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Abstract 

Temperate grassland ecosystems are an at-risk biome type due to large amounts of 

conversion to other land use types as well as the mismanagement of livestock grazing. 

Livestock grazing is the largest human modified land use type across the globe and can have 

both positive and negative feedbacks on an ecosystem. There is scientific and management 

interest in quantifying management feedbacks on grazed lands, and particularly, resolving the 

ability to quantify and monitor habitat heterogeneity due to its positive link to biodiversity. 

Monitoring meaningful grassland ecosystem indicators at relevant spatial scales, and how 

they respond to management and environmental drivers has proven difficult with small plot 

scale research projects as well as in-field point based monitoring. Remote sensing 

technologies provide a different way to quantify grassland landscapes at various scales and 

can provide information on important and needed ecological patterns and management 

relevant grassland attributes such as biomass.  

In this dissertation I build upon the previous remote sensing science, by developing an 

empirical model that estimates vegetation cover and biomass using Landsat products. These 

linear models were significantly correlated to vegetation cover and biomass (R2 > 0.70) across 

varying phenological states enabling them to be used to monitor and analyze vegetation 

amounts across the grazing season for adaptive management.  

Next, I tested the ability of airborne lidar to provide estimates of grassland biomass at 

the landscape scale. Airborne lidar showed reasonable correlation for modeling grassland 

biomass using a Random Forest modeling approach (pseudo R2 =0.59; Root Mean Squared 

Difference =139.4 g m-2). The estimated biomass from the airborne data then allowed us to 

answer three of our research questions 1) how does increasing spatial resolution (i.e. grain 

size) impact measures of spatial heterogeneity, 2) what measures of spatial heterogeneity are 

most sensitive to grazing intensity and 3) how does this sensitivity change with increasing 

spatial resolution of remotely sensed data? To answer these questions, I aggregated this 

biomass data to coarser cell sizes and compute geo-statistics on each of the resulting 

resolutions to determine the effect grazing has on vegetation heterogeneity. Results showed 

that statistically different measures of heterogeneity were produced from the variogram 

models using the biomass estimates from the varying grid cell sizes. When relating the pasture 
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level variogram statistics to stocking rate across the 23 pasture areas, we observed that the 

range statistic (a proxy for patch size) was only variogram metric sensitive to grazing and this 

was only significant across the 1m through 8m cell sizes tested. This research successfully 

quantifies spatial heterogeneity and finds that within the Zumwalt Prairie (a section of the 

Pacific Northwest Bunchgrass Prairie), May through July grazing decreases spatial 

heterogeneity of vegetation amount. 

 Lastly, I tested the relationships between the Landsat-derived biomass algorithm 

tuned for the Pacific Northwest bunchgrass prairie with short-term monitoring data on 

stocking rate and end of year utilization. We found significant but weak to moderate 

correlations between the short-term monitoring indicators at both the pasture and plot scales 

and the biomass metrics including end of year residual biomass, and the relative difference in 

biomass between summer and fall. The ability to track biologically relevant thresholds of 

vegetation amount and change in vegetation between summer and fall using satellite-based 

measures provides a new way for land managers and rancher to monitor their management 

actions across the landscape.   
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Chapter 1: Setting the Scene: Pushing the boundaries of using remotely 

sensed data to quantify grassland vegetation, vegetation pattern, and the 

vegetation that has been removed.    
 

The world’s temperate grassland ecosystems are of high conservation importance, as 

nearly half the historic area has been converted to different land use types and less than 5% of 

what remains falls under conservation protection (Henwood, 2010; Hoekstra et al., 2005). 

Grasslands provide important ecosystem services (Svoray et al., 2013), forage for the 

livestock industry, and vital habitat for native wildlife (Chapin et al. 1995; Conner et al. 

2002). The current state and condition of grassland systems are dynamic and ever changing, 

determined by interacting biophysical and human drivers (Galvin et al., 2006; Reynolds et al., 

2007). This dynamic process happens across multiple scales, from the plant to the landscape 

and overtime, which makes it difficult to quantify vegetation amounts and ecosystem 

processes for adaptive management, and in-turn monitor the impacts of the prescribed 

management.  

Understanding how management practices impact vegetation quantity, heterogeneity 

and ecosystem function across large spatial scales has proved elusive using traditional 

monitoring approaches. Remote sensing has the ability to overcome many of the monitoring 

obstacles associated with in-field data and provides a way to make inferences of vegetation 

quantity and vigor across large landscapes. Many previous studies have explored using 

satellite data to indirectly measure biophysical vegetation variables such as above ground 

biomass and foliar cover. One of the most widely used satellite dataset for vegetation 

monitoring comes from the National Aeronautics and Space Administration’s (NASA) 

Landsat mission, which provides free moderate-resolution satellite data. One can use the rich 

record of Landsat, to go back in time, to understand how vegetation amounts have changed 

over the last 30 years (Bastin et al., 2012; Pickup et al., 1998).  

In grassland systems across the globe, remotely sensed data is increasingly being used 

to quantify vegetation amounts and how these amounts change with grazing (Jansen et al., 

2016; Numata et al., 2007; Todd et al., 1998), change with management/ownership 

(Washington-Allen et al., 2006), or shifts in governmental regimes (Sankey et al., 2009). 

Researchers are also using remote sensing data to help monitor grassland conservation 

easement compliance (Ford et al., 2017; Tsalyuk et al., 2015) and how grazing impacts 
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vegetation pattern or heterogeneity (Virk and Mitchell, 2015). While these previous remote 

sensing studies lay the foundation for using remote sensing data to quantify and study 

grassland ecosystems at landscape scales, important extensions of this science are vital to help 

fill knowledge gaps moving forward.  

 

The existing knowledge gaps addressed in this dissertation: 

• Vegetation models and or vegetation indices used to explain vegetation metrics 

are often quantified for a single point in time of year , typically peak 

greenness, using the normalized difference vegetation index (NDVI) (Jansen et 

al., 2016). This often limits the ability to understand how grazing impacts the 

current years vegetation amounts after the grass has senesced at the end of the 

grazing season. 

• Currently rangeland managers and scientists are pushing for a new 

conservation management paradigm where process and pattern is promoted 

over uniform grazing amounts (Fuhlendorf and Brown, 2016; Fuhlendorf et al., 

2012) yet, very few studies have used remotely sensed data to analyze the 

effect of grazing on spatial patterns of vegetation heterogeneity (Virk and 

Mitchell, 2015). Therefore, there is a large gap in our ability to monitor 

rangeland vegetation pattern with remotely sensed data, to better align with 

management paradigms focused on process and pattern.   

• Lidar is a commonly used remote sensing technique which offers the ability to 

map vegetation structure and biomass across landscapes, but very little 

research has been published on using airborne lidar to quantify herbaceous 

vegetation amounts (Kulawardhana et al., 2014). There are good examples of 

lidar use to quantify biomass from other small statured ecosystems, but very 

few studies attempt to use lidar data to create high resolution maps of above 

ground grassland biomass in native grassland systems.  

• There is a lack of integration of remotely sensed data with rangeland 

management decision-making and monitoring (Butterfield and Malmstrom, 

2006). This is largely due to most vegetation monitoring products not being 

made easily available to end users (Jansen et al., 2018), as well as researchers 
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continued effort to find better ways to model the relationship between 

vegetation and remotely sensed data, rather than in testing how these products 

can be used for management and monitoring. 

 

This dissertation fills the knowledge gaps outlined above in three chapters written in 

manuscript form. The first manuscript (chapter 2) is titled “The Development of Near Real-

Time Biomass and Cover Estimates for Adaptive Rangeland Management Using Landsat 7 

and Landsat 8 Surface Reflectance Products” and has been published in the journal Remote 

Sensing. In this chapter I developed automated algorithms driven by vegetation phenology 

which compute vegetation biomass and cover using the Landsat surface reflectance products. 

This algorithm is unique in that it produces estimates of vegetation amount no matter the 

phenological state of the vegetation, creating the ability to monitor vegetation cover or 

biomass across the grazing season. The second manuscript (chapter 3) is titled “Using 

airborne lidar to estimate above-ground grassland biomass and the effects of grazing and 

pixel size on spatial heterogeneity in a native bunchgrass ecosystem”. In this chapter I use 

airborne lidar to map above ground grassland biomass at the 1 meter scale using a workflow 

previously developed to map small statured Arctic shrub biomass. These fine scale (1m 

resolution) biomass maps then allowed me to explore measures of spatial heterogeneity across 

pasture areas, as well as scale up (by aggregation) the resolution of this data, to determine the 

suitable resolutions to monitor how grazing impacts spatial heterogeneity of biomass. The 

final chapter (chapter 4) is titled “Short term rangeland vegetation monitoring from space: 

Exploring the relationships between in-field stocking rates and end of year utilization with 

Landsat-derived biomass data for management and monitoring purposes”, and tests the 

sensitivity of the biomass algorithm from chapter 2 (Jansen et al., 2018) by correlating 

biomass metrics with two short-term field monitoring indicators, stocking rate and end of year 

utilization, which are currently used for adaptive management across the study area. The 

remotely sensed biomass metrics quantifying end of year residual biomass, and the relative 

difference in biomass between summer and fall were significantly correlated (α=0.05) to 

short-term monitoring indicators at both the pasture and plot scales. We then created maps 

using breakpoints to classify our biomass raster metrics guided by in-field utilization 

monitoring data, to highlight the year to year variability in end of season biomass due to 



4 
  

 

climate variability, as well as areas that have greater amounts of change relative to other areas 

across the landscape. These results highlight the potential to integrate remote sensing tools 

into existing monitoring and management data to improve adaptive management and 

conservation outcomes on a grassland prairie. 

In performing this research one of the biggest lessons learned is having a respect and 

understanding of the interrelationship between the ecology and diversity of habitat, and the 

science being produced from it. In my opinion place matters, and the ecology, phenology and 

local management and climate drivers are vitally important to both the questions asked, and 

the methods used to pursue new knowledge. It really does behoove the researcher using 

remotely sensed data to have a good understanding of both, the ecologically of the study area, 

and how the components and phenology of the habitat are spatially and temporally observed 

by the satellite’s specific resolutions (spatial, temporal, radiometric, spectral). This is often 

referred to as the scene model (Phinn et al., 2003; Woodcock and Strahler, 1987). It cannot be 

stressed enough that the researcher has field data from the ground, or expert knowledge to 

help explain patterns and results from the remote sensing analysis.  

This dissertation took place on the Zumwalt prairie which is of the largest remaining 

sections Pacific Northwest Bunchgrass Prairie. This grassland is highly threatened and 

understudied (Kimoto et al., 2012; Tisdale, 1982) and once extended over eight million 

hectares across Northwest United States, and British Columbia and Alberta Canada (Tisdale, 

1982). The Zumwalt Prairie is a highly heterogeneous landscape dominated by C3 grasses 

that include Idaho fescue (Festuca idahoensis Elmer), bluebunch wheatgrass 

(Pseudoroegneria spicata (Pursh) A. Love) and Sandberg’s bluegrass (Poa secunda J Presl). 

Elevations range across the Zumwalt Prairie from 1000 meters to 1600 meters. Summer time 

(June – August) average temperatures range from 11.8 – 17.5˚C with the annual precipitation 

totals averaging around 350 mm (2006-2012 Zumwalt Weather Station). While this grassland 

system is unique and much of the research and products are specifically created for this 

grassland system, it is hoped that the methodological approaches and research findings can be 

used to advance remote sensing studies in rangeland and grassland ecosystems across the 

globe. That said, in the end, the greatest driving factor behind this work, is that the 

information and data products created from this dissertation are useful to promote the 
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conservation of the Pacific Northwest Bunchgrass Prairie, an endangered and often 

overlooked ecosystem.  
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Chapter 2: The Development of Near Real-Time Biomass and Cover 

Estimates for Adaptive Rangeland Management Using Landsat 7 and 

Landsat 8 Surface Reflectance Products 
 

“The Development of Near Real-Time Biomass and Cover Estimates for Adaptive Rangeland 

Management Using Landsat 7 and Landsat 8 Surface Reflectance Products.” Remote Sensing, 

10,1059, 2018. 

Abstract 

Rangelands are critical working landscapes and are the focus of considerable 

conservation planning efforts globally. A key conservation challenge in these landscapes is 

that high interannual variability in both climatic conditions and land use greatly limits the 

utility of outdated or static vegetation maps for management decision-making. One potential 

solution to this problem lies in remote sensing-derived information; however, prospective 

users must have continuous and timely access to vegetation products tailored to their needs. 

Google Earth Engine (GEE) can overcome the many storage, processing, and visualization 

barriers associated with creating ready-to-use remote sensing products for the public. While 

GEE provides a platform for building tools to analyze data and share results with users in near 

real-time for adaptive management, monitoring products need to (1) provide accurate and 

stable estimates over time and (2) align with management goals and the ecology of the 

rangeland system in question. Here, we assess estimates of vegetation cover and above-

ground biomass at two dominant phenological time periods (summer/green and fall/brown), 

as modeled from the Landsat 7 and Landsat 8 Climatic Data Record (CDR) product. Using a 

best-subset regression modeling approach, we modeled vegetation cover and biomass, finding 

that the best predictors vary by season, corresponding to vegetation phenology. We also found 

that sensor-specific models decreased the relative differences between mapped cover and 

biomass estimates when comparing Landsat 7 and Landsat 8 scenes one day apart in the 

summer and fall. Ultimately, we developed an automated model selection process driven by 

sensor and vegetation greenness that can run in GEE to monitor and analyze vegetation 

amounts across the grazing season for adaptive management. 
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1.0 Introduction 

Rangelands are estimated to cover more than 30–40% of Earth’s ice-free land and 

70% of the western United States (Asner et al., 2004; Fleishchner, 1994). Today, rangelands 

continue to be at high risk of conversion and fragmentation (Brunson and Huntsinger, 2008; 

Sullins et al., 2002) due to their marginality for income production for land owners (Sayre et 

al., 2013) compared to the high value of the land (Huntsinger and Sayre, 2007). Many 

rangelands have been degraded by overgrazing and continue to be threatened by poor grazing 

management and invasive species (Huntsinger and Sayre, 2007; Sayre et al., 2013). 

Rangelands are described as working landscapes and are being included in conservation 

planning because of their value for protecting and enhancing existing ecosystem services 

(Huntsinger and Sayre, 2007) while maintaining livelihoods. Management decisions (e.g., 

setting stocking rates, herd size, rotations) aimed at balancing economic profitability and 

ecosystem services are challenging in rangelands due to interannual climate variability as well 

as the changes in social systems, such as commodity prices or governmental policies (Mckeon 

et al., 1990; Stafford Smith et al., 2007). These challenges will likely grow as anthropogenic 

climate change amplifies variability in coupled socioecological systems characteristic of 

working rangelands (Joyce et al., 2013). To support socioecological resilience and 

conservation of ecosystem services, there is a need to monitor short- and long-term ecological 

indicators that respond to management actions at relevant conservation and management 

scales (Stafford Smith et al., 2007). 

Providing relevant data to ranchers and land managers to improve management 

outcomes has proved difficult using traditional in-field monitoring approaches (Bestelmeyer 

and Briske, 2012; Sayre et al., 2012; Washington-Allen et al., 2006). Qualitative methods are 

highly subjective and cannot robustly be compared over time and between areas or observers 

(Briske et al., 2005; Pyke et al., 2002). In-field quantitative methods have been critiqued 

because data acquisition is expensive, data may not be representative of conditions outside of 

sampling sites, and the scale of data collection seldom matches the spatial and temporal scales 

of management (Briske et al., 2010; Weltz et al., 2003; West, 2003). By contrast, remotely 

sensed data are spatiotemporally consistent and objective, overcoming these critiques, and can 

provide valuable information on rangeland condition when coupled with field data (Hagen et 

al., 2012; Herrick et al., 2010). 



10 
  

 

In rangeland systems, data from Landsat and the moderate resolution imaging 

spectroradiometer (MODIS) are commonly used to analyze vegetation amounts because they 

are free and provide long-term continuous datasets. Tradeoffs between the two sensors such 

as spatial scale (30 m versus 250–1000 m), temporal scale (16 day versus daily), and the 

spectral bands desired for analysis are important considerations. Landsat data is often 

preferred over MODIS because it provides a longer continuous dataset and the 30-m 

resolution is more appropriate for mapping heterogenous rangeland vegetation (Ikeda et al., 

1999) and assessing distinct management areas (Jansen et al., 2016). Also, timely processing 

of this data to at-surface reflectance is now made possible by the Landsat Climate Data 

Record (CDR). One of Landsat’s known drawbacks is the 16-day acquisition interval, but this 

interval is reduced when there are multiple Landsat platforms in orbit (currently Landsat 7 

and Landsat 8) and overlapping scenes at higher latitudes (Roy D. P. et al., 2015).  

Using any remotely sensed dataset to provide accurate vegetation monitoring data 

across the year (or years) presents challenges. Specific to the Landsat CDR record, the 

multiple sensors have different spectral response functions, sensor configurations (Roy D. P. 

et al., 2015), and data processing algorithms (Holden and Woodcock, 2016). Sensor 

differences are highlighted by Holden and Woodcock (Holden and Woodcock, 2016), who 

suggest several methods to integrate data from the two current Landsat sensors for time-series 

analysis, including image normalization, modeling attribute data such as vegetation cover 

separately for each sensor, or using a dummy variable within the time-series model. 

Spatial and temporal variation in phenology make it difficult to assess vegetation 

amounts with only one vegetation index across the year (Butterfield and Malmström, 2009; 

Jansen et al., 2016). For example, the amount of senescent early season growth or standing 

dead material (prior year’s growth) impacts the ability of spectral data to accurately quantify 

vegetation amounts (Huete and Jackson, 1987; Todd et al., 1998; Van Leeuwen and Huete, 

1996; Xu et al., 2014). This is especially important in heterogenous rangeland landscapes 

because green vegetation canopies often include senesced plant material (Elvidge, 1990; Van 

Leeuwen and Huete, 1996), particularly in areas far from water or rested from grazing the 

prior year (Hagen et al., 2012; Todd et al., 1998). Jacques et al. (Jacques et al., 2014) suggest 

that a dry-season forage index should be able to resolve the difference between soil and dry 

vegetation, vegetation structure, biochemical state, and disturbance such as fire. This rationale 
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can be extended to the entire growing season, especially in rangeland systems, where residual 

dry vegetation remains standing from previous years. To address the difficulties of monitoring 

vegetation amounts irrespective of phenology, Marsett et al. (Marsett et al., 2006) found the 

soil-adjusted total vegetation index (SATVI) represented vegetation cover, and the near-

infrared red (NIR) represented plant height and biomass. This study focused on the arid 

southwestern U.S., and when modeling biomass and plant height, eliminated field sites with 

>30% forb cover. Hagen et al. (Hagen et al., 2012) extended this research to the MODIS 

sensor across western U.S. rangelands, but only analyzed total vegetation cover. While both 

studies demonstrate the ability of remotely sensed data to monitor vegetation cover across the 

year, neither created robust models for biomass across grasslands, which can often include 

forb cover greater than 30%. Jansen et al. (Jansen et al., 2016) analyzed the ability of Landsat 

7 Enhanced Thematic Mapper Plus (ETM+) to monitor vegetation biomass and cover across 

the grazing season and demonstrated that the best spectral predictors changed as vegetation 

senesced; however, this study was limited to only one year and a limited sample size (N = 32).  

An adaptive management framework that incorporates remote sensing products will be 

most effective when vegetation estimates are readily available in near real-time. While 

previous research in rangeland systems highlights the ability of remotely sensed data to assess 

vegetation over time or monitor grazing effects, ranchers and others who must adapt their 

management to changing conditions still need easily accessible, spatiotemporally consistent 

data products. For example, management decisions may depend on multiple estimates of 

vegetation across the grazing season (Jansen et al., 2016) or on residual vegetation amounts 

after vegetation has senesced (e.g., (Guerschman et al., 2015; Jacques et al., 2014)). New 

developments in the automatic post-processing of raw remote sensing data (e.g., Landsat CDR 

surface reflectance products) and cloud computing and storage makes this increasingly 

achievable. This is demonstrated by Google Earth Engine (GEE), which was developed to 

help overcome many of the challenges of making remote sensing products available to a 

broad range of end users. 

Google Earth Engine is a broad platform with diverse uses, from simple downloads of 

satellite data to an all-in-one platform to gather, analyze, and visualize remotely sensed data. 

The GEE image catalog is continuously updated with new Landsat CDR products, negating 

the need to download, process, store, and disseminate large amounts of data on local servers 
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(Gorelick et al., 2017). GEE-based tools can be configured to produce and visualize near real-

time monitoring data to end users by applying algorithms that process new images as soon as 

they become available. The GEE platform also allows users to upload personal data (such as 

management units) via Google fusion tables, tailoring the analysis to their own property. 

Google Earth Engine is uniquely suited for users to utilize the platform at various steps in a 

project workflow. For example, it can be used to analyze changes in global forest cover 

(Hansen et al., 2013) or facilitate sharing of near real-time remotely sensed data in a 

streamlined and cost-effective way (see ClimateEngine.org (Huntington et al., 2017)). 

However, the powerful benefits of leveraging GEE for rangeland management decision-

making can only be realized if the underlying algorithms (1) provide accurate and stable 

estimates of vegetation metrics over time and (2) align with management goals and the 

ecology of the rangeland system in question. 

Our ongoing goal is to develop a GEE-based rangeland monitoring tool that uses 

Landsat 7 and Landsat 8 CDR surface reflectance products to estimate vegetation cover and 

biomass across the grazing season. To meet this goal, the specific objective of this study is to 

assess the accuracy and stability of these cover and biomass metrics between Landsat 7 and 

Landsat 8 as phenology changes across the grazing season. Here, we first create and compare 

Landsat 7- and Landsat 8-derived models of vegetation cover and biomass at three 

phenological (temporal) periods: (1) peak vegetation biomass (summer), (2) senescent 

vegetation (fall), and (3) a combined dataset (summer and fall data). Next, over the study area, 

we assess the stability of these models across both Landsat sensors by calculating the relative 

differences between the modeled vegetation using paired scenes one day apart. We then 

identify sensor-specific greenness (Normalized Difference Vegetation Index (NDVI)) 

thresholds to align the appropriate models with plant phenology. Lastly, we explore what 

biophysical, sensor, and sample design variables most influence model accuracy. The 

resulting algorithms from this research are encoded in GEE to deliver analysis products to 

land managers and ranchers in a new tool under development which leverages the 

ClimateEngine (Huntington et al., 2017). 
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2.0 Materials and Methods 

2.1. Study Area 

The study area covers approximately 26,300 hectares across six different private land 

holdings on the Zumwalt Prairie in northeastern Oregon (Figure 2.1). The Zumwalt Prairie is 

a grassland dominated by C3 grasses including Idaho fescue (Festuca idahoensis Elmer), 

bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. Love), and Sandberg’s bluegrass 

(Poa secunda J. Presl). Average yearly rainfall is 352 mm, with 42% coming between 1 April 

and 1 July; average monthly temperatures range from −3.3 °C in January to 17.8 °C in July 

(Zumwalt Weather Station 2006–2017 data, https://www.conservationgateway.org). Most 

soils are classified as xerolls, with parent material coming from basalt, loess, and colluvium 

(Schmalz, 2011) . 

 

Figure 2.1 Study area map of the grassland habitat across the Zumwalt Prairie in Wallowa 

County, OR, USA. The study area intersects two Landsat scenes falling on row 28 (R-28) and 

paths 42 and 43 (P-42 and P-43).  
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2.2. Sampling Design 

Field data was collected over three years (2014 to 2016) across a suitable habitat 

sampling area on the Zumwalt prairie. The suitable habitat area was delineated by excluding 

(1) non-grassland habitat types (developed, agriculture, rock, or forest) as defined by the 

ReGap Ecological Systems data (Kagan et al., 2006); (2) slopes greater than 45%; and (3) any 

area falling within 50 m of stock ponds, roads, and fence lines. Sample sites were located at 

least 200 m away from other sites for each field campaign, and for efficiency purposes, sites 

were located within 1.1 km of access roads. The sample site locations were located using a 

stratified random sampling approach generated iteratively for each season and year. Sampling 

strata were divided by quartiles of predicted biomass amounts derived initially using 

vegetation models created for this study area (Jansen et al., 2016) and then subsequently 

updated as new data were collected and analyzed for each season. This stratification was 

performed for more informed and efficient sampling across a gradient of vegetation amounts. 

Sites were located within relatively homogenous areas of vegetation and in pastures with 

various levels of stocking, timing of grazing, and grazing rotation strategies. Sampling was 

performed at two dominant phenological time periods: during peak biomass (i.e., summer, 

when green vegetation is dominant) in 2015 and 2016, and during full senescence (i.e., 

autumn, when brown vegetation is dominant) in 2014, 2015, and 2016. 

 

2.3. Data 

2.3.1. Field Data 

During the study period (2014–2016), data on standing crop biomass, vegetation 

cover, soil surface, and utilization were collected at total of 272 sample sites. Field data was 

collected across three parallel 60-m transects located 30 m apart and oriented east to west with 

the middle 60-m transect intersecting the site center (Figure A1.1). Vegetation cover, color/ 

condition (i.e., green/photosynthetically active, brown/senesced, and grey/standing dead) and 

soil surface data were collected every meter across all transects using line–point intercept 

(Herrick et al., 2005), providing 180 measures per site. Total above-ground biomass was 

collected using an adapted photo-enhanced comparative yield method described by Friedel 

and Bastin (Friedel and Bastin, 1988). Our method involved field observers estimating dry 

vegetation weight using photographic standards obtained across the Zumwalt Prairie. Biomass 
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collection at each sample site was performed using the photo standards to estimate the weight 

of standing crop within 39 1.0 × 0.4 m quadrats located every 5 m along each transect. We 

corrected the field estimated biomass by creating individual observer calibration equations for 

each year and seasonal data collection bout. This was done by clipping standing crops at four 

quadrats (at 30 m along the northern and southern transect and 20 m and 40 m along the 

middle transect) to 0.5 cm above ground surface, and oven drying at 60 °C for 48 h to obtain a 

dry weight. For each observer, calibration equations were then created using the estimated 

plot weight and the actual clipped weight. The resulting equations were then applied to each 

observer’s estimate. Utilization was also assessed at each 1 × 0.4 m quadrat in unison with 

biomass estimates by visually estimating the amount of vegetation removed by grazing 

animals. The methods followed double-weight sampling described by Parsons et al. (Parsons 

et al., 2003). 

2.3.2. Remotely Sensed Data 

The climate data record (CDR) Collection 1 Level 2 products for Landsat 7 ETM+ and 

Landsat 8 Operational Land Imager (OLI) were downloaded from USGS Earth Explorer 

(https://earthexplorer.usgs.gov/, accessed 5 December 2017). Each scene is terrain-corrected 

and processed to at-surface reflectance based on the sensor type; Landsat 7 ETM+ data is 

processed with the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

algorithm (Masek et al., 2006) and Landsat 8 OLI with the Landsat 8 Surface Reflectance 

Code (LaSRC) (Vermote et al., 2016). This data product also includes a pixel quality 

assurance (pixel_qa) band derived largely from the CFMask algorithm (Zhu and Woodcock, 

2012), which was used to filter pixels containing clouds or shadows over the study site. The 

location of this study area falls on swath edge paths, enabling each Landsat sensor to pass 

over every 8 days, and providing Landsat 7 and Landsat 8 scene acquisitions one day apart 

(e.g., (Roy D. P. et al., 2015)). We selected images that were mostly cloud-free and closest in 

date to the field campaigns which also had a one-day paired sensor scene (Table A1.1). The 

paired scenes facilitated a comparison of modeled biomass and cover between sensors. For 

each of the selected scenes, we masked out bad data by applying the pixel_qa mask. This 

included the no-data pixels associated with the permanent failure of the Landsat 7 ETM+ scan 

line corrector in 2006, as well as clouds and shadows across both Landsat 7 and Landsat 8 

datasets. For one scene, imaged on 17 October 2015 from Landsat 8, we further applied a 
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manual cloud mask due to error of omission with the pixel_qa mask. Next, we obtained the 

common spectral bands, and computed 12 vegetation indices and the wetness, greenness, and 

brightness tasseled cap transformation (Kauth and Thomas, 1976) using the coefficients for 

reflectance data (Crist, 1985) (Table A1.2) based on previous studies across grassland and 

dryland systems. For each field sample site, we averaged pixel values across a 2 × 2 pixel 

window surrounding the sample site to fully capture the field site extent, as the field sites did 

not fall directly within individual pixels. 

