -122.256336 
Castilleja ambigua var. meadii N/A 38.39642 -122.256463 
Castilleja ambigua var. meadii N/A 38.396519 -122.256571 
Castilleja ambigua var. meadii N/A 38.396441 -122.256306 
Castilleja ambigua var. meadii N/A 38.397732 -122.257452 
Castilleja ambigua var. meadii N/A 38.39771 -122.257642 
Castilleja ambigua var. meadii N/A 38.39765 -122.25742 
Castilleja ambigua var. meadii N/A 38.397588 -122.25755 
Castilleja ambigua var. meadii N/A 38.396945 -122.247411 
Castilleja ambigua var. meadii N/A 38.396869 -122.247502 
Castilleja ambigua var. meadii N/A 38.396851 -122.247438 
Castilleja ambigua var. meadii N/A 38.39682 -122.247483 
Castilleja ambigua var. meadii N/A 38.404337 -122.242133 
Castilleja ambigua var. meadii N/A 38.40458 -122.242076 
Castilleja ambigua var. meadii N/A 38.404561 -122.242318 
Castilleja victoriae UBC V29990 48.45106 -123.265982 
Castilleja victoriae UBC V29991 48.450404 -123.268268 
Castilleja victoriae V012317 48.450922 -123.265212 
Castilleja victoriae V013646 48.453465 -123.265211 
Castilleja victoriae V024401 48.405695 -123.306028 
Castilleja victoriae V052880 48.420103 -123.274812 
Castilleja victoriae V062471 48.437777 -123.293279 
Castilleja victoriae V085625 48.43947 -123.292719 
Castilleja victoriae V100273 48.438447 -123.295066 
Castilleja victoriae V133387 48.398337 -123.305477 
Castilleja victoriae V154160 48.40123 -123.304968 
Castilleja victoriae V154164 48.439516 -123.296226 
Castilleja victoriae V162119 48.43751 -123.295442 
Castilleja victoriae WTU 361293 48.427381 -122.889235 
Castilleja victoriae WTU 363026 48.403883 -123.304954 
Castilleja victoriae WTU 363323 48.450512 -123.266386 
Castilleja victoriae WTU 363324 48.437609 -123.296374 
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SUPPLEMENTAL TABLE S3.2.  Quantification of niche overlap in gridded environmental space and 

subsequent estimates of niche equivalency and niche similarity based on 1,000 simulations using the 

full dataset (regular text), as well as using only occurrence data (i.e. no background data; bolded 

text). In each cell, the first value corresponds to the detected niche overlap corrected for climate 

prevalence (the density of occurrence / total density across entire climate space), and the second 

value corresponds to the detected overlap without the correction applied. Highlighted in grey with 

bolded text are measures associated with a reduced background dataset, where only occurrence 

records are used to quantify the niche. The full dataset values are provided (regular text, not 

highlighted) for comparison.  

 

 
 

C. ambigua  and             
C. victoriae

C. ambigua  and                     
C. ambigua  var. meadii

C. ambigua  var. meadii 
and C. victoriae

previous Niche Overlap 0.005 ; 0.006 0.000 ; 0.001 0 ; 0reduced 
background 0.006 ; 0.001 0.000 ; 0.001 0 ; 0

previous Niche equivalency 0.002 ; 0.002 0.002 ; 0.002 0.002 ; 0.002reduced 
background 0.002 ; 0.002 0.002 ; 0.002 0.002 ; 0.002

Niche similarity
entity 2 -> 1 0.65335 ; 0.7033 0.70529 ; 0.65335 2 ; 2
entity 1 -> 2 0.6014 ; 0.53746 0.33966 ; 0.31968 2 ; 2

0.002 ; 0.002 0.004 : 0.004 1.85215 ; 1.85215
0.73526 ; 0.73526 0.04595 ; 0.04595 2 ; 2

reduced 
background

e-space: calibrated on possible pair of entities

previous
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