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Abstract 

Landscapes located in high northern latitudes (≥ 60°N) are changing at a rate two to three 

times the global mean. Research is needed to assess the current state of northern latitude 

regions to best identify the impacts of climate change, which can inform the advancement of 

policies and management strategies. In response to warming induced landscape changes, 

management agencies are identifying practical “adaptive strategies” that may mitigate the 

negative effects of climate change. One such strategy in wildlife management is to evaluate 

and enhance monitoring programs, and to consider incorporating new tools to augment 

monitoring efforts. 

Geospatial tools are one set of technologies that may enhance evaluation and 

monitoring for wildlife management. These tools enable spatial data to be collected, 

analyzed, and visualized in ways that assist in planning and management activities. Two 

common geospatial tools used in wildlife management are (1) mobile Global Positioning 

Systems (GPS) that can be housed in collars worn by a variety of species, and (2) remote 

sensing, which collects noncontact information regarding the physical and biological 

characteristics from a given target using reflected or emitted radiation. 

The second chapter of this dissertation incorporates remotely sensed products in 

conjunction with GPS-telemetry from four Alaska moose populations to assess how habitat 

selection changes in response to increased temperatures. Both male and female moose in all 

populations increasingly, and nonlinearly, selected for denser canopy cover as ambient 

temperature increased during summer, where initial increases in the conditional probability 

of selection were initially sharper then leveled out as canopy density increased above ~50%. 

However, the magnitude of selection response varied by population and sex. In two of the 

three populations containing both sexes, females demonstrated a stronger selection response 

for denser canopy at higher temperatures than males. We also observed a stronger selection 

response in the most southerly and northerly populations compared to populations in the west 

and central Alaska. 

The third and fourth chapters of this dissertation explore the development of remote 

sensing approaches to characterize, monitor, and map forage quality in high latitude regions 

of Alaska. I used hyperspectral data in conjunction with plant structural metrics derived from 

digital photographs and unmanned aerial vehicle structure from motion photogrammetry. My 
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results suggested that spectral vegetation indices calculated from hyperspectral remote 

sensing are an appropriate method for estimating important forage quality metrics such as 

dietary fibers (Chapter 3) – hemicellulose, cellulose, neutral detergent fiber, acid detergent 

fiber, acid detergent fiber, and silica – as well as integrated forage metrics (Chapter 4) – 

digestible protein and dry matter digestibility. My results also indicated that incorporating 

shrub structure is an important, and often unconsidered, aspect of remotely sensed forage 

quality metrics. 



v 
 

 

Acknowledgements 

This dissertation would not have been possible without the support of my graduate 

committee and other scientific mentors. First, Drs. Jan Eitel and Lee Vierling provided me 

with the best mentorship I have received to date. From my early first queries about remote 

sensing and landscape ecology to the more in-depth questions related to field methodology 

and analytical techniques, they both have shaped me into the scientist I am today. In addition 

to their scientific support, I feel fortunate to have grown as a person under their mentorship 

and will carry many life lessons forward with me. Second, thank you to Dr. Arjan Meddens 

for his immense help with many technical aspects of learning how to calibrate satellite 

imagery to writing effective code. Third, thank you to Dr. Mark Hebblewhite for his 

expertise and time teaching me the importance of grounding my papers in wildlife ecology as 

well as many fast-paced conversations that broadened my perspective on wildlife 

management, collaboration, and science generally. Fourth, thank you to Dr. Sophie Gilbert 

for her expertise and guidance on wildlife management and how to engage in successful 

collaborations. In addition to my committee, I would like to thank Dr. Pete Robichaud for his 

additional mentorship regarding remote sensing, post-fire science, and how important it is to 

connect research to land management agencies to have the biggest impact. 

I would like to thank additional research collaborators Dr. Peter Mahoney, Dr. Jeremy 

Pinto, Dr. Ryan Long, Dr. Natalie Boelman, Andrew Maguire, Dr. Mary Engels, Ben 

Busack, and William Weygint. This work also benefitted tremendously from agency 

collaborators Tom Paragi, Kyle Joly, Kim King-Jones, Kalin Kellie, Dr. Scott Brainerd, 

Graham Frye, Glenn Stout, and Erin Julianus. Thank you to all the above-mentioned mentors 

and collaborators for taking the time to challenge me and help me grow into a more effective 

and well-rounded scientist. 

This research was funded by National Aeronautics and Space Administration’s 

(NASA) Arctic Boreal Vulnerability Experiment (ABoVE) grant numbers: NNX15AT89A 

and NNX15AW71A as well as NASA’s Idaho Space Grant Consortium (ISGC). These 

sources of financial support enabled me to explore important wildlife management related 

research questions, and for that I am truly grateful. 



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedication 

This body of work is dedicated to my wonderful family. First, the completion of this 

dissertation was only possible with the love and support of my husband and partner Ben 

Busack. This work would not have been possible without your encouragement, sense of 

humor, and contributions to the research itself. Thank you for your endless patience. I am 

also grateful to my sweet daughter, Elowyn Finley, for bringing light and joy into my life 

every day. Next, I would like to thank my brother, mother, and father for their unwavering 

support and confidence in me. Finally, I would like to thank my in-laws for their support, 

understanding, and help with childcare. Without all of you this achievement would not have 

been possible. 



vii 
 

 

Table of Contents 

Authorization to Submit Dissertation ....................................................................................... ii 

Abstract .................................................................................................................................... iii 

Acknowledgements ................................................................................................................... v 

Dedication ................................................................................................................................ vi 

Table of Contents .................................................................................................................... vii 

List of Tables ........................................................................................................................... ix 

List of Figures ........................................................................................................................... x 

Statement of Contribution ....................................................................................................... xii 

Chapter 1: Introduction ............................................................................................................. 1 

Literature Cited ..................................................................................................................... 4 

Chapter 2: Behavioral modifications by a large-northern herbivore to mitigate warming 

conditions .................................................................................................................................. 8 

Abstract ................................................................................................................................. 8 

Introduction ........................................................................................................................... 9 

Methods and Materials ........................................................................................................ 11 

Results ................................................................................................................................. 15 

Discussion ........................................................................................................................... 17 

Conclusion .......................................................................................................................... 20 

Literature Cited ................................................................................................................... 21 

Chapter 3: Toward mapping dietary fibers in northern ecosystems using hyperspectral and 

multispectral data .................................................................................................................... 36 

Abstract ............................................................................................................................... 36 

Introduction ......................................................................................................................... 37 

Methods and Materials ........................................................................................................ 40 

Results ................................................................................................................................. 43 

Discussion ........................................................................................................................... 44 

Conclusion .......................................................................................................................... 48 

Literature Cited ................................................................................................................... 48 

Chapter 4: Estimating integrated measure of forage quality for northern herbivores by fusing 

optical and structural remote sensing data .............................................................................. 61 

Abstract ............................................................................................................................... 61 

Introduction ......................................................................................................................... 62 



viii 
 

Methods and Materials ........................................................................................................ 65 

Results ................................................................................................................................. 69 

Discussion ........................................................................................................................... 70 

Conclusion .......................................................................................................................... 74 

Literature Cited ................................................................................................................... 74 

Chapter 5: Conclusion ............................................................................................................. 90 

Literature Cited ................................................................................................................... 92 

Appendices .............................................................................................................................. 95 

Appendix 1.1. Temperature Validation............................................................................... 95 

Appendix 1.2. Used-Available Tables of Covariates .......................................................... 97 

Appendix 1.3. Regional Habitat Features ........................................................................... 98 

Appendix 2.1. Details on Nitrogen (N) Fertilizer Treatment Estimation ......................... 101 

Appendix 2.2. Summary Statistics for Dietary Fibers ...................................................... 102 

Appendix 2.3. Nitrogen Treatments and Cellulose, Neutral Detergent Fiber, and Acid 

Detergent Fiber ................................................................................................................. 103 

Appendix 2.4. Results of Swapping Leaf Area for the Normalized Difference Vegetation 

Index ................................................................................................................................. 105 

Appendix 3.1. Best Spectral Vegetation Indices Cross Validation Results ...................... 107 



ix 
 

 
List of Tables 

 

Table 2.1. Summaries of Alaska moose (Alces alces gigas) Global Positioning System (GPS) 

datasets by study area ...............................................................................................................29 

Table 2.2. Model evaluation (QIC) and cross validation (LOOCV) for female moose 

organized by population ...........................................................................................................30 

Table 2.3. Model evaluation (QIC) and cross validation (LOOCV) for male moose summary 

of organized by population. .....................................................................................................30 

Table 2.4. Best habitat selection models by population for female moose (Alces alces gigas) 

in Alaska from the step-selection function analysis .................................................................31 

Table 2.5. Best habitat selection models for male Alaska moose from the step-selection 

function analysis ......................................................................................................................32 

Table 3.1. Best performing hyperspectral vegetation index (SVI) results for dietary fibers. 55 
 

Table 3.2. Best performing band equivalent reflectance (BER) of WorldView3 (WV3) 

spectral vegetation index (SVI) results for dietary fibers ........................................................56 

Table 4.1. Results comparing spatial autocorrelation structures for generalized least squares 

regression predicting dry matter digestibility (DMD) and digestible protein (DP) .................83 

Table 4.2. Digestible Protein (DP) and Digestible Dry Matter (DMD) Models .....................84 



x 
 

 

List of Figures 

Figure 2.1. Moose (Alces alces gigas) study area locations in four distinct ecoregions of 

Alaska, USA. ...........................................................................................................................33 

Figure 2.2. Conditional probability of selection of spline-based thermal cover as a function 

of temperature for Alaskan female moose by region in summer months (June-August). .......34 

Figure 2.3. Conditional probability of selection of spline-based thermal cover as a function 

of temperature for Alaskan male moose by region in summer months (June-August) ...........35 

Figure 3.1. Experimental and data collection set up for greenhouse study. Willows were 

grown in a greenhouse setting (A) and canopy spectra were collected using an FieldSpec Pro 

Full Range Spectroradiometer (C). A spectrally flat black-foam material below the canopy to 

avoid introducing soil and background noise (B) ....................................................................57 

Figure 3.2. Spectral vegetation indices (SVIs) from hyperspectral data for green dietary 

fibers concentrations (Y-axis) of (A) hemicellulose, (B) cellulose, (C) neutral detergent fiber, 

(D) acid detergent fiber, (E) acid detergent lignin, and (F) acid insoluble ash. X-axis labels 

represent the measured reflectance (R) at given wavelengths in nanometers of SVIs. ...........58 

Figure 3.3. Coefficients of determination (R2) between green dietary fibers (A) 

hemicellulose (HMC), (B) cellulose (CLL), (C) neutral detergent fiber (NDF), (D) acid 

detergent fiber (ADF), (E) acid detergent lignin (ADL), and (F) acid insoluble ash (AIA) and 

spectral vegetation indices (SVIs) generated from hyperspectral data ....................................59 

Figure 3.4. Band equivalent reflectance of WorldView-3 (WV-3) spectral vegetation indices 

(SVIs) for green dietary fibers concentrations (Y-axis) of (A) hemicellulose, (B) cellulose, 

(C) neutral detergent fiber, (D) acid detergent fiber, (E) acid detergent lignin, and (F) acid 

insoluble ash.............................................................................................................................60 

Figure 4.1. Photographs depicting examples of broomed (A and D), browsed (B), and 

unbrowsed (C) willow shrubs in northcentral Alaska ..............................................................86 

Figure 4.2. Study area in the upper Koyukuk River drainage .................................................87 

Figure 4.3. Coefficients of determination (R2) between willow samples and simple ratio 

vegetation indices for digestible protein (A) and dry matter digestibility (B) .........................88 



xi 
 

Figure 4.4. Observed vs. predicted concentrations of digestible protein (A) and dry matter 

digestibility (B) of the best performing models. ......................................................................89 



xii 
 

Statement of Contribution 

The introduction (Chapter 1) and conclusion (Chapter 5) were sole authored. In Chapters 2-4, 

the listed co-authors primarily acted in advisory roles and in some cases aided in the 

technical aspects of coding. 



1 
 

 
Chapter 1: Introduction 

High northern latitude regions (≥ 60°N) are undergoing rapid changes in response to increased 

temperatures from global climate change. These landscape changes include alterations in 

biogeochemical and hydrological cycles, primary production, and biodiversity through shifts 

in species distribution and fitness (Post et al., 2009; Walther et al., 2002). Changing wildfire 

regimes are also profoundly affecting habitats – the geographic area that contains the suite of 

physical and biological conditions needed to maintain species viability. In North American 

boreal systems, annual area burned doubled in the last half century (Kasischke & Turetsky, 

2006). Such changes in habitat structure may provide new forage resources for herbivores 

(Beck et al., 2011; Kelly et al., 2013) but may also limit the thermal cover available to heat 

sensitive species like moose (Alces alces). 

Additionally, climate driven ecosystem changes strongly affect rural northern 

communities. Reduced travel and access to important resources (Cold et al., 2020) as well as 

forecasted decreases in most subsistence species (Brinkman et al., 2016) impact rural northern 

communities substantially. Habitat changes complicate resource management and affect 

existing management plans and harvest guidelines, which may further stress the availability of 

important resources for northern communities. Research is needed to assess the current state 

of northern latitude regions to best identify the impacts of climate change, which can inform 

the advancement of policies and management strategies. 

The National Aeronautics and Space Administration’s (NASA) Arctic-Boreal 

Vulnerability Experiment (ABoVE) was developed to address questions regarding warming 

induced ecosystem changes in North American Arctic and boreal regions (ABoVE, 2014). 

One of ABoVE’s six science themes is to evaluate how flora and fauna are responding to 

environmental change. The work presented in this dissertation falls under the ABoVE 

designation. Specifically, I developed models for mapping and monitoring forage quality for 

herbivores and advanced knowledge regarding habitat selection of an important ecosystem 

engineer (moose) in response to temperatures. This dissertation sought to provide new forage 

habitat monitoring tools for wildlife managers and identify important structural habitat 

features for moose, which may inform future managements plans for foraging habitats and 

moose in a changing climate. 
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In response to warming induced landscape changes, management agencies are identifying 

practical “adaptive strategies” that may mitigate the negative effects of climate change 

(Mawdsley et al., 2009). One such strategy in wildlife management is to evaluate and enhance 

monitoring programs, and to consider incorporating new tools to augment monitoring efforts 

(Mawdsley et al., 2009). Geospatial tools are one set of technologies that may enhance 

evaluation and monitoring for wildlife management. These tools enable spatial data to be 

collected, analyzed, and visualized in ways that assist in planning and management activities. 

For instance, Global Positioning Systems (GPS) estimate spatial positions of habitat features 

using time and distance relationships using satellites. Stationary GPS locations can be used to 

mark important habitat features such as water bodies and forest boundaries, that can then be 

imported into Geographic Information Systems (GIS) for analysis. Modern advances in GPS 

technology also enabled the creation of mobile units that can be housed in collars worn by a 

variety of species (Kays et al., 2015). These GPS locations track movements that can be 

associated with habitat selection at a variety of spatial scales that span from selection of 

specific food items to the geographic range of a species (Johnson, 1980). 

Another important geospatial tool in wildlife management is remote sensing, which 

collects noncontact information regarding the physical and biological characteristics from a 

given target (e.g., vegetation) using reflected or emitted radiation. These collections most 

often occur on platforms such as aircrafts and satellites, but also include unmanned aerial 

vehicles (UAVs) and ground-based assessments from proximal sensors. Optical remote 

sensing approaches measure reflected light from the ultraviolet (10–380 nm), visible (400– 

700 nm), near infrared (NIR; 701–1399 nm), and shortwave infrared (SWIR; 1400–2500 nm) 

regions and can be used to estimate vegetation characteristics such as plant water content, 

plant structural components, and foliar chemistry (Xue & Su, 2017). 

The second chapter of this dissertation incorporates remotely sensed products in 

conjunction with GPS-telemetry from four Alaska moose populations to assess how habitat 

selection changes in response to increased temperatures. Moose are well-adapted for cold 

weather and can experience heat stress year-round (McCann et al., 2013; Renecker & Hudson, 

1986; Street et al., 2015; Thompson et al., 2019). Moose often use behavioral strategies to 

mitigate the effects of warming by moving to areas of denser and taller forest cover 

(Demarchi & Bunnell, 1995; Melin et al., 2014; van Beest et al., 2012) or areas that provide 
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convective cooling from water (Street et al., 2015). However, the majority of previous work 

on moose thermoregulation occurred in the southern portion of moose range in North America 

or in high latitude regions of Europe (Lenarz et al., 2010; Melin et al., 2014; van Beest et al., 

2012). Hence, it was the goal of my second chapter to gain an improved understanding of 

whether ambient temperature elicits a behavioral in high-northern latitude moose populations 

in North America is increasingly important as these ecosystems are undergoing massive 

changes from climate change (Markon et al., 2018). 

Remote sensing approaches are also commonly employed by wildlife management 

agencies to quantify, monitor, and map forage resources for herbivores (Macander et al., 

2020; Merems et al., 2020; Walton et al., 2013). In high northern latitudes, the increased 

abundance and geographic extent of shrubs (Myers-Smith et al., 2011; Sturm et al., 2001) is 

enabling the expansion of herbivore habitat for moose, snowshoe hares (Lepus americanus), 

and ptarmigan (Lagopus lagopus, L. muta) (Tape et al., 2016; Zhou et al., 2020). However, 

the impact of climate warming on forage quality is less clear, and will likely vary depending 

on region and species (Elmendorf et al., 2012; Hansen et al., 2006; Lenart et al., 2002; 

Turunen et al., 2009). For instance, as temperatures warm and more nitrogen is available for 

plant uptake, chemical deterrents in subarctic plants also decline (De Long et al., 2016), 

thereby increasing digestibility. In contrast, observed increases in forage biomass from 

warming has coincided with a decline in caribou (Rangifer tarundus) populations indicating 

that forage quality has decreased even as quantities or forage increased (Fauchald et al., 

2017). Forage quality strongly influences herbivore life-history traits like maternal body 

condition, pregnancy rates, and survival (Parker et al., 2009). Monitoring approaches that 

characterize wide portions of the landscape used by wildlife are urgently needed because 

forage quality influences herbivore behavior and populations, which can have cascading 

effects on ecosystem structure and function (Kielland et al., 2006; Schmitz et al., 2018).The 

third and fourth chapters of this dissertation explore the development of remote sensing 

approaches to characterize, monitor, and map forage quality in high latitude regions of 

Alaska. 

