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Abstract 

Remote sensing provides monitoring solutions for more informed grazing management. 

To investigate the ability to detect the effects of cattle grazing on bunchgrass vegetation with 

Landsat Enhanced Thematic Mapper Plus (ETM+) data, we conducted a study on the 

Zumwalt Prairie in northeastern Oregon across a gradient of grazing intensities. Biophysical 

vegetation data was collected on vertical structure, biomass, and cover at three different time 

periods during the grazing season: June, August, and October 2012. To relate these measures 

to the remotely sensed Landsat ETM+ data, Pearson’s correlations and multiple regression 

models were computed. Using the best models, predicted vegetation metrics were then 

mapped across the study area. Results indicated that models using common vegetation indices 

had the ability to discern different levels of grazing across the study area. Results can be 

distributed to land managers to help guide grassland conservation by improving monitoring of 

bunchgrass vegetation for sustainable livestock management. 
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Chapter 1: Revealing Livestock Effects on Bunchgrass Vegetation 

with Landsat ETM+ Data Across a Grazing Season 

Abstract   

Proper livestock grazing is vital to maintain grassland ecosystem functioning. Traditional 

field techniques to monitor grazing are costly and limited to small spatial scales. Remote 

sensing provides monitoring solutions for more informed grazing management. To investigate 

the effect of cattle grazing on bunchgrass grassland vegetation, we sampled 32 sites across 

four prescribed stocking rates on the Zumwalt Prairie in northeastern Oregon; high (1.08 

Animal Unit Month per hectare (AUM/HA)), medium (0.72), low (0.36) and control (0). We 

collected vegetation data on vertical structure, biomass, and cover at three different time 

periods during the grazing season: June, August, and October 2012. Remotely sensed Landsat 

Enhanced Thematic Mapper Plus (ETM+) data was acquired closest in date to three field 

sampling bouts. We correlated the field-observed vegetation metrics (biomass, cover, and 

vertical structure) to Landsat spectral bands, 14 commonly used vegetation indices, and the 

tasseled cap wetness, brightness, and greenness transformations. To increase the explanatory 

value of the satellite derived data, full, step-wise, and best-subset multiple regression models 

were fit to each of the vegetation metrics at the three different times of year. Predicted 

vegetation metrics were then mapped across the study area. Field-based results indicated that 

as the stocking rate increased, the mean vegetation amounts of vertical structure, cover, and 

biomass decreased. The multiple regression models using common vegetation indices had the 

ability to discern different levels of grazing across the Pacific Northwest Bunchgrass Prairie. 

Field measures of vegetation cover yielded the highest correlations to remotely sensed data 

across all sampling periods. Our results will help guide grassland conservation by improving 
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monitoring of bunchgrass vegetation for sustainable livestock management on the Zumwalt 

Prairie. 

1. Introduction 

The world’s grassland ecosystems are of high conservation importance, as nearly half 

the historic area has been converted to different land use types and less than 5% of what 

remains falls under conservation protection (Hoekstra et al., 2004). Grasslands provide 

important forage for the livestock industry and vital habitat for native wildlife (Allen-Diaz et 

al., 1995; Conner et al., 2002). Due to potential adverse effects incompatible grazing poses to 

structure and function of grasslands (Johnson et al., 2011; Milchunas and Lauenroth, 1993), 

wildlife (Johnson et al., 2012; Kimoto et al., 2012), and a rancher’s income (Holechek and 

Gomez, 1999) cost-effective monitoring is needed (Washington-Allen et al., 2006).  Accurate, 

cost-effective monitoring that is quantitative and repeatable across large spatial extents has 

proven to be difficult with traditional rangeland monitoring techniques (Booth and Tueller, 

2003; Pickup et al., 1994; Washington-Allen et al., 2006; West, 2003). Therefore timely 

monitoring of heterogeneous vegetation across large areas requires new methods and 

technology (Hunt et al., 2003; Pickup et al., 1994). Recently, focus on quantitative data for 

management purposes across greater spatial and temporal scales has compelled researchers to 

turn to remote sensing in order to improve upon existing monitoring datasets (Herrick et al., 

2010) and derive empirical, repeatable measures of important grassland vegetation metrics 

(Marsett et al., 2006; Todd et al., 1998).   

 Using space-borne remote sensing data helps solve both timing and scale issues 

associated with vegetation and grazing monitoring, due to repeat visits of satellites and full 

spatial coverage of Earth. Using satellite data, previous investigators have employed a variety 
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of analysis techniques to quantify common rangeland monitoring metrics, such as vertical 

structure (Marsett et al., 2006), cover (Blanco et al., 2009; Hagen et al., 2012; Purevdorj and 

Tateishi, 1998; Röder et al., 2008; Marsett et al., 2006), and biomass (Brinkmann et al., 2011; 

Todd et al., 1998; Marsett et al., 2006). Field measures are typically correlated to vegetation 

indices or transformations derived from remotely sensed data (Dungan, 1998) to determine 

the most applicable index for vegetation monitoring (Zhang and Guo, 2008). Relationships 

can be modeled between the field data collected at training sites and satellite derived data 

from the geospatially co-located pixel or window corresponding to that site (Dungan, 1998; 

Marsett et al., 2006; Vescovo and Gianelle, 2008; Yang and Guo, 2011; Zhang and Guo, 

2008). The diversity of grassland vegetation, soil characteristics, and phenological patterns, 

coupled with a variety of vegetation metrics, creates the need to identify relationships with a 

wide variety of band data, vegetation indices, and transformations (Todd et al., 1998; Vescovo 

and Gianelle, 2008; Yang and Guo, 2011; Zhang and Guo, 2008). Once relationships are 

established between vegetation metrics and remotely sensed data, grazing effects have been 

quantified in a variety of ways (Kawamura et al., 2005; Pickup et al., 1998; Yang and Guo, 

2011). One method is to test the significance of the relationship between set grazing 

intensities and remotely sensed data or compare the average vegetation index values between 

pasture areas with different grazing intensities (Numata et al., 2007; Yang and Guo, 2011). 

Grazing management practices have also been assessed by quantifying the trend in a specific 

vegetation index across many years (Archer, 2004; Bradley and O’sullivan, 2011; Evans and 

Geerken, 2004; Hill et al., 1998; Röder et al., 2008; Washington-Allen et al., 2006) or 

establishing a grazing gradient (Lind and Rasmussen, 2003; Pickup et al., 1994, Pickup et al., 
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1998) to quantify how vegetation cover changes with distance from a water source for 

livestock.  

While these approaches provide some understanding of the change in vegetation 

amounts caused by grazing, remotely sensed products for rangeland management decision-

making are still lacking (Butterfield and Malmstrom, 2006; Hagen et al., 2012; Hunt et al., 

2003; Marsett et al., 2006; Washington-Allen et al., 2006). Prior studies have measured 

vegetation mostly during peak greenness (e.g. Brinkmann et al., 2011; Paudel and Andersen, 

2010), which may be helpful for long-term trends in condition. However in many grassland 

systems pastures are grazed after peak greenness theoretically changing vegetation quantities 

and subsequent metrics used for next year’s management action (Hagen et al., 2012; Marsett 

et al., 2006).  Anderson (1993) highlights the need for timely in-season evaluation of livestock 

use during the grazing season for adaptive decision-making; Holechek (1988) states that many 

rangeland systems use end-of-year measures to make decisions for next year rotations. 

Ideally, land managers could track common rangeland vegetation monitoring metrics across 

the growing season (Marsett et al., 2006) and monitor changes in these metrics with different 

stocking rates to make more informed decisions during the current grazing period and for the 

next year. In addition to temporal data needs, remote sensing data must align with the spatial 

scales at which land management decision are made. Freely available Landsat data at a 30 

meter spatial resolution with a 16-day return interval has been shown to be a well suited 

sensor for rangeland management purposes that provides necessary vegetation monitoring 

metrics at suitable management scales (Ikeda et al., 1999). 

Effects of grazing on trend and condition have been the focus of research on many 

rangeland sites (e.g., Bastin et al., 2012; Bradley and O’sullivan, 2011; Munyati and Makgale, 
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2009; Paudel and Andersen, 2010; Pickup et al., 1994; Washington-allen et al., 2006). 

However, the Pacific Northwest Bunchgrass prairie has yet to be studied for the detection of 

grazing with remote sensing. This unique grassland habitat has had much of its historic range 

converted to crop agriculture (Bartuszevige et al., 2012), and has been shown to be sensitive 

to grazing pressure (Johnson et al., 2011; McLean and Tisdale, 1972; Skovlin et al., 1976). 