2.4. Statistical Analysis 

2.4.1. Variable Selection 

Using a best-subset regression modeling approach (Hudak et al., 2006; Jansen et al., 

2016), we determined which spectral indices (Table A1.2) were most commonly selected for a 

defined number of variables (Hudak et al., 2006) when estimating vegetation biomass and 

cover for nine different data combinations based on the sensor and time of year (sensor-time). 

The best-subset approach exhaustively searches all possible single and multiple variable linear 

models (with model size defined by the user) and selects the models with the best fit (Hudak 

et al., 2006). The sensor–time data combinations consisted of three sensor groupings (Landsat 

7, Landsat 8, and Landsat 7/8 combined) and three-time groupings that aligned with the 

dominant phenological periods: peak biomass (i.e., summer, when green vegetation is 

dominant), full senescence (i.e., autumn, when brown vegetation is dominant), and the 

combined dataset (i.e., all year). To limit the influence that outlier observations can have on 

variable selection for each of the nine sensor–time combinations, we ran 1000 iterations, 

guided by Crowley (Crowley, 1992), of a random selection with replacement of two-thirds of 

the data and performed a best-subset regression (regsubsets in the leaps package in R) (R 

Development Core Team, 2016; Thomas, 2017) for each run. We then summed the predictor 

variables selected as “best” across the 1000 runs to guide the creation of candidate models for 

each combination. 

2.4.2. Model Creation 

For each of the nine sensor–time data groups, we divided the valid sample sites into 

training and testing sets by selecting 75% of the data for training and leaving 25% out for 

testing. Using the variables selected as “best” from the previous variable selection step (see 
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Section 2.4.1), coefficients for each candidate model were obtained by averaging the 

coefficient values from 1000 linear models built by randomly selecting two-thirds of the 

training data for each model run. Using these coefficients, we then created linear models and 

computed measures of model performance (i.e., relative root mean squared error (rRMSD) 

and root mean squared deviation (RMSD) (Pineiro et al., 2008)) for both the training and 

testing datasets. Linear model residuals were tested for normality using the Lilliefors test 

(Lilliefors, 1967) and visually inspected for homoscedasticity. When candidate models had 

more than one predictor variable, the variance inflation factor (VIF) was calculated. Guided 

by Graham (Graham, 2003), only candidate models with a VIF of less than 2 were considered 

for further analysis. From the candidate models, we selected the “best” model as the ones that 

most consistently had the lowest model errors, while giving priority to vegetation models that 

contained the same spectral variables across the three sensor data groups for each dominant 

phenological time period. 

2.4.3. Model Comparison across Landsat 7 and Landsat 8 Scenes for Summer and Fall 

Once the best model was selected for each of the 9 sensor–time data groups, we 

compared modeled vegetation amounts between models by applying each model to the paired 

Landsat 7 and Landsat 8 scenes. We did this for the summer and fall time periods separately 

due to notable increases in accuracy when modeling the summer vegetation data separately 

from the fall data. By separating the data in this way, there are nine comparisons when 

applying each model to each scene (Figure A1.2, step 4: all combinations explored). Across 

the study area for each scene and model combination, a relative difference raster was 

calculated as: 

 

% RelDif = ((x − y)/((x + y)*0.5)*100) (1) 

 

where x represents the modeled vegetation amount derived from Landsat 8 scene data and y 

represents the modeled vegetation amount derived from Landsat 7 data. Next, to minimize the 

effect of forward and back-scatter, we combined all paired scene pixel differences for the 

summer and fall periods for a total dataset comparison. We computed the median and mean 

percent relative differences for each of the six scene date comparisons for each temporal 

period as well as averages across the six scenes for both the summer and fall periods. 
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2.4.4. Exploring Pixel-Wise Phenology-Driven Model Application 

Due to the impact that vegetation phenology has on accurately estimating vegetation 

amounts with remotely sensed data (Jansen et al., 2016; Malmstrom et al., 2009; Vescovo and 

Gianelle, 2008) and the desire to automate the application of the appropriate phenological 

models across the grazing season, we estimated vegetation amounts using an ‘if-else’ 

statement, whereby if the sampling site value of the NDVI is greater than x, apply the summer 

model, else apply the fall model. To determine the threshold for each metric (biomass or 

cover) and sensor, we created a sequential range of NDVI values from 0.25 to 0.60 with a 

0.01 step and applied our ‘if-else’ statement to predict a vegetation amount for each site. This 

sequential range of NDVI values was based on the overlapping span of NDVI values from the 

summer and fall sampling (Figure A1.5h). For each sensor and vegetation (cover and 

biomass) dataset and NDVI value between 0.25 and 0.60, we randomly selected 75% of the 

data and computed measures of model performance (rRMSE and RMSD) on the estimated 

versus the observed data, with 500 iterations. We averaged measures of model performance 

across all 500 runs and selected the thresholds that minimized the RMSD. We then compared 

the three ways to model vegetation across the year with (1) the nonautomated application of 

summer and fall models based on season; (2) the automated application of models based on 

phenology (i.e., NDVI threshold); and (3) the consistent application of the all-year models, 

with the full datasets of Landsat 8 and Landsat 7 separately for each vegetation metric (i.e 

cover and biomass). 

2.4.5. Analysis of Model Residuals 

To understand what physical, environmental, or sampling components most likely 

influence model error in the cover and biomass threshold algorithms, we correlated the 

algorithm residuals to ancillary environmental, topographic, in-field, and sensor data using the 

Spearman’s rank method. Variables related to the sensor and sampling included: in-field 

sample date (i.e., Julian day), sensor date, number of days between field data collection date 

and scene acquisition date (days off), and number of days since last measured rainfall prior to 

overpass. Ecological variables collected at the site included percent foliar cover by plant 

functional group (perennial grass, perennial forb, annual grass, annual forb) and litter cover. 

Other data included soil surface variables when no canopy was observed, such as percent soil, 

moss and lichen cover, and rock. We also further explored the impacts of vegetation color 
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(green, brown, standing dead (grey)) as well as an estimate of percent utilization collected at 

each sample site. The topographic variables, slope and aspect, were derived from the 30-m 

national elevation dataset (NED) and averaged across a 2 × 2-pixel window to match the scale 

of the remotely sensed data (Table A1.3). 

3.0 Results 

3.1. Biomass and Cover Field Data 

Across the 272 field sites visited during the study period, the average biomass was 

133.23 g/m2 and the average percent foliar cover was 0.56%. Biomass and cover data 

collected in summer exhibited greater average vegetation amounts when compared to data 

collected in the fall (Table 2.1). Our sampling design captured a gradient of vegetation 

amounts exhibited by the high range in biomass and cover amounts for both the summer and 

fall datasets. 

Table 2.1. Summary statistics of in-field measures of biomass and cover collected across the 

study sites and sampling period. 

 
Biomass (g/m2) Cover (%) 

Summer Fall Total Summer Fall Total 

N 124 148 272 124 148 272 

Mean 162.61 108.61 133.23 0.61 0.52 0.56 

Min 39.59 12.19 12.19 0.21 0.13 0.13 

Max 366.10 302.97 366.10 0.94 0.94 0.94 

SD 71.25 59.59 70.40 0.19 0.21 0.21 

Median 158.36 94.50 120.67 0.63 0.52 0.57 

 

3.2. Variable Selection 

The “best” predictor variables selected from the bootstrapped best-subset regression 

were relatively consistent between Landsat 7 and Landsat 8 across the three time data 

groupings. For the summer datasets, across all sensor groupings, the variables selected most 

for cover and biomass were the normalized difference infrared index 7 (NDII7) and the 

normalized difference water index (NDWI). When exploring the summer datasets with two-

variable models, the NDII7 variable was most often selected, but the second variable varied 
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between the sensor groups and the vegetation metric (Tables A1.4 and A1.7). For both the fall 

and all-year (summer + fall) data, across all sensor groupings, the normalized difference 

tillage index (NDTI) was selected as the best predictor variable, while the NDII7 was selected 

as the second-best predictor (see Figures A1.3– A1.5 for scatterplots). The variables selected 

most for the two-variable models differed between the fall and the all-year datasets. The two-

variable fall models contained the NDTI variable within each model, with the second variable 

again varying across the vegetation metric and sensor group. The all-year two-variable models 

for cover and biomass relied most heavily on the NDTI, NDII7, and to a lesser extent the 

NDWI (Tables A1.4– A1.9). 

3.3. Candidate Model Comparisons and Model Selection 

Across all three time periods analyzed, the two-variable models with variance inflation 

factors (VIF) under two did not consistently (across training and testing datasets) outperform 

the one-variable models by more than 1.5% rRMSE, or more than 1% for cover, or 1 g for 

biomass RMSD (Tables A1.10 and A1.11). The highest-ranked one-variable models for each 

time and sensor combination were all significant, with coefficients of determination (r2) 

ranging from 0.65 to 0.81, and with rRMSE ranging from 13.00% to 30.88%. 

Since the NDII7-based models had the lowest predictor error across the majority of the 

summer cover and biomass modeling datasets, we selected the NDII7 models for further 

analysis. The NDII7 models for cover had rRMSE values less than 18% and RMSD values 

less than 11% (r2 > 0.70), with similar model evaluation statistics observed between the 

training and testing datasets. For biomass, model evaluation statistics for the training data had 

rRMSE values less than 23% and RMSD values less than 40 g/m2 (r2 > 0.69), while the 

testing dataset had lower rRMSE values (<21.5%) and RMSD values (<35 g/m2) and higher r2 

coefficients (>0.8) (Table 2.2). 
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Table 2.2. Model evaluation statistics for final linear models to estimate biomass and cover, 

for both the training and testing datasets. LS7: Landsat 7, LS8: Landsat 8, NDII7: Normalized 

Difference Infrared Index 7, NDTI: Normalized Difference Tillage Index, Veg: vegetation, r2: 

correlation of determination, rRMSE; relative root mean squared error, RMSD: root mean 

squared deviation. 

Metric Time Sensor 
Veg 

Index 

Training Validation 

N Int Slope r2 rRMSE RMSD N r2 rRMSE RMSD 

B
io

m
as

s 

Summer LS7 NDII7 60 104.06 343.18 0.69 22.84 39.27 20 0.81 21.25 34.87 

Summer LS8 NDII7 93 101.09 330.25 0.80 20.07 32.08 30 0.81 16.86 28.96 

Summer LS78 NDII7 153 102.18 335.95 0.76 21.38 35.07 50 0.81 18.50 30.89 

Fall LS7 NDTI 78 −56.45 1042.00 0.71 30.46 32.67 25 0.77 24.19 26.43 

Fall LS8 NDTI 99 −58.04 1070.64 0.67 30.88 31.20 32 0.70 26.69 32.02 

Fall LS78 NDTI 177 −55.30 1044.67 0.69 30.73 31.80 57 0.73 25.86 29.54 

All-year LS7 NDTI 120 −36.53 944.63 0.67 29.32 40.52 40 0.76 25.94 37.26 

All-year LS8 NDTI 184 −41.74 1028.00 0.74 26.34 35.38 62 0.77 27.22 35.32 

All-year LS78 NDTI 304 −38.08 984.32 0.70 27.88 37.82 102 0.76 26.10 35.11 

C
o

v
er

 

Summer LS7 NDII7 60 0.44 0.95 0.70 16.89 0.11 20 0.70 17.39 0.11 

Summer LS8 NDII7 93 0.43 0.94 0.78 16.07 0.10 30 0.75 13.00 0.08 

Summer LS78 NDII7 153 0.44 0.94 0.75 16.44 0.10 50 0.72 14.84 0.09 

Fall LS7 NDTI 78 −0.09 3.88 0.78 19.87 0.10 26 0.81 17.07 0.09 

Fall LS8 NDTI 99 −0.10 3.97 0.72 21.73 0.11 32 0.72 22.71 0.13 

Fall LS78 NDTI 177 −0.09 3.91 0.75 20.92 0.11 58 0.73 20.69 0.11 

All-year LS7 NDTI 120 0.07 2.70 0.65 22.85 0.13 40 0.72 21.00 0.12 

All-year LS8 NDTI 184 0.06 2.95 0.69 20.55 0.12 62 0.70 21.02 0.12 

All-year LS78 NDTI 304 0.07 2.82 0.67 21.71 0.12 102 0.70 20.74 0.12 

 

Across the fall and all-year datasets, the NDTI-based models were selected because 

this predictor minimized errors across every sensor group for both cover and biomass when 

compared to the other one-variable models. For fall cover data, the NDTI-based models had r2 

values greater than 0.72, with rRMSE values less than 23% and RMSD values less than 13%. 

For fall biomass data, the NDTI based models had r2 values greater than 0.67, with rRMSE 

under 31% and RMSD under 33 g/m2. Including both the summer and fall data together for 

the all-year datasets, the NDTI biomass models had r2 values ranging from 0.67 to 0.77, with 

rRMSE less than 30% and RMSD ranging from 35.11 to 40.52 g/m2. Cover NDTI models had 

r2 values ranging from 0.65 to 0.72, with rRMSE less than 23% and RMSD ranging from 0.12 

to 0.13%. 
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The relative root mean squared errors (rRMSE) were smaller on average when 

modeling summer vegetation datasets as compared to modeling the fall vegetation data, and 

the vegetation cover metric had lower rRMSE values compared to the biomass metric. While 

the rRMSE values were lower for the summer dataset, this pattern was not observed with the 

RMSD statistic for the biomass metric, which showed improvements in prediction accuracy 

for the fall data versus the summer data across all sensor groups and testing and training 

datasets, except the LS8 testing dataset. 

When removing all sampling locations which were only valid for one sensor, so that 

we could compare model accuracy between sensors using an identical dataset of field data, we 

observed that for vegetation cover, the Landsat 7 and Landsat 8 data products provide very 

similar model fit estimates (i.e., within 1.5% rRMSE of each other) across all three temporal 

datasets (summer, fall, all year). When modeling summer biomass, the Landsat 8 sensor-

based model was more accurate than the Landsat 7 biomass model, having a lower rRMSE of 

3% and 2% with the training and testing data, respectively. When modeling the fall biomass 

data, the Landsat 7 biomass model reduced errors when compared to the Landsat 8-based 

model, with a 0.5% and 3% reduction of the rRMSE with the training and testing data, 

respectively (Tables A1.12 and A1.13). 

3.4. Relative Differences in Modeled Vegetation across Paired Landsat 7 and Landsat 8 

Scenes 

The cover and biomass vegetation models that aligned to each sensor (sensor-aligned 

models; i.e., applying the Landsat 8 model to Landsat 8 data) had the smallest differences 

between estimated vegetation across the scene pairs for both summer and fall (Figures 2.2 and 

2.3). For biomass, applying the sensor-aligned models across the six summer scene pairs 

resulted in a range of median percent relative differences from −2.73% (Landsat 7 bias) to 

2.63% (Landsat 8 bias) with an average median percent relative difference of 0.33%. Across 

the six fall scenes, using the sensor-aligned biomass models, the median percent relative 

differences ranged from −4.54% to 3.55% with an average median percent relative difference 

of −0.39% (Table A1.14). These results are similar to the sensor-aligned cover models for 

both summer (median range = −1.62% to 2.00%, average median = 0.49%) and fall (median 

range = −3.87% to 2.21%, average median = −0.58%) (Table A1.15). 
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Across the six summer scene pairs, we observed a positive bias (average median 

percent relative difference of +2.22%) in NDII7 values from Landsat 8 as compared to 

Landsat 7. Across the six fall scene pairs, we observed a small negative bias (average median 

percent relative difference of −1.16%) in NDTI values with Landsat 8 data as compared to 

Landsat 7. Applying the sensor-data aligned models to the Landsat 7 and Landsat 8 data 

decreased sensor bias for the resulting vegetation amounts in both the summer and fall time 

periods (Tables A1.14 and A1.15). 

 

Figure 2.2. Boxplots of pixel-by-pixel comparison of estimated biomass for all paired Landsat 

7 and Landsat 8 scenes using all model/scene combinations for the summer (green (a)) and 

fall (brown (b)) Landsat 7 and Landsat 8 scenes. LS7S: Landsat 7 scene, LS8S: Landsat 8 

scene, LS7M: Landsat 7 data model, LS8M: Landsat 8 data model, LS78M: combined 

Landsat 7 and Landsat 8 data model. 
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Figure 2.3. Boxplots of pixel-by-pixel comparison of estimated cover for all paired Landsat 7 

and Landsat 8 scenes using all model/scene combinations for the summer (green (a)) and fall 

(brown (b)) Landsat 7 and Landsat 8 scenes. LS7S: Landsat 7 scene, LS8S: Landsat 8 scene, 

LS7M: Landsat 7 data model, LS8M: Landsat 8 data model, LS78M: combined Landsat 7 and 

Landsat 8 data model. 

3.5. Assessing a Pixel-Wise Phenologically (NDVI) Driven Model Application across the 

Grazing Season 

The NDVI threshold values that guide application of season-specific models for 

biomass were 0.38 and 0.32 for Landsat 8 and Landsat 7 data, respectively. Cover thresholds 

were very similar to that of biomass, with the RMSD minimized at NDVI values of 0.37 for 

Landsat 8 data and 0.31 for Landsat 7 data (Figure 2.4). 
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Figure 2.4. The Normalized Difference Vegetation Index (NDVI) threshold value that 

minimizes the relative root mean squared difference (RMSD) when applying the summer and 

fall models to a balanced summer and fall dataset for Landsat 7 (LS7) and Landsat 8 (LS8) 

data separately to predict (a) biomass and (b) cover across the grazing season. The minimum 

RMSD values are highlighted with red circles. 

The RMSD varied less than 1.5 g/m2 for biomass (Figure 2.5) and less than 1% for cover 

(Figure 2.6) when comparing the season-specific model (Figures 2.5 a, b and 2.6 a, b) to the 

NDVI-threshold algorithm method (Figures 2.5 c, d and 2.6 c, d). The all-year NDTI-based 

models (Figures 2.5 e, f and 2.6 e, f) also performed well, but had the largest RMSD across 

both sensors and vegetation metrics when compared to the other two methods of applying the 

models’ Landsat data. 
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Figure 2.5. Observed versus predicted biomass using three approaches to model vegetation 

biomass using all the sampling data: (1) applying the seasonal best models (Table 2.3 

summer/fall models) to (a) Landsat 7 (LS7) and (b) Landsat 8 (LS8) data based on a calendar 

date; (2) applying the seasonal best models based on the NDVI threshold by sensor (c,d) and 

(3) applying single all-year models (Table 2.3) to (e) LS7 and (f) LS8 data. The shaded area 

represents the 90% prediction interval, the black line represents the best fit line, and the 

dashed red line represents the one-to-one line. 
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Figure 2.6. Observed versus predicted cover using three approaches to model vegetation cover 

using all the sampling data: (1) applying the seasonal best models (Table 2.3 summer/fall 

models) to (a) Landsat 7 (LS7) and (b) Landsat 8 (LS8) data based on a calendar date; (2) 

applying the seasonal best models based on the NDVI threshold by sensor (c,d) and (3) 

applying single all-year models (Table 2.3) to (e) LS7 and (f) LS8 data. The shaded area 

represents the 90% prediction interval, the black line represents the best fit line, and the 

dashed red line represents the one-to-one line. 
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3.6. Correlation of NDVI Threshold Model Error with Sensor, Sampling, and Field 

Variables 

For both the cover and biomass metrics, the maximum significant correlation had an 

absolute correlation coefficient (r) of 0.41. Only percent perennial grass, percent litter, prior 

rain events, and percent moss and lichen had r values over 0.30 for any sensor/vegetation 

metric (Table 2.3). 

Table 2.3. Sensor, sampling, and ecological variables significantly correlated (Spearman rank) 

to NDVI threshold algorithm residuals used to model vegetation amounts across the grazing 

season. LPI: line point intercept, r: correlation coefficient, SD: standing dead vegetation (last 

years growth), NS: not significant at the 0.05 p-value. 

Metric Variable Variable Source 
Landsat 7 Landsat 8 

r-val p-val r-val p-val 

Biomass % Perennial Grass LPI (canopy) −0.21 0.001 −0.15 0.006 

Biomass % Litter LPI (canopy) 0.2 0.013 0.18 0.006 

Biomass Rain Lag (days) Sensor (Field) 0.36 0.027 0.24 0.006 

Biomass % Moss/Lichen LPI (soil surface) 0.13 0.014 0.004 NS 

Biomass % Rock LPI (soil surface) 0.01 0.046 −0.0578 NS 

Biomass % Mean Utilization Utilization NS NS 0.1 0.003 

Cover % Perennial Grass LPI (canopy) −0.407 0 −0.3546 0 

Cover % Annual Grass LPI (canopy) −0.174 0.018 −0.2150 0 

Cover % Annual Forb LPI (canopy) −0.264 0 −0.1981 0.0322 

Cover 
Field Data Lag 

(Days) 
Sensor (Field) −0.178 0.016 −0.1800 0.0233 

Cover 
% Brown and SD 

Color 
LPI (color) −0.178 0.016 −0.1700 NS 

Cover % Litter LPI (canopy) 0.315 0 0.2379 0 

Cover Rain Lag (days) 
Sensor (Weather 

Station) 
0.327 0 0.1815 0 

Cover % Rock LPI (soil surface) 0.277 0 0.18317 0 

Cover % Soil LPI (soil surface) 0.162 0.029 0.211 0.001 

Cover % Moss/Lichen LPI (soil surface) 0.381 0 0.304 0 

Cover % Green Color LPI (color) 0.178 0.016 0.17 NS 
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4.0 Discussion 

To provide near real-time data for adaptive management, we developed and tested an 

approach to automate the quantification and mapping of vegetation cover and biomass using 

Landsat 7 and Landsat 8 CDR products across the grazing season (i.e., changing phenological 

conditions) by relying on NDVI thresholds to guide season-specific model application. We 

showed that using NDVI to select from seasonal models for application increased accuracies 

when modeling vegetation amounts at varying growth stages compared to the single variable 

all-year NDTI models. Our finding that Landsat 8 has a larger NDVI threshold value as 

compared to Landsat 7 aligns with previous literature that found that Landsat 8-derived NDVI 

values are greater than those of Landsat 7 (Holden and Woodcock, 2016; Roy D. P. et al., 

2015). These sensor-specific algorithms enable efficient mapping, analysis, and accessibility 

of biomass and cover estimates throughout the grazing season as vegetation changes due to 

phenology and management. This is a substantial improvement over point-based quantitative 

observations or plot-based qualitative assessments. The vegetation maps provide a richer, 

more complete representation of vegetation amounts for land managers and ranchers to use in 

assessing the outcomes of their management actions. One example application of this model 

at the pasture scale reveals the differences in biomass corresponding to various management 

strategies (Figure 2.7). 

Our results from season-specific modeling, using data from the summer sampling 

period, determined that NDII7 was the most accurate spectral predictor of biomass and cover; 

this is in contrast to the wide use of NDVI as a proxy for rangeland vegetation (Svoray et al., 

2013). We attribute this result to the fact that over one-third of our summer sampling sites had 

more than 30% brown or standing dead vegetation cover, since the relationship between total 

biomass and NDVI is affected by the amount of standing dead (prior year’s growth) or 

senescent (current year’s growth that is no longer photosynthetically active) vegetation (Xu et 

al., 2014). Furthermore, in rangelands where species diversity and heterogenous soil 

conditions create high phenological variability within a single pixel as well as over the study 

area, the impact of nonphotosynthetically active vegetation is especially important to take into 

account when modeling vegetation metrics for rangeland monitoring (Marsett et al., 2006; 

Todd et al., 1998). 
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Figure 2.7. (a) Estimating the mean biomass (g/m2) with the Landsat 7 and 8 Climate Data 

Record (CDR) products across three selected pastures with different management actions for 

the 2016 grazing season (17 April to 12 November). Mapping biomass (b–j) using three 2016 

scenes (28 May, 23 August, 19 October) across the three selected pastures with different 

management action ((b–d) long-term livestock excluded, (e–g) annually grazed, (h,i) 

livestock excluded: fall fire). 

For the fall sampling period, the best predictor (NDTI) contained the two shortwave 

infrared bands, which correlate to cellulose and lignin in vegetation (Elvidge, 1990; Jacques et 

al., 2014; Roberts et al., 1993). Vegetation indices such as the soil tillage index (STI), the 

normalized difference tillage index (NDTI), and the soil adjusted total vegetation index 

(SATVI), which rely in part on the shortwave infrared (SWIR) bands, have been used to 

estimate dry vegetation and total vegetation in semiarid rangelands across the African Sahel 

(Jacques et al., 2014), the southwest USA (Hagen et al., 2012; Marsett et al., 2006), and 

photosynthetic and nonphotosynthetic vegetation across the Australian savanna (Guerschman 

et al., 2009). Our ability to explain the variance of dry vegetation amounts in both cover and 

biomass is comparable and slightly better than that of Jacques et al. (Jacques et al., 2014), 

who found an r2 of 0.67 when linearly relating biomass and STI across the year, an r2 of 0.59 

when using only the dry season measures, and an r2 of 0.66 during the wet season. We 

attribute this slight improvement to our dataset containing fewer years’ data, being collected 

across a smaller, more similar habitat type, and the higher spatial resolution of Landsat 

compared to MODIS. Furthermore, compared to Jansen et al. (Jansen et al., 2016), we 

* 

^ 

^ 
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observed improved model accuracy as well as simplified models (one-variable models 

compared to multivariable models). Model improvement is especially evident for the fall 

biomass models, exhibited by an increase of the r2 from 0.35 in Jansen et al. (Jansen et al., 

2016) to 0.67 in this study. This is likely due to our larger in-field plot size, improved in-field 

biomass estimates, as well as the fact that we sampled a greater range of vegetation amounts 

and had a much larger sample size. Similar to Jacques et al. (Jacques et al., 2014), NDTI also 

performed quite well across both the summer and fall periods of this study. These findings 

support the idea that SWIR vegetation indices are sensitive to both green and brown 

vegetation (Renier et al., 2015) in grassland systems with darker soil. The parent material that 

makes up the Zumwalt Prairie soils comes from basalt and loess, creating dark soils in 

contrast to the bright soils of the Sahel (Jacques et al., 2014). 

Comparing the relative differences between paired scenes showed that sensor-specific 

models decreased differences in predicted vegetation amounts between Landsat 7 and Landsat 

8 scenes. Across the Zumwalt study area, we observed a small positive bias with the Landsat 

8 summer time NDII7 (also known as the Normalized Burn Ratio (NBR)) and a small 

negative bias with the Landsat 8 fall NDTI (Tables A1.14 and A1.15). Using sensor-specific 

models for vegetation biomass and cover eliminates the need to normalize images across the 

image analysis stack (Holden and Woodcock, 2016). While we observed reduced bias 

between scenes with sensor-specific models, the individual scene pair comparisons did vary, 

with bias not always trending in the same direction for each Landsat 7/Landsat 8 scene pair. 

This is likely due to differences in atmospheric effects and pixels missed by the pixel quality 

assurance (pixel_qa) mask that contained clouds, shadows, and aerosols. For example, we had 

to apply a manual cloud mask to the 17 October 2015 scene, due to errors of omission of the 

pixel_qa mask with high cirrus clouds and shadows. Such errors can lead to spurious results, 

necessitating the collection of field data across many years (Jansen et al., 2016) and careful 

screening of scenes to effectively remove spurious data due to clouds, shadows, and aerosol 

effects (Roy D. P. et al., 2015) for more accurate models and their associated vegetation 

products. 

Another important aspect of understanding the accuracy of these models for decision-

making tools is assessing where or when they may produce unreliable estimates. Places where 

the model tended to underestimate vegetation amounts were in highly productive areas of 
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deep soil with dense, multi-layered vegetation canopies (potentially due to shadowing), areas 

where annual grass has filled interspaces between bunchgrasses, and areas of dense, 

continuous annual grass cover (Figure 2.8). Further evidence of this underestimation is our 

finding that both perennial and annual grass cover were negatively correlated to model 

residuals. 

 

 

 

 

 

 

 

Figure 2.8. Sites with high underestimation of cover data as estimated by Landsat 8 cover 

models: (a) Homogenous deep soiled meadow area. Remotely Sensed (RS) estimate = 59%; 

Field estimate = 85%; (b) Homogenous annual grass dominated with rock. RS estimate = 

55%; Field estimate = 78%; (c) Heterogenous perennial grass/annual grass. RS estimate = 

64%; Field estimate = 87%. 

Overestimation seemed to be associated with several different factors. Sites where the 

models tended to overpredict vegetation amounts, especially vegetation cover, were in areas 

with high vegetation heterogeneity, such as on mima mounds (Cramer and Barger, 2014) or 

areas with greater rock cover (Figure 2.9). 
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Figure 2.9. Sites with high overestimation of cover data as estimated by Landsat 8 cover 

models: (a) Highly heterogenous on big mima mounds. Remotely Sensed (RS) estimated 

cover = 49%; LPI field estimated cover 27%; (b) Homogenous rock cover. RS estimate = 

40%; LPI field estimated cover = 22%. 