In summary, my three research chapters add important information to a growing body of 

research on habitat changes or animal behavior in high northern latitudes. Such information 

may help inform future studies related to movement behaviors of heat-sensitive species and 
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monitoring and mapping forage quality across the landscape, which may contribute to sound 

policy and management plans. 
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Abstract 

Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to 

moose (Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem 

engineers, by regulating forest carbon and structure, below ground nitrogen cycling processes, 

and predator-prey dynamics. Previous studies showed that during hotter periods, moose 

displayed stronger selection for wetland habitats, taller and denser forest canopies, and 

minimized exposure to solar radiation. However, previous studies regarding moose behavioral 

thermoregulation occurred in Europe or southern moose range in North America. 

Understanding whether ambient temperature elicits a behavioral response in high-northern 

latitude moose populations in North America may be increasingly important as these arctic- 

boreal systems have been warming at a rate two to three times the global mean. We assessed 

how Alaska moose habitat selection changed as a function of ambient temperature using a 

step-selection function approach to identify habitat features important for behavioral 

thermoregulation in summer (June-August). We used Global Positioning System telemetry 

locations from four populations of Alaska moose (n=169) from 2008 to 2016. We assessed 

model fit using the quasi-likelihood under independence criterion and conduction a leave-one- 

out cross validation. Both male and female moose in all populations increasingly, and 

nonlinearly, selected for denser canopy cover as ambient temperature increased during 

summer, where initial increases in the conditional probability of selection were initially 

sharper then leveled out as canopy density increased above ~50%. However, the magnitude of 

selection response varied by population and sex. In two of the three populations containing 

both sexes, females demonstrated a stronger selection response for denser canopy at higher 

temperatures than males. We also observed a stronger selection response in the most southerly 

and northerly populations compared to populations in the west and central Alaska. The 

impacts of climate change in arctic-boreal regions increase landscape heterogeneity through 
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processes such as increased wildfire intensity and annual area burned, which may 

significantly alter the thermal environment available to an animal. Understanding habitat 

selection related to behavioral thermoregulation is a first step toward identifying areas capable 

of providing thermal relief for moose and other species impacted by climate change in arctic- 

boreal regions. 

Introduction 

Global temperatures are drastically increasing (Intergovernmental Panel on Climate Change 

[IPCC], 2014), which directly affect animal behavior and fitness (Brivio et al., 2019; van 

Beest et al., 2012; Walker et al., 2019). When ambient temperatures rise above an animal’s 

thermal neutral zone, they use physiological and behavioral mechanisms to dissipate heat and 

mitigate thermal stress. For instance, additional energy may be spent to augment the 

cardiovascular and respiratory systems enabling evaporative cooling but may also lead to 

dehydration (Clarke & Rothery, 2008; McCann et al., 2013; Renecker & Hudson, 1986). 

Consequentially, increases in ambient temperature may contribute to a negative energy 

balance within an animal (Bourgoin et al., 2011; Timmermann & McNicol, 1988; van Beest 

& Milner, 2013). Energetic requirements of mammals vary by season and traits (e.g., body 

mass, lactation). Summer is an important season for mammals as they need to recover from 

winter food deficits, lactate and rear young, and store fat (Cameron et al., 1993; Rönnegård et 

al., 2002; Timmermann & McNicol, 1988). Climate change puts further stress on these 

important activities, which may, in turn, limit the ability of mammals to meet energetic 

requirements for reproduction and survival (Elmore et al., 2017; Lenarz et al., 2009; Vors & 

Boyce, 2009). Recent work suggests that large-bodied mammals respond more strongly to 

climate change, when compared to smaller-bodied mammals, through contraction or 

expansion of elevational ranges and also experience increased extinction risk (McCain & 

King, 2014). 

Moose (Alces alces) are an important, large-bodied mammal vulnerable to increasing 

temperatures because they are well-adapted to cold climates (Renecker & Hudson, 1986; 

Schwartz & Renecker, 2007). Moose also act as ecosystem engineers, by regulating forest 

carbon and structure, below ground nitrogen cycling processes, and predator-prey dynamics 

(Bump et al., 2009; Christie et al., 2014; Kielland & Bryant, 1998; McLaren & Peterson, 

1994). According to the seminal physiological study by Renecker and Hudson (1986), moose 
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reached their upper critical temperature threshold at 14C in summer where they increased 

their heart and respiration rates, while open-mouthed panting began at 20C. However, recent 

works call these thresholds into question and suggest there is no static temperature threshold 

where free-ranging moose become heat stressed (Thompson et al., 2019, 2020). Similarly, 

behavioral changes are often observed at temperatures that exceeds the upper critical summer 

threshold proposed by Renecker and Hudson (1986) (Broders et al., 2012; Melin et al., 2014). 

Behavioral alterations elicited by changes in temperature influence both resource 

selection patterns and movement rates. For example, previous studies showed that during 

hotter periods, moose displayed stronger selection for riparian or wetland habitats (Renecker 

& Schwartz, 2007; Street et al., 2015), taller and denser forest canopies that provide thermal 

cover (Demarchi & Bunnell, 1995; Melin et al., 2014; van Beest et al., 2012), and minimized 

exposure to solar radiation (McCann et al., 2013). Additionally, moose may also decrease 

their activity and movement rates in response to warmer daytime temperatures (Montgomery 

et al., 2019; Street et al., 2015). 

Moose thermoregulatory behaviors are indeed a ‘hot topic’ in applied ecology because 

of rising temperatures related to climate change and their important ecosystem role (e.g., 

Melin et al., 2014; Montgomery et al., 2019; Street et al., 2015). However, most previous 

studies occurred in Europe or the southern end of moose range in North America (Lenarz et 

al., 2009; Melin et al., 2014; van Beest et al., 2012). Understanding whether ambient 

temperature elicits a behavioral response in high-northern latitude (i.e.,  60N) moose 

populations in North America may be increasingly important as these arctic-boreal systems 

have been warming at a rate two to three times the global mean (Arctic Monitoring and 

Assessment Programme [AMAP], 2017; IPCC, 2014; Screen, 2014; Wolken et al., 2011) and 

current projections anticipate continued increases in temperature (IPCC, 2014; Markon et al., 

2018). Thus, it is important to explore how movement patterns of moose, a heat-sensitive 

large-bodied mammal, are influenced by changes in temperature at the northern extent of their 

range. 

Accordingly, our study objective was to assess Alaska moose (Alces alces gigas) 

habitat selection as a function of ambient temperature. We tested the hypothesis that moose 

modified resource selection in response to ambient temperature as predicted by physiological 

models. To accomplish this, we used Global Positioning System (GPS) -telemetry locations 
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from four Alaska moose populations (n=169 moose; Figure 2.1 & Table 2.1) from 2008 to 

2016 that were located in four unique ecoregions (Nowacki et al., 2003). We combined moose 

GPS locations with remotely sensed products important to thermoregulatory behaviors. We 

analyzed only summer months (June-August) because of their importance in moose life 

history and because thermal stress is most likely to occur in summer (Dussault et al., 2004; 

van Beest et al., 2012). Each population was analyzed independently and separated into male 

and female subsets because fine-scale movements vary by sex and local habitat characteristics 

(Joly et al., 2015; Joly et al., 2016; Leblonde et al., 2010). We predicted that Alaska moose 

exhibit a detectable behavioral response to increasing summer temperatures, and, that as 

temperature increased moose would select for cooler locations, such as thermal refugia 

provided through increased canopy cover, areas closer to water, and/or low exposure to solar 

radiation. 

Methods and Materials 

Study areas 

All four study areas span a mixture of subarctic and arctic boreal forest vegetation including 

black spruce (Picea mariana), alders (Alnus spp.), willows (Salix spp.), Alaska birch (Betula 

neoalaskaa), white spruce (Picea glauca), quaking aspen (Populus tremuloides), and balsam 

poplar (Populus balsmifera). The upper Koyukuk region located in the Brooks Mountain 

Range (Figure 2.1) is rugged and varies from 500 to 2600 m above sea level (Alaska 

Department of Fish and Game [ADFG], 2006). Wildfire is common in this region, which 

experiences strongly continental climate patterns where summers are short, but temperatures 

can exceed 30°C (Joly et al., 2015). Average daily summer (June-August) temperature ranged 

from 7.5°C to 15°C from 1986 to 2016 (National Oceanic and Atmospheric Administration 

[NOAA], 2019). The Tanana Flats region is located south of Fairbanks, where the alluvial 

plane from the Alaska Mountain Range slopes northward making meandering rivers and 

oxbow lakes common (ADFG, 2006). Elevation ranges from 0 to 700m, however the highest 

elevations occurred in the northern portion of the Alaska Mountain Range (ADFG, 2006). The 

Tanana region experiences dry-continental climate, and average daily summer temperature 

ranged from 11°C to 19.5°C from 1986 to 2016 (NOAA, 2019). The Innoko region lies in 

southwest Alaska and includes a portion of the lower Yukon River. Meandering waterways, 

oxbow lakes and floods are common in the lowlands while upland areas experience more 
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wildfire disturbance (Paragi et al., 2017). Elevation varies little (30 – 850 m) and average daily 

summer temperatures ranged from 9.5°C to 17.5°C from 1989 to 2016 (NOAA, 2019). The 

Susitna moose range lies south of Alaska Mountain Range, and is characterized by numerous 

wetlands, hilly moraines, black spruce woodlands, and mountains. Elevation varies widely 

from 400 to 3500 m. This region is primarily located in temperate-continental climate, with 

some exposure to temperate coastal climates in the southern portion of the range (ADFG, 

2006). Average daily summer temperatures ranged from 11.5°C to 19°C from 1988 to 2016 in 

this region (NOAA, 2019). 

Moose Data 

All capture protocols and handling protocols adhered to the Alaska Animal Care and 

Use Committee approval process (#07–11) as well as the Institutional Animal Care and Use 

Committee Protocol (#09-01). Moose in all regions were darted from helicopter (Robison R- 

44) and injected using carfentanil citrate (Wildnil® Wildlife Pharmaceuticals, Incorporated, 

Fort Collins, CO) and xylazine hydrochloride (Anaset ®; Lloyd Laboratories, Shenandoah, 

IA). Moose were instrumented with GPS radio-collars with three and a half to eight-hour fix 

rates (Table 2.1). Specifically, moose were fitted with the following collars from Telonics Inc. 

(Telonics, Mesa, AZ): Koyukuk – GW-4780, Tanana –TGW-4780-3, Susitna – TGW-4780-2, 

Innoko –CLM-340. 

Statistical analyses 

Habitat Selection 

We used a step-selection function (SSF) to assess moose behavioral responses to 

changing temperatures. SSF’s model habitat selection in a used-available design that accounts 

for changing availability of resources at any point in time (Fortin et al. 2005; Thurfjell et al. 

2014). We aggregated moose datasets to a near eight-hour fix rate to enable regional 

comparisons of behavior (Table 2.1). We chose this modeling framework because it allows 

for assessments of fine-scale habitat selection, and the effect of temperature on large 

herbivore movement behavior are most pronounced at fine to intermediate spatial and 

temporal scales (van Beest et al., 2011). To sample availability, we generated ten-paired 

available locations based on empirical distributions of an individual’s step length and turning 

angles between sampling intervals, which were estimated using the ‘ABoVE-NASA’ R 

package (Gurarie et al., 2018). We used conditional-logistic regression (CLR, Hosmer & 
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Lemeshow 2000) in the ‘survival’ R package (Therneau, 2015) to compare each used location 

with the concurrent available locations at the same point in time and space (i.e., one stratum 

contained one used point and ten randomly generated available points). The equation can be 

written as: 

Equation 1. w*(x)= 
𝑒𝑥𝑝(𝛽1x1+ 𝛽2x2+⋯+ 𝛽nxn + 𝑒) 

1 + 𝑒𝑥𝑝(𝛽1x1+ 𝛽2x2+⋯+ 𝛽nxn + 𝑒) 

where w*(x), the relative probability of selection, is dependent on habitat covariates X1 

through Xn, and their estimated regression coefficients β1 to βn, respectively. Steps with 

higher w*(x) indicate a greater chance of selection. CLR compares strata (i.e., one used point 

and ten available points) individually, which enabled us to assess selection of fine-scale 

habitat features rather than broader-scale landscape characteristics (Boyce, 2006). We did not 

directly incorporate random effects into our SSF models as the analytical techniques for doing 

this are sparse and often computationally prohibitive for complex model sets (Muff et al., 

2020). In our models, we would have a needed to incorporate a random effect of individual 

for each covariate in the model – the equivalent of random slopes. We believe this would 

likely have led to convergence issues as our models are already complex (see section 

regarding temperature interaction terms). Instead, we fit our CLR models with generalized 

estimating equations (GEE) using a clustering variable of “animal-year” to split the data into 

statistically independent clusters. This allowed us to account for lack of independence 

between steps within an individual for a given summer, and provided unbiased (i.e., robust) 

variance estimates provided there are at least 20 independent clusters and preferably 30 

(Prima et al., 2017). Our data all had at least 20 unique animal year clusters, and all but one 

had greater than 30 (Table 2.1). 

Habitat covariates 

We obtained temperature estimates from the North American Regional Reanalysis 

(NARR) as opposed to weather stations. NARR provides a suite of highly-temporally 

dynamic (eight times daily; 32 km) set of meteorological variables (Mesinger et al., 2006). 

We annotated NARR temperature estimates using the environmental-data automated track 

annotation (Env-DATA) system available from Movebank (Dodge et al., 2013). To ensure 

accuracy of these temperature estimates, we performed a validation exercise on the two 

populations of moose which included temperature sensors on their collars (Innoko and 

Koyukuk). We found a moderate relationship between the two (Appendix 1.1 (A1.1); R2= 
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0.47 – 0.58, RMSE= 3.88 – 4.43C). NARR temperature estimates represent an ambient, 

neighborhood temperature, allowing us to investigate how moose respond to ambient 

variation in temperature via fine-scale selection for environmental characteristics that are 

likely to create cooler microclimates. We excluded ambient temperature as a main effect 

within CLR models because it did not vary within strata, and only included it as an interaction 

term with other covariates. 

Moose may move to areas that provide thermal cover when temperatures increase such 

as denser canopied forests (Melin et al., 2014). In our models, a United States Geological 

Survey (USGS) percent canopy product for 2010 (30 m cell size, Hansen et al., 2013) was 

used as an index of thermal cover. Moose use canopy cover for purposes other than 

thermoregulation such as predator avoidance (Timmermann & McNicol, 1988). However, by 

considering the interaction between temperature and canopy cover, it is likely that we 

captured behavioral thermoregulation in our models. 

We assessed the importance of water habitats in behavioral thermoregulation using a 

distance-to-water covariate. We estimated this covariate from Pekel and colleague's (2016) 

percent global surface water map, which quantified global surface water from 1984 to 2015. 

We used the R ‘raster’ package (Hijmans, 2019) to estimate the Euclidian distance of the 

nearest water pixel (30m cell size) from a given moose location. Elevation estimations (in 

meters) were extracted from the ArcticDEM (version 6, 5m cell size; Porter et al., 2018). The 

solar radiation index (SRI; Keating et al., 2007) was estimated mathematically as a function 

of latitude, aspect, and slope using the ‘RSAGA’ package (Brenning, 2008) – which were 

derived from the ArcticDEM, with the resultant values representing the hourly extraterrestrial 

radiation striking an arbitrarily oriented surface (Keating et al., 2007). 

We chose to consider only continuous covariates as predictors to represent habitat as 

dynamic and continuous (sensu Coops & Wulder, 2019). Covariates were standardized by 

dividing them by two times their standard deviation (Gelman, 2008), allowing coefficients to 

be directly comparable across models. Collinearity was assessed using Pearson correlation 

coefficients, if correlation coefficients between predictors exceeded 0.70 we excluded 

collinear metrics from being present in the same model (Dormann et al., 2013). 

Two-way temperature interactions 
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We considered both linear and nonlinear interactions between habitat covariates and 

ambient temperature as nonlinear processes are widespread in ecology particularly in response 

to climate change (Burkett et al., 2005; Walther, 2010). In total, three model variants for each 

population-sex partition were considered: (1) a base model that included habitat covariates as 

described above with no interaction terms or consideration of temperature, (2) linear 

interaction models where habitat covariates sequentially interacted with temperature linearly, 

and (3) spline interaction models where habitat covariates sequentially interacted nonlinearly 

with temperature using natural cubic splines. Because nonlinear terms are at risk of overfitting 

models, we constrained any nonlinear relationships explored in the spline interactions to two 

or three knots in CLR models using the ‘splines’ package (R Core Team, 2019). 

Habitat selection model evaluation and validation 

We evaluated model fit for each population-sex partition using the quasi-likelihood 

under independence criterion (QIC; Pan, 2001) because it is well suited for case-control 

models (Craiu et al. 2008). Finally, predictive ability of model variants were assessed using 

leave-one-out cross validation (LOOCV), which is a k-fold cross validation variant (Boyce et 

al., 2002) where each individual animal is sequentially left out and predicted based on the 

remaining data. Mean Spearman rank coefficients were used to determine the predictive 

ability of model variants. For each population-sex partition, the model with the highest 

correlation coefficients from LOOCV and lowest QIC was considered the best. All spatial 

processing and statistical analyses were conducted in the statistical software R version 3.6.1 

(R Core Team, 2019). 

Results 

In total seven base, 28 linear interaction, and 28 spline interaction models were estimated. For 

the sake of parsimony, only the most biologically significant results are presented and 

summarized by sex and population. Elevation was collinear with distance-to-water in the 

Innoko population, we retained the latter because of its known importance in moose ecology 

(Renecker & Schwartz, 2007; Street et al., 2015). In all but one case (Koyukuk males), spline- 

based models where percent canopy interacted with temperature outperformed linear 

interaction and base models and are thus the only models discussed (Table 2.2 and 2.3). In 

contrast to the strong habitat selection responses of moose for canopy cover, we did not find 

evidence for other behavioral thermoregulation strategies. For example, we found no support 
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that Alaska moose altered resource selection with increasing summer temperatures in 

response to topography (i.e., more northerly, cooler slopes), elevation (with the exception of 

one population), nor hydrology (i.e., by selecting to be closer to water). 