Grazing on this grassland type predominantly occurs in the summer and fall months 

(Bartuszevige et al., 2012) mostly after peak greenness, providing a good study site to test 

quantification of grazing effects after peak greenness and across the grazing season. To date, 

there is no universally accepted remote sensing methodology or vegetation index that 

provides important grassland monitoring information across the year for timely management 

decision making. Limited studies have attempted to quantify vegetation amounts across a 

single grazing season (Marsett et al., 2006) and few studies have tried to quantify vegetation 

responses to various grazing intensities (Munyati and Makgale, 2009; Numata et al., 2007; 

Yang and Guo, 2011).  

We assessed the utility of moderate spatial resolution Landsat data for quantifying and 

monitoring three vegetation metrics (i.e., percent vegetation cover, biomass, and vertical 

structure) associated with grazing on a semi-arid bunchgrass prairie in northeastern Oregon. 

The goal was to determine if remotely sensed data are sensitive enough to differentiate 

various levels of grazing intensities. To achieve this goal, we 1) characterized relationships 

between field-based metrics and grazing rates, 2) quantified relationships between Landsat 

data and field-based metrics, and 3) assessed the strength of the relationships across the 

growing season. We hypothesized that if consistent, significant relationships between 

remotely sensed indices and vegetation amounts exist, one can evaluate how vegetation 
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amounts differ across the landscape and between stocking rates thereby providing 

management data to help guide more informed and sustainable grazing rotations.    

2. Methods 

2.1 Study area 

The study was conducted on the Zumwalt Prairie Preserve, owned by The Nature 

Conservancy (TNC) (latitude 45˚33’N, longitude 117˚02’W, elevation 1500m) in Wallowa 

County, Oregon, USA (Fig. 1).  The Zumwalt Prairie Preserve is a small 13,000 hectare 

section of the bigger Zumwalt Prairie area which is close to 130,000 hectares in size and is 

dominated by C3 grasses that include Idaho fescue (Festuca idahoensis Elmer), bluebunch 

wheatgrass (Pseudoroegneria spicata (Pursh) A. Love) and Sandberg’s bluegrass (Poa 

secunda J Presl). Average summer (June – August) temperatures range from 11.8 – 17.5˚C, 

with an average annual precipitation of 348.3mm (2006-2012 Zumwalt Weather Station). The 

total annual precipitation for 2012 was 14.4 mm below normal, with August and September 

receiving no measurable precipitation. Although many grassland systems worldwide are now 

used for crop production, the Zumwalt Prairie largely escaped the plow because of the short 

growing season and shallow soils (Bartuszevige et al., 2012). Before the area was settled by 

Anglo Americans, the Nez Perce Tribe (Nimíipuu) grazed horses and cattle beginning in the 

1700’s (Bartuszevige et al., 2012). The majority of land currently on the Zumwalt is privately 

owned and livestock grazing has been the major land use for well over 100 years, with 

spring/summer pasturing of beef cattle the predominant use in the last half century 

(Bartuszevige et al., 2012).  
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2.2 Study design 

To define the suitable habitat sampling area, we limited our study to the ecological 

systems “Columbia Basin Palouse Prairie” and “Columbia Basin Foothill and Canyon Dry 

Grassland” as defined by the ReGap Ecological Systems data (ONHIC, 2006). To reduce 

spectral noise from path radiance and shadowing of slopes, survey sites were located in areas 

with less than 30% slope and at least 50m away from roads, stock ponds, and fence lines, and 

at least 200m from other field sites.  

Grazing treatments were prescribed by TNC land managers to align with prior grazing 

studies on the Zumwalt Prairie (Johnson et al., 2011). The pastures were stocked at four 

different rates high (1.08 Animal Unit Month (AUM)/HA), medium (0.72), low (0.36) and 

control or no use by livestock (0)).  Field data was collected in three different sampling bouts: 

June 26 – July 4, August 10 – 16, and September 27 – Oct 5, 2012 (Fig 2). Thirty-two sites 

across three different stocking rates were sampled in each bout. Sample sites were chosen 

within areas of homogenous vegetation to best represent a gradient of vegetation amounts 

(e.g. Wylie et al., 2002). Twelve sampling sites were placed in pastures with a high stocking 

rate, ten sites in pastures with a medium rate and ten in control (No Graze) pasture areas (Fig 

2). Due to limited resources and time no sites were monitored within the pastures with low 

stocking rates.  

2.3 Biophysical vegetation measures  

At each sampling site a 30m x 30m macroplot was established with two 30 meter transects 

intersecting plot center aligned in north/south and east/west cardinal directions. Within each 

macroplot, data on vegetation structure, foliar cover, ground surface, and biomass was 

collected at three times during the grazing season. Vegetation structure data was collected 
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every five meters from opposite cardinal directions along the two transects following Robel et 

al. (1970) for a total of 13 measures per macroplot. Cover data (foliar cover, soil surface, and 

foliar color (green vs. brown)) was collected every meter on each transect using the line-point 

intercept method (Herrick et al., 2005). Biomass was measured by clipping vegetation within 

two 0.5 m x 0.5 m quadrats per transect to 0.5 cm above ground surface. Biomass was 

separated into green (live) and brown (senescent) vegetation and weighed in the field to 

obtain a wet weight. To obtain dry weight, clipped vegetation placed in an oven at 60  C for 

24-36 hours until the weight remained stable. The final weight of the each sample was 

averaged by macroplot and used as the measure of dry biomass.  

2.4 Utilization measure 

Assessment of grazing can be performed with a measure of utilization at the end of 

year, providing information on how much vegetation has been consumed or destroyed by 

livestock (Coulloudon et al., 1999). Utilization was ocularly estimated at each macroplot 

during the last sampling bout in October using a double weight sampling method described by  

Parsons et al. (2003). The average utilization per macroplot was computed by taking the 

average percent utilization estimated across 10 randomly placed 0.25 m
 
x 0.25 m quadrats. To 

account for estimate bias, observers first estimated utilization amounts (0% - 100%) in fifteen 

0.25 m x 0.25 m calibration quadrats, each of which had varying amounts of vegetation 

removed to mimic different utilization rates prior to sampling. After the observer estimated 

utilization, the residual vegetation was clipped to within 0.5 cm of the ground and weighed. 

The initial clipped vegetation weight was then divided by the total weight (initial + final 

clipped weight) of the vegetation within the quadrat to obtain utilization (Parsons et al., 2003). 

For each observer, regression equations were constructed by regressing estimated utilization 
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against the actual utilization (e.g. Parsons et al., 2003). Observer one’s regression equation 

was Y = 0.8513x + 2.880 with R
2 

= 0.61 and p = 0.001; observer two’s regression was Y = 

1.11999x - 1.9883 with R
2 

= 0.81 and p < 0.001. These equations were then used to correct 

the observers’ estimated utilization for each sample obtained at each macro plot.     

2.5 Remotely sensed data 

We acquired 11 Level 1 terrain-corrected (LT1) Landsat Enhanced Thematic Mapper-plus 

(ETM+) scenes for 2012 from WRS-2 path/rows 42/28 and 43/28. Each scene was processed 

to at-surface reflectance following Chander et al. (2009) and atmospherically corrected using 

dark object subtraction (Chavez, 1996). Mean at-surface reflectance for each band was then 

computed using a 2 x 2 pixel window average to fully cover each macroplot. Band data and 

vegetation indices were then computed for each site using the averaged values for each band. 

Landsat data closest in date to the field data collection was attributed to each site for each 

sampling bout. For sites falling within 'no data' lines associated with the Landsat 7 scan line 

corrector error (Wulder et al., 2011) or obscured by cloud cover, data were utilized from the 

next closest scene-date containing valid data. From these reflectance data, vegetation indices 

and transformations were computed for each sample site for each sampling bout (Fig. 3). 

2.6 Vegetation indices 

At-surface reflectance data from Landsat ETM+ bands 1-5 and 7, as well as 14 vegetation 

indices and the tasseled cap transformations (Kauth and Thomas, 1976), were used to estimate 

relationships with biophysical vegetation data (Table 2). Vegetation indices calculated were 

the Simple Ratio (SR; Jordan, 1969), Normalized Difference Vegetation Index (NDVI; Rouse 

et al., 1973; Tucker, 1979), Soil Adjusted Vegetation Index (SAVI; Huete, 1988), 
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Renormalized Difference Vegetation Index (RDVI; Haboudane, 2004; Roujean and Breon, 

1995), Modified Triangular Vegetation Index 1 (MTVI1; Haboudane, 2004), Canopy index 

(CI; Vescovo & Gianelle, 2008), Normalized Canopy Index (NCI; Vescovo and Gianelle, 

2008), Ratio Cover Index (RCI; Zhang and Guo, 2008), Normalized Difference Cover Index 

(NDCI; Zhang and Guo, 2008), Plant Senesce Reflectance Index (PSRI; Merzlyak et al., 

1999), Soil Adjusted Total Vegetation Index (SATVI; Marsett et al., 2006), the Seven/Four 

ratio (7/4), Normalized Difference Infrared Index Seven (NDII7; Hardisky et al., 1983; Key 

and Benson, 2006), Normalized Difference Water Index (NDWI; Hardisky et al., 1983; Gao, 

1996), and the tasseled cap transformations (Kauth and Thomas, 1976) greenness (TCGRE), 

brightness (TCBRI) and wetness (TCWET) (Table 3). 

