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Abstract 

Although Artificial Intelligence/Machine Learning (AI/ML) systems have outperformed humans in a 

variety of sectors, the inability to explain their autonomous decisions and actions has created a new 

challenge in the research community. The need for explainability has shifted the focus of AI research 

from complex black-box models to explainable and interpretable models. Recently the topic of 

Explainable AI (XAI) and Trustworthy AI (TAI) has become a hotspot and is widely acknowledged by 

academia, industry, and government. The basic principle of TAI is to build an AI system that is lawful, 

ethical, and robust so that humans could rely on them. One of the feasible steps in building a TAI 

system is through is XAI. XAI aims to make AI/ML results more understandable and explainable to 

humans. While there are a variety of explainability approaches and methodologies designed for 

providing explanations and user-friendly decisions, each has its benefits and drawbacks as well as 

several unsolved challenges. Through this Ph.D. research, our objective is to analyze the inter-

relationship between provenance (which is the origin or source of something), XAI, and TAI, build a 

software package to document provenance and extend reproducibility of AI/ML workflows, and test 

the package in real-world applications to support XAI and TAI. We want to demonstrate that 

provenance holds great promise for the new state-of-the-art AI/ML solutions; and  adopting provenance 

documentation is increasingly important for illustrating the details of AI/ML workflows and guiding 

human decision-making.  

 

In order to achieve our objective, we proposed five research topics and the corresponding activities: 

1. Identify the inter-relationship between provenance, XAI and TAI through a literature review. 

2. Study different software tools/applications and workflow management system (WfMS) to 

understand how provenance is documented. 
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3. Highlight the importance of workflow standardization like Common Workflow Language 

(CWL) which provides a standardized framework to describe the AI/ML workflows and enable 

computational reproducibility and portability. 

4. Build a software package to document provenance and describe AI/ML workflows into CWL-

compliant format to extend reproducibility of workflows. 

5. Test the package in real-world applications to support XAI and TAI. 

 

To address the first research topic, we investigated a variety of research papers, techniques, tools, and 

WfMS that support provenance, XAI, and TAI together. An extensive literature study was carried out 

with the Scopus database from 2010 - 2020 to discover records indicating provenance, XAI, and TAI, 

and identify the inter-relationship between them. To address the second research topic, we examined 

and demonstrated various WfMS, packages, and software applications that capture provenance to make 

AI/ML models transparent, explainable, and understandable. In order to address the third and fourth 

research topics, we developed a python package called geoweaver_cwl, which translates Geoweaver 

AI/ML workflows into the standardized format known as CWL. This package not only ensures that all 

the essential details of the workflows are documented, but it also enhances the computational 

reproducibility and portability of workflows. To demonstrate the practical application of 

geoweaver_cwl in our fifth research topic, we conducted a series of tests on various use cases ranging 

from simple to complex, drawn from Geoweaver and other domains. 

 

The need for explainability in AI/ML models has attracted great attention in recent years. However, it 

is not sufficient to explain AI/ML models using post-hoc explanations alone. Provenance 

documentation is one of the means to accomplish transparency, traceability, explainability, and 

reproducibility in AI/ML models. In this research, we provide a community-driven solution 

geoweaver_cwl, which addresses the current struggles in attaining portability, reproducibility, 
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transparency, and scalability of AI/ML workflows. We evaluated geoweaver_cwl using various use 

cases from different domains. The study indicates that the geoweaver_ cwl package can greatly assist 

the students, researchers, and geoscience community in translating their AI/ML workflows into CWL-

compliant WfMS software applications. 

 

We hope this Ph.D. research not only serves as a starting point for future research advances but also as 

a reference material that encourages experts and professionals from all disciplines to embrace the 

benefits of reproducible workflows, provenance, XAI, and TAI. 
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Chapter 1 Introduction 

This chapter is adapted from the published paper: 

Amruta Kale, Tin Nguyen, Frederick C. Harris, Chenhao Li, Jiyin Zhang, Xiaogang Ma; 

Provenance documentation to enable explainable and trustworthy AI: A literature review. Data 

Intelligence 2022; DOI: https://doi.org/10.1162/dint_a_00119 

 

1.1 Background of XAI and TAI 

Over the past decade, the rapid rise of applications in Artificial Intelligence (AI) has raised the 

discussion of explainable AI (XAI) and trustworthy AI (TAI) among data science practitioners (Wing, 

2020). We have seen remarkable progress in AI algorithms and facilities for high-performance 

computation, and applications of AI are thriving in various domains, such as virtual assistants, 

healthcare, autonomous vehicles, criminal justice, human resource, and environmental science. In many 

applications, the results generated by AI/ML models have a huge impact on human decision-making. 

However, existing models are insufficient to certify how and why the results were obtained, which 

leads to growing concerns that these AI/ML models are unfair, opaque, or non-intuitive (Goodman and 

Flaxman, 2017). For example, ML and Deep Learning (DL) are the most representative technologies 

in AI and are widely used by data science practitioners. ML is a powerful tool and can identify patterns 

and examine correlations on large datasets. DL is a subset of ML that achieves great power and 

flexibility (Goodfellow et al., 2016).  It uses a vast amount of labeled data and multiple layers of 

algorithms to imitate the neural network in our brain, with the aim to achieve human-like cognitive 

abilities. The most representative DL technology is the Artificial Neural Network (ANN) or Deep 

Neural Network (DNN). DNN comprises a large number of neurons or nodes with each layer. These 

nodes are interconnected in a complex manner and activate multiple combinations at each layer. 