Females 

The best fit spline models across all four populations occurred when percent canopy 

interacted with temperature using two to three knots. These spline interaction models had 

significant improvements in model fit compared to both the base models (QIC= -108 to - 

284; Table 2.2) and the linear interaction models (not shown). Cross validation scores for 

spline interaction models experienced small to moderate improvements when compared to the 

base model (LOOCV= +1% to +10%; Table 2.3). 

In summer, female moose in all four regions selected for increased canopy cover 

nonlinearly as temperature increased (Figure 2.2). However, the magnitude of the selection 

response to thermal cover was most pronounced in the most southerly region (Susitna; 

%canopy1 = 33.90, p<0.001; %canopy2 = 20.09, p<0.001; Table 4) as well as the most northerly 

region (Koyukuk; %canopy1 =24.91, p<0.001; %canopy2 =20. 03, p<0.001). Although the effect 

of canopy cover was reduced in both the Innoko moose (%canopy1  = 14.82, p<0.001; %canopy2 

= 9.01, p<0.001) and the Tanana moose (%canopy1 = 4.71, p<0.001; %canopy2  = 8.97, %canopy3 

= 7.70, p<0.001), both populations still revealed highly statistically significant results 

indicating female moose selected nonlinearly for increased canopy cover as temperature 

increased. 

Female moose in the Koyukuk and Susitna regions also showed an increased affinity 

for water demonstrated in the significant negative beta coefficients for the “distance-to-water” 

predictor (Table 2.4), suggesting that moose in these regions preferred to be closer to water. 

Additionally, we observed additional selection behaviors in the Innoko and Susitna female 

moose. Female moose in the Innoko population showed an avoidance of areas of high solar 

radiation (SRI = -0.18, p<0.001), while females in the Susitna population showed an 

avoidance of higher elevation locations (elevation= -1.21, p<0.001), but these results were 

independent of temperature. 

Males 

For males, the best fit spline models in the Susitna and Innoko populations were also 

from percent canopy interacted with temperature (QIC= -142 and -97 respectively; Table 
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2.3). For the Koyukuk males, the best fit spline model came from elevation interacted with 

temperature, but males in this region also saw improved model fit from percent canopy 

interacted with temperature (QIC= -54). Cross validation scores for spline interaction 

models (percent canopy interacted with temperature) in all three male populations 

experienced small to moderate increases when compared to the base model (LOOCV= +3% 

to +6%). 

Male moose in all three populations (no males were collared in the Tanana population, 

see Table 2.1) selected for increased canopy cover as temperature increased (Figure 2.3). 

However, like with the females, the response to selection of thermal cover was most 

pronounced in the most northerly region (Koyukuk; %canopy1 = 27.84, p<0.001; %canopy2 = 

24.30, p<0.001; Table 2.5) as well as the most southerly region (Susitna; %canopy1 = 22.51, 

p<0.001; %canopy2 =14.71, p<0.001). The effect of canopy cover was reduced in the Innoko 

males (%canopy1 = 13.02, p<0.001; %canopy2 = 8.50, p<0.001), yet the results still revealed 

highly statistically significant results indicating moose selected for increased canopy cover as 

temperature increased. 

Additionally, male moose in the Susitna population showed increased selection of 

locations closer to water and, like their female counterparts, avoided areas of higher elevation 

(elevation= -1.11, p<0.001). Similarly, Innoko males showed avoidance for areas with 

increased topographical solar radiation exposure (SRI = -0.12, p<0.001), but these selection 

behaviors were independent of temperature. 

Discussion 

Our results demonstrate that moose at the northern extent of their range altered habitat 

selection patterns in response to temperature. Across all populations and sexes, moose 

selected for denser canopy cover as temperature increased, which is consistent with previous 

studies (Demarchi & Bunnell, 1995; Melin et al., 2014; van Beest et al., 2012), and our 

prediction that moose would select cooler locations as ambient temperature increased. 

Magnitude of selection response to temperature varied by sex and population 

Our habitat selection results also demonstrated that the magnitude of moose selection for 

dense canopy cover at higher temperatures varied between populations and sexes (Figures 2.2 

and 2.3; Tables 2.4 and 2.5). In two (Innoko and Susitna) of the three populations containing 

both male and female moose, females demonstrated a stronger selection response for denser 
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canopy at higher temperatures than males. This may be linked to calving and nursing demands 

on female moose (Speakman & Król, 2010) who may more strongly select for denser canopy 

cover to avoid spending calories to thermoregulate using physiological mechanisms. 

However, we were unable to distinguish between females with and without calves in this 

study. This likely influenced our results as females accompanied by their calves tend to 

increase selection for areas that provide cover for predator avoidance (Dussault et al., 2005; 

Joly et al., 2016) and drastically change their movements both before and after parturition 

(Testa et al., 2000). 

We also considered whether population differences in selection strength may be 

related to the availability of thermal cover between regions (i.e., a functional response) 

where animals alter their habitat selection based on habitat availability (Arthur et al., 1996; 

Mysterud & Ims, 1998). However, our results cannot entirely be explained by a functional 

response in habitat selection for thermal cover. For example, the Koyukuk moose showed 

strong selection for thermal cover as temperature increased but also had the second lowest 

available canopy cover regionally (37.6%; A1.2). Thus, we do not think a functional response 

per se explains regional differences in the selection strength, rather we anticipate that it is 

likely a combination of environmental factors interacting in complex ways to create a suite of 

unique habitat differences across regions (A1.3). However, to fully understand functional 

responses in habitat selection one must also consider the different spatial scales of selection 

(Johnson, 1980; Mysterud & Ims, 1998), as such responses are often evaluated at the 

landscape or home range scale (Hansen et al., 2009; Hayes & Harestad, 2000; Hebblewhite et 

al., 2008; Moreau et al., 2012). Thus, the lack of functional response of moose to canopy 

cover in our study may be related to the fine-scale nature of our analytical framework and not 

an absence of a functional response of moose to thermal cover. 

Implications of habitat selection results within a changing climate 

The consistent patterns of resource selection for thermal refugia under increasing 

temperatures found in this study may have important implications for moose resilience in 

arctic-boreal landscapes responding to increased temperatures from global climate change. 

For instance, landscape changes associated with wildfire are generally reducing canopy cover 

from coniferous species, and annual area burned in North American boreal systems doubled 

in the last half century (Kasischke & Turetsky, 2006), which is strongly linked to climate and 
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annual weather patterns (Johnson, 1996; Kasischke et al., 2010). Vegetation in interior Alaska 

now has less older spruce forests, the most common thermal refugia by moose, and a greater 

proportion of early successional vegetation than before 1990 (Markon et al., 2018). Burn 

severity also plays a major role in how boreal forests recover after wildfire (Epting & 

Verbyla, 2005), where areas of low burn severity in black spruce stands tend to undergo self- 

replacement succession (Johnstone & Chapin, 2006) and areas of high burn severity favor 

relay succession of deciduous species over black spruce because of increased exposure of 

mineral soil and reduced seedbank availability (Johnstone, et al., 2010; Shenoy et al., 2011). 

For moose, such changes in habitat structure may provide new forage resources (Beck et al., 

2011; Kelly et al., 2013), but also may limit the available thermal refugia needed for 

behavioral thermoregulation immediately after disturbance events prior to vegetation 

regeneration, or in late spring (March-April) prior to budburst when moose have not yet shed 

their winter coats. 

Limitations and Future Work 

Our results showed moose did not select for areas closer to water as temperature 

increased, which differ from previous observations where moose sought wetland or riparian 

areas to thermoregulate (Schwartz & Renecker, 2007; Street et al., 2015). We believe our 

results differed due to the spatial resolution (30m grid cell size) used to represent this 

behavioral strategy. This restricted detection of smaller aquatic microhabitats important to 

moose. Unfortunately, no finer-scale map currently exists and limited our ability to study 

selection for aquatic microhabitats, which may be especially relevant in flatter, more swamp- 

like areas such as the Tanana and Innoko regions. 

Based on our results and limitations encountered we make three broad 

recommendations for future work regarding animal behavioral thermoregulation. First, future 

work should investigate the vulnerability and resilience of arctic-boreal animals to structural 

habitat changes as forage resources increase and thermal cover decreases (e.g., Mason et al., 

2017; van Beest et al., 2012). For example, recent work on Alpine ibex (Capra ibex) – 

another heat-sensitive ungulate – indicates that male ibex response to minimize heat stress 

comes at the expense of optimal foraging (Brivio et al., 2019). Unfortunately, we did not have 

a detailed forage quality or biomass model calibrated for our study areas and hesitated to use 

categorical land cover maps because of criticisms regarding their use (Coops & Wulder, 
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2019). In Alaska, there is not a wide distinction between shrub classes in landcover maps that 

would enable us to determine if selected shrub habitats correspond to palatable species and 

foraging behavior. For instance, “shrub" in most vegetative classifications does not 

distinguish between shade forages (Salicaceae, Betula neoalaskana) and shade only (Alnus, 

B. nana) species, which is critical for parsing selection behavior. Moose maximize energy 

intake in the hottest parts of summer, so selection for forage biomass and quality plausibly 

overrides thermal stress and predation risk for a time. However, we were unable to directly 

assess this tradeoff due to data limitations. 

Second, we suggest testing for differences in female selection and movement relative 

to presence or absence of offspring. Such a distinction would connect nicely to calls to link 

behavior and movement to population outcomes (Brodie et al., 2012; Morales et al., 2010) 

especially when considering the thermal environment as survival and fitness often depend on 

the availability of suitable habitat to buffer against thermal extremes in a landscape (Elmore et 

al., 2017). 

Finally, a critical next step is to evaluate how habitat selection under thermal stress 

impacts individual fitness and population dynamics, as temperature plays an important role in 

limiting fecundity in other mammals (Corlatti et al., 2018; Wells et al., 2016) including moose 

(Lenarz et al., 2009; Murray et al., 2006). This is especially important as population responses 

to climate change can vary dramatically. For instance, Joly and colleagues (2011) found the 

influence of climate on caribou herds in Alaska was not uniform, instead, western populations 

increased in size while northwestern populations declined as a result of intensity changes in 

the Pacific Decadal Oscillation. Similarly, using detailed demographic information for 

caribou (Rangifer tarandus), red deer (Cervus elaphus), and elk (C. canadensis) across the 

Northern Hemisphere, Post and colleagues (2009) showed that that different population 

responses to climate varied in both direction and magnitude. 

Conclusion 

The impacts of climate change in arctic-boreal regions increase landscape 

heterogeneity through processes such as increased wildfire intensity and area burned, which 

can significantly alter the thermal environment available to an animal. Despite recognizing the 

importance of thermal conditions to animals, there is a distinct lack of research on how 

animals might respond to climate driven changes in thermal refugia. Our regional assessment 



21 
 

 

provides insight on how Alaska moose may respond to changes in ambient temperature, 

where statewide annual temperatures are averaging an increase of 0.4ºC per decade and 

summer temperatures are projected to increase 2 – 5°C by midcentury (Markon et al., 2018). 

Understanding habitat selection and movement patterns related to behavioral 

thermoregulation is a first step toward identifying areas capable of providing thermal relief for 

moose and other species impacted by climate change. 
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Tables 

Table 2.1. Summaries of Alaska moose (Alces alces gigas) Global Positioning System (GPS) 

datasets by study area. Information on the number of fixes and the fix success rate are specific 

to summer (June 1 – August 31). The number of clusters for each population-sex partition 

refer to the unique combination of individual-year, which were used in our conditional 

logistic regression models as a clustering variable for estimating robust variance estimates 

using generalized estimating equations. 
 

 

Dataset 
Number 

of moose 

Number 

females 

(clusters) 

Number 

males 

(clusters) 

 

Years 
Fix rate 

(hours) 

Fix 

success 

Number of 

fixes 

 

Koyukuk 

 

30 

 

19 (45) 

 

11 (22) 
2008- 

2013 

 

8 

 

91% 
F- 11,324 

M- 3,949 

Susitna 61 38 (71) 23 (36) 
2012- 

2016 
8 98% 

F- 14,984 

M-6,003 

Innoko 45 21 (63) 24 (65) 
2010- 

2014 
4* 95% 

F- 2,319 

M- 1,987 

Tanana 33 33 (145) 0 
2011- 
2016 

3.5* 99% F- 21,530 

Totals: 169 111 58 - - 96% 
F-50,157 

M- 11,939 

* data with less than 8-hour fix rates were aggregated to near 8-hour fix rates 



 

 

 

 

 

 
 

Table 2.2. Model evaluation (QIC) and cross validation (LOOCV) for female moose organized by population. Base models contain no 

temperature covariates, while spline models incorporate nonlinear interactions between a given covariate and ambient temperature. In 

this case, “Spline %can2” refers to percent canopy interacted with ambient temperature with two spline segments, while “Spline 

%can3” refers to percent canopy interacted with ambient temperature with three spline segments. Decreases in QIC indicate a better 

model fit while increases in LOOCV indicate more predictive ability. 
 

Koyukuk  Susitna  Innoko Tanana 

 Base Spline %can2 Base Spline %can2 Base Spline %can2 Base Spline %can3 

QIC 47,070 46,918 70,707 70,423 73,361 73,184 102,854 102,746 

QIC - -152 - -284 - -177 - -108 

LOOCV 68% 69% 62% 64% 60% 63% 36% 46% 

LOOCV - +1% - +2% - +3% - +10% 

Note: %can= percent canopy cover 
 

Table 2.3. Model evaluation (QIC) and cross validation (LOOCV) for male moose summary of organized by population. See additional 

descriptors in Table 3. 
 

Koyukuk Susitna Innoko 

 Base Spline %can2 Base Spline %can2 Base Spline %can2 

QIC 18,583 18,529 27,919 27,777 62,946 62,849 

QIC - -54 - -142 - -97 

LOOCV 42% 45% 57% 62% 50% 56% 

LOOCV - +3% - +5% - +6% 

3
0
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Table 2.4. Best habitat selection models by population for female moose (Alces alces gigas) 

in Alaska from the step-selection function analysis. The best models across all four 

populations occurred when percent canopy interacted with temperature nonlinearly and are 

presented here. Natural spline (sp) predictors, where percent canopy interacted with 

temperature, have coefficients estimated for each line segment. Therefore, numbers one 

through three in the spline predictor terms represent an individual line segment. Only one of 

four populations (Tanana) has a third set of coefficients. In the Innoko population, elevation 

was collinear with distance-to-water and was thus excluded. All predictors were standardized 

by dividing by two times their standard deviation, making coefficients directly comparable. 

Robust standard errors are reported. 
 

Population 

 Koyukuk Susitna Innoko Tanana 

Predictor Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) 

Elevation 0.09 (0.16) -1.21 (0.25)*** NA 0.28 (0.39) 

sp(Percent Canopy x 
Temperature) 1 

24.91 (3.7)*** 33.90 (3.1)*** 14.82 (3.32)*** 4.71 (1.07)*** 

sp(Percent Canopy x 
Temperature)2 

20. 03 (3.1)*** 20.09 (1.9)*** 9.01 (2.14)*** 8.97 (2.22)*** 

sp(Percent Canopy x 
Temperature)3 

NA NA NA 7.70 (1.97)*** 

Percent Canopy -13.90 (2.2)*** -16.60 (1.6)*** -7.90 (1.92)*** -4.80(1.21)*** 

Solar Radiation Index 0.02 (0.02) 0.003 (0.02) -0.18 (0.02)*** -0.0006 (0.02) 

Distance-to-Water -0.66 (0.3)* -0.48 (0.09)*** -0.22 (0.16) -0.09 (0.07) 

*0.05; **0.01; ***0.001 
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Table 2.5. Best habitat selection models for male Alaska moose from the step-selection 

function analysis. Natural spline (sp) predictors, where percent canopy interacted with 

temperature, have coefficients estimated for each line segment. Numbers one and two in the 

spline predictors represent an individual line segment. All three populations had temperature- 

canopy interactions with two-line segments. In the Innoko population, elevation was 

collinear with distance-to-water and was thus excluded. All predictors were standardized by 

dividing by two times their standard deviation. Robust standard errors are reported. 
 

  
Population 

 

 Koyukuk Susitna Innoko 

Predictor Coefficient (SE) Coefficient (SE) Coefficient (SE) 

Elevation -0.45 (0.37) -1.11 (0.28)*** NA 

sp(Percent Canopy * Temperature)1 27.84 (4.6)*** 22.51 (5.5)*** 13.02 (3.3)*** 

sp(Percent Canopy * Temperature)2 24.30 (4.1)*** 14.71 (3.8)*** 8.50 (2.4)*** 

Percent Canopy -16.63 (2.9)*** -11.81 (3.1)*** -17.60 (2.04)*** 

Solar Radiation Index 0.02 (0.03) -0.005 (0.003) -0.12 (0.02)*** 

Distance-to-Water 0.34 (0.31) -0.59 (0.11)*** -0.02 (0.33) 

*0.05; **0.01; ***0.001 
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Figures 
 

 
 

 
 

Figure 2.1. Moose (Alces alces gigas) study area locations in four distinct ecoregions of 

Alaska, USA. In total, 169 moose were included in these analyses (111 females; 58 males). 
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Figure 2.2. Conditional probability of selection of spline-based thermal cover as a function 

of temperature for Alaskan female moose by region in summer months (June-August). We 

used natural splines with two to three degrees of freedom to represent the relationship 

between canopy cover and temperature. The probability of selection of denser canopy 

increased significantly with temperature during summer for all four regions, where red lines 

indicated the warmest experienced temperature and the blue lines indicate the coolest 

experienced temperature by region. Shaded bands represent a 95% confidence interval. 
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Figure 2.3. Conditional probability of selection of spline-based thermal cover as a function 

of temperature for Alaskan male moose by region in summer months (June-August). We 

used natural splines with two to three degrees of freedom to represent the relationship 

between canopy cover and temperature. The probability of selection of denser canopy 

increased significantly with temperature during summer for all four regions, where red lines 

indicated the warmest experienced temperature and the blue lines indicate the coolest 

experienced temperature by region. Shaded bands represent a 95% confidence interval. 
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Chapter 3: Toward mapping dietary fibers in northern ecosystems using 

hyperspectral and multispectral data 

 
Authors: Jyoti S. Jennewein, Jan U.H. Eitel, Jeremiah R. Pinto, Lee A. Vierling, 

Published: Remote Sensing, August 2020 

Abstract 

Shrub proliferation across the Arctic from climate warming is expanding herbivore habitat 

but may also alter forage quality. Dietary fibers—an important component of forage 

quality—influence shrub palatability, and changes in dietary fiber concentrations may have 

broad ecological implications. While airborne hyperspectral instruments may effectively 

estimate dietary fibers, such data captures a limited portion of landscapes. Satellite data such 

as the multispectral WorldView-3 (WV-3) instrument may enable dietary fiber estimation to 

be extrapolated across larger areas. We assessed how variation in dietary fibers of Salix 

alaxensis (Andersson), a palatable northern shrub, could be estimated using hyperspectral 

and multispectral WV-3 spectral vegetation indices (SVIs) in a greenhouse setting, and 

whether including structural information (i.e., leaf area) would improve predictions. We 

collected canopy-level hyperspectral reflectance readings, which we convolved to the band 

equivalent reflectance of WV-3. We calculated every possible SVI combination using 

hyperspectral and convolved WV-3 bands. We identified the best performing SVIs for both 

sensors using the coefficient of determination (adjusted R2) and the root mean square error 

(RMSE) using simple linear regression. Next, we assessed the importance of plant structure 

by adding shade leaf area, sun leaf area, and total leaf area to models individually. We 

evaluated model fits using Akaike’s information criterion for small sample sizes and 

conducted leave-one-out cross validation. We compared cross validation slopes and 

predictive power (Spearman rank coefficients ρ) between models. Hyperspectral SVIs (R2 = 

0.48–0.68; RMSE = 0.04–0.91%) outperformed WV-3 SVIs (R2 = 0.13–0.35; RMSE = 0.05– 

1.18%) for estimating dietary fibers, suggesting hyperspectral remote sensing is best suited 

for estimating dietary fibers in a palatable northern shrub. Three dietary fibers showed 

improved predictive power when leaf area metrics were included (cross validation ρ = +2– 

8%), suggesting plant structure and the light environment may augment our ability to 

estimate some dietary fibers in northern landscapes. Monitoring dietary fibers in northern 
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ecosystems may benefit from upcoming hyperspectral satellites such as the environmental 

mapping and analysis program (EnMAP). 

