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ABSTRACT 

Adipogenesis plays an important role in adipose tissue formation. Several transcriptional 

factors are involved in regulation of this complex process. Nutritional molecules, such as 

vitamin D and retinoic acid, have been reported as regulators of adipogenesis. The major aims 

of the present study were to investigate the mechanisms of vitamin D or retinoic acid regulation 

of adipogenesis and also the interaction between vitamin D or retinoic acid and adipogenic 

factors, such as peroxisome proliferator-activated receptor γ (PPARγ) and  CCAAT-enhancer-

binding protein α (C/EBPα). The bioactive form of vitamin D, 1,25-dihydroxyvitamin D (1,25-

(OH)2D3) has been reported as a potential inhibitor of adipogenesis, and retinoic acid has also 

been shown as an inhibitor of adipogenesis. The inhibitory effect of both 1,25-(OH)2D3 and 

retinoic acid on adipogenesis in 3T3-L1 cells was detected. Gene expression of the adipogenic 

key transcription factors PPARγ and C/EBPα were inhibited by both high concentrations of 

1,25-(OH)2D3 (10 and 100 nM)and retinoic acid (100 and 1000 nM), and in contrast, gene 

expression of the other two C/EBP family members, C/EBPβ and γ, were not influenced by 

any concentration of 1,25-(OH)2D3 or retinoic acid. Fatty acid binding protein 4 (FABP4) gene 

expression showed a marked response to both 1,25-(OH)2D3 and retinoic acid, even at the 

lower concentrations studied (0.1 and 1 nM of 1,25-(OH)2D3 treatments, and 1 and 10 nM of 

retinoic acid treatments). Unlike 1,25-(OH)2D3, retinoic acid had greater inhibitory impact on 

C/EBPα gene expression compared to PPARγ. Both 1,25-(OH)2D3 and retinoic acid had 

gradual inhibitory effects on the gene expression of stearoyl-coenzyme A desaturase 1 (SCD-

1) compared to FABP4. C/EBPα promoter activity in response to 1,25-(OH)2D3 (100 nM) or 

retinoic acid (1000 nM) treatments were tested in 3T3-L1 cells. The results showed that 1,25-

(OH)2D3 had little impact on the activity of the C/EBPα promoter, while retinoic acid appeared 
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to induce activation of the promoter, despite an overall inhibitory effect on C/EBPα mRNA 

concentration. This observation suggests that the actions of retinoic acid may be mediated 

through an mRNA degradative pathway.  Gold-nanoconjugates linked with KDEL peptide was 

used to deliver siRNA against C/EBPα into 3T3-L1 cells. Transfection of gold-nanoconjugates 

into preadipocytes and mature adipocytes was observed by confocal microscopy. This result 

suggests that gold-nanoconjugates can be used as a delivery vector into mature adipocytes. 

Unfortunately, C/EBPα siRNA silencing was not detected on all the three time points measured, 

suggesting that further studies will be focused on optimizing time points, and cellular uptake 

trafficking and co-localization of gold-nanoconjugates/siRNA in adipocytes. Overall, 

adipogenesis was inhibited by both 1,25-(OH)2D3  and retinoic acid treatments, and the gene 

expression of adipogenic transcription factors were inhibited in response to 1,25-(OH)2D3  and 

retinoic acid treatments, suggesting that the mechanisms of 1,25-(OH)2D3  and retinoic acid 

regulation of adipogenesis involved transcriptional regulation. 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENTS 

First of all, I would like to offer my sincere acknowledgements to Idaho Agricultural 

Experiment Station and the Department of Animal and Veterinary Science at the University of 

Idaho (UI). I am honored to be selected and given the opportunity to pursue a doctorate degree 

in Animal Physiology.  

I am sincerely grateful to my major professor, Dr. Rodney A. Hill, for providing me with an 

environment that helped to improve my intellectual and scientific capabilities. Dr. Hill is a 

great professor for not only teaching me scientific knowledge and also providing me moral 

support, which helped me conquer all the difficulties in the process of completing my doctoral 

study. I also wish to thank my Ph.D committee members, Dr. Matt Doumit from the 

Department of Animal and Veterinary Science, UI, Dr. Onesmo Balemba from the Department 

of Biological Sciences, UI, and Dr. Min Du from the Department of Animal Sciences, 

Washington State University. I am very grateful for their encouragement, support, and 

suggestions. I would like to say to all my committee members, “Thank you very much for 

teaching and instructing me to become a good scientist in the future”. 

I am greatly grateful to Mrs. Ann S. Norton for helping me with the microscopy experiments. 

Mrs. Ann S. Norton is the manager of UI optical imaging center and taught me lots of useful 

instructions on optical microscopy and fluorescence microscopy. I also would like to say 

“thank all of you very much” to many faculty members from the Department of Animal and 

Veterinary Science, UI. I would say “many thanks” to Paula Heaton, the administrative 

coordinator of the Department of Animal and Veterinary Science, UI, for helping me dealing 



vi 

 

with the confusing paperwork and for answering my stupid questions during my first year and 

until now. 

Finally, I would like to thank my family and friends for their encouragement and support. My 

parents, my mom, Xin Li, and my dad, Jun Ji, thank you so much for your support and trust. 

Thank you for raising me right, and encouraging me to pursue my dream. I could not make this 

far without both of you. I also want to thank my grandmother, Cunyu Hou, “thank you very 

much for helping my mom take care of me when I was little, and keeps loving me every day 

in my life”. All of my family make me whoever I am today, and I would like to share all my 

credits with all of them. No matter where I am, I will love them forever.  

 

Sincerely, 

Shuhan Ji 

Department of Animal and Veterinary Science 

University of Idaho 

Moscow, ID, 83843 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

AUTHORIZATION TO SUBMIT DISSERTATION ........................................................ ii 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGEMENTS ................................................................................................ v 

ABBREVIATIONS ........................................................................................................... xi 

LIST OF FIGURES .......................................................................................................... xii 

LIST OF TABLES ............................................................................................................ xv 

CHAPTER I ........................................................................................................................ 1 

LITERATURE REVIEW ................................................................................................... 1 

MOLECULAR AND TRANSCRIPTIONAL REGULATION OF ADIPOGENESIS ..... 1 

INTRODUCTION OF ADIPOGENESIS ....................................................................... 1 

The value of fat in beef cattle ...................................................................................... 1 

Physiological roles of the adipose tissues .................................................................... 3 

Program of adipose cell development ......................................................................... 5 

Transcriptional control of adipogenesis .................................................................... 10        

Cellular and hormonal regulation of adipogenesis .................................................... 27 

VITAMIN D .................................................................................................................. 29   

Vitamin D synthesis and metabolism ........................................................................ 29 

Vitamin D and adipogenesis ...................................................................................... 30 

Vitamin A ...................................................................................................................... 34 



viii 

 

Vitamin A metabolism............................................................................................... 34 

Vitamin A and adipogenesis ...................................................................................... 35 

Vitamin A and body fat ............................................................................................. 36 

GOLD NANOPARTICLES IN BIOMOLECULE DELIVERY .................................. 37 

DIRECTING PEPTIDE ................................................................................................ 37 

SMALL INTERFERING RNA ..................................................................................... 38 

HYPOTHESES ............................................................................................................. 40 

OBJECTIVES ............................................................................................................... 41 

REFERENCES .............................................................................................................. 42 

CHAPTER II ..................................................................................................................... 71 

REGULATION OF ADIPOGENESIS AND KEY ADIPOGENIC GENE EXPRESSION BY 

1,25-DIHYDROXYVITAMIN D IN 3T3-L1 CELLS ..................................................... 71 

ABSTRACT .................................................................................................................. 71 

INTRODUCTION ......................................................................................................... 72 

MATERIALS AND METHODS .................................................................................. 75 

RESULTS...................................................................................................................... 82 

DISCUSSION ............................................................................................................. 109 

ACKNOWLEDGEMENTS ........................................................................................ 119 

REFERENCES ............................................................................................................ 120 

SUPPLEMENTARY FIGURES ................................................................................. 125 



ix 

 

CHAPTER III ................................................................................................................. 131 

ADIPOGENESIS AND KEY ADIPOGENIC GENE EXPRESSION RESPONSE TO 

RETINOIC ACID IN 3T3-L1 CELLS ........................................................................... 131 

ABSTRACT ................................................................................................................ 131 

INTRODUCTION ....................................................................................................... 132 

MATERIALS AND METHODS ................................................................................ 134 

RESULTS.................................................................................................................... 141 

DISCUSSION ............................................................................................................. 156 

ACKNOWLEDGEMENTS ........................................................................................ 161 

REFERENCES ............................................................................................................ 162 

SUPPLEMENTARY FIGURES ................................................................................. 167 

CHAPTER IV ................................................................................................................. 180 

GOLD-KDEL EPTIDE-SIRNA NANOCONJUGATE-MEDIATED TRANSFECTION IN 

3T3-L1 PREADIPOCYTES AND MATURE ADIPOCYTES ...................................... 180 

ABSTRACT ................................................................................................................ 180 

INTRODUCTION ....................................................................................................... 181 

MATERIALS AND METHODS ................................................................................ 182 

RESULTS.................................................................................................................... 188 

DISCUSSION ............................................................................................................. 190 

REFERENCES ............................................................................................................ 193 



x 

 

CHAPTER V .................................................................................................................. 198 

CONCLUSIONS AND FUTURE DIRECTIONS.......................................................... 198 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

ABBREVIATIONS 

PPARγ               peroxisome proliferator-activated receptor γ 

C/EBPα             CCAAT-enhancer-binding protein α 

C/EBPβ             CCAAT-enhancer-binding protein β 

C/EBPδ             CCAAT-enhancer-binding protein δ 

VDR                 vitamin D receptor 

RXR                  retinoid X receptor 

FABP4              fatty acid binding protein 4 

SREBP-1c         sterol-regulatory element binding protein 1c 

SCD-1               stearoyl-coenzyme A desaturase 1 

Pref-1                preadipocyte factor-1 

EEF2                 eukaryotic translation elongation factor 2 

 

 

 

 

 

 



xii 

 

LIST OF FIGURES 

Figure 1.1 The stages of adipocyte differentiation ............................................................. 6 

Figure 1.2 Transcriptional regulation of adipogenesis ....................................................... 8 

Figure 1.3 Putative functions of fatty acid binding protein (FABP) in the cells .............. 26 

Figure 1.4 Vitamin D and adipogenesis ............................................................................ 33 

Figure 1.5 Chemical structures of some bological active retinoids .................................. 34 

Figure 2.1 Oil red o staining in 3T3-L1 cells .................................................................... 83 

Figure 2.2 PPARγ mRNA and protein expression in differentiation medium ................. 85 

Figure 2.3 Real-time PCR quantification of PPARγ gene expression in 3T3-L1 cells in 

response to treatments ....................................................................................................... 87 

Figure 2.4 C/EBPα mRNA and protein expression in differentiation medium ................ 90 

Figure 2.5 Real-time PCR quantification of C/EBPα gene expression in 3T3-L1 cells in 

response to treatments ....................................................................................................... 92 

Figure 2.6 Real-time PCR quantification of VDR gene expression in 3T3-L1 cells in 

response to treatments ....................................................................................................... 95 

Figure 2.7 Real-time PCR quantification of C/EBPβ gene expression in 3T3-L1 cells in 

response to treatments ....................................................................................................... 97 

Figure 2.8 Real-time PCR quantification of C/EBPδ gene expression in 3T3-L1 cells in 

response to treatments ....................................................................................................... 99 

Figure 2.9 Real-time PCR quantification of FABP4 gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 101 

Figure 2.10 Real-time PCR quantification of SREBP-1c gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 103 



xiii 

 

Figure 2.11 Real-time PCR quantification of SCD-1 gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 105 

Figure 2.12 Real-time PCR quantification of Pref-1 gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 107 

Figure 2.13 Relative luciferase activity of C/EBPα promoter activity in response to 

treatments ........................................................................................................................ 109 

Supp 2.1 PPARγ protein expression ............................................................................... 125 

Supp 2.2 C/EBPα protein expression .............................................................................. 128 

Figure 3.1 Real-time PCR quantification of PPARγ gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 143 

Figure 3.2 Real-time PCR quantification of C/EBPα gene expression in 3T3-L1 cells in 

response to treatments ................................................................................................... 1467 

Figure 3.3 Real-time PCR quantification of FABP4 gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 149 

Figure 3.4 Real-time PCR quantification of SREBP-1c gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 151 

Figure 3.5 Real-time PCR quantification of SCD-1 gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 153 

Figure 3.6 Real-time PCR quantification of Pref-1 gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 155 

Supp 3.1 Oil Red O staining in 3T3-L1 cells.................................................................. 167 

Supp 3.2 PPARγ protein expression ............................................................................... 169 

 



xiv 

 

Supp 3.3 C/EBPα protein expression .............................................................................. 172 

Supp 3.4 Real-time PCR quantification of C/EBPβ gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 172 

Supp 3.5 Real-time PCR quantification of C/EBPδ gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 177 

Supp 3.6 Real-time PCR quantification of C/EBPδ gene expression in 3T3-L1 cells in 

response to treatments ..................................................................................................... 179 

Figure 4.1 Fluorescence image of Au-nanoconjugates in 3T3-L1 ................................. 188 

Figure 4.2 mRNA knockdown of C/EBPα by Au-nanoconjugates ................................ 189 

 

 

  



xv 

 

LIST OF TABLES 

TABLE 2.1 Primers And Probes ..................................................................................... 79 

TABLE 3.1 Primers And Probes .....................................................................................139 

TABLE 4.1 Sequences and Purities of Peptides and siRNAs …….................................187 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER I 

LITERATURE REVIEW 

MOLECULAR AND TRANSCRIPTIONAL REGULATION OF 

ADIPOGENESIS 

 

 

Introduction of Adipogenesis 

The value of fat in beef cattle 

In the beef cattle industry, adipocyte differentiation and adipose physiology are directly 

associated with both the quality and the value of the meat production [1]. The intramuscular 

fat tissue is synonymous with marbling, which influences the tenderness and palatability 

of beef product [2]. The subcutaneous fat thickness is also important for grading beef 

carcasses, and is also related to palatability [3]. Understanding the mechanisms of 

regulating adipocyte differentiation and adipose deposition via manipulating the 

expression of key adipogenic genes is very important in improving beef quality and saving 

economic cost in beef cattle industry. 
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Adipose tissue is distributed in different parts (fat depots) in an animal’s body, such as sub-

cutaneous, intramuscular, intermuscular, peri-renal, and omental depots. Subcutaneous and 

intermuscular fat depots form the largest portion of the whole body fat [4]. Size of the 

adipocytes from various fat depots was reported as follows: peri-renal > omental > 

subcutaneous > intermuscular > intramuscular > brisket depots [5, 6]. Peri-renal and 

omental adipocytes were reported to have more lipogenic enzyme activity than adipocytes 

from subcutaneous and intermuscular depots [7]. The subcutaneous adipocytes and 

intramuscular adipocytes contain lipogenesis and lipogenic enzymes, such as glucose 6-

phosphate dehydrogenase, fatty acid synthetase, pentose cycle reductase and NADP-

malate dehydrogenase [6, 8]. Thus, intramuscular and subcutaneous adipose tissues play 

important roles in triglyceride formation and fat storage. 

 

Beef carcasses can be categorized by quality grade and yield grade. The amount of 

intramuscular fat tissue contributes to marbling scores and influences the quality and 

palatability of beef [2]. Levels of marbling and subcutaneous fat are important in 

determining quality grade and yield grade respectively [9]. The size of adipocytes in 

intramuscular fat depots is a factor that impacts the amount of marbling [8]. Marbling 

scores are categorized as Devoid, Practically Devoid, Trace, Slight, Small, Modest, 

Moderate, Slightly Abundant, Moderately Abundant and Abundant. Based on the level of 

marbling, the United States Department of Agriculture (USDA) categorizes beef quality 

into eight different grades. Prime and Choice grades are considered as higher quality beef 

and have more desirable marbling scores than Select and Standard grades in relatively 

younger cattle. For carcasses from older cattle, Commercial and Utility grades have more 
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marbling than Cutter and Canner grades. Yield grade is determined by the muscle and fat 

ratio and has a range of 1 to 5. Beef having a yield grade of 5 would have less muscle and 

more fat. Studies are needed to understand the mechanisms that influence the amount of 

intramuscular adipocytes by regulating expression of key adipogenic genes in adipogenesis. 

 

Physiological roles of adipose tissues 

For decades, adipose tissue was considered an inert mass of stored energy with some 

advantageous properties, such as its functions as an insulating substance and as a 

mechanical support for more important structures [10]. However, in the past fifteen years, 

interest of studies in adipose tissue has been shifted from its physiology to its 

developmental biology. The discovery of leptin in 1994 showed a growing awareness that 

adipocytes are essential regulators of whole-body energy homeostasis. These cells secrete 

several proteins that regulate processes such as blood pressure, immune function, energy 

balance and angiogenesis [11]. Although many cell types contain esterified lipids, 

adipocytes are the only cell type in maintaining the quantity of lipid that they can store, 

and quick releasing these calories for use by other organs. Another reason for the surge in 

interest in adipocytes is the realization that we are in the early stages of a global wave of 

obesity with the consequent increase in associated morbidity and mortality [12]. Moreover, 

obesity is characterized by an increase in lipid accumulation and is the leading risk-factor 

for the development of Type 2 diabetes [13].  
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There are two types of adipocyte in mammals, termed white adipose tissue (WAT) and 

brown adipose tissue (BAT), which differ in several important properties. WAT functions 

as a storage tissue of extra food and its further utilization during starving periods [14]. 

WAT also produces hormones such as leptin and adiponectin that play important roles in 

lipid metabolism [15]. On the other hand, BAT store less lipid and has more mitochondria 

than WAT, and is rich in uncoupling proteins (UCPs) and primarily participates in heat 

production and maintenance of body temperature (adaptive thermogenesis) [16].  Brown 

adipocytes express almost all the genes that are expressed in white adipocytes, however, 

they also express some distinct genes, including uncoupling protein-1 (UCP1), which 

allows energy to be dissipated as heat without generating ATP. Most brown adipose tissue 

(BAT) in rodents is localized to the interscapular region. Human have large depots of 

brown- adipose tissue in infancy, but only small amounts that are dispersed throughout 

depots of WAT persist in adults [10].  

 

Both brown adipogenesis and white adipogenesis require peroxisome proliferator-activated 

receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs). Interesting, 

although inhibition or decrease of C/EBPα blocks development of most white-adipose 

tissue, the influence on brown-adipose tissue are less marked [17]. Conversely, the ablation 

of both C/EBPβ and C/EBPδ results in significantly decreased amounts of UCP1 in brown-

adipose tissue, even though the amounts of C/EBPα are normal [18]. 
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In physiological terms, brown adipose tissue is thought to function in two major contexts: 

defense against cold and protection against obesity. Despite large mammals such as 

humans have less obvious brown adipose depots than smaller mammals such as rodents, it 

is clear that BAT does exist in humans, and they possess the necessary molecular 

components to dissipate energy in the form of heat [8]. Among WAT, adipocytes from 

different locations can have distinct molecular and physiological properties [19, 20]. For 

instance, Adipocytes in visceral depots are sensitive to lipolytic stimuli, whereas 

adipocytes from structural depots (for example, around the eyes and in the heel pads) do 

not release stored lipid easily. Moreover, increased visceral adipose tissue is related with 

an increased risk of insulin resistance and cardiovascular disease, whereas increased 

subcutaneous adipose tissue is not. 

 

Program of adipose cell development 

Adipogenesis  

Adipogenesis is a complex process including several steps. Adipose tissue is formed from 

its precursor cells named adipoblasts [21, 22]. Adipoblasts arise from multipotent stem 

cells through rapid cell division. Multipotent stem cells are not committed to undergo 

adipogenesis, but have multiple potentials to become either adipoblasts, chondroblasts, 

osteoblasts or myoblasts [23]. The mechanism by which multipotent stem cells become 

adipoblasts is not completely characterized. Adipoblasts differ from multipotent stem cells 

and are committed to become adipose tissue, and this stage in adipogenesis is called ‘Cell 

Determination’ [22]. After these cells undergo multiple cell division cycles, adipoblasts 



6 

 

become ‘preadipocytes’, and this stage is called ‘Exponential Growth Phase’ [24]. 

Preadipocytes appear as elongated fibroblast-like cells in morphology, and at this stage, 

cells reach confluence in vitro conditions and stop cell division through mechanisms 

associated with ‘cell-cell contact’ [22]. Further, in vitro, addition of adipogenic 

differentiation medium induces preadipocytes to become mature adipocytes. Mature 

adipocytes do not have the capability to undergo cell division and are named as ‘terminally 

differentiated’ cells (Fig. 1.1). 

 

 

Figure 1.1: The stages of adipocyte differentiation 
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During the process of adipogenesis, preadipocytes differentiate to form mature 

adipocytes to achieve lipid accumulation. The transcriptional control of adipocyte 

differentiation requires a sequential series of gene expression events and activation of a 

number of key signaling pathways (Fig. 1.2). This cascade starts with the induction of 

CCAAT/enhancer – binding protein β and δ (C/EBPβ and C/EBPδ). These two proteins 

then induce the expression of nuclear receptor peroxisome proliferator – activated 

receptor γ (PPARγ), which in turn induces C/EBPα expression [25]. Once expressed, 

C/EBPα activity positively feeds back on PPARγ activity. These two factors enhance 

each other’s expression and maintain the differentiated state [26]. Sterol-regulatory 

element binding protein 1c (SREBP-1c) is another notable key adipogenic gene [27]. 

Increased expression of SREBP-1c leads to activation of PPARγ by inducing its 

expression and by increasing the production of an endogenous PPARγ ligand. All these 

transcriptional factors are necessary for the terminally differentiated phenotype. 
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Figure 1.2: Transcriptional regulation of adipogenesis (PPARγ, Peroxisome 

proliferator activated receptor γ; C/EBP α, CCAAT/enhancer binding protein α; C/EBP β, 

CCAAT/enhancer binding protein β; C/EBP δ, CCAAT/enhancer binding protein δ; 

SREBP-1c, sterol regulatory element binding protein 1c; RXR, retinoid X receptor) 
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Adipose tissue formation 

Adipose tissues are different from many other tissues in that they occur in multiple, 

dispersed sites around the body [8]. Generally speaking, most adipose tissues form at sites 

rich in loose connective tissues, such as the subcutaneous layers between the dermis and 

muscle. However, fat deposits also form around the heart, kidneys, and other internal 

organs [28]. One interesting feature of fat cell development is that it tends to occur in 

clusters. This phenomenon is observed both in vivo and in vitro. One possible explanation 

is that the expression of a recruitment factor by mature adipocytes, ensures that where one 

adipocyte develops, others will follow and be induced as well. There is actually evidence 

for such a factor, as conditioned media from mature adipocytes has been shown to induce 

the differentiation of preadipocytes in culture [29]. This factor has not been isolated, 

however, it is has been shown that the addition of triglycerides and fatty acids to 

unconditioned media does not mimic the effect. 

 

Growth of adipose tissue mass in vivo involves two distinct processes: hypertrophy 

(because of lipid synthesis and the subsequent increase in the size of adipocytes) and 

hyperplasia (because of proliferation, when preadipocyte and adipocyte numbers increase) 

[30]. Two theories were proposed to explain the process of adipose tissue accumulation in 

mammalian bodies. It was once believed that animals have a specific number of adipocytes 

at birth and this number of adipocytes does not change during the entire lifetime [31, 32]. 

According to this theory, ‘critical period theory’ [21, 32], there are two steps during the 

process of adipose tissue accumulation. The first step, in pre-adult, adipoblast cells undergo 
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cell division (hyperplasia), resulting in an increase of cell number. Later in the adult phase, 

cells do not undergo cell division and this phase is characterized by a marked increase in 

lipid accumulation causing enlargement of adipocytes (hypertrophy). Another theory to 

explain the process of accumulation of adipose tissue in animals was proposed by Faust et 

al. in 1978, termed as ‘maximum fat cell size theory’ [33]. According to this theory, the 

number of adipocytes in animals is not constant and adipose tissue accumulation occurs 

both through hypertrophy and hyperplasia. Adipoblasts undergo mitotic cell division and 

then stop cell division after reaching a particular point. Then a portion of cells start to 

accumulate lipid droplets and become mature adipocytes. After these cells reach a specific 

size, called ‘maximum fat cell size’, the remaining precursor Adipoblast cells undergo cell 

division and start to become new adipoblast cells, and this process causes an increase in 

the number of cells in adipose tissue [32]. 