However, it is debatable how this complex network works and derives its output which leads to the 
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"black-box" problem (Castelvecchi, 2016). Although these models perform complex computational 

tasks with high predictive accuracy, we need to ensure that the steps, workflows, and results of these 

models are transparent, interpretable, unbiased, and trustworthy. One of the approaches for increasing 

transparency is to explain these complex models through XAI, which in turn is a feasible step in 

building TAI (Adadi and Berrada, 2018).  

 

The goal of XAI is to provide algorithmic transparency that can be understood by the average human 

being (Ribeiro et al., 2016). XAI will help to answer questions like how the system made certain 

predictions, why the system fails, or what biases are present in the system or data (Guidotti et al., 2018; 

Murdoch et al., 2019). However, not all AI applications need explanation. Some practitioners and 

academics discussed that explaining a black-box model is difficult to achieve or perhaps unnecessary. 

Instead, they suggested that these models should be designed inherently interpretable (Rudin, 2018, 

2019; Rudin and Radin, 2019). This approach is highly debatable, as in most of the applications the 

accurate predictive solutions are provided by complex ML models. Some of the ML models such as 

rule-based learning, K-nearest neighbor, and linear regression have high interpretability and their 

workflows are easy to understand. However, many other AI models such as DNN, support vector 

machine (SVM), and Bayesian models have complex structures and workflows, which are mysterious 

to the outside observers. On some occasions, even the programmers of these models are incapable of 

explaining why a model behaves in a certain way and generates a specific output. With the growing use 

of AI applications in every aspect of our modern life, there is also an increased risk of unanticipated 

behavior. The danger is in creating and using decisions that are not justifiable, legitimate, or that merely 

do not allow obtaining detailed explanations of their behavior. In that sense, XAI and TAI will be 

qualified to reveal the strengths, limitations, and/or weaknesses of AI/ML models. They are also an 

important means to establish user engagement and trust in AI applications. 
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1.2 A Brief Reflection of Provenance  

The technical approaches for XAI and TAI are under quick development, at which some researchers 

highlighted that provenance is an evolving field to explain AI-based systems (Liu et al., 2017; Jentzsch 

and Hochgeschwender, 2019; Frost, 2019). Provenance answers the question of who-what-when-where 

by documenting the process at each step, such as entities, agents, and activities. By portraying 

transparency, the documented provenance helps trace back the origin of data, demonstrate the steps of 

data processing, and determine the trustworthiness of results (Jaigirdar et al., 2019; Amalina et al., 2019; 

Jaigirdar et al., 2020). Given the non-intuitive nature of many AI/ML algorithms, tracking provenance 

in AI/ML workflows will be helpful since it is an effective technique to highlight significant 

components in the process and allows scientists to understand how the result was obtained (Samuel et 

al., 2020). To achieve repeatability and comparability in AI/ML experiments, one must first understand 

the metadata and most importantly the provenance of the artifacts in the ML process (Kumar et al., 

2016). Very recently, Werder and Balasubramaniam (2021) also suggested that data provenance assists 

and improve fairness, accountability, transparency, and explainability (FATE) in AI/ML algorithms 

and enables trust. Several other researchers suggested that provenance documentation is an emerging 

approach toward XAI and TAI (Liu et al., 2017; Jentzsch and Hochgeschwender, 2019; Frost, 2019). 

Nevertheless, the work in this field is still limited and there is no systematic discussion or road map for 

those topics in multi-disciplinary data science.  

 

We anticipate that provenance documentation is an important factor in building XAI and TAI as it not 

only provides metadata of a workflow but also confirms the authenticity and reproducibility of results. 

This chapter aims to conduct a literature review of existing research on XAI, TAI, and provenance, 

with a focus on their applications in data science. We started our literature search by scrutinizing 

academic papers from Scopus as it is one of the largest and most reliable literature databases for 

scientific research. The search was conducted based on keywords to select papers. We used generic 
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search strings to get more search results like “explainable ai”, “trustworthy ai”, “artificial intelligence”, 

“explainable artificial intelligence”, “machine learning”, and “provenance”. Our objective was to focus 

on recent advances. Therefore, we restricted our search from 2010 to 2020. We followed the standard 

systematic literature review method with backward and forward snowballing strategies (Wohlin, 2014). 

Snowballing strategy uses a reference list of the paper or citations of the paper to identify additional 

papers. The gathered papers were then scanned based on the title, abstract, and keywords to verify 

whether the reported work includes work on XAI, TAI, and provenance. We did not aim to survey all 

research papers. Instead, we divided our search based on two standards; 1) selection based on a higher 

level of citation and 2) high-quality papers including good coverage and technicality in the field. 

Irrelevant articles were excluded, and the remaining articles were examined in detail to understand 

whether they provide enough information about the proposed methodology, technical approaches, and 

results. In addition to the literature found on Scopus, in the review and discussion, we also incorporated 

a number of other publications that deliver a good definition of fundamental concepts and illustrate 

successful applications. 