Introduction 

Accelerated warming in high latitude regions (i.e., ≥ 60°N) has led to warmer, wetter, and 

more variable environments (Serreze et al., 2000; Wolken et al., 2011). One consequence of 

accelerated warming in these regions is the increased abundance and geographic extent of 

shrubs (Myers-Smith et al., 2011; Sturm et al., 2001). Some herbivores are expanding their 

ranges to exploit these increased food resources (Tape et al., 2016; Zhou et al., 2020) and 

also regulate vegetation proliferation through browsing (Bryant, 1987; Christie et al., 2015) 

and soil fertilization (Butler & Kielland, 2008; Kielland & Bryant, 1998). The effect of 

herbivores on shrubs is influenced by herbivore density, foraging intensity, and the 

palatability of shrubs (Christie et al., 2015; Speed et al., 2010). Shrub palatability may be 

influenced by increased temperatures from environmental change, which has broad 

ecosystem implications such as alterations to nutrient cycling (Doiron et al., 2014; Zamin et 

al., 2017). 

Characterizing palatability—or forage quality—for herbivores is complex. Nitrogen 

content, foliar defense compounds, and dietary fibers must all be considered when 

quantifying forage quality (Felton et al., 2018). Dietary fibers encompass the structural 

components of plant cell walls, primarily hemicellulose (HMC), cellulose (CLL), and lignin, 

but can also be quantified in the laboratory for technical fiber fractions: neutral detergent 

fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and acid insoluble ash 

(AIA, or silica) (Van Soest et al., 1991). Higher fiber levels often increase handling time (i.e., 

cropping, chewing, and digesting) (Shipley & Spalinger, 1992), and therefore reduce plant 

palatability. However, CLL and HMC can provide substantial energy for ruminants (up to 

80%) (Barboza et al., 2008). 

Quantifying and mapping forage resources for herbivores are critical to effective 

management. Remote sensing provides a means of characterizing and monitoring forage 

quality across the landscape. Optical remote sensing approaches use reflected light from the 

ultraviolet (10–380 nm), visible (400–700 nm), near infrared (NIR; 701–1399 nm), and 

shortwave infrared (SWIR; 1400–2500 nm) regions to estimate plant dynamics. Reflected 

light from vegetation is influenced by functional group, plant water content, plant structural 
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components, and foliar chemistry (Xue & Su, 2017). Spectral vegetation indices (SVIs) 

calculated from spectral data are generated using simple algebraic formulas that enhance a 

target’s spectral signal, and are commonly used to characterize vegetation vigor, growth, and 

foliar chemistry (Xue & Su, 2017). For example, the normalized difference vegetation index 

(NDVI) (Rouse Jr et al., 1974) is often used to predict habitat quality and takes the 

mathematical form of (NIR-Red)/(NIR + Red). However, NDVI often has mixed results 

when used to track forage resources (Doiron et al., 2013; Johnson et al., 2018). This 

limitation may be linked to the spectral resolution of broad band imagery that is not able to 

detect small absorption features associated with foliar biochemical traits. 

Hyperspectral instruments sample the electromagnetic spectrum at narrow, 

contiguous wavelength ranges, which results in hundreds of sampled wavelengths. Generally, 

wavelengths greater than 700 nm show measurable absorption and scattering features that 

track dietary fibers such as CLL and lignin (Kokaly et al., 2009), particularly in the SWIR 

region (Curran, 1989; Elvidge, 1990). HMC and CLL have been accurately estimated using 

hyperspectral instruments in a variety of ecosystems from grasslands (Knox et al., 2012; 

Wang et al., 2019) to complex forests (Asner et al., 2014). Similarly, NDF and ADF have 

also been accurately estimated via hyperspectral remote sensing in semiarid rangelands 

(Mirik et al., 2005; Starks et al., 2004). 

Although SVIs calculated from remotely sensed spectral data have demonstrated their 

utility in detecting various vegetation characteristics, they also show considerable sensitivity 

to plant structure such as leaf area index (LAI) (Chen & Cihlar, 1996; Turner et al., 1999). 

Canopy structural variation strongly influences spectral reflectance characteristics by 

creating a more complex three-dimensional environment for photons to interact (Asner, 

1998; Knyazikhin et al., 2013; Vierling et al., 1997). Thus, plants with higher LAI have a 

more complex canopy and therefore amplify biochemical signals through scattering in NIR 

and to a lesser extent the SWIR regions (Asner, 1998). 

Complex canopy architecture also influences the light environment within the 

canopy, impacting photosynthesis, growth, and nutrient quality for herbivores. For instance, 

diamond leaf willow (Salix planifolia pulchra) in Alaska demonstrated varying levels of 

NDF and ADF between sun and shaded leaves and a decrease in digestibility for willows 

growing in the sun (Molvar et al., 1993). Similarly, palatable shrubs growing in shaded 
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conditions had significantly reduced levels of HMC but increased levels of CLL than sunlit 

shrubs of the same species (Blair et al., 1983). Thus, incorporating plant structural metrics 

and the distinction between sun and shaded leaves into models designed to predict dietary 

fibers may improve model performance. 

Although hyperspectral instruments can resolve fine-scale foliar chemistry, few 

hyperspectral satellites exist, and airborne data captures only a small portion of the landscape 

used by wildlife. However, the high-spatial resolution (< 5 m pixels) of multispectral 

imagery from WorldView satellites may enable fine-scale forage quality estimation, though 

the broadband imagery (bandwidth 40–70 nm) lacks the spectral resolution of hyperspectral 

data. WorldView-2 (WV-2) and WorldView-3 (WV-3) sensors have shown promise in 

estimating foliar nitrogen content in rangelands (Ramoelo et al., 2015; Zengeya et al., 2012), 

crop residues in agricultural settings (Hively et al., 2018), and digestible protein in 

eucalyptus forests (Wu et al., 2019). WorldView satellites also demonstrate utility in 

mapping percent vegetation cover (Liu et al., 2017) and plant functional type (Langford et 

al., 2016) in Arctic regions. WV-3 includes eight SWIR bands, yet to our knowledge no 

study has yet assessed the utility of the WV-3 satellite to map dietary fibers in high latitude 

settings. 

Evaluating sensor performance in measuring dietary fibers in high latitude regions is 

increasingly important because of the effect of warming on palatable shrubs. Therefore, our 

overarching objective was to assess whether variation in six dietary fibers could be estimated 

by using multispectral bands from the WV-3 satellite, relative to hyperspectral data. To 

control for variations in environmental conditions, we conducted a greenhouse experiment 

with a highly palatable shrub common in Boreal and Arctic ecosystems, feltleaf willow (Salix 

alaxensis (Andersson)). We collected hyperspectral measures at two time intervals and 

identified hyperspectral SVIs suitable to remotely sense two functional fibers (HMC and 

CLL) and four technical fibers (NDF, ADF, ADL, and AIA) collectively called ‘dietary 

fibers’ hereafter. Second, we assessed the value of incorporating shrub structure and the light 

environment into our models using leaf area (cm2) from sun and shaded leaves from each 

sample. Finally, we evaluated the suitability of the WV-3 satellite to monitor dietary fibers 

across the landscape using the band equivalent reflectance (BER) for each band by 

convolving our hyperspectral measures. 
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We hypothesized that the best SVIs would contain wavelengths > 700 nm (Kokaly et 

al., 2009) and that the SWIR region (Curran, 1989; Elvidge, 1990) would be best suited for 

tracking dietary fibers. We also predicted the BER of WV-3 would be able to estimate 

dietary fibers moderately well because of its eight SWIR bands. Further, we hypothesized 

that accounting for leaf area would enhance our models because higher levels of LAI have 

been shown to amplify biochemical signals in the NIR and SWIR regions (Asner, 1998). 

Finally, we hypothesized that partitioning leaf area into sun and shaded fractions would 

contribute meaningful differences in model performance because dietary fiber concentrations 

vary between sunlit and shaded canopies (Blair et al., 1983; Molvar et al., 1993). 

Methods and Materials 

Greenhouse Procedures 

On 13 June 2018, we collected 52 willow (Salix alaxensis (Andersson)) cuttings near 

Coldfoot, AK (67.2524°N, −150.1772°W). We stored cuttings in a chilled cooler for transit, 

and cuttings were wrapped in moist paper towels and provided water through a plastic 

reservoir attached to each cut stem. Twenty-four hours later, we processed field cuttings by 

clipping small wooded stems and current year green stems. We dipped these new clippings in 

a solution of indol-3-butyric acid (0.2%) rooting hormone and planted them in trays 

containing a water-saturated, peat moss, and vermiculite (1:1 by volume) media. Trays were 

placed inside a misting chamber outfitted with a root zone heat mat set to 17 °C. 

Available nutrients for high latitude plants are expected to increase as temperatures 

rise, which in turn increases shrub biomass (Myers-Smith et al., 2011) and therefore dietary 

fibers. Thus, we simulated a broad range of possible nitrogen (N) concentration scenarios 

that may occur as the rate of nutrient cycling increases (Appendix 3.1 (A3.1)). Four weeks 

after the second clipping, when cuttings had generated new roots, we randomly stratified 

willow cuttings (n = 105) into six groups along a gradient of N-fertilizer treatments: native; 

+5; +10; +20; +50; and +100 kg N ha−1. After treatment groups were assigned, we transferred 

rooted-cuttings into larger, 2.3 L Treepot containers (Stuewe & Sons, Inc. Tangent, OR, 

USA) containing artificial media (peat moss, vermiculite, and perlite; 2:1:1 by volume) and 

the total amount of N required for the study. N, phosphorus (P), potassium, (K), and 

micronutrients were delivered via controlled-release fertilizer (Osmocote Plus, 5–6 month, 

NPK: 15-9-12). Water was provided via subirrigation and timing was determined 
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gravimetrically (Dumroese et al., 2015). Feltleaf willows grow primarily in riparian areas so 

gravimetric irrigation targets were set to 70–80% of saturation. 

Our samples experienced a large amount of attrition (43%) related to disease (willow 

rust, Melampsora spp.) and pests (aphid outbreak) within the first month of the experiment. 

Thus, we opted to put the remaining samples into dormancy for the winter and to restart the 

experiment in March 2019. On 11 January 2019, willows were wrapped in moist paper 

towels, stored in paper bags inside of a freezer set to −2.2 °C. After 8 weeks in dormancy, 

willows were thawed at 15.6–18.3 °C for three days. Once willows were thawed, we 

replanted them using the same procedures outlined previously. Sixty plants were viable from the 

first round of the experiment. From March through June 2019, greenhouse temperatures averaged 

23.6/17.4 °C (day/night), relative humidity averaged 41.7/62.0% (day/night), and 

photosynthetically active radiation (PAR) peaked at 1190 μmol during the experimental 

period (March–June 2019). 

For each round of sampling, we randomly selected 12 willows for harvest. Although 

we had planned to conduct a third and fourth round of sampling, our plants again experienced 

a pest outbreak. Therefore, we only sampled two rounds and obtained 24 samples total—one 

and two months after planting, 6 May and 2 June, respectively. 

Hyperspectral, Leaf Area, and Destructive Vegetation Collection 

We collected hyperspectral reflectance readings and associated destructive-vegetation 

samples from each replicate. We collected canopy spectra using a FieldSpec Pro Full Range 

Spectroradiometer (Malvern Panalytical Ltd., Malvern, UK). This instrument has a spectral 

range of 350–2500 nm, with a full-width half-max of 3 nm in the visible and near infrared 

regions (350–1050 nm), and 10–12 nm in both short-wave infrared regions (900–1850 nm 

and 1700–2500 nm). Prior to sampling of each plant, dark current and white reference 

measures were taken using Spectralon panel (Labsphere, Inc., North Sutton, NH, USA). 

The fiber optic probe of the instrument (with a 25° field of view) was mounted 50 cm 

above the highest point of each plant (Figure 3.1C). Each sampled plant was illuminated with 

a full spectrum lamp (1000 W) mounted at a 60° zenith angle 1.4 m above the ground. To 

minimize confounding background effects on spectral measurements, a spectrally flat black- 

foam material was cut and placed around the lowest point of the stem of each willow (Figure 

3.1B). Four spectral measurements were taken per willow, and the willow was rotated 90° 



42 
 

each round of sampling. We calculated the mean of these four spectral measurements for 

analysis. 

Immediately after collecting canopy spectra, leaves were harvested, separated into ‘shade’ 

and ‘sun’ categories based on a visual assessment of their position in the canopy and scanned 

using a portable scanner. We included a reference target of a known area in each scan that 

enabled us to calculate one-sided leaf area (cm2) in Image J (Schneider et al., 2012) 

following methods outlined in (Glozer, 2008). After scanning, leaves were oven dried for 48 

h at 30–40 °C. Dried samples were ground and analyzed by the Washington State University 

Habitat Lab for NDF, ADF, ADL, and AIA using the sequential fiber analysis (Van Soest et 

al., 1991). We estimated HMC content by subtracting ADF from NDF, and CLL content by 

subtracting ADL from ADF. 

Statistical Analyses 

We used R statistical software version 3.6.2 (R Core Team, 2019) for all statistical 

assessments. We tested for differences in dietary fibers between sample periods using 

Welch’s two sample t-test (Welch, 1947) and differences between dietary fibers and N 

fertilization treatments using a one way analysis of variance (ANOVA) and Tukey’s range 

test (Tukey, 1949) as a post hoc follow up to determine pairwise differences between 

fertilizer treatments. 

We assessed every possible spectral band combination using simple ratio SVIs (Band 

A/Band B) and also normalized differenced SVIs ((Band A − Band B)/(Band A + Band B)) 

to track dietary fibers using simple linear models. The best performing SVIs for each dietary 

fiber were identified using adjusted R2 values and the root mean square error (RMSE). After 

identifying the best performing SVIs, we assessed the importance of plant structure by 

adding shade leaf area, sun leaf area, and total leaf area to linear models individually. We 

evaluated model fit between model variants using Akaike’s information criterion for small 

sample sizes (AICc) (Burnham & Anderson, 2002; Cavanaugh, 1997) from the ‘MuMIn’ 

package (Barton & Barton, 2015). We also conducted leave-one-out cross validation 

(LOOCV) by excluding one willow from the data set sequentially and testing the predictive 

power of the remaining willows against the excluded one. We compare the resultant slopes 

and predictive power using Spearman rank coefficients (ρ) between models. 

Band Equivalent Reflectance 
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The BER provides an assessment of potential sensor performance (Smith et al., 

2005). To assess the ability of identified SVIs to scale to the landscape level, SVIs identified 

from canopy-level hyperspectral data were convolved to WV-3 satellite bands using their 

BER (Trigg & Flasse, 2000). The spectral response functions of WV-3 were obtained 

directly from Maxar Technologies (Westminster, CO, USA). The BER data for WV-3 were 

then used to recompute SVIs. As with the hyperspectral SVIs, we assessed whether adding 

shade leaf area, sun leaf area, and total leaf area improved our models following the same 

analytical steps detailed in section 2.3. Since we hypothesized that incorporating leaf area 

into models would improve model performance, we also investigated the relationships 

between total leaf area and NDVI, which has been shown to have a strong nonlinear 

relationship with LAI in high latitude regions (Heiskanen, 2006). Finally, we substituted 

NDVI for total leaf area in our WV-3 BER models to evaluate the possibility of representing 

plant structure using only SVIs. 

Results 

Dietary fibers showed a wide variety of concentrations between samples (A2.2). We 

observed no difference in fiber concentrations between sampling period (t = −0.07 to 1.28, p 

> 0.05) except for HMC (t = −2.77, p = 0.01) where the first sampling period had 

significantly more HMC than the second sampling period. Similarly, we found no significant 

difference between sun and shaded leaf area in either May (t = −1.13, p = 0.27) or June (t = 

0.29, p = 0.78), nor when sample dates were pooled (t = −0.88, p = 0.38). We found no 

statistically significant difference (p > 0.05) between N treatments and HMC, ADL, or AIA 

concentrations. CLL (F = 5.68, p < 0.01), NDF (F = 5.51, p < 0.01), and ADF (F = 4.19, p < 

0.01) concentrations differed across N treatments (A2.3). 

Hyperspectral Vegetation Indices 

As hypothesized, the best SVIs for tracking dietary fibers contained bands > 700 nm, 

with most wavelengths located in the SWIR region (R2 = 0.48–0.68; RMSE = 0.04–0.91%; 

Figure 3.2), but with viable SVIs occurring in the NIR region as well (Figure 3.3). HMC was 

the only fiber that was best predicted using a non-SWIR SVI (794 nm/816 nm). Cross 

validation scores were good (ρ = 0.73–0.83; Table 1), especially for a small sample size. 