Cover and biomass on sites with a greater percentage of moss/lichen cover also tended 

to be overestimated. This aligns with Rodriquez-Caballero et al. (Rodríguez-caballero et al., 

2015), who found that NDVI and the enhanced vegetation index (EVI) were impacted by 

biological crust cover, resulting in higher vegetation index values. Litter cover was another 

factor contributing to overestimation, which is likely due to the models and associated 

vegetation indices not being sensitive to the difference between attached and unattached plant 

material. Litter has been cited as a source of error when estimating biophysical parameters in 

grassland systems (Van Leeuwen and Huete, 1996). The NDII7 and NDTI vegetation indices 

used to model cover and biomass are sensitive to both green and brown plant material 

(McNairn and Protz, 1993; Renier et al., 2015; Zheng et al., 2013), such as crop residue, 

because the SWIR band (around 2100 nm) effectively differentiates plant material (cellulose 

and lignin) from soil (Daughtry, 2001; Daughtry et al., 2005; Elvidge, 1990). Overestimation 

observed with rain lag is likely due to the SWIR bands also being sensitive to water content 

(Daughtry, 2001; Daughtry and Hunt, 2008), with greater reflectance occurring with drier 

conditions as opposed to greater absorption with more moisture (Daughtry and Hunt, 2008; 

Knipling, 1970; Tucker, 1980). 

This study revealed challenges and tested the feasibility of using Landsat’s surface 

reflectance products to model vegetation amounts that are applicable to rangeland 

management across the grazing season. Improvements can be made with more technical and 

automated cloud and shadow filtering. For example, Roy et al. [22] used the blue-band filter 
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to remove pixels with significant surface change from the image pair. Exploring different 

modeling methods such as random forests (L. Breiman, 2001), artificial neural networks (e.g., 

(Yang et al., 2018)), or support vector machines (Wang et al., 2016) may improve model 

accuracy. We did explore improving the model accuracy of cover data with quadratic 

polynomial models and found that they did not decrease the rRMSE by more than 1% 

consistently across the training and testing sets (Figure A1.6 and Table A1.16). Combining 

remotely sensed datasets such as Landsat and Sentinel-2, which has a global median average 

revisit time of less than three days (Li and Roy, 2017), would allow for further improvement 

of near real-time multitemporal monitoring of vegetation at management scales. Other options 

would be to use fusion algorithms relying on MODIS data, such as the spatial and temporal 

adaptive reflectance fusion model, StarFM (Gao et al., 2006), or the spatial temporal adaptive 

algorithm for mapping reflectance change (STAARCH) (Hilker et al., 2009). Remote sensing 

science and availability of data products in GEE will continue to improve, making it 

increasingly realistic to deliver accurate data in near real-time to decision-makers. 

To date, one of the biggest obstacles facing rangeland ecologists is consistently 

sharing information derived from remotely sensed analysis with managers and ranchers. We 

are utilizing GEE by leveraging the ClimateEngine (Huntington et al., 2017) to distribute 

these modeled cover and biomass vegetation products to stakeholders in a timely, cost-

effective, and automated way. One of the initial goals of this research was to provide 

accessible, timely, and zero-cost estimates of vegetation amounts across the grazing season to 

enable adaptive management and monitoring at the pasture, ranch, and landscape scale. A 

landscape-wide vegetation dataset such as this one can provide consistent unbiased data for 

making comparisons and sharing successful management strategies across property lines over 

time. As climate change continues to amplify the annual and interannual variability in 

rangeland ecosystems (Joyce et al., 2013), sharing successful adaptation and management 

strategies between ranchers and researchers will become increasingly necessary (Knapp and 

Fernandez-Gimenez, 2009). The analyses undertaken here support tool development by (1) 

testing the sensitivity of models across sensors and across the grazing season (2) and by 

empirically identifying a threshold for phenologically aligned model application. 
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5.0 Conclusions 

Near real-time estimates of vegetation cover and biomass are critical to adaptive 

rangeland management. NDVI has been widely used for rangeland monitoring tools and can 

provide a rough proxy of vegetation production and phenology, but is less accurate when 

vegetation contains high proportions of standing dead or senescent vegetation. Developing 

phenology-driven predictive models specific to each Landsat 7 and 8 CDR product yielded 

consistent and nonbiased estimates of total vegetation cover and above-ground biomass across 

the grazing season. Applying these models in Google Earth Engine provides a platform for 

land managers and ranchers to utilize timely, cost-effective, and unbiased information to meet 

objectives and improve outcomes. We suggest that future ecological applications of remote 

sensing products that are developed with Google Earth Engine or other platforms should also 

seek to incorporate seasonality into product development and conduct sensitivity analyses, 

and validate the models with field data to ensure accurate performance under short- and long-

term dynamic vegetation conditions.  

 

 

Supplementary Materials in Appendix 1:, Figure S1: Sampling site plot layout, Table S1. 

Paired Landsat 7 and Landsat 8 scenes used in model building (including timing of in-field 

vegetation sampling) and for sensor model comparisons, Table S2. Candidate vegetation 

indices used in the best subset modeling step, Figure S2. Workflow diagram for final 

algorithm development, Table S3. The field, sensor and topographic variables used to 

correlate with residuals from the NDVI threshold algorithm, Table S4. Variable Selection 

using a bootstrapped best subset model approach for green (summer) biomass data, Table S5. 

Variable Selection using a bootstrapped best subset model approach for brown (fall) biomass 

data, Table S6. Variable Selection using a bootstrapped best subset model approach for All 

Year (Green + Brown) biomass data, Table S7. Variable Selection using a bootstrapped best 

subset model approach for green (summer) cover data, Table S8. Variable Selection using a 

bootstrapped best subset model approach for the fall (brown) cover data, Table S9. Variable 

Selection using a bootstrapped best subset model approach for the complete dataset (All Year) 

cover data, Table S10. Top candidate models for Cover, Table S11. Top candidate models for 

Biomass, Table S12. Paired Cover models, Table S13. Paired Biomass models, Figure S3. 
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Scatter plots between in-field estimates of cover and biomass with select vegetation indices 

(NDTI, NDII7, NDVI) using Landsat 7 data. Figure S4. Scatter plots between in-field 

estimates of cover and biomass with select vegetation indices (NDTI, NDII7, NDVI) using 

Landsat 8 data. Figure S5. Scatter plots between in-field estimates of cover and biomass with 

select vegetation indices (NDTI, NDII7, NDVI) using Landsat 7 and Landsat 8 data. Table 

S14. Table of Median and Mean pixel differences in Biomass across scene pairs across all 

model combinations and the associated vegetation index (NDII7 for Green, NDTI for Brown), 

Table S15. Table of Median and Mean differences in Cover between scene pairs across all 

model combinations and the associated vegetation index (NDII7 for Green, NDTI for Brown), 

Figure S6. Scatter plots of simple and polynomial linear regressions using the summer, fall, 

and all-year cover data for both Landsat 7 and Landsat 8, Figure S16. Model fit statistics for 

simple and polynomial linear regressions using the summer and fall cover data. 
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Chapter 3. Using airborne lidar to estimate above-ground grassland 

biomass and the effects of grazing and pixel size on spatial heterogeneity in 

a native bunchgrass ecosystem 

Abstract 

The ability to quantify and monitor spatial heterogeneity in grasslands at landscape scales is 

necessary to identify and promote processes that increase habitat- and bio- diversity. 

However, quantifying above ground biomass over large areas at high spatial resolutions in 

short-statured grassland systems is challenging. In this study we use airborne lidar to create 

high resolution maps of aboveground biomass in a bunchgrass prairie. We then analyze these 

maps to determine how grazing impacts semivariogram-derived measures of spatial 

heterogeneity across 23 pasture areas. We also explore how these measures of heterogeneity 

change with increasing grid cell size to determine suitable resolutions for monitoring the 

impact of grazing on vegetation heterogeneity over time. Using lidar-derived data, we trained 

a Random Forest model to predict grassland aboveground biomass across our study area at a 

spatial resolution of 1.0668 m (3.5ft) (pseudo R2=0.59, RMSD=139.4 g/m-2). When 

aggregating this biomass data to coarser cell sizes, we observed that semivariogram models 

produced statistically different measures of heterogeneity at an alpha level of 0.05. The range 

statistic (a proxy for patch size) was the only pasture-level semivariogram metric sensitive to 

grazing, and this relationship was only significant when using high-resolution data (1m to 8m 

cell size). This study demonstrates the applicability of lidar data for quantifying short-statured 

grassland biomass. This research also successfully quantifies spatial heterogeneity at 

management scales and determines that within this Pacific Northwest bunchgrass prairie, 

grazing at low to moderate rates decreases spatial heterogeneity of vegetation biomass. 

1.0 Introduction 

Natural grassland ecosystems are subject to drivers of environmental change such as 

grazing and drought, which impact the conservation of critical species (Fleischner, 1994), 

annual forage production (Augustine & Mcnaughton, 1998), proper ecosystem function 

(Allen-Diaz, Chapin, Diaz, M. Howden, & Smith, 1995), and carbon storage (McSherry & 

Ritchie, 2013). However, relationships and feedbacks between drivers and outcomes of 

interest are relatively poorly understood (Herrick et al., 2010). Scientists and stakeholders 
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interested in monitoring how grassland system respond to environmental drivers have called 

for more research to study vegetation patterns and processes at larger spatial and temporal 

scales that align with land management practices (Bestelmeyer & Briske, 2012; Sayre, 

deBuys, Bestelmeyer, & Havstad, 2012; Sayre, McAllister, Bestelmeyer, Moritz, & Turner, 

2013). This is due, in part, to the increasing need to quantify and monitor ecosystem services 

beyond livestock forage, and promote processes that increase vegetation heterogeneity given 

its positive link to biological diversity (Adler, Raff, & Lauenroth, 2001; Fuhlendorf & Engle, 

David, 2001; Fuhlendorf, Engle, Elmore, Limb, & Bidwell, 2012). Management practices 

such as grazing can have positive or negative impacts on various parameters of vegetation 

heterogeneity such as species composition, structure and biomass (Adler et al., 2001; 

Fuhlendorf & Engle, David, 2001), but few grassland studies quantify the effect of grazing on 

vegetation heterogeneity spatially (Adler et al., 2001; Bestelmeyer & Briske, 2012) and fewer 

still, quantify vegetation heterogeneity spatially using remotely sensed data (Virk & Mitchell, 

2015).   

We focus on quantifying the spatial heterogeneity of above ground biomass, because it 

can be monitored with remotely sensed data (e.g. Jansen et al., 2018, 2016; Todd et al., 1998) 

and it is correlated to measures of vegetation structure in grassland systems (e.g. Heady, 1957; 

Robel et al., 1970). To quantify spatial heterogeneity of vegetation biomass and how this 

pattern is impacted by grazing, two issues need to be addressed initially: 1) quantifying 

biomass accurately across the landscape and 2) determining the spatial resolution at which to 

quantify heterogeneity. Using field plot measures to accurately assess grassland vegetation 

metrics at landscape scales has proven difficult. The cost, time, and observer bias associated 

with field data collection and the need to monitor vegetation across large areas has led 

researchers to turn to remotely sensed data to provide estimates of grassland metrics such as 

cover or biomass (Booth & Tueller, 2003; Guerschman et al., 2015). While a variety of 

remotely sensed datasets and analysis methodologies have produced accurate measures of 

grassland vegetation that can be used for monitoring (Jacques, Kergoat, Hiernaux, Mougin, & 

Defourny, 2014; Jansen et al., 2018; Marsett et al., 2006) providing heterogeneity measures 

with gridded remotely sensed data is challenging due to the interaction between the scale of 

the imagery with the underlying physical or biologic pattern in question (Karl & Maurer, 

2010). The ability to quantify patterns that are used to infer how an ecological process is 
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impacting the landscape is tied to the grain size (i.e. the grid cell size or pixel size) and extent 

of the study (Wiens, 1989). These relationships in turn impact the choice of resolution (or 

sensor) to use for analysis, as well as the analysis results (Lechner, Stein, Jones, & Ferwerda, 

2009; Woodcock & Strahler, 1987).  

Similarly, there is a need to identify what metric of spatial heterogeneity is appropriate 

to the ecological process of interest. Spatial heterogeneity can be quantified using a variety of 

metrics, including non-spatially dependent measures like the coefficient of variation, which 

provides a measure of variability over an area or distance (Adler et al., 2001), and spatially 

dependent measures produced using categorical maps, such as fractals, contagion, evenness, 

and patchiness (Li & Reynolds, 1994). Geo- or spatial- statistics provide another way to 

quantify spatial heterogeneity in continuous numerical data, producing measures of spatial 

dependence and spatial pattern (Adler et al., 2001). Spatial statistics such as Moran’s I 

(Moran, 1950), the Getis-Ord general G statistic (Getis & Ord, 1992), semivariograms 

(Cohen, Spies, & Bradshaw, 1990; Matheron, 1971) and correlograms have all been used to 

provide spatial metrics of gridded remotely sensed data and explore how grazing affects 

vegetation heterogeneity (e.g., Sankey, Sankey, Weber, & Montagne, 2009; Virk & Mitchell, 

2015). In this study, we focus on measures of spatial heterogeneity that quantify spatial 

patterns of continuous numerical data on above ground biomass.  

Landscape-scale studies using remotely sensed data to quantify grassland spatial 

heterogeneity in relation to grazing have been conducted primarily with moderate-resolution 

passive sensors, including 10 m Sentinel-2 data (Scarth and Trevithick, 2017), 30m  Landsat 

data (Virk & Mitchell 2015), and 20m data from Satellite Pour I’Observation de la Terre 

(SPOT) (Sankey et al., 2009). These previous studies provide spatial heterogeneity metrics for 

their respective ecosystems, but they do not explore the sensitivity of the reported spatial 

heterogeneity to the spatial resolution of the remotely sensed data. They are also limited by 

the use of passive sensors, which lack the ability to directly quantify vegetation structure or 

height. In contrast to passive sensors, active sensors such as lidar can more accurately assess 

vegetation structure, types, and biomass by providing 3-dimensional data as well as return 

intensity data on vegetation and surfaces (Eitel, Höfle, et al., 2016; Hudak, Evans, & Smith, 

2009). Lidar is commonly used to map forested ecosystems and is increasingly being used to 

map small-statured vegetation communities such as arctic tundra (Greaves et al., 2016), salt 
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marsh habitat (Kulawardhana, Popescu, & Feagin, 2014), and the sage-brush steppe (Glenn et 

al., 2015; Li et al., 2017) yet research to-date in grassland systems is limited. This is 

potentially due to known limitations of lidar when estimating small-statured vegetation 

metrics, such as the negative impact of dense vegetation on lidar pulse penetration to the soil 

surface (Kulawardhana et al., 2014), or missing the highest portion of the plant material due 

to the sampling density of the lidar point cloud (Greaves et al., 2016). 

Recent research suggests that despite these limitations, structural vegetation metrics 

such as biomass and height can be reliably measured with lidar in low-stature ecosystems 

(Greaves et al., 2015, 2016; Kulawardhana et al., 2014). Within grassland systems, vegetation 

metrics at plot scales have been quantified using ground based terrestrial laser scanners (TLS) 

(Cooper, Roy, Schaaf, & Paynter, 2017; Eitel, Magney, Vierling, Brown, & Huggins, 2014) 

or vehicle-mounted lidar systems (Radtke, Boland, & Scaglia, 2010; Schaefer & Lamb, 2016). 

Discrete return lidar collected with an unmanned aerial vehicle (UAV) has also demonstrated 

statistically significant relationships between lidar metrics and field estimates of canopy 

heights, cover and biomass in grasslands (Wang et al., 2017). Full waveform lidar collected 

during leaf-on and leaf-off dates has been used to classify grassland habitat (Zlinszky et al., 

2014), as well as to provide variables for conservation objectives (Zlinszky, Deák, Kania, 

Schroiff, & Pfeifer, 2015), but rarely has airborne lidar collected with a plane been used to 

quantify biomass and vertical structure in natural grassland systems.  

Because lidar can provide accurate fine-scale measures of vegetation biomass or 

structure, it can also facilitate an exploration of how grain (i.e. pixel or grid cell) size impacts 

the quantification of vegetation heterogeneity, as the raw point cloud data can be aggregated 

to increasingly coarser grid cell sizes (Eitel, Magney, Vierling, Greaves, & Zheng, 2016). It is 

ideal for remote sensing and ecological studies to quantify phenomena across varying grain 

sizes and spatial extents to provide a more complete understanding of how the process and 

pattern is impacted by the scales chosen for inquiry (e.g. Woodcock and Strahler, 1987), but 

cost, logistics and technology are often real-world barriers. The selection of remotely sensed 

data for analysis should be based on a knowledge of the system (i.e., the scene model; 

Woodcock and Strahler, 1987), cost, the objectives of the study, and the scale at which 

subsequent management action happens (Phinn, Stow, Franklin, Mertes, & Michaelsen, 2003; 

Wiens et al., 2009). The underlying assumption in selecting one cell size or sensor to quantify 
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spatial heterogeneity is that the resolution of the spectral data is higher than or equal to the 

scale of the heterogeneity of the ecological object or pattern in question; however, in most 

cases the ideal spatial resolution is unknown (Johansen, Coops, Gergel, & Stange, 2007). 

While costly airborne lidar data is impractical for monitoring grassland biomass or 

heterogeneity with repeat acquisitions, it can be used to assess at what spatial scale critical 

patterns of spatial heterogeneity are no longer detectable, thus answering the question of 

whether more affordable (but coarser-resolution) passive reflectance sensors can accurately 

quantify patterns of spatial heterogeneity in grassland biomes. 

Our research objectives for this study were to 1) accurately model bunchgrass 

vegetation biomass from airborne lidar data using vegetation canopy, intensity and 

topographic metrics, 2) determine the impact increasing spatial resolution has on measures of 

spatial heterogeneity and 3) identify the measures of spatial heterogeneity most sensitive to 

grazing intensity and how this sensitivity changes with increasing spatial resolution of 

remotely sensed data.  

2.0 Methods 

2.1 Study area: 

The Zumwalt Prairie is a Pacific Northwest Bunchgrass Prairie (PNWBP) habitat 

located in northeast Oregon (Figure 3.1). The PNWBP is a highly threatened and understudied 

temperate grassland ecosystem (Kimoto, DeBano, & Thorp, 2012; Tisdale, 1982) dominated 

by C3 bunchgrass species, including Idaho fescue (Festuca idahoensis Elmer), bluebunch 

wheatgrass (Pseudoroegneria spicata (Pursh) A. Love) and Sandberg’s bluegrass (Poa 

secunda J Presl) which may be especially vulnerable to harmful effects of poorly managed 

grazing compared to other grassland systems (Adler, Milchunas, Lauenroth, Sala, & Burke, 

2004; Mack, 1983; McLean & Tisdale, 1972). Elevations across the study area range from 

1000 meters to 1600 meters. Average summer (June – August) temperatures range from 11.8 

– 17.5˚C, with average annual precipitation of 348.3 mm (2006-2012 Zumwalt Weather 

Station).  
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Figure 3.1. The Zumwalt Prairie study area showing the intersection between the lidar 

footprint of the Zumwalt Prairie Grassland habitat, and the Zumwalt Prairie Preserve. The 

locations of where in-field data were collected are also shown with black triangles.  

2.2 Data  

2.2.1. Field data 

We collected data on above ground vegetation biomass, height, and foliar cover within 

65 1m2-quadrats on The Nature Conservancy’s Zumwalt Prairie Preserve property on July 

10th through the 14th, directly after the lidar flight. This sampling period was selected to 

correspond with peak biomass and a time when the majority of the perennial grasses and forbs 

are still photosynthetically active. Quadrats were selected subjectively in the field to represent 

a gradient of vegetation amounts (e.g., Greaves et al., 2016). Vegetation cover and height data 

were estimated across 36 evenly distributed points within each 1 m2-quadrat using a grid-

point intercept approach following Godínez-Alvarez, Herrick, Mattocks, Toledo, & Van Zee, 

2009. Above ground biomass data were collected by harvesting all standing vegetation within 

the quadrat. All clipped vegetation was bagged in the field and oven dried at 60° C to obtain a 
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dry weight for analysis. The center XY location of each quadrat was obtained using a TopCon 

GR-3 survey grade GPS system (nominal horizontal accuracy ~4 cm) running in Real Time 

Kinematic (RTK) mode using the same vertical and horizontal datum as the airborne lidar 

data.  

Stocking rate data were calculated by pasture based on records provided by the land 

managers across the study area. Stocking rates are expressed as Animal Unit Months per 

hectare (AUM ha-1). Adjustments in the stocking rates (AUM ha-1) were calculated using 

animal use equivalencies (AUE) for the different type of livestock type (e.g. bulls had 1.2 

AUE, yearlings 0.75 AUE, and cow-calf pairs 1.0 AUE).  

2.2.2. Lidar data  

Airborne lidar data were collected by Quantum Spatial on July 4th - July 10th, 2015 

using a Leica ALS70. Flying at an average altitude of 1400m, discrete return lidar data were 

acquired averaging 9.29 points per square meter with a fundamental non-vegetated vertical 

accuracy of 7.3 cm (average vertical accuracy = -1.3 cm), a horizontal accuracy of less than 

5.5 cm, and an average pulse footprint diameter of 32 cm (Quantum Spatial Technical 

Report). The vendor provided point cloud and laser return intensity (1064 nm wavelength) 

raster data in the Oregon Statewide Lambert projection with a horizontal datum of NAD83 

(2011) and a vertical datum NAVD88 (Geoid12A). We processed the lidar data in its native 

projection to match the vendor data and end user needs. There was high variability in pulse 

densities at the 1m scale across the study area which biased the data (Figure A2.1); therefore, 

we resampled the point cloud to create an even point density for biomass mapping using 

CloudCompare software (CloudCompare v2.6.2 2017). To do this, we fit a Delaunay 2.5D 

best fitting plane to the vendor provided point data, then sampled this plane to the chosen 

density of 0.85 points per square foot (9.15 points per square meter). This step was performed 

because initial analysis using the raw lidar point clouds produced maps with notable striping 

(see discussion for more detail, and Figure A2.1). 

2.3 Variable creation from lidar data   

2.3.1 Lidar-derived volume metric 

Following Greaves et al., (2015) and (2016), we created a canopy volume raster using 

an optimization algorithm that produces a set of gridded ground and canopy surfaces based on 
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user-defined parameters (Eitel et al., 2014; Greaves et al., 2015). The ground rasters are built 

using double pass filter selecting the lowest lidar return within the specified grid cell on the 

first pass, and is further refined by searching a neighborhood for a lower surrounding point, if 

found, that grid cell gets the new lowest point value (i.e. the height (z) value) (Greaves et al., 

2016). The canopy rasters are built by selecting the highest laser return in each grid cell for 

each of the specified raster resolutions. The optimization parameters are based on the grid cell 

size of the ground and canopy surfaces, the nearest neighbor search radius, as well as the grid 

cell size for the final calculation (See Greaves et al., 2015 for a detailed explanation). For this 

study, we created and searched a set of grids with cell sizes ranging from 15.24 cm (0.5 ft) to 

121.94 cm (4 ft) at an increasing 15.24 cm (0.5 feet) interval for the ground, canopy, and final 

raster resolution. The nearest neighbor search parameter ranged from 4 to 20 neighbors and 

increased by increments of 4. In total we searched 2,560 possible parameter combinations and 

selected the grid set and neighborhood size that minimized the root mean square error using 

leave-one-out cross validation (LOOCV) with the training dataset (N=45) following (Greaves 

et al., 2016). We further evaluated the model with a test set (N=20) to verify the strength of 

the relationship. We then aggregated the canopy volume raster data to 1.0668 m (3.5 ft) grid 

cell size to best match the size of the field plots (1 m).        

2.3.2. Canopy lidar metrics 

Using the ground points generated during creation of the canopy volume metric, we 

normalized the point cloud to compute a set of common lidar metrics at the 1.0668 m (3.5 ft) 

scale. Using all the points greater than 2 cm height we computed the minimum, maximum, 

mean, standard deviation, and 25th and 75th percentiles of heights. We also computed total 

return and canopy density (Table 3.1).  

2.3.3. Intensity data 

Zonal means of the vendor-provided 0.3048 m (1ft) intensity data were computed for 

each 1m2 field vegetation quadrat. We computed the mean and max intensity for each of the 

65 quadrats (Table 3.1, dataset: Intensity). The vendor performed minimal normalization 

accounting for the pulse distance, angle and channel-balancing using a propriety approach 

(pers. Com. with Quantum Spatial).  
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2.3.4. Lidar derived topographic metrics  

Using the ground surface rasters obtained from the canopy volume creation, we 

created several topographic metrics at the 1.0668 m scale, including slope, aspect, curvature 

and the SAGA wetness index (Boehner et al., 2002) (Table 3.1). These variables, associated 

with topography, were included due to their potential influence on soil moisture, vegetation 

production (Gessler, Chadwick, Chamran, Althouse, & Holmes, 2000) and vegetation type 

(Fu, Liu, Ma, & Zhu, 2004) (Table 3.1, dataset: Topographic). 

Table 3.1. Lidar-derived variables used to model aboveground biomass.  

Data Type Variable Details 

Canopy Vol Canopy volume (Greaves et al., 2015, 

2016) 

Canopy H_Mean Average height 

Canopy H_Std Standard deviation of height 

Canopy H_Max Max height 

Canopy Tot_Returns Number of all lidar returns 

Canopy Canopy_Dns Points above 2 cm divided by all returns 

Intensity Int_Mean Mean of vendor 0.3048 cm (1 ft) 

intensity raster  

Intensity Int_Max Max of vendor 0.3048 cm (1 ft) 

intensity raster  

Topographic SWI Saga Wetness Index SAGA GIS 

Topographic Slope ArcMap Spatial Analyst Package  

Topographic Aspect ArcMap Spatial Analyst Package 

Topographic Curve ArcMap Spatial Analyst Package 

 

2.3 Model creation using Random Forests 

Following methods described in Greaves et. al, 2016, we used Random Forests 

(Breiman, 2001) implemented in the randomForest package (Liaw & Wiener, 2002) in R (R 

Development Core Team, 2016) to determine what predictors most accurately estimated 

biomass. When run in regression mode, Random Forest provides model estimates by 

averaging the predictions across many decision trees, which are constructed based on a 
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random selection of the input data, as well as a random selection of the predictor variable used 

at each splitting node (Breiman, 2001).  We tested seven different predictor sets to model 

biomass: 1) canopy, 2) topographic (topo), 3) intensity, 4) canopy + topo, 5) canopy + 

intensity, 6) intensity + topo, and 7) canopy + intensity + topo. To reduce the possibility of 

overfitting the models, for each predictor set we removed the highly correlated predictor 

variables (Spearman’s rank r > 0.90). To further limit the predictor variables within each of 

the seven sets of predictor sets, we ran the model selection tool in the rfutilities package 

(Murphy, Evans, & Storfer, 2010) 1000 times and only included the variables which were 

selected in the majority (i.e. greater than 500) of model runs for subsequent Random Forest 

modelling. The best Random Forest models generated from each predictor set were then 

compared using the Random Forest pseudo R2 , as well as the r-squared values between the 

predicted and observed estimates and the associated root mean squared difference (RMSD) 

metrics (Pineiro, Perelman, Guerschman, & Jose, 2008).  

2.4 Biomass mapping and summary statistics at the pasture scale 

Using the Random Forest model that minimized the RMSD, we employed the 

AsciiGridPredict Tool in the R package ‘yaImpute’ (Crookston & Finley, 2008) to predict 

biomass at 1.0668m scale across the study area. To analyze how grazing affects vegetation 

aboveground biomass, we then selected pastures within the study area that consisted primarily 

of upland prairie grassland habitat and were grazed before the lidar flight or were un-grazed 

for more than two years prior to the lidar acquisition. This selection criteria produced 23 

unique pastures with an average size of 125 hectares (ha) (min=40 ha,  max=745 ha) for 

further analysis, 8 of which had no recorded livestock grazing and 15 that had an average 

stocking rate of 0.80 Animal Unit Months (AUMs) per hectare (ha), with a minimum stocking 

rate of 0.39 AUMs/ha and a maximum stocking rate of 1.718 AUMs/ha. To remove the 

impact of non-grassland habitat and other objects on our results, we masked out the non-

grassland habitat, human made structures, and stock ponds, and buffered all fences and roads 

across the analyzed pastures. Next, we computed summary statistics on the estimated biomass 

within each pasture, including the mean, the 10th, 25th, 50th, 75th, and 90th percentiles, the 

standard deviation, and the coefficient of variation (CV).   
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2.5 Variogram modeling at different spatial resolutions 

2.5.1 Upscaling the biomass raster to coarser scales:  

To provide biomass estimates at varying resolutions, we aggregated the 1.0668 m 

masked biomass rasters for each pasture area to coarser spatial resolutions (i.e., grid cell 

sizes): 3 m, 5 m, 8 m, 20 m, and 30 m. We kept the geographic extent of the analysis areas 

fixed and consistent with the pasture areas, as this is the size related to grazing management. 