 

Transcriptional control of adipogenesis 

Peroxisome Proliferator-activated Receptor γ (PPARγ) 

The PPAR family is a group of transcriptional factors that belongs to the nuclear hormone 

receptor superfamily. These transcriptional factors heterodimerize with another nuclear 

hormone receptor, retinoid X receptor (RXR), bind to the response elements of target gene 

promoters and function as active transcriptional factors [34]. When PPARs are 

heterodimerized with RXR, the complex is activated and transported to the nucleus to bind 

to specific sequences in promoter regions (termed as PPAR response elements, PPREs) of 

downstream target genes, activating their transcription [35-37]. The molecular structure of 
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PPARs has two highly conserved functional domains, the DNA binding domain (DBD) 

and the ligand binding domain (LBD). The DBD contains two zinc-finger motifs which 

bind to PPRE of target gene regulatory regions (37). LBD binds to a variety of natural and 

synthetic ligands of PPARs and this process is important in PPAR activation. Fatty acids 

such as linoleic acid, linolenic acid, and arachidonic acid have been reported as natural 

ligands of PPARs. Some antidiabetic drugs, such as troglitazone, rosiglitazone and 

pioglitazone, are reported as potential synthetic ligands of PPARγ [37]. 

 

There are three major isoforms: PPARα, PPARδ, and PPARγ [36]. These three isoforms 

have specific roles in lipid metabolism. Notably, PPARγ plays an important role in 

triglyceride synthesis and adipocyte differentiation processes [38]. In addition, PPARγ also 

has a role in increasing expression of mitochondrial uncoupling proteins (UCPs) [39]. 

PPARγ has two protein isoforms, PPARγ1 and PPARγ2, due to differential promoter usage 

and mRNA splicing. PPARγ2 has an additional 30 amino acids compared to PPARγ1 at 

the N-terminus [40-42]. PPARγ2 is expressed predominantly in adipose tissue, and is 

expressed at very high levels [35, 43]. However, PPARγ1 occurs in different tissues, such 

as heart, muscle, intestine, liver, kidney, pancreas and spleen [44, 45]. Activation of PPARγ 

expression occurs downstream of C/EBPβ and C/EBPδ transcription during the cascade of 

adipogenesis, and upstream of C/EBPα. In contrast to the role of PPARγ in triglyceride 

formation, PPARα was reported to play a critical role in β-oxidation of fatty acids. PPARα 

is abundant in brown adipose tissue and liver, and is less abundantly present in kidney, 

heart, skeletal muscle and brown fat [36]. PPARδ is expressed in brain, muscle, adipose 



12 

 

tissue and skin. PPARδ plays a role in muscle and fat metabolism and clearance of excess 

cholesterol [46]. 

 

PPARγ plays a crucial role in the function of many adipogenesis-specific genes, and 

PPARγ binding is absolutely required for the function of the adipogenic selective 

enhancers for FABP4 gene in cultured adipocytes [47]. In additional to its role in inducing 

FABP4 expression, PPARγ activates the promoters of many other adipogenic genes. The 

expression of phosphoenolpyruvate carboxeykinase (PEPCK) in adipocytes was reported 

to require PPARγ binding [47]. Another study published by Tontonoz et al. in 1994 

indicated that forced expression of PPARγ is sufficient to induce adipocyte differentiation 

in fibroblasts [48], and no factor has been discovered that induces adipogenesis in the 

absence of PPARγ. These findings are consistent with the observation that most pro-

adipogenic factors seem to function at least in part by inducing PPARγ expression or 

activity. PPARγ is both necessary and essential for adipogenesis [16]. 

 

Efforts to identify the endogenous PPARγ ligand have not been successful. Cyclic AMP 

(cAMP)-dependent ligand activity was found in 3T3-L1 cells in the first two days of 

differentiation, after which this activity quickly declined [49]. This interesting finding 

demonstrates that ligand activation of PPARγ is required to induce adipogenesis, but not 

to maintain PPARγ-dependent gene expression in mature adipocytes. Other studies have 

reported that the transcription factors SREBP-1c and C/EBPβ are upstream of PPARγ in 
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the process of adipogenesis, and can increase PPARγ ligand production [50, 51],  but these 

results have not led to the identification of a definitive endogenous PPARγ agonist.  

 

PPARγ is not only crucial for adipogenesis but is required for maintenance of the 

differentiated state as well. Adenoviral introduction of a dominant-negative PPARγ into 

mature 3T3-L1 adipocytes causes de-differentiation with reduction of lipid accumulation 

and decreased expression of adipogenic factor genes [52]. In vivo, inducible knockout of 

PPARγ in differentiated adipocytes results in adipocyte death, followed by generation of 

new adipocytes [53]. 

 

CCAAT/enhancer-binding protein (C/EBP) family 

The C/EBPs are members of the basic-leucine zipper class of transcription factors. Six 

isoforms have been described, all of which act as homo- and/or heterodimers formed via a 

highly conserved bZIP domain [54]. Their tissue distribution is not limited to adipose tissue 

[55], and a role for C/EBP proteins has been demonstrated in the terminal differentiation 

of granulocytes [56] and hepatocytes [57, 58]. C/EBPs also play an important role in 

resistance to infection [59] and in the tissue response to injury [58], in addition to 

transactivating a wide variety of target genes. 

 

During adipogenesis, expression of several C/EBP family members can be regulated at 

many levels, including transcriptionally, as measured by mRNA levels in cell [60]. 
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Actually, cAMP a well-known inducer of adipogenesis in vitro and a component of most 

pro-differentiative regimens, can enhance both C/EBPα and C/EBPβ expression [55, 61]. 

Moreover, alternative translational start sites yield multiple isoforms of some of the 

C/EBPs, including C/EBPα and β. For instance, the 42-kD C/EBPα isoform is a stronger 

transcriptional activator than the 30-kD C/EBPα isoform, and the p42/p30 ratio increases 

during the process of adipogenesis [62]. Studies like these do not prove that translation is 

a regulated step in adipocyte formation, but they at least show the possibility. Similarly, 

the amount of the 20-kD isoform of C/EBPβ decreases during adipogenesis compared to 

the 32-kD active isoform [63]. Post-translational regulation of C/EBPs, particularly 

changes in phosphorylation, can modify the activity of C/EBP proteins as well, Finally, the 

activity of C/EBPs can be modulated by the presence of other family members, for example, 

C/EBPξ (also known as CHOP or Gadd 153) cannot bind DNA by itself but does dimerize 

with other C/EBPs, then acting as a natural dominant-negative inhibitor o C/EBP activity 

[64]. 

 

Regulated expression is seen for several C/EBPs during adipogenesis, and recent gain- and 

loss-of-function studies demonstrate that these proteins have important impact on 

adipocyte differentiation. In the process of adipogenesis, mRNA levels and protein levels 

of C/EBPβ and C/EBPδ are induced early, and transiently [55, 65, 66]. On the other hand, 

C/EBPα is induced later in the adipogenesis process, slightly preceding the induction of 

most of the adipogenic genes. The inhibitory factor C/EBPξ is suppressed during the 

induction process of adipogenesis, however, it returns when differentiation has progressed 
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almost to completion [65]. This isoform may therefore act as a brake on the adipogenesis 

program after important events have been initiated.  

 

C/EBPα induces many adipocyte genes directly, and in vivo studies indicate an important 

role for this factor in the development of adipose tissue. Animals that carry a homozygous 

deletion of the C/EBP gene have dramatically decreased fat accumulation in WAT and 

BAT pads [57].  Analysis of C/EBPα-/- mice is complicated by profound hypoglycaemia 

and perinatal lethality and requires restoration of hepatic C/EBPα levels by liver-specific 

rescue. These mice are almost completely devoid of white-adipose tissue (except within 

the mammary gland) [17]. Mice in which the C/ebpa locus is replaced by C/ebpb are viable 

and do not lose normal liver function, but have reduced amounts of WAT [67]. In both 

these C/ebpa-/- models, the development of BAT is delayed, but is mostly normal in 

amounts. The involvement of C/EBPα in adipogenesis is also strongly supported by in vitro 

studies. Overexpression of C/EBPα in 3T3-L1 preadipocytes induces their differentiation 

into mature adipocytes [68, 69], and the expression of C/EBPα antisense RNA in these 

cells blocks the adipocyte differentiation process [70]. 

 

C/EBPβ is crucial for adipogenesis in immortalized pre-adipocyte lines, but its effect is 

less obvious in embryonic fibroblasts. Ectopic expression of C/EBPβ is sufficient to induce 

3T3-L1 preadipocytes differentiation in the absence of hormonal inducers. Similar studies 

with C/EBPδ indicated that in the presence of ectopic expression of C/EBPδ, cells still 

require prodifferentiative agents, but adipogenesis is accelerated [66]. C/EBPβ may also 
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predispose cells to adipocytic lineage as well as promote their differentiation. Ectopic 

expression of C/EBPβ (but not C/EBPδ) in NIH 3T3 fibroblasts is permissive for 

γadipogenesis in the presence of hormonal inducers [71]. Embryonic fibroblast lacking 

either C/EBPβ or C/EBPδ showed slight decreases in adipogenic potential, however, cells 

lacking both C/EBPβ and C/EBPδ were severely blocked from developing from 

preadipocytes to adipocytes [72]. C/EBPβ-deficient mice have reduced adiposity, however, 

this influence might be the result of abnormal lipogenesis and not reduced adipogenesis 

per se. It is also possible that C/EBPδ can compensate for the lack of C/EBPβ, because 

when double-knockout C/ebpb and C/ebpd, mice show a greater reduction in adipose tissue 

mass [72]. Approximately 85% of these animals die in the perinatal period of unknown 

causes, and the remaining 15% that survive have sharply reduced BAT and smaller 

decreases in WAT [72]. C/EBPβ and C/EBPδ promote adipogenesis at least in part by 

inducing C/EBPα and PPARγ. The amounts of C/EBPα and PPARγ mRNA are normal in 

the remaining adipocytes of these double-knockout mice in contrast to C/EBPβ- and 

C/EBPδ-deficient MEFs, which do not express C/EBPα and PPARγ. These results suggest 

that there might be factors that allow some cells to escape the developmental requirement 

for C/EBPβ and C/EBPδ in vivo. Interestingly, the reduction of BAT appears to be from 

decreased lipid accumulation, and the reduction in WAT is reported to involve reduced cell 

numbers, with normal size, morphology, and gene expression profiles in those white 

adipocytes that do differentiate. Other C/EBP isoforms, including C/EBPξ and C/EBPγ, 

seem to suppress adipogenesis, perhaps via heterodimerization with C/EBPβ, and then 

inactivate it.  
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Moreover, despite the importance of C/EBPs in the process of adipogenesis, these 

transcriptional factors clearly cannot function efficiently without PPARγ. For example, 

C/EBPβ cannot induce expression of C/EBPα in the absence of PPARγ, which is required 

to release histone deacetylase-1 (HDAC1) from the C/ebpa promoter [73]. Furthermore, 

the ectopic expression of C/EBPα cannot rescue adipogenesis in Pparg-/- fibroblasts [9]. 

However, C/EBPα has an important role in differentiated adipocytes. Study of expression 

of exogenous PPARγ in C/EBPα-deficient cells showed that, although C/EBPα is not 

required for accumulation of lipid and the expression of many adipocyte genes, it is 

necessary for the acquisition of insulin sensitivity [74, 75]. 

 

Kruppel-like factors (KLFs) 

The KLFs are a large family of C2H2 zinc-finger proteins that regulate proliferation, 

apoptosis, and differentiation. KLF genes are expressed in adipose tissue, the variability in 

their expression patterns during adipogenesis, and their effects on adipocyte development 

and gene expression indicate that a cascade of KLFs function during adipogenesis. KLF15 

was the first family member that was shown to regulate adipocyte biology. KLF15 

promotes adipocyte differentiation [76] and induces expression of the insulin-sensitive 

glucose transporter-4 (GLUT4) [77]. Another family member, KLF5, is induced early 

during the process of adipogenesis by C/EBPβ and C/EBPδ, both of which directly bind to 

the KLF5 promoter [78]. KLF5 binds to and activates the PPARγ promoter, functioning in 

concert with C/EBPs. KLF5-/- mice have reduced adipose tissue early in postnatal life, but 

rebounded with normal mice by the fourth week of life, KLF6 inhibits the expression of 
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delta-like-1/pre-adipocyte factor-1 (DLK1/Pref-1) in 3T3-L1 cells and fibroblasts. 

Although forced expression of KLF6 is not sufficient to promote adipogenesis, adipocytes 

with reduced amounts of KLF6 show decreased adipogenesis [79]. However, not all KLFs 

promote adipocyte differentiation. For example, KLF2 and KLF7,  are both anti-adipogenic 

factors. KLF2 inhibits the activity of PPARγ2 promoter [80-82]. 

 

Adipocyte determination and differentiation factor/sterol-regulatory element binding 

protein 1c (ADD1/SREBP-1c) 

ADD1/SREBP-1c is a member of the basic helix-loop-helix (bHLH) family of transcription 

factors [16]. This family has been implicated in tissue specific gene regulation, particularly 

in muscle, which shares a mesodermal origin with fat. ADD1/SREBP-1c was isolated 

independently as a factor from adipocytes that bound to E box sequence motifs [83, 84] 

and as a liver component that bound to sterol-regulatory-elements (SREs) in cholesterol 

regulatory genes [85]. ADD1/SREBP-1c is induced during adipogenesis and is also 

regulated by fasting and refeeding in vivo [86, 87]. The induction during refeeding most 

likely represents insulin regulation, because insulin regulates ADD1/SREBP-1c expression 

in cultured adipocytes. 

 

Full-length ADD1/SREBP-1c is an inactive molecule bound to the membrane of the 

endoplasmic reticulum (ER). Sterol depletion can lead to proteolytic cleavage, nuclear 

translocation, and transcriptional activity of the SREBPs in liver, however, the pathway of 
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ADD1/SREBP-1c activation in adipocytes remains to be determined. It is known that 

activated ADD1/SREBP-1c can regulate a variety of genes linked to fatty acid and 

triglyceride metabolism including fatty acid synthase, acetyl-coA carboxylase, and 

glycerophosphate acyltransferase-1 and -2, suggesting that ADD1/SREBP-1c is a key link 

between nutritional changes and the lipogenic gene program.  

 

In addition, ADD1/SREBP-1c can regulate adipogenesis, although not as robustly as 

PPARγ or the C/EBPs. The role of ADD1/SREBP-1c in adipogenesis was indicated by the 

observation that the expression of mRNA encoding this factor was induced dramatically 

when cultured preadipocytes were stimulated to undergo differentiation [87]. 

Overexpression of ADD1/SREBP-1c in 3T3-L1 preadipocytes in the presence of hormonal 

cocktail inducers of differentiation results in accelerating the expression of adipogenic key 

genes and lipid accumulation as compared to control cells.  Moreover, ectopic expression 

of ADD1/SREBP-1c in undetermined fibroblasts results in some adipose conversion, but 

only under conditions strongly permissive for adipogenesis, likely by directly inducing 

PPARγ gene expression via E box motifs present in the PPARγ promoter [41]. A dominant-

negative ADD1/SREBP-1c has also been reported to inhibit 3T3-L1 preadipocyte 

differentiation [87]. Interestingly, conditioned medium from cells expressing 

ADD1/SREBP-1c can activate PPARγ-mediated transcription [51], suggesting that 

ADD1/SREBP-1c is also involved in the production of an endogenous PPARγ ligand. 

 

 



20 

 

Fatty Acid-binding Proteins (FABPs) 

The intracellular fatty acid-binding proteins (FABPs) were discovered in the early 1970s 

as abundant cytoplasmic proteins which were 14-15 kDa proteins, and bind hydrophobic 

ligands, such as saturated and unsaturated long-chain fatty acids, eicosanoids and other 

lipids, with high affinity [88-91]. Different members of the FABP family exhibit various 

tissue expression patterns, and are expressed abundantly in tissues involved in active lipid 

metabolism. Until now, there are at least nine members that have been identified, liver 

FABP (FABP1, L-FABP), intestinal FABP (FABP2, I-FABP), heart FABP (FABP3, H-

FABP, MDGI), adipocyte FABP (FABP4, aP2), epidermal FABP (FABP5, E-FABP, PA-

FABP, mal1), ileal FABP (FABP6, Il-FABP, I-BABP, gastrotropin), brain FABP (FABP7, 

B-FABP, MRG), myelin FABP (FABP8, M-FABP, PMP2), and Testis FABP (FABP9, T-

FABP) [92]. FABPs have an wide range of sequence diversity, from 15% to 70% sequence 

identity between different members [93], however, all known FABPs share almost identical 

three dimensional structures [92].  

 

As small intracellular proteins, FABPs appear to access the nucleus under certain 

conditions, and potentially target fatty acids to transcriptional factors, such as members of 

the PPAR family, PPARα, PPARδ and PPARγ, in the nuclear lumen [94]. FABP1, FABP3, 

and FABP5 themselves are regulated by these transcriptional factors, which are liganded 

by fatty acids or other hydrophobic agonists [95-97]. FABP1 and PPARα physically 

interact, thus, it has been suggested that FABP1 could be considered a co-activator in 

PPAR-mediated gene regulation [98]. In a similar way, FABP5 interacts with PPARδ and 
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FABP4 interacts with PPARγ [97]. Recent studies indicates that continuous 

nucleocytoplasmic shuttling may underlie transcriptional activation of PPARγ by FABP4 

[99]. However, actions of FABP4 also provided a negative feedback to terminate PPARγ 

action, and the absence of FABP4 resulted in enhanced nuclear hormone receptor activity 

in the macrophage [100]. 

 

FABP1, also known as liver FABP, is abundant in the liver cytoplasm, and is also 

expressed in pancreas, intestine, kidney, lung and stomach [46]. In the liver, 5% of all 

cytosolic proteins (in hepatocytes) are FABP1 [101]. The promoter of FABP1 gene 

contains a peroxisome-proliferator response element, and accordingly the mRNA levels 

are increased by fatty acids, dicarboxylic acids, and retinoic acid [40]. Unlike the other 

members in the FABP family, FABP1 can bind two ligands simultaneously via two 

different binding sites with high and low affinities [102]. Peroxisome proliferators always 

bind FABP1 with low affinity, whereas the strength of binding with fatty acids depends on 

which affinity site is utilized. This property of FABP1 is suggested to act as a feature 

enabling ligand delivery through interactions with target receptors. In addition to binding 

fatty acids, such as oleic acid, FABP1 can carry acyl-coenzyme A, eicosanoids, 

lysophospholipids, carcinogens, anticoagulants, such as warfarin, and haem, making it 

probably the most versatile chaperone in terms of its ligand repertoire [40]. Moreover, 

recent studies showed that fatty acid induced expression of FABP1 happens in the proximal 

tubules and indicated that urinary FABP1 in humans might be used as a clinical marker 

that can help predict and monitor the progression of renal diseases [103]. 
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FABP2, also known as intestinal FABP, is expressed in the epithelium of the small intestine. 

Another two FABPs, FABP1 and FABP6 (also known as ileal-FABP) are present in small 

intestine as well, although they are distributed in different segments [104]. FABP1 is 

mostly expressed in the proximal region, and FABP6 is restricted in the distal part of the 

small intestine. FABP2 is expressed throughout the intestine, but mostly in the distal 

segment. It is difficult to estimate the individual contributions of these proteins to lipid 

absorption and metabolism at the sites where they are present, and more work is needed in 

this regard. FABP2-deficient mice were viable and fertile, and fat absorption affected by 

FABP2 and compensation by FABP1 and FABP6 were not observed [105]. Both genders 

of mice with FABP2-deficiency exhibited increased plasma levels of insulin, but glucose 

levels remain normal. Male mice lacking FABP2 gained more weight, had larger livers and 

had significantly higher triglyceride levels regardless of diet. Female FABP2-deficient 

mice gained less weight, and had smaller livers on a high-fat diet, and exhibited no 

difference in plasma triglyceride levels. Although the pathway responsible for these gender 

differences remain unclear, it appears that fatty-acid uptake can be mediated by the 

remaining FABPs, possibly FABP2 and FABP6, without the need for increased total 

amounts of FABPs to compensate for the lack of FABP2. 

 

FABP3, also known as heart FABP, has been isolated from several different tissues, 

including heart, skeletal muscle, brain, renal cortex, lung, testis, aorta, adrenal gland, 

brown adipose tissue and ovary [46, 88, 93, 101]. The level of FABP3 is impacted by 

exercise, PPARα agonists and testosterone [40, 89, 90, 106]. In muscle cells, FABP3 plays 

a role in the uptake of fatty acids and their subsequent transport towards the mitochondrial 
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β-oxidation system, and increasing fatty acids exposure in vitro and in vivo caused an 

increase of FABP3 expression [88, 91]. Conditions with elevated plasma lipids may result 

in increased FABP3 levels in myocytes, as seen in endurance training [88, 91]. Studies in 

FABP3-deficient mice indicate that the uptake of fatty acids is severely inhibited in the 

heart and skeletal muscle, whereas plasma concentrations of free fatty acids are increased 

[107]. Cardiac and skeletal muscle metabolism is reported to switch from fatty-acid 

oxidation to glucose oxidation when there is an inability to obtain sufficient amounts of 

fatty acids [108, 109]. Consequently, FABP3-deficient mice were rapidly fatigued and 

exhausted by exercise, showing a reduced tolerance to physical activity. Localized cardiac 

hypertrophy was also observed in the older animals [107]. 

 

FABP4, also known as adipocyte FABP, was first detected in mature adipocytes and 

adipose tissue [92, 93]. This protein has been named adipocyte P2 (aP2), because of its 

highly similar sequence (67%) to peripheral myelin protein 2 (FABP8) [93]. FABP4 is the 

best characterized isoform among the entire FABP family. Expression of FABP4 is highly 

regulated during the processes of adipocyte differentiation, and its mRNA is 

transcriptionally controlled by fatty acids, PPARγ agonists and insulin [101,106]. FABP4-

deficient mice showed reduced hyperinsulinaemia and insulin resistance in the context of 

both dietary and genetic obesity, however, the effect of FABP4 on insulin sensitivity was 

not observed in lean mice [110, 111]. In adipocytes, the loss of FABP4 was compensated 

for by overexpression of FABP5, which is present in the normal adipocyte but only in 

extremely small amounts. Adipocytes obtained from FABP4-deficient mice have reduced 

efficiency of lipolysis in vivo and in vivo [112-114]. This was initially attributed to the 
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ability of FABP4 to bind and activate hormone-sensitive triglyceride lipase (HSL), 

however, the definitive links between HSL activation and FABP4 have not been 

demonstrated in vivo. The potential mechanisms responsible for alterations in lipolysis in 

FABP4 deficiency also requires further study. Recent studies have showed that FABP4 is 

expressed in macrophages during their differentiation from monocytes, and following 

activation with phorbol 12-myristate 13-acetate, lipopolysaccharide, PPARγ agonists and 

oxidized low-density lipoprotein [115-119]. FABP4 expression in macrophages was 

suppressed by a cholesterol-lowering statin in vitro [120]. Notably, adipocytes express 

much higher levels of FABP4 compared to macrophages (approximately 10,000-fold) 

[121]. In macrophages, FABP4 modulates inflammatory responses and cholesterol ester 

accumulation [115].  

 

FABP5, also known as epidermal FABP, is expressed most abundantly in epidermal cells 

of the skin. It is also present in other tissues, such as the tongue, adipose tissue 

(macrophages), dendritic cells, mammary gland, kidney, brain, liver, lung and testis [46, 

106, 122]. As all these tissues express other FABP members, the exact function of FABP5 

is difficult to explore. The ratio of FABP4 to FABP5 in adipocytes isolated from normal 

mice was about 99:1 [123], however, the ratio changes to 1:1 in the macrophage under 

physiological conditions [115]. These two proteins have 52% amino acid similarity and 

bind carious fatty acids and synthetic compounds with similar selectivity and affinity [101]. 

Studies with FABP4-/- mice showed that FABP5 expression was dramatically increased in 

adipocytes, but not in macrophages [110, 115]. Transgenic mice over-expressing FABP5 

gene in adipose tissue showed a minor phenotype with enhanced basal and hormone-
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stimulated lipolysis [124]. When fed a high-fat diet, adipose tissue-specific FABP5 over-

expressed in transgenic mice resulted in a reduction in systemic insulin sensitivity [125]. 

On the other hand, absence of FABP5 in these mice led to a modest increase in insulin 

sensitivity [125]. The adipocytes in FABP4-/- mice showed an increased capacity of insulin-

dependent glucose transport. Except forFABP5 expression increasing in liver, no 

compensatory increase was observed in the expression of FABP3, FABP4, or FABP7 in 

adipose tissue, tongue, brain or testis in FABP5-deficient mice [125]. 