However, all models underpredicted fiber concentration (slopes < 1). Additionally, we saw 

an improved model fit and predictive ability when adding shaded leaf area metrics to predict 
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NDF (ΔAICc = −7.65; ΔLOOCV = +8%). Predictive ability also increased slightly when leaf 

area metrics were added to CLL (ΔLOOCV = +2–3%) and ADF models (ΔLOOCV = +1%), 

but without improvements in model fit. HMC models also improved (ΔAICc = −3.17; 

ΔLOOCV = +5%) when sun leaf area was added. No improvements in model fit or predictive 

power occurred for ADL, or AIA. 

Band Equivalent Reflectance of WV-3 

We convolved our hyperspectral data to the BER of WV-3 to assess whether dietary 

fibers could be measured via satellite (Table 3.2; Figure 4). As with the hyperspectral 

models, the majority of the best performing WV-3 SVIs contained SWIR bands (Figure 3.4). 

WV-3 models also underpredicted fiber concentration (slopes < 1) and performed poorer (R2
 

= 0.13–0.35; RMSE = 0.05–1.18%) than hyperspectral models (R2 = 0.48–0.68; RMSE = 

0.04–0.91%). However, BER SVIs from WV-3 showed some promise in predicting HMC, 

NDF, and ADF, particularly when leaf area metrics were accounted for in the models (Table 

3.2). As with the hyperspectral models, the best improvements in models came when shaded 

leaf area was added to NDF (R2 = 0.45; RMSE = 1.03%; LOOCV ρ = 0.78) and ADF (R2 = 

0.40; RMSE = 0.69%; LOOCV ρ =0.76). In contrast, HMC saw the best model 

improvements when total leaf area was added (R2 = 0.45; RMSE = 0.55%; LOOCV ρ = 

0.72). WV-3 models for CLL showed slight increase in cross validation scores when leaf area 

metrics were incorporated (ΔLOOCV = +4–5%), but without increased model fit or 

explained variance. ADL and AIA showed no model fit improvements with the addition of 

leaf area metrics, which was consistent with our hyperspectral results. 

We also assessed how well total leaf area could be represented using NDVI in the 

WV-3 models. Results showed that total leaf area and NDVI had a nonlinear relationship 

with moderate strength (R2 = 0.51; RMSE = 458.79 cm2; A2.4). When NDVI replaced total 

leaf area in WV-3 models, we found slight improvements predictive ability (ΔLOOCV = +1– 

2%; A2.4) for HMC, CLL, ADF, ADL, and AIA, while NDF showed reduced predictive 

power (ΔLOOCV = −5%) compared to SVI only models. 

Discussion 

Our results indicate dietary fibers from an important forage species of arctic-boreal willow 

can be effectively measured with hyperspectral instruments. This finding supports previous 

work where dietary fibers have been successfully mapped in rangelands (Mirik et al., 2005; 
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Starks et al., 2004), grasslands (Knox et al., 2012; Wang et al., 2019), and mixed forest 

landscapes (Asner et al., 2014) using hyperspectral remote sensing. As hypothesized, all of 

the best performing SVIs contained wavelengths greater than 700 nm (Kokaly et al., 2009), 

with the majority of SVIs containing bands in the SWIR region (Curran, 1989; Elvidge, 

1990). 

Incorporating plant structure into hyperspectral models also improved our ability to 

track and predict HMC, NDF, and ADL (Table 3.1). This is likely related to the wavelengths 

used in the SVIs for these fibers. The NIR region is most sensitive to changes in plant 

structure with the initial portion of the SWIR region (1500–2000 nm) also showing 

sensitivity to changes in LAI (Asner, 1998). In our study, all three of the fibers that showed 

improvements when leaf area was incorporated had at least one band in their SVIs in these 

regions. In contrast, the remaining three fibers—CLL, ADF, and AIA—all had SVIs in the 

latter part of the SWIR region (2000–2500 nm; Figure 2), which is less sensitive to plant 

structure (Asner, 1998). Additionally, since the SWIR region is influenced by foliar water 

content, as water comprises 40–80% of weight in green specimens (Elvidge, 1990), future 

work may benefit from comparing spectral collections from wet and dry samples as this may 

improve model performance. 

We observed model improvements from plant structure in HMC, NDF, and ADL 

depended on the partitioning leaf area into shaded and sunlit fractions. HMC models 

improved most when sunlit leaf area was added to models (Table 3.1). One study found that 

HMC was highly influenced by shade in two palatable shrubs—yaupon (Ilex vomitoria) and 

Japanese honeysuckle (Lonicera japonica)—where HMC levels were up to 92% more in 

sunlit plants than shaded comparisons (Blair et al., 1983). However, due to constraints in the 

available dry matter for laboratory analyses in our study, we were unable to assess how fiber 

concentrations varied between sun and shaded leaves. In contrast, the best NDF and ADL 

models occurred when shaded leaf area was incorporated (Table 3.1). Again, this may be 

related to the relative amount of these fibers in sun vs. shaded leaves. ADL concentrations in 

yaupon and honeysuckle leaves were significantly higher in shaded plants (Blair et al., 1983); 

however, one study found no statistical difference in lignin (ADL) between shaded and sunlit 

samples of diamond leaf willow (Molvar et al., 1993). This same study found that NDF was 

significantly higher in sunny willow shoots compared to shaded shoots (Molvar et al., 1993), 
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which would not explain why our NDF models improved most when shaded leaf area was 

included. However, other work has shown that NDF content in shaded and sunlit plants 

varies according to species, where some show higher NDF in shaded plants (Lin et al., 2001). 

Thus, we anticipate that our results were specific to feltleaf willow and might not be 

generalized to other shrubs in high latitudes. Our results also suggest in addition to the 

importance of plant structural characteristics, the light environment plays a critical role in the 

development of these fibers in feltleaf willow. One remotely sensed product that may parse 

shaded and sunlit fractions of vegetation canopies is the Earth polychromatic imaging 

camera’s (EPIC) sunlit LAI product (10 km spatial resolution), although it is likely a finer 

spatial scale would be required to apply this product to high latitude settings as variations in 

LAI vary substantially across the landscape (Juutinen et al., 2017). 

Sun-dependent variations in foliar biochemical composition influence herbivore 

foraging behavior. Snowshoe hares (Lepus americanus) preferred shaded browse shoots from 

feltleaf willow over sunlit comparisons (Bryant, 1987). Similarly, Sitka black-tailed deer 

(Odocoileus hemionus sitkensis) showed a preference for shade-grown Alaska blueberry 

(Vaccinium alaskensis) over those grown in sunlit clearcuts (Hanley, 1987). Indeed, it 

appears that digestibility and quality of forage in palatable high-latitude shrubs is greater in 

shaded plants (Lenart et al., 2002; Molvar et al., 1993). This is likely linked to decreased 

light available for photosynthesis, which in turn may limit the formation of structural fibers 

(Molvar et al., 1993; Moore & Jung, 2001) and increased foliar nitrogen and decreased 

defense compound concentrations (Osier & Lindroth, 1999). 

Shrub proliferation in Arctic regions is increasing the range of herbivores such as 

snowshoe hare, moose (Alces alces), and ptarmigan (Lagopus lagopus, L. muta) (Tape et al., 

2016; Zhou et al., 2020). Increases in ambient temperature may lower the digestibility of 

forage species by increasing lignification (Weladji et al., 2002) and decreasing nitrogen in 

the late summer (Doiron et al., 2014), but these changes are likely species and region specific 

(Elmendorf et al., 2012; Lenart et al., 2002). Shading from clouds or canopy may improve 

forage quality (Lenart et al., 2002; Molvar et al., 1993; Weladji et al., 2002). However, 

studies have shown that warming may significantly alter forage quality for high latitude 

herbivores, which may have broader consequences for ecosystem functions such as nutrient 

cycling (Doiron et al., 2014; Zamin et al., 2017). Thus, as warming continues, the palatability 
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of shrubs in high latitudes will likely be a function of landscape structure, browsing intensity, 

and environmental conditions. 

Strategies for monitoring variation in forage quality over broad heterogeneous 

landscapes are needed to account for changes over space and time. To this end, we evaluated 

the suitability the WV-3 satellite to measure dietary fibers and we predicted its eight SWIR 

bands would be useful in estimating dietary fibers. Of the eight SWIR bands, six of them 

comprised the best performing BER SVIs for CLL, NDF, ADF, ADL, and AIA (Figure 3.4). 

As with the hyperspectral models, the WV-3 models for HMC and NDF saw improvements 

when plant structural information was included, particularly when shaded leaf area was 

included (Table 3.2). However, we observed the best HMC model with total leaf area. We 

also observed that ADL predictions no longer benefitted from including leaf area but ADF 

models improved when shaded or total leaf area was included. 

Few works have evaluated the utility of WorldView satellites for detecting foliar 

biochemical properties in high latitude regions. Our results suggest that WV-3 can estimate 

HMC, NDF, and ADF in a palatable high-latitude shrub with moderate accuracy when 

additional plant structural information is included in models, but that hyperspectral remote 

sensing approaches are best suited for mapping dietary fibers in feltleaf willow. Therefore, 

future work may benefit from assessing and using the upcoming German environmental 

mapping and analysis program (EnMAP) satellite. EnMAP will collect moderate spatial 

resolution (30 m) hyperspectral imagery (420–2450 nm) and make data freely available 

(Guanter et al., 2015). 

We also evaluated the possibility of using NDVI as a proxy for total leaf area in the 

WV-3 models (Appendix D). Although we found a moderate-strength nonlinear relationship 

between total leaf area and NDVI, only HMC showed improved model statistics when NDVI 

was included. This suggests that additional, non-spectral measures of shrub structure, and 

possibly leaf water content, may be necessary to pair with SVIs to obtain the best estimates 

of dietary fibers. Aerial lidar (light detection and ranging) may be used to represent LAI 

(Jensen et al., 2008; Pope & Treitz, 2013) and may increase our ability to map dietary fibers 

in high latitude regions when coupled with hyperspectral data. 

Due to the controlled setting of our study, we did not evaluate the influence of soil 

background effects or confounding factors (e.g., shadows) on our ability to estimate dietary 
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fibers. Similarly, the composite nature of all remotely sensed pixels includes spectral 

information from multiple constituents, which impedes our ability to remotely sense 

vegetation properties (Somers et al., 2011). Therefore, techniques such as spectral mixture 

analysis (Adams & Smith, 1986) or combined spectral indices (Eitel et al., 2009) may be 

needed to parse the spectral information of the variable of interest from background noise. 

For example, previous work has demonstrated the influence of soil properties on sensing 

foliar biochemical properties and plant structural characteristics such as LAI (Darvishzadeh 

et al., 2008). Finally, our study was limited by disease and pests in the greenhouse. Despite 

these afflictions that resulted in a small sample size, our results demonstrate the utility of 

hyperspectral and multispectral sensors to track dietary fibers in a high latitude palatable 

forage shrub. 

Conclusion 

This study contributed to an emerging need to estimate and monitor forage quality across 

wide expanses in high latitude systems. Results demonstrated that hyperspectral data is best 

suited to estimating dietary fibers in a palatable northern shrub and highlighted the 

importance of the SWIR region for this purpose. Additionally, information regarding plant 

structure and the light environment may augment our ability to estimate dietary fibers in 

these landscapes. Future work should evaluate the efficacy of including plant structure and 

light environment in addition to passive spectral information to estimate forage quality 

metrics in a field-based setting. 
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Tables 

Table 3.1. Best performing hyperspectral vegetation index (SVI) results for dietary fibers. 
These include hemicellulose, cellulose, neutral detergent fiber, acid detergent fiber, acid 

detergent lignin, and acid insoluble ash and associated variance explained (R2), root mean 
square error (RMSE), Akaike’s information criterion for small sample sizes (ΔAICc), and 

leave-one-out cross validation (LOOCV) slope and Spearman rank coefficients (ρ). The first 

row of each section indicates model statistics for just the SVI model, while subsequent rows 

show how model statistics change when adding leaf area (LA) from the top of the canopy 
(sun), bottom of the canopy (shade), or combined sun and shade leaves (total). Comparisons 

of ΔAICc and ΔLOOCV are in reference to the SVI model only for each fiber. 
 

Models R2 RMSE AICc ΔAICc 
LOOCV 

Slope 
LOOCV 

𝛒 
ΔLOOCV 

Hemicellulose (HMC) 

SVI 0.68 0.42 34.62 - 0.66 0.73 - 

SVI+ LA Sun 0.74 0.37 31.45 −3.17 0.75 0.69 −4% 

SVI+ LA Shade 0.69 0.41 35.48 +0.86 0.68 0.77 +4% 
SVI+ LA Total 0.72 0.39 32.63 −1.99 0.71 0.73 0 

Cellulose (CLL) 

SVI 0.61 0.42 34.48 - 0.59 0.78 - 

SVI+ LA Sun 0.59 0.43 37.14 +2.69 0.56 0.80 +2% 

SVI+ LA Shade 0.60 0.42 36.90 +2.42 0.55 0.81 +3% 
SVI+ LA Total 0.60 0.42 36.97 +2.49 0.56 0.81 +3% 

Neutral detergent fiber (NDF) 

SVI 0.51 0.99 75.30 - 0.57 0.79 - 

SVI+ LA Sun 0.55 0.93 74.82 −0.40 0.59 0.81 +2% 

SVI+ LA Shade 0.67 0.80 67.65 −7.65 0.62 0.87 +8% 
SVI+ LA Total 0.62 0.86 71.02 −4.28 0.60 0.85 +6% 

Acid detergent fiber (ADF) 

SVI 0.56 0.61 51.31 - 0.53 0.75 - 

SVI+ LA Sun 0.53 0.61 54.15 +2.84 0.48 0.76 +1% 

SVI+ LA Shade 0.53 0.61 54.20 +2.89 0.50 0.75 0 

SVI+ LA Total 0.53 0.61 54.17 +2.86 0.49 0.76 +1% 

Acid detergent lignin (ADL) 

SVI 0.48 0.25 9.46 - 0.49 0.83 - 

SVI+ LA Sun 0.49 0.25 10.86 +1.46 0.51 0.82 −1% 

SVI+ LA Shade 0.51 0.24 9.87 +0.41 0.52 0.82 −1% 
SVI+ LA Total 0.51 0.24 10.07 +0.61 0.52 0.82 −1% 

Acid detergent ash (AIA) 

SVI 0.58 0.04 −83.54 - 0.57 0.81 - 

SVI+ LA Sun 0.56 0.04 −82.77 +0.84 0.55 0.81 0 

SVI+ LA Shade 0.58 0.04 −81.94 +1.60 0.58 0.81 0 
SVI+ LA Total 0.56 0.04 −80.73 +2.81 0.55 0.81 0 
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Table 3.2. Best performing band equivalent reflectance (BER) of WorldView3 (WV3) 
spectral vegetation index (SVI) results for dietary fibers. These include hemicellulose, 

cellulose, neutral detergent fiber, acid detergent fiber, acid detergent lignin, and acid 

insoluble ash and associated variance explained (R2), root mean square error (RMSE), 

Akaike’s information criterion for small sample sizes (ΔAICc), and leave-one-out cross 

validation (LOOCV) slope and Spearman rank correlations (ρ). The first row of each section 

indicates model statistics for just the SVI model, while subsequent rows show how model 

statistics change when adding leaf area (LA) from the top of the canopy (sun), bottom of the 
canopy (shade), or combined sun and shade leaves (total). Comparisons of ΔAICc and 

ΔLOOCV are in reference to the SVI model only for each fiber. 
 

Models R2 RMSE AICc ΔAICc 
LOOCV 

Slope 
LOOCV 

𝛒 ΔLOOCV 

Hemicellulose (HMC) 

SVI 0.32 0.62 52.65 - 0.27 0.52 - 

SVI+ LA Sun 0.41 0.56 50.74 −1.91 0.39 0.72 +20% 

SVI+ LA Shade 0.40 0.57 51.38 −1.27 0.38 0.72 +20% 

SVI+ LA Total 0.45 0.55 49.29 −3.36 0.43 0.72 +20% 

Cellulose (CLL) 

SVI 0.25 0.59 50.10 - 0.22 0.45 - 

SVI+ LA Sun 0.23 0.59 52.44 +2.34 0.20 0.50 +5% 

SVI+ LA Shade 0.22 0.59 52.66 +2.56 0.18 0.49 +4% 
SVI+ LA Total 0.23 0.58 52.44 +2.34 0.19 0.49 +4% 

Neutral detergent fiber (NDF) 

SVI 0.31 1.18 83.33 - 0.26 0.67 - 

SVI+ LA Sun 0.33 1.14 84.34 +1.01 0.31 0.71 +4% 

SVI+ LA Shade 0.45 1.03 79.82 −3.51 0.43 0.78 +11% 
SVI+ LA Total 0.39 1.08 82.09 −1.24 0.37 0.78 +11% 

Acid detergent fiber (ADF) 

SVI 0.30 0.76 62.10 - 0.28 0.57 - 

SVI+ LA Sun 0.34 0.72 62.40 +0.30 0.35 0.66 +9% 

SVI+ LA Shade 0.40 0.69 60.43 −2.33 0.38 0.76 +19% 
SVI+ LA Total 0.38 0.70 60.92 −2.82 0.38 0.73 +16% 

Acid detergent lignin (ADL) 

SVI 0.34 0.28 15.05 - 0.33 0.70 - 

SVI+ LA Sun 0.32 0.28 17.51 +2.46 0.32 0.71 +1% 

SVI+ LA Shade 0.34 0.28 17.00 +1.95 0.33 0.71 +1% 

SVI+ LA Total 0.33 0.28 17.19 +2.14 0.33 0.69 −1% 

Acid detergent ash (AIA) 

SVI 0.13 0.05 −66.35 - 0.11 0.31 - 

SVI+ LA Sun 0.09 0.05 −63.45 +2.90 0.08 0.31 0 

SVI+ LA Shade 0.10 0.05 −63.78 +2.57 0.09 0.31 0 
SVI+ LA Total 0.09 0.05 −63.54 +2.81 0.08 0.28 −3% 
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Figures 

 

Figure 3.1. Experimental and data collection set up for greenhouse study. Willows were 

grown in a greenhouse setting (A) and canopy spectra were collected using an FieldSpec Pro 

Full Range Spectroradiometer (C). A spectrally flat black-foam material below the canopy to 

avoid introducing soil and background noise (B). 