These vegetation indices were selected based on prior research performed on other 

grasslands (Marsett et al., 2006; Numata et al., 2007; Yang and Guo, 2011; Zhang and Guo, 

2008). Vegetation indices that incorporate red (band 3) and near-infrared (band 4 (NIR)) 

bands have been shown to be effective at measuring green vegetation amounts by differencing 

the reflectance values between the near-infrared and red portion of the electromagnetic 

spectrum (Marsett et al., 2006; Rouse et al., 1973; Tucker, 1979). Indices that incorporate the 

shortwave-infrared bands (Band 5 (SWIR1) and band 7 (SWIR2)), which are sensitive to 

water content, have been shown to provide good measurements of both green and senescent 

vegetation quantity (Hardisky et al., 1983; Marsett et al., 2006; Numata et al., 2007; Pickup et 

al., 1994; Yang and Guo, 2011). Vegetation indices that incorporate the shortwave-infrared 

band 7 in combination with the NIR band have typically been used for forest disturbances, 

such as fire, and can be used to differentiate live vegetation from soil, ash, and burned 

vegetation (Key, 2006). The tasseled cap transformation is a linear combination of 6 spectral 
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bands of Landsat ETM+ data that results in three images of wetness, greenness, and 

brightness that have been shown to be useful in image analysis of agricultural and forested 

systems (Crist and Kauth, 1986; Kauth and Thomas, 1976). 

2.7 Analysis 

 All biophysical vegetation and remotely sensed data was tested for normality using the 

Lilliefors test (Lilliefors, 1967). Non-normal data distributions were normalized and 

Pearson’s correlations were computed between the utilization at each site and the vegetation 

metrics of vertical structure, biomass, and foliar cover for each sampling bout. Pearson’s 

correlations were also performed between all the remotely sensed data and vertical structure, 

cover, and biomass for each sampling bout. Correlations with p values less than or equal to 

0.05 were considered significant. 

To increase the potential predictive power of satellite data to explain the variance of the 

vegetation metrics, multiple regression techniques were employed. Following Hudak et al. 

(2006), full, stepwise, and best subset models were created to determine the best predictor 

variables to model structure, cover, and biomass for each sampling bout. Using both the 

stepwise and best subset modeling techniques helps to ensure multiple models were explored 

for the best fit by searching different pathways for variable selection (Hudak et al., 2006). We 

used a stepwise technique that selects the model with the lowest Akaike Information Criterion 

(AIC) (Akaike, 1974) by searching both forward and backward pathways (Hudak et al., 

2006). Next, a best-subsets method was performed to search all possible pathways, choosing 

the best variables for a defined number of predictor variables (Hudak et al., 2006). Models 

with the lowest corrected AIC (Sugiura, 1978) having a variance inflation factor (VIF) less 

than 10 (Friendly and Kwan, 2009) were selected as the “best” models. We further tested all 
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residuals for a normal distribution with a mean of zero and for spatial auto-correlation using 

Morans’s I (Cliff and Ord, 1981, Todd et al, 1998). 

Using the selected regression models we then computed and mapped the estimated cover, 

biomass, and stucture metric for each Landsat grid cell for each sample bout across the study 

area. This produced three maps for each vegetation metric; one map representing each of the 

three sampling bouts (Figs. 4-6). Comparisons of mean estimated vegetatation amounts of  

cover, biomass, and structure by stocking rate (control, low, medium and high) and sample 

bout, was performed by bootstrapping the data with replacement 1000 times. To build a 95% 

confidence interval for the mean value, the 2.5 and 97.5 percentiles were selected. Where 

confidence intervals around the mean vegetation value for each stocking rate did not overlap, 

significant differences existed at the 95 % confidence level. To quantify the effects of 

stocking rate on predicted vegetation, Ordinary Least Square (OLS) regression was performed 

using the pasture stocking rate (AUM per hectare) as the predictor variable and mean 

vegetation amount by pasture as a response variable. The slope of each OLS regression 

indicates the effect stocking rate has on each vegetation amount.  

3. Results 

3.1 Data exploration of biophysical variables 

Utilization ranged from 0 - 35% (Fig 4A). There were no significant differences in 

utilization between high and medium stocking rates (p value = 0.38). Utilization rates in high 

and medium treatment pastures were significantly higher than control pastures (p < 0.001) 

(Fig. 4B). Grazing utilization was negatively correlated to all three vegetation metrics across 

all sampling bouts (Fig. 5). Utilization was most strongly correlated with cover during 
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sampling bout 2 (r = -0.71). Relationships between structure and utilization varied the least 

across the three sampling periods with r values from -0.59 to -0.62. The biomass vegetation 

metric had the weakest correlations to utilization, with decreasing relationships observed later 

in the growing season (Fig. 5).  

3.2 Relationships between structure, cover, and biomass with satellite data 

The relationships between the biophysical data and satellite indices had r values ranging 

from -0.75 to +0.74. Band 7, the seven/four ratio and NDII7 were consistently significantly 

correlated across the growing season to structure (Table 3), canopy cover (Table 4) and 

biomass (Table 5). The strongest relationships were between cover and the seven/four ratio 

and NDII7 vegetation indices, all having r values > 0.63 (Table 4). The relationships between 

the satellite data and biomass and structure also had significant relationships but were more 

weakly correlated than for cover. For structure Band 7 and the seven/four ratio had the highest 

correlations, with r values ranging -0.44 to -0.58 across the sampling bouts. Biomass was 

most correlated to the seven/four ratio or NDII7, having similar results to vertical structure (r 

values ranging from -.52 to 0.65) in each sample bout across the growing season.  

3.3 Multiple regression modeling 

Fitting the full, stepwise and best subset models to the biophysical vegetation metrics for 

each sample bout revealed multicollinearity with the predictor variables. The full model and 

stepwise models had higher R
2
 values and lower corrected AIC values than the best subset 

models, but the predictor variables were highly collinear. The best subsets models exhibited 

decreased adjusted-R
2
 values when compared to the full and stepwise, but met the assumption 

that the predictor variables are independent and were therefore more appropriate models 

(Table 6-8). Each selected best subset ordinary least squares model had normally distributed 
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residuals with a mean of zero and exhibited no significant spatial autocorrelation when tested 

with Moran’s I (Cliff and Ord, 1981; Todd et al., 1998).  

The best subset models had statistically significant (p ≤ 0.01) relationships between 

satellite data and biophysical data estimates. While all models were statistically significant, 

the coefficient of determination (R
2
) was wide ranging and below 0.7 for all subset models 

selected. The best subset regression models for structure and biomass had an explained 

variance that decreased with each successive sampling bout as the growing season progressed 

and the grassland senesced. The selected models' adjusted-R
2
 values for structure estimation 

decreased from 0.699 in sampling bout 1 to 0.389 in sampling bout 3, while the biomass 

estimation across the sampling bouts decreased from 0.674 in sampling bout 1 to 0.346 in 

sampling bout 3. The selected best subset models for cover performed better across the 

growing season having an adjusted-R
2
 greater than 0.60 for each sampling bout (Fig. 6). 

Using the best model for each sampling bout to predict the vegetation amount collected 

during any other other sampling bout indicates that no single model could achieve the best 

relationship across the growing season (Fig. 6). For example, the adjusted-R
2 

value decreased 

when using the best subset model selected for cover during sample bout 1 to model cover for 

sampling bout 3 from 0.67 to 0.50. 

3.4 Sensitivity to stocking rate 

Using the best subset models, statistical differences existed between the predicted 

vegetation amounts by stocking rate that were mapped (Fig. 7-9) across the study area (Fig. 

10). Control pastures had significantly higher predicted structure, cover, and biomass 

compared to medium and high stocking rates; high stocking pastures had the smallest 

predicted vegetation amounts across all sampling bouts. The treatment area stocked at low 
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and medium rates largely had mean predicted vegetation quantities falling between the high 

and control treatment means across the growing season. In sampling bout one, the medium 

stocking rate treatment area had higher predicted vegetation amounts for structure and 

biomass than the low treatment area, but then switched places having lower predicted 

vegetation amounts for sampling bout 2 and 3. This is likely attributed to the timing of 

grazing in one of the medium pastures happening during and after sampling bout one. 