 

FABP7, also known as brain FABP, is expressed in various regions of the mouse brain in 

the mid-term embryonic stage, but the expression decreases as differentiation progresses 

[126]. This protein is strongly expressed in radial glia cells of the developing brain, 

especially in the pre-perinatal stage, but only weekly in mature glia of the white matter. 

Neurons of the grey matter express FABP3 and FABP5, but not FABP7. FABP7 has strong 

affinity for n-3 polyunsaturated fatty acids, in particular, docosahexaenoic acid. This long-

chain fatty acid is an important nutrient for the nervous system, and it has been considered 

a natural ligand for FABP7 [127]. Moreover, similarly to FABP3 [128, 129], FABP7 is 

prominently expressed in the mammary gland, and its over-expression inhibited tumor 

growth in a mouse breast cancer model [130, 131]. 

 

Overall, the functions of FABPs are transport of lipids to specific compartments in cells, 

such as to the lipid droplet for storage, to the endoplasmic reticulum for signaling, 

trafficking and membrane synthesis, to the mitochondria or peroxisome for oxidation, to 
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cytosolic or other enzymes to regulate their activity, to the nucleus for lipid-mediated 

transcriptional regulation, or even outside the cells to signal in an autocrine or paracrine 

manner (Fig. 3) [45]. 

 

 

 

Figure 3: Putative functions of fatty acid binding protein (FABP) in the cells (This 

figure is copied/cited from reference [45]) 
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Cellular and hormonal regulation of adipogenesis 

Inducers of adipogenesis 

The earliest observations revealed that efficient differentiation in vitro required insulin. 

Insulin increased the percentage of cells that differentiate and also increases the amount of 

lipid accumulation in every adipocyte [132]. Insulin also has potent anti-apoptotic activity 

[133]. Preadipocytes have been reported express a few insulin receptors [134]. The impact 

of insulin on differentiation has been indicated to occur through cross-activation of the 

Insulin-like growth factor 1 (IGF-1) receptor, which explains why pharmacological does 

of insulin are required to produce the desired effect. IGF-1 is also a critical component of 

fetal calf serum [135], and supplementation with this factor enables differentiation to 

proceed in serum-free medium [136]. 

 

Glucocorticoids have also been used for many years to induce optimal differentiation of 

cultured preadipocytes and primary adipocytes. In most of these studies, glucocorticoids 

are administered in the form of dexamethasone (Dex). Dex is believed to operate through 

activation of the glucocorticoid receptor (GR), which is a nuclear hormone receptor in the 

same large superfamily as PPARγ. The transcriptional targets of GR in adipogenesis are 

not yet clear. Dex has been shown to induce C/EBPβ, which may account for some of its 

adipogenic activity [137]. However, even when C/EBPβ is overexpressed in preadipocytes, 

Dex is still required to induce adipogenesis, indicating a more complex role of this 

compound. Studies have shown that DEX can reduce expression of preadipocytes factor-1 

(Pref-1), a negative regulator of adipogenesis. Constitutive expression of Pref-1 blocks the 
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pro-differentiation action of Dex, and antisense-mediated reduction in Pref-1 decreases the 

dose of Dex required for differentiation to occur [138]. 

 

There are other hormones that have an influence on adipogenesis. Growth hormone can 

clearly induce adipogenesis in a variety of cultured preadipocyte lines, but does not have 

effects in primary preadipocyte cultures [139-142]. Actually, differentiation of the primary 

cells appears to be inhibited by growth hormone. This is consistent with the observation 

that humans with growth hormone deficiency have normal adipose stores and can be obese. 

Thyroid hormone [143], retinoic acid [144], and various prostaglandins [136] are among 

of other hormones that have influence in adipogenesis in vitro, but for which there is scant 

evidence to support such a function in vivo. 

 

Inhibitors of adipogenesis 

A variety of cytokines including IL-1, TNF-α, and some other proinflammatory molecules 

have been found to inhibit adipocyte differentiation in most cultured preadipocyte lines, 

and can dedifferentiate mature adipocytes [145, 146]. The suppression of adipocyte 

lipoprotein lipase was used as a bioassay in the purification of cachectin, which was 

ultimately identified as TNF-α [147]. Moreover, several growth factors can potentially 

inhibit adipogenesis, including epidermal growth factor (EGF), platelet-derived growth 

factor (PDGF) and fibroblast growth factor (FGF) [148-150].  
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This inhibitory effect on adipogenesis is likely to be mediated by activation of the classic 

mitogen-activated protein (MAP) kinases, ERK 1 and 2. These kinases, as well as JNK 

MAP kinase, directly phosphorylate PPARγ2 at Ser112 in the amino-terminal domain 

(Ser82 of PPARγ1), and repress its adipogenic activity [151-155]. RXR, the obligate 

heterodimerization partner of PPARγ, is also phosphorylated and subsequently inhibited 

by MAP kinases [156]. 

 

Adipogenesis can also be regulated by the expression of a trans-membrane molecule, Pref-

1. This molecule is present in preadipocytes, but is down-regulated during adipocyte 

differentiation [157]. When expressed ectopically in transmembrane form, Pref-1 inhibits 

adipogenesis. Moreover, Pref-1 can also be released from cells as a soluble molecule, and 

this form also has inhibitory effect [158], which opens the possibility that Pref-1 may be 

an autocrine or paracrine regulator of adipogenesis. 

 

Vitamin D 

Vitamin D synthesis and metabolism 

Vitamin D was discovered nearly a century ago as the nutrient that prevented rickets, a 

devastating skeletal disease characterized by under-mineralized bones [159]. Since that 

time, the concept of vitamin D and its most bioactive derivative, 1,25-dihydroxyvitamin 

D3 (1, 25 - (OH)2D3), has evolved from that of an essential micronutrient to that of a 

hormone involved in a complex endocrine system that directs mineral homeostasis, 
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protects skeletal integrity, and regulates cell growth and differentiation in a diverse array 

of tissues [160]. 1, 25 - (OH)2D3 acts in concert with PTH to tightly regulate the 

concentration of serum calcium and phosphate, thereby maintaining proper skeletal 

mineralization. A major function of 1, 25 - (OH)2D3 is to promote intestinal absorption of 

calcium and phosphate. Moreover, it also has direct effects on bone [161], in which 

continuous remodeling must occur to sustain structural integrity. 

 

During exposure to sunlight, ultraviolet B (UVB) photons penetrate into the skin and are 

absorbed by 7-dehydrocholesterol, inducing the formation of pre-vitamin D. this is an 

unstable form of vitamin D that quickly undergoes rearrangement to form vitamin D3 

(cholecalciferol). Vitamin D2 (ergocalciferol) is the form of vitamin D that occurs in plants 

and is used to fortify certain foods such as fluid milk. Both vitamin D forms eventually 

enter the circulation bound to a vitamin D-binding protein and are metabolized in the liver 

by the vitamin d-25-hydroxylase enzyme (25-OHase or CYP27A1) to 25-hydroxyvitamin 

D (calcidiol), the main vitamin D form circulating in plasma and a substrate for production 

of the hormonally active metabolite 1,25-dihydroxyvitamin D (calcitriol) [162]. 

 

Vitamin D and adipogenesis 

Increasing evidence suggests there is a potential link between obesity and vitamin D 

insufficiency [162]. The bioactive metabolite of vitamin D is 1, 25 - (OH)2D3, which acts 

as a steroid hormone and a high-affinity ligand for the vitamin D receptor (VDR). The 1, 
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25 - (OH)2D3 activated VDR can form a heterodimer with the retinoid C receptor (RXR), 

which can bind to vitamin D response elements in various genes [163], and this heterodimer 

formation may result in a competition with PPARγ binding with RXR[164]. The 

competition can inhibit the expression of PPARγ, which is a key regulator of adipogenesis, 

and inhibit the development of adipocyte maturation [163]. Therefore, the 1, 25 - (OH)2D3 

and VDR may play an important role in regulating adipogenesis.  The vitamin D receptor 

is expressed very early in adipogenesis in 3T3-L1 cells. The VDR expression level reaches 

the maximum during the first 6 h after induction of differentiation, then declines and 

disappears in 2 days [165]. This creates a short window of opportunity for 1, 25 - (OH)2D3 

to influence the differentiation process of pre-adipocyte into mature adipocyte.  

 

C/EBPβ and C/EBPδ are expressed in the early period of adipogenesis, and can regulate 

PPARγ and C/EBPα expression (Fig. 1.4). ETO/MTG8, a transcriptional corepressor, is 

expressed in preadipocytes as an inhibitor of C/EBPβ function and down-regulated via 

insulin signaling in early adipogenesis [166]. When overexpressed, ETO/MTG8 played a 

potent role of inhibiting adipogenesis via its ability to directly interact with C/EBPβ and 

inhibited its function on activating the C/EBPα promoter [166].In the absence of 1, 25 - 

(OH)2D3, ETO/MTG8 expression level decreased rapidly in the first 12 h [165]. But in the 

presence of 1, 25 - (OH)2D3, ETO/MTG8 expression level was maintained throughout 

adipogenesis and increased after Day 1, and the high level of ETO/MTG8 inhibited 

C/EBPβ function[165].This may be another contributing mechanism to the actions of 1, 25 

- (OH)2D3 inhibiting adipogenesis. However, the role of C/EBPβ in 1, 25 - (OH)2D3 – 

induced inhibition of PPARγ and C/EBPα is controversial. Blumberg et al [165] found that 
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1, 25 - (OH)2D3 blocks adipogenesis by down-regulating both C/EBPβ mRNA expression 

level and C/EBPβ nuclear protein level. In contrast, Juan Kong and Yan Chun Li [167] 

found that the C/EBPβ mRNA expression level after the initiation of differentiation was 

not affected by 1, 25 - (OH)2D3 in 3T3 cells. These two studies were conducted in 3T3-L1 

cells, and the concentrations of dexamethasone and insulin in protocols of differentiation 

media were not the same. This may influence the response of C/EBPβ to 1, 25 - (OH)2D3 

treatment. However, the specific reason for this apparent discrepancy is not clear, and the 

role of C/EBPδ in the 1, 25 - (OH)2D3 inhibition effect is unknown. When cattle are 

exposed to sunlight, plasma vitamin D will increase [168]. With the inhibition effect of 

vitamin D on adipogenesis, this may explain that meat quality declines in summer. 

Therefore, understanding 1, 25 - (OH)2D3 effect on bovine adipocyte differentiation is very 

important for the beef industry.  
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Fig. 1.4 Vitamin D and adipogenesis. 1, 25 - (OH)2D3 blocks adipogenesis by down regulating 

CCAAT-enhancing binding protein β (C/EBPβ) expression. 1, 25 - (OH)2D3 also up-regulates the 

expression of ETO, the C/EBPβ corepressor, which would further inhibit the action of any remaining 

C/EBPβ. 1, 25 - (OH)2D3 forms a heterodimer with the retinoid X receptor (RXR), and competes 

with PPARγ to form a heterodimer with RXR. 
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Vitamin A 

Vitamin A metabolism 

There are three main forms of vitamin A in the body, the hydroxyl form (retinol), the 

aldehyde form (retinal) and the carboxylic form (retinoic acid, RA) (Fig. 1.5). These three 

vitamin A vitamers and their metabolites together play a critical role in a variety of essential 

life processes, including vision, hematopoiesis, reproduction and manipulation of the 

growth and differentiation of a variety of cell types [169]. Except for vision, which requires 

retinal, the active formation of vitamin A in the other processes is retinoic acid (RA) [170]. 

 

Fig. 1.5 Chemical structures of some biologically active retinoids. Retinol appears to be essential 

for fertility and may be stored as retinyl esters or converted to the aldehyde form (retinal). The latter 

is required for the vision process and can be converted into all-trans-retinoic acid (RA) through an 

irreversible oxidation. All-trans RA and its natural isomers are responsible for most of the effects 

of vitamin A on cell growth and differentiation. (This figure is copied/cited from reference [169]) 
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Most of the biological effects of RAs involve the activation of ligand-dependent 

transcription factors of the nuclear hormone receptor superfamily, the retinoid receptors. 

Two types of these receptors are known: the retinoic acid receptors (RARs), which are 

responsive to both all-trans RA and 9-cis RA, and the retinoid receptors (RXRs), which are 

responsive to the 9-cis RA isomer specifically. Three subtypes of RARs (RARa, RARb 

and RARg) and RXRs (RXRa, RXRb and RXRg) have been described in mammalian 

tissues, which are encoded by different genes and show distinct developmental- and tissue-

specific regulated expression [171, 172]. 

 

Vitamin A and adipogenesis 

RA with high concentration (1-10 µM) was considered as a potent inhibitor of adipocyte 

differentiation 30 years ago [173], and a dietary deficit in vitamin A results in increased 

adipogenesis [174]. The mechanisms of RA inhibition effect on adipogenesis are multiple. 

First, RA can interfere with the transcriptional activities of C/EBPβ, and then block the 

C/EBPβ-mediated induction of downstream adipogenic key gene expression, notably 

PPARγ and C/EBPα [175]. Second, RA can strongly up-regulate retinoic acid receptor 

(RAR) expression and inhibit retinoid X receptor (RXR) expression in 3T3-L1 cells [176]. 

Ziouzenkova et al [177] found that retinaldehyde, a precursor for retinoic acid formation, 

inhibited adipogenesis and suppressed PPARγ and RXR responses. Kawada et al [178] also 

found that carotenoids and retinoids (precursors of RA) inhibited adipogenesis via up-

regulating RAR and suppressing PPARγ.  Therefore, RA may influence PPARγ activity 

through disturbing PPARγ and RXR heterodimer formation. However, low concentrations 
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of RA (1-10 nM) were found to stimulate adipogenesis of preadipocytes [179]. But, the 

mechanism of the low concentration RA stimulating adipocyte differentiation has not been 

determined. Therefore, understanding the mechanism of RA regulation of adipogenesis is 

useful for helping to control body fat and to manipulate meat quality in the beef industry. 

 

Vitamin A and body fat 

In adult NMRI male mice, acute RA treatment (100 mg of all-trans RA/kg body weight, 

during the 4 days preceding death) triggered a 12% reduction of body weight that could 

not be completely accounted for by the observed changes in energy intake [180-182], and 

a strong reduction of body fat content (the combined weight of interscapular BAT, 

epididymal WAT and inguinal WAT was reduced by 46% in the RA-treated animals, as 

compared with control animals) [182]. RA-induced reduction of adiposity correlated with 

down-regulation of the expression of transcription factors controlling adipocyte 

differentiation and metabolism, notably PPARγ, in both WAT and BAT depots [182] and 

with an up-regulation of the expression of UCPs in BAT and muscle. Reduced 

adipogenesis/lipogenesis and enhanced lipolysis and apoptosis in fat depots, together with 

enhanced whole body thermogenesis, are all likely to contribute to the reduced adiposity 

of RA-treated animals. 
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Gold Nanoparticles in Biomolecule Delivery 

Gold nanoparticles (AuNPs) have been investigated for centuries because of their unique 

characteristics, realized and potential applications in biology, catalysis and nanotechnology 

[183]. In the past decade, scientists have generally developed two kinds of gold-based 

nanoconjugates: homofunctionalized and heterofunctionalized AuNPs. 

Homofunctionalized AuNPs are conjugated by one form of biomolecule such as peptides 

[184-188], oligonucleotides (ONs) [189, 190], or antibodies [191]. Heterofunctionalized 

AuNPs combine two or more biomolecules including ONs and antibodies [192], bovine 

serum albumin (BSA) and peptide [193], protein-stabilized peptides and ONs [194], 

peptides and ONs [195], alkyl chains and plasmid [196], polyethylene glycol (PEG) and 

peptides [197], PEG and ONs [198], PEG and small interfering RNA (siRNA) [199, 200], 

polyethyleneimine (PEI) and siRNA [201-203], or oligoethylene glycol (OEG) and siRNA 

[204]. These studies provide evidence that AuNPs could be used as nanocarriers for drug 

delivery and gene regulation, suggesting their great potential for further development and 

use in genetic manipulation. 

 

Directing Peptide 

The specific target of AuNPs can be controlled by directing peptides. The directing 

peptides can target to certain organelles. Several peptide-specific pathways have been 

suggested to facilitate receptor-mediated uptake of gold-peptide nanoconjugates [186, 193]. 

For instance, Transactivator of Transcription (TAT) contains a putative cell penetrating 

peptide (CPP) sequence that has been shown to be effective for intracellular conjugate 
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delivery [187, 193, 205]. The carboxy-terminal sequence Lys-Asp-Glu-Leu (KDEL) or 

His-Asp-Glu-Leu (HDEL in yeast) was first detected in resident soluble proteins of the 

endoplasmic reticulum (ER) as a retention signal [206], but later it was found that the 

KDEL sequence is also a retrieval signal [207]. It has been reported that the KDEL receptor 

ERD2 exists mainly in Golgi-like structures, particularly in the cis-Golgi network in 

several immunofluorescence [208-211] and immunoelectronmicroscopy studies [207, 212]. 

The KDEL signal is recognized by ERD2, which targets its ligands to the retrograde COPI-

mediated transport pathway, and cycles between the Golgi complex and the ER [209, 213, 

214]. Extra-cellular KDEL peptides can be internalized, reaching Golgi-like structures 

within 30 min and finally localize at the ER between 30-90 min [215]. Recently, KDEL 

peptides have be reported used as the directing peptides and linked to AuNPs, and showed 

high efficiency of AuNPs and siRNA delivery [188, 216]. 

 

Small Interfering RNA 

Small interfering RNAs (siRNAs) are short stretch (19-30 nucleotides) double stranded 

RNAs that are able to target and cleave complementary mRNA in the cytoplasm [217]. 

SiRNAs are produced from long pieces of double-stranded RNA cleaved by the enzyme 

Dicer. Once siRNA is present in the cytoplasm, it is incorporated into a protein complex 

called RNA-induced silencing complex (RISC) [218]. RISC contains a multi-functional 

protein called Argonaute 2 that can unwind the siRNA and cleave the sense strand of 

siRNA [219]. The antisense strand of siRNA will remain in the activated RISC and 

selectively degrades its complementary mRNA [220]. After cleavage of one mRNA, the 
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activated RISC can move on to target additional mRNAs [221], which ensures a therapeutic 

effect for 3-7 days in rapidly dividing cells and for several weeks in non-dividing cells 

[222]. As naked siRNA is too large and too negatively charged to cross cell membranes, 

and is also easily degraded by endogenous enzyme, many efforts on siRNA effective 

delivery have been made in the past decade. Promising siRNA carriers have been 

developed currently including cationic CPPs [223-226], polymers [227-230], lipid-based 

materials [231-234] and nanoparticles such as silica [235-237], iron oxide [238, 239], gold 

nanoparticles [240] and quantum dots [241-244]. Although AuNPs have been investigated 

for drug delivery in the past decades, their use as siRNA delivery agents has been studied 

for only 5 years. Different strategies employed for AuNP mediated siRNA delivery include 

siRNAs conjugation with AuNP via 1) Au-S chemistry or 2) electrostatic interactions [240]. 

Here in the proposed study, we will form siRNA-gold nanoconjugates via Au-S bonds as 

reported previously [188]. 
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Hypotheses 

Adipogenesis plays a key role in metabolic homeostasis and nutrient pathways, and this 

process requires both lipid storage and adipocyte development. Adipocyte differentiation 

is regulated by a cascade of interactions of many transcriptional factors. Of all of the 

nuclear factors which influence the adipogenic process, two nuclear factor families have 

received the most attention as follows: the CCAAT enhancer-binding proteins (C/EBPs) 

and the peroxisome proliferator-activated receptors (PPARs). There are also some 

extracellular factors, for example, 1, 25-dihydroxyvitamin D (1, 25 - (OH)2D3) and 

retinoic acid (RA), which can modulate adipogenesis. However, the specific regulation 

mechanisms of these molecules in adipogenesis are not clearly determined. The present 

studies focus on the effect of 1, 25 - (OH)2D3 and RA in regulation of adipogenesis, and 

also the interaction between these molecules and the promoter region of key adipogenic 

genes.  

 

There are three parts of the hypotheses that pertain to the next three chapters, chapter II, 

III, and IV, respectively.  

For chapter II, the hypotheses are as follows:  

① lipid accumulation is inhibited by 1, 25-dihydroxyvitamin D treatments;  

② the expression of adipogenic key genes are regulated by 1, 25-dihydroxyvitamin D;   

③ different concentrations of 1, 25-dihydroxyvitamin D have various impact on 

adipogenesis.  

For chapter III, the hypotheses are as follows:  
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① lipid accumulation is inhibited by retinoic acid treatments;  

② the expression of adipogenic key genes are regulated by retinoic acid;  

③ different concentrations of retinoic acid have different effect on adipogenesis. 

For chapter IV, the hypotheses are as follows:  

① Au-peptide nanoconjugates transfects into pre- (day 0) 3T3-L1 cells;  

② Au-peptide nanoconjugates transfects into post- (day 6) 3T3-L1 cells;   

③ Au-peptide-siRNA/C/EBPα inhibits adipocyte differentiation.  

Objectives  

For the chapter II, the objectives are:  

① investigate the influence on adipogenesis by 1, 25-dihydroxyvitamin D treatments; 

② investigate the influence on the expression of adipogenic key genes by 1, 25-

dihydroxyvitamin D treatments; 

For the chapter III, the objectives are:  

① investigate the influence on adipogenesis by retinoic acid treatments; 

② investigate the influence on the expression of adipogenic key genes by retinoic acid 

treatments; 

For chapter IV, the objectives are:  

① preparation of gold-peptides nanoconjugates;  

② investigate the cellular uptake of gold-peptide nanoconjugates by both pre- and post-

adipocytes; 

③ investigate regulation of adipogenesis by gold-peptide nanoconjugates. 
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CHAPTER II 

REGULATION OF ADIPOGENESIS AND KEY ADIPOGENIC 

GENE EXPRESSION BY 1, 25-DIHYDROXYVITAMIN D IN 3T3-L1 

CELLS  

This chapter is accepted for publication in PLoS One, as citation, Shuhan Ji, 

Matthew E. Doumit, and Rodney A. Hill, 2015, Regulation of adipogenesis 

and key adipogenic gene expression by 1,25-dihydrocyvitamin D in 3T3-L1 

cells, journal doi: 10.1371/journal.pone.0126142 

 

Abstract 

The functions of 1, 25-dihydroxyvitamin D (1, 25-(OH)2D3) in regulating adipogenesis, 

adipocyte differentiation and key adipogenic gene expression were studied in 3T3-L1 

preadipocytes. Five concentrations (0.01, 0.1, 1, 10, 100 nM) of 1, 25-(OH)2D3 were 

studied and lipid accumulation measured by Oil Red O staining and expression of 

adipogenic genes quantified using quantitative real-time PCR. Adipogenic responses to 1, 

25-(OH)2D3 were determined on 6, and 12 h, and days 1-10 after induction of adipogenesis 

by a hormonal cocktail (insulin, 3-Isobutyl-1-methylxanthine, and dexamethasone) with or 

without 1, 25-(OH)2D3. In response to 1, 25-(OH)2D3 (1, 10, and 100 nM), lipid 

accumulation and the expression of PPARγ, C/EBPα, FABP4 and SCD-1 were inhibited 
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through day 10, and VDR expression was inhibited in the early time points. The greatest 

inhibitory effect was upon expression of FABP4. Expression of SREBP-1c was only 

affected on day 2. The lowest concentrations of 1, 25-(OH)2D3 tested did not affect 

adipocyte differentiation or adipogenic gene expression. The C/EBPα promoter activity 

response to 1, 25-(OH)2D3 was also tested, with no effect detected. These results indicate 

that 1, 25-(OH)2D3 inhibited adipogenesis via suppressing adipogenic-specific genes, and 

is invoked either during PPARγ activation or immediately up-stream thereof.  Gene 

expression down-stream of PPARγ especially FABP4 was strongly inhibited, and we 

suggest that the role of 1, 25-(OH)2D3 in regulating adipogenesis will be informed by 

further studies of adipogenic-specific gene promoter activity. 

 

Introduction 

Growth of adipose tissue mass involves two distinct processes: hypertrophy (because of 

lipid synthesis and the subsequent increase in the size of adipocytes) and hyperplasia 

(because of proliferation, when preadipocyte and adipocyte numbers increase) [1]. 