To do this, we re-projected the 1.0668 m biomass data from the NAD1983 2011 Oregon 

Statewide Lambert International Feet to WGS1984 UTM Zone 11. Next, we resampled the 

1.0668 m data to 1 m using the bilinear approach and then aggregated by averaging the 1m 

data to the five coarser spatial scales. The coarser-scale spatial resolutions were selected to 

align with currently available short-wave infrared data from sensors such as WorldView-3 (4 

to 8 m), Sentinel-2 (20 m), and Landsat (30 m) that have been shown to be useful in 

quantifying grassland vegetation in this system (V. Jansen et al., 2018; V. S. Jansen et al., 

2016).  

2.5.2 Semivariogram stats 

The above ground biomass raster data for each pasture and scale were used to compute 

semivariograms to explore spatial measures of heterogeneity. The computation of the 

semivariogram takes the form:  

𝛾(ℎ) =
1

2𝑛
∑ |𝑧(𝑠𝑖) − 𝑧(𝑠𝑖+ℎ)|2

𝑛

𝑖=1

 

Where 𝛾(ℎ) is the semivariance for the distance bin h, z is the value of the biomass variable at 

two locations si and si+h, with h signifying the distance between each pair and n is the number 

of pairs of sampling locations across each lag (or bin) h. For each pasture area we fit 

theoretical models consisting of the exponential, spherical, and linear form to the empirical 

semivariogram using the GSTAT package (Pebesma, 2004). We used the output from the 

exponential models for subsequent analysis, as these decreased error across the majority of 

pastures and resolutions. From the theoretical semivariograms the sill, nugget and range were 

computed. The sill refers to the point at which the variance no longer gets larger with 

increasing lag distances (variance beyond the range); the range is a measure of spatial 

dependence across distance, signifying the distance at which the variable in question is no 
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longer autocorrelated and provides an indicator of patch size (Townsend & Fuhlendorf, 2010). 

The nugget is the intercept along the y-axis representing variability or sampling error within 

the zero lag distance (Sadoti et al., 2014; Townsend and Fuhlendorf, 2010; Western et al., 

1998; Fortin and Dale 2005). From the sill, nugget and range metrics we calculated the 

magnitude of spatial heterogeneity (MSH) (Lane & BassiriRad, 2005; Lin et al., 2010). The 

MSH is calculated by dividing the spatially structured variation (the sill minus the nugget) by 

the total sample variation (the sill) (Lane & BassiriRad, 2005). The MSH ranges in values 

from 0 to 1, with zero indicating no spatially structured heterogeneity and 1 indicating highly 

structured heterogeneity (Virk & Mitchell, 2015). We also calculated the nugget to sill ratio 

(nugget semivariance/total semivariance)*100 (Cambardella et al., 1994). 

2.5.3 The effect of spatial resolution on measures of heterogeneity 

To visualize how varying resolutions (grid cell size) influenced the measures of spatial 

heterogeneity (i.e. sill, nugget, range, etc.), we created boxplots for each semivariogram-

derived metric by spatial resolution. To test which resolutions produced significantly different 

measures of heterogeneity, we computed pairwise Mann-Whitney U rank-sum tests between 

all possible pairs of grid cell sizes. We selected a non-parametric test because some of the 

semivariogram metrics at the varying grid sizes did not fit a gaussian distribution. We only 

performed the multiple comparison Mann-Whitney U tests when the semivariogram derived 

metric met the assumption of homogeneity of variance across all groups as tested with the 

Fligner-Killeen test. Statistically significant p-values were adjusted using the Bonferroni 

correction.  

2.5.4 The effect of grazing on biomass statistics and measures of heterogeneity across varying 

resolutions 

  We explored the effect of grazing on pasture summary statistics and semivariogram-

derived measures of heterogeneity using Spearman rank correlations, simple linear models 

and quadratic models. Because some initial linear models did not have normally distributed 

residuals, we transformed our predictor variables with log, reciprocal and square root 

transformations to determine whether these transformations helped in meeting the 

assumptions of a linear model. The effect of grazing was tested across each of the six 

resolutions separately and considered significant at the alpha level of 0.05.  
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3.0 Results 

3.1 Field measured above ground biomass and vegetation height data  

Across the 65 1m2 quadrats sampled in 2015, the average field biomass was 268.9 

g/m2 with a range of 0 g/m2 to 1213.9 g/m2 (Table 3.2). The average mean height was 12.9 cm 

with a mean height range of 0 cm to 45.5 cm. The average max height across the 65 quadrats 

was 29.5 cm and ranged from 0 cm to 91 cm. Spearman rank correlations between biomass 

and the measures of vegetation structure (height mean and height max) were significant and 

strongly related (r-values greater than 0.80), with coefficients of determination (r2) values 

greater than 0.70 (Figure 3.2).  

Table 3.2. Summary statistics for field biomass and vegetation height data (N=65).  

Field Metric Mean Min Max 
10th 

percentile 

90th 

percentile 
SD 

Above Ground Biomass 268.9 0.0 1213.9 24.7 467.5 262.3 

Mean Height 12.9 0.0 45.5 3.1 20. 8 9.6 

Max Height 29.5 0.0 91.0 6.0 45.4 20.3 

Figure 3.2. Linear relationships between harvest above ground biomass and mean vegetation 

height (a) and, harvested above ground field biomass and max field height (b) across the 65 

one-meter field plots. The linear model coefficient of determination (r2), p-value (p), root 

mean square error (RMSE) and relative root mean square error (rRMSE) are shown for each 

relationship.      
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3.2 Modeling grassland biomass with lidar data  

3.2.1 Volume variable creation 

Searching across all possible parameter combinations used to create the canopy 

volume metric (i.e., ground, canopy and output grid sizes and the nearest neighbor search 

windows) the optimal parameter set resulted in a 0.3048 m (1 ft) output grid size, a 0.4572 m 

(1.5 ft) canopy grid size, and a 0.4572 m (1.5 ft) ground grid size, using a 12 nearest 

neighborhood search window. The canopy volume metric was significantly related to the field 

biomass with the training data resulting in an r2 of 0.67 and a RMSE of 116.6 g m-2 (Figure 

3.3A). We found similar results when predicting biomass with the testing set, which had an r2 

of 0.55 and a RMSD of 175.1 g m-2 (Figure 3.3b). When dropping the quadrat that had an 

estimated aboveground biomass value over 1000 g/m2 the relationship was still significant 

and RMSE remained similar (117.89 g/m2) but the coefficient of determination value and p-

value were reduced (r2 = 0.29, p = 0.00012) compared to the original model. We elected to 

leave the in the large (> 1000 g/m2) harvested above ground biomass sample although it 

inflates our r2 value with the volume metric, due to it being a valid sample of an ecologically 

important grass species, basin wildrye (Leymus cinereus (Scribn. & Merr. A. Love), which 

provides important structure and forage for wildlife and livestock.   
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Figure 3.3. Grassland biomass canopy volume metric creation from airborne lidar A) Model 

for predicting in-field biomass from optimized lidar-derived canopy volume (training data) 

and B) Harvested biomass predicted from lidar-derived canopy volume (test data). 

3.2.2 Random Forest modeling for above ground biomass estimates   

Using the rfutilites model selection tool to determine what predictors in each predictor 

set were important (i.e., selected more than 50% of the time across the 1000 runs) revealed 

that only four of the seven final predictor sets had a unique set of selected variables (Table 

3.3). For example, the Canopy + Intensity had the same selected variables as the Canopy + 

Topo + Intensity which included the variables: volume, max height and mean intensity. The 

selected predictors from the canopy only predictor set included the canopy volume metric, 

max height and canopy density. Slope was the only variable selected in the majority of model 

runs from the topographic predictor set. For the intensity predictor set, the mean and max 

intensity metrics were significantly correlated (spearman rank r > 0.90), therefore we included 

only the mean intensity metric for variable selection.  
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Table 3.3. Variable selection for Random Forest models. The numbers indicate how many 

times each variable was selected across 1000 Random Forest model runs using the model 

selection tool in the ‘rfUtilities’ package. Dashes represent variables not included in the 

model selection when testing each predictor set. The final Random Forest model for each 

predictor set only included predictors selected across more than 500 of the model runs. The 

bolded predictor sets are plotted in Figure 3.4. 

Variable Canopy Topo Intensity 
Canopy + 

Topo 

Canopy + 

Intensity 

Intensity 

+ Topo 

Canopy + 

Topo + 

Intensity 

Vol 1000 - - 1000 1000 - 1000 

Tot_Returns 0 - - 0 0 - 0 

H_Max 1000 - - 1000 912 - 1000 

Canopy_Dns 969 - - 998 0 - 0 

SWI - 92 - 0 - 0 0 

Aspect - 0 - 0 - 0 0 

Slope - 1000 - 284 - 100 0 

Curve - 0 - 0 - 0 0 

Int_Mean - - 1000 - 1000 1000 1000 

 

When running Random Forest models across each unique predictor set, the Canopy + 

Intensity model outperformed all other predictor sets tested (Figure. 3.4).  The pseudo R2 was 

0.59 with an observed versus predicted R2 of 0.64, a RMSD of 139.4 g/m-2, and a bias of -9.7 

g/m-2. The Canopy + Intensity model minimized the RMSD errors compared to the Canopy 

Only model by 34.8 g/m-2 and by more than 80.0 g/m-2 when compared to the Topo or 

Intensity only models. The Topo and Intensity models performed very poorly, having RMSD 

errors over 220 g/m2. 
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Figure 3.4. Random Forest model results across the four datasets that produced a unique set of 

predictor variables. See Table 3.3 for predictors used. The black lines represent the best fit 

line, while the dotted red line represents the one to one line.  

3.2.3 Lidar-derived biomass maps    

The biomass maps produced using the Canopy + Intensity model visually to 

correspond with landscape features and vegetation amounts across the study area, with 

shallow soil areas having low predicted biomass, and deeper soils and riparian areas having 

higher predicted biomass (Figure 3.5). For each pasture area (N=23), the average estimated 

biomass was 172.97 g/m-2 and ranged from 117.40 g/m-2 to 233.27 g/m-2. The average 10th 

and 90th percentiles across all pasture areas varied with increasing cell size, with the finest 

resolution (1.0668m) data having the largest range between these two percentiles, and the 

coarsest resolution (30m) having the smallest range (Table 3.4).  
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Figure 3.5. Lidar derived biomass map at the 1.0668m scale for the Harsin Pasture (A) along 

with 2014 NAIP imagery (B). 
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Table 3.4. Pasture-level modeled biomass summary statistics (N=23) across the varying grid 

cell sizes.  

Cell 

Size 
Mean Min Max 

10th 

percentile 

90th 

percentile 
CV 

1.0668 173.70 117.20 233.08 66.82 288.54 0.51 

3 173.75 117.18 233.21 95.62 254.23 0.37 

5 173.82 117.23 233.24 100.54 247.96 0.34 

8 173.94 117.38 233.46 104.50 243.20 0.32 

20 174.22 117.76 233.75 112.63 234.87 0.28 

30 174.21 117.67 234.01 115.71 231.50 0.27 

 

3.3 The effect of cell size on measures of spatial heterogeneity  

  The boxplots created for each of the semivariogram-derived metrics show observably 

different measures across the 6 grid cell sizes analyzed (Figure 3.6). Only the range and the 

sill met the assumption of homogeneity of variance needed for Mann-Whitney U rank-sum 

tests. Using the Mann-Whitney U test to compare the distributions of the range statistic 

between each grid cell size revealed that the 1.0668 m data was different from all other grid 

cell sizes. Significant differences were found across all other pairs except between the 3 m 

and 5 m, the 5 m and 8 m, and the 20 m and 30 m grid cell sizes (Figure 3.6, Table A2.3). The 

1.0668 m sill metric was also statistically different from all other grid cell sizes. The sill 

metric at 3 m, 5 m and 8 m grid cell size were similar (i.e., no significant difference between 

these pairs) as were the 8m, 20m, and 30m grid cells sizes (Figure 3.6, Table A2.4).   
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Figure 3.6. Boxplots of pasture-scale semivariogram metrics by cell size. The bold black lines 

in the middle of each colored box represent the median value (50th percentile), with the lower 

and upper limits of the box representing the 25th and 75th percentile respectively. The 

whiskers extend to the smallest and largest values falling within 1.5 times the associated value 

(lower value = 25th percentile, upper value = 75th percentile) of the interquartile range. The 

black dots represent outliers. Significant differences found between the cell sizes using the 

Mann-Whitney/Wilcoxon test for each semivariogram statistic that met the assumption of 

homogeneity of variance (Range and Sill) are indicated with different letters.  Statistic 

Abbreviations are as follows: MSH = magnitude of spatial heterogeneity and NSRatio = 

nugget to sill ratio. 

3.4 Assessing the effects of grazing on pasture-scale biomass with summary and spatial 

statistics across the varying resolutions (grid cell sizes). 

The summary statistics were more sensitive to grazing than the semivariogram 

statistics (Table 3.5 and Table S1 (Spearman rank results)) using Spearman rank correlations, 

linear and quadratic models. In fact, the only semivariogram statistic sensitive to grazing was 

the range statistic, and this significant relationship was exclusively observed across the 1.0668 

m to 8 m resolutions, using spearman rank, linear and quadratic models (Table 3.5, Table S1) 

with the 3 m resolution data having the highest r2 value. The 75th percentile of biomass was 

significantly related to grazing intensity across all resolutions except the 1.0668 (Table 3.5) 
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when all pastures were included (N=23), and significant across all resolutions when we 

dropped the pasture with the greatest stocking rate (P5) due to its heavy influence on the 

summary statistic linear models (N=22). The pasture mean biomass statistic was found to be 

significantly correlated to stocking rates using the quadratic model and, also when using a 

linear model if the P5 pasture was dropped. The coefficient of variation was unique in that the 

only significant relationships were found with the quadratic models, and none with the linear 

models.  
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Table 3.5. Regression model results between pasture level summary and spatial statistics and 

stocking rate. The coefficients of determination values (r2) that are significant at the 0.05 p-

value are shown in bold with boxes around them. The italicized underlined values are models 

that violated assumptions of linear models. Statistic Abbreviations are as follows: Per10 = 10th 

Percentile, Per25 = 25th Percentile, Per75=75 Percentile, Per90 = 90th Percentile, 

CV=Coefficient of Variation, MSH = Magnitude of Spatial Heterogeneity, NSR = Nugget to 

Sill Ratio. The transform abbreviations are as follows: Recip = OLS using a reciprocal 

transformation on the predictor variable, None-OLR = one outlier was removed with no 

transformation performed on the data; Quad = Quadratic model was used.  

 

 

  

  Grid Cell Size 

Statistic  Transform 1.07m 3m 5m 8m 20m 30m 

Per10 Recip 0.04 0.05 0.05 0.06 0.07 0.08 

Per10 Quad 0.23 0.23 0.24 0.24 0.27 0.29 

Per10 None-OLR 0.12 0.14 0.14 0.14 0.17 0.18 

Per25 None 0.08 0.07 0.07 0.08 0.09 0.09 

Per25 Quad 0.27 0.28 0.28 0.28 0.28 0.28 

Per25 None-OLR  0.18 0.17 0.17 0.17 0.19 0.19 

Mean None 0.13 0.13 0.13 0.13 0.13 0.13 

Mean Quad 0.30 0.29 0.30 0.30 0.30 0.29 

Mean None-OLR  0.29 0.29 0.29 0.29 0.30 0.29 

Per75 None 0.15 0.17 0.18 0.18 0.18 0.18 

Per75 Quad 0.26 0.29 0.29 0.29 0.30 0.29 

Per75 None-OLR 0.23 0.26 0.26 0.27 0.27 0.26 

Per90 None 0.17 0.20 0.20 0.19 0.18 0.17 

Per90 Quad 0.23 0.27 0.27 0.27 0.27 0.25 

Per90 None-OLR 0.23 0.28 0.28 0.28 0.27 0.26 

CV None 0.05 0.03 0.03 0.03 0.05 0.05 

CV Quad 0.28 0.26 0.26 0.26 0.27 0.29 

CV None - OLR  0.13 0.10 0.09 0.10 0.12 0.12 

Range none 0.23 0.40 0.37 0.25 0.01 0.02 

Range Quadratic 0.42 0.54 0.45 0.28 0.02 0.07 

Range Recip - OLR 0.19 0.29 0.27 0.26 0.139 0.099 

Sill None 0.03 0.01 0.01 0.00 0.00 0.01 

Sill Quad 0.07 0.10 0.10 0.10 0.09 0.07 

Nugget None 0.02 0.00 0.00 0.00 0.03 0.09 

Nugget Quad 0.02 0.09 0.09 0.02 0.14 0.12 

MSH None 0.02 0.03 0.01 0.00 0.03 0.09 

MSH Quad 0.12 0.07 0.03 0.07 0.15 0.12 

NSR None 0.02 0.03 0.01 0.00 0.03 0.09 

NSR Quad 0.12 0.07 0.03 0.05 0.15 0.12 
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4.0 Discussion 

4.1 Modelling and mapping bunchgrass vegetation biomass using airborne Lidar 

The variables most useful to accurately quantify grassland biomass in all of the 

predictor datasets were canopy volume, max height and mean intensity. Similar to Greaves et 

al., 2016, the inclusion of the canopy volume variable was important in the final Random 

Forest model. Volumetric measures have also proved useful for estimating vegetation biomass 

using ground-based lidar in an agricultural setting (Eitel et al., 2014), to assess fuel-bed 

characteristics (Loudermilk et al., 2009) and to quantify shrub biomass (Greaves et al., 2015). 

The return intensity variable also was important in the Random Forest model, likely due to the 

increased return intensity of the Leica ALS70 laser (i.e. the 1064 nm wavelength) when 

contacting green vegetation as compared to bare ground or rock (Eitel, Höfle, et al., 2016). 

Intensity data is increasingly being applied to quantify vegetation biochemistry (Eitel et al., 

2014; Magney, Vierling, Eitel, Huggins, & Garrity, 2016) and leaf area (Béland, Baldocchi, 

Widlowski, Fournier, & Verstraete, 2014; Béland, Widlowski, Fournier, Côté, & Verstraete, 

2011) and in this study, the intensity metric was selected 100% of the time when it was 

included in a predictor dataset. The max height metric was the other lidar derived metric 

selected across all model runs when available as a predictor variable. It improved Random 

Forest model results when compared to a model excluding it (In model: RMSD = 139.4 g/m2, 

Left out of model: RMSD=148.56 g/m2). In other studies, max height has been used to assess 

vegetation height and biomass in short-statured vegetation communities even though it 

typically underestimates the field measures (Kulawardhana et al., 2014). In this study, due to 

the close relationship between the field measures of both the mean and max vegetation height 

with biomass (Figure 3.2), it is logical that a max height lidar measure would be useful for 

modeling biomass. None of the topographic variables were selected more than 50% of the 

time when these variables were included with other variable datasets (Canopy or Intensity). 

We speculate that this could be due to the high degree of fine-scale topographic heterogeneity 

across this system and that the scale at which we computed topographic measures (1m) does 

not align well with the scales that drive the system.  

Our most accurate Random Forest model (Canopy + Intensity) had a pseudo R-

squared of 0.59 and a RMSD of 139.4 g/m2. This is a slightly better fit than was achieved in 

Wang et al., 2017 (R2 = 0.34), who estimated grassland biomass generated from discrete lidar 
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collected via an UAV, and Kulawardhana et al., 2014 (R2 = 0.33 for total biomass) who used 

multiple linear regression to estimat salt marsh biomass based on discrete return lidar 

collected by airplane along with spectral data from NAIP imagery. The estimated above 

ground biomass at the pasture scale with an average of 174.74 g/m2 and range of 117 g/m2 to 

233.27 g/m2 are comparable to results from previous remote sensing studies in the Zumwalt 

Prairie that used Landsat data to assess pasture scale above biomass (Jansen et al., 2018; 

Jansen et al., 2016). The power of these lidar-derived maps is their ability to capture fine-

scale heterogeneity, enabling the visualization and quantification of fine-scale topography- 

and management-related patterns of vegetation. Coarsening the initial 1.0668 m (3.5 ft) data 

to larger grid cell sizes demonstrates that fine-scale information is lost as the data are 

aggregated to coarser resolutions (Figure 3.7). Results from this study demonstrate that in 

short-statured vegetation communities, the canopy volume and Random Forest modeling 

approach outlined by Greaves et al., 2016 can be applied to other short-statured vegetation 

communities such as grassland systems.    
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Figure 3.7. Grassland biomass at varying grid cell sizes (1.0668m, 3m, 5m, 8m, 20m, and 

30m), produced by aggregating 1.0688m lidar derived biomass data for the Zumwalt Prairie in 

northeast Oregon.  

To the authors’ knowledge, this is one of the first studies using airplane-acquired lidar to 

estimate biomass across a short-statured grassland, and many improvements could be made. 

First, our models would have benefited from a field dataset with more high-biomass samples 

to enable greater confidence when predicting larger biomass values. Also, the lidar acquisition 

could be improved by acquiring a more uniform point cloud across the study area, with a 
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point density of greater than 9 points m-2. This would have eliminated the need to normalize 

the point cloud density to reduce striping effects observed in the biomass (Figure A2.1). 

Furthermore, this would likely increase modeling accuracies. Our first analysis attempt with 

non-corrected point clouds had better accuracy (Figure A2.2) compared to the final models 

presented here, due to a higher average point density across the sample biomass quadrats. 

However, the lower point density in the remainder of the study area precluded extrapolation 

of these early models across the study area.  

4.2 The impact of spatial resolution on measures of spatial heterogeneity 

The aggregation of the fine-scale data to coarser scales revealed patterns similar to 

those described by Jupp et al., 1988; Wiens, 1989; Woodcock et al., 1988; Woodcock and 

Strahler, 1987, in that the overall variance (i.e., the sill) and fine scale variation (i.e., nugget) 

of the data were reduced, and the range increased (Figure 3.8). In testing the differences in the 

semivariogram measures across all grid cell sizes, the impact of aggregation is significant. 

This indicates that the semivariogram statistics provide different measures as the grid cell size 

changes. In selecting a plot size or spatial resolution to study a process and phenomena it is 

important to know how that decision impacts your findings (Wiens, 1989); here we see that 

biomass data quantified at the 1.0668 m scale provides statistically different spatial measures 

compared to the spatial measures when aggregated to larger grid cell sizes.  

Following ideas in Strahler, Woodcock, & Smith, (1986) on the discrete scene model, 

when quantifying grassland vegetation with remotely sensed data, the resolution would be 

considered low when compared to a single leaf or single plant that is smaller than the size of 

the pixel but can be considered high if related to vegetation patches or pasture areas that are 

larger than the pixel being used for analysis. Using this rationale, our highest resolution data 

(i.e. 1.0668m) is not high-resolution data at the plant level. This is evident from the large 

average nugget and when plotting semivariograms for each resolution for a single pasture 

(Figure 3.8). The nugget can represent noise, sampling error, or the within pixel variation. In 

this study, we reason that the large nugget with the 1.0668m data is largely driven by within 

pixel variation between bunchgrass and soil. When we aggregate these data to coarser scales 

(3 m to 30 m), we smooth over the canopy gaps and reduce the variability in biomass, thus 

decreasing the nugget (semivariance) captured at fine scales.  
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Figure 3.8. Empirical Semivariogram for the Harsin pasture using the six different increasing 

grid cell sizes.  

Specifically exploring the range data at the finest scale (~1.0668 m), we obtained an 

average range of 78.8 m across all study pastures. This range value is similar to a previous 

study conducted in a mixed grassland in Saskatchewan, Canada which used a handheld 

spectroradiometer and found a range of 70 m using a leaf area index metric (He, Guo, 

Wilmshurst, & Si, 2006). In a study conducted within a Southern Californian chaparral and 

grassland, the semivariance within grassland sites using the Normalized Difference 

Vegetation Index (NDVI), and the Photochemical Reflectance Index (PRI) failed to produce 

clear range values across multiple years (Rahman, Gamon, Sims, & Schmidts, 2003). This 

was likely due to the small maximum lag interval of 20 m not being spatially large enough to 

capture the spatial dependence over a large area in the grassland sites. In both Rahman et al., 

2003 and He et al., 2006, the authors point to sampling theories stating that in order to 

measure objects, one must sample at least at one-half the size of the object. Following this 

rationale, to effectively quantify biomass a pixel size less than 40 m would be suitable due to 
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our average range being 78.8 m. Interestingly, when we used coarser resolutions (20 m to 30 

m) to quantify how spatial patterns correlate to grazing, these failed to produce significant 

relationships (See 4.3 below).  

4.3 The impacts of spatial resolution on heterogeneity metrics used to quantify grazing 

effects  

It is well documented that grazing can impact various aspects of vegetation 

heterogeneity from species composition, structure and biomass (Adler et al., 2001), yet the 

ability to quantify and monitor spatial heterogeneity of vegetation amount (i.e., biomass, 

cover, height) with remotely sensed data is dependent on the interaction between the spatial 

resolution of the data and the vegetation pattern on the ground. It is known that some 

resolutions will be too coarse to detect vegetation patterns (Wiens, 1989). In this study, testing 

the relationship between grazing intensity and the semivariogram-derived measures of 

heterogeneity across the various grid cell sizes revealed that the range statistic, which is 

related to patch size, was the only spatial statistic sensitive to grazing. We also observed that 

the sensitivity of this range statistic to grazing became weaker as the cell size increased, so 

much so that the 20 m and 30 m resolutions failed to provide significant relationships with 

grazing intensity. This is likely due to multiple patterns and processes working at different 

scales (Wu, 1999).  

The results showing an increase in the patch size or range with higher grazing 

intensity are similar to Scarth & Trevithick, 2017, who observed increases in the range value 

with increased grazing using 10 m Sentinel-2 bare ground data in Australia. That the range 

value increased with grazing intensity contradicts Virk and Mitchell, 2015, who after two 

years found that grazing decreased the semivariogram range statistics. Virk and Mitchell 2015 

also found that the MSH was sensitive to grazing and increased with grazing over the course 

of their study, whereas our results showed that this metric was not sensitive to grazing 

intensity at any scale. These differences are likely due to underlying differences in vegetation 

heterogeneity, grazing distribution and intensity (Adler et al., 2001), and the study length. 

Virk and Mitchell 2015 tracked vegetation across multiple years to monitor the change in 

heterogeneity with varying levels of grazing. Here we only use one year of data, which is not 

ideal, especially in grassland systems that can experience large year–to-year variations in 

production (Briske et al., 2015). Another influence could be that Virk and Mitchell 2015 

modeled live biomass using NDVI, which can be impacted by standing dead vegetation and 
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litter in natural grassland systems (Jansen et al., 2018; Xu, Guo, Li, Yang, & Yin, 2014). 

Mapping the pattern of green vegetation signal (NDVI) only could potentially influence 

measures of heterogeneity.  

Following Adler et al., 2001 there are two ways grazing decreases heterogeneity: 1) 

with selective grazing whereby grazing decreases contrast between vegetation types or 2) with 

patch or homogeneous grazing, whereby the grazing pattern is weaker than the vegetation 

pattern (Adler et al., 2001). From this study, we reason that selective grazing across the study 

area decreases the vegetation biomass, leading to reduced heterogeneity with greater stocking 

rates. That the range statistic was not significantly related to grazing at the 20 m and 30 m 

scale shows how the spatial scale used to study a pattern or process may influence the 

interpretation of results, and that these processes can be expressed differently depending on 

the scale at which they are studied (Townsend & Fuhlendorf, 2010). In other words, while the 

30 m scale may be suitable to monitor vegetation biomass and a general change in quantity, 

this scale is not sensitive enough to detect changes in the spatial vegetation pattern (i.e. spatial 

heterogeneity measured with a spatial statistic) induced by grazing. 

4.4 Implications for management and future analysis opportunities   

The maps created using the Random Forest model provide the first landscape-scale 

maps of grassland biomass derived from airplane-gathered lidar in this grassland system and, 

to our knowledge, in any short-stature vegetation grassland. Fine-scale lidar datasets such as 

this one can provide needed spatially explicit information on vegetation such as structure or 

biomass which can be related to habitat needs for critical species (Greaves et al., 2016; 

Vierling, Vierling, Gould, Martinuzzi, & Clawges, 2008). They also provide data to better 

understand how management drivers impact vegetation biomass and structure at fine scales. 