Estimation of vegetation amounts by stocking rate indicated a significant trend in reduction of 

vegetation amounts across the gradient of stocking rates (Fig. 11-13). This reduction in 

vegetation is subsequently observed across all bouts. Depending on time of year for each extra 

AUM per hectare, biomass was reduced between a range of 65 g per m
2
 (sampling bout 1) to 

38 g per m
2 

(Sampling bout 3) (Fig. 11). The reduction of cover across the grazing gradient 

was more consistent across the growing season with a measure of around 12% with each 

AUM per hectare (Fig. 12). Vertical structure was also reduced between 0.18 and 0.30 

decimeters with 1 AUM per hectare increase in grazing intensity depending on the time of 

measurement with the greatest reduction observed in the first sampling bout (Fig. 11).    

4. Discussion  

Analysis of vegetation amounts across the growing season showed reduced vegetation in 

areas with greater stocking rates. These findings provide evidence that our remote sensing 

based models were sensitive enough to discern different levels of stocking rates within the 

grazing season. However, the models most strongly correlated to vegetation metrics changed 

over the course of the growing season, suggesting that there is was no temporally consistent 

best model approach to monitor grazing effects utilizing the remotely sensed indices tested in 

this grassland system. Creating models that use vegetation indices and bands that most 



16 
 

 

1
6 

appropriately match up with phenological timing improved a model’s ability to explain the 

ground surface conditions.     

Relating our field measures of vertical structure, cover, and biomass with grazing intensity 

as measured by end of year utilization was performed to validate that vegetation amounts 

changed with increased stocking rates. Finding significant correlations between our vegetation 

metrics and utilization metric helps clarify that our models can be used to quantify changes in 

vegetation due to grazing and not just loss due to changes in phenology and non-herbivory 

related defoliation. From these data we observed significant negative correlations between 

vegetation metrics across the grazing season and utilization. Our result showing that vertical 

structure is sensitive to utilization corroborates Johnson et al. (2011) finding that vegetation 

structure was significantly reduced with increased grazing intensity in treatment years, as well 

as one year after grazing. Cover and biomass were also negatively correlated in all sample 

bouts providing evidence that grazing affects vegetation amounts across the growing season.  

Both the Pearson’s correlations and the multiple regression models between vegetation 

data and remotely sensed data indicated that vegetation indices with bands four and seven 

were the most useful to explain our biophysical vegetation measurements. When performing 

the Pearson’s correlation, the band seven/four ratio and NDII7 best predicted vegetation 

monitoring metrics across the growing season. Vegetation indices that included band 7 were 

most often selected using the subset regression approach when finding the “best” models. One 

explanation is that band 7 is sensitive to soil and vegetation moisture; greater reflectance 

occurs when plants and soils are dry and more bare ground is present (Knipling, 1970; Tucker, 

1980). Band 7 may be indicative of grazing levels and resulting impacts on amount of bare 

ground and vegetation moisture, with higher grazing intensities creating dryer barer areas. 
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NDVI had high r values (r>0.7) for green vegetation and green cover but lacked strong 

correlations with the selected biophysical variables throughout the year as vegetation 

senesced. Numata et al. (2007) found similar results when assessing vegetation parameters 

during the dry season in Brazil, finding vegetation indices using band 5 and 7 outperformed 

NDVI and SAVI.   

Over the grazing season, models created using the best subset approach decreased in 

explanatory power, though remained statistically significant. Cover was the biophysical 

metric that had the greatest explained variance across the growing season using both 

Pearson’s correlations and the best subset regression models. Therefore, a measure of cover 

could be the most useful metric for setting management objectives or performing multiyear 

trend analysis. Cover has also been found by others to be a reliable measure when assessed by 

satellite (Booth and Tueller, 2003). This research approach also shows that end year 

vegetation quantity metrics of biomass and vertical structure are more difficult to estimate 

when vegetation has senesced. If land managers feel the models are not accurate enough to 

base management decisions off of these relationships, other analysis techniques may be 

needed. Numata et al. 2007 found that using fraction images of non-photosynthetic vegetation 

produced from Multiple Endmember Spectral Mixture Analysis (MESMA) (Roberts, Smith, 

& Adams, 1993) had the best correlation to senescent vegetation. Ideally, one vegetation 

index would provide all the needed information to monitor the selected biophysical metric 

across the year (Marsett et al., 2006), but the best subset model selection showed that 

accuracy is improved by producing models that match phenological ground conditions.   

Our ability to explain the field metrics with remote sensing data decreased later in the 

season. This could be due to (1) vegetation senescence, impacting many of the green 
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vegetation indices, and (2) biophysical data becoming more similar over the course of the 

growing season, reducing the range of vegetation amounts that is being modelled. With 

increasing similarity and the amount of variance to be explained decreasing, coupled with a 

small sample size (n=32) for each sampling bout, the statistical measures become less robust 

later in the year. Hardisky et al. (1983) and Schino et al. ( 2003) also found it more difficult to 

measure biomass later in the year, which they attributed to the reduction of live to dead 

biomass.   

While our study highlights the ability to monitor grazing effects by satellite, it has 

limitations. First, our highest utilization rate at any given site was just over 35%, a rate not 

considered high for the Zumwalt Prairie habitat (Holechek and Gomez, 1999; Skovlin et al., 

1976). Therefore, the models created in this study to estimate vertical structure, biomass, and 

cover are best suited for moderate levels of grazing and would likely be improved with more 

variance in grazing levels. Future studies would benefit from sampling sites with higher 

amounts of utilization across the landscape. Second, field parameter estimation of biomass 

was difficult in such a highly heterogeneous landscape. Estimation could be improved with 

more sub-samples within the 30 x 30 macro plot or a different technique of infield estimation 

of biomass. Other studies have sampled larger areas in the field; for example, Marsett et al. 

(2006) had field sites of 90m X 150m helping to ensure the field sampled data was co-

registered to only pixels within the field sample area. Lastly, due to year-to-year variations in 

phenology and production as a result of climate and seasonality of precipitation, collection of 

data across multiple years, as well as more sampling sites across a greater area of the Zumwalt 

prairie, would improve our confidence in the models ability to predict vegetation metrics at 

different times of the grazing season for any given year and place.    
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5. Conclusions 

Rangeland managers need timely and accurate landscape scale estimates of vegetation 

amounts to determine the effects of their land management decisions. Quantifying common 

rangeland metrics across a grazing season provides spatially explicit maps and data to land 

managers for more informed decision making. Marsett et al. (2006) points out that maps 

derived from remote sensing that quantify vegetation can then be analyzed at different scales 

with Geographical Information System (GIS) tools. Here we computed the mean vegetation 

amounts by stocking rate treatment and pasture, but these metrics could be calculated at the 

ownership level or inside key areas within a pasture. Instead of using maps representing a 

vegetation index such as NDVI as a proxy for a commonly used rangeland metric, it was also 

our goal to produce maps that were converted back to the common rangeland management 

metric desired (i.e. cover, biomass, and vertical structure). This may provide more intuitive 

and accessible remote sensing products to landowners and managers for decision making, as 

well as integration of data into other ground based datasets.  

Here we explored the ability of freely available satellite data to monitor grazing effects 

with the goal of providing improved decision-support data for grazing management. We 

attempted to maximize our ability to accurately model vegetation at different time periods 

across the grazing season. Though significant relationships between remotely-sensed and 

biophysical field data were only moderately strong and varied across the three sampling 

periods, our findings suggest that the effects of different levels of stocking rate can be 

modeled via Landsat ETM+ data across the grazing season with an acceptable accuracy. 

Being able to monitor the effects of grazing across the landscape can provide data to better 

inform land management across the Zumwalt grassland.  
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Figure 1. Map of study area in the Zumwalt Prairie, Oregon. 
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Figure 2. Grazing treatment map showing livestock stocking rates, timing of grazing and 

location of sites sampled within each pasture. Suitable habitat is delineated using two 

ecological systems “Columbia Basin Palouse Prairie” and “Columbia Basin Foothill and 

Canyon Dry Grassland” from ReGap (ONHIC, 2006) and the areas with less than 30% slope, 

at least 50m away from roads, stock ponds, and fence lines.  
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Figure 3. The timing of the three sampling bouts (the numbered black boxes) in relation to 

Landsat ETM+ scenes used in the analysis process shown as dates in 2012, as well as the 

timing of livestock grazing grouped by intensity represented by black lines. 
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Figure 4. A) Sorted utilization measures collected during the last sampling bout (September 