58 
 

 
 

 

Figure 3.2. Spectral vegetation indices (SVIs) from hyperspectral data for green dietary 

fibers concentrations (Y-axis) of (A) hemicellulose, (B) cellulose, (C) neutral detergent fiber, 

(D) acid detergent fiber, (E) acid detergent lignin, and (F) acid insoluble ash. X-axis labels 

represent the measured reflectance (R) at given wavelengths in nanometers of SVIs. 
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Figure 3.3. Coefficients of determination (R2) between green dietary fibers (A) hemicellulose 

(HMC), (B) cellulose (CLL), (C) neutral detergent fiber (NDF), (D) acid detergent fiber 

(ADF), (E) acid detergent lignin (ADL), and (F) acid insoluble ash (AIA) and simple ratio 

spectral vegetation indices (SVIs) generated from hyperspectral data. The x- and y-axes are 

the wavelength (nm) from the spectrometer. The best performing SVIs were 𝑅794𝑛𝑚/𝑅816𝑛𝑚 for 

HMC, 𝑅2202𝑛𝑚/𝑅2277𝑛𝑚 for CLL, (𝑅1722n𝑚 − 𝑅1747𝑛𝑚)/(𝑅1722𝑛𝑚 + 𝑅1747𝑛𝑚) for NDF, 
𝑅2203𝑛𝑚/𝑅2277𝑛𝑚 for ADF, (𝑅1679𝑛𝑚 − 𝑅2345𝑛𝑚)/(𝑅1679𝑛𝑚 + 𝑅2345𝑛𝑚) for ADL,  and (𝑅2137𝑛𝑚 
− 𝑅2201𝑛𝑚)/(𝑅2137𝑛𝑚 + 𝑅2201𝑛𝑚) for AIA—where R represents the measured 

reflectance at given wavelengths in nanometers. 
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Figure 3.4. Band equivalent reflectance of WorldView-3 (WV-3) spectral vegetation indices 

(SVIs) for green dietary fibers concentrations (Y-axis) of (A) hemicellulose, (B) cellulose, (C) 

neutral detergent fiber, (D) acid detergent fiber, (E) acid detergent lignin, and (F) acid insoluble 

ash. X-axis labels represent the WV-3 bands used to create the best performing SVIs, and 

contain red, near infrared-1 (NIR1), and shortwave infrared (SWIR) bands. 
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Abstract 

Northern herbivore ranges are expanding in response to increased forage biomass produced 

by a warming climate. Forage quality also influences herbivore distributions, but less is 

known about the effects of climate change on plant biochemical properties. Remote sensing 

could enable landscape-scale estimations of forage quality, which is of great interest to 

wildlife managers. Despite the importance of integrated forage quality metrics like digestible 

protein (DP) and digestible dry matter (DMD), however, few studies have applied remote 

sensing approaches to estimate and monitor these characteristics. Our objectives were 

twofold: (1) assess how well DP and DMD can be predicted using hyperspectral remote 

sensing, and (2) to determine whether incorporating shrub structural metrics affected by 

browsing would improve our ability to predict DP and DMD. We collected canopy-level 

spectra, destructive-vegetation samples, and flew unmanned aerial vehicles (UAVs) in areas 

dominated by willow shrubs in northcentral Alaska in July 2019. Canopy structural metrics 

were derived from 3-D structural information obtained from UAV imagery using structure 

from motion photogrammetry. We used generalized least squares regression to account for 

the spatial autocorrelation of sampled shrubs. The best performing model for DP had two 

predictors: a spectral vegetation index (SVI) that included a red-edge and shortwave infrared 

band, and shrub height variability (HVAR; Nagelkerke R2= 0.81, RMSE= 4.96%, cross 

validation ρ = 0.85). DMD had three predictors: an SVI that included that used a blue and a 

red band HVAR, and leaf area index (Nagelkerke R2= 0.70, RMSE= 1.46%, cross validation 

ρ = 0.79). Results from our study demonstrate that integrated forage quality metrics like DP 

and DMD can be successfully quantified using hyperspectral remote sensing data, and that 

models based on those data can be improved by incorporating additional shrub structural 

metrics. Modern airborne sensor platforms such as Goddard's LiDAR, Hyperspectral & 

Thermal Imager (G-LiHT) provide opportunities to fuse data streams from both structural 
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and optical data, which may enhance our ability to estimate and scale important foliar 

properties such as DP and DMD. 

Introduction 

The range of some northern herbivore are expanding in response to increased forage biomass 

produced by a warming climate (Tape et al., 2016; Zhou et al., 2017, 2020). Herbivore range 

expansions may also impact nutrient cycling (Doiron et al., 2014; Schmitz et al., 2018; 

Zamin et al., 2017). For example, high levels of herbivory may accelerate the successional 

transition of palatable forage species such as willow (Salix spp.) to unpalatable species such 

as alder (Alnus spp.) or conifers (Christie et al., 2015; Kielland & Bryant, 1998; Pastor et al., 

1988). Such transitions in species composition can alter ecosystem carbon and nitrogen 

dynamics (Schmitz et al., 2018). For instance nutrient turnover rates may decrease cellulose 

and defensive chemicals are higher in less palatable species (Pastor et al., 1993). In addition 

to forage biomass, herbivore distributions have also been linked to variation in forage quality 

(Ball et al., 2000; Wu et al., 2019). 

Forage quality is influenced by the concentration of chemical constituents and have 

important bottom-up effects on herbivore life-history traits such as maternal body condition, 

pregnancy rates, and survival (Parker et al., 2009). Characterizing forage quality for 

herbivores is complex. Fiber, crude protein, and defensive chemical concentrations all play a 

role in defining forage quality (DeGabriel et al., 2014; Hebblewhite et al., 2008; McArt et al., 

2009; Mirik et al., 2005). Despite the importance of these individual chemical constituents, 

previous studies have called for increased attention to integrated measures of forage quality 

such as digestible protein (DP) and digestible dry matter (DMD; Foley & Moore, 2005; 

McArt et al., 2009) because simpler metrics of forage quality such as crude protein do not 

capture the full range of characteristics that can influence palatability and fitness. 

Integrated forage quality metrics such as DP are strongly influenced by the presence 

of tannins (Hanley et al., 1992; Robbins et al., 1987a; Robbins et al., 1987b), an important 

plant secondary compound which significantly reduces protein digestion for herbivores by 

binding to plant proteins and therefore limiting protein digestion (Spalinger et al., 2010). DP 

is particularly important in northern landscapes because plant available nitrogen is often 

limited (Sponseller et al., 2016), which in turn limits nitrogen available to herbivores (McArt 

et al., 2009; White 1993). Because DP estimations reflect a chemical relationship between 
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the protein precipitating capacity of tannins and the total concentration of protein it can be 

used as an estimate of forage quality for numerous herbivore species. However, DP does not 

account for the overall digestibility of forage which varies according to herbivore species. 

Body size exerts a strong influence on the digestive capabilities of herbivores (Van 

Soest, 1996). Smaller body size facilitates selective feeding choices, whereas larger body size 

increases the overall fraction of digestible forage retained by herbivores (Van Soest, 1996). 

For instance, moose (Alces alces) are large-bodied ruminants whose large size enables even 

the poorest quality of forage to be digested. DMD is an important integrated forage quality 

metric that estimates the portion of plant matter that is digestible by an herbivore. DMD 

estimates vary depending on the herbivore in question. For instance, in vitro DMD can be 

estimated with fistulated animals. DMD can also be estimated mathematically for ruminants 

using developed equations that account for the concentration of DP and fiber concentrations 

(Robbins et al., 1987a; Hanley et al., 1992). Nutritional estimates of forage quality have 

classically relied on laboratory analyses to quantify forage quality or direct assessments of 

fistulated animals. However, in the past two decades remote sensing has emerged as a viable, 

in situ method for assessing forage quality and enables the characterization of broad 

geographic extents (Knox et al., 2011; Mirik et al., 2005; Skidmore et al., 2010; Youngentob 

et al., 2012). 

Remote sensing enables landscape-scale monitoring of forage quality, which is of 

great interest to wildlife managers (Vance et al., 2016; Walton et al., 2013). Optical remote 

sensing approaches use reflected light from the visible (400-700 nm) to the shortwave 

infrared (SWIR; 1400-2500 nm) and have been used to detect variation in foliar chemistry. 

To date, much of the optical remote sensing research has focused on detecting individual 

components of forage quality such as crude protein, fiber, or defense chemicals like 

condensed tannins (Ferwerda et al., 2006; Jennewein et al., 2020; Mirik et al., 2005; 

Skidmore et al., 2010; Thulin et al., 2012). Youngentob et al.’s (2012) pioneering work 

demonstrated that DP and DMD could be successfully estimated across the landscape in 

Eucalyptus trees using hyperspectral remote sensing, which samples reflected light in very 

narrow (3-10 nm), contiguous spectral bands (Goetz, 2009). Similarly, Wu et al. (2019) 

provided the first example of successful DP estimation using the multispectral WorldView-3 

satellite, which contains much broader spectral bands (30-180 nm) compared to hyperspectral 
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data. Despite the importance of integrated forage quality metrics like DP and DMD, few 

studies apply remote sensing approaches to map these characteristics across the landscape 

and no studies have assessed them in Arctic-boreal regions that are undergoing rapid changes 

due to warming (Serreze et al., 2000; Verbyla, 2008; Wolken et al., 2011). 

Therefore, our first hypothesis (H1) was that integrated forage quality metrics – DP 

and DMD – in palatable willow shrubs can be predicted using hyperspectral remote sensing. 

We used hyperspectral remote sensing (as opposed to multispectral) because high spectral 

resolution data can be directly linked to absorption and scattering features of foliar properties 

known to influence palatability (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). We 

focused on willow species because they are the preferred forage resource for many vertebrate 

herbivores in Alaska. 

Additionally, browsing intensity can drastically alter plant canopy architecture 

(Christie et al., 2014) and consequentially alter the concentrations of foliar chemical 

properties that influence palatability (Bryant, 1981; Bryant & Chapin, 1986). For instance, 

moderate browsing stimulates compensatory growth, which in turn creates bushier shrubs 

that are frequently re-browsed (Stouter, 2008). In contrast, heavy browsing stunts growth, 

decreases shrub height, and increases canopy openness (Christie et al., 2014, Kielland & 

Bryant, 1998). Although plant canopy architecture can be strongly influenced by browsing 

intensity, ground-based assessments traditionally use only three categories to classify 

browsing history – unbrowsed, browsed, and broomed (Figure 4.1). Yet variation in broomed 

architecture can be pronounced (Figure 4.1 A and D) and may indicate distinct functional 

differences such as added nitrogen from herbivore excreta (Butler & Kielland, 2008; 

Kielland & Bryant, 1998). 

Recently, remote sensing technologies such as lidar (light detection and ranging) have 

shown utility in assessing vegetation structure for wildlife applications (e.g., Lone et al., 

2014; Melin et al., 2016; Vierling et al., 2008). For example, studies in Europe’s boreal 

forests have demonstrated that metrics derived from aerial lidar can successfully detect insect 

defoliation (Solberg et al., 2006; Vastaranta et al., 2013) and heavy moose browsing (Melin 

et al., 2016) on young Scots pine (Pinus sylvestris) stands. There is also great potential for 

fusing lidar with optical remote sensing to improve the characterization of ecosystems (Asner 

et al., 2012; Luo et al., 2017; Torabzadeh et al., 2014). However, the collection of aerial lidar 
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data may be cost-prohibitive, and ‘structure from motion’ (SfM) data acquired from 

unmanned aerial vehicles (UAV) are considered a viable alternative to aerial lidar (Wallace 

et al., 2016). 

Thus, our second hypothesis (H2) was that statistical models for estimating DP and 

DMD using hyperspectral data would be improved when shrub structural metrics obtained 

from UAV SfM point clouds were incorporated because herbivores can drastically alter 

canopy structure (Figure 4.1; Christie et al., 2014). Additionally, because sunlit and shaded 

leaves in Alaska often differ in their concentrations of important foliar chemicals such as 

fiber (Molvar et al., 1993) and tannins (Bryant & Chapin, 1986; Klein, 1990; Thompson & 

Barboza, 2014) that influence the palatability of forage species, we also hypothesized that 

including the cumulative irradiance (W m-2) incident on a shrub in a growing season would 

improve models (H3). We predicted that as cumulative irradiance increased, DP and DMD 

would decrease because nitrogen concentrations increase and fiber decreases in shaded plants 

(Lenart et al., 2002; Molvar et al., 1993). Similarly, topographic attributes such as aspect and 

slope influence the amount of solar radiation received by plants. Additionally, elevational 

gradients influence plant phenology, where higher-elevation plants often have a delayed 

onset of budburst, which in turn influences migrant herbivore behaviors as they move to 

“surf the green wave” (Bischof et al., 2012; Mysterud et al., 2017). Thus, our fourth 

hypothesis was that including topographic attributes from the ArcticDEM would improve our 

ability to remotely monitor forage quality (H4), because previous work demonstrates that 

combining hyperspectral data with topographic features such as aspect, slope, and elevation 

can improve model predictions of forage quality (Knox et al., 2012; Pullanagari et al., 2018). 

Methods and Materials 

Study area 

The upper Koyukuk River drainage in northcentral Alaska (Figure 4.2) contains a wide range 

of terrain and vegetation including boreal forest dominated by black spruce (Picea mariana), 

alpine tundra and shrubs such as alders, willows, and dwarf birch (Betula glandulosa), as 

well as muskegs and other riparian vegetation such as white spruce (Picea glauca) and poplar 

(Populus spp.). Located in the southern end of the Brooks Range, topography is rugged and 

varies from 80 to 2250 m. The region experiences continental climate patterns. In winter, the 

average temperature ranges from -22 to -40° C, with snow depths exceeding 60 cm most 
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winters. In summer, the average temperature ranges from 3 to 16° C, but can also reach >30° 

C. 

Field-based forage-quality assessment study 

We collected vegetation spectra and destructive-vegetation samples from willow 

shrubs along a latitudinal transect in the Koyukuk River drainage (n=45 in July 2019; Figure 

4.2). We stratified sites across soil types, elevation, and burn history, because a random 

sample was unlikely to include the range of nutrient concentrations needed to drive wildlife 

selection (DeGabriel et al., 2014). We collected spectral information using a FieldSpec Pro 

Full Range Spectroradiometer (Analytical Spectral Devices, Incorporated), which ranged 

from 350-2500 nm. This instrument has a full-width half-max spectral resolution of 3 nm in 

the visible and near infrared (NIR) range (i.e., 350-1050 nm), and 10-12nm in both the NIR 

and short-wave infrared (SWIR) regions of the electromagnetic spectrum (i.e., 1050- 

2500nm). We collected canopy spectral signatures under low cloud (<20%) conditions and 

between 11:00 and 15:00 to minimize confounding effects of illumination geometry. 

Canopy-level spectra were collected on sun-exposed leaves in each of the four cardinal 

directions and averaged into a single representative spectral signature to eliminate canopy- 

level variation in nutrient distribution. Prior to sampling in each direction, dark current and 

white reference measures were obtained using a Spectralon panel (Labsphere, Inc., North 

Sutton, New Hampshire, United States). We then calculated spectral vegetation indices 

(SVIs) indices using all possible band combinations in the simple ratio-type vegetation index 

(Band A/Band B) and normalized difference-type vegetation index (Band A - Band B)/(Band 

A + Band B) formats and related them to calculated DP and DMD (H1). 

We collected destructive vegetation samples, which we dried at 30-40 C for 12 

hours. The Washington State University Habitat Laboratory analyzed each sample for 

percent: (1) crude protein, (2) neutral detergent fiber, (3) acid detergent fiber, (4) acid 

detergent lignin, (5) acid insoluble ash, and (6) tannins using the CBB-BSA (2000) 

methodology. Integrated measures of forage quality were calculated using the Robbins 

(1987a, 1987b) equations for DP and DMD. Estimates of DMD and DP were quantified on a 

percent dry matter basis. 

Landscape and Shrub Structural Variables 
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We collected UAV data prior to destructive vegetation samples were taken using a 

DJI Phantom 4 Pro (Los Angeles, California, USA). Flight elevation ranged from 20 to 25 m 

above ground level with a frontal and side overlap of 80% resulting in a spatial resolution of 

1 cm. To minimize atmospheric interference, flights occurred on sunny days between 11:00 

and 15:00. Three-dimensional (3-D) structural information was obtained from UAV imagery 

using SfM photogrammetry implemented in the Pix4Dmapper software package (Pix4D, 

2016). Using CloudCompare (CloudCompare, 2020) open-source software we manually 

cropped the point cloud to the footprint of sampled shrub crowns and interpolated fine-scale 

(1 cm) digital surface models (DSMs) that were then processed to obtain information on 

canopy structural characteristics: coefficient of variation of height (HCV), variance of 

heights (HVAR), and standard deviation of heights (HSD), using the ‘rLiDAR’ package 

(Silva et al., 2017). We focused on these three UAV-based plant structural metrics with the 

aim of capturing the effect of browsing on willow canopies (H2), because plant canopy 

architecture may be drastically altered by herbivores thereby altering branching structure and 

increasing canopy openness (Christie et al., 2014; Kielland & Bryant, 1998), which in turn 

can influence palatability (Bryant, 1981; Bryant & Chapin, 1986). 

As with the UAV-based measures of plant structure, we included leaf area index 

(LAI) as a potential proxy for browsing history that may capture variation in branching 

structure and thus foliar nutritional properties that resulted from herbivores (H2). We 

estimated LAI using hemispherical photos that captured canopy structure of a single shrub in 

the four cardinal directions. LAI is defined as the amount of leaf area (of a single side of a 

leaf) per unit ground area. A camera equipped with a ‘fisheye’ lens was mounted on a stable 

tripod and levelled prior to collection. When possible, photos were collected under cloudy 

conditions in the morning or evening to minimize light scattering through the canopy. On 

sunny days, an umbrella was used to mitigate direction exposure of solar radiation during 

image collection. Hemispherical photos were processed using Hemiphot (ter Steege, 2018), 

which uses canopy gap fractions to estimate LAI indirectly. 