For example, in this grassland system, grazing was associated with increasing patch size, 

suggesting a reduction in fine-scale biomass heterogeneity. This result can inform 

conservation and management actions which seek to increase habitat heterogeneity. Linking 

semivariogram-derived patch size metrics to other biological processes, such as erosion or 

weed invasion, as well as habitat requirements for wildlife species such as birds, would 

further reveal how this dataset and resulting spatial metrics could be used to monitor other 

conservation relevant indicators.   
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The result that the 20m and 30 m resolution data, equivalent to the resolution of 

Sentinel 2 or Landsat data, did not produce spatial heterogeneity metrics sensitive to grazing 

provides evidence that these sensors are not best suited to freely monitor how grazing impacts 

above ground biomass heterogeneity vegetation in this study area. Fortunately, higher 

resolution data are being made available (e.g., WorldView-3, Planet Labs, Inc., RapidEye) 

which could be used to monitor the effect of grazing on spatial heterogeneity over time. While 

the spatial heterogeneity metrics were not sensitive to grazing at coarser resolutions (i.e., 20m, 

30m), the coefficient of variation (CV) metric was. This metric is often used as a non-spatial 

measure of heterogeneity (Adler et al., 2001) and was significantly related to grazing across 

all scales using a quadratic model. This finding is supported by Johnson et al., 2011, who 

modeled a significant quadratic effect of grazing on the structural heterogeneity across this 

same study area. In both studies, it was observed that coefficient of variation increased as 

grazing increased from no grazing to moderate grazing and decreased from moderate grazing 

to heavy grazing. This finding suggests that Landsat data at the 30 m scale can provide 

reliable estimates of this non-spatial heterogeneity measure.  

Future studies investigating how grazing management impacts vegetation 

heterogeneity should explore additional spatial statistics at larger spatial extents and temporal 

scales. For example, spatial statistics such as Moran’s I could be computed at the pasture and 

ranch scale over time, which would contribute to an improved understanding of the hierarchal 

and nested nature of this ecosystem, and how land management impacts heterogeneity at 

scales relevant to landscape processes and management (Fuhlendorf et al., 2012). It could also 

be informative to analyze the 1 m biomass data with an object-based approach for mapping 

vegetation patches as well as for habitat classification. Ideally, this approach segments spatial 

data based on meaningful ecological patterns, helping to overcome issues of information loss 

due to arbitrarily defined pixel areas (Karl & Maurer, 2010). Studying processes that interact 

with grazing to impact vegetation patterns, such as fire and soil characteristics, is another 

future area of interest.  

5.0 Conclusion  

Lidar processing and Random Forest modeling approaches developed to map and 

model shrub biomass in the Arctic Tundra also can provide significant relationships with 
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short-statured grassland biomass. The mapped output of these models provides landscape- and 

pasture-level estimates of biomass at fine (~1 m) resolutions. Aggregating the fine-scale 

biomass data to increasingly coarser grid sizes reveals how the spatial resolution of data (i.e. 

pixel size) from various remote sensing platforms impacts our ability to quantify spatial 

patterns of processes under question. This in turn informs the selection of the most 

appropriate sensor/spatial resolution to quantify or monitor a desired phenomenon or 

ecological process. For example, in this study when using semivariograms to study spatial 

heterogeneity high-resolution data, between 1 m and 8 m pixel size, is needed to monitor the 

effect of grazing on vegetation patchiness at peak biomass across this short-statured, highly 

heterogeneous grassland. Ecologically, we found evidence that grazing decreases vegetation 

heterogeneity within this grassland system, and we identified the spatial scales (1 m to 8 m) at 

which the process is most evident in gridded data. This is an important finding for future 

research and monitoring as well as current management practices which seek to increase 

heterogeneity in this and other similar grassland ecosystems.  
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Chapter 4: Short-term rangeland vegetation monitoring from space: 

Exploring the relationships between in-field stocking rates and end of year 

utilization with Landsat-derived biomass data for management and 

monitoring purposes 

Abstract 

Landscape scale data on vegetation amounts derived from remotely sensed data has the ability 

to improve the adaptive management cycle. In this paper we correlate biomass metrics 

produced from a previously developed Landsat model which estimates above ground biomass 

created for the Pacific Northwest bunchgrass prairie with short term monitoring data on 

stocking rate at the pasture scale and end of year utilization measures at the plot scale. 

Remotely sensed biomass metrics quantifying end of year residual biomass, and the relative 

difference in biomass between summer and fall were significantly correlated to short-term 

monitoring indicators at both the pasture and plot scales. Next, we created boxplots of our 

remotely sensed derived biomass metrics (Fall biomass, and the relative difference in 

biomass) by utilization class and selected the median values from the 13% and 50% graze 

class as classification threshold values. Displaying maps based on threshold values from the 

in-field utilization data highlight the year to year variability in end of season biomass due to 

climate variability, as well as areas that have greater amounts of change relative to other areas 

across the landscape. These results highlight the potential to integrate remote sensing tools 

into existing monitoring and management data to improve adaptive management and 

conservation outcomes on a grassland prairie. 

1.0 Introduction 

Temperate grassland ecosystems are threatened worldwide by conversion to crop 

agriculture (Hoekstra et al., 2005), livestock mismanagement (Alkemade et al., 2013), and 

woody plant encroachment (Van Auken, 2009). Over time, heavy stocking rates may reduce 

profitability and threaten the economic sustainability of ranching (Holechek, 1988; Holechek 

et al., 1999). Livestock can impact the structure and function of grassland ecosystems 

(Milchunas and Lauenroth, 1993) causing short-term effects such as reduced litter cover and 

compacted soils (Schmalz et al., 2013) as well as long-term effects, including reduced 

productivity and a shift from native perennial grasses to invasive annual grasses (Bartolome et 
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al., 1980; Reisner et al., 2013). Grazing has been used to increase heterogeneity of vegetation 

pattern in grasslands (Fuhlendorf and Engle, 2001; Fuhlendorf et al., 2012) which is a desired 

conservation outcome due to the link between habitat heterogeneity and biological diversity 

(Adler et al., 2001). In turn, wildlife such as birds, mammals, and insects have variable 

responses to grazing; some are sensitive to grazing, while other species benefit from grazing-

induced changes in vegetation structure (Derner et al., 2009; Severson and Urness, 1994). 

Grazing on grassland systems is preferred land use over other land uses such as ex-urban 

development or cultivation (Brunson and Huntsinger, 2008). Therefore the continued 

existence of profitable ranches can help to decrease the threat of habitat loss by fragmentation 

and conversion to other land uses (Brunson and Huntsinger, 2008).  

To avoid or mitigate the undesired effects of livestock grazing and to increase habitat 

diversity, many rangeland practitioners employ adaptive management strategies. Effective 

adaptive management relies upon monitoring the success or failure of implemented strategies 

(Joyce et al., 2013), distributing monitoring results that can be used for management action at 

relevant scales, and integrating stakeholder experiences into the scientific process 

(Bestelmeyer and Briske, 2012; Juntti et al., 2009). However, the ecological outcomes of 

grazing management decisions (e.g., setting stocking rates, animal species, or rotations) aimed 

at balancing economic profitability and long-term land productivity are difficult and 

expensive to measure adequately across large areas and across many years due to climatic 

variability and spatial heterogeneity. As a result, there is a significant lack of meaningful 

quantitative monitoring data collected at the landscape scale that can be accessed by land 

managers or ranchers for decision making (Bestelmeyer and Briske, 2012). 

Research into remotely sensed approaches that provide estimates of commonly 

monitored rangeland attributes such as above ground biomass (e.g. Anderson et al., 1993; 

Jansen et al., 2018; Todd et al., 1998), vegetation fractional cover (e.g. Hagen et al., 2012; 

Marsett et al., 2006) or bare ground (e.g. Guerschman et al., 2009) has increased in recent 

years. Quantifying grazing-induced vegetation responses with remotely sensed data has been 

performed in a variety of ways, utilizing single year analysis to compare estimated vegetation 

amounts between pixels with different grazing levels (Jansen et al., 2016; Numata et al., 

2007), or with timeseries analysis to track a vegetation index over time as a proxy for 

vegetation change to understand vegetation responses to drivers such as climate variability 
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and grazing management (Archer, 2004; Evans and Geerken, 2004; Washington-Allen et al., 

2006; Wessels et al., 2012). Remote sensing research also continues to explore monitoring 

spatial heterogeneity with spatial statistics (Sankey et al., 2009; Scarth and Trevithick, 2017; 

Virk and Mitchell, 2015). While these studies highlight the ability of remotely sensed data to 

quantify vegetation amounts, characterize spatial heterogeneity and elucidate potential drivers 

of vegetation change, web-based platforms that easily display and analyzed vegetation 

monitoring data derived from remotely sensed data have only recently been created and made 

available to ranchers and or managers (e.g. RDMapper, Ford et al., 2017; 

https://vegmachine.net/; http://climateengine.org/ (Huntington et al., 2017); 

https://rangelands.app/ (Jones et al., 2018). Therefore the introduction of remotely sensed 

vegetation monitoring datasets into adaptive management frameworks is relatively new and 

their potential value is still being assessed.   

To incorporate remotely sensed monitoring indicators into adaptive management of 

livestock grazing it is important to identify the types of indictors that are used in a decision-

making context. Herrick et al., 2012 breaks down rangeland monitoring indicators into three 

groups 1) driving mechanisms (e.g. stocking rates, animal type, rotations) 2) short term 

responses (e.g. residual biomass or utilization), and 3) long term responses (e.g. species 

composition, soil stability). Short term indicators characterize direct impacts of drivers on 

ecosystem attributes and are used to adaptively manage in a timely manner and help interpret 

trends detected in long term indicators (Herrick et al., 2012). Long term indicators capture 

trends in ecosystem process and function and provide additional feedback about the influence 

of drivers (Herrick et al., 2012). This framework is helpful for defining monitoring objectives 

and clarifying the relationships between the short term monitoring indictors and the 

meaningful processes or phenomena in question (Herrick et al., 2012).  As with field 

monitoring data, remotely sensed monitoring data should be tested and applied within existing 

adaptive management objectives and decision-making cycles.  

In this paper we evaluate the utility of a remotely sensed biomass product created for a 

grassland in northeast Oregon (Jansen et al., 2018) to monitor short term vegetation responses 

to cattle grazing. Our two main objectives are 1) to determine which remotely sensed biomass 

metrics at the pasture scale have the strongest correlations to prescribed stocking rates, a 

driving mechanism indictor (also at the pasture scale), and 2) to determine which remotely 

https://vegmachine.net/
http://climateengine.org/
https://rangelands.app/
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sensed biomass datasets are most correlated to in-field estimates of end of year utilization, a 

short-term response indicator used to monitor grazing at the plot scale. Using results from the 

second objective, we further explore a possible classification of biomass change and fall 

biomass raster datasets to demonstrate how the remote sensing vegetation data can be used as 

decision support for adaptive management. 

2.0. Methods 

2.1 Study area 

This study took place on the Zumwalt Prairie in northeast Oregon which is a highly valued 

remnant of Pacific Northwest Bunchgrass Prairie (Figure 4.1). The Zumwalt Prairie is 

moderately productive (1200-1900 kg · ha-1), privately owned and used primarily for cattle 

production. The Nature Conservancy, a private land owner within the study area, has been 

monitoring and adaptively managing livestock grazing to be compatible with conservation 

goals since 2006. Across the conservation area, residual vegetation and utilization have been 

measured annually to provide feedback to managers regarding livestock impacts. These 

measures, along with calculated indices of grazing response (GRI) (Reed et al., 1999) and 

managers’ casual observations provide the “best available” information to interpret grazing 

effects and adjust timing and stocking rates for the following year’s grazing rotation. Field 

and management data used in this study comes from two management units that have 

different grazing strategies. One unit (Unit 1) strives to keep stocking rates below a threshold 

of 0.7 animal unit months per hectare (AUM · ha-1), based on research showing that stocking 

rates above that threshold had detrimental effects on invertebrates, songbird nesting and soil 

compaction (Johnson et al., 2011; Kimoto, 2012; Schmalz et al., 2013). The second unit (Unit 

2) uses higher stocking rates with shorter durations and longer periods of rest for each pasture. 

Although the two management units have different management strategies, the long-term 

outcomes of sustaining productivity and preventing conversion to non-desirable vegetation 

are mutually desired.  
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Figure 4.1. The Zumwalt Prairie, a pacific northwest bunchgrass prairie ecosystem located in 

northeastern Orgon. The field and management data came from two management units 

located on the eastern side of the larger grassland area.  

2.2 Grazing Management and Monitoring Data  

2.2.1 Pasture Stocking Rate Data  

Across the three-year study period (2015 – 2017), stocking rates were calculated by 

pasture for each year based on records provided by managers including dates, number and 

type of grazing animal, and accessible hectares per pasture. Stocking rates are expressed as 

Animal Unit Months per hectare (AUM · ha-1). Adjustments were made in animal use 

equivalencies (AUE) for different types of animals (e.g. bulls had 1.2 AUE, yearlings 0.75 

AUE, and cow-calf pairs 1.0 AUE). Each stocking rate for each pasture in each year was 

categorized by season of use based on the grazing timing: Cool Summer (May 1 – June 30), 

Hot Summer (July 1 – September 15) and Fall (September 16 – November 30). When grazing 

dates overlapped two seasons, the season with the majority of grazing days was used. Average 
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stocking rates across the study period were 0.34 AUM · ha-1 for Unit 1 and 0.73 AUM · ha-1 

for Unit 2. 

2.2.2 Utilization data  

Plot-scale utilization data were collected across the 2015-2017 field seasons using the 

Landscape Appearance Method (Coulloudon et al., 1999). In this rapid qualitative method, 

observers look for evidence of grazing on key forage plants and classify the plot into one of 

six categories corresponding to percent utilization. Monitoring plots were selected in a 

systematic random manner across the diversity of habitat types on the prairie including 

uplands, headwater swales and ephemeral stream reaches. We used utilization monitoring data 

from two different monitoring surveys, one from stubble height surveys (collected from 2015-

2017) and the other from visual obstruction monitoring (collected only in 2015 and 2016).  

Plots were revisited in the field each year with a Garmin GPS unit but were not permanently 

marked. Plot selection was made without prior knowledge of typical patterns of livestock use 

within pastures; determination of “key areas” as are typically used for utilization estimates 

were considered. All utilization estimates were made at the end of the season (September – 

November) regardless of when cattle were moved out of pastures.  

2.3 Landsat Satellite Data Scene Selection 

To identify summer and fall Landsat scenes to be used for analysis, we used 

ClimateEngine (ClimateEngine.org) to calculate annual biomass curves based on biomass 

algorithms developed for this site (Jansen et al., 2018). Due to known differences in dominant 

plant phenology which impacts the timing of maximum summer biomass across the study area 

(Figure 4.2) we selected two different summer scenes corresponding to summer biomass for 

each year and one fall scene to compute fall or end of season residual biomass. (Table 4.1).  

The fall scene selected was the latest and clearest scene we could find for each year. 
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Figure 4.2. Scene selection for summer and fall biomass estimates across the Zumwalt Prairie, 

Oregon. Landsat 8 data (closed circles) were given preference to increase the available data 

used for pasture level statistics. Only in 2015 did we use a Landsat 7 summer scene to 

compare to the fall Landsat 8 scene. The scenes selected are boxed in with black rectangles. 

We downloaded the climate data record (CDR) Collection1 Level 2 product for each 

of the scenes selected from the prior step off the USGS Earth Explorer 

(https//earthexplorer.usgs.gov/) website. These scenes are terrain-corrected and processed to 

at-surface reflectance. For each scene the pixel quality assurance band (pixel_qa) and aerosol 

band were used to mask clouds, cloud shadows, and smoke over the study site. We also 

masked out non-grassland vegetation as defined by the ReGap Ecological Systems data 

(Kagan et al., 2006) and manually masked any tree or shrub visible with the 2014 National 

Agriculture Inventory Program (NAIP) imagery that the ReGap Ecological Systems data mis-

classified as tree or shrub habitat. With each masked scene, we computed above ground 

biomass for each pixel using the biomass algorithm developed for this study area (Jansen et 

al., 2018). This algorithm was observed to have a root mean squared difference (RMSD) of 

34.6 g·m-2 and 32.2 g·m-2 using Landsat 7 and Landsat 8 CDR products respectively to 

predict above ground biomass across the growing season (Jansen et al., 2018). Once biomass 

raster data was computed for each scene (Early Summer, Late Summer, and Fall), we created 

relative difference biomass raster datasets for each year using following the equation: 
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((Fall Biomass Raster – Summer Biomass Raster) / Summer Biomass Raster)*100 

  

For the summer period, we created two biomass raster datasets in each year, we 

created yearly pixel and pasture scale maximum biomass composites to capture the maximum 

values representing peak biomass production. The max summer pixel composites (Summer 

MaxPixel) were computed by selecting the maximum biomass value for each pixel value 

across the two summer biomass scenes. For the max summer pasture composites (Summer 

MaxPasture), the selection of raster data for the composite was guided by which scene 

produced the maximum average biomass across each pasture. We did not create fall 

composite images and instead elected to use the latest single fall scene for each year, that was 

cloud free, corresponding to end of year residual biomass. For the pasture scale analysis 

objective, we elected to only use the maximum pasture average in order to keep the biomass 

patterns true to one point in time and congruent with the scale of analysis for spatial statistics 

and interpretation purposes (Table 4.1). We then computed relative difference (RelDif) raster 

datasets using all the summer biomass rasters (early, late, maxpasture, maxpixel).  

Table 4.1. Scenes selected for the analysis and associated biomass raster datasets used for the 

pasture and plot scale analysis.  

 

Year Summer 

Scene Dates 

(Sensor) 

Fall Scene 

Dates 

(Sensor) 

Pasture Scale - 

Biomass Raster 

Datasets  

Monitoring Plot Scale - 

Biomass Raster Datasets 

2015 6/10 (LS7), 

6/11 (LS8) 

10/16 (LS8) 

Summer Max Pasture 

 

Fall 

 

RelDifmaxpasture: Max 

Pasture to Fall  

Early Summer  

Late Summer  

Fall 

RelDifmaxpasture: Max Pasture 

to Fall  

RelDifmaxpixel: Max Pixel to 

Fall  

RelDifEarlyScene: Early 

Summer to Fall  

RelDifLateScene: Late 

Summer to Fall  

2016 5/28 (LS8), 

6/20 (LS8) 

11/11 (LS8) 

2017 5/22 (LS8), 

6/23 (LS8) 

10/29 (LS8) 
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2.4. Computing pasture and ranch level biomass statistics 

For each pasture area that had a corresponding grazing record we used the biomass raster 

datasets from each year to compute a variety of summary and spatial statistics (Table 4.2). 

The general summary statistics calculated using the biomass raster data by pasture included 

the mean, the 10th, 25th, 50th, 75th, and 90th percentiles, as well as the standard deviation and 

coefficient of variation. To explore measures of spatial heterogeneity we computed the sill, 

nugget, range and magnitude of spatial heterogeneity (MSH) from theoretical variograms. 

Variograms provide measures of variance between all pairs of points across distances (i.e. 

bins). The computation of variograms takes the form:  

𝛾(ℎ) =
1

2𝑛
∑ |𝑧(𝑠𝑖) − 𝑧(𝑠𝑖+ℎ)|2

𝑛

𝑖=1

 

Where 𝛾(ℎ) is the semivariance for the distance bin h, z is the value of the biomass 

variable at two locations si and si+h, with h signifying the distance between each pair and n is 

the number of pairs of sampling locations across each lag (or bin) h. For each pasture area we 

fit theoretical exponential and spherical models to the empirical variogram using the GSTAT 

package (Pebesma, 2004) in R version 3.3.3 (R Development Core Team, 2016) 

(http://www.r.project.org). The spherical model decreased model error across the majority of 

pasture areas tested, therefore we selected the output from this model to report statistics on. 

Using the theoretical spherical model, the sill, the range, and nugget were quantified. The sill 

is the leveling off point of the variance, where the variance of the data no longer increases 

(Bellehumeur and Legendre, 1998). The nugget is the y-axis intercept which represents 

sampling error, or within sampling unit variability (Townsend & Fuhlendorf, 2010; Western, 

Blöschl, & Grayson, 1998; Fortin and Dale, 2005). The range is a measure of the distance at 

which values are no longer correlated (Legendre and Fortin, 1989). This statistic is also 

thought as a measure of patch size (Townsend and Fuhlendorf, 2010). From the sill, nugget 

and range values we then calculated the magnitude of spatial heterogeneity (MSH) (Lane and 

BassiriRad, 2005; Lin et al., 2010). The MSH is calculated by dividing the spatially structured 

variation (the sill – the nugget) by the total sample variation (the sill) (Lane and BassiriRad, 

2005). The MSH ranges in values from 0 to 1, with zero indicating no spatially structured 

heterogeneity and 1 indicating high structured heterogeneity (Virk and Mitchell, 2015). We 
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also calculated the Global Moran’s I to explore how the spatial pattern of biomass relates to 

grazing management (e.g. Sankey et al., 2009).  

Table 4.2. Pasture Statistic computed for each scene and year 

Statistic Type Metric 
Raster Datasets 

Analyzed 

Computation 

Citation 

Spatial 

heterogeneity 

Variogram – Sill, 

Nugget, Range, 

MSH 

Summer, Fall, 

Relative Diff 
GStat (Pebesma, 2004) 

Spatial 

heterogeneity 
Global Moran’s I 

Summer, Fall, 

Relative Diff 

Spdep (Bivand et al., 

2013; Bivand and 

Piras, 2015) 

Non-Spatial 

Heterogeneity 

Coefficient of 

variation 

Summer, Fall, 

Relative Diff 
 

Summary 

Mean, Percentiles 

(10,25,50,75,90), 

Standard Deviation 

Summer, Fall, 

Relative Diff 
 

2.5. Correlation to a driving indictor: Identifying the remotely sensed biomass metrics 

most sensitive to AUMs per hectare at the pasture scale 

To identify the biomass pasture metrics most sensitive to stocking rate at the pasture 

scale we calculated Spearman rank correlation coefficients between the pasture stocking rates 

(AUM · ha-1) and the biomass metrics listed in Table 4.2. Pastures used for statistical analysis 

had to meet the following conditions: 1) the pasture had to contain at least 20 valid pixels, 2) 

valid pixels had to account for more than 33% of all possible pixels within the pasture (i.e 

pastures that were mostly obscured by clouds were dropped), 3) the pasture had to be 

dominated by upland grassland vegetation (i.e. exclusion of canyon grassland pastures), 4) the 

period of grazing in the pasture had to occur between the selected summer and fall Landsat 

scenes, 5) pastures could not be used for supplemental feeding with hay. We also included 

ungrazed pastures that met criteria 1 – 3 and 5. The percentage of pastures that met the above 

criteria were 32.7% for 2015 (21% of pastures were removed due to clouds), 53.1% for 2016, 

and 59.0% for 2017.  We performed this analysis for each year individually and all years 
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combined, as well as by season of use (Spring, Cool Summer, Hot Summer, Fall) using all 

years combined. Only significant (< 0.05 p-value) correlations are reported in this paper (see 

supplemental information for the complete list). 

2.6 Correlation to a short-term response indicator: Identifying the metrics most sensitive 

to end of year grazing utilization at the plot scale 

To identify the biomass raster datasets most sensitive to end of year grazing 

utilization, we computed Spearman rank correlations between in-field percent utilization with 

the mean and minimum biomass values extracted across a 2 x 2 pixel window intersecting 

each in-field monitoring plot. We did this for each of the raster datasets listed in Table 4.1 

(monitoring plot scale analysis). For this plot-level analysis we again only used the in-field 

data from pastures that were grazed between the dates of the satellite overpasses or ungrazed 

across the entire year. We also limited the in-field dataset to only data collected in October 

and November to better match the timing of our remotely sensed fall data.   

2.7. Classifying biomass raster datasets to demonstrate the use of empirically-derived 

thresholds for monitoring and management interpretations.  

Using select raster datasets with significant relationships to the plot-level utilization 

estimates from the above step, we created boxplots and determined the median raster values 

associated with the in-field utilization classes aligned with the Landscape Appearance method 

(Table 4.4). We selected two breakpoints for a 3-class raster classification (low, medium and 

high) based on the median raster values corresponding to the midpoint of two utilization 

classes: 13% (midpoint of the 6 – 20% utilization class), and 50.5% (midpoint of the 41 – 

60% utilization class). Thus the “Low” raster class represents the 0 – 5% utilization class; the 

“Med” raster class represents utilization classes between 6 and 40% and the “High” raster 

class represents utilization classes > 40%. The breakpoints selected here are based on prior 

research conducted in this habitat which established a 30 to 40% utilization guideline for 

bunchgrass vegetation to remain productive (Holechek, 1988; Skovlin et al., 1976) and that 

high stocking rates with utilization measures averaging above 35% across a pasture can be 

detrimental to grassland songbird nesting (Johnson et al., 2012). Large inter-annual variation 

in total production caused us to compute separate threshold values for the fall biomass raster 

dataset for 2015 (low annual production) and for 2016-2017 biomass raster data (high annual 

production; Figure A3.1). We did not separate the relative difference raster analysis based on 
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inter-annual variability, because in theory the relative difference equation should normalize 

the year to year variation in production. Using the biomass raster thresholds derived from 

their empirical relationship to in-field utilization, we mapped these categories across the study 

area to reveal patterns of end of year vegetation amounts and change in vegetation amounts 

between summer and fall.  

3.0. Results 

3.1. Biomass metrics most sensitive to stocking rate at the pasture scale  

 Spearman rank correlation coefficients between the pasture scale biomass metrics and 

pasture stocking rates revealed that the summary statistics were more consistently related to 

stocking rate compared to spatial statistics metrics derived from variogram models (Table 

A3.1). For each year of analysis (2015,2016,2017) using pasture scale biomass metrics, the 

estimated pasture area Fall biomass mean, and percentile metrics were negatively associated 

with higher stocking rates while coefficient of variation (CV) metric was also significantly 

correlated, but with a positive correlation to stocking rate (Table 4.3). With the pasture 

maximum relative difference raster, the 10th percentile was most strongly correlated to 

stocking rate across all years, with the mean, median and the 25th percentile also being 

significantly correlated. While these correlations are significant, none are above an absolute r 

value of 0.60, indicating a moderate to weak fit. Also, there was a decrease in the correlation 

coefficient when grouping data across the three years, for example the Fall mean biomass 

correlations for each single year had stronger negative correlations (< -0.50), compared to 

when all the data was grouped across all years (r = -0.28).      
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Table 4.3. Spearman rank correlations between stocking rate (AUM · ha-1) and biomass raster 

statistics at the pasture scale. This table shows only the metrics that are significant across all 

years of data. For the complete table see appendix (Table A3.1).   

Raster 

Statistic 

2015 2016 2017 All Years 
3-Yr 

Mean 

r p-val N r p-val N r p-val N r p-val N r 

Fallmean -0.55 0.00 37 -0.56 0.00 60 -0.52 0.00 72 -0.28 0.00 169 -0.54 

Fallp10 -0.56 0.00 37 -0.59 0.00 60 -0.49 0.00 72 -0.24 0.00 169 -0.55 

Fallp25 -0.53 0.00 37 -0.57 0.00 60 -0.50 0.00 72 -0.26 0.00 169 -0.53 

Fallp50 -0.52 0.00 37 -0.54 0.00 60 -0.50 0.00 72 -0.27 0.00 169 -0.52 

Fallp75 -0.54 0.00 37 -0.51 0.00 60 -0.51 0.00 72 -0.29 0.00 169 -0.52 

Fallp90 -0.53 0.00 37 -0.49 0.00 60 -0.56 0.00 72 -0.30 0.00 169 -0.53 

FallCV 0.50 0.00 37 0.51 0.00 60 0.32 0.01 72  0.16 0.04 169 0.44 

RelDiffmean -0.32 0.05 37 -0.33 0.01 60 -0.54 0.00 72 -0.30 0.00 169 -0.40 

RelDiffp10 -0.50 0.00 37 -0.52 0.00 60 -0.47 0.00 72 -0.38 0.00 169 -0.50 

RelDiffp25 -0.44 0.01 37 -0.47 0.00 60 -0.47 0.00 72 -0.34 0.00 169 -0.46 

RelDiffp50 -0.34 0.04 37 -0.33 0.01 60 -0.48 0.00 72 -0.27 0.00 169 -0.38 
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Figure 4.3. Relationships of select metrics, Mean Fall Biomass (A-C), and the Relative 

Difference 10th Percentile (D-F) for each year with stocking rate. The linear regression line 

for each plot is represented by the grey line, while each pasture is represented by a black dot.    