27 – Oct 5) on the Zumwalt Prairie. B) Boxplots of percent utilization by grazing treatment, 

significant differences exist between the control plots and medium and high grazing 

treatments, indicated by the different symbols.   
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Figure 5. Pearson’s correlations between end-of-year percent utilization and biophysical 

monitoring metrics: vertical structure (dm), cover (%), and dry biomass (g/m2). 
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Figure 6. Adjusted R
2
 values for the best model regressions for each sampling bout and 

vegetation metric. The best model from each sampling bout is then used to predict the 

vegetation metric at the two other sampling bouts.   
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Figure 7. Maps of vegetation structure (dm) by sampling bout and treatment type. No data or 

values outside of the regression equation range of estimation are shown in red. 
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Figure 8. Maps of vegetation cover (%) by sampling bout and treatment type. No data or 

values outside of the regression equation range of estimation are shown in red. 
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Figure 9. Maps of vegetation biomass (g/m2) by sampling bout and treatment type. No data or 

values outside of the regression equation range of estimation are shown in red. 
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Figure 10. Predicted vegetation 

amounts for structure, cover, and 

biomass across the growing 

season. Means are shown with 

solid lines, with the filled shaded 

area showing the 95% 

confidence interval around the 

mean. Predicted vegetation 

amounts were derived from 

multiple regression analysis by 

stocking rate and sample bout. 
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Figure 11. Effect of stocking rate on vertical structure by sampling bout. The point symbols 

represent the vertical structure (dm) pasture means symbolized by sampling bout. The 

Ordinary Least Square (OLS) regression lines show the effect of the stocking rate (AUM per 

hectare) on the mean vertical structure by pasture for each sampling bout The black line and 

black symbol refer to sampling bout one (SB1) data; the blue line and plus symbol refer to 

sample bout two (SB2) data; the red line and astrick refer to sampling bout three data (SB3) 

data.  
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Figure 12. Effect of stocking rate on cover by sampling bout. The point symbols represent the 

percent cover pasture means symbolized by sampling bout. The Ordinary Least Square (OLS) 

regression lines show the effect of the stocking rate (AUM per hectare) on the mean percent 

cover by pasture for each sampling bout. The black line and black symbol refer to sampling 

bout one (SB1) data; the blue line and plus symbol refer to sample bout two (SB2) data; the 

red line and astrick refer to sampling bout three data (SB3) data.   
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Figure 13. Effect of stocking rate on biomass by sampling bout. The point symbols represent 

the biomass (g/m
2
) pasture means symbolized by sampling bout. The Ordinary Least Square 

(OLS) regression lines show the effect of the stocking rate (AUM per hectare) on the mean 

biomass by pasture for each sampling bout. The black line and black symbol refer to sampling 

bout one (SB1) data; the blue line and plus symbol refer to sample bout two (SB2) data; the 

red line and astrick refer to sampling bout three data (SB3) data.  
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Table 1. Field metrics collected for each sampling bout across the growing season for each 

macro plot (N=32). 
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Table 2. The vegetation indices used for correlations and regressions with field metrics.   

  

 

 

 

 

Index and abbriviation Formula Reference

Simple Ratio (SR) Jordan (1969)

Normalized Difference Vegetation Index (NDVI) Rouse et al. (1973); Tucker (1979)

Soil Adjusted Vegetation Index (SAVI) Huete (1988)

Renormalized Difference Vegetation Index (RDVI) Ruejean and Breon (1995); Haboudane et al. (2004)

Modified Triangular Vegetation Index 1 (MTVI1) 
1.2[1.2(NIR-GREEN)-2.5(RED-GREEN)]

Haboudane et al. (2004)

Plant Senesce Reflectance Index (PSRI) Merzlyak et al. (1999)

Canopy Index (CI) Vescovo & Gianelle (2008)

Normalized Canopy Index (NCI) Vescovo & Gianelle (2008)

Ratio Cover Index (RCI) Zhang & Guo (2008)

Normalized Difference Cover Index (NDCI) Zhang & Guo (2008)

Normalized Difference Water Index (NDWI) Hardisky et al. (1983); Gao (1996)

Seven/Four ratio 

Normalized Difference Infrared Index 7 (NDII7) Hardisky et al. (1983)

Soil Adjusted Total Vegetation Index (SATVI) Marsett et al. (2006)

 Brightness Index (BI)
0.2043blue + 0.4158green + 0.5524red + 

0.5741NIR + 0.3124SWIR1 + 0.2303SWIR2

Crist (1985)

Greeness Index (GVI)
-0.1603blue - 0.2819green - 0.4934red + 

0.7940NIR - 0.0002SWIR1 - 0.1446SWIR2

Crist (1985)

Wetness Index (WI)
0.0315blue + 0.2021green + 0.3102red + 

0.1594NIR - 0.6806SWIR1 - 0.6109SWIR2

Crist (1985)
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Table 3. Pearson’s correlation values between vegetation structure data and remotely sensed 

data, vegetation indices, and tasseled cap transformations. Values in boxes are significant at 

the 0.05 p value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r p val r p val r p val

Band 1 -0.15 0.40 -0.20 0.28 0.19 0.29

Band 2 0.05 0.78 -0.16 0.38 -0.15 0.41

Band 3 -0.01 0.98 0.02 0.91 -0.02 0.91

Band 4 0.33 0.06 0.15 0.41 0.17 0.37

Band 5 -0.15 0.40 0.04 0.85 -0.15 0.41

Band 7 -0.44 0.01 -0.53 0.00 -0.58 0.00

Simple Ratio (SR) -0.23 0.21 0.23 0.21 0.27 0.14

Normalized Difference Vegetation Index (NDVI) 0.22 0.23 -0.31 0.09 0.26 0.15

Soil Adjusted Vegetation Index (SAVI) 0.27 0.14 0.16 0.37 0.27 0.13

Renormalized Difference Vegetation Index (RDVI) 0.26 0.15 0.16 0.37 0.27 0.13

Modified Triangular Vegetation Index 1 (MTVI1) 0.24 0.18 0.14 0.45 0.21 0.26

Canopy Index (CI) -0.21 0.24 0.10 0.59 -0.06 0.73

Normalized Canopy Index (NCI) -0.42 0.02 0.20 0.27 0.08 0.67

Ratio Cover Index (RCI) -0.18 0.34 0.00 1.00 -0.13 0.48

Normalized Difference Cover Index (NDCI) -0.19 0.29 0.02 0.93 -0.12 0.50

Plant Senesce Reflectance Index (PSRI) -0.13 0.47 0.18 0.33 0.28 0.13

Soil Adjusted Total Vegetation Index (SATVI) 0.04 0.85 0.31 0.08 0.18 0.32

Seven/Four ratio -0.49 0.00 -0.48 0.01 -0.54 0.00

Normalized Difference Infrared Index 7 (NDII7) 0.46 0.01 0.46 0.01 0.54 0.00

Normalized Difference Water Index (NDWI) 0.35 0.05 0.18 0.32 0.39 0.03

Tasseled Cap - Brightness Index (BI) 0.10 0.59 -0.05 0.80 -0.11 0.55

Tasseled Cap - Greeness Index (GVI) 0.30 0.09 0.24 0.19 0.37 0.04

Tasseled Cap - Wetness Index (WI) 0.39 0.03 0.32 0.07 0.47 0.01

Remotely sensed data 
Sample bout 1 Sample bout 2 Sample bout 3
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Table 4. Pearson’s correlation values between percent canopy cover and remotely sensed data, 

vegetation indices and tasseled cap transformations. Values in boxes are significant at the 0.05 

p value.  

 

 

 

 

 

  

r p val r p val r p val

Band 1 0.17 0.34 -0.34 0.06 0.19 0.28

Band 2 -0.15 0.41 -0.28 0.13 0.00 1.00

Band 3 -0.25 0.17 -0.08 0.67 0.23 0.20

Band 4 0.44 0.01 0.33 0.06 0.58 0.00

Band 5 -0.31 0.09 0.00 0.99 0.25 0.17

Band 7 -0.60 0.00 -0.66 0.00 -0.48 0.00

Simple Ratio (SR) -0.47 0.01 0.43 0.01 0.46 0.01

Normalized Difference Vegetation Index (NDVI) 0.46 0.01 -0.48 0.01 0.46 0.01

Soil Adjusted Vegetation Index (SAVI) 0.47 0.01 0.38 0.03 0.57 0.00

Renormalized Difference Vegetation Index (RDVI) 0.47 0.01 0.38 0.03 0.57 0.00

Modified Triangular Vegetation Index 1 (MTVI1) 0.43 0.01 0.36 0.04 0.51 0.00

Canopy Index (CI) -0.34 0.05 0.10 0.58 0.31 0.08

Normalized Canopy Index (NCI) -0.35 0.05 0.29 0.11 0.18 0.33

Ratio Cover Index (RCI) 0.13 0.49 0.11 0.55 -0.10 0.60

Normalized Difference Cover Index (NDCI) 0.11 0.55 0.11 0.56 -0.08 0.67

Plant Senesce Reflectance Index (PSRI) -0.37 0.04 -0.05 0.77 0.23 0.20

Soil Adjusted Total Vegetation Index (SATVI) 0.27 0.14 0.42 0.02 0.33 0.06

Seven/Four ratio -0.66 0.00 -0.68 0.00 -0.75 0.00

Normalized Difference Infrared Index 7 (NDII7) 0.63 0.00 0.66 0.00 0.74 0.00

Normalized Difference Water Index (NDWI) 0.53 0.00 0.45 0.01 0.55 0.00

Tasseled Cap - Brightness Index (BI) -0.02 0.91 -0.04 0.84 0.24 0.18

Tasseled Cap - Greeness Index (GVI) 0.49 0.00 0.46 0.01 0.67 0.00

Tasseled Cap - Wetness Index (WI) 0.54 0.00 0.43 0.01 0.24 0.18

Sample bout 1 Sample bout 2 Sample bout 3
Remotely sensed data 
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Table 5. Pearson’s correlation values between dry biomass data and remotely sensed data, 

vegetation indices and tasseled cap transformations. Values in boxes are significant at the 0.05 

p value.  