Adipogenesis is the process of preadipocyte differentiation to form mature adipocytes, and 

during this process lipid accumulation occurs. The transcriptional control of adipocyte 

differentiation requires a sequential series of gene expression events and activation of a 

number of key signaling pathways [2]. This cascade starts with the induction of 

CCAAT/enhancer – binding protein β and δ (C/EBPβ and C/EBPδ). These two proteins 

then induce the expression of nuclear receptor peroxisome proliferator – activated receptor 

γ (PPARγ), which in turn induces C/EBPα expression [3]. Once expressed, C/EBPα 

activity positively feeds back on PPARγ activity. These two factors enhance each other’s 
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expression and maintain the differentiated state [4]. Sterol-regulatory element binding 

protein 1c (SREBP-1c) is another notable key adipogenic gene [5]. SREBP-1c was 

independently discovered by two different research groups, and was named as ADD1 and 

SREBP-1c [6] [7]. This gene is induced during adipogenesis and is further regulated by 

insulin in cultured adipocytes [8,9]. In addition, SREBP-1c can modulate a variety of genes 

linked to fatty acid and triglyceride metabolism, and can also regulate adipogenesis [3] via 

induction of PPARγ gene expression through E box motifs present in the PPARγ promoter 

[10]. Increased expression of SREBP-1c leads to activation of PPARγ by inducing its 

expression and by increasing the production of an endogenous PPARγ ligand. All these 

transcriptional factors are necessary for the terminally differentiated phenotype. 

 

Moreover, in humans, obesity is characterized by an increase in lipid accumulation and is 

the leading risk-factor for the development of Type 2 diabetes [11]. Understanding the 

biological process of adipogenesis is important for the development of novel targets for 

obesity therapy. Increasing evidence suggests there is a potential link between obesity and 

vitamin D insufficiency [12]. The bioactive metabolite of vitamin D is 1, 25 - (OH)2D3, 

which acts as a steroid hormone and a high-affinity ligand for the vitamin D receptor 

(VDR). The 1, 25 - (OH)2D3 activated VDR can form a heterodimer with the retinoid X 

receptor (RXR), which can bind to vitamin D response elements in various genes [13]. This 

VDR-RXR heterodimer may be competitive, inhibiting [14] the expression of PPARγ, 

which is a key regulator of adipogenesis, and thus also inhibit adipocyte maturation [13]. 

Therefore, 1, 25 - (OH)2D3 and VDR may play important roles in regulating adipogenesis. 

The vitamin D receptor is expressed very early in adipogenesis in 3T3-L1 cells. The VDR 
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expression levels reach a maximum during the first 6 h after induction of differentiation, 

then decline to background levels after 2 days [15]. This creates a short window of 

opportunity for 1, 25 - (OH)2D3 to influence the differentiation process in forming mature 

adipocytes. Previous work has indicated that 1, 25 - (OH)2D3 is an inhibitor of adipogenesis 

in the 3T3-L1 cells [16,17]. In 1998, work performed by Kelly and Gimble [18] have 

established that 1, 25 - (OH)2D3 inhibits adipocyte differentiation in murine bone marrow 

cells. However, the specific mechanisms of the inhibitory actions of 1, 25 - (OH)2D3 in 

adipogenesis have not been described.  

 

In the present study, we have determined the inhibitory effect of different concentrations 

of 1, 25 - (OH)2D3 in 3T3-L1 preadipocyte differentiation. We also studied the inhibitory 

activity of different concentrations of 1, 25 - (OH)2D3 on expression levels of key 

adipogenic genes (C/EBPs and PPARγ). As an important transcriptional factor during 

adipocyte differentiation, C/EBPα was a focus of the present study. We sought to determine 

whether there is a relationship between the inhibitory effect of 1, 25 - (OH)2D3 and the 

promoter activity of C/EBPα. Our study provides an experimental basis to better 

understand the function of 1, 25 - (OH)2D3 in regulation of adipogenesis, and the 

interactions between 1, 25 - (OH)2D3 and key adipogenic genes. 
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Materials and Methods 

Materials 

Mouse embryonic fibroblast cells (3T3-L1) were obtained from the American Type Culture 

Collection (ATCC). Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum 

(FBS) and penicillin/streptomycin were from Gibco, Life Technologies (Grand Island, 

NY).  Trizol, DNase I kit, high capacity cDNA reverse transcription kit (Cat # 4368814), 

and Taqman Master Mix were obtained from Life Technologies (Grand Island, NY). The 

Dual Reporter Luciferase Assay System was purchased from Promega Corporation, 

(Madison, WI). Oil Red O (ORO) powder, dexamethasone (D8893), insulin from bovine 

pancreas (I6634), 3-isobutyl-1-methylxanthine (IBMX) (I7018), and 1α,25-

Dihydroxyvitamin D3 (D1530) were purchased from Sigma-Aldrich (St. Louis, MO). 

Mouse-specific anti-PPARγ (sc-7196) rabbit polyclonal antibody was purchased from 

Santa Cruz Biotechnology (Dallas, Texas). Mouse-specific anti-C/EBPα (ab139731) rabbit 

polyclonal antibody, and anti-β-actin mouse-monoclonal (ab8226) were purchased from 

Abcam (Cambridge, MA). AlexaFluor 680 anti-rabbit IgG was from life Technologies 

(Grand Island, NY) and IRDye800 anti-mouse IgG was from Li-Cor (Lincoln, NE). 

 

Cell culture 

Mouse 3T3-L1 preadipocytes were cultured at 37 ˚C with 5% CO2 enriched air in DMEM 

with 10 % FBS, 100 I.U. /ml penicillin, 100 µg/ml streptomycin (basal growth medium). 

Cells were seeded in 6-well plates and 24-well plates with glass cover slips in basal growth 
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medium and cultured until confluent. On day 0 (two days post confluence), 1, 25-

dihydroxyvitamin D was added to the differentiation medium at the following final 

concentrations: 100, 10, 1, 0.1, and 0.01 nM, and cultures were incubated for 48 h. Cells 

grown in basal growth medium without 1, 25-dihydroxyvitamin D served, as a negative 

control. Cells grown in medium containing basal growth medium with dexamethasone (1 

µM), IBMX (500 µM) and insulin (1.7 mM) (standard hormonal differentiation medium, 

DM) served, as a positive control. For the DMI treatment, insulin, dexamethasone and 

IBMX were provided for the first 48 h followed by only insulin in basal growth medium 

throughout the remaining time points. Media were changed every 2 days for all treatments. 

Cells were harvested on 0, 6, and 12 h, and days 1, 2, 4, 6, 8 and 10 for RNA extraction, or 

protein extraction. Parallel cultures were stained with ORO and representative images of 

ORO stained cells on day 10 were quantified using MetaMorph Image analysis software 

(Nashville, TN). 

 

Cells and transfection 

For each cell culture well, 3.5×105 3T3-L1 cells were plated and allowed to reach 80% 

confluence. Cells were then co-transfected with 2 µg [pGL4.10 (luc2/-500 C/EBPα)] and 

0.2 µg of internal transfection control vector [pGL4.74 (hRluc/TK)], and transferred to 

growth medium. Cells were incubated 24 h, and allowed to reach 100% confluence. Two 

days post confluence cells (0 h) were treated with 100 nM of 1, 25(OH)2D3 plus 

differentiation medium, differentiation medium only, or growth medium only. Cells were 

harvested on 0, 12, 24, and 24 h, and assayed for firefly luciferase and renilla luciferase 

activities using the Dual Reporter Luciferase Assay System (Promega, Madison, WI) and 
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a Wallac 1420 Multi Label Counter. Firefly luciferase activity units were normalized to 

units of renilla luciferase activity to correct for transfection efficiency. 

 

Oil Red O (ORO) and Hematoxylin staining 

Accumulation of lipids was observed using ORO staining [19]. Oil Red O in isopropanol 

stock solution (3.5 mg/ml) was prepared, stirred overnight and filtered. Cells grown on 

cover slips in 24-well plates were used for lipid staining. On the day of the time point, 

culture medium was removed and cells were gently rinsed once with phosphate buffer 

saline (PBS). Cells were fixed in 10 % formaldehyde in PBS for 1 hr at RT. After fixation, 

cells were rinsed with PBS and then 60 % isopropanol. Oil Red O solution (6:4 v/v of stock 

solution and water) was added and incubated for 10 min at RT. Finally, cells were washed 

with distilled water, three times. Hematoxylin counter staining was done according to the 

manufacturer’s instructions. Briefly, cells were incubated with filtered hematoxylin for two 

minutes and rinsed twice with tap water. Differentiation solution (0.25 % HCl in 70 % 

alcohol) was added and cells were rinsed again with tap water. The glass cover slips were 

then removed from the wells and inverted on to a glass slide with mounting medium (Vecta 

Shield, Vector Labs, Burlingame, CA).  

 

RNA extraction and cDNA synthesis 

Total RNA was extracted using Trizol according to the manufacturer’s instructions. The 

RNA pellet was resuspended in nuclease-free water and stored at -80˚C until further use. 

RNA was quantified using a Nanodrop ND-1000 UV-Vis Spectrophotometer (Nanodrop 
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Technologies, Wilmington, DE). The quality of RNA was verified on 1% agarose gels. 

Two µg of RNA from each treatment was DNase treated. Synthesis of cDNA was 

conducted using a high capacity cDNA reverse transcription kit and random hexamers as 

primers according to the manufacturer’s instructions. To ensure availability of cDNA 

sufficient to perform all real-time PCR reactions, cDNA synthesized from 2 µg of RNA 

was pooled for each sample. Pooled cDNA was diluted 1:10 using nuclease-free water for 

real-time PCR.  

 

Real-time PCR  

Quantitative real-time PCR was performed using Taqman MGB primer/probe sets with an 

ABI 7500 Fast Real Time PCR system (Applied Biosystems, Foster City, CA). Primers 

and probes for all genes were designed using Applied Biosystems Primer Express 3.0 

software. Primers (Integrated DNA Technologies, Coralville, IA) and probes (Life 

Technologies, Grand Island, NY) were designed to have a Tm of 58-60 ˚C and 69-70 ˚C, 

respectively. Primer-probe sets that span exon-junctions (trans-intronic positions) were 

chosen for real-time PCR, to prevent binding to genomic DNA (Table 1). Eukaryotic 

translation elongation factor 2 (EEF2) was used as an endogenous control for gene 

expression. Probes were labeled with 6-FAM or VIC for all target genes or control (EEF2), 

respectively. Real-time PCR assays for each sample were conducted in duplicate wells with 

all genes including endogenous control on the same plate. Reactions contained Taqman 

Universal Fast PCR Master Mix, No AmpErase UNG (Applied Biosystems, Foster City, 

CA) (1X), forward primer (0.5 µM), reverse primer (0.5 µM), Taqman probe (0.125 µM) 

and cDNA template made up to a final volume of 15 µl in nuclease-free water. Real-time 



79 

 

PCR cycle conditions included a holding time of 90 ˚C for 20 sec, followed by 40 cycles 

of 90 ˚C for 3 sec and 60 ̊ C for 30 sec of melting and extension temperatures, respectively. 

 

Data were analyzed using the relative CT (∆∆Ct) method [20]. Average Ct values of 

endogenous control (EEF2) were subtracted from target gene average Ct values of each 

gene, to obtain ∆Ct values of each gene for each sample. For each gene, ∆Ct values in the 

control treatment at each time point were used to normalize ∆Ct values of corresponding 

time points of each treatment to obtain ∆∆Ct and mRNA fold expression values [2(-∆∆Ct)].  

 

Table 1: Primer-probe sets for real-time PCR. Primers and probe sequences used in 

real-time PCR listed 5’ to 3’: Forward primer (FP), reverse primer (RP) and Taqman 

probes for the following genes were designed from the corresponding GenBank 

accession numbers. 

Accession No. Gene name Sequences 

NM_007907.1 Eukaryotic 
translation 
elongation factor 2 
(Eef2) 

FP: CTGCCTGTCAATGAGTCCTTTG 

RP: GCCGCCGGTGTTGGAT 

Probe: CTTCACCGCTGATCTG 

NM_011146.2 Peroxisome 
proliferator activated 
receptor gamma 
(PPARγ) 

FP: GCTTCCACTATGGAGTTCATGCT 

RP: AATCGGATGGTTCTTCGGAAA 

Probe: TGAAGGATGCAAGGGTT 
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NM_007678.3 CCAAT/enhancer 
binding protein alpha 
(C/EBPα) 

FP: CGCAAGAGCCGAGATAAAGC 

RP: GTCAACTCCAGCACCTTCTGTTG 

Probe: AACGCAACGTGGAGAC 

NM_009504.4 Vitamin D receptor 
(VDR) 

FP: GGCTTCCACTTCAACGCTATG 

RP: TGCTCCGCCTGAAGAAACC 

Probe: CCTGTGAAGGCTGCAA 

NM_009883.3 CCAAT/enhancer 
binding protein beta 
(C/EBPβ) 

FP: GCGCACCGGGTTTCG 

RP: GCGCTCAGCCACGTTTG 

Probe: ACTTGATGCAATCCGGA 

NM_007679.4 CCAAT/enhancer 
binding protein delta 
(C/EBPδ) 

FP: CTGTGCCACGACGAACTCTTC 

RP: GCCGGCCGCTTTGTG 

Probe: CGACCTCTTCAACAGC 

NM_024406.1 Fatty acid binding 
protein 4 (FABP4) 

FP: CCGCAGACGACAGGAAGGT 

RP: AGGGCCCCGCCATCT 

Probe: AAGAGCATCATAACCC 

NM_010052.3 Preadipocyte factor-
1 (Pref-1) 

FP: AATAGACGTTCGGGCTTGCA 

RP: GGTCCACGCAAGTTCCATTG 

Probe: CTCAACCCCCTGCGC 

NM_011480.3 Sterol regulatory 
element binding 
transcription factor 1 
(Srebf1) 

FP: GCGGTTGGCACAGAGCTT 

RP: CTGTGGCCTCATGTAGGAATACC  

Probe: CGGCCTGCTATGAGG 

NM_009127.4 Stearoyl-Coenzyme 
A desaturase 1 
(Scd1) 

FP: CAACACCATGGCGTTCCA 

RP: TGGGCGCGGTGATCTC 

Probe: AATGACGTGTACGAATGG 
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Western Blot  

Protein extraction from 3T3-L1 preadipocytes and adipocytes was performed using cell 

lysis buffer with addition of phosphatase and protease inhibitors (Cell Signaling 

Technologies, Danvers, MA). The supernatant was extracted by centrifugation and protein 

concentration was determined by BCA protein assay according to manufacturer’s protocol 

(Thermo Scientific, Rockfrod, IL). Ten µg of whole cell lysate was resolved on SDS-PAGE 

(4-10% precise gels) and then transferred to PVDF membrane. Membranes were blocked 

with 5% non-fat milk in 1X TBST for 1h at room temperature. Membranes were incubated 

with anti-PPARγ, anti-C/EBPα and anti-β-actin at 4 ºC overnight, then washed with 1X 

TBST and incubated with AlexaFluor 680 conjugated anti-rabbit IgG and IRDye 800 

conjugated anti-mouse IgG for 1 h at room temperature. After thorough washing, blots 

were scanned and quantified using an Odyssey Dual Infrared Imaging System (Li-Cor). 

 

Microscopy 

Images were obtained using a Nikon 80i phase-contrast microscope, using a 20X objective 

lens. Image quantification was performed using MetaMorph Image analysis software 

(Nashville, TN). Area fractions were collected for each image. Images were collected in 

six to eight replicates from each culture well. Average area fractions of each of the six to 

eight replicates were used to calculate average area fraction of each treatment sample. 

Further, average area fraction values of each treatment were normalized to average area 

fraction values of corresponding controls. 
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Statistical analysis  

Statistical analysis software (SAS) 9.3 was used to perform all data analysis. Data were 

analyzed using a one-way analysis of variance (ANOVA) for each time point. Tukey’s test 

was used to find the significant differences among the different means. Differences, when 

p < 0.05, were considered statistically significant. Gene expression data were analyzed by 

comparing log (base 2) transformed values of mRNA fold expression across treatments 

within each time-point.  All data are reported as mean ± SE (n = 3).  

 

Results  

1, 25 - (OH)2D3 inhibits lipid accumulation  

Cultures of 3T3-L1 cells were incubated in standard hormonal differentiation medium, in 

the presence or absence of 1, 25 - (OH)2D3. DMI medium served as a positive control 

treatment. Basal growth medium served as a negative control. Lipid accumulation was 

observed through ORO staining on days 0, 2, 4, 6, 8 (data not shown) and 10 (Fig. 2.1A-

G). Image quantification analysis shows that lipid accumulation at higher concentrations 

of 1, 25 - (OH)2D3 (100, 10, 1 nM) treated cells was similar to that in negative control cells, 

and significantly lower than the positive control (Figure 2.1H). The lowest concentration 

of 1, 25 - (OH)2D3 treated cells showed higher lipid accumulation than negative control 

and other 1, 25 - (OH)2D3  treated cells, however, lipid accumulation was still significantly 

lower when compared to the positive control (Fig. 2.1H). This suggests that 1, 25 - (OH)2D3 

treatment inhibited lipid accumulation and adipogenesis in a dose dependent manner. 
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Figure 2.1 Oil Red O staining in 3T3-L1 cells 

Cells were treated with basal growth medium (GM) (A) or differentiation medium plus 

different concentrations of 1, 25 - (OH)2D3, 100 nM (B), 10 nM (C), 1 nM (D), 0.1 nM (E) 

or 0.01 nM (F) or differentiation medium (DM) (G). Oil Red O staining was performed on 

days 2, 4, 6, 8 and 10. Representative day 10 images are shown. Images were collected at 

400x magnification.  (H): Quantification of lipid accumulation in 3T3-L1 cells. Lipid 

accumulation was quantified using MetaMorph Image analysis software. Area fractions 

were collected for each treatment and normalized to control of corresponding time point. 

Data are means ± SE (n = 3). Different letters represent treatment effects that were 

significantly different (P < 0.05). The dose-response effect of 1, 25 - (OH)2D3 treatment on 

lipid accumulation is illustrated. 

 

High concentrations of 1, 25 - (OH)2D3 inhibit PPARγ expression  

To better understand the expression pattern of PPARγ during the process of adipocyte 

differentiation, RNA extracts and protein extracts from 3T3-L1 cells treated with DM only 

were obtained for real-time PCR and Western blots tests. Gene expression levels of PPARγ 

began to increase after day 2, and reached a maximum on day 8 (Fig. 2.2A). Protein levels 

of PPARγ were consistent with gene expression levels, increasing on day 2, and reaching 

the highest level on day 10 (Fig. 2.2B). This suggests PPARγ expression level increased 

concurrent with adipocyte differentiation, and consistent with increasing lipid 

accumulation. 
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Figure 2.2 (A) Real-time PCR quantification of PPARγ gene expression in DM treatment 

of 3T3-L1 cells on days 0, 2, 4, 6, 8, and 10 with EEF2 used as endogenous control (∆Ct).  

Data were normalized to PPARγ gene expression of the day 0 group (∆∆Ct).  (B) Image 

showing Western blot analysis (Odyssey® Dual Infrared Imaging System (Li-Cor)) of 

PPARγ on 0, 6, and 12 h, days 1, 2, 4, 6, 8 and 10. β-actin was used as an internal protein 

loading control. Quantification of PPARγ normalized to β-actin is shown. Data are means 

± SE (n = 3). Different letters represent treatment effects that were significantly different 

(P < 0.05). 

 

Gene expression levels of PPARγ in 3T3-L1 cells treated with high concentrations (100, 

10, and 1 nM) of 1, 25 - (OH)2D3 were significantly inhibited compared to the positive 

control (Fig. 2.3A-E) at all time-points measured. In addition, for all time-points, 3T3-L1 

cultures treated with low concentrations (0.1 and 0.01 nM) of 1, 25 - (OH)2D3 showed no 

significant differences in PPARγ gene expression levels as compared to positive control 

cultures (Fig. 2.3A-E). On days 2, 4 and 10, the highest concentration (100 nM) of 1, 25 - 

(OH)2D3 had the greatest inhibitory effect on PPARγ mRNA expression levels. This 

suggests that PPARγ gene expression levels were inhibited by 1, 25 - (OH)2D3, and 1, 25 - 

(OH)2D3 had greater efficacy in inhibiting PPARγ gene expression at higher concentrations. 
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Figure 2.3 Real-time PCR quantification of PPARγ gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.01, 0.1, 1, 10, and 100 nM 1, 25 - (OH)2D3 and EEF2 was used as endogenous 

control (∆Ct). Data were normalized to PPARγ gene expression of the positive control (DM) 
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at the corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters 

represent treatment effects that were significantly different (P < 0.05). 

 

To confirm the real-time PCR results, Western blots also were performed on whole cell 

lysates following treatment with 100 or 1 nM of 1, 25 - (OH)2D3 at all the time points. 

Basal growth medium (GM) and differentiation medium (DM) served as negative and 

positive controls, respectively. PPARγ protein levels were inhibited by 1, 25 - (OH)2D3 at 

6 h (S2.1A Fig.), but thereafter the PPARγ protein levels were high in the 100 nM 1, 25 - 

(OH)2D3 treated groups, but remained low in DM only groups from 12 h to day 4 (S2.1B-

E Fig.). On day 8, both the 1, 25 - (OH)2D3 treated groups and DM only group had high 

PPARγ protein level (S2.1G Fig.), and on day 10, PPARγ protein levels in both 100 and 1 

nM of 1, 25 - (OH)2D3 treatment groups decreased to levels similar to the GM only 

treatment.  However, in the DM only group, PPARγ protein level still remained relatively 

high (S2.1H Fig.). This suggests that 1, 25 - (OH)2D3 treatments inhibit PPARγ protein 

levels only at the early time point, 6 h, and again at the late time point, day 10. At the other 

time points, since the whole cell lysates were used for Western blots measurement, and the 

1, 25 - (OH)2D3 treated group had higher PPARγ protein level than the DM only group, 

suggesting that the inhibitory efficacy of 1, 25 - (OH)2D3 on adipogenesis may function at 

the level of blocking PPARγ protein trafficking to nucleus. 
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Gene expression of C/EBPα is inhibited by high concentrations of 1, 25 - (OH)2D3 

Both C/EBPα mRNA expression and protein level were measured in DM only treatments 

as a reference to help understand regulation of this gene in adipocyte differentiation (Fig. 

2.4). Gene expression of C/EBPα was increased from days 2 to 10, and reached the 

maximum at day 8 (Fig. 2.4A), however, total cell protein levels of C/EBPα did not change 

significantly from 0 h to day 10 (Fig. 2.4B), and appeared to remain at relatively high levels 

throughout the test period. 
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Figure 2.4 (A) Real-time PCR quantification of C/EBPα gene expression in DM 

treatment of 3T3-L1 cells on days 0, 2, 4, 6, 8, and 10 with EEF2 used as endogenous 

control (∆Ct). Data were normalized to C/EBPα gene expression of the day 0 group (∆∆Ct). 

(B) Image showing Western blot analysis (Odyssey® Dual Infrared Imaging System (Li-

Cor)) of C/EBPα on 0, 6, and 12 h, days 1, 2, 4, 6, 8 and 10. β-actin was used as an internal 

protein loading control. Quantification of C/EBPα was normalized to β-actin. Data are 

means ± SE (n = 3). Different letters represent treatment effects that were significantly 

different (P < 0.05).  

 

Similarly to PPARγ, no significant changes in C/EBPα gene expression levels were 

observed in the cells treated with low concentrations (0.01 and 0.1 nM) of 1, 25 - (OH)2D3 

as compared to the positive control cells at all time-points measured. (Fig. 2.5). Cells 

treated with high concentrations (100, 10, and 1 nM) of 1, 25 - (OH)2D3 showed significant 

inhibition of C/EBPα expression as compared to the positive control for days 2 and 4 (Fig. 

2.5A-B). Similarly to PPARγ expression, C/EBPα gene expression levels showed no 

significant difference between treatments groups on day 6 (Fig. 2.5C). The inhibitory 

efficacy of 1, 25 - (OH)2D3 was significant on days 8 and 10 in 1, 25 - (OH)2D3 treatment 

groups compared to DM only group (Fig. 2.5D-E). This suggests that similarly to 

regulation of PPARγ expression, that 1, 25 - (OH)2D3 treatments had significant inhibitory 

effects on C/EBPα gene transcription, and this efficacy lasted until day 10. 
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Figure 2.5 Real-time PCR quantification of C/EBPα gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.01, 0.1, 1, 10, and 100 nM 1, 25 - (OH)2D3 and EEF2 was used as endogenous 

control (∆Ct). Data were normalized to C/EBPα gene expression of positive control (DM) 
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at the corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters 

represent treatment effects that were significantly different (P < 0.05).  

 

Total cell protein levels of C/EBPα were also determined (S2.2 Fig.). In the early time 

points (6 and 12 h), C/EBPα protein levels were not changed in the 1, 25 - (OH)2D3 

treatment groups and DM only group compared to negative control (S2.2A-B Fig.). 

Furthermore, there were no significant differences in C/EBPα protein levels compared to 

DM only group to 1, 25 - (OH)2D3 treated groups at all the time points, suggesting that total 

cellular C/EBPα protein levels were not influenced by 1, 25 - (OH)2D3 treatment. 