3.2. Biomass raster data most sensitive to grazing utilization at the plot scale 

 Correlation coefficients between in-field utilization data collected at monitoring plots 

and the spatially corresponding biomass pixel values showed significant negative correlations. 

Similar to the pasture scale analysis results, the correlations were weak to moderately 

correlated, with all r values lower than an absolute value of 0.70. In all cases except for Fall 

biomass, the minimum pixel value in the 2 x 2 pixel window had stronger negative correlation 

compared to the average value across the 2 x 2 pixel window. The minimum pixel value from 

the relative difference raster, regardless of which summer scene or composite was used, were 

all significantly related to in-field utilization, with the Early Summer scene tending to have 

A) B) C) 

D) E) F) 
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the most significant correlations across the study period (Table 4.4), likely due to a reduced 

sample size that omitted outliers which were included in the other relative difference raster 

correlations.  

Table 4.4. Spearman rank correlations between infield utilization measures and biomass raster 

data at the plot scale.  

Raster  

2x2 pixel 

window 

statistic 

2015 2016 2017 All Years 

r p-val N r p-val N r p-val N r p-val N 

Fall Mean -0.33 0.00 197 -0.46 0.00 208 -0.47 0.00 114 -0.21 0.00 519 

RelDifMaxPixel Mean -0.20 0.01 202 -0.44 0.00 214 -0.49 0.00 114 -0.38 0.00 530 

RelDifMaxPasture Mean -0.07 0.36 113 -0.32 0.00 208 -0.50 0.00 114 -0.26 0.00 435 

RelDifEarlyScene Mean -0.39 0.00 96 -0.45 0.00 203 -0.69 0.00 114 -0.45 0.00 413 

RelDifLateScene Mean -0.22 0.00 196 -0.14 0.04 208 -0.40 0.00 114 -0.24 0.00 518 

Fall Min -0.31 0.00 197 -0.44 0.00 208 -0.47 0.00 114 -0.20 0.00 519 

RelDifMaxPixel Min -0.26 0.00 202 -0.45 0.00 214 -0.53 0.00 114 -0.40 0.00 530 

RelDifMaxPasture Min -0.29 0.00 113 -0.52 0.00 208 -0.63 0.00 113 -0.45 0.00 434 

RelDifEarlyScene Min -0.35 0.00 84 -0.48 0.00 203 -0.69 0.00 114 -0.46 0.00 401 

RelDifLateScene Min -0.29 0.00 196 -0.21 0.00 208 -0.44 0.00 114 -0.28 0.00 518 

 

3.3 Classifying raster datasets based on empirically defined utilization thresholds. 

 The boxplots of the Fall and RelDif raster data grouped by each Landscape 

Appearance utilization grazing class, revealed overlapping distributions of data across groups 

with the median raster value decreasing with increased grazing utilization (Table 4.4). To 

classify the change in biomass across the year we elected to use the RelDifMaxPixel raster 

dataset, because it had the largest number of valid pixels (i.e. spatial coverage) providing the 

largest sample size across the study period (i.e. the least amount of missing data due to 

clouds) (Table 4.4). The relative difference boxplots median values grouped by utilization 

class, produced a small range in median values from -36% to -50%. This range is much 

smaller compared to the corresponding in-field utilization range, which extends from 0% to 

94%, illustrating the differences between the remotely sensed and in-field short-term 

indicators. With the fall biomass data, there was around 20 g · m-2 difference separating the 

Medium from the High raster classes within both the low and high production years. The 

difference in raster values across production years (i.e. high year - low year for any graze 

class) was approximately 40 g ·m-2. The increased difference observed between low and high 
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production years, as compared to the within year differences illustrates the importance of 

climate as a major influence on end of year residual biomass (Table 4.5).   

Table 4.5. Defining biomass raster class thresholds using the median biomass pixel values 

grouped by in-field utilization classes. Bold values were used as breakpoints for raster 

classification.   

Grazing 

Utilization 

Range  

(%) 

Graze 

Class 

Midpoint 

(%) 

Relative 

Difference 

(%) 

Fall Biomass 

High 

(g/m2) 

Fall Biomass 

Low 

(g/m2) 

Raster Class 

(degree of 

change) 

0 - 5 2.5 -35.87 153.93 119.42 Low 

6 - 20 13 -39.53 150.92 110.34 Med 

21 - 40 30.5 -41.77 135.94 93.45 Med 

41 - 60 50.5 -42.63 129.70 90.13 High 

61 - 80 70.5 -47.16 122.39 63.60 High 

81 - 94 87.8 -50.17 128.98 NA High 
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Figure 4.4. Boxplots of the (A) fall biomass and (B) relative difference raster at each of the 

utilization monitoring plots grouped by graze class. The fall biomass (A) data for 2015, a low 

production year, are shown in orange (N=197), while the high production year data are shown 

with green (N=322). The narrow boxplot for the 70.5 graze class in 2015 was due to only one 

recorded observation in the 70.5 graze class. The relative difference in biomass (B) obtained 

from the minimum value of the 2 x 2 pixel window when using the max summer pixel 

composite to compute the relative difference raster is represented by black boxplots (N=530).  

4.0 Discussion 

 Biomass estimates derived from Landsat satellite data were significantly correlated to 

both a driving indicator (stocking rate) and a short-term response indicator (utilization), 

demonstrating the potential for remote sensing to inform adaptive rangeland management. 

The application of remote sensing to rangeland management is powerful because of its 

capacity to provide vegetation estimates continuously across landscape scales that are not 

feasible to evaluate with infield monitoring data. However, this source of information is 
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relatively new to most managers, and it is necessary to build evidence based on empirical 

relationships to begin relating common in-field monitoring metrics to remote sensing metrics.  

Before investigating the potential to use remote sensing as a tool for monitoring short 

term responses, we first wanted to establish the strength of the relationship between remote 

sensing data and the fundamental management driver in rangelands: stocking rate. In our 

study, because stocking rates at the pasture scale had consistently strong correlations with the 

fall mean biomass, and the relative difference 10th percentile, we recommend using these 

metrics (See Figure 4.5) for monitoring applications in this system. While we explored the use 

of spatial heterogeneity metrics provided by variograms and the Moran’s I, these metrics were 

not consistently sensitive to stocking rate across all years. This finding aligns with Jansen 

2018 (Chapter 3) which showed that the 30 x 30m spatial resolution is too large to detect finer 

scale changes in vegetation patch size and heterogeneity that grazing induces on this already 

highly heterogeneous landscape (Chapter 3). Our biomass to stocking rate relationships were 

weaker than Jansen et al., 2016 who found an r-squared of 0.79 when experimentally 

controlling the timing and duration and Numata et al., 2007 who found an r-squared of 0.70 

and focused on one grass species and had many pasture areas with higher stocking rates. We 

were not surprised to find weaker relationships in our study, which was observational and 

therefore did not control for historical land use and management effects, timing of grazing, 

stocking rate, or habitat types. Timing of grazing is particularly important; stocking rate as a 

driver is not expected to be strongly related to total change in biomass as calculated between 

the summer and fall scenes in pastures that were grazed early in the season and had an 

opportunity for re-growth before the summer drought period began (typically late July). 

Furthermore, stocking rate does not account for reductions in biomass incurred from other 

herbivores (trespass cattle, elk, ground squirrels, and insects) or from senescence, all of which 

affect our correlation results. For example, elk populations in northeast Oregon have been 

increasing since the 1990s, with recent estimates between 1000 – 2500 animals on the 

Zumwalt Prairie (ODFW, unpublished data). Their effects on vegetation are not accounted for 

in our study.  

Relating the biomass raster data to in-field grazing utilization collected at the plot 

scale produced similar correlation coefficient values as compared to our analysis with 

stocking rates at the pasture scale. The differences in the Spearman rank correlation 
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coefficients between the early and late summer relative difference biomass data, reveals the 

effect that intra-year biomass variability (i.e. plant phenology) has on analysis results. 

Accounting for this within year variability in the timing of maximum biomass estimates is 

important for accurate and meaningful results (Evans and Geerken, 2004). Here we account 

for this variability by presenting results of the relative difference raster using the summer max 

pixel composite. We selected to present these results over the other relative difference raster 

datasets for two reasons: 1) the RelDifmaxpixel dataset contained the most valid data (i.e. least 

obscured by clouds) which produced the largest sample size thus encompassing the full range 

of values in this complex landscape 2) we felt that the maximum pixel analysis procedure 

used to create the RelDifmaxpixel data is more robust to year to year variability and more 

straightforward to calculate consistently in future years. The moderate to weak results 

between plot scale data and the biomass raster data was likely due to a variety of reasons. In-

field utilization estimation is subjective and can have high observer variability (Smith et al., 

2005). Also, geographic co-registration and the spatial scale of the field plot to the Landsat 

data can lead to spatial mismatches between the field plot and the Landsat pixels. Furthermore 

previous studies have shown that stratifying the landscape by habitat type improves statistical 

relationships (Kawamura et al., 2005) and in general is helpful when making inferences from 

sample data (Elzinga et al., 1998). Here we combined utilization data that were collected 

across sites with a variety of dominant species (i.e. rhizomatous grasses and bunchgrass 

species). We did this to produce a generalized end product that can be easily applied across 

the study area and interpreted for management decisions. We see this general grouping impact 

our final results observing a higher median value in the 87.8% utilization grass class 

compared to the 70.5% grass class using the high production fall biomass data. This is due to 

the utilization estimates in the 87.8% class only being collected during stubble height surveys 

in 2017 which were predominately collected within riparian sites. These riparian sites closer 

to water sources, typically have higher amounts of vegetation compared to upland sites. As 

with stocking rate, the timing of grazing relative to the opportunity for re-growth within the 

growing season contributes variability to the relationship between in-field utilization and 

biomass raster data. 

Associating traditional management and field data used to monitor relevant abiotic or 

biotic indicators with remotely sensed data provides an important frame of reference that 
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increases the usefulness and application of satellite data for monitoring and management (e.g. 

Tsalyuk et al., 2015). Classification of the Fall and Relative Difference biomass raster 

datasets using threshold values derived from associating the raster data with a traditional 

utilization estimation method highlights areas with different amounts of vegetation change, 

locations of low and high residual biomass, as well as the inter-annual variability due to 

climate (Figure 4.4). In grassland systems variability in production driven by climate is well 

known (Briske et al., 2015), and an understanding of this inter-annual variation is important in 

both the management of these systems (Allen-Diaz et al., 1995; Joyce et al., 2013) as well as 

analysis procedures (e.g. Archer, 2004; Brinkmann et al., 2011; Evans and Geerken, 2004; 

Wessels et al., 2012). This is exemplified and easily visualized when applying thresholds 

derived during a low biomass year to a year with high biomass and visa-versa. For example, 

when we apply the low biomass classification to the 2016 Fall biomass data, the only places 

that appear to meet the “High” degree of change criteria are the patches that had received 

prescribed burns that year. In contrast, when applying the high production classification to the 

2015 fall biomass the pixels with Low and Med degree of change fall mostly within old fields, 

pastures that have been rested for multiple years and areas close to stream channels—places 

that have the greatest productivity (Figure A3.2). Interpreting these results could lead to 

erroneous conclusions about livestock management, since the thresholds are not sensitive to 

the particular year in question. Calculating the relative difference in biomass between the 

summer and the fall helps to overcome the year to year variability as observed when mapping 

the fall residual biomass (Figure 4.4). Mapping the relative difference raster data across 2015-

2017 shows a pattern aligned with management (grazing and fire) as well as past land use 

history such as cultivated fields. The small range (< 4%) between the Medium and High 

classification thresholds indicates weak sensitivity of this algorithm to quantifying moderate 

grazing at the 30m scale. Future research could seek to increase this range between the two 

classes by using more covariates within the statistical analysis (i.e. timing of grazing, summer 

rainfall etc.) or use a classification approach to attempt to map utilization into relevant classes 

and adjust in-field methods (i.e. plot size) to better align with the spatial resolution of Landsat 

data.   

 



103 
  

 

 

Figure 4.5. Classified relative difference and fall biomass maps using both low production and 

high production thresholds across 2015 to 2017. The 3 classes of change are high (red), 

medium (orange) and low (blue) with 2016 fires circled with red ovals.  

5.0 Management and Monitoring Implications 

In this observational study, we linked a primary driver (stocking rate) and common 

short-term response indicator (utilization) to satellite-derived biomass data, demonstrating the 

potential utility of satellite data in adaptive rangeland management. We purposely kept the 

input data and analysis as general as possible and acknowledge that the results showed 
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moderate to weak relationships between the remotely sensed biomass metrics and short-term 

grazing monitoring indicators. However, few relationships evaluated at management scales in 

rangelands are statistically robust, and we believe that more insight can be gleaned when 

plotting this data at the pasture scale and categorizing individual pastures by their 

management history and season of use (Figure 4.5). These plots allow for examination of 

outlier points that weaken statistical significance, and they highlight the utility of this data as 

an adaptive management or monitoring tool. For example, when plotting fall biomass across 

years at the pasture scale, several pastures with high stocking rates also had high fall biomass 

and showed less change between Summer and Fall, which was not expected. Further 

examination of these pastures revealed that they were grazed for 5 days each early in the 

season (late May to early June) during an above normal production year, and within high 

production pastures, allowing for significant re-growth by the time the fall scene was 

acquired. Plotting individual pastures in this way, combined with a manager’s knowledge of 

the pastures’ characteristics and grazing history, provides valuable feedback that can be 

integrated into adaptive management. In this example, the raster data improves a managers’ 

confidence in the potential for re-growth under specific circumstances, which may lead to 

adjustments in timing or intensity of grazing in the subsequent year. At the other end of the 

stocking rate scale, plotting the 10th percentile of the relative difference by pasture revealed 

pastures that had abnormally large relative difference values. When reviewing this with the 

land manager, we learned that these two pastures had high use by trespass cattle, which was 

not accounted for in the manager’s records. Highlighting areas with greater-than-desired 

changes in biomass could allow a manager to investigate reasons for the patterns, and if 

necessary reduce stocking rates, rest the pasture entirely for a year, or graze at a different time 

to ameliorate the conditions. The subsequent years’ relative difference map and plots could 

then provide feedback about the management adjustments.  
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Figure 4.6. Relationships of select metrics, Mean Fall Biomass (A-C), and the Relative 

Difference 10th Percentile (D-F) for each year with stocking rate. The time of grazing 

(Grazing Season) is represented with color while the grazing management type are 

represented by different symbols. Three pastures grazed during the cool summer season are 

highlighted with the black box were grazed heavily for 5 days each from May 5/26 to 6/9 in 

2017. Pastures with trespass cattle are highlighted with the blue circles. 

Using threshold values to classify biomass maps is a straightforward way to display 

remote sensing data for quick interpretation. Applying thresholds to relative difference data 

reduces bias from inter-annual variability in production. Alternatively, managers can choose 

to derive thresholds from years with above average production to act as an indicator of areas 

which have the capacity to remain above ecologically relevant residual biomass thresholds 

even in low production years. Results such as these are important conservation tools which 

help to focus management on areas that have greater production or conservation potential (e.g. 
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Wiens et al., 2009), since the greatest difficulty may lie in maintaining the higher range of 

biomass quantity as climate variability is projected to increase with increasing concentrations 

of man-made greenhouse gases (IPCC 2012; Briske et al., 2015; Joyce et al., 2013). By 

mapping locations of biomass that in most years stays above important habitat thresholds, 

managers can try to ensure that the higher biomass component of their landscape remains 

intact, by removing management drivers that reduce vegetation amounts like fire or grazing, 

depending on the grassland system.  We also propose that thresholds could be determined in 

other ways and guided by the rancher or manager. For example, managers who have spent 

time surveying pastures could choose a particular pasture to represent “moderate” use and that 

pasture could be used as the breakpoint for classification on a pasture scale.  

Quantifying vegetation change between summer and fall, as well as residual biomass 

can provide an important base layer for improving sampling designs for in-field monitoring. 

For example, if the goal is to monitor grazing utilization efficiently and effectively, stratifying 

the landscape using the relative difference raster can potentially improve pasture or ranch 

wide estimates compared to a simple random sampling design. Also, the fall and relative 

difference maps could be used to identify critical and key areas to monitor for signs of 

overuse or trends in plant composition. The thresholds listed in this study should be 

continuously improved with new monitoring and research data and tested for applicability 

when land managers define new objectives. Ideally this remotely sensed data can advance the 

adaptive management cycle in an iterative process whereby the remotely sensed data 

improves in-field grazing monitoring efforts by providing better stratification for increased 

efficiency and in turn that yearly monitoring data would provide feedback to improve the 

remotely sensed classification of the fall and relative difference biomass monitoring products. 

Lastly, we think it is also important to point out some considerations with how 

remotely sensed monitoring relates to current monitoring data and its interpretation for 

adaptive management. First, utilization and relative difference in biomass are estimates of two 

different things: utilization is an estimation of what percentage of forage plants have been 

removed, while relative difference in biomass is an estimate of the change in all vegetation, 

including losses due to senescence. These two indicators provide two frames of reference for 

the units regarding the estimation of vegetation change. The resulting differences in 

measurement units and associated ranges need to be investigated further to help managers 
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transition to using remote sensing indicators. At present, we do not consider relative 

difference to be a direct proxy for utilization.  Second, because stocking rate does not account 

for reductions in biomass incurred from other herbivores (trespass cattle, elk, ground 

squirrels, and insects) or from senescence, we advise caution when interpreting patterns of 

total biomass change across a pasture; some of these changes were caused by livestock, but 

not all. For this reason, we refrain from interpreting relative difference maps strictly as 

indicators of livestock use patterns.  

6.0 Conclusion  

While many remote sensing studies seek to understand how stocking rate or grazing 

intensity change the above ground estimates of vegetation or vegetation indices (Jansen et al., 

2016; Kawamura et al., 2005; Todd et al., 1998) few have related remotely sensed data to 

estimates of grazing utilization with a relative difference biomass raster data computed from 

pre and post grazing satellite scenes or estimates of end of season residual biomass. In 

performing the analysis in such a way, we hope that this technology will be more easily 

adopted and understood for short term monitoring and adaptive management. The ability to 

monitor large landscapes with satellite data is an important step in improving in-field data 

collection efforts, the adaptive management cycle and conservation outcomes at meaningful 

scales. In this study we attempted to move beyond the statistics of modeling of vegetation 

amounts with remotely sensed data and demonstrated how remotely sensed vegetation data 

can directly inform adaptive management. 
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Appendix 1. Supplemental Materials for Chapter 2.  
Supplementary Materials: The development of near real-time biomass and cover estimates for 

adaptive rangeland management using Landsat surface reflectance products 

 

Figure A1.1. Sampling site plot layout.  

 

Caption: Sample sites were selected using a stratified random sampling approach and 

homogeneity at the site was validated in the field. At each site, three 60m transects were 

established in an east-west direction and 30m apart in the north-south direction. Along each 

transect, cover, vegetation color and vegetation height of functional groups was collected at 

1m intervals using line-point intercept. Above-ground biomass and utilization were estimated 

in 1 x 0.5m quadrats every 5m along each transect. All biomass was clipped in four quadrats: 

at 30m on the southern and northern transects and at 20m and 40m on the center transect. 
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Table A1.1. Paired Landsat 7 and Landsat 8 scenes used in model building (including timing 

of in-field vegetation sampling) and for sensor model comparisons. 

 

Year 
Scene 

Date 

Julian 

Date 
Sensor Path/Row 

Scene used 

for Model 

Creation 

In-field 

Sampling 

Dates 

2013 28 Jun  179 LS8 P43/R28   

2013 29 Jun  180 LS7 P42/R28   

2014 23 Jun 174 LS7 P43/R28     

2014 24 Jun  175 LS8 P42/R28     

2014 11 Sep 254 LS7 P43/R28    

2014 12 Sep 255 LS8 P42/R28   
2014 19 Sep 262 LS8 P43/R28 x 19 - 28 Sep 

2014 20 Sep  263 LS7 P42/R28 x 19 - 28 Sep 

2015 10 Jun  161 LS7 P43/R28 x 1 – 25 Jun 

2015 11 Jun 162 LS8 P42/R28 x 1 – 25 Jun 

2015 26 Jun  177 LS7 P43/R28     

2015 27 Jun  178 LS8 P42/R28   

2015 16 Oct  289 LS7 P43/R28 x 21 Sep - 6 Oct  

2015 17 Oct   290 LS8 P42/R28 x 21 Sep - 6 Oct 

2016 20 Jun 172 LS8 P43/R28 x 2 – 15 Jun 

2016 21 Jun   173 LS7 P42/R28 x 2 – 15 Jun 

2016 24 Sep  268 LS8 P43/R28 x 
26 Sept – 7 

Oct 

2016 25 Sep  269 LS7  P42/R28 x 
26 Sept - 7 

Oct 

2017 23 Jun 174 LS8 P43/R28     

2017 24 Jun  175 LS7 P42/R28   
2017 18 Aug  230 LS7 P43/R28     

2017 19 Aug   231 LS8 P42/R28   

2017 27 Sep  270 LS8 P43/R28     

2017 28 Sep  271 LS7 P42/R28   
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Table A1.2. Candidate vegetation indices used in the best subset modeling step.  
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Figure A1.2. Workflow diagram for final algorithm development. 
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Table A1.3. The field, sensor and topographic variables used to correlate with residuals from 

the NDVI threshold algorithm. LPI is line-point intercept. NED is National Elevation Dataset. 

CDR is Climate Data Record 

 
Variable  Data Source 

% Mean Utilization Utilization 

% Perennial Grass LPI - Top Canopy 

% Annual Grass LPI - Top Canopy 

% Perennial Forb LPI - Top Canopy 

% Annual Forb LPI - Top Canopy 

% Litter Cover LPI - Top Canopy 

% Green Color LPI - Top Canopy 

% Brown & SD Color LPI - Top Canopy 

% Soil Surface LPI - Soil Surface 

% Rock  LPI - Soil Surface 

% Moss or Lichen LPI - Soil Surface 

Aspect  NED 30m DEM 

Slope NED 30m DEM 

Sensor Date Landsat CDR  

Prior Rain Lag (days) 

Landsat 

CDR/Zumwalt WX 

Station 

Infield Sample Lag 

(Days) 
Sensor/Field 

Infield Sample Date Field Data 



 
  

 

Table A1.4. Variable Selection using a bootstrapped best subset model approach for Green (Summer) Biomass data.  

Time Sensor 
Model 

Rank 

Variable 

Count 
NDVI SAVI RDVI MTVII NCI NDCI PSRI SATVI NDII7 NDWI 

EV

I 

TC-

BRI 

TC-

GRE 

TC-

WET 
NDTI 

G
re

en
 

LS7 1 1 0 0 0 0 0 0 0 0 73 927 0 0 0 0 0 

LS7 2 1 0 0 0 0 0 0 0 0 918 73 0 0 8 1 0 

LS8 1 1 0 0 0 0 0 0 0 28 853 97 0 0 0 22 0 

LS8 2 1 0 0 0 0 0 0 0 59 120 784 0 0 0 37 0 

LS7LS8 1 1 0 0 0 0 0 0 0 0 753 247 0 0 0 0 0 

LS7LS8 2 1 0 0 0 0 0 0 0 0 247 753 0 0 0 0 0 

LS7 1 2 5 20 24 61 1 61 184 3 647 258 681 3 43 7 2 

LS7 2 2 24 23 20 58 7 116 454 6 543 362 340 6 33 6 2 

LS8 1 2 3 1 2 333 0 0 2 55 848 81 176 188 17 242 52 

LS8 2 2 4 3 56 162 0 0 10 130 785 136 78 254 68 276 38 

LS7LS8 1 2 0 0 0 44 0 0 15 12 981 19 925 0 0 4 0 

LS7LS8 2 2 0 0 0 350 0 7 465 73 899 100 64 7 0 35 0 

Table A1.5. Variable Selection using a bootstrapped best subset model approach for Brown (Fall) Biomass data.  

Time Sensor 
Model 

Rank 

Variable 

Count 
NDVI SAVI RDVI MTVII NCI NDCI PSRI SATVI NDII7 NDWI EVI 

TC-

BRI 

TC-

GRE 

TC-

WET 
NDTI 

B
ro

w
n

 

LS7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS7 2 1 0 0 0 0 0 0 0 0 852 0 0 0 148 0 0 

LS8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS8 2 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS7LS8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS7LS8 2 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS7 1 2 28 5 4 39 190 14 256 2 217 217 50 94 85 16 783 

LS7 2 2 40 45 39 100 117 95 116 54 191 176 70 47 33 24 853 

LS8 1 2 0 0 5 2 134 9 256 4 183 182 10 64 328 4 819 

LS8 2 2 4 10 167 18 116 51 123 14 96 157 29 85 197 26 907 

LS7LS8 1 2 4 5 6 0 195 0 104 1 138 141 3 34 506 1 862 

LS7LS8 2 2 10 29 302 6 121 66 72 10 134 127 11 47 187 2 876 

 1
1

8 

 



 
  

 

Table A1.6. Variable Selection using a bootstrapped best subset model approach for All Year (Green + Brown) Biomass data.  

Time Sensor 
Model 

Rank 

Variable 

Count 
NDVI SAVI 

RDV

I 

MTVI

I 
NCI 

ND

CI 
PSRI 

SATV

I 
NDII7 

NDW

I 
EVI 

TC-

BRI 

TC-

GRE 

TC-

WET 
NDTI 

A
ll

 Y
ea

r 

LS7 1 1 0 0 0 0 0 0 0 0 196 0 0 0 0 0 804 

LS7 2 1 0 0 0 0 0 0 0 0 804 0 0 0 7 0 189 

LS8 1 1 0 0 0 0 0 0 0 0 258 0 0 0 0 0 742 

LS8 2 1 0 0 0 0 0 0 0 0 742 0 0 0 0 0 258 

LS7LS8 1 1 0 0 0 0 0 0 0 0 128 0 0 0 0 0 872 

LS7LS8 2 1 0 0 0 0 0 0 0 0 872 0 0 0 0 0 128 

LS7 1 2 1 0 0 642 6 0 131 0 333 41 148 0 646 2 50 

LS7 2 2 2 3 0 108 4 0 534 4 817 79 170 1 127 3 148 

LS8 1 2 27 0 0 10 0 0 2 13 955 671 2 1 0 3 316 

LS8 2 2 23 27 0 16 1 0 0 18 787 266 6 5 1 5 845 

LS7LS8 1 2 1 0 0 8 0 0 20 0 991 312 17 0 6 0 645 

LS7LS8 2 2 1 1 0 6 0 0 16 0 542 634 22 0 5 0 773 

 

Table A1.7. Variable Selection using a bootstrapped best subset model approach for Green (Summer) Cover data.  

Time Sensor 
Model 

Rank 

Variable 

Count 
NDVI SAVI RDVI MTVII NCI NDCI PSRI SATVI NDII7 NDWI EVI 

TC-

BRI 

TC-

GRE 

TC-

WET 
NDTI 

G
re

en
 

LS7 1 1 0 0 0 0 0 0 0 0 952 48 0 0 0 0 0 

LS7 2 1 0 1 10 0 0 0 0 0 48 928 0 0 1 0 12 

LS8 1 1 0 0 0 0 0 0 0 0 995 0 0 0 0 0 5 

LS8 2 1 114 59 1 0 0 0 2 0 5 547 0 0 0 0 272 

LS7LS8 1 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS7LS8 2 1 0 2 0 0 0 0 0 0 0 959 0 0 0 0 39 

LS7 1 2 52 88 87 5 1 510 2 174 781 2 75 173 8 42 0 

LS7 2 2 215 148 57 17 13 343 5 140 695 17 50 221 19 60 0 

LS8 1 2 8 10 5 0 31 50 188 119 858 358 1 120 245 1 6 

LS8 2 2 29 27 88 13 57 101 177 158 744 218 1 159 192 11 25 

LS7LS8 1 2 20 22 0 0 42 619 17 63 916 64 12 104 110 11 0 

LS7LS8 2 2 190 68 16 10 161 180 16 29 926 52 63 77 177 35 0 

  

1
1
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Table A1.8. Variable Selection using a bootstrapped best subset model approach for the Fall (Brown) Cover data.  