We also interpolated DSMs (10 cm resolution) for the plots from our UAV SfM point 

clouds, which were used to model the light environment of the outer portion of sampled 

willow canopies (H3) using the ‘insol’ package (Corripio, 2015). This package estimates the 

instantaneous irradiance (W m-2) for a given location using a DSM and atmospheric (i.e., 
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relative humidity, ozone, visibility, air temperature) and surface reflectance (i.e., albedo) 

properties, which we acquired through the Env-DATA annotation service (Dodge et al., 

2013). Based on solar geometry, local topography, surface reflectance, and atmospheric 

properties we estimated diffuse and direct canopy irradiance for every minute of the summer, 

which we summed into ‘total irradiance’ for each shrub location. We modelled the total 

irradiance experienced by a shrub one week, two weeks, and one month prior to harvest. 

Finally, topographic attributes including elevation, aspect, and slope were sourced 

from the ArcticDEM (Porter et al., 2018) and included as additional landscape metrics to 

predict DP and DMD (H4). We also used the ArcticDEM to calculate a topographic wetness 

index (TWI). TWI uses slope and the upstream contributing area to determine topographic 

effects on hydrological processes. We included topographic wetness in addition to other 

topographic metrics because TWI has been shown to influence nitrate concentrations (Ogawa 

et al., 2006), which directly impacts the nitrogen available for plant uptake and hence plant 

protein levels. 

Data Analyses 

All data analyses were conducted in R statistical software (R Core Team, 2020). The 

best performing SVIs were identified using adjusted R2 values and the root mean square error 

(RMSE). We used generalized least squares (GLS) regression in the ‘nlme’ package 

(Pinheiro et al., 2017) to determine the optimal spatial correlation structure using Akaike 

Information Criterion (AIC; Akaike, 1974; Table 4.1). After selecting a correlation structure 

for DP and DMD, we assessed the benefit of adding shrub structure, topographic attributes, 

and irradiance to models by sequentially adding one additional metric at a time. We 

evaluated competing models using: (1) AIC, (2) RMSE, and (3) two pseudo R2 values, the 

McFadden and Nagelkerke. McFadden R2 is often used to compare nested models 

(McFadden & Zarembka, 1974), but values are less comparable to adjusted R2 from linear 

regression (i.e., values from 0.2-0.4 indicate excellent fit; Hensher & Stopher, 1979). 

Nagelkerke R2 values can range from 0-1, making that metric similar to R2 from linear 

regression as an indicator of the overall model predictive strength (Field et al., 2012). We 

also calculated AIC weights, which sum to one with values ranging from 0 to 1 and may be 

interpreted as the probability that a given model is the best model (Symonds & Moussalli, 

2011) in the set of candidate models for both DP and DMD. Additionally, we conducted 
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leave-one-out cross validation (LOOCV) by sequentially leaving out one willow at a time 

and using the remaining observations to predict the excluded one. We compared LOOCV 

slopes (observed values plotted against predicted values) to assess bias and Spearman rank 

coefficients (ρ) to quantify predictive ability of these models. The residuals of the GLS 

models met regression assumptions (i.e., homogeneity of variance, normality of residuals). 

Finally, we explored combing models that included all predictors that improved model fit 

(decreases in AIC >2) into a single model for both DP and DMD. Predictors were only 

combined in the same model if collinearity between them was <0.70 (Dormann et al., 2013). 

Results 

DP ranged from 1.57% to 13.37% of dry matter, while DMD ranged from 22.73% to 61.76% 

of dry matter. Models consistently underpredicted DP and DMD (LOOCV slopes <1; Table 

4.2). However, we found that hyperspectral SVIs successfully predicted DP (Adjusted R2 = 

0.77, RMSE = 1.42%) and DMD (Adjusted R2 = 0.61, RMSE = 5.11%), which supported our 

first hypothesis. The best performing SVI for DP included a red-edge and a SWIR band in 

the normalized difference format ((𝑅703𝑛𝑚 − 𝑅1719𝑛𝑚)/(𝑅703𝑛𝑚 + 𝑅1719𝑛𝑚)). The best 

performing SVI for DMD included a blue and a red band in the simple ratio format 

(𝑅483𝑛𝑚/𝑅657𝑛𝑚). Many viable simple ratio SVIs were found for both DP and DMD (Figure 

4.3). Of the irradiance options modelled – total irradiance experienced by a shrub one week, 

two weeks, and one month prior to harvest – the one-week cumulative irradiance before 

sample harvest produced the best model fit (not shown). Thus, we only included results from 

this model. 

The exponential correlation structure had the lowest AIC for DP (AIC=157.70; Table 

4.1) but LOOCV models did not converge using this structure. Thus, we used the spherical 

correlation structure (AIC=158.79). The best performing SVI showed very strong predictive 

power (LOOCV ρ =0.88, slope=0.76) and a very low error estimate (RMSE=1.42%; Table 

4.2) without the inclusion of any structural metrics (H1). Model fits did improve when two 

structural metrics were added (H2): HVAR (AIC=154.08, AIC weight=0.56) and HSD 

(AIC=155.29, AIC weight=0.31) were incorporated, but both models saw a slight decrease in 

predictive power when compared to the base model using only the SVI (∆LOOCV ρ = -3%). 

However, because of the strong correlation (r >0.7) between HSD and HVAR predictors, we 
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could not create a combined model for DP. Thus, the model with the lowest AIC and highest 

AIC weight was considered the best model, which included an SVI and HVAR (Figure 4.4). 

The exponential correlation structure fit the data for DMD the best (AIC=275.81; 

Table 4.1), but LOOCV models did not converge using this structure. Thus, we used the 

rational quadratic correlation structure (AIC=275.94). Using only the SVI, the model showed 

good predictive power (LOOCV ρ =0.75, slope=0.58) with a low error estimate 

(RMSE=5.11%; Table 4.2) without the inclusion of any structural metrics (H1). Model fit 

improved when some structural metrics were added (H2): LAI (AIC=273.98), HVAR 

(AIC=263.85), and HSD (AIC=267.01) were added to the SVI (Table 4.2). The best 

performing combined model for DMD included SVI, HVAR, and LAI (Table 4.2; Figure 4; 

Nagelkerke Pseudo R2=0.70, AIC=261.09, AIC weight = 0.63, LOOCV ρ = 0.79). Increased 

error estimates in DMD compared to DP may be related to the relative range of values 

associated with these estimates, 1.57% to 13.37% for DP and 22.73% to 61.76% for DMD. 

We observed little evidence that including the light environment (H3) nor topographic 

attributes (H4) produced model improvements. 

Discussion 

We assessed how well integrated measures of forage quality – DP and DMD – could be 

predicted using a fusion of hyperspectral SVIs, shrub structural metrics, topographic 

attributes, and the light environment. Results from our study demonstrated that DP and DMD 

could be successfully estimated using hyperspectral remote sensing (H1). Remotely sensed 

estimates of DP showed a strong correlation with observed estimates and low error (LOOCV 

ρ = 0.88, RMSE=1.42%); DMD estimates also were highly correlated with measured values, 

but with higher error (LOOCV ρ = 0.75, RMSE=5.11%). These findings were consistent with 

previous work in Australian Eucalyptus forests where DP (R2=0.64) and DMD (R2=0.78) 

were estimated with high accuracy using hyperspectral remote sensing approaches 

(Youngentob et al., 2012), though our results suggested DP in northern ecosystems is better 

predicted than DMD. 

Although wavelengths used in the SVIs in this study did not correspond exactly to 

existing absorption features previously identified for tannins, protein, or fibers (Curran, 1989; 

Elvidge, 1990; Ferwerda et al., 2006), they were within 25 nm. The SVI for DP contained 

one wavelength (703 nm) in the red-edge portion of the spectrum, which is known to be 
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sensitive to chlorophyll and has been used as a proxy for nitrogen content (Eitel et al., 2007; 

Ramoelo et al., 2012; Wang et al., 2012). DP’s second wavelength (1719 nm) was directly 

adjacent to a known absorption feature of hemicellulose at 1720 nm (Elvide 1990), though 

numerous tannin absorption features can be found in the shortwave infrared (SWIR; range) 

region (Ferwerda et al., 2006). In contrast to DP, the wavelengths in DMD’s SVI were both 

in the visible portion of the spectrum (483 nm and 657 nm) and near known spectral features 

of chlorophyll pigments (Ben-Dor et al., 1997; Curran, 1989), which are often related to plant 

nitrogen concentrations. This was somewhat surprising because DMD estimates incorporated 

fiber concentrations that usually have absorption in the SWIR region (Curran, 1989; Elvidge, 

1990). For instance, the SWIR region was shown to be sensitive to both DP and DMD in 

Australian Eucalyptus trees (Youngentob et al., 2012). In our case, we found several viable 

vegetation indices for DP and DMD (Figure 4.3), many of which also included SWIR 

wavelengths. 

We also observed some improvement in model fit by incorporating shrub structural 

metrics such as HVAR and LAI (H2). Model fit and AIC weights indicated that the best 

model for DP included HVAR in addition to the SVI (∆AIC = -3.62; AIC weight=0.56; 

Table 4.2), although this addition slightly reduced predictive power (∆LOOCV= -3%). The 

best model for DMD included HVAR and LAI, which moderately enhanced predictive power 

(∆LOOCV= +4%, AIC weight=0.63; Table 4.2). Herbivores strongly influence plant canopy 

architecture of palatable species such as willow. Previous work showed browsing influenced 

shrub height, canopy openness, and branching structure (Christie 2014, 2015; Kielland and 

Bryant 1998), which in turn can affect the palatability of forage species. To our knowledge, 

this study was the first to incorporate remotely sensed shrub structural metrics as a proxy for 

browsing history in models to predict forage quality. Our results indicated that incorporating 

shrub structure is an important, and often unconsidered, aspect of remotely sensed forage 

quality metrics. 

Based on these findings we suggest that future work should consider shrub structure 

when using remote sensing to study forage quality metrics. Additionally, because SVIs 

calculated from passive spectral remote sensing are influenced by plant structural 

characteristics (Chen & Cihlar, 1996; Eitel et al., 2008; Turner et al., 1999), variation in 

canopy structure increases the complexity of the three-dimensional space where photons 
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interact (Asner, 1998; Knyazikhin et al., 2013). This, coupled with the impacts of browsing, 

suggests a growing need to incorporate structure into remotely sensed models of forage 

quality to better estimate and map these metrics across the landscape. Modern airborne 

sensor platforms such as Goddard's LiDAR, Hyperspectral & Thermal Imager (G-LiHT; 1m 

pixels, with 6 lidar pulses per m2) provide opportunities to fuse data streams from both 

structural and optical data (Cook et al., 2013), which may enhance our ability to estimate and 

scale important foliar properties such as DP and DMD. 

Strategies for estimating spatiotemporal variation in forage quality metrics are needed 

because northern ecosystems are rapidly changing. The range of northern herbivores is 

expanding as the quantity of forage resources increases (Tape et al., 2016; Zhou et al., 2017, 

2020). However, the impact of climate warming on forage quality is less clear and will likely 

vary depending on region and species (Elmendorf et al., 2012; Hansen et al., 2006; Lenart et 

al., 2002; Turunen et al., 2009). Since forage quality strongly influences herbivore life- 

history traits like maternal body condition, pregnancy rates, and survival (Parker et al., 2009), 

monitoring ‘nutritional landscapes’ (sensu Merems et al., 2020) that include integrated 

metrics of forage quality – like DP and DMD – is urgently needed. In addition to the 

importance of forage quality on fitness, secondary effects related to changes in herbivore 

populations can have cascading effects on ecosystem structure and function. 

We did not see any improvement in model fit or predictive power when we included 

the light environment (H3), which contrasted with previous work indicating that light 

conditions influenced fiber and nitrogen concentrations as well as DMD (Lenart et al., 2002; 

Molvar et al., 1993). This may in part be because the light modelling employed in this study 

did not account for variation throughout the canopy (i.e., we only modeled the surface foliage 

of the shrub canopy). Indeed, one study compared various techniques for quantifying the 

light environment of Salix pulchra and found that only lidar-based techniques captured 

photosynthetic partitioning of nitrogen and chlorophyll in canopies (Magney et al., 2016). 

Moreover, our findings may be related to the relatively coarse spatial scale of the 

atmospheric variables (with a spatial resolution of 32 km) included within the models of solar 

irradiance employed in this study. Future work may benefit from applying the approaches 

used in Magney et al, (2016) or ground-based sensors that estimate the instantaneous 

irradiance at the location of shrubs to determine how solar energy influences DP and DMD, 
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as we did see a modest increase in predictive power and a slight decrease in error when 

irradiance was added to DMD models (Table 4.2). Similarly, including topographic attributes 

produced no model improvements (H4). This is surprising considering that elevation, slope 

and aspect have been shown to influence forage quality (Knox et al., 2012; Pullanagari et al., 

2018). 

One limitation of our study was that we did not quantify shrub biomass, because we 

did not have the resources locally to do so. Yet, the total energy acquired through browsing is 

a function of both forage quantity and quality, and thus both of these metrics are needed to 

truly map nutritional landscapes. Additionally, forage quality is normally the highest after 

budburst and then declines throughout the remainder of the growing season as fiber content 

increases and digestibility and nitrogen decrease (Klein, 1990; McArt et al., 2009; Shively et 

al., 2019). Our study demonstrated that remote sensing of DP and DMD is possible during 

peak biomass. However, future work should consider the seasonal dynamics of these 

integrated metrics. 

Finally, future work should investigate the possibility of scaling these plot-level 

assessments to airborne and satellite platforms. Although we advocate for future work to 

include both optical and structural data streams, we also observed strong relationships 

between hyperspectral SVIs and DP and DMD without additional shrub structural inputs 

(Table 4.2; A3.1). Therefore, we anticipate that as new hyperspectral satellite platforms – 

such as the Environmental Mapping and Analysis Program (EnMAP; Guanter et al., 2015) – 

become more widely available, our ability to monitor integrated forage quality metrics 

seasonally and interannually at the landscape scale will be enhanced. We also suggest that 

future work that employs satellite data should couple with finer scale structural remotely 

sensed data that would help characterize the uncertainty in canopy structure attributes as the 

spatial resolution will be much coarser than our shrub level assessments. Structural data may 

be sourced from aerial lidar transects, which can provide estimates of both plant height 

variability and LAI but would not provide wall-to-wall coverage. LAI may also be estimated 

from fine-spatial resolution satellites such as WorldView-2 (Pu & Cheng, 2015) or a 

combination of satellite platforms (Houborg & McCabe, 2018). One alternative to aerial lidar 

in high latitude regions would be canopy height models estimated from the ArcticDEM 

(Meddens et al., 2018), which could provide information on canopy height variability, which 
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we found to be an important predictor of both DP and DMD. Assessments would be needed 

for aerial lidar (~1m grid cells), satellite imagery, and canopy height models (~5m grid cells) 

to determine if these data sources are fine-scaled enough to provide useful information for 

LAI and canopy height variability, as our UAV SfM point clouds were 1cm spatial 

resolution. 

Conclusion 

Results from our study demonstrate that integrated forage quality metrics like DP and DMD 

can be successfully quantified using hyperspectral remote sensing data, and that models 

based on those data can be improved by incorporating additional shrub structural metrics. 

Mapping DP and DMD to create a spatially explicit representation of the nutritional 

landscape available to herbivores may assist in management decisions in the face of ongoing 

environmental change. 
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Tables 

Table 4.1. Results comparing spatial autocorrelation structures for generalized least squares 

regression predicting dry matter digestibility (DMD) and digestible protein (DP). Model fit 

was assessed using Akaike’s information criterion (AIC), where lower values are considered 

better. 
 

Model 
AIC  

DP DMD 

Simple Linear 165.27 280.49 

Spherical 158.79 276.14 

Linear Did not converge 276.11 

Rational Quadratic 157.70 275.94 

Gaussian 159.11 275.99 

Exponential 157.33 275.81 
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Table 4.2. Digestible Protein (DP) and Digestible Dry Matter (DMD) Models. DP GLS 

models included a spherical correlation structure, while DMD GLS models included a 

rational quadratic correlation structure. The spectral vegetation index (SVI) was regressed 

against percent DP and DMD. Structural (leaf area index (LAI), coefficient of variation of 

height (HCV), variance of heights (HVAR), standard deviation of heights (HSD), 

topographic attributes, (topographic wetness index (TWI), aspect, slope, elevation), and total 

irradiance the week before sample harvest were sequentially added to models and evaluated 

based on two pseudo R2s: McFadden and Nagelkerke. Root mean square error (RMSE) 

quantified error. We used Akaike information criterion (AIC) to assess model fit and AIC 

weights to assess the probability of a given model being the best model. We used slopes and 

Spearman Rank correlation coefficients (ρ) from leave-one-out cross validation (LOOCV) to 

assess bias and predictive ability of models. The best models for DP and DMD have been 

italicized for easy visualization. 
 