 

In the early time points, Vitamin D receptor gene expression is inhibited by high 

concentrations of 1, 25 - (OH)2D3  

To better understand the expression pattern of vitamin D receptor, VDR mRNA expression 

were quantified from 0 h to day 10 in DM only treatments (Fig. 2.6A). Gene expression of 

VDR increased from 6 h, and reached the maximum at 12 h, and then decreased after 24 h. 

This results showed that VDR was induced in the early time points of adipocyte 

differentiation process, suggesting it may play an important role in inhibition of adipocyte 

differentiation by 1, 25 - (OH)2D3. 

VDR gene expression was also determined with 1, 25 - (OH)2D3 treatments on 6, 12 h, and 

day 1, 2, 4, 6, 8, 10. On 6 and 12 h (Fig. 2.6B-C), VDR gene expression was only inhibited 

in cells treated with the highest concentration (100 nM) of 1, 25 - (OH)2D3. Significant 

changes in VDR gene expression levels were observed in the cells treated with high 

concentrations (100, 10 and 1 nM) of 1, 25 - (OH)2D3 as compared to the positive control 
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cells at day1, 2, and 4. (Fig. 2.6D-F). Cells treated with low concentrations of 1, 25 - 

(OH)2D3 showed no significant inhibition of VDR expression as compared to DM only 

group at all the time points except day 10 (Fig. 2.6B-I). On day 10, VDR expression was 

inhibited by 1, 25 - (OH)2D3 treatments in all the concentrations (Fig. 2.6I). These results 

suggests that similarly to regulation of PPARγ and C/EBPα expression, 1, 25 - (OH)2D3 

treatments had significant inhibitory effects on VDR gene transcription, especially in the 

early time process (day1 and 2) of adipocyte differentiation. 
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Figure 2.6 Real-time PCR quantification of VDR gene expression in 3T3-L1 cells (A): 

in the positive control treatment (DM) at 0, 6, and 12 h, and days 1, 2, 4, 6, 8, and 10.  (B 

to I). Cells were treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 100 

nM 1, 25 - (OH)2D3 and EEF2 was used as endogenous control (∆Ct). Data were 

normalized to VDR gene expression of the positive control (DM) at the corresponding time 

point (∆∆Ct). (B) 6 h, (C) 12 h, (D) day 1, (E) day 2, (F) day 4 (G) day 6, (H) day 8 and (I) 

day 10. Data are means ± SE (n = 3). Different letters represent treatment effects that were 

significantly different (P < 0.05).  

 

There is no effect of 1, 25-Dihydroxyvitamin D treatment on C/EBPβ gene expression 

levels  

Gene expression levels of C/EBPβ in the positive control (Fig. 2.7A) were increased after 

6 h, and reached the highest expression level at 12 h, then decreased after day 2. Gene 

expression of C/EBPβ was determined at 6, 12, 24 h and days 2, 4, 6, 8 10 by real-time 

PCR. Unlike PPARγ and C/EBPα, C/EBPβ gene expression level was not impacted by 1, 

25 - (OH)2D3 compared to DM only group at any time points tested, up to day 10 (Fig. 

2.7B-H), suggesting that 1, 25 - (OH)2D3 has no effect on C/EBPβ gene expression levels. 

However, at day 10, the high concentrations (100, 10, and 1 nM) of 1, 25 - (OH)2D3 showed 

inhibitory effects on C/EBPβ gene expression (Fig. 2.7I). On day 10, the expression level 

of C/EBPβ was very low (Fig. 2.7A). Despite its low expression level, 1, 25 - (OH)2D3 had 

a suppressive effect on C/EBPβ expression at this time point.  
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Figure 2.7 Real-time PCR quantification of C/EBPβ gene expression in 3T3-L1 cells 

(A): in the positive control treatment (DM) at 0, 6, and 12 h, and days 1, 2, 4, 6, 8, and 

10.  (B to I). Cells were treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 

100 nM 1, 25 - (OH)2D3 and EEF2 was used as endogenous control (∆Ct). Data were 

normalized to C/EBPβ gene expression of the positive control (DM) at the corresponding 

time point (∆∆Ct). (B) 6 h, (C) 12 h, (D) day 1, (E) day 2, (F) day 4 (G) day 6, (H) day 8 

and (I) day 10. Data are means ± SE (n = 3). Different letters represent treatment effects 

that were significantly different (P < 0.05).  

 

C/EBPδ gene expression was not changed in response to 1, 25 - (OH)2D3 treatments  

This member of the C/EBP family of transcription factors is induced in the early process 

of adipogenesis.  Thus we quantified its gene expression levels at 6, 12, and 24 h, and 

continued to monitor its expression through days 2, 4, 6, 8, and 10. Similarly to C/EBPβ, 

C/EBPδ gene expression levels of 1, 25 - (OH)2D3 treated cells were generally not inhibited 

compared to the DM only treated group (Fig. 2.8B-I), even at the highest concentration of 

1, 25 - (OH)2D3. This suggests that the inhibitory efficacy of 1, 25 - (OH)2D3 in 

adipogenesis does not impact the expression of C/EBPδ.  Analysis of C/EBPδ gene 

expression in the positive control during adipocyte differentiation indicated that it is 

increased after 6 h, reaching the highest point at 12 h, and then decreases after 24 h (Figure 

8A). Interestingly, the expression level of C/EBPδ was again increased after day 8, and 

reached a similar high expression level compared to 12 h on day 10 (Fig. 2.8A). This 

suggests that the C/EBPδ gene may not only be induced and have a role in the early process 

of adipogenesis, but may also have a role in the latter stages of adipogenesis.  
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Figure 2.8 Real-time PCR quantification of C/EBPδ gene expression in 3T3-L1 cells 

(A): in the positive control treatment (DM) at 0, 6, and 12 h, and days 1, 2, 4, 6, 8, and 

10.  (B to I). Cells were treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 

100 nM 1, 25 - (OH)2D3 and EEF2 was used as endogenous control (∆Ct). Data were 

normalized to C/EBPδ gene expression of the positive control (DM) at the corresponding 

time point (∆∆Ct). (B) 6 h, (C) 12 h, (D) day 1, (E) day 2, (F) day 4 (G) day 6, (H) day 8 

and (I) day 10. Data are means ± SE (n = 3). Different letters represent treatment effects 

that were significantly different (P < 0.05).  

 

Gene expression of FABP4 is highly responsive to 1, 25 - (OH)2D3 treatments  

In the positive control treatments, the expression pattern of FABP4 was similar to that of 

PPARγ, increasing after day 2, and reaching the highest expression levels on day 8 but 

declining to similar levels to day 6 by day 10 (Fig. 2.9F). Gene expression of FABP4 was 

strongly inhibited by high concentrations (100, 10, and 1 nM) of 1, 25 - (OH)2D3 treatments 

at all the time points (Fig. 2.9). Moreover, unlike PPARγ and C/EBPα expression levels, 

FABP4 gene expression levels in response to 0.1 nM 1, 25 - (OH)2D3 were also 

significantly inhibited compared to the positive control at all time-points (Fig. 2.9). The 

lowest concentration of 1, 25 - (OH)2D3 (0.01nM) treatments had no effect on FABP4 gene 

expression on days 2 and 4 compared to the DM only group (Fig. 2.9B-C). However, on 

day 6, even the lowest concentration of 1, 25 - (OH)2D3 showed an inhibitory effect on 

FABP4 gene expression (Fig. 2.9D). These effects were attenuated on days 8 and 10 (Fig. 

2.9E-F). 
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Figure 2.9 Real-time PCR quantification of FABP4 gene expression in 3T3-L1 cells (A): 

in the positive control treatment (DM) on days 0, 1, 2, 4, 6, 8, and 10 (B to F). Cells were 

treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 100 nM 1, 25 - (OH)2D3 

and EEF2 was used as endogenous control (∆Ct). Data were normalized to FABP4 gene 
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expression of the positive control (DM) at the corresponding time point (∆∆Ct). (B) day 2, 

(C) day 4 (D) day 6, (E) day 8 and (F) day 10. Data are means ± SE (n = 3). Different letters 

represent treatment effects that were significantly different (P < 0.05). 

 

Patterns of SREBP-1c expression resembled those of C/EBPβ and C/EBPδ expression, 

but was fleetingly inhibited on day 2  

The expression pattern of SREBP-1c in adipocyte differentiation showed that it was 

induced to the maximum expression level on day 2, and then decreased quickly from days 

4 to 10 (Fig. 2.10A). Interestingly, on day 2, cells treated with 1, 25 - (OH)2D3 (all 

concentrations tested, 100, 10, 1, 0.1 and 0.01 nM) showed significant inhibition of 

SREBP-1c gene expression as compared to the positive control (Fig. 2.10B). However, this 

effect was rapidly attenuated. Similarly to C/EBPβ and C/EBPδ, SREBP-1c gene 

expression levels of 1, 25 - (OH)2D3 treated cells were generally not different from the 

positive control from days 4 to 10 (Fig. 2.10C-F). The inhibitory effect of 1, 25 - (OH)2D3 

on day 2 coincides with the time point of maximum SREBP-1c expression (Fig. 2.10A), 

suggesting that 1, 25 - (OH)2D3 only has an effect when SREBP-1c reached a high 

expression level. These results suggest that SREBP-1c may also play an important role in 

the 1, 25 - (OH)2D3 modulation pathway, and may have interaction with 1, 25 - (OH)2D3 

during the early stages of adipogenesis.  
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Figure 2.10 Real-time PCR quantification of SREBP-1c gene expression in 3T3-L1 cells 

(A): in the positive control treatment (DM) on days 0, 1, 2, 4, 6, 8, and 10 (B to F). Cells 

were treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 100 nM 1, 25 - 

(OH)2D3 and EEF2 was used as endogenous control (∆Ct). Data were normalized to 
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SREBP-1c gene expression of the positive control (DM) at the corresponding time point 

(∆∆Ct). (B) day 2, (C) day 4 (D) day 6, (E) day 8 and (F) day 10. Data are means ± SE (n 

= 3). Different letters represent treatment effects that were significantly different (P < 

0.05). 

 

The inhibitory effect of 1, 25 - (OH)2D3 on SCD-1 gene expression levels was more 

gradual compared to PPARγ, C/EBPα or FABP4 expression  

For the positive control, the expression pattern of SCD-1 in adipocyte differentiation 

process was similar to that of PPARγ and C/EBPα. Expression of SCD-1 was increased on 

day 2, and reached a maximum expression level on day 8, remaining relatively high on day 

10 (Fig. 2.11A). The inhibition of SCD-1 gene expression was induced by all 

concentrations of 1, 25 - (OH)2D3 on day 2 (Fig. 2.11B). However, its inhibitory effect at 

latter time points was more pronounced (Fig. 2.11C-F). Expression of SCD-1 was inhibited 

by high concentrations (100, 10 and 1 nM) of 1, 25 - (OH)2D3 on day 4 (Fig. 2.11C), 

showing a 70% inhibition effect at this time point. This continued to day 6 (Fig. 2.11D), 

and reached a inhibition effect greater than 90% of the positive control, in all of the three 

high concentrations of 1, 25 - (OH)2D3 treatments. The efficacy of 1, 25 - (OH)2D3 was 

stronger after day 6, and all the five concentrations of 1, 25 - (OH)2D3 showed significant 

inhibition on days 8 and 10 (Fig. 2.11E-F). This suggests SCD-1 is strongly responsive to 

1, 25 - (OH)2D3, and may play an important role in the pathway of 1, 25 - (OH)2D3 

regulation of adipogenesis.  
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Figure 2.11 Real-time PCR quantification of SCD-1 gene expression in 3T3-L1 cells 

(A): in the positive control treatment (DM) on days 0, 1, 2, 4, 6, 8, and 10 (B to F). Cells 

were treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 100 nM 1, 25 - 

(OH)2D3 and EEF2 was used as endogenous control (∆Ct). Data were normalized to SCD-
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1 gene expression of the positive control (DM) at the corresponding time point (∆∆Ct). (B) 

day 2, (C) day 4 (D) day 6, (E) day 8 and (F) day 10. Data are means ± SE (n = 3). Different 

letters represent treatment effects that were significantly different (P < 0.05). 

 

Gene expression of Pref-1 was altered in early time-points in response to high 

concentrations of 1, 25 - (OH)2D3 

In the positive control, the expression pattern of Pref-1 as expected was decreased by day 

2, and remained so through until day 10 (Fig. 2.12A). Expression levels of Pref-1 were not 

altered in any of the 1, 25 - (OH)2D3 treated cells on day 2 (Fig. 2.12B), values being similar 

to the positive control. Cells treated with high concentrations of 1, 25 - (OH)2D3 (100, 10, 

and 1 nM) showed a significant increase in Pref-1 gene expression levels from days 4 to 6 

(Fig. 2.12C-D), suggesting greater retention of the preadipocyte phenotype. By day 8, all 

effects from 1, 25 - (OH)2D3 treatments appeared to be attenuated, although the inhibitory 

effect was at least partially regenerated on day 10 (Fig. 2.12E-F). This results suggest that 

Pref-1 expression responds to 1, 25 - (OH)2D3 in the latter stages of adipocyte 

differentiation, and may also plays a role in the pathways of 1, 25 - (OH)2D3 inhibited 

adipogenesis.  
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Figure 2.12 Real-time PCR quantification of Pref-1 gene expression in 3T3-L1 cells (A): 

in the positive control treatment (DM) on days 0, 1, 2, 4, 6, 8, and 10 (B to F). Cells were 

treated with DM in the presence or absence of 0.01, 0.1, 1, 10, and 100 nM 1, 25 - (OH)2D3 
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and EEF2 was used as endogenous control (∆Ct). Data were normalized to Pref-1 gene 

expression of the positive control (DM) at the corresponding time point (∆∆Ct). (B) day 2, 

(C) day 4 (D) day 6, (E) day 8 and (F) day 10. Data are means ± SE (n = 3). Different letters 

represent treatment effects that were significantly different (P < 0.05). 

 

Relative luciferase activity of C/EBPα promoter activity was not affected by 1, 25 - 

(OH)2D3 treatment  

This study was conducted to investigate C/EBPα promoter activity in response to transient 

exposure of cells for 0, 12, 24 and 48 h to 100 nM 1, 25 - (OH)2D3 plus differentiation 

medium, differentiation medium only, and growth medium only. The data obtained with 1, 

25 - (OH)2D3 treatment indicated no change C/EBPα promoter activity at any time points, 

12, 24 and 48 h, compared to differentiation medium, suggesting no effects of 1, 25 - 

(OH)2D3 on C/EBPα promoter activity (Fig. 2.13) . The promoter activities of C/EBPα 

from cells treated with both differentiation medium and differentiation medium plus 1, 25 

- (OH)2D3 were significantly higher than growth medium alone (Fig. 2.13), suggesting that 

the C/EBPα promoter is stimulated within the first 48 h of adipocyte differentiation. 
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Figure 2.13 Mouse 3T3-L1 cells were transfected with pGL4.10 (luc2/-500CEBPa) in 

triplicate. Following incubation with differentiation medium only, growth medium only, 

or differentiation medium with 1, 25(OH)2D3 (100nM). Fire-fly and Renilla luciferase 

activity units were measured at 0, 12, 24 and 48 h. The firefly luciferase activity units were 

normalized to Renilla luciferase activity units. Data are normalized as fold activation 

relative to 0 h and shown as means ± SE (n = 3). Different letters represent treatment effects 

that were significantly different (P < 0.05) within each time-point.  

 

Discussion  

Although the inhibitory effect of 1, 25 - (OH)2D3 in adipogenesis has been reported for 

more than a decade, the molecular mechanisms underlying this inhibition remains 

unclear. To explore this important question, we have performed a systematic 
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investigation aimed at studying the molecular events during the adipocyte 

differentiation response to 1, 25 - (OH)2D3. The 3T3-L1 cell line is a major model used 

in developing understanding of adipocyte differentiation and key adipogenic gene 

expression. Our strategy was to take advantage of this well-defined adipogenic model 

and identify the molecular changes at each stage that resulted from 1, 25 - (OH)2D3 

treatments. We report here that lipid accumulation and expression levels of adipogenic 

specific genes were inhibited in vitro by high concentrations (1, 10 and 100 nM) of 1, 

25 - (OH)2D3 but not by lower concentrations (0.1 and 0.01 nM). As discussed in 

greater detail below, lipid accumulation was inhibited by the high concentrations of 1, 

25 - (OH)2D3, at levels comparable to the negative control, by day 10. The lower 

concentrations of 1, 25 - (OH)2D3 have slight inhibitory effects on lipid accumulation 

compared to the positive control. Gene expression levels of PPARγ, C/EBPα, VDR, 

FABP4 and SCD-1 were inhibited by the high concentrations of 1, 25 - (OH)2D3 

throughout the experimental period to day 10. However, the lower concentrations of 1, 

25 - (OH)2D3 had no inhibitory effect. Gene expression levels of C/EBPβ and C/EBPδ 

were not affected by 1, 25 - (OH)2D3 treatments, at any of the concentrations tested. 

We also studied the effects of 1, 25 - (OH)2D3 on C/EBPα promoter activity. There 

appeared to be no inhibitory effect of 1, 25 - (OH)2D3 on the activity of the C/EBPα 

promoter. The present study has also provided a detailed temporal analysis of key 

adipogenic gene expression across time points from days 0 to 10 during the adipocyte 

differentiation process. These data demonstrate at least three important observations: 

1) high concentrations of 1, 25 - (OH)2D3 have strongly inhibitory effects on 

adipogenesis, and this effects persist through day10, 2) not all of the key adipogenic 
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genes (e.g. C /EBPβ and C/EBPδ) interact with 1, 25 - (OH)2D3, and 3) the pathway of 

1, 25 - (OH)2D3 mediated inhibition of adipogenesis does not appear to involve the 

C/EBPα promoter. 

 

1, 25-Dihydroxyvitamin D3 is an endocrine hormone that plays multiple physiological 

roles [21]. This secosteroid hormone is known to be critical for immune system 

function [22] and calcium and phosphate homeostasis [23,24]. 1, 25-Dihydroxyvitamin 

D3 is also known to affect adipocyte differentiation and metabolism [25]. 1, 25-

Dihydroxyvitamin D3 is also the ligand of VDR, hence, VDR may play an important 

part in the inhibitory pathway of 1, 25 - (OH)2D3 in adipogenesis. The VDR has 

previously been reported to play an important role in the vitamin D signaling pathway 

in health and disease [25]. Kong and Li [26] found that VDR protein expression was 

very low in mouse 3T3-L1 preadipocytes, however, VDR expression increases 

dramatically by 4 h following treatment with adipogenic differentiation medium, and 

returns to baseline levels by day 2. 1, 25-Dihydroxyvitamin D3 treatment was able to 

stabilize VDR expression for at least another day. The mechanism of VDR stabilization 

by 1, 25 - (OH)2D3 is currently not known. However, the observation of VDR 

expression in the early time points of adipogenesis may provide a short window for 1, 

25 - (OH)2D3 to inhibit adipogenesis [13]. The role of the VDR in pre-adipocyte 

differentiation in 3T3-L1 cells was also studied by Blumberg et al [15]. Their studies 

reported that the mRNA levels of VDR increased to a maximum by 6 h following 

initiation of adipocyte differentiation, and the protein levels of VDR reached a 

maximum by 12 h in the nucleus, and then declined to baseline level by day 2. These 
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similar reports suggest that the inhibition of adipogenesis by 1, 25 - (OH)2D3 binding 

VDR may occur in the early time points (before day 2) during adipogenesis, however, 

the specific mechanism still remains unknown. In our studies, VDR gene expression 

pattern in adipocyte differentiation was measured from 0 h to day 10. The expression 

of VDR was induced after adipocyte differentiation initiated 6 h, and reached the 

maximum expression level at 12 h, then declined after 24 h, which is consistent with 

previous literature reports. VDR gene expression was also inhibited by 1, 25 - (OH)2D3 

treatments in early time points. This suggests that VDR plays an important role in the 

inhibitory pathway of 1, 25 - (OH)2D3 regulating adipocyte differentiation.  

 

The C/EBP family is a class of basic-leucine zipper transcription factors, and does not 

form homo-or hetero dimers. Furthermore, their tissue distribution is not limited to 

adipose tissue [27]. The gene expression of several C/EBP family members is known 

to be regulated during adipogenesis, and they have been shown to be regulators of 

adipocyte differentiation. Both C/EBPβ and C/EBPδ mRNA and protein levels were 

reported to rise early and transiently in preadipocytes which have been induced to 

differentiate [28-30]. In the present study, real-time PCR results confirmed that during 

adipogenesis, C/EBPβ mRNA expression levels began to rise by 6 h, and reached a 

maximum by 12 h following induction, then declined to baseline level after 24 h 

(Figure 2.7A). The mRNA expression levels of C/EBPδ also increased by 6 h, and 

reached the highest level at 12 h, then decreased after 24 h (Fig. 2.8A). These results 

are consistent with previous reports, and the timing of expression of these two genes 

was similar to VDR, suggesting that there may be an interaction between 1, 25 - 



113 

 

(OH)2D3 through VDR binding, inhibiting adipogenesis and C/EBPβ or C/EBPδ 

expression during early adipogenesis. Blumberg et al [15] reported that 1, 25 - (OH)2D3 

treatment inhibited C/EBPβ mRNA expression level, however, C/EBPδ gene 

expression did not change in response to 1, 25 - (OH)2D3. Their studies indicate that 

after binding with VDR, 1, 25 - (OH)2D3 inhibits adipogenesis via inhibiting C/EBPβ 

gene expression but not C/EBPδ. In contrast, Kong and Li [26] reported that 1, 25 - 

(OH)2D3 treatments did not influence the gene expression of either C/EBPβ or C/EBPδ 

[27]. In the present study, we quantified gene expression levels of both C/EBPβ and 

C/EBPδ in response to 1, 25 - (OH)2D3 treatment, and our results are similar to those 

reported by Kong and Li [26]. From 6 h to 24 h, and days 2 to 10, gene expression 

levels of C/EBPβ and C/EBPδ  were not changed by 1, 25 - (OH)2D3 treatments. These 

data demonstrate that even though the gene expression of these C/EBP family members 

is stimulated in early adipogenesis, corresponding to the maximum expression time of 

VDR, these two factors are not included in the pathway of 1, 25 - (OH)2D3 inhibited 

adipogenesis. 

 

The PPAR family is a group of transcriptional factors belonging to the nuclear hormone 

receptor superfamily. These transcriptional factors heterodimerize with another 

nuclear hormone receptor, retinoid X receptor (RXR), bind to the response elements 

of target gene promoters and function as active transcriptional factors [31]. When 

PPARs are heterodimerized with RXR, the complex is activated and transported to the 

nucleus to bind to specific sequences in promoter regions (termed as PPAR response 

elements, PPREs) of downstream target genes, activating their transcription [6,32-33]. 
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There are three major isoforms: PPARα, PPARδ, and PPARγ [34]. The three isoforms 

have specific roles in lipid metabolism. Importantly, PPARγ plays an important role in 

triglyceride synthesis and adipocyte differentiation [33]. Activation of PPARγ 

expression occurs downstream of C/EBPβ and C/EBPδ transcription during the 

cascade of adipogenesis, and upstream of C/EBPα. In the present study, gene 

expression of PPARγ was highly inhibited by 1, 25 - (OH)2D3, from day 2 until day 10 

(Fig. 3). Moreover, the cellular response of C/EBPα to 1, 25 - (OH)2D3 was similar to 

that of PPARγ. The inhibition of 1, 25 - (OH)2D3 was persistent until day 10 (Figure 

2.5). These data indicate that the 1, 25 - (OH)2D3 induced inhibition of adipogenesis in 

3T3-L1 cells was associated with an inhibition of PPARγ and C/EBPα gene expression.  