 

1.3 Motivation of this PhD Research  

At present, AI/ML research in earth science is lacking in efficient management, and it is difficult to 

share, replicate, track provenance, and scale ML workflows. Most of the time, scientists manage their 

ML workflows on their own. Due to the uncertainty, complexity, and variety of ML models, researchers 

struggle with a solo management strategy to track and control ML workflows, especially when big 

Earth data is involved. To make AI-based earth scientific workflows more shareable, replicable, 

reusable, and most importantly provenance-enabled, we collaborated with George Mason University 

for scaling up the power of cloud-based workflow platforms, automating provenance documentation 

for open science, and advancing the development to support explainable AI and trustworthy AI. 
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1.4 Objective of this PhD Research 

To address the above-mentioned challenges, the objective this Ph.D. research is to analyze the inter-

relationship between provenance, XAI, and TAI, build a software package to document provenance 

and extend reproducibility of AI/ML workflows, and test the package in real-world applications to 

support XAI and TAI.   In order to ensure that any researcher or practitioner who wishes to upgrade 

their existing work can reproduce, share, and maintain it without any obstacles while maintaining the 

integrity of provenance. The dissertation answers the following research questions. 

  

1. How can provenance contribute to the explainability and transparency of AI/ML models to 

support the goals of XAI and TAI? 

2. Would adopting domain-specific provenance standards be necessary, or can we rely on 

universal standards such as PROV-DM (Provenance Data Model) to document all the necessary 

complex details? 

3. What software tools and WfMS are available for documenting provenance? 

4. What sets Geoweaver apart from other WfMS? 

5. What are the long-term benefits of standardizing workflows using CWL? 

 

In achieving this goal, the following hypotheses are taken into consideration to help with this study's 

process of investigation in order to address the aforementioned research questions.  

1. Provenance documentation is one of the approaches in providing explainability and 

transparency in AI/ML models with the help of proper documentation and  metadata 

information.  

2. Provenance will not only help users to trace, evaluate, understand, and reproduce the AI/ML 

results but will also enhance users’ decisions about how much trust to place in data and results 

generated from the original sources. 
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3. Adding domain-specific documentation standards can help the community to grasp and begin 

employing appropriate practices routinely. 

4. Documenting the necessary detail of a workflow will help researchers with troubleshooting in 

the event of errors, shedding light on the behavior of the model. 

5. Automating the process of provenance tracking by using workflow platforms, tools, and 

packages will benefit to avoid the risk of manual documentation.  

6. Adopting open standard like CWL to describe large scale workflows will enable reusability 

and collaboration.  

 

1.5 Dissertation Outline 

The dissertation consists of six chapters. The four of which (Chapter 2 – Chapter 5) provide solid 

answers to the aforementioned questions. These chapters are either been published or will be submitted 

for publication as a peer-reviewed papers. The highlights of these chapters are briefly described below: 

 

Chapter 2: Background and related work 

This chapter describes the fundamental concepts of provenance, XAI, and TAI and demonstrates the 

inter-relationship between the concepts through the bibliometric analysis highlighting the recent 

development in the research area. This chapter also summarizes the fundamental challenges that specify 

research questions in the research objective and outlines the structure of the dissertation. 

 

Chapter 3: Provenance in Earth AI 

This chapter highlights the importance of documenting provenance in the earth science domain. While 

demonstrating different tools and WfMS that support reproducible results and provenance tracking like 

MetaClip, Kepler, and Geoweaver to illustrate the state-of-the-art technologies for ensuring data quality 

and the workflow process in earth and environmental sciences. 
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Chapter 4: Geoweaver_cwl: Transforming Geoweaver AI workflows to Common Workflow Language 

to extend interoperability 

This chapter describes and demonstrates the technical framework of our python 

package geoweaver_cwl. The proposed work in this chapter features standardizing AI/ML workflows 

into CWL format in order to enable reproducibility. To verify the usability of this package, it has been 

tested on the complex workflow provided by Geoweaver. The geoweaver_cwl Python package is made 

open access at: https://pypi.org/project/geoweaver-cwl/0.0.1/. 

 

Chapter 5: Utility of the Python package Geoweaver_cwl for improving workflow reusability: An 

illustration with multidisciplinary use cases 

This the chapter briefly demonstrates and tests the usability of geoweaver_cwl with five different use 

cases from diverse domains. These use cases were created in Geoweaver and later tested on the package 

in order to translate them into CWL scripts. The translation was successful, easy, and fast. The exemplar 

code of the demonstrated use cases is accessible at GitHub 

https://github.com/amrutakale08/geoweaver_cwl-usecases. 

 

Chapter 6: Conclusion, limitations, and future directions 

This chapter briefly reviews all the preceding chapters, demonstrates the overall significance and 

unique findings, underlines the limitations, and provides recommendations for future studies. 
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Chapter 2 Background and Related Work 

This chapter is adapted from the published paper: 

Amruta Kale, Tin Nguyen, Frederick C. Harris, Chenhao Li, Jiyin Zhang, Xiaogang Ma; 

Provenance documentation to enable explainable and trustworthy AI: A literature review. Data 

Intelligence 2022; DOI: https://doi.org/10.1162/dint_a_00119 

 