Models 
McFadden 

R2 

Nagelkerke 

R2 
RMSE AIC 

AIC 
weights 

LOOCV 
Slope 

LOOCV 
ρ 

Digestible Protein 

SVI 0.33 0.82 1.42% 157.70 0.07 0.76 0.88 

SVI + LAI 0.33 0.82 1.44% 158.81 0.05 0.74 0.86 

SVI + 
HCV 

0.31 0.80 1.37% 173.24 0 0.78 0.87 

SVI + 
HVAR 

0.34 0.82 1.46% 154.08 0.56 0.72 0.85 

SVI + 
HSD 

0.34 0.82 1.54% 155.29 0.31 0.72 0.85 

SVI + 
TWI 

0.30 0.78 1.41% 168.95 0 0.76 0.88 

SVI + 
Aspect 

0.32 0.80 1.43% 173.50 0 0.76 0.87 

SVI + 
Slope 

0.33 0.82 1.42% 164.00 0 0.74 0.88 

SVI + 
Elevation 

0.35 0.83 1.36% 167.59 0 0.80 0.89 

SVI + 

Irradiance 

(1 week) 

 

0.33 

 

0.81 

 

1.42% 

 

190.93 

 

0 

 

0.75 

 

0.88 

Digestible Dry Matter 

SVI 0.14 0.62 5.11% 275.94 0 0.58 0.75 

SVI + LAI 0.14 0.62 5.11% 273.98 0 0.58 0.75 

SVI + 
HCV 

0.15 0.66 4.87% 278.96 0.05 0.62 0.77 

SVI + 
HVAR 

0.17 0.69 4.99% 263.85 0.27 0.62 0.76 

SVI + 
HSD 

0.16 0.67 5.13% 267.01 0.05 0.59 0.76 
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SVI + 
TWI 

0.14 0.63 5.11% 276.32 0 0.57 0.75 

SVI + 
Aspect 

0.14 0.63 5.11% 285.96 0 0.58 0.76 

SVI + 
Slope 

0.14 0.64 5.07% 277.27 0 0.59 0.76 

SVI + 
Elevation 

0.14 0.63 5.08% 284.72 0 0.58 0.76 

SVI + 

Irradiance 

(1 week) 

 

0.15 

 

0.65 

 

4.93% 

 

302.71 

 

0 

 

0.60 

 

0.78 

SVI + 

HVAR 
  +LAI  

 

0.17 

 

0.70 

 

4.96% 

 

261.09 

 

0.63 

 

0.63 

 

0.79 
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Figures 
 

 

Figure 4.1. Photographs depicting examples of broomed (A and D), browsed (B), and 

unbrowsed (C) willow shrubs in northcentral Alaska. Plants that show signs of browsing on  

50% of current annual growth (CAG) are considered ‘broomed,’ while plants with < 50% of 

CAG are classified as ‘browsed,’ and plants with no sign of browsing are considered 

‘unbrowsed.’ (photo credit: Jyoti Jennewein) 
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Figure 4.2. Study area in the upper Koyukuk River drainage. Willow study sites (n=45) span 

a latitudinal gradient from the Yukon River to just below Atigun Pass along the Dalton 

Highway. 
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Figure 4.3. Coefficients of determination (R2) between willow samples and simple ratio 

vegetation indices for digestible protein (A) and dry matter digestibility (B). The x- and y- 

axes are the wavelengths (nm) from the spectrometer used for simple ratio spectral 

vegetation indices for digestible protein and normalized differenced spectral vegetation 

indices for dry matter digestibility. 
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Figure 4.4. Observed vs. predicted concentrations of digestible protein (A) and dry matter 

digestibility (B) of the best performing models. DP’s best model included a spectral 

vegetation index (SVI) and variance of shrub heights (HVAR). DMD’s best model included a 

SVI, HVAR, and leaf area index (LAI). 
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Chapter 5: Conclusion 

This dissertation includes three disciplinary chapters that explored geospatial tools for 

modeling habitat selection and habitat forage quality. Chapter two modeled habitat selection 

of a heat sensitive herbivore in response to temperature. To date, this research was the first to 

explore how moose behavior changed as a function of temperature in high northern latitude 

regions of North America. Results from this chapter indicated that denser canopied forests 

are an important habitat feature that enable behavioral thermoregulation of moose. Based on 

these findings, future land management decisions in Alaska should prioritize the conservation 

of denser canopied habitats (~50% coverage) to support an important component of 

maintaining moose biophysical needs. This is especially important in interior Alaskan 

communities that are expected to experience decreases in other subsistence species needed to 

main provisional and cultural services (Brinkman et al., 2016). 

However, future work is still needed to further explore the relationship between 

behavioral thermoregulation strategies and moose. For instance, explicitly investigating how 

habitat selection in females who have a calf at heal would be an important next step as the 

demands of calving on female moose are substantial (Speakman & Król, 2010). Females are 

also known to alter their behavior when calves are present, and often opt for habitats that 

provide cover for predator avoidance (Dussault et al., 2005; Joly et al., 2016). Another 

avenue for future work on this topic should include delineation of plant communities. A 

major challenge to land management agencies in Alaska is a lack of landcover classes fine 

enough to inform habitat selection models. For instance, “shrub" in most vegetative 

classifications does not distinguish between shade forages and shade only species, which is 

critical for parsing selection behavior. It is also important to recognize that categorical land 

cover maps are not always the ideal product for studying other behaviors such as foraging 

(Coops & Wulder, 2019). Continuous metrics of forage quality such as the normalized 

differenced vegetation index (NDVI) are often used to predict habitat quality. However, 

NDVI often has mixed results when used to track forage quantity and quality (Doiron et al., 

2013; Johnson et al., 2018). This limitation may be linked to the spectral resolution of broad 

band imagery that is not able to detect small absorption features associated with foliar 

biochemical traits. 
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Chapters 3-4 of this dissertation investigated new remote sensing approaches to 

monitor and map forage resources in high northern latitude regions, which is of great interest 

to wildlife managers (Vance et al., 2016; Walton et al., 2013). Numerous studies 

demonstrated that hyperspectral remote sensing can be used to successfully estimate a variety 

of important foliar properties known to influence forage quality such as crude protein, fiber, 

or defense chemicals like condensed tannins (Ferwerda et al., 2006; Mirik et al., 2005; 

Skidmore et al., 2010; Thulin et al., 2012). Chapters 3-4 add further evidence that 

hyperspectral remote sensing approaches can be used to estimate forage quality, but in a 

region previously unexplored for this purpose. The work presented in Chapter 4 was also one 

of the first to evaluate how well integrated metrics of forage quality – digestible protein (DP) 

and digestible dry matter (DMD) – could be estimated using hyperspectral remote sensing, 

and the first to do so in Arctic and boreal regions. 

Additionally, this dissertation explored a novel remote sensing approach to fuse 

passive spectral remote sensing and structural data acquired from digital photographs as well 

as height variability from unmanned aerial vehicle (UAV) flights to estimate forage quality. 

Canopy structural variation strongly influences spectral reflectance characteristics by 

creating a more complex three-dimensional environment for photons to interact (Asner, 

1998; Knyazikhin et al., 2013; Vierling et al., 1997). Additionally, herbivores influence plant 

canopy architecture of palatable forage species by decreasing shrub height, canopy openness, 

and branching structure (Christie et al., 2014, 2015; Kielland & Bryant, 1998), which in turn 

can affect the palatability of forage species (Bryant, 1981; Bryant & Chapin, 1986). To my 

knowledge, this was the first study to incorporate remotely sensed structural metrics as a 

proxy for browsing history in models to predict forage quality. These results indicated that 

incorporating shrub structure is an important, and often unconsidered, aspect of remotely 

sensed forage quality metrics that should be considered in future studies. 

Future work on monitoring and mapping forage quality in high northern latitudes 

should also scale measurements to hyperspectral airborne platforms such as the Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS-NG; Chapman et al., 2019) and Goddard’s 

light detection and ranging (LiDAR), hyperspectral and thermal (G-LiHT) airborne imager 

(Cook et al., 2013), and ideally satellite platforms such as the environmental mapping and 

analysis program (EnMAP; Guanter et al., 2015). Scaling these measurements to the satellite 
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level will be important to effectively monitor and evaluate changes in forage quality over 

space and time in a region that is rapidly changing. After proper assessment and validation, 

these measures could then also serve as inputs into herbivore habitat selection models. 

Each of these chapters adds important information to a growing body of research on 

habitat changes or animal behavior in high northern latitudes. These chapters all serve as an 

important benchmark that may be useful to state and federal land management agencies 

charged with the difficult task of monitoring the quickly changing landscapes of Arctic- 

boreal North America. In the pursuit of this knowledge, I have grown tremendously as a 

researcher and collaborator. However, I recognize that each chapter presented in this 

dissertation offers a small scientific contribution to the broader scope of work being 

conducted in these high northern latitude regions most vulnerable to climate change. 
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Appendices 

Appendix 1.1. Temperature Validation 

Two moose populations (Koyukuk and Innoko) had temperature loggers on their GPS 

collars, enabling a comparison between these estimates and the temperature product (NARR) 

used in this study. GPS locations from the Koyukuk and Innoko populations were rarified to 

one randomly selected fix per individual per data to avoid issues with pseudoreplication. 

Using these rarified datasets, we regressed temperature estimates from NARR against 

recorded collar temperatures for both populations. To identify and remove outliers from 

temperature estimates, we used the Tukey method, which removed observations 1.5 times 

beyond the inner quartile range (Tukey, 1977). We used the Metrics package (Hamner & 

Frasco, 2018) to calculate the root mean square error (RMSE), which we used to assess bias 

of our regression estimates. Agreement between collar-based and NARR temperature 

estimates is moderate (Figure 1). These relationships are not as strong as we might have 

expected based on other studies comparing weather station data to collared estimated 

(R2=0.90 and 0.97, respectively Street et al., 2015; van Beest et al., 2012). However, the 

primary interest in incorporating temperature in these analyses is to determine how selection 

changes as a function of temperature through interaction terms with other covariates. To that 

end, our relatively large temperature pixels (32 km) represent an ambient, neighborhood 

temperature, allowing us to investigate how moose respond to ambient variation in 

temperature via fine-scale selection for environmental characteristics that are likely to create 

cooler micro-climates. Therefore, we are confident the NARR temperature estimates used in 

this study are adequately representing ambient temperature for our purposes, while 

recognizing that no temperature data product will be completely accurate to on-the-ground 

conditions. 



96 
 

 
 

 
Figure A1.1. Temperature validation check between collared temperature estimates in the 

Koyukuk and Innoko populations and remote sensing derived temperature estimates from the 

North American Regional Reanalysis (NARR). 
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Appendix 1.2. Used-Available Tables of Covariates 

Table A1.2.2 Used and available summaries by population for each covariate for female 

moose. 
 

Females 

 Koyukuk Susitna Innoko Tanana 

 
 

Predictors 

Used 

Mean 

(SD) 

Available 

Mean 

(SD) 

Used 

Mean 

(SD) 

Available 

Mean 

(SD) 

Used 

Mean 

(SD) 

Available 

Mean 

(SD) 

Used 

Mean 

(SD) 

Available 

Mean 

(SD) 

Elevation 472.7 476.8 773.3 784.9 44.4 44.5 193.6 193.5 

(meters) (204.4) (213.6) (204.7) (219.5) (39.8) (39.6) (118.2) (116.4) 

Percent 39.6 31.9 57.9 51.8 50.7 46.1 38.4 37.4 

Canopy (32.2) (31.9) (29.6) (32.9) (33.9) (35.7) (28.3) (28.9) 

(%)         

Solar 0.04 0.03 -0.05 -0.05 -0.03 0.006 -0.01 0.02 

Radiation (0.6) (0.5) (0.69) (0.69) (0.66) (0.66) (0.5) (0.5) 

Index         

(unitless)         

Distance 3969.8 3991.4 1373.3 1372.5 600.3 591.6 1427.7 1433.1 

to Water (5885.7) (5887.4) (1017.3) (1028.1) (1282.6) (1278.9) (1113.4) (1115.8) 
(meters)         

 

Table A1.2.2 Used and available summaries by population for each covariate for male moose. 
 

Males 

 Koyukuk Susitna Innoko 

 Used 

Mean 

(SD) 

Available 

Mean (SD) 

Used 

Mean 

(SD) 

Available 

Mean (SD) 

Used 

Mean (SD) 

Available 

Mean (SD) 
Predictors     

Elevation 520.0 524.3 805.4 816.7 54.9 55.8 

(meters) (225.5) (238.1) (213.8) (224.6) (45.5) (47.9) 

Percent 35.6 31.3 54.27 47.3 44.8 42.0 

Canopy (31.9) (31.5) (31.3) (34.4) (35.2) (36.2) 

(%)       

Solar 0.02 0.01 -0.06 -0.06 -0.01 0.02 

Radiation (0.5) (0.5) (0.6) (0.6) (0.7) (0.7) 

Index       

(unitless)       

Distance to 2853.5 2854.3 1569.9 1553.6 1220.9 1225.7 

Water (2802.7) (2799.7) (1029.8) (1051.3) (2408.6) (2397.4) 
(meters)       
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Appendix 1.3. Regional Habitat Features 

We explored regional differences in habitat features that may explain our habitat such as 

elevation (Figure 1E), temperature (Figure 2E), cloud cover (Figure 3D), and precipitation 

(Table 1E). Elevation (m) data was sourced from the ArcticDEM (Porter, et al., 2018), while 

temperature (originally in Kelvin, but transformed into °C), cloud cover (%), and 

precipitation (binary: yes-no raining at time of fix) were sourced from NARR data (Mesinger 

et al., 2006) and annotated in Env-DATA (Dodge et al., 2013). 

 
 

 

Figure A1.3.1. Regional variation in elevation. ANOVA results comparing regional variation 

in elevation show that all regions vary from each other statistically (F=2705, p<0.001). 
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Figure A1.3.2. Regional variation in ambient temperature. ANOVA results comparing 

regional variation in ambient temperature show that all regions vary from each other 

statistically (F=2705, p<0.001). With Tanana showing the highest temperatures, Innoko 

second, Koyukuk third, and Susitna fourth. 
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Figure A1.3.3. Regional variation in cloud cover. ANOVA results show all regions vary 

from each other statistically (F=1472, p<0.001), except Koyukuk and Susitna. 

Table A1.3: Regional variation in fixes occurring in the rain. Percent estimated 

proportionally comparing number of fixes in the rain to total number of fixes regionally. 
 

 Koyukuk Susitna Tanana Innoko 

% fixes in the 
  rain  

9.6% 12.1% 7.7% 15.2% 
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Appendix 2.1. Details on Nitrogen (N) Fertilizer Treatment Estimation 

We estimated the native treatment N amount from soil samples collected adjacent to shrubs in 

the field (n = 3; 0–10 cm depth) and analyzed for total N and bulk density (g cm−3) in the lab. 

Since not all soil N is available for plant uptake, we assumed 39% of these values were 

estimated to be plant available N (i.e., ammonium (NH4+) or nitrate (NO3−)). This uptake 

percentage is in accordance with a previous study that estimated available N uptake from a 

deciduous shrub (Vaccinium uliginosum) in interior Alaska to be 39% of the soil N pool 

throughout the growing season (i.e., Chapin, 1983). Plant available, soil-organic N 

concentrations were calculated using the following equation: 

SON (kg ha−1) = SON (%) × BD × SD × 1000 

where SON is soil organic N, BD is bulk density (g cm−3), and SD is soil depth (cm). The 

resultant values of soil organic N for available datasets were 36.40, 48.47, and 52.06 (kg ha−1). 

These estimated values were averaged and served as our estimate for native soil conditions 

(45.64 kg ha−1). All other fertilizer treatments were additions to this value. 
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Appendix 2.2. Summary Statistics for Dietary Fibers 

Table A2.2. Table depicting summary statistics for dietary fibers: hemicellulose (HMC), 

cellulose (CLL), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent 

lignin (ADL), and acid insoluble ash (AIA). 
 

Fiber Range Mean Standard Deviation 

HMC 5.13–7.77% 6.01% 0.79% 

CLL 5.70–8.10% 6.87% 0.71% 

NDF 12.24–18.51% 14.89% 1.48% 

ADF 7.11–10.74% 8.89% 0.95% 

ADL 1.26–2.64% 2.02% 0.37% 

AIA 0.03–0.24% 0.12% 0.06% 

 
 

 
Figure A2.2. Boxplot depicting summary statistics for dietary fibers: hemicellulose (HMC), 

cellulose (CLL), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent 

lignin (ADL), and acid insoluble ash (AIA). 
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Appendix 2.3. Nitrogen Treatments and Cellulose, Neutral Detergent Fiber, and Acid 

Detergent Fiber 
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Figure A2. Boxplots depicting statistically significant differences (p < 0.05) between 

nitrogen (N) treatments and dietary fibers: (A) cellulose, (B) neutral detergent fiber, and (C) 

acid detergent fiber. Letters indicate statistically significant differences between groups 

within each figure but are not comparable across figures. No statistically significant 

differences were found between N treatments in hemicellulose, acid detergent lignin, or acid 

detergent ash. 
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Appendix 2.4. Results of Swapping Leaf Area for the Normalized Difference Vegetation 

Index 

Table A2.4. Incorporating the normalized difference vegetation index (NDVI) as a proxy for 

leaf area into the best the band equivalent reflectance (BER) of WorldView3 (WV3) spectral 

vegetation index (SVI) results for hemicellulose, cellulose, neutral detergent fiber (NDF), 

acid detergent fiber (ADF), acid detergent lignin (ADL), and acid insoluble ash (AIA) and 

associated variance explained (R2), root mean square error (RMSE), Akaike’s information 

criterion for small sample sizes (ΔAICc), and leave-one-out cross validation (ΔLOOCV). 
 

Models R2 RMSE AICc ΔAICc 
LOOCV 

Slope 

LOOCV 

𝛒 
ΔLOOCV 

Hemicellulose (HMC) 

SVI 0.32 0.62% 52.65 - 0.27 0.52 - 

SVI+ 

NDVI 
0.37 4.28% 52.41 −0.24 0.67 0.53 +1% 

Cellulose (CLL) 

SVI 0.25 0.59% 50.10 - 0.22 0.45 - 

SVI+ 

NDVI 
0.21 0.59% 53.00 +2.90 0.14 0.47 +5% 

Neutral detergent fiber (NDF) 

SVI 0.31 1.18% 83.33 - 0.26 0.67 - 

SVI+ 

NDVI 
0.28 1.18% 86.09 +2.76 0.22 0.62 −5% 

Acid detergent fiber (ADF) 

SVI 0.30 0.76% 62.10 - 0.28 0.57 - 

SVI+ 

NDVI 
0.27 0.76% 64.92 +2.82 0.21 0.58 +9% 

Acid detergent lignin (ADL) 

SVI 0.34 0.28% 15.05 - 0.33 0.70 - 

SVI+ 

NDVI 
0.34 0.28% 16.99 +1.94 0.33 0.71 +1% 

Acid detergent ash (AIA) 

SVI 0.13 0.05% −66.35 - 0.11 0.31 - 

SVI+ 

NDVI 
0.13 0.05% −64.44 +1.91 0.07 0.33 +2% 
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Figure A2.4. The relationship between total leaf area (cm2) and the normalized differenced 

vegetation index (NDVI) of the band equivalent reflectance of the WorldView3 satellite. 
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Appendix 3.1. Best Spectral Vegetation Indices Cross Validation Results 

 

Figure A3.1. Observed vs. predicted concentrations of digestible protein (A) and dry matter 

digestibility (B) of the best performing spectral vegetation indices (SVI). The best 

performing SVI for DP included a red-edge and a SWIR band in the normalized difference 

format ((𝑅703𝑛𝑚 − 𝑅1719𝑛𝑚)/(𝑅703𝑛𝑚 + 𝑅1719𝑛𝑚)). The best performing SVI for DMD 

included a blue and a red band in the simple ratio format (𝑅483𝑛𝑚/𝑅657𝑛𝑚). 
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