 

To confirm these results, the protein levels of both PPARγ and C/EBPα were measured 

using Western blot. Interestingly, the whole cell lysate from 1, 25 - (OH)2D3 plus DM 

treated cells had the highest PPARγ protein level from 6 h to day 4, and the whole cell 

lysate from DM only treated cells had lower PPARγ levels than the 1, 25 - (OH)2D3 

treated cells, but comparable to growth medium treated cells. By day 6, the 1, 25 - 

(OH)2D3 plus DM treated cells and DM only treated cells had similar levels of PPARγ 

protein, however, by day 10, DM only treated cells had the highest PPARγ protein 

level, and PPARγ protein level from 1, 25 - (OH)2D3 plus DM treated cells was 

decreased to the same level as growth medium only treated cells (S2.1 Fig.). Protein 

levels of C/EBPα in the whole cell lysate were not changed in response to 1, 25 - 

(OH)2D3 treatments on any of the time points in comparison to DM only treated cells 

(S2.2 Fig.), suggesting that C/EBPα protein was not influenced by 1, 25 - (OH)2D3 
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treatments. In previous studies by Blumberg et al [15], they reported the protein level 

of PPARγ and C/EBPα was inhibited by 1, 25 - (OH)2D3 treatments. However, these 

authors used the nuclear extracts to measure the protein level of these two 

transcriptional factors. In the present study, we used the whole cell lysate to measure 

the protein levels. These observations together suggest that regulation of PPARγ 

effects are not directly mediated at transcriptional or translational levels. Rather, 

mediation occurs via regulation of PPARγ activation and transport to the nucleus. Thus, 

we hypothesize that 1, 25 - (OH)2D3  treatments block the trafficking of PPARγ from 

the cytoplasm to the nucleus. Thus, PPARγ protein is not transferred into nucleus 

preventing activation of downstream target genes in adipogenesis. In contrast, without 

1, 25 - (OH)2D3 treatment, the PPARγ protein in the DM only treated cells was readily 

transported into the nucleus, and functioned as transcriptional factor, inducing the 

downstream genes (e.g. C/EBPα, FABP4). Therefore, the protein level of PPARγ in 

DM only treated cells was lower compared to 1, 25 - (OH)2D3 treated cells. The protein 

levels of PPARγ and C/EBPα in DM only treated cells were measured from 0, 6, and 

12 h to days 1, 2, 4, 6, 8, and 10. The protein levels of PPARγ were consistent with 

mRNA expression levels quantified by real-time PCR. Interestingly, unlike PPARγ, 

the protein levels of C/EBPα were only slightly changed throughout the experimental 

time points. We hypothesize that this may be because the C/EBPα protein has longer 

half-life than PPARγ or is accumulated in the cytoplasm before adipogenesis is 

initiated. The activity of the C/EBPα promoter was also measured using the Dual 

Reporter Luciferase Assay System (Promega, Madison, WI). Relative luciferase 

activity data showed that the activity of C/EBPα promoter appeared to be unchanged 
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in response to 1, 25 - (OH)2D3 treatments. These intriguing data demonstrate that 1, 25 

- (OH)2D3 treatments inhibit adipogenesis via inhibiting PPARγ and C/EBPα gene 

expression, and that PPARγ may play a more important role in this pathway in 

comparison to C/EBPα. Further studies are needed to explore the mechanism of PPARγ 

interaction with 1, 25 - (OH)2D3 in its inhibition of adipogenesis. 

 

In the present study, SREBP-1c gene expression was only inhibited by 1, 25 - (OH)2D3 

treatments on day 2, coinciding with its maximum expression level in the positive 

control treatment. Both the high (100, 10, and 1 nM) and low (0.1 and 0.01 nM) 

concentrations of 1, 25 - (OH)2D3  inhibited SREBP-1c gene expression on day 2 (Fig. 

2.10B). However, from days 4 to 10, the inhibitory effects were ameliorated, and the 

expression of SREBP-1c was not changed in response to 1, 25 - (OH)2D3 treatments, 

at any of the concentrations tested (Fig. 2.10C-F). These data indicate that the 

inhibition of SREBP-1c gene expression by 1, 25 - (OH)2D3 treatment was transient 

and corresponded with the d 2 time point, in which its expression rose, 10-fold in the 

positive control in comparison to the time-point at d 0. Thus, it is not clear whether 

SREBP-1c may be involved in the 1, 25 - (OH)2D3 signaling pathway that inhibits 

adipogenesis, showing a similar gene expression profile to C/EBPβ and also reflecting 

the profile observed for C/EBPδ at time-points up to d 6. These three genes are 

upstream of PPARγ in the transcriptional activation of adipogenesis, hence, the 

inhibition of adipogenesis caused by 1, 25 - (OH)2D3 may be unrelated to mechanisms 

involving the transcriptional factors that are expressed in the early stages of 

adipogenesis. 
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In additional to PPARγ and C/EBPα, gene expression levels of FABP4 and SCD-1 were 

strongly inhibited by 1, 25 - (OH)2D3 treatments. Gene expression of FABP4 was 

strongly inhibited by the high concentrations (100, 10 and 1 nM) of 1, 25 - (OH)2D3 

treatments from days 2 to 4 (Fig. 2.9B-C). Moreover, from days 6 to 10, all the 

concentrations of 1, 25 - (OH)2D3 had significant inhibitory effects on FABP4 gene 

expression (Fig. 2.9D-F). The inhibitory effects of 1, 25 - (OH)2D3 treatments on SCD-

1 gene expression were gradual in comparison to effects on FABP4 expression. 

Inhibition by high concentrations of 1, 25 - (OH)2D3 began by day 4 (Fig. 2.10C), and 

remained until day 8 (Fig. 2.11D-E). However, by day 10, gene expression of SCD-1 

was inhibited by all concentrations of 1, 25 - (OH)2D3 tested (Fig. 2.11F), and 

comparable to effects on FABP4. In previous reports, FABP4 has been shown to have 

a PPARγ response element (PPRE) in its promoter region and PPARγ regulates gene 

expression of FABP4 [32,35]. In 1, 25 - (OH)2D3 treated cells, PPARγ expression was 

significantly inhibited, and this effect also appeared to cause a negative action on gene 

expression of FABP4. Similarly to FABP4, SCD-1 also plays an important role in 

adipogenesis. Its functions include incorporation of double bonds in fatty acids and 

synthesis of long chain fatty acids in adipocytes [36]. In the present study, SCD-1 

expression was gradually increased from days 2 to 10 with DM treatment, and 

significantly inhibited by 1, 25 - (OH)2D3 treatments, suggesting that SCD-1 may play 

a role in the pathway of 1, 25 - (OH)2D3 inhibited adipogenesis. Mechanisms of FABP4 

and SCD-1 gene expression in response to 1, 25 - (OH)2D3 still need to be explored 

further. 
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Preadipocyte factor 1 is a marker protein of preadipocytes and is not expressed in 

mature adipocytes [37]. During initiation of adipogenesis, the gene expression of Pref-

1 decreases and the expression of key adipogenic genes increases [38]. We 

hypothesized that gene expression of Pref-1 would decrease in treatments with 

differentiation medium, and would remain at higher levels in treatments with 1, 25 - 

(OH)2D3 when compared to in DM treated cells. In the present study, Pref-1 gene 

expression was significantly lower compared to that of day 4, DM only treated cells, 

and remained at low levels through day 10 (Fig. 2.12A). In the cells treated with 1, 25 

- (OH)2D3, Pref-1 gene expression was significantly higher than in DM only treated 

cells by day 6 (Fig. 2.12B-F), and declined to similar levels to the DM only group from 

days 8 to 10 (Fig. 2.12E-F). These data support our hypothesis, and in the 1, 25 - 

(OH)2D3 treatments where PPARγ, C/EBPα, FABP4 and SCD-1 gene expression levels 

were inhibited, the expression of Pref-1 gene correspondingly remained significantly 

higher than in DM only treatments. 

 

In conclusion, lipid accumulation and the expression of key adipogenic key genes, 

PPARγ, C/EBPα, FABP4, and SCD-1 were significantly inhibited by 1, 25 - (OH)2D3 

treatments until day 10. Gene expression of SREBP-1c was transiently inhibited by 1, 

25 - (OH)2D3 on day 2, and then rebounded back to levels similar to the low levels 

observed in DM treatment by days 4, 6, 8, and 10. In contrast, C/EBP β and C/EBP δ 

expression were not changed in response to 1, 25 - (OH)2D3  treatments. Our study has 

demonstrated that 1, 25 - (OH)2D3 represses adipogenesis via inhibition of the 

expression of PPARγ, but not C/EBP β or C/EBP δ, and hence, the adipogenic-specific 
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genes (C/EBPα, FABP4, and SCD-1) downstream of PPARγ during the transcriptional 

cascade of adipogenesis, were also inhibited. In future, studies are needed to explore 

the mechanisms by which 1, 25 - (OH)2D3 interacts with PPARγ and regulates 

adipogenesis. 
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Regulation of adipogenesis and key adipogenic gene expression by 1, 25-

dihydroxyvitamin D in 3T3-L1 cells 

Shuhan Ji et al. PLOS ONE, 2015 

 

Fig S2.1: Western Blot quantification of PPARγ protein expression.  

Representative images showing Western blot analysis (Odyssey® Dual Infrared Imaging 

System (Li-Cor)) of PPARγ on 6 h (A), 12 h (B), days 1 (C), 2 (D), 4 (E), 6 (F), 8 (G) and 

10 (H). Cells were treated with differentiation medium in the presence or absence of 100 

and 1 nM 1, 25 - (OH)2D3, and basal growth medium. β-actin was used as an internal 

protein loading control. Quantification of PPARγ normalized to β-actin. Comparisons are 

with blank within day. Data are means ± SE (n = 3). 
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Fig S1 (Cont.): Western Blot quantification of PPARγ protein expression 
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Fig S2.2: Western Blot quantification of C/EBPα protein expression.  

Representative images showing Western blot analysis (Odyssey® Dual Infrared Imaging 

System (Li-Cor)) of C/EBPα on 6 h (A), 12 h (B), days 1 (C), 2 (D), 4 (E), 6 (F), 8 (G) and 

10 (H). Cells were treated with differentiation medium in the presence or absence of 100 

and 1 nM 1, 25 - (OH)2D3, and basal growth medium. β-actin was used as an internal 

protein loading control. Quantification of PPARγ normalized to β-actin. Comparisons are 

with blank within day. Data are means ± SE (n = 3). 
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Fig S2 (Cont.): Western Blot quantification of C/EBPα protein expression 
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CHAPTER III 

 

ADIPOGENESIS AND KEY ADIPOGENIC GENE EXPRESSION 

RESPONSE TO RETINOIC ACID IN 3T3-L1 CELLS 

This chapter will be submitted to International Journal of Obesity, as 

citation, Shuhan Ji, Min Du, Rodney A. Hill, 2015, Adipogenesis and key 

adipogenic gene expression response to retinoic acid in 3T3-L1 cells. 

 

 

Abstract 

Background and objective: Adipogenesis plays an important role in metabolic 

homeostasis and nutrient pathways. The transcriptional control of adipogenesis requires a 

sequential series of gene expression events and activation of a number of key signaling 

pathways. Retinoic acid has been considered a potent inhibitor of adipogenesis for decades, 

and understanding the mechanism of retinoic acid regulation of adipogenesis is potentially 

useful in developing therapeutic interventions to control body fat. To investigate the 

function of retinoic acid in regulation of adipogenesis adipocyte differentiation and key 

adipogenic gene expression, dose-response and time-course studies of retinoic acid effects 

were studied in 3T3-L1 preadipocytes. 

Methods: Lipid accumulation was measured by Oil Red O staining and expression of key 

adipogenic genes was quantified using quantitative real-time PCR. Adipogenic responses 
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to different concentrations of retinoic acid were determined on day 2, 4, 6, 8, 10 after 

stimulation of adipogenesis with the traditional hormonal cocktail (dexamethasone, 

isobutyl-1-methylxanthine and insulin) in the absence or presence of retinoic acid. 

Results: In response to high concentrations (1000 and 100 nM) of retinoic acid, lipid 

accumulation and the expression of PPARγ, C/EBPα, C/EBPβ, FABP4, SREBP-1c and 

SCD-1 were inhibited through day 8, but on day 10, lipid accumulation and the expression 

levels of these genes rebounded to levels comparable to the control. Interestingly, the 

greatest effects of retinoic acid treatments were upon expression of FABP4. However, 

expression of C/EBPδ was not affected. The lowest retinoic acid concentration (0.1 nM) 

did not affect adipocyte differentiation or expression of adipogenic genes.  

Conclusions: These results indicate that retinoic acid inhibited adipogenesis via 

suppressing adipogenic specific genes, especially FABP4. Our data indicate that a deeper 

understanding of the roles of retinoic acid in regulating adipogenesis will be informed by 

further study of adipogenic specific gene promoter activity. 

 

Introduction 

Adipocyte differentiation is a complex process involving a cascade of molecular events 

triggered by an adipogenic stimulus [1]. During this process, lipid accumulation occurs and 

preadipocytes differentiate to form mature adipocytes. It is important to the improvement 

of human health that the positive and negative regulation for the proliferation and 

differentiation of adipocytes be well defined [2]. The transcriptional control of adipocyte 

differentiation requires a sequential series of gene expression events and activation of a 

number of key signaling pathways [3, 4]. There are two classes of transcription factors, 
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nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) [5] and 

CCAAT/enhancer – binding protein α (C/EBPα) [6, 7, 8, 9] that are key regulators in the 

process of adipogenesis. 

 

At the beginning of the cascade of changes in expression of adipogenic genes, another two 

members from the C/EBP family, C/EBPβ and C/EBPδ, are initially expressed. These two 

proteins then induce the expression of PPARγ, which in turn induces C/EBPα expression 

[10]. The activation of C/EBPα has positive feedback on PPARγ activity. With the 

enhancement by each other’s inducing, these two transcriptional factors maintain the 

differentiated state [11]. Upstream of PPARγ in the process of adipogenesis, there is 

another notable factor, sterol-regulatory element binding protein 1c (SREBP-1c) [12]. The 

discovery of SREBP-1c was reported by two different research groups, and was named as 

ADD1 and SREBP-1c [13, 14]. SREBP-1c is a member of the basic helix-loop-helix 

(bHLH) family of transcription factors [13], and plays a crucial role in adipogenesis [15]. 

The expression of SREBP-1c is further regulated by insulin in cultured adipocytes [16]. 

Moreover, SREBP-1c inducing the expression of PPARγ in adipogenesis is via binding E 

box motifs present in the PPARγ promoter [17]. SREBP-1c also has influence in regulation 

of a variety of genes involved in fatty acid and triglyceride metabolism [10]. All these 

transcriptional factors are necessary for maintaining the terminally differentiated 

phenotype. 
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Retinoic acid (RA) is the most studied metabolite in the vitamin A pathway. It regulates a 

broad range of biological effects in large part by controlling gene expression [18]. In 

particular, it was reported that as an active form of retinoids and carotenoids, RA inhibited 

the differentiation of adipocytes in culture [19, 20]. In the present study, we have 

determined the inhibitory effect of different concentrations of RA in 3T3-L1 preadipocyte 

differentiation. We also studied the inhibitory activity of different concentrations of RA on 

expression levels of key adipogenic genes (C/EBPs and PPARγ). As important 

transcriptional factors during adipocyte differentiation, FABP4 and SREBP-1c were also a 

focus of the present study. Our study provides an experimental basis to better understand 

the function of RA in regulation of adipogenesis, and the interactions between RA and key 

adipogenic genes. 

 

Materials and Methods 

Materials 

Mouse embryonic fibroblast cells (3T3-L1) were obtained from the American Type Culture 

Collection (ATCC). Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum 

(FBS) and penicillin/streptomycin were from Gibco, Life Technologies (Grand Island, 

NY).  Trizol, DNase I kit, high capacity cDNA reverse transcription kit (Cat # 4368814), 

and Taqman Master Mix were obtained from Life Technologies (Grand Island, NY). The 

Dual Reporter Luciferase Assay System was purchased from Promega Corporation, 

(Madison, WI). Oil Red O (ORO) powder, dexamethasone (D8893), insulin from bovine 

pancreas (I6634), 3-isobutyl-1-methylxanthine (IBMX) (I7018), and 1α,25-

Dihydroxyvitamin D3 (D1530) were purchased from Sigma-Aldrich (St. Louis, MO). 



135 

 

Mouse-specific anti-PPARγ (sc-7196) rabbit polyclonal antibody was purchased from 

Santa Cruz Biotechnology (Dallas, Texas). Mouse-specific anti-C/EBPα (ab139731) rabbit 

polyclonal antibody, and anti-β-actin mouse-monoclonal (ab8226) were purchased from 

Abcam (Cambridge, MA). AlexaFluor 680 anti-rabbit IgG was from life Technologies 

(Grand Island, NY) and IRDye800 anti-mouse IgG was from Li-Cor (Lincoln, NE). 

 

Cell culture. 

Mouse 3T3-L1 preadipocytes were cultured at 37 ˚C with 5% CO2 enriched air in DMEM 

with 10 % FBS, 100 I.U. /ml penicillin, 100 µg/ml streptomycin (basal growth medium). 

Cells were seeded in 6-well plates and 24-well plates with glass cover slips in basal growth 

medium and cultured until confluent. On day 0 (two days post confluence), retinoic acid 

was added to the differentiation medium at the following final concentrations: 1000, 100, 

10, 1, and 0.1 nM, and cultures were incubated for 48 h. Cells grown in basal growth 

medium without retinoic acid served, as a negative control. Cells grown in medium 

containing basal growth medium with dexamethasone (1 µM), IBMX (500 µM) and insulin 

(1.7 mM) (standard hormonal differentiation medium, DMI) served, as a positive control. 

For the DMI treatment, insulin, dexamethasone and IBMX were provided for the first 48 

h followed by only insulin in basal growth medium throughout the remaining time points. 

Media were changed every 2 days for all treatments. Cells were harvested on 0, 6, and 12 

h, and days 1, 2, 4, 6, 8 and 10 for RNA extraction, or protein extraction. Parallel cultures 

were stained with ORO and representative images of ORO stained cells on day 10 were 

quantified using MetaMorph Image analysis software (Nashville, TN). 
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Cells and transfection.  

For each cell culture well, 3.5×105 3T3-L1 cells were plated and allowed to reach 80% 

confluence. Cells were then co-transfected with 2 µg [pGL4.10 (luc2/-500 C/EBPα)] and 

0.2 µg of internal transfection control vector [pGL4.74 (hRluc/TK)], and transferred to 

growth medium. Cells were incubated 24 h, and allowed to reach 100% confluence. Two 

days post confluence cells (0 h) were treated with 1000 nM of retinoic acid plus 

differentiation medium, differentiation medium only, or growth medium only. Cells were 

harvested on 0, 12, 24, and 24 h, and assayed for firefly luciferase and renilla luciferase 

activities using the Dual Reporter Luciferase Assay System (Promega, Madison, WI) and 

a Wallac 1420 Multi Label Counter. Firefly luciferase activity units were normalized to 

units of renilla luciferase activity to correct for transfection efficiency. 

 

Oil Red O (ORO) and Hematoxylin staining.  

Accumulation of lipids was observed using ORO staining [21]. Oil Red O in isopropanol 

stock solution (3.5 mg/ml) was prepared, stirred overnight and filtered. Cells grown on 

cover slips in 24-well plates were used for lipid staining. On the day of the time point, 

culture medium was removed and cells were gently rinsed once with phosphate buffer 

saline (PBS). Cells were fixed in 10 % formaldehyde in PBS for 1 hr at RT. After fixation, 

cells were rinsed with PBS and then 60 % isopropanol. Oil Red O solution (6:4 v/v of stock 

solution and water) was added and incubated for 10 min at RT. Finally, cells were washed 

with distilled water, three times. Hematoxylin counter staining was done according to the 

manufacturer’s instructions. Briefly, cells were incubated with filtered hematoxylin for two 

minutes and rinsed twice with tap water. Differentiation solution (0.25 % HCl in 70 % 
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alcohol) was added and cells were rinsed again with tap water. The glass cover slips were 

then removed from the wells and inverted on to a glass slide with mounting medium (Vecta 

Shield, Vector Labs, Burlingame, CA).  

 

RNA extraction and cDNA synthesis. 

Total RNA was extracted using Trizol according to the manufacturer’s instructions. The 

RNA pellet was resuspended in nuclease-free water and stored at -80˚C until further use. 

RNA was quantified using a Nanodrop ND-1000 UV-Vis Spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). The quality of RNA was verified on 1% agarose gels. 

Two µg of RNA from each treatment was DNase treated. Synthesis of cDNA was 

conducted using a high capacity cDNA reverse transcription kit and random hexamers as 

primers according to the manufacturer’s instructions. To ensure availability of cDNA 

sufficient to perform all real-time PCR reactions, cDNA synthesized from 2 µg of RNA 

was pooled for each sample. Pooled cDNA was diluted 1:10 using nuclease-free water for 

real-time PCR.  

 

Real-time PCR.  

Quantitative real-time PCR was performed using Taqman MGB primer/probe sets with an 

ABI 7500 Fast Real Time PCR system (Applied Biosystems, Foster City, CA). Primers 

and probes for all genes were designed using Applied Biosystems Primer Express 3.0 

software. Primers (Integrated DNA Technologies, Coralville, IA) and probes (Life 

Technologies, Grand Island, NY) were designed to have a Tm of 58-60 ˚C and 69-70 ˚C, 

respectively. Primer-probe sets that span exon-junctions (trans-intronic positions) were 
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chosen for real-time PCR, to prevent binding to genomic DNA (Table 3.1). Eukaryotic 

translation elongation factor 2 (EEF2) was used as an endogenous control for gene 

expression. Probes were labeled with 6-FAM or VIC for all target genes or control (EEF2), 

respectively. Real-time PCR assays for each sample were conducted in duplicate wells with 

all genes including endogenous control on the same plate. Reactions contained Taqman 

Universal Fast PCR Master Mix, No AmpErase UNG (Applied Biosystems, Foster City, 

CA) (1X), forward primer (0.5 µM), reverse primer (0.5 µM), Taqman probe (0.125 µM) 

and cDNA template made up to a final volume of 15 µl in nuclease-free water. Real-time 

PCR cycle conditions included a holding time of 90 ˚C for 20 sec, followed by 40 cycles 

of 90 ˚C for 3 sec and 60 ̊ C for 30 sec of melting and extension temperatures, respectively. 

 

Data were analyzed using the relative CT (∆∆Ct) method [22]. Average Ct values of 

endogenous control (EEF2) were subtracted from target gene average Ct values of each 

gene, to obtain ∆Ct values of each gene for each sample. For each gene, ∆Ct values in the 

control treatment at each time point were used to normalize ∆Ct values of corresponding 

time points of each treatment to obtain ∆∆Ct and mRNA fold expression values [2(-∆∆Ct)].  
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Table 3.1: Primer-probe sets for real-time PCR. Primers and probe sequences used 

in real-time PCR listed 5’ to 3’: Forward primer (FP), reverse primer (RP) and 

Taqman probes for the following genes were designed from the corresponding 

GenBank accession numbers. 

Accession No. Gene name Sequences 

NM_007907.1 Eukaryotic 
translation 
elongation factor 2 
(Eef2) 

FP: CTGCCTGTCAATGAGTCCTTTG 

RP: GCCGCCGGTGTTGGAT 

Probe: CTTCACCGCTGATCTG 

NM_011146.2 Peroxisome 
proliferator activated 
receptor gamma 
(PPARγ) 

FP: GCTTCCACTATGGAGTTCATGCT 

RP: AATCGGATGGTTCTTCGGAAA 

Probe: TGAAGGATGCAAGGGTT 

NM_007678.3 CCAAT/enhancer 
binding protein alpha 
(C/EBPα) 

FP: CGCAAGAGCCGAGATAAAGC 

RP: GTCAACTCCAGCACCTTCTGTTG 

Probe: AACGCAACGTGGAGAC 

NM_009883.3 CCAAT/enhancer 
binding protein beta 
(C/EBPβ) 

FP: GCGCACCGGGTTTCG 

RP: GCGCTCAGCCACGTTTG 

Probe: ACTTGATGCAATCCGGA 

NM_007679.4 CCAAT/enhancer 
binding protein delta 
(C/EBPδ) 

FP: CTGTGCCACGACGAACTCTTC 

RP: GCCGGCCGCTTTGTG 

Probe: CGACCTCTTCAACAGC 

NM_024406.1 Fatty acid binding 
protein 4 (FABP4) 

FP: CCGCAGACGACAGGAAGGT 

RP: AGGGCCCCGCCATCT 
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Western Blot.  

Protein extraction from 3T3-L1 preadipocytes and adipocytes was performed using cell 

lysis buffer with addition of phosphatase and protease inhibitors (Cell Signaling 

Technologies, Danvers, MA). The supernatant was extracted by centrifugation and protein 

concentration was determined by BCA protein assay according to manufacturer’s protocol 

(Thermo Scientific, Rockfrod, IL). Ten µg of whole cell lysate was resolved on SDS-PAGE 

(4-10% precise gels) and then transferred to PVDF membrane. Membranes were blocked 

with 5% non-fat milk in 1X TBST for 1h at room temperature. Membranes were incubated 

with anti-PPARγ, anti-C/EBPα and anti-β-actin at 4 ºC overnight, then washed with 1X 

TBST and incubated with AlexaFluor 680 conjugated anti-rabbit IgG and IRDye 800 

conjugated anti-mouse IgG for 1 h at room temperature. After thorough washing, blots 

were scanned and quantified using an Odyssey Dual Infrared Imaging System (Li-Cor). 