2.1 Fundamental Concept of XAI and TAI 

2.1.1 Background of Explainability and Trustworthiness in AI  

AI/ML models have achieved rapid progress and worldwide adoption, and many of them can be seen 

on our streets and at our homes. However, despite the successful AI applications, we still lack a 

scientific understanding of their workflows. To gain more benefit out of these AI-based systems they 

first need to explain to humans why they made a certain decision and which important features they 

considered in the process (Montavon et al., 2017; Adadi and Berrada, 2018; Miller, 2019). There are 

numerous reasons why these systems should be understandable, interpretable, and explainable. It will 

not only gain trust in humans but will also give confidence that the system works well. In recent years 

there have been several controversies where the outcomes generated by AI/ML models were biased or 

discriminatory (Osoba and Welser IV, 2017; Chen et al., 2019). These models have become so 

dominant that they are raising doubts about future humanity and demand an explanation. For example, 

in 2016 Microsoft launched a Twitter bot called “Tay”, which was designed to entertain and engage 

people. In less than 24 hours, Tay’s talk extended to racist and offensive comments, forcing Microsoft 

to take it offline (Tennery and Cherelus, 2016; Vincent, 2016). There were even life-threatening 

incidents caused by AI. In 2015, a self-driving Tesla was involved in a deadly accident in China when 

it was in autopilot mode and failed to identify a road-sweeping truck (Boudette, 2016). In another 

incident reported in 2018, a self-driving Uber killed a woman in Arizona. It turned out that the automatic 

car’s software had no capability to classify an object as a pedestrian until that object was near a 
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crosswalk (Mcfarland, 2018; McCausland, 2019). The IBM Watson system once failed to recommend 

correct treatments for cancer patients (Ross and Swetlitz, 2018). Also, Amazon’s AI recruiting tool 

displayed a gender bias. It was demonstrated that the new recruiting tool was trained to screen 

applicants by looking for patterns in applications submitted to the company. The majority of the 

submissions were from men candidates, reflecting male dominance in the tech industry. Accordingly, 

the AI recruiting tool trained itself that male candidates were preferable, which eventually led to the 

gender inequality in its recommendations (Dastin, 2018). There are several more examples mentioned 

in the literature where AI-based systems malfunctioned (e.g., Tan et al., 2017; Adadi and Berrada, 

2018). Accordingly, there is a growing need for tools to check vulnerabilities and flaws in AI-based 

systems, as well as to help developers and users understand why the machine makes a certain decision.  

 
The basic principle of TAI is to build AI-based systems that are lawful, ethical, and robust to ensure 

that humans can rely on them (Floridi, 2019; Thiebes et al., 2020; Jain et al., 2020). The key to establish 

TAI is by using XAI, which refers to the series of frameworks and techniques used to ensure that the 

results generated by AI-based systems are easily understandable and interpretable to humans (Gunning 

and Aha, 2019). Explainability plays a crucial role in achieving trust and transparency in AI algorithms. 

To improve explainability, data science practitioners have developed many approaches and strategic 

plans on XAI. For example, the National Academies of Sciences and the Royal Society organized a 

forum in 2017, which reported that trust, transparency, interpretability, and fairness are the most 

significant societal challenges in AI-based systems (NAS, 2018). Simultaneously, the Defense 

Advanced Research Projects Agency (DARPA) funded the “Explainable AI (XAI) Program” to 

improve the explainability of AI results (Gunning, 2019). Also, in July 2017, “The New Generation 

Artificial Intelligence Development Plan” was sanctioned by China’s State Council, to encourage 

explainability and extensibility (Roberts et al., 2021). In May 2018, the European Parliament set the 

law of General Data Protection Regulation (GDPR) to award citizens a “Right to Explanation” in cases 
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where their activities are affected by AI (Goddard, 2017). Soon after that, in June 2018 a High-Level 

Expert Group (HLEG) on AI was set up in the European Commission to design the guideline for TAI 

(AI HLEG, 2019). The government of Finland published a final report on Finland’s artificial 

intelligence programs in June 2019 in order to position Finland as a leader in the application of AI 

(MEAEF, 2019). To encourage public trust and promoting the use of AI in the federal government, the 

White House signed an executive order on TAI in December 2020 (White House, 2020). Along with 

those efforts, the topics of XAI and TAI have received great attention in the academic, industrial, and 

governmental sectors.  

 

Very recently, Wing (2021) outlined research agendas that combine the concepts of trustworthy 

computing, AI, and formal methods for ensuring trustworthiness. In her view, the previous discussion 

on trustworthy computing covers a set of topics: reliability, safety, security, privacy, availability, and 

usability. The AI/ML systems especially DL models add a dimension of complexity to traditional 

computing systems and raise more topics of interest, such as accuracy, robustness, fairness, 

accountability, transparency, interpretability/explainability, ethics, and more. She also pointed out that 

although the ML community takes accuracy as a gold standard, XAI and TAI will require trade-offs 

among the topics mentioned above. In recent years, XAI and TAI topics have also been increasingly 

discussed in workshops and conferences. For instance, the Fairness, Accountability, and Transparency 

in Machine Learning (FAT/ ML) conference series are a unique venue for those topics (Rakova et al., 

2020). The records of search queries and publications also reflect the increasing attention to XAI and 

TAI. The graph in Figure 2.1 shows the popularity of keywords on Google Trends from 01/2017 to 

12/2020. For the same period, we found 772 publications on Scopus whose title, abstract, or keywords 

refer to XAI or TAI. Figure 2.2 shows the distribution of those publications in each year. 
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Figure 2.1: Interest over time for the terms “Explainable AI” and “Trustworthy AI” 

(Distribution of publications (01/01/2017 – 12/31/2020) whose title, abstract, or keywords include “Explainable AI” or 
“Trustworthy AI”. This query was used to extract the results from Scopus: (TITLE-ABS-KEY (“Explainable AI”) OR TITLE-
ABS-KEY (“Trustworthy AI”)) AND PUBYEAR > 2016 AND PUBYEAR < 2021. The query was conducted on Aug 1st, 
2021.) 
 