 

Time Sensor 
Model 

Rank 

Variable 

Count 
NDVI SAVI RDVI MTVII NCI NDCI PSRI SATVI NDII7 NDWI EVI 

TC-

BRI 

TC-

GRE 

TC-

WET 
NDTI 

B
ro

w
n

 

LS7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS7 2 1 0 0 0 0 0 0 0 0 524 0 0 0 476 0 0 

LS8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS8 2 1 0 0 0 0 0 0 0 0 997 0 0 0 3 0 0 

LS7LS8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS7LS8 2 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS7 1 2 0 0 6 2 5 2 43 202 14 12 42 221 9 454 988 

LS7 2 2 2 1 9 0 13 4 16 636 14 22 23 86 2 186 986 

LS8 1 2 1 1 109 0 21 1 65 35 4 3 0 633 84 47 996 

LS8 2 2 3 3 186 0 23 4 36 300 9 8 2 123 151 160 992 

LS7LS8 1 2 0 0 87 0 11 1 2 24 1 2 0 774 41 58 999 

LS7LS8 2 2 0 0 155 3 2 1 2 492 2 2 0 72 93 177 999 

 

Table A1.9. Variable Selection using a bootstrapped best subset model approach for the complete dataset (All Year) Cover data.  

 

Time Sensor 
Model 

Rank 

Variable 

Count 
NDVI SAVI RDVI MTVII NCI NDCI PSRI SATVI NDII7 NDWI EVI 

TC-

BRI 

TC-

GRE 

TC-

WET 
NDTI 

A
ll

 Y
ea

r 

LS7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS7 2 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS8 2 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS7LS8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 

LS7LS8 2 1 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 

LS7 1 2 0 0 0 13 1 328 27 0 317 310 236 65 12 20 671 

LS7 2 2 0 0 0 20 1 213 115 21 150 133 411 58 6 28 844 

LS8 1 2 0 0 0 0 0 0 0 0 1000 1000 0 0 0 0 0 

LS8 2 2 0 0 0 211 23 455 0 1 0 3 13 161 0 134 999 

LS7LS8 1 2 0 0 0 0 0 2 0 0 994 994 0 4 0 0 6 

LS7LS8 2 2 0 0 0 6 3 538 2 0 6 6 179 215 0 51 994 

1
2

0 

 



 
  

 

Table A1.10. Top candidate models for Cover 

 

Time Sensor Predictor Var VIF 
Train-

N 
r2 rRMSE RMSD 

Test-

N 
r2 rRMSE RMSD 

G
re

en
 

LS7 NDII7 NA 60 0.70 16.89 0.11 20 0.70 17.39 0.11 

LS7 NDWI NA 60 0.67 17.64 0.11 20 0.70 17.49 0.11 

LS7 NDII7, NDCI 1.61 60 0.74 15.63 0.10 20 0.68 17.98 0.11 

LS7 NDII7, NDCI 1.60 60 0.74 15.63 0.10 20 0.67 18.00 0.11 

LS8 NDII7 NA 93 0.78 16.07 0.10 30 0.75 13.00 0.08 

LS8 NDWI NA 93 0.75 17.26 0.10 30 0.70 14.39 0.09 

LS8 NDII7, NDWI 54.33 93 0.79 15.84 0.10 30 0.77 12.35 0.08 

LS8 NDII7, NDWI 53.87 93 0.79 15.84 0.10 30 0.77 12.37 0.08 

LS78 NDII7 NA 153 0.75 16.44 0.10 50 0.72 14.85 0.09 

LS78 NDWI NA 153 0.71 17.62 0.11 50 0.69 15.74 0.10 

LS78 NDII7, NDCI 1.77 153 0.77 15.80 0.10 50 0.70 15.53 0.10 

LS78 NDII7, TCGRE 15.77 153 0.76 15.96 0.10 50 0.69 15.41 0.10 

B
ro

w
n

 

LS7 NDTI NA 78 0.78 19.87 0.10 26 0.81 17.07 0.09 

LS7 NDII7 NA 78 0.63 25.70 0.14 26 0.68 22.52 0.12 

LS7 NDTI, TCWET 1.15 78 0.80 19.21 0.10 26 0.81 17.04 0.09 

LS7 NDTI, SATVI 1.67 78 0.80 19.21 0.10 26 0.81 17.03 0.09 

LS8 NDTI NA 99 0.72 21.73 0.11 32 0.72 22.71 0.13 

LS8 NDII7 NA 99 0.62 25.12 0.13 32 0.59 27.81 0.15 

LS8 NDTI, TCBRI 1.02 99 0.73 21.34 0.11 32 0.74 21.84 0.12 

LS8 NDTI, SATVI 1.18 99 0.73 21.46 0.11 32 0.73 22.05 0.12 

LS78 NDTI NA 177 0.75 20.92 0.11 58 0.73 20.69 0.11 

LS78 NDII7 NA 177 0.59 26.82 0.14 58 0.62 25.49 0.14 

LS78 NDTI, TCBRI 1.01 177 0.76 20.51 0.11 58 0.74 19.97 0.11 

LS78 NDTI, SATVI 1.28 177 0.76 20.57 0.11 58 0.74 20.17 0.11 

A
ll

 Y
ea

r 

LS7 NDTI NA 120 0.65 22.85 0.13 40 0.72 21.00 0.12 

LS7 NDII7 NA 120 0.48 27.57 0.15 40 0.57 25.70 0.15 

LS7 NDTI, NDII7 4.84 120 0.65 22.79 0.13 40 0.72 20.82 0.12 

LS7 NDTI, EVI 2.32 120 0.66 22.28 0.12 40 0.74 20.23 0.12 

LS8 NDTI NA 184 0.69 20.55 0.12 62 0.70 21.02 0.12 

LS8 NDII7 NA 184 0.58 23.93 0.14 62 0.51 26.82 0.15 

LS8 NDII7, NDWI 29.58 184 0.72 19.53 0.11 62 0.72 19.58 0.11 

LS8 NDTI, NDCI 1.54 184 0.70 20.21 0.11 62 0.69 21.44 0.12 

LS78 NDTI NA 304 0.67 21.71 0.12 102 0.70 20.74 0.12 

LS78 NDII7 NA 304 0.54 25.47 0.14 102 0.53 26.23 0.15 

LS78 NDII7, NDWI 24.47 304 0.69 20.94 0.12 102 0.73 19.59 0.11 

LS78 NDTI, NDCI 1.61 304 0.67 21.41 0.12 102 0.70 20.75 0.12 

 1
2

1 



 
  

 

Table A1.11. Top candidate models for Biomass 

 

Time Sensor Predictor Var VIF 

Train-

N r2 rRMSE RMSD 

Test 

-N r2 rRMSE RMSD 

G
re

en
 

LS7 NDWI NA 60 0.72 21.70 37.32 20 0.78 22.52 36.96 

LS7 NDII7 NA 60 0.69 22.84 39.27 20 0.81 21.25 34.87 

LS7 EVI, NDII7 6.98 60 0.75 20.57 35.36 20 0.78 22.96 37.69 

LS7 NDII7, PSRI 4.97 60 0.73 21.08 36.25 20 0.78 22.59 37.08 

LS8 NDII7 NA 93 0.80 20.07 32.08 30 0.81 16.86 28.96 

LS8 NDWI NA 93 0.79 20.88 33.37 30 0.83 15.87 27.26 

LS8 NDII7, MTVII 12.26 93 0.84 18.28 29.22 30 0.79 17.28 29.69 

LS8 NDII7+TCBRI 1.00 93 0.83 18.47 29.53 30 0.81 16.68 28.66 

LS78 NDII7 NA 153 0.76 21.38 35.07 50 0.81 18.50 30.89 

LS78 NDWI NA 153 0.75 21.68 35.56 50 0.81 18.47 30.84 

LS78 NDII7, EVI 8.13 153 0.79 19.87 32.60 50 0.82 18.22 30.42 

LS78 NDII7, PSRI 5.02 153 0.78 20.62 33.82 50 0.83 17.57 29.34 

B
ro

w
n

 

LS7 NDTI NA 78 0.71 30.46 32.67 25 0.77 24.19 26.43 

LS7 NDII7 NA 78 0.56 37.61 40.35 25 0.75 25.19 27.52 

LS7 NDTI, NCI 1.45 78 0.72 30.04 32.23 25 0.76 24.85 27.15 

LS7 NDTI, NDCI 1.16 78 0.72 30.27 32.47 25 0.77 24.57 26.84 

LS8 NDTI NA 99 0.67 30.88 31.20 32 0.70 26.69 32.02 

LS8 NDII7 NA 99 0.51 37.79 38.18 32 0.65 29.04 34.83 

LS8 NDTI, TCGRE 1.94 99 0.67 30.78 31.11 32 0.72 26.25 31.48 

LS8 NDTI, NDWI 1.07 99 0.68 30.53 30.85 32 0.71 26.52 31.81 

LS78 NDTI NA 177 0.69 30.73 31.80 57 0.73 25.86 29.54 

LS78 NDII7 NA 177 0.50 39.07 40.44 57 0.65 29.51 33.71 

LS78 NDTI, NCI 1.17 177 0.70 30.39 31.45 57 0.73 25.90 29.59 

LS78 NDTI, NDCI 1.05 177 0.70 30.49 31.55 57 0.72 26.08 29.79 

A
ll

 Y
ea

r 

LS7 NDTI NA 120 0.67 29.32 40.52 40 0.76 25.94 37.26 

LS7 NDII7 NA 120 0.63 30.97 42.80 40 0.72 28.55 41.02 

LS7 NDII7, TCGRE 25.76 120 0.63 30.82 42.60 40 0.73 27.67 39.76 

LS7 NDII7, NDTI 5.25 120 0.68 28.57 39.49 40 0.79 24.43 35.09 

LS8 NDTI NA 184 0.74 26.34 35.38 62 0.77 27.22 35.32 

LS8 NDII7 NA 184 0.74 26.13 35.10 62 0.72 29.17 37.84 

LS8 NDII7. NDWI 22.60 184 0.78 24.13 32.42 62 0.76 27.00 35.02 

LS8 NDTI, NDII7 5.43 184 0.78 24.17 32.47 62 0.77 27.17 35.24 

LS78 NDTI NA 304 0.70 27.88 37.82 102 0.76 26.10 35.11 

LS78 NDII7 NA 304 0.69 28.43 38.57 102 0.70 29.19 39.26 

LS78 NDII7, NDTI 4.88 304 0.74 26.19 35.53 102 0.77 25.55 34.37 

LS78 NDTI, NDWI 2.57 304 0.74 26.22 35.57 102 0.77 25.76 34.65 
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Table A1.12. Paired Cover models  

 

VarSel VIFm Time Sensor var int beta1 beta2 
N - 

Train 
r2 aRMSE rRMSE RMSD 

N - 

Test 
r2 aRMSE rRMSE RMSD 

Cover NA Summer LS7 NDII7 0.44 0.95 NA 60 0.70 0.11 16.89 0.11 20 0.7 0.11 17.39 0.11 

Cover NA Summer LS7 NDWI 0.64 1.31 NA 60 0.67 0.11 17.64 0.11 20 0.7 0.11 17.49 0.11 

Cover 1.61 Summer LS7 NDII7, NDCI 0.97 1.13 -1.11 60 0.74 0.1 15.63 0.1 20 0.68 0.11 17.98 0.11 

Cover 1.6 Summer LS7 NDII7, NDCI 0.98 1.13 -1.13 60 0.74 0.1 15.63 0.1 20 0.67 0.11 18 0.11 

Cover NA Summer LS8 NDII7 0.44 0.92 NA 60 0.74 0.1 15.62 0.1 20 0.7 0.11 17.45 0.11 

Cover NA Summer LS8 NDWI 0.61 1.2 NA 60 0.70 0.11 16.96 0.11 20 0.7 0.11 17.52 0.11 

Cover 1.91 Summer LS8 NDII7, NDCI 0.82 1.05 -0.77 60 0.76 0.09 15.05 0.09 20 0.7 0.11 17.25 0.11 

Cover 1.91 Summer LS8 NDII7, NDCI 0.83 1.05 -0.79 60 0.76 0.09 15.05 0.09 20 0.7 0.11 17.24 0.11 

Cover NA Summer LS78 NDII7 0.44 0.93 NA 120 0.72 0.1 16.28 0.1 40 0.7 0.11 17.42 0.11 

Cover NA Summer LS78 NDWI 0.62 1.24 NA 120 0.68 0.11 17.47 0.11 40 0.69 0.11 17.54 0.11 

Cover 1.66 Summer LS78 NDII7, NDCI 0.87 1.08 -0.9 120 0.75 0.1 15.4 0.1 40 0.69 0.11 17.58 0.11 

Cover 1.66 Summer LS78 NDII7, NDCI 0.88 1.09 -0.92 120 0.75 0.1 15.4 0.1 40 0.69 0.11 17.6 0.11 

Cover NA Fall LS7 NDTI -0.09 3.83 NA 71 0.73 0.11 21.39 0.11 23 0.86 0.08 15.45 0.08 

Cover NA Fall LS7 NDII7 0.63 1.93 NA 71 0.53 0.14 28.02 0.14 23 0.8 0.1 19.16 0.1 

Cover 1.08 Fall LS7 
NDTI, 

TCWET 
-0.32 3.99 0 71 0.74 0.1 20.68 0.1 23 0.84 0.08 15.85 0.09 

Cover 1.44 Fall LS7 NDTI, SATVI -0.37 4.22 0 71 0.74 0.1 20.68 0.1 23 0.84 0.08 15.93 0.09 

Cover NA Fall LS8 NDTI -0.15 4.39 NA 71 0.71 0.11 22.18 0.11 23 0.83 0.09 16.23 0.09 

Cover NA Fall LS8 NDII7 0.56 2.02 NA 71 0.53 0.14 27.87 0.14 23 0.73 0.11 20.74 0.11 

Cover 1.04 Fall LS8 NDTI, SATVI -0.36 4.53 0 71 0.73 0.11 21.17 0.11 23 0.79 0.1 18.22 0.1 

Cover 1.04 Fall LS8 NDTI, SATVI -0.36 4.53 0 71 0.73 0.11 21.17 0.11 23 0.79 0.1 18.29 0.1 

Cover NA Fall LS78 NDTI -0.11 4.05 NA 142 0.71 0.11 22.06 0.11 46 0.84 0.08 15.99 0.09 

Cover NA Fall LS78 NDII7 0.59 1.84 NA 142 0.50 0.15 28.97 0.15 46 0.71 0.12 21.96 0.12 

Cover 1.03 Fall LS78 NDTI, TCBRI -0.32 3.93 0 142 0.73 0.11 21.15 0.11 46 0.8 0.09 17.7 0.09 

Cover 1.14 Fall LS78 NDTI, SATVI -0.35 4.31 0 142 0.73 0.11 21.18 0.11 46 0.81 0.09 17.38 0.09 

Cover NA All-year LS7 NDTI 0.02 2.94 NA 121 0.67 0.12 21.8 0.12 40 0.74 0.12 20.28 0.12 

Cover NA All-year LS7 NDII7 0.5 0.85 NA 121 0.48 0.15 27.32 0.15 40 0.64 0.13 22.62 0.13 

Cover 4.71 All-year LS7 NDTI, NDII7 -0.06 3.43 -0.19 121 0.67 0.12 21.62 0.12 40 0.73 0.12 20.63 0.12 

Cover 1.98 All-year LS7 NDTI, EVI 0 3.5 -0.11 121 0.69 0.12 20.93 0.12 40 0.72 0.12 20.81 0.12 

Cover NA All-year LS8 NDTI 0 3.23 NA 121 0.7 0.12 20.82 0.12 40 0.71 0.13 21.37 0.13 

Cover NA All-year LS8 NDII7 0.48 0.93 NA 121 0.54 0.14 25.71 0.14 40 0.62 0.14 23.26 0.14 

Cover 25.56 All-year LS8 NDII7, NDWI -0.05 3.6 -3.63 121 0.72 0.11 19.95 0.11 40 0.77 0.11 18.35 0.11 

Cover 1.49 All-year LS8 NDTI, NDCI 0.13 3.51 -0.38 121 0.71 0.11 20.42 0.11 40 0.7 0.13 21.44 0.13 

Cover NA All-year LS78 NDTI 0.02 3.04 NA 242 0.67 0.12 21.57 0.12 80 0.72 0.12 20.66 0.12 

Cover NA All-year LS78 NDII7 0.49 0.88 NA 242 0.5 0.15 26.6 0.15 80 0.63 0.13 22.93 0.14 

Cover 21.06 All-year LS78 NDII7, NDWI -0.01 3.25 -3.26 242 0.69 0.12 21.13 0.12 80 0.78 0.11 18.59 0.11 

Cover 1.47 All-year LS78 NDTI, NDCI 0.16 3.3 -0.4 242 0.69 0.12 21.18 0.12 80 0.71 0.12 20.61 0.12 
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Table A1.13. Paired Biomass models 

  

VarSel VIFm Time Sensor var int beta1 beta2 
N - 

Train 
r2 aRMSE rRMSE RMSD 

N - 

Test 
r2 aRMSE rRMSE RMSD 

Cover NA Summer LS7 NDII7 0.44 0.95 NA 60 0.70 0.11 16.89 0.11 20 0.7 0.11 17.39 0.11 

Cover NA Summer LS7 NDWI 0.64 1.31 NA 60 0.67 0.11 17.64 0.11 20 0.7 0.11 17.49 0.11 

Cover 1.61 Summer LS7 NDII7, NDCI 0.97 1.13 -1.11 60 0.74 0.1 15.63 0.1 20 0.68 0.11 17.98 0.11 

Cover 1.6 Summer LS7 NDII7, NDCI 0.98 1.13 -1.13 60 0.74 0.1 15.63 0.1 20 0.67 0.11 18 0.11 

Cover NA Summer LS8 NDII7 0.44 0.92 NA 60 0.74 0.1 15.62 0.1 20 0.7 0.11 17.45 0.11 

Cover NA Summer LS8 NDWI 0.61 1.2 NA 60 0.70 0.11 16.96 0.11 20 0.7 0.11 17.52 0.11 

Cover 1.91 Summer LS8 NDII7, NDCI 0.82 1.05 -0.77 60 0.76 0.09 15.05 0.09 20 0.7 0.11 17.25 0.11 

Cover 1.91 Summer LS8 NDII7, NDCI 0.83 1.05 -0.79 60 0.76 0.09 15.05 0.09 20 0.7 0.11 17.24 0.11 

Cover NA Summer LS78 NDII7 0.44 0.93 NA 120 0.72 0.1 16.28 0.1 40 0.7 0.11 17.42 0.11 

Cover NA Summer LS78 NDWI 0.62 1.24 NA 120 0.68 0.11 17.47 0.11 40 0.69 0.11 17.54 0.11 

Cover 1.66 Summer LS78 NDII7, NDCI 0.87 1.08 -0.9 120 0.75 0.1 15.4 0.1 40 0.69 0.11 17.58 0.11 

Cover 1.66 Summer LS78 NDII7, NDCI 0.88 1.09 -0.92 120 0.75 0.1 15.4 0.1 40 0.69 0.11 17.6 0.11 

Cover NA Fall LS7 NDTI -0.09 3.83 NA 71 0.73 0.11 21.39 0.11 23 0.86 0.08 15.45 0.08 

Cover NA Fall LS7 NDII7 0.63 1.93 NA 71 0.53 0.14 28.02 0.14 23 0.8 0.1 19.16 0.1 

Cover 1.08 Fall LS7 
NDTI, 

TCWET 
-0.32 3.99 0 71 0.74 0.1 20.68 0.1 23 0.84 0.08 15.85 0.09 

Cover 1.44 Fall LS7 NDTI, SATVI -0.37 4.22 0 71 0.74 0.1 20.68 0.1 23 0.84 0.08 15.93 0.09 

Cover NA Fall LS8 NDTI -0.15 4.39 NA 71 0.71 0.11 22.18 0.11 23 0.83 0.09 16.23 0.09 

Cover NA Fall LS8 NDII7 0.56 2.02 NA 71 0.53 0.14 27.87 0.14 23 0.73 0.11 20.74 0.11 

Cover 1.04 Fall LS8 NDTI, SATVI -0.36 4.53 0 71 0.73 0.11 21.17 0.11 23 0.79 0.1 18.22 0.1 

Cover 1.04 Fall LS8 NDTI, SATVI -0.36 4.53 0 71 0.73 0.11 21.17 0.11 23 0.79 0.1 18.29 0.1 

Cover NA Fall LS78 NDTI -0.11 4.05 NA 142 0.71 0.11 22.06 0.11 46 0.84 0.08 15.99 0.09 

Cover NA Fall LS78 NDII7 0.59 1.84 NA 142 0.50 0.15 28.97 0.15 46 0.71 0.12 21.96 0.12 

Cover 1.03 Fall LS78 NDTI, TCBRI -0.32 3.93 0 142 0.73 0.11 21.15 0.11 46 0.8 0.09 17.7 0.09 

Cover 1.14 Fall LS78 NDTI, SATVI -0.35 4.31 0 142 0.73 0.11 21.18 0.11 46 0.81 0.09 17.38 0.09 

Cover NA All-year LS7 NDTI 0.02 2.94 NA 121 0.67 0.12 21.8 0.12 40 0.74 0.12 20.28 0.12 

Cover NA All-year LS7 NDII7 0.5 0.85 NA 121 0.48 0.15 27.32 0.15 40 0.64 0.13 22.62 0.13 

Cover 4.71 All-year LS7 NDTI, NDII7 -0.06 3.43 -0.19 121 0.67 0.12 21.62 0.12 40 0.73 0.12 20.63 0.12 

Cover 1.98 All-year LS7 NDTI, EVI 0 3.5 -0.11 121 0.69 0.12 20.93 0.12 40 0.72 0.12 20.81 0.12 

Cover NA All-year LS8 NDTI 0 3.23 NA 121 0.7 0.12 20.82 0.12 40 0.71 0.13 21.37 0.13 

Cover NA All-year LS8 NDII7 0.48 0.93 NA 121 0.54 0.14 25.71 0.14 40 0.62 0.14 23.26 0.14 

Cover 25.56 All-year LS8 NDII7, NDWI -0.05 3.6 -3.63 121 0.72 0.11 19.95 0.11 40 0.77 0.11 18.35 0.11 

Cover 1.49 All-year LS8 NDTI, NDCI 0.13 3.51 -0.38 121 0.71 0.11 20.42 0.11 40 0.7 0.13 21.44 0.13 

Cover NA All-year LS78 NDTI 0.02 3.04 NA 242 0.67 0.12 21.57 0.12 80 0.72 0.12 20.66 0.12 

Cover NA All-year LS78 NDII7 0.49 0.88 NA 242 0.5 0.15 26.6 0.15 80 0.63 0.13 22.93 0.14 

Cover 21.06 All-year LS78 NDII7, NDWI -0.01 3.25 -3.26 242 0.69 0.12 21.13 0.12 80 0.78 0.11 18.59 0.11 

Cover 1.47 All-year LS78 NDTI, NDCI 0.16 3.3 -0.4 242 0.69 0.12 21.18 0.12 80 0.71 0.12 20.61 0.12 
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Figure A1.3. Scatter plots between in-field estimates of cover and biomass with select 

vegetation indices (NDTI, NDII7, NDVI) using Landsat 7 data  
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Figure A1.4. Scatter plots between in-field estimates of cover and biomass with select 

vegetation indices (NDTI, NDII7, NDVI)  using Landsat 8 data  
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Figure A1.5. Scatter plots between in-field estimates of cover and biomass with select 

vegetation indices (NDTI, NDII7, NDVI) using Landsat 7 and Landsat 8 data.  



 
 

 

Table A1.14. Table of Median and Mean pixel differences in Biomass across scene pairs across all model combinations and the 

associated vegetation index (NDII7 for Green, NDTI for Brown).  

 

  

Time 
Scenes 

Compared 
Statistic 

LS8SLS7M 

LS7SLS7M 

LS8SLS8M 

LS7SLS7M 

LS8SLS78M 

LS7SLS7M 

LS8SLS7M 

LS7SLS8M 

LS8SLS8M 

LS7SLS8M 

LS8SLS78M 

LS7SLS8M 

LS8SLS7M 

LS7SLS78M 

LS8SLS8M 

LS7SLS78M 

LS8SLS78M 

LS7SLS78M 

LS8VI-

LS7VI 

G
re

en
 

Jun. 28-29 

2013 

Median 2.31 0.78 1.35 3.82 2.29 2.87 3.26 1.73 2.31 0.61 

Mean 2.59 1.14 0.89 4.06 2.61 -6.33 3.51 2.04 2.55 3.09 

Jun. 23-24 

2014 

Median 1.26 -0.35 0.29 2.87 1.26 1.90 2.23 0.62 1.26 2.5 

Mean 0.93 -0.64 -0.03 2.50 0.93 1.54 1.89 0.32 0.93 8.25 

Jun. 10-11 

2015 

Median -1.13 -2.73 -2.09 0.48 -1.12 -0.49 -0.16 -1.76 -1.12 -1.6 

Mean -1.91 -3.59 -2.80 -0.31 -1.88 -1.22 -0.68 -2.47 -1.87 1.09 

Jun. 26-27 

2015 

Median 4.14 2.63 3.19 5.62 4.11 4.67 5.08 3.57 4.14 1.99 

Mean 4.27 2.77 3.32 5.73 4.23 4.78 5.21 3.70 4.26 -25.25 

Jun. 20-21 

2016 

Median 2.91 1.29 1.94 4.51 2.89 3.54 3.87 2.26 2.90 5.87 

Mean 3.00 1.39 2.03 4.58 2.98 3.62 3.96 2.35 2.99 5.45 

Jun. 23-24 

2017 

Median 1.99 0.34 1.01 3.63 1.98 2.66 2.97 1.31 1.99 3.95 

Mean 2.14 0.51 1.17 3.76 2.13 2.79 3.11 1.48 2.14 7.71 

All Scene 

Averages 

Avg Median 1.91 0.33 0.95 3.49 1.90 2.52 2.88 1.29 1.91 2.22 

Std Median 1.62 1.65 1.63 1.59 1.61 1.59 1.61 1.64 1.62 2.37 

Avg Mean 1.84 0.26 0.76 3.39 1.83 0.86 2.83 1.06 1.57 0.06 

Std Mean 1.95 2.00 1.90 1.91 1.93 3.72 1.86 1.94 1.93 11.59 

B
ro

w
n

 

Sep. 11-12 

2014 

Median -6.68 -4.54 -5.09 -8.01 -5.88 -6.43 -7.39 -5.25 -5.80 -3.8 

Mean -6.55 -3.55 -4.79 -8.18 -5.56 -6.32 -6.26 -5.11 -5.73 -3.67 

Sep. 19-20 

2014 

Median 1.19 3.20 2.53 -0.15 1.86 1.19 0.51 2.52 1.84 1.28 

Means 1.93 3.55 3.01 0.47 2.06 2.59 0.83 2.72 2.62 1.57 

Oct. 16-17 

2015 

Median -2.88 -0.67 -1.16 -4.21 -2.00 -2.49 -3.70 -1.47 -1.97 -1.23 

Mean -2.10 0.21 0.15 -3.35 -0.63 -1.93 -3.25 -0.54 -1.08 -0.99 

Sep. 24-25 

2016 

Median -3.35 -1.30 -1.93 -4.69 -2.64 -3.27 -4.02 -1.97 -2.61 -1.76 

Mean -3.10 -0.57 -1.22 -3.91 -1.70 -2.61 -3.46 -1.25 -1.83 -1.28 

Aug. 18-

19 2017 

Median -1.20 0.71 -0.05 -2.54 -0.63 -1.39 -1.77 0.14 -0.62 -0.44 

Mean -2.19 1.66 -0.01 2.01 -0.49 -0.81 -1.32 0.70 -0.60 -0.25 

Sep. 27-28 

2017 

Median -2.08 -0.13 -0.85 -3.42 -1.47 -2.19 -2.68 -0.73 -1.45 -1.02 

Mean -1.63 0.29 -0.38 -6.72 -0.94 -1.65 -2.27 3.74 -1.17 -0.84 

All Scene 

Averages 

Avg Median -2.50 -0.45 -1.09 -3.84 -1.79 -2.43 -3.18 -1.13 -1.77 -1.16 

Std Median 2.38 2.32 2.27 2.37 2.32 2.27 2.40 2.34 2.29 1.52 

Avg Mean -2.28 0.26 -0.54 -3.28 -1.21 -1.79 -2.62 0.04 -1.30 -0.91 

Std Mean 2.49 2.16 2.31 3.61 2.26 2.63 2.16 2.88 2.45 1.55 

 

1
2

8 



 
 

 

Table A1.15. Table of Median and Mean differences in Cover between scene pairs across all model combinations and the associated 

vegetation index (NDII7 for Green, NDTI for Brown).  
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Figure A1.6. Scatter plots of simple and polynomial linear regressions using the summer, fall, 

and all-year cover data for both Landsat7 and Landsat 8.    