 

 
r p val r p val r p val

Band 1 -0.07 0.72 -0.27 0.14 0.23 0.20

Band 2 0.04 0.83 -0.19 0.29 -0.11 0.55

Band 3 -0.02 0.93 -0.02 0.92 0.09 0.61

Band 4 0.40 0.02 0.46 0.01 0.43 0.01

Band 5 -0.12 0.50 0.22 0.22 0.08 0.65

Band 7 -0.43 0.01 -0.48 0.01 -0.41 0.02

Simple Ratio (SR) -0.27 0.14 0.51 0.00 0.45 0.01

Normalized Difference Vegetation Index (NDVI) 0.26 0.15 -0.54 0.00 0.44 0.01

Soil Adjusted Vegetation Index (SAVI) 0.33 0.07 0.48 0.01 0.51 0.00

Renormalized Difference Vegetation Index (RDVI) 0.31 0.08 0.48 0.01 0.51 0.00

Modified Triangular Vegetation Index 1 (MTVI1) 0.30 0.10 0.47 0.01 0.46 0.01

Canopy Index (CI) -0.17 0.35 0.32 0.07 0.15 0.40

Normalized Canopy Index (NCI) -0.34 0.06 0.41 0.02 0.20 0.28

Ratio Cover Index (RCI) -0.11 0.55 0.31 0.08 -0.07 0.71

Normalized Difference Cover Index (NDCI) -0.13 0.46 0.32 0.08 -0.05 0.78

Plant Senesce Reflectance Index (PSRI) -0.14 0.43 -0.22 0.23 0.23 0.21

Soil Adjusted Total Vegetation Index (SATVI) 0.13 0.48 0.58 0.00 0.23 0.20

Seven/Four ratio -0.52 0.00 -0.66 0.00 -0.57 0.00

Normalized Difference Infrared Index 7 (NDII7) 0.49 0.00 0.65 0.00 0.58 0.00

Normalized Difference Water Index (NDWI) 0.39 0.03 0.44 0.01 0.50 0.00

Tasseled Cap - Brightness Index (BI) 0.14 0.43 0.16 0.39 0.11 0.56

Tasseled Cap - Greeness Index (GVI) 0.37 0.04 0.52 0.00 0.57 0.00

Tasseled Cap - Wetness Index (WI) 0.38 0.03 0.19 0.30 0.26 0.15

Sample bout 1 Sample bout 2 Sample bout 3
Remotely sensed data 
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Table 6. Vertical structure regression models. Models of full, step-wise and best subset models for up to 4 predictor variables are 

shown. The “best” model selected is bolded and was chosen based on the lowest corrected AIC and an acceptable variance inflation 

factor (<10).  
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Table 7. Cover regression models. Models of full, step-wise and best subset models for up to 4 predictor variables are shown. The 

“best” model selected is bolded and was chosen based on the lowest corrected AIC and an acceptable variance inflation factor 

(<10).  
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Table 8. Biomass regression models. Models of full, step-wise and best subset models for up to 4 predictor variables are shown. 

The “best” model selected is bolded and was chosen based on the lowest corrected AIC and an acceptable variance inflation factor 

(<10). 

 

 



41 
 

 

4
1 

4
1 

Bibliography 

Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE 
Transactions on, AC-19(6), 716–723.  

Allen-Diaz, B., Chapin, F. S., Diaz, S., M. Howden, J. P., & Smith, M. S. (1995). Rangelands in a 
Changing Climate: Impacts, Adaptations, and Mitigation. In: Climate Change 1995—
Impacts, Adaptation and Mitigation, W. T. Watson, M. C. Zinyowera, R. H. Moss, and D. 
J. Dokken, (eds.), Pg. 131–158.  

Anderson, G. L., Hanson, J. D., & Haas, R. H. (1993). Evaluating Landsat Thematic Mapper 
Derived Vegetation Indices for Estimating Above-Ground Biomass on Semiarid 
Ranglelands. Remote Sensing Environment, 45, 165–175. 

Archer, E. R. M. (2004). Beyond the “‘ climate versus grazing ’” impasse : using remote 
sensing to investigate the effects of grazing system choice on vegetation cover in the 
eastern Karoo. Journal of Arid Environments, 57, 381–408. doi:10.1016/S0140-
1963(03)00107-1 

Bartuszevige, A. M., Kennedy, P. L., & Taylor, R. V. (2012). Sixty-seven Years of Landscape 
Change in the Last, Large Remnant of the Pacific Northwest Bunchgrass Prairie. Natural 
Areas Journal, 32(2), 166–170. 

Bastin, G., Scarth, P., Chewings, V., Sparrow, A., Denham, R., Schmidt, M., O'Reagain, P., 
Shepherd, R., Abbott, B. (2012). Separating grazing and rainfall effects at regional scale 
using remote sensing imagery: A dynamic reference-cover method. Remote Sensing of 
Environment, 121, 443–457. doi:10.1016/j.rse.2012.02.021 

Blanco, L. J., Ferrando, C. A., & Biurrun, F. N. (2009). Remote Sensing of Spatial and Temporal 
Vegetation Patterns in Two Grazing Systems. Rangeland Ecology and Management, 
62(5), 445–451. 

Booth, D. T., & Tueller, P. T. (2003). Rangeland monitoring using remote sensing. Arid Land 
Research and Management, 17, 455–467.  

Bradley, B. A., & O’sullivan, M. T. (2011). Assessing the short-term impacts of changing 
grazing regime at the landscape scale with remote sensing. International Journal of 
Remote Sensing, 32(20), 5797–5813. 

Brinkmann, K., Dickhoefer, U., Schlecht, E., & Buerkert, A. (2011). Quantification of 
aboveground rangeland productivity and anthropogenic degradation on the Arabian 
Peninsula using Landsat imagery and field inventory data. Remote Sensing of 
Environment, 115(2), 465–474. doi:10.1016/j.rse.2010.09.016 



42 
 

 

4
2 

4
2 

Butterfield, H. S., & Malmstrom, C. M. (2006). Experimental Use of Remote Sensing by 
Private Range Managers and Its Influence on Management Decisions. Rangeland 
Ecology and Management, 59(5), 541–548. 

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric 
calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote 
Sensing of Environment, 113(5), 893–903. doi:10.1016/j.rse.2009.01.007 

Chavez, P. (1996). Image-based atmospheric corrections-revisited and improved. 
Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1036.  

Cliff, A. ., & Ord, J. K. (1981). Spatial Processes, Models and Applications. (pp. 19–22). 
London: Pion. 

Conner, R., Seidl, A., VanTassell, L., & Wilkins, N. (2002). United States Grasslands and 
Related Resources: An Economic and Biological Trends Assessment. The National 
Cattlemen’s Beef Association, The Nature Conservancy and Ducks Unlimited. 

Coulloudon, B., Eshelman, K., Gianola, J., Habich, N., Hughes, L., Johnson, C., Pellant, M., 
Podborny, P., Rasmussen, A., Robles, B., Shaver, P., Spehar, J., Willoughby, J. (1999). 
Sampling Vegetation Attributes. Interagency Technical Reference, 171. 

Crist, E., & Kauth, R. (1986). The tasseled cap de-mystified. Photogrammetric Engineering 
and Remote Sensing, 52(1), 81–86.  

Dungan, J. (1998). Spatial prediction of vegetation quantities using ground and image data. 
International Journal of Remote Sensing, 19(2), 267–285. 
doi:10.1080/014311698216242 

Evans, J., & Geerken, R. (2004). Discrimination between climate and human-induced dryland 
degradation. Journal of Arid Environments, 57(4), 535–554. doi:10.1016/S0140-
1963(03)00121-6 

Friendly, M., & Kwan, E. (2009). Where’s Waldo? Visualizing Collinearity Diagnostics. The 
American Statistician, 63(1), 56–65. doi:10.1198/tast.2009.0012 

Gao, B. (1996). NDWI A Normalized Difference Water Index for Remote Sensing of 
Vegetation Liquid Water From Space. Remote Sensing of Environment, 266(April 1995), 
257–266. 

Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting 
green LAI of crop canopies: Modeling and validation in the context of precision 
agriculture. Remote Sensing of Environment, 90(3), 337–352. 
doi:10.1016/j.rse.2003.12.013 



43 
 

 

4
3 

4
3 

Hagen, S. C., Heilman, P., Marsett, R., Torbick, N., Salas, W., van Ravensway, J., & Qi, J. 
(2012). Mapping Total Vegetation Cover Across Western Rangelands With Moderate-
Resolution Imaging Spectroradiometer Data. Rangeland Ecology and Management, 
65(5), 456–467. doi:10.2111/REM-D-11-00188.1 

Hardisky, M. A., Smart, R. M., & Klemas, V. (1983). Seasonal Spectral Characteristics and 
Aboveground Biomass of the Tidal Marsh Plant, Spartina alterniflora. American Society 
of Photogrammetry, 49(1), 85–92. 

Herrick, J. E., Lessard, V. C., Spaeth, K. E., Shaver, P. L., Dayton, R. S., Pyke, D. A, Jolley, L., 
Goebel, J. J. (2010). National ecosystem assessments supported by scientific and local 
knowledge. Frontiers in Ecology and the Environment, 8(8), 403–408. 
doi:10.1890/100017 

Herrick, J. E., Zee, J. W. Van, Havstad, K. M., Burkett, L. M., Whitford, W. G., Pyke, D. A., 
Remmenga, M. D., Shaver, P. L. (2005). Monitoring Manual for grassland, shrubland and 
savanna ecosystems. Las Cruces, NM, USA: USDA-ARS Jornada Experimental Range., 
236. 

Hill, J., Hostert, P., Tsiourlis, G., Kasapidis, P., Udelhoven, T., & Diemer, C. (1998). Monitoring 
20 years of increased grazing impact on the Greek island of Crete with earth 
observation satellites. Journal of Arid Environments, 39(2), 165–178. 
doi:10.1006/jare.1998.0392 

Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2004). Confronting a biome 
crisis: global disparities of habitat loss and protection. Ecology Letters, 8(1), 23–29. 
doi:10.1111/j.1461-0248.2004.00686.x 

Holechek, J. (1988). An approach for setting the stocking rate. Rangelands, 10(1), 10–14.  

Holechek, J., & Gomez, H. (1999). Grazing studies: what we’ve learned. Society of Range 
Management, 21(2), 12–16.  

Hudak, A. T., Crookston, N. L., Evans, J. S., Falkowski, M. J., Smith, A. M. S., Gessler, P. E., & 
Morgan, P. (2006). Regression modeling and mapping of coniferous forest basal area 
and tree density from discrete-return lidar and multispectral satellite data. Canadian 
Journal of Remote Sensing, 32(2), 126–138. doi:10.5589/m06-007 

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 
25(3), 295–309. doi:10.1016/0034-4257(88)90106-X 

Hunt, E. R., Everitt, J. H., Ritchie, J. C., Moran, M. S., Booth, D. T., Anderson, G. L., … Seyfried, 
M. S. (2003). Applications and Research Using Remote Sensing for Rangeland 
Management. Photogrammetric Engineering and Remote Sensing, 69(6), 675–693. 



44 
 

 

4
4 

4
4 

Ikeda, H., Okamoto, K., & Fukuhara, M. (1999). Estimation of aboveground grassland 
phytomass with a growth model using Landsat TM and climate data. International 
Journal of Remote Sensing, 20(11), 2283–2294.  

Johnson, T. N., Kennedy, P. L., DelCurto, T., & Taylor, R. V. (2011). Bird community responses 
to cattle stocking rates in a Pacific Northwest bunchgrass prairie. Agriculture, 
Ecosystems and Environment, 144(1), 338–346. doi:10.1016/j.agee.2011.10.003 

Johnson, T. N., Kennedy, P. L., & Etterson, M. A. (2012). Nest success and cause-specific nest 
failure of grassland passerines breeding in prairie grazed by livestock. The Journal of 
Wildlife Management, 76(8), 1607–1616. doi:10.1002/jwmg.437 

Jordan, C. (1969). Derivation of leaf-area index from quality of light on the forest floor. 
Ecology, 50(4), 663–666.  

Kauth, R. J., & Thomas, G. S. (1976). The Tasselled Cap--A Graphic Description of the 
Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. LARS 
Symposia.  

Kawamura, K., Akiyama, T., Yokota, H., Tsutsumi, M., Yasuda, T., Watanabe, O., & Wang, S. 
(2005). Quantifying grazing intensities using geographic information systems and 
satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. 
Agriculture, Ecosystems and Environment, 107(1), 83–93. 
doi:10.1016/j.agee.2004.09.008 

Key, C. (2006). Ecological and sampling constraints on defining landscape fire severity. Fire 
Ecology, 2(2), 34–59.  

Key, C. H., & Benson, N. C. (2006). Landscape Assessment ( LA ) Sampling and Analysis 
Methods (pp. 1–55). 

Kimoto, C., Debano, S. J., Thorp, R. W., Rao, S., Stephen, W. P., & William, P. (2012). 
Investigating Temporal Patterns of a Native Bee Community in a Remnant North 
American Bunchgrass Prairie using Blue Vane Traps. Journal of Insect Science, 12(108), 
1–23. 

Knipling, E. (1970). Physical and physiological basis for the reflectance of visible and near-
infrared radiation from vegetation. Remote Sensing of Environment, 1(3), 155–159. 

Lilliefors, H. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance 
unknown. Journal of the American Statistical Association, 62(318), 399–402.  



45 
 

 

4
5 

4
5 

Lind, M., & Rasmussen, K. (2003). Estimating vegetative productivity gradients around 
watering points in the rangelands of Northern Senegal based on NOAA AVHRR data. 
Danish Journal of Geography, 103(1), 1–16.  

Marsett, R. C., Qi, J., Heilman, P., Biedenbender, S. H., Watson, M. C., Amer, S., Weltz, M., 
Goodrich, D., Marsett, R. (2006). Remote Sensing for Grassland Management in the Arid 
Southwest. Rangeland Ecology and Management, 59(5), 530–540. 

McLean, A., & Tisdale, E. (1972). Recovery rate of depleted range sites under protection 
from grazing. Journal of Range Management, 178–184.  

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, Y. (1999). Non-destructive 
optical detection of pigment changes during leaf senescence and fruit ripening. 
Physiologia Plantarum, 106, 135–141.  

Milchunas, D., & Lauenroth, W. (1993). Quantitative effects of grazing on vegetation and 
soils over a global range of environments. Ecological Monographs, 63(4), 327–366.  

Munyati, C., & Makgale, D. (2009). Multitemporal Landsat TM imagery analysis for mapping 
and quantifying degraded rangeland in the Bahurutshe communal grazing lands, South 
Africa. International Journal of Remote Sensing, 30(14), 3649–3668. 
doi:10.1080/01431160802592534 

Numata, I., Roberts, D. A., Chadwick, O. A., Schimel, J., Sampaio, F. R., Leonidas, F. C., & 
Soares, J. V. (2007). Characterization of pasture biophysical properties and the impact 
of grazing intensity using remotely sensed data. Remote Sensing of Environment, 
109(3), 314–327. doi:10.1016/j.rse.2007.01.013 

Parsons, C. T., Momont, P. A., Delcurto, T., Mcinnis, M., Porath, L., & Marni, L. (2003). Cattle 
distribution patterns and vegetation use in mountain riparian areas. Journal Of Range 
Management, 56(4), 334–341. 

Paudel, K. P., & Andersen, P. (2010). Assessing rangeland degradation using multi temporal 
satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, 
Nepal. Remote Sensing of Environment, 114(8), 1845–1855. 
doi:10.1016/j.rse.2010.03.011 

Pickup, G., Bastin, G. N., & Chewings, V. H. (1994). Remote-Sensing-Based Condition 
Assessment for Nonequilibrium Rangelands Under Large- Scale Commercial Grazing. 
Ecological Society of America, 4(3), 497–517. 

Pickup, G., Bastin, G. N., & Chewings, V. H. (1998). Identifying trends in land degradation in 
non-equilibrium rangelands. Journal of Applied Ecology, 35(3), 365–377. 
doi:10.1046/j.1365-2664.1998.00319.x 



46 
 

 

4
6 

4
6 

Purevdorj, T., & Tateishi, R. (1998). Relationships between percent vegetation cover and 
vegetation indices. International Journal of Remote Sensing, 19(18), 3–18.  

Robel, R. I., Briggs, J. N., Dayton, A. D., & Hulbert, L. C. (1970). Relationships between Visual 
Obstruction Measurements and Weight of Grassland Vegetation Relationships Between 
Visual Obstruction Measurements and Weight of Grassland Vegetation. Journal Of 
Range Management, 23(4), 295–297. 