 

 

Figure 2.2: Distribution of publications 

2.1.2 Technical approaches for XAI and TAI 

There have been several advances in explanation methods and strategies to make AI-based systems 

more ethical, transparent, and explainable (Singh et al., 2018). In particular, there have been many 

discussions on technical approaches to enable XAI and TAI in ML models. ML models are classified 

into two types: transparent and opaque (Belle and Papantonis, 2020). The transparent ML models are 

recognized as understandable and capable of explaining to some degree by themselves, such as 

logistics/linear regression, decision tree, k-nearest neighbors, and Bayesian models (Holzinger et al., 
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2017; Murdoch et al., 2019). These models can fit well when the primary dataset is not complex. In 

contrast, opaque ML models are “black-box” in nature, making them complex and tricky to understand. 

Despite obtaining high predictive accuracy, they lack explainability or interpretability of how the results 

are generated (Montavon et al., 2017; Adadi and Berrada, 2018). Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), Support Vector Machine (SVM) and Random Forest (RF) are the 

algorithms that fall under opaque models. For instance, RF was initially introduced as a technique to 

improve accuracy using a single decision tree. In that situation, RF can be treated as a ‘transparent’ 

model. However, this technique often suffers from overfitting and poor generalization. To address this 

issue RF combines multiple trees in which each individual tree is trained on a different part of the 

training dataset and captures different characteristics to calculate the final outcome. This whole process 

is far more challenging to explain and lacks interpretability than a single tree, forcing the user to apply 

a post-hoc explainability approaches to gain more insights from it (Belle and Papantonis, 2020, Arrieta 

et al., 2020). A post-hoc explainability approach is often employed to extract information about what 

the model has learned (Guidotti et al., 2018). It means that, when an ML model is unable to explain the 

intricate method, a separate model is applied to provide an explanation. The post-hoc explainability is 

categorized into two different techniques: model-agnostic and model-specific (Miller, 2019). The 

model-agnostic technique can be applied to any type of ML model no matter how complex they are. 

For instance, some model-agnostic techniques such as Local Interpretable Model-Agnostic 

Explanations (LIME) (Ribeiro et al., 2016) and SHapely Additive exPLanations (SHAP) (Lundberg 

and Leen, 2017) are widely used to explain DL models. While model-specific technique is only 

applicable to a single model or a class of models, Tree SHAP (TSHAP) (Lundberg et al., 2020) and 

Integrated Gradients (IG) (Sundararajan et al., 2017) are some of the popular techniques used for 

explaining the ML models. When compared with the model-specific techniques, the model-agnostic 

techniques are more flexible (Ribeiro et al., 2016). Figure 2.3 and Table 2.1 depicts the classification 

of ML models and the corresponding XAI approaches, in which we have taken the motivation 
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from Arrieta et al. (2020) and Belle and Papantonis (2020), but we adapted the organizational structure 

to better match the topics discussed here. 

 

 
Figure 2.3: Classification of ML models and XAI approaches 

 

Table 2.1: Classification on ML models and explainability method 

 

 

 

 

 

 

XAI 

Approaches 

Types of ML models Classification 

of model 

Post-hoc 

explainability 

approach 

required 

Explainability method 

Linear /Logistics regression  

Transparent 

model 

 

 

No 

 

 

- 

Decision Tree 

K-nearest neighbor 

Bayesian models 

Convolution neural network  

Opaque model 

 

 

Yes 

Visual explanation 

Random Forest Local/ global explanation 

Support vector machine Explanation by example 

Recurrent neural network Explanation by 

simplification 

 
Although these XAI approaches can generate results to explain an ML model, many metadata and 

context information are still missing. To increase transparency and explainability in AI-based systems, 

applying provenance documentation can be a complementary technology to the existing XAI 
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approaches (cf. Singh et al., 2018; Jentzsch and Hochgeschwender, 2019). Provenance documentation 

shows promise in increasing transparency as it can be used for many purposes, such as understanding 

how data were collected, determining ownership and rights, tracing steps in data analysis, and making 

judgments about resources to use. Section 3 presents a detailed bibliometric analysis to demonstrate 

how provenance, XAI, and TAI are interconnected to each other. 

 

2.2 Provenance, XAI, and TAI: Bibliometric Analysis from Different Aspects 

Bibliometric analysis is an effective way to measure the influence of publications in a research area. 

Our objective behind the bibliometric analysis is to demonstrate evidence of how provenance, XAI, 

and TAI are interconnected to each other in the publications. To collect the appropriate literature, we 

compared several databases, such as Google Scholar, PubMed, Web of Science, and Scopus. Although 

Google Scholar can provide diversified literature, it lacks quality control which makes it inefficient for 

publication search and analysis. In our work, we decided to focus on only the Scopus database as it 

provides wide coverage of literature from all major disciplines and all records are organized with good 

quality measures. A number of terms were used to query the title, abstract, or keywords of publications. 

As the query script (see below) shows, besides “provenance”, we required at least one of the other 

search terms to be present in the title, abstract, or keywords of a publication. The query was executed 

in Scopus on August 30th, 2021, and a total of 426 publications between 01/2010 and 12/2020 were 

found.  