Probe: AAGAGCATCATAACCC 

NM_010052.3 Preadipocyte factor-
1 (Pref-1) 

FP: AATAGACGTTCGGGCTTGCA 

RP: GGTCCACGCAAGTTCCATTG 

Probe: CTCAACCCCCTGCGC 

NM_011480.3 Sterol regulatory 
element binding 
transcription factor 1 
(Srebf1) 

FP: GCGGTTGGCACAGAGCTT 

RP: CTGTGGCCTCATGTAGGAATACC  

Probe: CGGCCTGCTATGAGG 

NM_009127.4 Stearoyl-Coenzyme 
A desaturase 1 
(Scd1) 

FP: CAACACCATGGCGTTCCA 

RP: TGGGCGCGGTGATCTC 

Probe: AATGACGTGTACGAATGG 
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Microscopy.   

Images were obtained using a Nikon 80i phase-contrast microscope, using a 20X objective 

lens. Image quantification was performed using MetaMorph Image analysis software 

(Nashville, TN). Area fractions were collected for each image. Images were collected in 

six to eight replicates from each culture well. Average area fractions of each of the six to 

eight replicates were used to calculate average area fraction of each treatment sample. 

Further, average area fraction values of each treatment were normalized to average area 

fraction values of corresponding controls. 

 

Statistical analysis.  

Statistical analysis software (SAS) 9.3 was used to perform all data analysis. Data were 

analyzed using a one-way analysis of variance (ANOVA) for each time point. Tukey’s test 

was used to find the significant differences among the different means. Differences, when 

p < 0.05, were considered statistically significant. Gene expression data were analyzed by 

comparing log (base 2) transformed values of mRNA fold expression across treatments 

within each time-point.  All data are reported as mean ± SE (n = 3).  

 

Results 

Lipid accumulation is inhibited with RA treatments. 

3T3-L1 cells were cultured in standard hormonal differentiation medium, in the presence 

or absence of RA treatments. Cells treated with Basal growth medium only were 

considered the negative control. Cells treated with differentiation medium only were used  

as the positive control. Lipid accumulation was observed through ORO staining on days 0, 
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2, 4, 6, 8 (data not shown) and 10 (Supplementary Fig. 3.1). Image quantification analysis 

shows that with higher concentrations of RA (1000, 100, 10 nM) treatments, lipid 

accumulation in cells was inhibited, although remaining higher compared to negative 

control cells, but significantly lower compared to the positive control (Supplementary Fig. 

3.1H). For the two lowest concentrations of RA treatment, cells showed higher lipid 

accumulation than negative control and the three highest RA treatments. Moreover, lipid 

accumulation was not significantly lower when compared to the positive control 

(Supplementary Fig. 3.1H). This suggests that RA treatment inhibited lipid accumulation 

and adipogenesis in a dose dependent manner, with a critical minimum concentration of 

approximately 10 nM.  

 

Gene expression of PPARγ is inhibited by high concentrations of RA.  

Gene expression levels of PPARγ in 3T3-L1 cells treated with the highest concentrations 

(1000 nM) of RA was significantly inhibited compared to the positive control (Fig. 3.1B-

D) on days 4 – 8, but not on day 2 or 10. PPARγ gene expression was not affected by RA 

treatments with all the concentrations at day 2 or day 10. In addition, 3T3-L1 cultures 

treated with low concentrations (10, 1 and 0.1 nM) of RA showed no significant differences 

in PPARγ gene expression levels as compared to positive control cultures (Fig. 3.1A-E) at 

all time-points measured. On days 8, the highest concentration (1000 nM) of RA had the 

greatest inhibitory effect on PPARγ mRNA expression levels (Fig. 3.1D), and the inhibitory 

effect had abated by day 10 (Fig. 3.1E). This suggests that PPARγ gene expression levels 

were only marginally inhibited by RA, and RA had efficacy in inhibiting PPARγ gene 

expression only at higher concentrations.  
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Figure 3.1 Real-time PCR quantification of PPARγ gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.1, 1, 10, 100, and 1000 nM RA and EEF2 was used as endogenous control 

(∆Ct). Data were normalized to PPARγ gene expression of the positive control (DM) at the 
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corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05).  

 

To confirm the real-time PCR results, Western blots also were performed on whole cell 

lysates following treatment with 1000 or 10 nM of RA at all the time points. Differentiation 

medium (DM) and basal growth medium (GM) served as positive and negative controls, 

respectively. PPARγ protein levels were not influenced by either high (1000 nM) or low 

(10 nM) concentrations of RA treatments at 6 and 12 h (Supplementary Fig. 3.2A-B), but 

thereafter the PPARγ protein levels were reduced in the 1000 nM RA treated groups at day 

1, 4, 8, and day 10 (Supplementary Fig. 3.2C, E, G and H), but remained high in 10 nM 

RA treated groups and DM only groups at all time-points (Supplementary Fig. 3.2B-H). At 

day 10, PPARγ protein levels in both 1000 nM and 10 nM RA treatment groups remain 

low, however, in the DM only group, PPARγ protein level still remained relatively high 

(Supplementary Fig. 3.2H). This suggests that RA treatments continuously inhibit PPARγ 

protein levels from day 1 until day 10, but not the early time point, 6 h and 12 h. The results 

of above suggest that the highest concentration of RA treatment inhibits adipogenesis via 

reducing RNA expression levels of PPARγ, and there appear to be no effects at protein 

levels of PPARγ. 

 

High concentrations of RA inhibit C/EBPα gene expression  

Unlike the regulation of PPARγ gene expression, 3T3-L1 cells treated with high 

concentrations (1000, 100, and 10 nM) of RA showed significant inhibition of C/EBPα 

expression as compared to the positive control for days 2 through 6 (Fig. 3.2A-C). No 



145 

 

significant changes in C/EBPα gene expression levels were observed in the cells treated 

with low concentrations (0.1 and 1 nM) of RA as compared to the positive control cells at 

all time-points measured (Fig. 3.2B-E), except day 2 (Fig. 3.2A).  

 

Similarly to PPARγ expression, C/EBPα gene expression levels was inhibited by the 

highest concentration (1000 nM) RA treatment until day 8 (Fig. 3.2D), and showed no 

significant difference between treatments groups and differentiation medium group on day 

10 (Fig. 3.2E). This suggests that RA treatments had significant inhibitory effects on 

C/EBPα gene transcription, and this efficacy lasted until day 8. 



146 

 

 

Figure 3.2 Real-time PCR quantification of C/EBPα gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.1, 1, 10, 100, and 1000 nM RA and EEF2 was used as endogenous control 

(∆Ct). Data were normalized to C/EBPα gene expression of positive control (DM) at the 
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corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05).  

 

Total cell protein levels of C/EBPα were also determined (Supplementary Fig. 3.3). In the 

early time points (6 and 12 h), C/EBPα protein levels were not changed in RA treatment 

groups and DM only group compared to negative control (Supplementary Fig. 3.3A-B). 

However, at day 1 and day 2, protein levels of C/EBPα in RA treated groups and DM 

groups were reduced comparing to negative control group (Supplementary Fig. 3.3C-D). 

Furthermore, in 3T3-L1 cells treated with 1000 nM RA, C/EBPα protein level was 

decreased at day 6 (Supplementary Fig. 3.3F), and continuously maintain low level until 

day 10 (Supplementary Fig. 3.3E-H). However, there were no changes in C/EBPα protein 

levels compared to DM only group to 1000 nM RA treated groups at day 4 (Supplementary 

Fig. 3.3E). The results suggest that both gene expression levels and total cellular protein 

levels of C/EBPα were influenced by RA treatment, and C/EBPα plays an important role 

in the mechanism of RA inhibiting adipogenesis. 

 

There is no effect of RA treatments on C/EBPβ and C/EBPδ gene expression levels.  

Gene expression of C/EBPβ was determined at 6, 12, 24 h and days 2, 4, 6, 8 10 by real-

time PCR response to RA treatments, differentiation medium or growth medium. Unlike 

PPARγ and C/EBPα, C/EBPβ gene expression level was only impacted by 1000 nM RA 

compared to DM only group at day 2 (Supplementary Fig. 3.4D). Moreover, in the early 

time points, 6, 12 h and day 1 (Supplementary Fig. 3.4A-C) or from day 6 until day 10 

(Supplementary Fig. 3.4F-H), all concentrations of RA showed no inhibitory effects on 
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C/EBPβ gene expression, suggesting that the inhibitory effect of RA treatments on C/EBPβ 

gene expression are transient and difficult to detect. 

 

C/EBPδ is also induced in the early process of adipogenesis.  Thus we quantified its gene 

expression levels at 6, 12, and 24 h, and continued to monitor its expression through days 

2, 4, 6, 8, and 10, with or without RA treatments. C/EBPδ gene expression levels of RA 

treated cells were generally not inhibited compared to the DM only treated group 

(Supplementary Fig. 3.5A-H), even at the highest concentration of RA. This suggests that 

the inhibitory efficacy of RA in adipogenesis does not impact the expression of C/EBPδ.   

 

Gene expression of FABP4 is highly responsive to RA treatments.  

Gene expression of FABP4 was strongly inhibited by the highest concentration (1000 nM) 

of RA treatments at all the time points, except day 10 (Fig. 3.3). Moreover, unlike PPARγ 

and C/EBPα expression levels, FABP4 gene expression levels in response to 1 and 10 nM 

RA were also significantly inhibited compared to the positive control at day 2 (Fig. 3.3A) 

and day 6 (Fig. 3.3C). Moreover, the lowest concentration of RA (0.1nM) treatments had 

strong effect on FABP4 gene expression on days 2 and 6 compared to the DM only group 

(Fig. 3.3A, C). However, on day 8, the high concentrations (1000 and 100 nM) of RA 

showed a significant inhibitory effect on FABP4 gene expression (Fig. 3.3D). These effects 

were attenuated on day 10 (Fig. 3.3E). These results indicate that FABP4 plays an 

important role during the inhibition of adipogenesis by RA.  
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Figure 3.3 Real-time PCR quantification of FABP4 gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.1, 1, 10, 100, and 1000 nM RA and EEF2 was used as endogenous control 

(∆Ct). Data were normalized to FABP4 gene expression of positive control (DM) at the 
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corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05). 

  

The inhibitory effect of RA on SREBP-1c gene expression levels was more gradual 

compared to C/EBPα or FABP4 expression.  

In our previous studies, the expression pattern of SREBP-1c in adipocyte differentiation 

showed that it was induced to the maximum expression level on day 2, and then decreased 

quickly from days 4 to 10. Interestingly, on day 2, cells treated with 1000 nM and 0.1 nM 

RA showed significant inhibition of SREBP-1c gene expression as compared to the positive 

control (Fig. 3.4A). The inhibitory influence of RA coincides with the time point of 

maximum SREBP-1c expression, suggesting that RA has strong effects when SREBP-1c 

reached a high expression level. However, this effect was rapidly attenuated. SREBP-1c 

gene expression levels of RA treated cells were generally not different from the positive 

control at day 4 and 6 (Fig. 3.4B-C). However, the inhibitory effect of RA (all 

concentrations of treatments tested, 1000, 100, 10, 1, and 0.1 nM) on SREBP-1c gene 

expression was fleetingly showed again on day 8 (Fig. 3.4D), and declined at day 10 (Fig. 

3.4E). These results suggest that SREBP-1c may also play an important role in the RA 

modulation pathway, and may have interaction with RA during the early stages of 

adipogenesis. 

 



151 

 

 

Figure 3.4 Real-time PCR quantification of SREBP-1c gene expression in 3T3-L1 cells 

on days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence 

or absence of 0.1, 1, 10, 100, and 1000 nM RA and EEF2 was used as endogenous control 

(∆Ct). Data were normalized to SREBP-1c gene expression of positive control (DM) at the 
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corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05). 

 

Patterns of SCD-1 expression resembled PPARγ expression, and was decreased by 1000 

nM RA at days 4 to 8.  

SCD-1 gene expression was not changed in response to any treatment concentrations of 

RA on day 2 (Fig. 3.5A). The inhibition of SCD-1 gene expression was induced by the 

highest concentration of RA (1000 nM) on day 4 (Fig. 3.5B). The inhibitory effect of the 

highest concentration of RA (1000 nM) was most pronounced at day 4, and reached an 

inhibition effect greater than 90% of the positive control (Fig. 3.5B). Furthermore, at day 

6, SCD-1 was significantly inhibited by all concentrations of RA treatments, all showing a 

70% inhibition effect at this time point (Fig. 3.5C). The inhibitory effect of 1000 nM RA 

continued to day 8 (Fig. 3.5D). The efficacy of RA to SCD-1 gene expression was 

attenuated after day 8, and all the five concentrations of RA showed no significant 

inhibition on day 10 (Fig. 3.5E). This suggests SCD-1 is intermittently responsive to RA 

during differentiation and may play an important role in the pathway of RA regulation of 

adipogenesis.  
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Figure 3.5 Real-time PCR quantification of SCD-1 gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.1, 1, 10, 100, and 1000 nM RA and EEF2 was used as endogenous control 

(∆Ct). Data were normalized to SCD-1 gene expression of positive control (DM) at the 
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corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05). 

 

Gene expression of Pref-1 was altered in latter time-points, but only in response to high 

concentrations of RA. 

Expression levels of Pref-1 were not altered in any of the RA treated 3T3-L1 cells at days 

2, 4, and 6 (Fig. 3.6A-C), gene expression relative values being similar to the positive 

control. Cells treated with the highest concentration of RA (1000 nM) showed a significant 

increase in Pref-1 gene expression level at days 8 and 10 (Fig. 3.6D-E), suggesting greater 

retention of the preadipocyte phenotype. This result suggests that Pref-1 expression 

responds only to high concentrations of RA in the latter stages of adipocyte differentiation, 

and may also play a role in the pathways of RA inhibited adipogenesis.  
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Figure 3.6 Real-time PCR quantification of Pref-1 gene expression in 3T3-L1 cells on 

days 2 (A), 4 (B), 6 (C), 8 (D) and 10 (E). Cells were treated with DM in the presence or 

absence of 0.1, 1, 10, 100, and 1000 nM RA and EEF2 was used as endogenous control 

(∆Ct). Data were normalized to Pref-1 gene expression of positive control (DM) at the 
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corresponding time point (∆∆Ct). Data are means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05). 

 

Relative luciferase activity of C/EBPα promoter activity was not affected by RA treatment.  

This study was conducted to investigate C/EBPα promoter activity in response to transient 

exposure of cells for 0, 12, 24 and 48 h to 1000 nM RA plus differentiation medium, 

differentiation medium only, and growth medium only. The data obtained with RA 

treatment indicate that C/EBPα promoter activity was increased relative to both the positive 

and negative controls, but only at the 48 h time-point. This may suggest that the RA-

mediated reduction in C/EBPα gene expression observed from day 2 through day 8 may be 

due to the induction of a greater rate of C/EBPα mRNA degradation (Supplementary Fig. 

3.6). The promoter activities of C/EBPα from cells treated with both differentiation 

medium and differentiation medium plus RA were significantly higher than growth 

medium alone (Supplementary Fig. 3.6), suggesting that the C/EBPα promoter is 

stimulated within the first 48 h of adipocyte differentiation. 

 

Discussion  

This study has shown at least three important observations: 1) high concentrations of 

RA have inhibitory effects on adipogenesis, and this effect persists through day8, 2) 

not all of the key adipogenic genes (e.g. C/EBPδ) interact with RA, and 3) the pathway 

of RA mediated inhibition of adipogenesis may be mediated through C/EBPα mRNA 

degradation and is not related to a decrease in C/EBPα promoter activity. We 

demonstrate that RA plays a distinct metabolic role in adipocyte differentiation in vitro, 
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and when treated with high concentration, it inhibits lipid accumulation and some of 

adipogenic key gene expression. 

 

The C/EBP family is a class of basic-leucine zipper transcription factors [23], and they 

have been shown to be regulators of adipocyte differentiation. Both C/EBPβ and 

C/EBPδ mRNA and protein levels were reported to rise early and transiently in 

preadipocytes which have been induced to differentiate [9, 24, 25]. In the present study, 

RA treatments had a minimal inhibitory effect on C/EBPβ after day 2, instead of in the 

early time points, and did not inhibit C/EBPδ expression at all the time points. These 

results are consistent with previous reports [26]. RA did not block the induction of 

endogenous C/EBPβ early in adipogenesis, and C/EBPβ is sufficient to induce 

adipogenesis. The effect of RA inhibition in adipogenesis appears to occur in a later 

phase of C/EBPβ-induced adipogenesis. 

 

The PPAR family is a group of transcriptional factors that heterodimerize with another 

nuclear hormone receptor, retinoid X receptor (RXR), binding to the response elements 

of target gene promoters and function as active transcriptional factors [27]. When 

PPARs are heterodimerized with RXR, the complex is activated and transported to the 

nucleus to bind to specific sequences in promoter regions (termed as PPAR response 

elements, PPREs) of downstream target genes, activating their transcription [13, 28, 

29]. There are three major isoforms: PPARα, PPARδ, and PPARγ [30], which have 

specific roles in lipid metabolism. Importantly, PPARγ plays an important role in 

triglyceride synthesis and adipocyte differentiation [29]. As an important adipogenic 
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factor, PPARγ expression is activated downstream of C/EBPβ and C/EBPδ 

transcription during the cascade of adipogenesis, and upstream of C/EBPα. In the 

present study, gene expression of PPARγ was only minimally affected by RA while 

C/EBPα gene expression was highly inhibited by RA, from day 2 until day 8 (Fig. 1, 

2). These data indicate that RA induced inhibition of adipogenesis in 3T3-L1 cells was 

associated with an inhibition of C/EBPα gene expression. Previously studies reported 

that RA interferes with the transcriptional activity of C/EBP proteins, so that it blocks 

the C/EBPβ-mediated induction of downstream genes [31]. This is consistent with our 

results, RA does not inhibit adipogenesis directly via C/EBPβ, but through mechanisms 

active downstream. RA also strongly up-regulates the retinoic acid receptor γ (RARγ) 

expression in 3T3-L1 preadipocytes, in the meantime it down-regulates retinoid 

receptor α (RXRα) expression [32.33]. This contributes to the inhibitory effect of RA 

on adipogenesis by favoring RAR: RXR heterodimer formation over PPARγ: RXR 

formation. Although we observed only a marginal effect of RA on PPARγ gene 

expression, it appears that when PPARγ activation is delayed, it also has a negative 

mediation to downstream C/EBPα expression, and adipogenesis is inhibited. We 

observed that the C/EBPα promoter was upregulated in response to RA. This suggests 

that there may be counter-regulatory mechanisms at work, as the minimal effects of 

RA on PPARγ might be expected to have little effect on PPARγ feedback on up-

regulation of C/EBPα expression. Thus, we hypothesize that the observed reduction in 

C/EBPα expression in response to RA may be mediated by mechanisms that up-

regulate the degradation of C/EBPα mRNA. Clearly, further studies of these pathways 

are needed in order to understand these complex interactions.   
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In the present study, SREBP-1c gene expression was inhibited by high concentration 

(1000 and 100 nM) of RA treatment on days 2, coinciding with its maximum 

expression level in the positive control treatment. The inhibition were ameliorated after 

day 4. The low (0.1 and 0.01 nM) concentrations of RA has no inhibitory effect on 

SREBP-1c gene expression on all the time points. These data indicate that the inhibition 

of SREBP-1c gene expression by RA treatment was transient and corresponded with 

the d 2 time point. Thus, it is not clear whether SREBP-1c may be involved in the RA 

inhibition pathway of adipogenesis, showing a similar gene expression profile to 

C/EBPδ. These two genes are upstream of PPARγ in the transcriptional activation of 

adipogenesis, therefore, the inhibition of adipogenesis caused by RA may be unrelated 

to mechanisms involving the transcriptional factors that are expressed in the early 

stages of adipogenesis. 

 

Gene expression levels of FABP4 and SCD-1 were strongly inhibited by RA treatments. 

Gene expression of FABP4 was strongly inhibited by the high concentrations of RA 

treatments from days 2 to 6. The inhibitory effects of RA treatments on SCD-1 gene 

expression were gradual in comparison to effects on FABP4 expression. Inhibition by 

high concentrations of RA began by day 4, and remained until day 8. However, at day 

6, gene expression of SCD-1 was inhibited by all concentrations of RA treatments 

tested, and comparable to effects on FABP4. In previous reports, FABP4 has been 

shown to have a PPARγ response element (PPRE) in its promoter region and PPARγ 

regulates gene expression of FABP4 [28, 34]. In RA treated cells, PPARγ expression 

was inhibited, and this effect also negatively influenced FABP4 expression. SCD-1 
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plays an important role in adipogenesis as well as FABP4. Its functions include 

incorporation of double bonds in fatty acids and synthesis of long chain fatty acids in 

adipocytes [35]. In the present study, SCD-1 expression was significantly inhibited by 

RA, suggesting that SCD-1 may play a role in the pathway of RA inhibited 

adipogenesis. Mechanisms of FABP4 and SCD-1 gene expression in response to RA 

still need to be explored further. 

 

Preadipocyte factor 1 is a marker protein of preadipocytes and is not expressed in 

mature adipocytes [36]. During initiation of adipogenesis, the gene expression of Pref-

1 decreases and the expression of key adipogenic genes increases [1]. We hypothesized 

that Pref-1 expression would decrease in treatments with differentiation medium, and 

would remain at higher levels in treatments with RA when compared to in DM treated 

cells. In the present study, Pref-1 gene expression was not significantly higher 

compared to DM only until day 10. These data support our hypothesis, and in RA 

treatments where PPARγ, C/EBPα, FABP4 and SCD-1 gene expression levels were 

inhibited, the expression of Pref-1 gene correspondingly remained significantly higher 

than in DM only treatments. 

 

In conclusion, lipid accumulation and the expression of key adipogenic genes, PPARγ, 

C/EBPα, FABP4, SREBP-1c, and SCD-1 were significantly inhibited by RA treatments 

until day 8. In contrast, C/EBPβ and δ expression were not changed in response to RA 

treatments. Our study has demonstrated that RA represses adipogenesis via up-

regulating degradation of C/EBPα mRNA, but C/EBPα promotor activity, and hence, 
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the adipogenic-specific genes (FABP4, and SCD-1) downstream of C/EBPα during the 

transcriptional cascade of adipogenesis, were also inhibited. Future studies are needed 

to explore the mechanisms by which RA interacts with C/EBPα and regulates 

adipogenesis. 
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Supplementary Information 

Adipogenesis and key adipogenic gene expression response to retinoic 

acid in 3T3-L1 cells 

 

Supplementary Figure 3.1 Oil Red O staining in 3T3-L1 cells. Cells were treated with 

basal growth medium (GM) (A) or differentiation medium plus different concentrations of 

retinoic acid, 1000 nM (B), 100 nM (C), 10 nM (D), 1 nM (E) or 0.1 nM (F) or 

differentiation medium (DM) (G). Oil Red O staining was performed on days 2, 4, 6, 8 and 

10. Representative day 10 images are shown. Images were collected at 400x magnification.  

(H): Quantification of lipid accumulation in 3T3-L1 cells. Lipid accumulation was 

quantified using MetaMorph Image analysis software. Area fractions were collected for 

each treatment and normalized to control of corresponding time point. Data are means ± 

SE (n = 3). Different letters represent treatment effects that were significantly different (P 

< 0.05). The dose-response effect of retinoic acid treatment on lipid accumulation is 

illustrated.  
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Supplementary Figure 3.2 Western Blot quantification of PPARγ protein expression. 

Representative images showing Western blot analysis (Odyssey® Dual Infrared Imaging 

System (Li-Cor)) of PPARγ on 6 h (A), 12 h (B), days 1 (C), 2 (D), 4 (E), 6 (F), 8 (G) and 

10 (H). Cells were treated with differentiation medium in the presence or absence of 1000 

and 10 nM RA, and basal growth medium. β-actin was used as an internal protein loading 

control. Quantification of PPARγ normalized to β-actin. Comparisons are with blank 

within day. Data are means ± SE (n = 3). 
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Supplementary Figure 3.3 Western Blot quantification of C/EBPα protein expression. 

Representative images showing Western blot analysis (Odyssey® Dual Infrared Imaging 

System (Li-Cor)) of C/EBPα on 6 h (A), 12 h (B), days 1 (C), 2 (D), 4 (E), 6 (F), 8 (G) and 

10 (H). Cells were treated with differentiation medium in the presence or absence of 1000 

and 10 nM retinoic acid, and basal growth medium. β-actin was used as an internal protein 

loading control. Quantification of C/EBPα normalized to β-actin. Comparisons are with 

blank within day. Data are means ± SE (n = 3). 
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Supplementary Figure 3.4 Real-time PCR quantification of C/EBPβ gene expression 

in 3T3-L1 cells on 6h (A), 12h (B) and days1 (C), 2 (D), 4 (E), 6 (F), 8 (G) and 10 (H). 