 
 

 

Table A1.16. Model fit statistics for simple and polynomial linear regressions using the summer and fall cover data 

 
Metric Time Sensor Model 

Veg 

Index 

Training Lillie-

test 

Testing 

N R2 rRMSE RMSD N R2 rRMSE RMSD 

C
o

v
er

 
Summer LS7 Simple NDII7 60 0.70 16.89 0.106 0.89 20 0.70 17.39 0.111 

Summer LS7 Polynomial NDII7 60 0.72 16.12 0.101 0.47 20 0.70 17.03 0.108 

Summer LS8 Simple NDII7 93 0.78 16.07 0.097 0.60 30 0.75 13.00 0.085 

Summer LS8 Polynomial NDII7 60 0.80 15.20 0.091 0.48 30 0.77 11.97 0.078 

Fall LS7 Simple NDTI 78 0.78 19.87 0.104 0.48 26 0.81 17.07 0.090 

Fall LS7 Polynomial NDTI 78   0.78 19.85 0.104 0.48 26 0.81 17.15 0.091 

Fall LS8 Simple NDTI 99 0.72 21.73 0.110 0.51 32 0.72 22.71 0.125 

Fall LS8 Polynomial NDTI 99 0.74 21.02 0.106 0.84 32 0.72 22.16 0.122 

 All-Year LS7 Simple NDTI 120 0.65 22.84 0.12 0.64 40 0.72 21.00 0.121 

 All-Year LS7 Polynomial NDTI 120 0.67 22.18 0.12 0.93 40 0.75 20.50 0.118 

 All-Year LS8 Simple NDTI 184 0.69 20.55 0.12 0.61 62 0.70 21.02 0.115 

 All-Year LS8 Polynomial NDTI 184 0.72 19.70 0.11 0.89 62 0.74 18.97 0.104 

1
3

1 
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Appendix 2. Supplemental Materials for Chapter 3.  

Table A2.1. Spearman Rank correlations between Stocking rate and biomass spatial and 

summary statistics (N=23). Correlations significant at the 0.05 p-valule are bolded.  

 

Stat Scale sill range nugget MSH NSRatio mean p10 p25 p50 p75 p90 SD CV 

r 1 -0.02 0.60 -0.12 0.00 0.00 -0.43 -0.39 -0.44 -0.43 -0.43 -0.49 -0.07 0.34 

p-val 1 0.94 0.00 0.59 0.98 0.98 0.04 0.06 0.04 0.04 0.04 0.02 0.74 0.11 

r 3 0.02 0.78 0.07 -0.12 0.12 -0.43 -0.44 -0.42 -0.41 -0.47 -0.51 0.00 0.28 

p-val 3 0.92 0.00 0.74 0.59 0.59 0.04 0.03 0.05 0.05 0.02 0.01 0.99 0.19 

r 5 0.00 0.75 0.02 -0.05 0.05 -0.42 -0.41 -0.42 -0.41 -0.47 -0.52 0.02 0.30 

p-val 5 0.99 0.00 0.92 0.80 0.80 0.05 0.05 0.05 0.05 0.02 0.01 0.92 0.16 

r 8 0.00 0.55 0.05 0.00 0.05 -0.42 -0.42 -0.42 -0.41 -0.46 -0.51 0.06 0.32 

p-val 8 0.99 0.01 0.81 0.99 0.81 0.05 0.05 0.05 0.05 0.03 0.01 0.77 0.14 

r 20 0.11 0.25 -0.17 0.15 -0.15 -0.44 -0.44 -0.44 -0.43 -0.49 -0.51 0.13 0.35 

p-val 20 0.61 0.24 0.43 0.48 0.48 0.03 0.03 0.03 0.04 0.02 0.01 0.54 0.10 

r 30 0.01 0.23 -0.19 0.19 -0.19 -0.46 -0.44 -0.44 -0.44 -0.46 -0.49 0.13 0.36 

p-val 30 0.95 0.28 0.38 0.40 0.40 0.03 0.04 0.03 0.04 0.03 0.02 0.54 0.09 
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Figure A2.1.  Raw vendor point clouds (A), with associated biomass map (B), the post 

processed density point cloud (C), and after CloudCompare processing at 9.15 points per 

square meter as well as the resulting biomass map (D).  
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Figure A2.2. Applying the random forest modeling approach to the non-corrected lidar point 

clouds.  

Table. A2.2 Linear and Quadratic models for the pasture scale summary Stats (N=23). r2 

values significant at the 0.05 p-val are in boxes and bold.  The symbol ** denotes that these 

models violate the assumption of normally distributed residuals using the Lillie test 

(italicized). 

 

 

 

Statistic Transformation 1.0668m 2m 5m 8m 20m 30m 

P10 Recip 0.04 0.05 0.05 0.06 0.07 0.08 

P10 Quadratic 0.23 0.23 0.24 0.24 0.27 0.29 

P25 none 0.08 0.07 0.07 0.08 0.09 0.09 

P25 Quadratic 0.27 0.28 0.28 0.28 0.28 0.28 

Mean none 0.13 0.13 0.13 0.13 0.13 0.13 

Mean Quadratic 0.30 0.29 0.30 0.30 0.30 0.29 

P75 none 0.15 0.17 0.18 0.18 0.18 0.18 

P75 Quadratic 0.26 0.29 0.29 0.29 0.30 0.29 

P90 none** 0.17 0.20 0.20 0.19 0.18 0.17 

P90 Quadratic** 0.23 0.27 0.27 0.27 0.27 0.25 

CV none 0.05 0.03 0.03 0.03 0.05 0.05 

CV Quadratic 0.28 0.26 0.26 0.26 0.27 0.29 
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Table A2.3. Pairwise comparisons of pasture Range metric between different cell sizes using 

the Mann-Whitney U Wilcoxon rank sum test. The p-values were adjusted with the 

Bonferroni correction. 

 

Grid 

Size 1.0668 3 5 8 20 

3 0.00     

5 0.00 0.25    

8 0.00 0.00 0.54   

20 0.00 0.00 0.00 0.01  

30 0.00 0.00 0.00 0.00 1.00 

 

Table A2.4. Pairwise comparisons of pasture Sill metric between different cell sizes using the 

Mann-Whitney U Wilcoxon rank sum test. The p-values were adjusted with the Bonferroni 

correction. 

Grid 

Size 
1.0668 3 5 8 20 

3 0.00     

5 0.00 0.92    

8 0.00 0.12 1.00   

20 0.00 0.00 0.02 0.48  

30 0.00 0.00 0.00 0.17 1.00 
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Figure A2.3. Linear (A,C) and quadratic ((Quad) B,D) models for the mean and 10th 

percentiles across all cell sizes (N=23).   

 

 

A) 

 

 

B) 

 

 

C) 

 

 

D

) 
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Figure A2.4. Linear (A,C) and quadratic ((Quad) B,D) models for the 25th and 75th percentiles 

across all cell sizes (N=23).   

A) B

C) D) 
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Figure A2.5. Linear (A,C) and quadratic ((Quad) B,D) models for the 90th and coefficient of 

variation across all cell sizes (N=23).   

  

A) B) 

C) D) 
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Table A2.5. Linear and Quadratic models for the pasture scale summary Stats with 1 outlier 

(P5) removed (N=22). r2 values significant at the 0.05 p-val are in boxes and bold.  The 

symbol ** denotes that these models violate the assumption of normally distributed residuals 

using the Lillie test (italicized). 

 

Statistic  Transformation 1.0668m 2m 5m 8m 20m 30m 

P10 none 0.12 0.14 0.14 0.14 0.17 0.18 

P10 Quadratic 0.20 0.21 0.22 0.22 0.26 0.27 

P25 none 0.18 0.17 0.17 0.17 0.19 0.19 

P25 Quadratic 0.26 0.26 0.26 0.26 0.27 0.27 

Mean none 0.29 0.29 0.29 0.29 0.30 0.29 

Mean Quadratic 0.23 0.23 0.23 0.23 0.23 0.23 

P75 none 0.23 0.26 0.26 0.27 0.27 0.26 

P75 Quadratic 0.26 0.29 0.29 0.30 0.31 0.29 

P90 none** 0.23 0.28 0.28 0.28 0.27 0.26 

P90 Quadratic** 0.24 0.29 0.29 0.29 0.29 0.26 

CV none 0.13 0.10 0.09 0.10 0.12 0.12 

CV Quadratic 0.26 0.24 0.24 0.24 0.26 0.28 

 

 

Figure A2.6. Linear (A,C) and quadratic ((Quad) B,D) models for the mean and 10th 

percentiles across all cell sizes (N=22).   

A) B) 

C) D) 
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Figure A2.7. Linear (A,C) and quadratic ((Quad) B,D) models for the 25th and 75th percentiles 

across all cell sizes (N=23).   

  

A) B) 

C) D) 
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Figure A2.8. Linear (A,C) and quadratic ((Quad) B,D) models for the 90th and coefficient of 

variation across all cell sizes (N=22).   

 

Figure A2.9. Linear models for the range statistic across all cell sizes, for the complete data 

set (A), when one outlier was removed (B), and using the reciprocal transformation (C).    

(A) (B) (C) 

A) B) 

C) D) 
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Figure A2.10. Linear (A,C) and quadratic ((Quad) B,D) models for the range statistic all cell 

sizes.   

 

A) B) 

C) D) 
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Figure A2.11. Linear (A,C) and quadratic ((Quad) B,D) models for the range statistic all cell 

sizes.    

A) B) 

C) D) 
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Appendix 3. Supplemental Materials for Chapter 4.  

Table A3.1. Complete Table of spearman rank correlations between pasture level metrics and 

stocking rate. 

 2015 2016 2017 All Years 

3 

Year 

Mean 

Pasture Metric r p-val N r p-val N r p-val N r 
p-

val 
N r 

Summer_sill 0.04 0.80 37 0.17 0.20 60 -0.24 0.04 72 -0.16 0.04 169 -0.01 

Summer_range 0.17 0.33 37 0.24 0.06 60 -0.05 0.68 72 0.08 0.32 169 0.12 

Summer_nugget 0.07 0.69 37 0.08 0.52 60 0.01 0.90 72 0.03 0.67 169 0.06 

Summer_MSH -0.08 0.65 37 -0.10 0.45 60 -0.04 0.76 72 -0.06 0.46 169 -0.07 

Summer_mean -0.52 0.00 37 -0.26 0.05 60 -0.18 0.13 72 -0.07 0.36 169 -0.32 

Summer_p10. -0.51 0.00 37 -0.27 0.04 60 0.04 0.72 72 0.04 0.64 169 -0.25 

Summer_p25. -0.49 0.00 37 -0.26 0.04 60 -0.07 0.55 72 -0.01 0.86 169 -0.27 

Summer_p50. -0.51 0.00 37 -0.32 0.01 60 -0.18 0.13 72 -0.09 0.24 169 -0.34 

Summer_p75. -0.51 0.00 37 -0.23 0.08 60 -0.25 0.04 72 -0.12 0.13 169 -0.33 

Summer_p90. -0.45 0.00 37 -0.12 0.38 60 -0.26 0.03 72 -0.11 0.14 169 -0.28 

Summer_sd 0.03 0.85 37 0.17 0.18 60 -0.28 0.02 72 -0.17 0.03 169 -0.02 

Summer_CV 0.45 0.00 37 0.28 0.03 60 -0.27 0.02 72 -0.11 0.16 169 0.15 

Summer_Moran_I -0.38 0.02 37 -0.32 0.01 60 -0.12 0.30 72 -0.26 0.00 169 -0.28 

Fall_sill 0.09 0.59 37 0.31 0.02 60 0.10 0.39 72 0.01 0.89 169 0.17 

Fall_range 0.09 0.60 37 0.21 0.11 60 -0.13 0.28 72 0.03 0.72 169 0.06 

Fall_nugget 0.21 0.20 37 -0.06 0.64 60 -0.18 0.14 72 -0.04 0.57 169 -0.01 

Fall_MSH -0.20 0.24 37 0.06 0.67 60 0.19 0.10 72 0.05 0.54 169 0.02 

Fall_mean -0.55 0.00 37 -0.56 0.00 60 -0.52 0.00 72 -0.28 0.00 169 -0.54 

Fall_p10. -0.56 0.00 37 -0.59 0.00 60 -0.49 0.00 72 -0.24 0.00 169 -0.55 

Fall_p25. -0.53 0.00 37 -0.57 0.00 60 -0.50 0.00 72 -0.26 0.00 169 -0.53 

Fall_p50. -0.52 0.00 37 -0.54 0.00 60 -0.50 0.00 72 -0.27 0.00 169 -0.52 

Fall_p75. -0.54 0.00 37 -0.51 0.00 60 -0.51 0.00 72 -0.29 0.00 169 -0.52 

Fall_p90. -0.53 0.00 37 -0.49 0.00 60 -0.56 0.00 72 -0.30 0.00 169 -0.53 

Fall_sd 0.06 0.71 37 0.38 0.00 60 0.16 0.18 72 0.05 0.50 169 0.20 

Fall_CV 0.50 0.00 37 0.51 0.00 60 0.32 0.01 72 0.16 0.04 169 0.44 

Fall_Moran_I -0.49 0.00 37 -0.33 0.01 60 -0.22 0.06 72 -0.32 0.00 169 -0.35 

RelDif_sill 0.44 0.01 37 0.18 0.17 60 -0.20 0.09 72 0.04 0.64 169 0.14 

RelDif_range 0.41 0.01 37 0.19 0.15 60 0.08 0.50 72 0.16 0.04 169 0.23 

RelDif_nugget 0.28 0.09 37 0.12 0.36 60 0.04 0.72 72 0.06 0.45 169 0.15 

RelDif_MSH 0.00 0.98 37 0.02 0.86 60 -0.07 0.58 72 0.04 0.62 169 -0.02 

RelDif_mean -0.32 0.05 37 -0.33 0.01 60 -0.54 0.00 72 -0.30 0.00 169 -0.40 

RelDiff_p10. -0.50 0.00 37 -0.52 0.00 60 -0.47 0.00 72 -0.38 0.00 169 -0.50 

RelDiff_p25. -0.44 0.01 37 -0.47 0.00 60 -0.47 0.00 72 -0.34 0.00 169 -0.46 

RelDiff_p50. -0.34 0.04 37 -0.33 0.01 60 -0.48 0.00 72 -0.27 0.00 169 -0.38 

RelDiff_p75. -0.20 0.24 37 -0.24 0.07 60 -0.52 0.00 72 -0.25 0.00 169 -0.32 

Diff_p90. -0.10 0.58 37 -0.20 0.12 60 -0.55 0.00 72 -0.27 0.00 169 -0.28 

RelDif_sd 0.41 0.01 37 0.21 0.10 60 -0.21 0.07 72 0.04 0.65 169 0.14 

RelDif_CV -0.18 0.27 37 0.00 0.99 60 0.49 0.00 72 0.14 0.06 169 0.10 

RelDif_Moran_I -0.17 0.31 37 -0.23 0.07 60 -0.03 0.78 72 -0.14 0.06 169 -0.15 

RelDif_DeltaRanged -0.14 0.39 37 0.13 0.31 60 -0.02 0.85 72 0.06 0.47 169 -0.01 

RelDif_DeltaSill -0.03 0.88 37 -0.20 0.13 60 0.18 0.13 72 0.12 0.11 169 -0.01 

RelDif_DeltaNugget 0.00 0.99 37 -0.17 0.18 60 -0.13 0.28 72 -0.08 0.33 169 -0.10 

RelDif_DeltaMorans -0.26 0.12 37 0.15 0.25 60 -0.15 0.20 72 -0.03 0.69 169 -0.09 

RelDif_DeltaCV 0.21 0.22 37 0.18 0.17 60 0.46 0.00 72 0.27 0.00 169 0.28 
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Table A3.2. Spearman rank correlations between pasture level metrics and stocking rate, 

grouped by season of use. Shown are statistics that were significant in at least two out of three 

seasons at the 0.05 p-value.  

Raster 

Statistic 

Cool Summer Hot Summer Fall All season 

Mean r p-val N r p-val N r p-val N 

Fallmean -0.21 0.05 91 -0.40 0.00 103 -0.38 0.00 73 -0.33 

Fallp10 -0.19 0.08 91 -0.37 0.00 103 -0.36 0.00 73 -0.31 

Fallp25 -0.18 0.09 91 -0.39 0.00 103 -0.38 0.00 73 -0.31 

Fallp50 -0.19 0.07 91 -0.39 0.00 103 -0.40 0.00 73 -0.33 

Fallp75 -0.22 0.03 91 -0.41 0.00 103 -0.38 0.00 73 -0.34 

Fallp90 -0.27 0.01 91 -0.43 0.00 103 -0.33 0.00 73 -0.35 

FallCV 0.04 0.71 91 0.27 0.01 103 0.33 0.00 73 0.22 

FallMoran’s_I -0.13 0.23 91 -0.46 0.00 103 -0.34 0.00 73 -0.31 

RelDifmean -0.38 0.00 91 -0.42 0.00 103 -0.28 0.02 73 -0.36 

RelDifp10 -0.39 0.00 91 -0.52 0.00 103 -0.42 0.00 73 -0.44 

RelDifp25 -0.36 0.00 91 -0.48 0.00 103 -0.37 0.00 73 -0.40 

RelDifp50 -0.34 0.00 91 -0.39 0.00 103 -0.29 0.01 73 -0.34 

RelDifp75 -0.36 0.00 91 -0.34 0.00 103 -0.24 0.04 73 -0.31 

RelDifp90 -0.37 0.00 91 -0.34 0.00 103 -0.21 0.07 73 -0.30 

ΔRelDifCV 0.43 0.00 91 0.23 0.02 103 0.20 0.09 73 0.29 

 

Table A3.3. Complete statistics between plot-level utilization estimates and the biomass 

rasters.  

Raster  

2x2 pixel 

window 

stat 

2015 2016 2017 

r p-val N r p-val N r p-val N 

SummerEarly Mean -0.12 0.23 110 -0.08 0.27 194 0.22 0.01 139 

SummerLate Mean -0.17 0.01 247 -0.19 0.01 211 -0.12 0.17 139 

SummerMaxPix Mean -0.17 0.01 250 -0.11 0.09 215 -0.08 0.36 139 

Fall Mean -0.33 0.00 197 -0.46 0.00 208 -0.47 0.00 114 

RelDifMaxPixel Mean -0.20 0.01 202 -0.44 0.00 214 -0.49 0.00 114 

RelDifMaxPasture Mean -0.09 0.36 113 -0.32 0.00 208 -0.50 0.00 114 

RelDifEarlyScene Mean -0.39 0.00 96 -0.45 0.00 203 -0.69 0.00 114 

RelDifLateScene Mean -0.22 0.00 196 -0.14 0.04 208 -0.40 0.00 114 

SummerEarly Min -0.14 0.15 110 -0.13 0.08 194 0.15 0.07 139 

SummerLate Min -0.21 0.00 247 -0.22 0.00 211 -0.12 0.15 139 

SummerMaxPix Min -0.21 0.00 250 -0.15 0.03 215 -0.08 0.33 139 

Fall Min -0.31 0.00 197 -0.44 0.00 208 -0.47 0.00 114 

RelDifMaxPixel Min -0.26 0.00 202 -0.45 0.00 214 -0.53 0.00 114 

RelDifMaxPasture Min -0.29 0.00 113 -0.52 0.00 208 -0.64 0.00 113 

RelDifEarlyScene Min -0.35 0.00 84 -0.48 0.00 203 -0.69 0.00 114 

RelDifLateScene Min -0.29 0.00 196 -0.21 0.00 208 -0.44 0.00 114 
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Figure A3.1. Maximum yearly biomass across the Zumwalt prairie preserve. The highlighted 

blue bars are the 2016 and 2017 growing season and the red bar is the 2015 growing season. 

The horizontal colored lines represent the 33 percentile (red) and the 66 percentile (blue) of 

maximum yearly production.  
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Figure A3.2. Biomass raster data mapped for 2015. The old fields are outlined with black and 

white lines, with pasture that have been rested from livestock grazing shown with a black 

outline. The upland stream areas are colored with turquoise and black stripping.  
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Table A3.4.  Rainfall accumulation and lag time correlations with max summer biomass 

between May, June or July. The values in bold had significant spearman rank correlations. 

The green highlighted correlation is plotted (figure 2).   

Accumulation period --->>>>  ----->>>>  

Month 1 2 3 4 5 6 7 8 9 10 11 12 

6 0.02 - - - - - - - - - - - 

5 0.49 0.37 - - - - - - - - - - 

4 0.19 0.51 0.41 - - - - - - - - - 

3 0.18 0.21 0.53 0.47 - - - - - - - - 

2 0.25 0.29 0.30 0.62 0.60 - - - - - - - 

1 0.11 0.27 0.26 0.32 0.57 0.56 - - - - - - 

12 0.19 0.20 0.34 0.29 0.33 0.53 0.55 - - - - - 

11 0.05 0.07 0.15 0.23 0.27 0.38 0.61 0.55 - - - - 

10 0.17 0.05 0.19 0.21 0.32 0.34 0.39 0.62 0.62 - - - 

9 0.24 0.30 0.16 0.25 0.29 0.31 0.36 0.40 0.65 0.69 - - 

8 0.47 0.39 0.47 0.39 0.43 0.46 0.49 0.47 0.51 0.69 0.69 - 

7 0.37 0.52 0.42 0.52 0.52 0.60 0.61 0.67 0.63 0.64 0.77 0.76 

6 0.12 0.23 0.43 0.35 0.45 0.47 0.56 0.55 0.59 0.59 0.61 0.71 

 

 

Figure A3.2. Maximum yearly biomass plotted against the previous rain fall accumulation 

periods (A) current year rainfall accumulation totals between February through May, and (B) 

is the accumulation period starting in July of the previous year and running until May of the 

current year. The 11 month July-May accumulation period had the highest spearman rank 

correlation co-efficient with maximum biomass (table 4).   
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Table A3.5.  Potential water deficit (Precipitation - potential evapotranspiration) accumulation 

and lag time period correlations with max biomass between May, June or July. The values in 

bold had significant Spearmans rank correlations.  

 

Accumulation period --->>>>  ----->>>> 
      

Month 1 2 3 4 5 6 7 8 9 10 11 12 

6 0.09 - - - - - - - - - - - 

5 0.52 0.45 - - - - - - - - - - 
4 0.31 0.54 0.43 - - - - - - - - - 
3 0.17 0.28 0.53 0.48 - - - - - - - - 

2 0.25 0.31 0.35 0.66 0.59 - - - - - - - 

1 0.13 0.32 0.32 0.38 0.64 0.59 - - - - - - 
12 0.17 0.26 0.40 0.37 0.37 0.62 0.56 - - - - - 
11 0.07 0.07 0.14 0.29 0.33 0.38 0.61 0.60 - - - - 
10 0.20 0.09 0.18 0.28 0.37 0.39 0.44 0.65 0.61 - - - 
9 0.33 0.40 0.31 0.30 0.37 0.41 0.38 0.40 0.63 0.64 - - 
8 0.42 0.39 0.46 0.41 0.44 0.49 0.50 0.51 0.54 0.67 0.69 - 

7 0.32 0.43 0.44 0.52 0.49 0.54 0.57 0.57 0.60 0.59 0.71 0.69 

6 0.13 0.21 0.38 0.42 0.51 0.44 0.51 0.57 0.56 0.62 0.61 0.69 

 

 

Table A3.6.  Correlations coefficient improvement with potential evapotranspiration.  Positive 

(highlighted with green values) indicated higher correlation coefficients with Potential water 

deficit versus precipitation with maximum above ground biomass.  The cells that are within 

boxes were significantly correlations with maximum above ground biomass using both 

precipitation and potential water deficit.  

 

 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

6 0.07 - - - - - - - - - - - 

5 0.03 0.08 - - - - - - - - - - 

4 0.12 0.03 0.02 - - - - - - - - - 

3 -0.01 0.07 0.00 0.01 - - - - - - - - 

2 0.00 0.02 0.05 0.04 -0.01 - - - - - - - 

1 0.02 0.05 0.06 0.06 0.07 0.03 - - - - - - 

12 -0.02 0.06 0.06 0.08 0.04 0.09 0.01 - - - - - 

11 0.02 0.00 -0.01 0.06 0.06 0.00 0.00 0.05 - - - - 

10 0.03 0.04 -0.01 0.07 0.05 0.05 0.05 0.03 -0.01 - - - 

9 0.09 0.10 0.15 0.05 0.08 0.10 0.02 0.00 -0.02 -0.05 - - 

8 -0.05 0.00 -0.01 0.02 0.01 0.03 0.01 0.04 0.03 -0.02 0.00 - 

7 -0.05 -0.09 0.02 0.00 -0.03 -0.06 -0.04 -0.10 -0.03 -0.05 -0.06 -0.07 

6 0.01 -0.02 -0.05 0.07 0.06 -0.03 -0.05 0.02 -0.03 0.03 0.00 -0.02 
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Table A3.8.  Monthly Precipitation accumulation and lag time period correlations with max 

fall biomass between September, October or November. The values in bold had most 

significant Spearmans rank correlations between accumulated rainfall to max fall biomass. 

The green highlighted correlation is plotted (figure 3).   

 

 

 

 

Figure A3.3. Maximum fall biomass plotted against the accumulated precipitation from April 

through November for the Zumwalt Prairie Preserve.  

Month 1 2 3 4 5 6 7 8 9 10 11 12 

11 0.25 - - - - - - - - - - - 

10 0.42 0.38 - - - - - - - - - - 

9 0.13 0.46 0.47 - - - - - - - - - 

8 -0.07 0.12 0.31 0.34 - - - - - - - - 

7 0.03 -0.06 0.03 0.23 0.32 - - - - - - - 

6 0.25 0.20 0.12 0.19 0.33 0.40 - - - - - - 

5 0.45 0.44 0.41 0.33 0.34 0.48 0.53 - - - - - 

4 0.20 0.48 0.46 0.41 0.36 0.41 0.50 0.54 - - - - 

3 0.03 0.14 0.43 0.43 0.39 0.34 0.44 0.52 0.52 - - - 

2 0.01 0.04 0.15 0.44 0.50 0.42 0.39 0.44 0.51 0.54 - - 

1 -0.11 -0.01 0.02 0.11 0.36 0.43 0.38 0.35 0.38 0.47 0.51 - 

12 -0.05 -0.14 -0.02 -0.03 0.05 0.27 0.39 0.36 0.33 0.36 0.44 0.48 

11 -0.10 -0.14 -0.18 -0.09 -0.08 0.02 0.28 0.32 0.29 0.26 0.32 0.42 
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Table A3.8.  Potential water deficit (Precipitation - potential evapotranspiration) accumulation 

and lag time period correlations with max fall biomass between September, October or 

November. The values in bold had significant Spearmans rank correlations. The green 

highlighted correlation is plotted (figure 4).   

Month 1 2 3 4 5 6 7 8 9 10 11 12 

11 0.24 - - - - - - - - - - - 

10 0.46 0.57 - - - - - - - - - - 

9 0.20 0.44 0.44 - - - - - - - - - 

8 -0.03 0.21 0.32 0.37 - - - - - - - - 

7 0.12 -0.02 0.08 0.22 0.31 - - - - - - - 

6 0.28 0.20 0.10 0.23 0.35 0.41 - - - - - - 

5 0.45 0.52 0.42 0.33 0.41 0.52 0.55 - - - - - 

4 0.24 0.48 0.45 0.39 0.37 0.45 0.51 0.53 - - - - 

3 0.04 0.16 0.41 0.43 0.34 0.36 0.42 0.49 0.52 - - - 

2 0.09 0.12 0.21 0.50 0.50 0.42 0.40 0.46 0.57 0.56 - - 

1 -0.11 0.05 0.10 0.18 0.41 0.45 0.41 0.36 0.42 0.49 0.53 - 

12 -0.11 -0.12 0.03 0.04 0.09 0.34 0.37 0.40 0.35 0.42 0.41 0.49 

11 -0.13 -0.15 -0.17 -0.04 0.02 0.06 0.31 0.39 0.36 0.29 0.40 0.44 

  

 

 

Figure A3.4. Maximum fall biomass plotted against the accumulated Potential Water Deficit 

(PPT-ETo) from October through November for the Zumwalt Prairie Preserve.  
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Figure A3.5. Average monthly preciptation totals for the Zumwalt Prairie Preserve from 1984 

to 2017 using GridMet Climate data (Abatzoglou, 2013). 

Reference: 

Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological 

applications and modelling. Int. J. Climatol., 33, 121–131, doi:10.1002 /joc.3413. 
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Figure A3.6. The maximum fall biomass average for each year across the Zumwalt Prairie 

preserve from 1984 to 2017 using the biomass algrothim developed for this habitat type 

(Jansen et al., 2018). 
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