 

Query: 

( TITLE-ABS-KEY ( machine  AND learning )   

OR  TITLE-ABS-KEY ( explainable  AND ai )   

OR  TITLE-ABS-KEY ( trustworthy  AND ai )   

OR  TITLE-ABS-KEY ( artificial  AND intelligence )   
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OR  TITLE-ABS-KEY ( explainable  AND artificial  AND intelligence )   

AND  TITLE-ABS-KEY ( provenance ) )   

AND  PUBYEAR  >  2009  AND  PUBYEAR  <  2021  

 

To analyze the results, we used two tools: Bibliometrix and VOS Viewer. Bibliometrix is an open-

source tool designed in the R environment for quantitative research, including all the key bibliometric 

methods of analysis. It allows importing bibliographic data directly from Scopus and other databases. 

Besides the general bibliometric analysis functions, other measures such as co-citation, coupling, and 

co-word analysis are also enabled (Aria and Cuccurullo, 2017). VOS Viewer is a software tool for 

constructing and visualizing bibliometric networks such as authors, journals, and/or individual 

publications. More sophisticated conditions such as co-occurrences of words or co-citation based on 

authors can also be used in the network construction (Eck et al., 2010). Below is a list of results 

generated in our analysis to the 426 publications found on Scopus.  

 

Analysis by timeline of publications: The line graph in Figure 2.4 shows the number of publications per 

year from 2010 to 2020. The interesting pattern is an exponential growth in publications from 2016. It 

shows that the studies related to XAI, TAI, and provenance have received increasing attention in the 

past four years. Figure 2.5 is a word growth graph, which shows the cumulative appearance of authors’ 

keywords (i.e., keywords given by authors in a publication) over time among the 426 publications. 

While overall it shows a trend similar to Figure 2.4, it is noteworthy that artificial intelligence, machine 

learning, learning systems, and provenance are the words that stand out as the most predominant among 

all the authors’ keywords. 

 



  16 

 

 

 
Figure 2.4: Annual number of publications among the 426 records retrieved from Scopus 

 

 
Figure 2.5: Line graph representing cumulative appearance of word growth among authors’ keywords of the 426 

publications 

 
Analysis by subject keywords of references: The references cited by a publication are also a good way 

to reflect the subject of the publication itself. Keyword Plus collects words or phrases in the titles of a 

publications references, which provides greater depth and variety for bibliometric analysis (Garfeild, 

1990). With Keyword Plus data of the 426 publications retrieved from Scopus, we created a word cloud 
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to visualize the frequency of keywords (Figure 2.6). The bigger the word or phrase appears in the word 

cloud, the more often it appears in the Keyword Plus data. Machine learning, learning systems, 

provenance, data provenance, semantics, and metadata are the most prominent words standing out in 

the figure.   

 

 
Figure 2.6: A word cloud illustrating the most frequent keywords in the Keyword Plus data of the 426 publications 

 
Analysis by subject area and document type: Another advantage of Scopus data is to show the 

disciplinary background of the publications. The pie chart in Figure 2.7 illustrates the proportions of 

different disciplines among the 426 publications. It is clear that most publications are in the fields of 

computer science and mathematics. Also, it is interesting to see that about a quarter of the publications 

have a background in other disciplines, such as engineering, decision science, and Earth and planetary 

sciences, which means XAI, TAI, and provenance have also received attention in those disciplines. The 

donut chart in Figure 2.8 represents the proportions of document types. Conference papers are more 

than half and journal articles are about a quarter of the 426 publications.  
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Figure 2.7: Proportions of disciplines among the 426 publications 

 

 
Figure 2.8: Document types among the 426 publications 

Analysis by co-relationship of authors’ keywords: The co-occurrence of authors’ keywords shows how 

different research topics are relevant to each other in a publication. For all the authors’ keywords in the 

426 publications from Scopus, we first ranked them by frequency of appearance. Then, we took the top 

15 keywords in the list and used VOS Viewer to draw a co-occurrence graph (Figure 2.9). In the figure, 

the size of each node represents the frequency of appearance of the corresponding keyword. Also, it 

shows that the 15 keywords are divided into four clusters based on their interconnections, and their 

frequency of co-occurrence is reflected in the size of lines between the nodes. Among all the 15 
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keywords and four clusters, provenance and machine learning have the highest appearances. They are 

closely interconnected with each other and also co-occur with a large number of other keywords.    

 

 
Figure 2.9: Co-occurrence of authors’ keywords among the 426 publications. Here only the top 15 keywords with the 

highest frequency of appearance are shown 

 

2.3 A Reflection on the Relationship Between Provenance, XAI, and TAI 

2.3.1 Increasing Attention and Community Works on Standards for Provenance 

Documentation 

The bibliometric analysis in the above section shows an increasing trend of research on provenance, 

XAI, and TAI. This subsection will incorporate the review of a number of other publications to 

demonstrate their inter-relationships at a finer scale. Experts and researchers are interested in capturing 

provenance for several reasons, among which the most important is that well-documented provenance 

confirms the authenticity of scientific outputs (Moreau et al., 2008). Provenance is the origin or history 
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of something in its literal meaning (Cheney et al., 2009). Some researchers (Jentzsch and 

Hochgeschwender, 2019) discussed that provenance can be understood as a subset of metadata. We 

would like to add that provenance not only present the metadata of various objects in a workflow but 

also the interrelationships between them to show the history of derivation (Ma, 2018). According to 

PROV Family Documents of the World Wide Web Consortium (W3C), provenance is described as 

“information about entities, activities, and people involved in producing a piece of data or thing, which 

can be used to form assessments about its quality, reliability or trustworthiness” (Groth and Moreau, 

2013; Missier et al., 2013). As such, provenance can answer questions such as how the quality of the 

data is, what is the data source, when was the data created, what were the steps involved in creating a 

result, what were the steps in a model used for the data analysis, and who developed and/or ran the 

workflow (Moreau et al., 2008; Moreau and Groth, 2013).  