Cells were treated with DM in the presence or absence of 0.1, 1, 10, 100, and 1000 nM RA 

and EEF2 was used as endogenous control (∆Ct). Data were normalized to C/EBPβ gene 

expression of positive control (DM) at the corresponding time point (∆∆Ct). Data are 

means ± SE (n = 3). Different letters represent treatment effects that were significantly 

different (P < 0.05). 
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Supplementary Figure 3.5 Real-time PCR quantification of C/EBPδ gene expression 

in 3T3-L1 cells on 6h (A), 12h (B) and days1 (C), 2 (D), 4 (E), 6 (F), 8 (G) and 10 (H). 

Cells were treated with DM in the presence or absence of 0.1, 1, 10, 100, and 1000 nM RA 

and EEF2 was used as endogenous control (∆Ct). Data were normalized to C/EBPδ gene 

expression of positive control (DM) at the corresponding time point (∆∆Ct). Data are 

means ± SE (n = 3). Different letters represent treatment effects that were significantly 

different (P < 0.05). 
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Supplementary Figure 3.6 Mouse 3T3-L1 cells were transfected with pGL4.10 (luc2/-

500CEBPa) in triplicate. Following incubation with differentiation medium only, growth 

medium only, or differentiation medium with RA (1000 nM). Fire-fly and Renilla 

luciferase activity units were measured at 0, 12, 24 and 48 h. The firefly luciferase activity 

units were normalized to Renilla luciferase activity units. Data are normalized as fold 

activation relative to 0 h and shown as means ± SE (n = 3). Different letters represent 

treatment effects that were significantly different (P < 0.05) within each time-point.  
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CHAPTER IV 

GOLD-KDEL PEPTIDE-SIRNA NANOCONJUGATE-MEDIATED 

TRANSFECTION IN 3T3-L1 PREADIPOCYTES AND MATURE 

ADIPOCYTES 

 

 

Abstract 

To investigate the effect of gold-nanoconjugate delivering siRNA against 

CCAAT/enhancing binding protein α (C/EBPα,  a key regulator of adipocyte 

differentiation) into pre-adipocytes and mature adipocytes, siRNA against C/EBPα was 

linked with gold nanoparticles (AuNPs, 20 nm) conjugated with cysteine terminated KDEL 

(Lys-Asp-Glu-Leu) peptide, and transfected into 3T3-L1 cells. Fluorescence microscopy 

analysis provided evidence of AuNP-peptide transfection in both undifferentiated 3T3-L1 

preadipocytes and mature 3T3-L1 adipocytes. Unfortunately, no significant difference in 

C/EBPα expression between AuNP-delivered KDEL and siRNA group and negative 

control group was found. Basis on the transfection of the AuNP-delivered KDEL was 

observed with confocal microscopy, the reason that the expression of C/EBPα was not 

significantly reduced might be at day 0, C/EBPα expression was not induced yet, and at 

day 6, C/EBPα expression declined. However, the fluorescence microscopy data still 

indicates that AuNP-KDEL nanoconjugates can be transfected into post-differentiation 
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3T3-L1 (mature adipocytes), and a deeper understanding of the mechanisms regulating 

their uptake and intracellular trafficking is needed. 

 

Introduction 

Gold nanoparticles (AuNPs) have been reported as a supreme delivery tool in catalysis, 

biology and nanotechnology with unique characteristics compared to other vectors [1]. The 

characteristics of AuNP, enhanced cellular uptake, low cytotoxicity and flexibility in 

synthesis and functionalizedtion, supporting that AuNPs could be used as nanocarriers for 

drug delivery and gene therapy, suggesting their promise for development and use in the 

clinic. Various modifications have been implemented on AuNP functionalization, such as 

AuNP conjugated to peptides [2-7], oligonucleotides (ONs) [8, 9], antibodies [10], various 

combinations of biomolecules [11-15],  and also including biological passivating agents 

such as polyethylene glycol (PEG) [16-19], or oligoethylene glycol (OEG) [20, 21].  

 

The carboxy-terminal sequence Lys-Asp-Glu-Leu (KDEL) in animal cells was first 

discovered as a retention signal for soluble proteins resident in the endoplasmic reticulum 

(ER) [22]. The KDEL signal is recognized by ERD2 receptors, targeting their ligands to 

the retrograde COPI-mediated transport pathway (23-25). Extracellular proteins and 

peptides having the C-terminal KDEL motif can be internalized, reaching Golgi-like 

structures within 30 min and the ER in 30-90 min [26]. 

 

Gene knockdown by siRNA has been showed to have high efficiency to control the 

transcriptional and translational level of genes and their products [27]. Delivery of siRNA 
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into cells has been conducted using various transfection methods such as electroporation, 

viral vector mediation and lipid (liposomal) mediation. Most of these in vitro transfections 

are attempted during the proliferative phase of the cells to enhance transfection efficiency 

[28]. However, the understanding and successful transfection of siRNA in differentiated 

cells remains limited and unclear. Various attempts have been made to deliver siRNA 

efficiently using AuNP nanoconjugates in both in vivo and in vitro models. 

 

This study present the use of AuNP as a delivery platform to deliver CCAAT/enhancer 

binding protein α (C/EBP α) siRNA to both undifferentiated 3T3-L1 preadipocytes and 

mature 3T3-L1 adipocytes.  CEBPα plays an important role in the process of adipogenesis, 

and triggers the downstream adipogenic genes, such as FABP4. We hypothesize that the 

KDEL motif facilitates the cellular uptake and intracellular trafficking of C/EBPα siRNA 

as part of a multi-component AuNP nanoconjugates in mature adipocytes.  This approach 

will provide an attractive alternative for delivery of siRNA in differentiated adipocytes 

avoiding the use of alternatives such as lipofectamine in high concentrations, which is 

cytotoxic. Further, this study provides a deeper understanding of the mechanisms involved 

in the intracellular transport of AuNP-based nanoconjugates in cell culture studies. 

 

Materials and Methods 

Peptide/siRNA design, sequences and synthesis 

Sequences of peptides and siRNA are shown in Table 4.1. The peptide sequences were 

constructed as described previously [29]. KDEL peptide sequences were constructed with 

or without the fluorescent marker, rhodamine (New England Peptide, Gardner, MA) having 
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an N-terminal CGY motif. The peptide contains a KDEL motif at the C-terminus. The 

fluorophore-labeled peptides were used in most of the experiments. The siRNA sequence 

was designed with Custom Oligonucleotide design Software from Integrated DNA 

Technologies, Ins (Coralville, Iowa), and synthesized with a thiol modification at the 5’ 

terminus. The antisense strand was unmodified. 

 

siRNA protected thiol bond cleavage 

Before resuspending the dry thiolated siRNA, sulfur cross-bridges were reversed (per the 

manufacturer’s recommendations) to provide free thiols from binding to AuNP.  Free 

sulfurs were capped using TCEP as described in the manufacturer’s protocol (Piercenet, 

Rockford, IL). Briefly, 400 μL of 3% TCEP was added to the dry oligonucleotide and 

vortexed until the sample was in solution, and was then incubated at room temperature for 

1 h.  After incubation, 50 μL of 3 M sodium acetate and 500 μL of 100 % ethanol were 

added followed by incubation at -80ºC for 30 minutes. The solution was finally centrifuged 

at 13000 x g for 15 min and extra ethanol was removed using a vacuum lyophilizer. The 

dry pellet was resuspended in RNAse free water to yield a final siRNA concentration of 20 

μM. To prevent bond reformation between strands and effective binding with AuNP this 

procedure was done on the day of nanoconstruct preparation. 

 

Preparation of Au-peptide-siRNA nanoconjugates 

AuNP-peptides nanoconjugates were prepared as described previously with slight 

modifications [29].Citrate-capped Au NPs (20 nm) were purchased from SPI Supplies 

(West Chester, Pennsylvania). In order to bind approximately 50% of available AuNP sites, 
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twenty μL KDEL peptide (20 μM) was mixed with 1 mL AuNP (1.16 nM) and gently 

agitated for 24 h at room temperature (RT) and then centrifuged at 13,000 x g for 30 

minutes to recover the nanoconjugates.  The supernatant was carefully removed, and the 

conjugate pellet was resuspended in 0.5 mM sodium citrate buffer (pH 7.4).  The stability 

and conjugation success of KDEL peptide nanoconjugates was consistent with 

observations reported in previous studies [29, 30]. Twenty μL of fluorophore labeled 

siRNA (20 μM) was then added to the solution and gently agitated for another 24 h at room 

temperature. The conjugates were centrifuged again as described above and washed with 

1 X PBS, three times. Finally, the pellet was resuspended in 20 μL of 0.5 mM sodium 

citrate buffer (pH 7.4) and stored at 40C. Conjugates were prepared with or without 

rhodamine labeled peptide for different experiments.  

 

Cell culture 

Mouse 3T3-L1 preadipocytes were cultured at 37 ˚C with 5% CO2 enriched air in DMEM 

with 10 % FBS, 100 I.U. /ml penicillin, 100 µg/ml streptomycin (basal growth medium). 

To induce 3T3-L1 differentiation, after cells reached 100% confluence, cultures were then 

incubated for an additional 48 h, then the medium was changed to differentiation medium, 

including dexamethasone (1 µM), IBMX (500 µM) and insulin (1.7 mM) (standard 

hormonal differentiation medium, DMI). The DMI treatment was applied for the first 48 h 

followed by only insulin in basal growth medium throughout the remaining time points. 

Media were changed every 2 days for all treatments.  
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siRNA and nanoconjugate transfection 

For transfection, 1 x 105 3T3-L1 cells were seeded into 6-well plates. After 24 h, when 

cells were at approximately 70% confluent.  For Lipofectamine-mediated transfection, 10 

μL of 20 μM siRNA was transfected using 4 μL of Lipofectamine (Invitrogen, Carlsbad, 

CA) in DM.  For AuNP-mediated transfection, 20 μL of Au-siRNA-KDEL nanoconjugate 

was added to the medium.  Equal concentrations of scrambled siRNA with lipofectamine 

or AuNP were transfected in parallel plates as controls.  After 24 h, cells were extracted 

for imaging and gene expression analysis. Cells for days 2 and 6 were continuously 

cultured in differentiation media.  On days 1 and 5, transfection was done following the 

protocol outlined for myoblasts above.  Cells were extracted on days 2 and 6 (24 h 

transfection) for imaging and gene expression analysis. 

 

Immunofluorescence Microscopy 

For day 0 and day 6 staining, 3T3-L1 cells in 6-well plates were fixed using 4% 

paraformaldehyde for 15 minutes and laser confocal imaging was done using an Olympus 

Multiphoton/Confocal FluoView 1000 using a 40x water immersion lens (Center Valley, 

PA).  All images were analyzed using FV10-ASW 3.1 software and/or Metamorph Image 

analysis software as described previously [31]. All images were standardized during 

acquisition and analysis of all comparable groups. Images were quantified from at least 6-

8 individual images from triplicate wells per treatment. 
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RNA extraction and cDNA synthesis 

Total RNA extraction was performed using the Trizol extraction method as recommended 

by the manufacturer (Invitrogen) as previously described [32]. Extracted RNA was 

resuspended in nuclease free water and stored at -80ºC until further use.  Each RNA sample 

was quantified using a Nanodrop® ND-1000 UV-Vis spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). Samples were further treated with Turbo DNAse free to 

remove DNA contamination.  First strand cDNA synthesis was performed using 2 μg RNA 

for each sample using a high capacity cDNA reverse transcription kit according to the 

manufacturer’s instructions (Invitrogen). 

 

Real-time PCR 

Total Quantitative Real Time PCR (qRT-PCR) was performed using Taqman MGB® 

primer/probe sets with an ABI 7500 Fast Real Time PCR system (Applied Biosystems, 

Foster City, CA) as described previously [33]. Primers and probes used for PCR were as 

follows: C/EBPα; F. primer: CGCAAGAGCCGAGATAAAGC, R. primer: 

GTCAACTCCAGCACCTTCTGTTG, probe: AACGCAACGTGGAGAC, and Eef2; F. 

primer: CTGCCTGTCAATGAGTCCTTTG, R. primer: GCCGCCGGTGTTGGAT and 

probe: CTTCACCGCTGATCTG. Primers and probes for all genes were designed using 

Applied Biosystems Primer Express 3.0 software. Real-time PCR assays for each sample 

were conducted in duplicate wells on the same plate for both C/EBPα and the Eef2 

endogenous control.  Negative controls for all genes were run without reverse transcriptase.  

Reactions contained Taqman Universal Fast PCR Master Mix, No AmpErase® UNG 

(Applied Biosystems, Foster City, CA), forward primer (0.5 µM), reverse primer (0.5 µM), 
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Taqman probe (0.125 µM) and cDNA template made up to a final volume of 15 µL in 

nuclease-free water.  Real-time PCR cycle conditions included a holding time of 90 ˚C for 

20 sec, followed by 40 cycles of 90 ˚C for 3 sec and 60 ˚C for 30 sec of melting and 

extension temperatures, respectively.  

Data were analyzed using the relative CT (∆∆Ct) method [34]. Average Ct values of 

endogenous control (Eef2) were subtracted from C/EBPα gene average Ct values, to obtain 

∆Ct values for each sample. Finally, ∆Ct values of samples from the control treatment at 

each time point were used to normalize ∆Ct values of corresponding time points of each 

treatment to obtain ∆∆Ct and mRNA fold expression values [2-∆∆Ct]. 

 

Statistical Analysis 

For qRT-PCR, data are expressed as fold change of means ± SE from at least three 

independent experiments. All other assays were conducted in triplicate. Statically analysis 

was performed using one-way ANOVA test (SAS 9.3- Cary, NC). When P < 0.05, 

differences were considered statistically significant. 

 

Table 4.1 Sequences and purities of peptides and siRNA used to form nanoconjugates 

Name Sequence 

Peptide A  H2N-CGYRQSDIDTHNRIKDEL-COOH 

Fluorescent Peptide A H2N-CGY[KRhod]RQSDIDTHNRIKDEL-COOH 

C/EBPα siRNA 5’-GCCAGGCUGCAGGUGCAUGGUGGUC-3’ 

5’-5ThioMC6-D-GACCACCAUGCACCUGCAGCCGUUC 
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Results 

Au-peptide nanoconjugates were transfected into both pre- (day 0) and post (day 6) 

adipocytes. 

For day 0 and day 6 staining, 3T3-L1 cells in 6-well plates were fixed using 4% 

paraformaldehyde for 15 minutes and laser confocal imaging was done using an Olympus 

Multiphoton/ Confocal FluoView 1000. The fluorescence images strongly support that 

AuNPs-peptide nanoconjugates had been transfected into both the preadipocytes (day 0) 

(Fig. 4.1A) and mature adipocytes (day 6) (Fig. 4.1B). 

 

 

 

Figure 4.1 Fluorescence image of Au-nanoconjugates in 3T3-L1 

3T3-L1 cells transfected with AuNPs-peptide nanoconjugates on day -1 and day 5, 

respectively, and incubated for 24 h. Fluorescence staining was performed on day 0 (A), 

and day 6 (B). Images was collected at 40x water immersion lens. 
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Gene knockdown efficacy of AuNP nanoconjugates. 

To further investigate the transfection efficacy of AuNP-mediated siRNA delivery, we 

studied at the mRNA expression of C/EBPα in both undifferentiated 3T3-L1 and mature 

adipocytes. Unfortunately, there was no C/EBPα knockdown observed in neither 

undifferentiated preadipocytes nor differentiated adipocytes with lipofectamine-mediated 

siRNA transfection or AuNP nanoconjugates transfection (Fig. 4.2). However, at day 2 and 

day6, in the control groups (blank and scrambled siRNA), C/EBPα expression was induced 

compared to day 0. 
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Figure 4.2 mRNA knockdown of C/EBPα by Au-nanoconjugates 

Real-time PCR quantification of C/EBPα gene expression in 3T3-L1 cells on days 0, 2 and 

6 of differentiation. Cells were treated with siRNA scrambled control, siRNA C/EBPα or 

Au-KDEL-siRNA nanoconjugates on days-1, 1, and 5.  Comparisons are made with the 

blank within day.  Data are means ± SE (n=3).  Bars with different letters represent 

statistically significant differences (P<0.05). 

 

Discussion 

Lipofectamine is a cationic lipid formulation that has relatively high efficacy in terms of 

delivery of siRNA to cells, especially in cultures during exponential growth phase.  

However, Lipofectamine has been observed to delay growth and possess cytotoxic effects 

on transfected cells [35]. Although, attempts have been made to improve these cationic 

lipids to render them less cytotoxic and more efficient, they still possess some level of 

cytotoxicity [36, 37]. In addition, effective transfection of non-proliferating cells such as 

mature adipocytes has been a challenge even with the use of these cationic lipids.  

Therefore, there is a need for a delivery vector that is less cytotoxic and that can efficiently 

deliver oligonucleotides or peptides to differentiated cells.  

 

AuNP have emerged as a promising vector for delivery of peptides, molecular markers, 

oligonucleotides, and drugs to undifferentiated cells [38]. However, higher concentrations 

of AuNP may have cytotoxic effects, concentrations of 20 nM or lower have been found 

to be compatible with cells without any adverse effects [39]. In our experiments, the final 

concentration of nanoconjugates was less than 1 nM, and at this concentration we did not 
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observe any adverse effects on the cells. We started with studies of AuNP-peptide 

conjugates to understand the cellular uptake of the peptides.  Consistent with previous 

experiments, we observed significant uptake of AuNP-peptide conjugates in 3T3-L1 

preadipocytes and also the mature adipocytes. Effective delivery into these cells also 

provides presumptive evidence that transfection of adipose tissue in vivo may be enhanced 

using this approach.  Our data provides preliminary evidence for the use of AuNP 

nanoconjugates functionalized with KDEL peptides as an efficient delivery vector for 

siRNA to differentiated mature adipocytes. 

 

To estimate the efficacy of siRNA gene knockdown in mature adipocytes is one of the 

objectives of the present study. We performed comparative mRNA expression analysis 

between Lipofectamine-mediated delivery and AuNP nanoconjugate delivery of siRNA 

using highly specific Taqman PCR reactions. However, we did not observe C/EBPα gene 

knockdown in either the lipofectamine delivery group or the AuNP nanoconjugate delivery 

group. This is a little disappointing, however, it might be because the siRNA against 

C/EBPα did not work out as expected. Another hypothetic explanation is that siRNA could 

be degraded through lysosomes, and to investigate this hypothesis, further studies will be 

conducted in intracellular trafficking and co-localization of siRNA against C/EBPα labeled 

with fluorophores.  

 

In the previous studies, AuNP-KDEL nanoconjugates were reported to be effective in 

transfection into Sol8 [29, 30] and C2C12 muscle cells [32]. In the present study, we also 

observed AuNP-KDEL nanoconjugates were successfully transfected into differentiated 
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3T3-L1 adipocytes. These observations suggest that AuNP-KDEL nanoconjugates 

transfection is effective. However, since the transfection with AuNP-KDEL 

nanoconjugates is effective, there may be some other explanations for why gene knock-

down was not achieved as expected. First of all, the timing of transfection timing is very 

important. Another reason is that during the process of adipogenesis, C/EBPα expression 

level is changed from the beginning to the late phase of the process, and this may also 

impact to choose the optimal timing of transfection. Even though in the present study three 

time points have been chosen, we may still miss the optimized time point for gene knock. 

In the next step of this study, transfection timing will need be optimized and choose shorter 

time interval, 0, 12 h, and days 1, 2, and 6. The siRNA against C/EBPα will also be 

optimized in the next step studies. We will design several other sequences of siRNA against 

C/EBPα, test for the best gene knock down efficiency, and use it to link with AuNP 

nanoconjugates. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Adipogenesis plays an important role in lipid accumulation and adipose tissue development. 

Understanding the underlying regulatiory mechanisms of adipogenesis is important to 

improve meat quality for the beef industry, and it is also may be important for human 

obesity therapy. There are several transcriptional factors (such as PPARγ, C/EBPα, 

C/EBPβ, C/EBPδ, SREBP-1c) which are induced as a cascade regulating the process of 

adipogenesis. These factors are all crucial in adipogenesis. Some nutrient molecules, for 

example, vitamin A and D have also been reported to regulate adipogenesis.  

 

In the present studies, 1,25-dihydroxyvitamin D (1,25-(OH)2D3) and retinoic acid (RA) 

were studied as regulators of adipogenesis. Both of them inhibited aspects of adipogenesis 

and lipid accumulation possibly through regulation of adipogenic transcriptional factors. 

The inhibitory effect of 1,25-(OH)2D3 on lipid accumulation occurred at high 

concentrations (100, 10, and 1 nM) of 1,25-(OH)2D3 through 10 days of testing. The gene 

expression of PPARγ and C/EBPα was inhibited by 1,25-(OH)2D3 treatments through 10 

days of testing. FABP4 and SCD-1 expression levels were also suppressed by 1,25-

(OH)2D3 from day 2 to day 10. However, expression of C/EBPβ and C/EBPδ was not 

influenced by 1,25-(OH)2D3. The promoter activity of C/EBPα was not impacted by 1,25-

(OH)2D3. These results suggest that 1,25-(OH)2D3 inhibits adipogenesis not directly 
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through C/EBPs, but via repressed PPARγ gene expression level or PPARγ activity. When 

PPARγ is inhibited, the downstream transcriptional adipogenic factors, such as C/EBPα, 

will also be inhibited. RA treatments (high concentrations, 1000 and 100 nM) have greater 

inhibitory effect on the gene expression of C/EBPα compared to PPARγ. Similarly to 1,25-

(OH)2D3, C/EBPβ and C/EBPδ do not respond to RA at any concentration tested. On the 

other hand, FABP4 gene expression was inhibited by all the concentrations of RA. Gene 

expression of SCD-1 was inhibited gradually by high concentrations of RA compared to 

FABP4. These results indicate that the pathway of RA inhibition on adipogenesis involves 

C/EBPα, but not C/EBPβ or C/EBPδ. However, the activity of C/EBPα promoter is not 

affected by RA, so maybe RA inhibiting adipogenesis is via up-regulating degradation of 

C/EBPα mRNA, but does not influence the promoter activity. 

 

AuNP-nanoconjugates linked with KDEL peptide were used to deliver siRNA against 

C/EBPα into 3T3-L1 preadipocytes and mature adipocytes. Confocal microscopy images 

showed that AuNP-nanoconjugates were transfected into both preadipocytes and mature 

adipocytes. These interesting results indicate that AuNP nanoconjugates are transfected 

differentiated adipocytes, consistent with previous studies which demonstrated that AuNP-

nanoconjugates transfection into mature myotube cells were high effective.  In conclusion, 

the present studies systematically report 1,25-(OH)2D3 and RA regulation of adipogenesis 

and the expression of key adipogenic genes. The studies focus on C/EBPα promoter 

activity response to 1,25-(OH)2D3  and RA show that the inhibitory effect of vitamin A and 

D on adipogenesis does not involve C/EBPα promoter. The AuNP-nanoconjugate 
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experiments report transfection of gold-KDEL-nanoconjugates into mature adipocytes, and 

might present a potential delivery tool for mature adipocytes. 

 

Future studies will focus on the following aspects: 1) the mechanisms of 1,25-(OH)2D3 

regulation on adipogenesis through PPARγ; 2) the pathway of retinoic acid regulation on 

adipogenesis via C/EBPα; 3) C/EBPα gene knock-down with AuNP-nanoconjugates, and 

AuNP-nanoconjugates intracellular trafficking and co-localization in 3T3-L1 cells. For 

1,25-(OH)2D3, future studies should focus on the interaction between the activity of PPARγ 

promoter and 1,25-(OH)2D3, to investigate the deeper mechanisms of 1,25-(OH)2D3 

regulation on adipogenesis. For retinoic acid, future studies should focus on both C/EBPα 

mRNA and protein level. To investigate the hypothesis of the mechanisms of RA inhibition 

on adipogenesis via up-regulating degradation of C/EBPα mRNA or reducing C/EBPα 

protein transport into nucleus, nucleic protein could be isolated, and tested in the short 

interval time course experiments. C/EBPα mRNA could also be measured accordingly to 

the same time course experiments as protein. In future C/EBPα gene knock-down studies, 

the optimal time points for AuNP-nanoconjugate transfection for intracellular trafficking 

and co-localization of AuNP-nanoconjugates could be a focus. 