Roberts, D. A., Smith, M. O., & Adams, J. B. (1993). Green vegetation, nonphotosynthetic 
vegetation, and soils in AVIRIS data. Remote Sensing of Environment, 44(2-3), 255–269. 
doi:10.1016/0034-4257(93)90020-X 

Röder, A., Udelhoven, T., Hill, J., del Barrio, G., & Tsiourlis, G. (2008). Trend analysis of 
Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in 
Northern Greece. Remote Sensing of Environment, 112(6), 2863–2875. 
doi:10.1016/j.rse.2008.01.018 

Roujean, J., & Breon, F. (1995). Estimating PAR absorbed by vegetation from bidirectional 
reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.  

Rouse, W., Haas, H., & Deering, W. (1973). 20 monitoring vegetation systems in the great 
plains with erts . Proceeding of 3rd ERTS Symposium. 

Schino, G., Borfecchia, F., & Cecco, L. De. (2003). Satellite estimate of grass biomass in a 
mountainous range in central Italy. Agroforestry Systems, 59, 157–162.  

Skovlin, J. M., Harris, R. W., Strickler, G. S., & Garrison, G. A. (1976). Effects of cattle grazing 
methods on ponderosa pine-bunchgrass range in the Pacific Northwest (p. 48). 

Sugiura, N. (1978). Further analysts of the data by Akaike’s information criterion and the 
finite corrections. Communications in Statistics - Theory and Methods, A7(No. 1), pp. 
13–26. 

Todd, S., Hoffer, R., & Milchunas, D. (1998). Biomass estimation on grazed and ungrazed 
rangelands using spectral indices. International Journal of Remote Sensing, 19(3), 427–
438.  

Tucker, C. (1980). Remote sensing of leaf water content in the near infrared. Remote Sensing 
of Environment, 10(1), 23–32.  

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring 
vegetation. Remote Sensing of Environment, 8, 127–150. 



47 
 

 

4
7 

4
7 

Vescovo, L., & Gianelle, D. (2008). Using the MIR bands in vegetation indices for the 
estimation of grassland biophysical parameters from satellite remote sensing in the 
Alps region of Trentino (Italy). Advances in Space Research, 41(11), 1764–1772. 
doi:10.1016/j.asr.2007.07.043 

Washington-Allen, R. A., West, N. E., Ramsey, R. D., & Efroymson, R. A. (2006). A Protocol for 
Retrospective Remote Sensing – Based Ecological Monitoring of Rangelands Special l 
Monitoring of Rangelands. Rangeland Ecology and Management, 59(1), 19–29. 

West, N. E. (2003). History of Rangeland Monitoring in the U . S . A . Arid Land Research and 
Management, 17(4), 495–545. doi:10.1080/15324980390225584 

Wulder, M. A., White, J. C., Masek, J. G., Dwyer, J., & Roy, D. P. (2011). Continuity of Landsat 
observations: Short term considerations. Remote Sensing of Environment, 115(2), 747–
751. doi:10.1016/j.rse.2010.11.002 

Wylie, B., Meyer, D., Tieszen, L., & Mannel, S. (2002). Satellite mapping of surface 
biophysical parameters at the biome scale over the North American grasslands: a case 
study. Remote Sensing of Environment, 79, 266–278. 

Yang, X., & Guo, X. (2011). Investigating vegetation biophysical and spectral parameters for 
detecting light to moderate grazing effects: a case study in mixed grass prairie. Central 
European Journal of Geosciences, 3(3), 336–348. doi:10.2478/s13533-011-0032-4 

Zhang, C., & Guo, X. (2008). Monitoring northern mixed prairie health using broadband 
satellite imagery. International Journal of Remote Sensing, 29(8), 2257–2271. 
doi:10.1080/01431160701408378 

 

 

 



48 
 

 

4
8 

4
8 

Chapter 2: Applications to Management 
 

The ability of remote sensing to gather data across large spatial extents has the 

potential to provide unwitting and sometimes undesirable dissemination of private 

information, but it also has the potential to democratize data collection, increase societal 

awareness of important issues, and enhance transparency of actions (Myers, 2010). Therefore 

successful application and dissemination of remotely sensed data and analysis products to the 

rangeland community provided by this research will rely on both social and scientific 

knowledge. Recent research has shown that remotely sensed data can provide monitoring 

information that agrees with rancher’s perception of  grassland productivity (Rowley et al., 

2007) as well as provide private land owners a tool to assess and inform management action 

(Butterfield and Malmstrom, 2006). Balancing the potential of easily accessed and shared 

remotely sensed data with the various desires of landowners to keep data private will be an 

important step in collaborating and implementing the use of remotely sensed data products to 

better manage lands across the Zumwalt Prairie.      

In previous work conducted by Butterfield and Malmstrom. (2006) remotely sensed 

data products were only made available to the owners of each land parcel analyzed. While 

some ranchers kept their data private, it was also observed that two of the cattle ranchers 

shared their data, improving the decision making and management action across ownership 

boundaries (Butterfield and Malmstrom, 2006).  It is foreseeable that some individual or 

groups ranchers on the Zumwalt Prairie would agree to share data across ownership to better 

understand what is happening across their private lands due to trans-boundary forces, such as 

heavy elk use. This ability to share data across various temporal and spatial scales that is 

consistently collected and common among landowners highlights the potential of remote 
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sensed data to provide meaningful information which can be easily discussed and compared 

within the ranching community.  

As end users of remotely sensed data ranchers and land managers need to be able to 

interact with the data in a straightforward way, and have it provide the needed information to 

answer their questions (Butterfield and Malmstrom, 2006). One question that is frequently 

asked is: what is the proper stocking rate for this land for any given year? Stocking at a rate 

appropriate to the amount of forage available, employing methods such as herding and salting 

to facilitate proper distribution and to avoid overuse of sensitive areas, as well as managing 

timing (both duration and rotation) are essential in avoiding negative short and long-term 

impacts (Holechek and Gomez, 1999; Ortega-S et al., 2013). It is our goal that by quantifying 

common rangeland metrics across a grazing season and providing spatially explicit maps and 

data, land managers are better equipped to understand the effects of their stocking rate and 

make more informed decisions going forward (Chapter 1). Marsett et al. (2006) points out that 

maps derived from remote sensing that quantify vegetation can then be analyzed at different 

scales with Geographical Information System (GIS) tools. In our study we computed the 

mean vegetation amounts by stocking rate treatment and pasture area, but these metrics could 

also be calculated at a spatial or temporal scale that best fits a ranchers needs providing 

retrospective measures of grazing. Quantitative grazing outcomes (e.g., measures of residual 

biomass, utilization, stubble height) allow land managers to evaluate whether past grazing 

produced intended outcomes (Coulloudon et al., 1999) and can compare these outcomes over 

time.  

While we have demonstrated the ability for Landsat ETM+ data to model vegetation 

amounts and provide comparisons between stocking rates across a grazing season, the 
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research and deployment of usable rangeland data can be improved in multiple ways. First, a 

better understanding of the potential productivity across the landscape would improve our 

understanding of grazing effects. Second, performing a multiyear time series analysis to 

understand the inter-annual variability of vegetation amounts as well as analyze how 

precipitation influences vegetation amount and greenness would improve a rancher’s ability to 

forecast how much forage maybe available. Third, decreasing processing time by creating 

geoprocessing scripts that efficiently analyze the remotely sensed data into management 

relevant data such as percentage of green vegetation and end of year measures of cover, 

would help to provide data in near real-time. Lastly, the remotely sensed data needs to be 

accessible in a user-friendly web interface that displays the mapped vegetation amounts as 

well as key pasture statistics to increase the adoption of this data product.      

Ranchers are seeking out data that better enables them to answer their own questions 

and assess their own management action so that changes can be made in future years. Actions 

such as purchasing Google Earth Pro licenses or contracting the services of range scientists 

demonstrates the desire of landowners to better informed managers of land and stock. 

Butterfield and Malmstrom (2006) demonstrated this want by concluding, most landowners 

said that they would increase the amount of money spent on this technology after their 

participation the study. Coupling private landowners with remotely sensed data products 

follows the recent trend pointed out by  Burgess et al. (2007) and Dickinson et al. (2010) 

stating that that science has placed an emphasis on incorporating citizens in the policy and the 

scientific process.  Incorporating citizens into the process by delivering remote sensing data 

products offer ways to improve management and grassland condition as well as the remote 

sensing science of grassland systems. Remote sensing technologies are well positioned to 
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bridge citizens and the scientific community due to the richness in data, accessibility and its 

ability to highlight processes within and across ownership boundaries. The successes of such 

efforts depend on dependable and accurate data, a process of collaborative, ethical 

considerations and involvement in accessing remote sensing data and technology.  
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