 
As AI continues to expand with more diverse information the need of documenting provenance also 

increases. AI systems need to include provenance as it enables trust and provides users with tools that 

allow them to access, record, and further investigate resources and steps in a workflow (Chari et al., 

2020). The Association for Computing Machinery (ACM) Policy Council set principles for 

transparency and accountability, in which data provenance is one of the key principles (Garfinkel et al., 

2017).  Although their comments are on the generic transparency and accountability, their approaches 

and methods are also insightful for the work of XAI and TAI. Kirkpatrick (2016) stated that regular 

supervision is necessary for AI-based systems as they can cause harm to many people by generating 

bias or discriminatory results. Even if the predictions generated by AI/ML models deliver high accuracy, 

it is crucial to know the very roots before concluding any decision, especially in critical domains such 

as human activities (Buneman and Tan, 2019; Shaw et al., 2019). Jentzsch and Hochgeschwender 

(2019) stated that adopting the established methods from the field of provenance to describe ML models 

will lead to more transparent AI-based systems. A few other researchers also discussed how provenance 
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can increase the reproducibility of ML models (Miles et al., 2007; Davidson and Freire, 2008; Alahmari 

et al., 2020). Recently, Sarpatwar et al. (2019) described how blockchain allows users to trace the 

provenance of training models resulting in more transparent and fair AI-based systems. For example, 

users will be able to discover biases or unclear sourcing of data and see what exactly leads to an action 

or decision made by AI-based systems. Several other researchers also proposed that provenance is 

essential to hold AI-based systems to the same standards of accountability as humans (Goodman and 

Flaxman 2017; Lucero et al., 2018). Based on a review of those publications, in Figure 2.10 we present 

the research topics involved in provenance, XAI, and TAI, and illustrate the overlapped parts.   

 

 
Figure 2.10: The similarity of topics involved in provenance, XAI, and TAI 

There are many existing models, languages, and tools designed and developed by researchers to enable 

provenance documentation, and some are developed specifically for AI/ML models. The W3C PROV 

Ontology (PROV-O) is a representation of the PROV Data Model (PROV-DM) using the Web 

Ontology Language 2 (OWL2) (Lebo et al., 2013). It allows creating new classes, properties and 

exchange provenance information generated from different systems. ProvStore is the first online public 

provenance repository supporting the standards of W3C PROV. It allows users to store, access, 

integrate, share, organize, visualize, and export provenance documents in various formats, such as 

PROVN, JSON, Turtle, and XML (Huynh and Moreau, 2014). There are also tools supporting the 

validation and browsing of provenance documents. ProvValidator is an online tool for validating 

provenance documents, ensuring that the documents have consistent history and are safe to use for 
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analysis (Moreau et al., 2014). Prov Viewer is a visualization tool that allows users to explore 

provenance data through zooming, collapsing, filtering to provide different levels of granularity in the 

analysis (Kohwalter et al., 2016). For workflow platforms and AI/ML models, there are also ongoing 

activities on specific standards and tools for provenance documentation. The Common Workflow 

Language (CWL) is a standard designed to provide specifications and semantics for workflows and 

tools in data-intensive science. The goal is to make scientific results portable and scalable across 

software and hardware environments, and thus support reproducibility (Amstutz et al., 2016). OpenML 

is an online platform that allows machine learning researchers to share the code and results (e.g., model, 

prediction, and evaluation) and organize it in an effective way for easy access (Vanschoren et al., 2014). 

ModelDB is an open-source end-to-end system for the management of ML models and has libraries 

available for Scikit-Learn and Spark ML. It also allows data scientists to perform experiments and build 

ML models, while the metadata such as pre-processing steps, hyperparameters, quality metrics, and 

training are automatically captured in the background. ModelDB uses a relational database to store all 

the extracted metadata and a branching model to track each model's history over time (Vartak et al., 

2016). 

 

2.3.2 Real-world practices of provenance documentation and the support to XAI and TAI 

In real-world practice, the scope of provenance differs from user to user and is also dependent on the 

research needs and technologies used (cf. Simmhan et al., 2005; Buneman et al., 2008; Cheney et al., 

2009). To formalized provenance documentation, Groth et al. (2012) outlined the characteristics of the 

provenance model into several categories, such as content, management, and use. The purpose is to 

support engineers to categorize the components and dimensions according to the functionality they are 

involved in. The W3C PROV is a set of documents that defines various aspects necessary to achieve, 

exchange, and make use of provenance information amongst diverse environments (Groth and Moreau, 

2013). For example, the PROV-DM is structured in six components: 1) entities and activities, and the 
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time at which they were created, used, or ended, 2) derivations of entities from other entities, 3) agents 

bearing responsibility for entities that were generated and activities that happened, 4) a notion of the 

bundle as a mechanism to support the provenance of provenance, 5) properties to link entities that refer 

to the same thing, and 6) collections forming a logical structure for its members (Moreau and Missier, 

2013). Those models, categories, and guidelines are further adapted to match needs in real-world 

applications. For instance, Branco and Moreau (2006) attempted to build a large-scale provenance 

model for an eScience experiment enabling provenance to be made available as metadata. Pimentel et 

al. (2016) presented a unique approach for analyzing and tracking provenance collected from scripts. 

This tool helps scientists record, reproduce, and compare all information and supports decision-making. 

Huynh et al. (2018) proposed a provenance network analysis method by applying ML techniques on 

the network metrics to generate provenance information automatically from application data/logs. To 

provide sufficient information on the decisions made by AI-based systems to the end-users, Jaigirdar 

(2020) proposed a six-W framework (which, what, who, where, when, and why).  

 

There have been many successful applications of provenance documentation in recent years, and some 

of them show good performance with AI/ML models in workflow platforms. Renku is an open online 

platform that can track every version of data, code, and results, and help researchers evaluate, reproduce, 

and reuse data and algorithms (Krieger et al., 2021). WholeTale is a similar platform that enables 

reproducibility by allowing researchers to capture and share data, code, and workflow environment in 

research (Brinckman et al., 2019). Tilmes et al. (2013) and Ma et al. (2014) adapted PROV-O in an 

ontology to capture provenance of workflows in global change research. Based on those earlier works 

of provenance documentation, Ma et al. (2017) developed an experiment to capture fine-granular 

provenance of workflows in Jupyter. Schelter et al. (2017) proposed a lightweight system that allows 

storage, extraction, and management of provenance and metadata from ML experiments. Dataset, 

models, predictions, evaluations, hyperparameters of the models, schemas of the dataset, and layout of 
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the deep neural network are some of the common artifacts that can be achieved. Spinner et al. (2019) 

designed a visual analytics system named “exlpAIner” which allows users to understand all steps of an 

ML model, diagnose the limitation using XAI methods, and then refine and optimize the model. Agu 

et al. (2019) developed a guideline provenance ontology (G-Prov), with the intent to represent 

provenance of treatments at different granularity levels and share the information with healthcare 

practitioners. Provenance of scientific workflows has been a long-term concern in research (Davidson 

et al., 2008). Recently, with the wide usage of Jupyter and RMarkdown in different scientific disciplines, 

there has also been solid progress on provenance documentation in workflow platforms. For instance, 

Samuel (2019) designed a tool named ProvBook, which captures and stores the provenance of a 

notebook in Jupyter and allows users to compare results. ProvPy is a Python library with an 

implementation of the W3C PROV-DM. It allows to import and export of provenance information in 

different formats, such as PROV-JSON and PROV-XML (Huynh, 2020).  

 

Some recent projects also leverage the technical advances in semantics, data visualization and cloud 

computing. For example, MetaClip (METAdata for CLImate Products) (Bedia et al., 2019) develops 

vocabularies and an R package to capture the provenance of climate research in PROV-O format. The 

provenance is recorded in JSON-LD format and appended inside the image file of a climate research 

output. Then, an interactive web portal can load the image and then read and visualize the provenance 

information into a graph. The nodes and edges in the graph are interactive, where an end user can click 

and browse the detailed attributes. Another example is Geoweaver (Sun et al., 2020, 2022), which is an 

open-source and cloud-based application that allows AI practitioners in earth science to integrate, write, 

and share workflows. In the cloud-based environment, other users can easily find and trace shared 

workflows of interest and replicate the code in their own work.   
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2.4 A Vision on the Trends of Provenance, XAI, And TAI in the Next Decade 

It is evident that provenance can help us address issues associated with transparency, explainability, 

accountability, and authenticity in XAI and TAI. The above bibliometric analysis and reflection 

highlighted many existing studies, and we believe there will be more advancement in the joint research 

of XAI, TAI, and provenance in the coming years. Below is a list of our thoughts on future work.  

 

Although AI/ML models have made profound advances, many of them are still deficient in preventing 

biased and discriminative results. Biases might be caused by many reasons, such as incomplete data, 

data labelling, adversarial manipulation, missed steps in an ML model, or a workflow guided by a bad 

hypothesis. Adapting provenance methods will lead to more traceability and transparency of AI 

applications. A comprehensive description of methods, models, algorithms, and data should be recorded 

with the aim that they can be further reviewed. Rigorous validation and testing should be done on 

AI/ML models, and those test results should also be well documented. These steps in provenance 

documentation can help researchers build explainable and trustworthy systems. Even though 

documented provenance cannot immediately determine the cause of a bias or error, the complete 

information can support researchers in tracing all components in the workflow to find the likely cause. 

 

As data are the primary source for any results generated by an AI-based system, studies of XAI and 

TAI can benefit from many existing mature technologies of metadata and data provenance. Data are 

suspect when the origin cannot be verified. If a company is using data that are not traceable but 

concluding an important decision, then this decision is not reliable and will raise concerns amongst 

users. Provenance provides the flexibility of documenting data at every single step in a data science 

workflow, ranging from data collection, data cleansing, data analysis, derived data, to the final result. 

The documented data provenance will be a solid component for XAI and TAI in AI-based systems.    
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The granularity of provenance (i.e., level of details) depends on the real-world needs. It is crucial to 

understand that different stakeholders have different requirements on the details of provenance in 

AI/ML models. Not all people are interested in detailed workflow documentation, while some critical 

domains such as healthcare, government, and criminal justice require diligent information as the results 

generated by AI/ML models can have a serious impact on human life, environment, and/or policy 

making. For AI-based systems, there should be a detailed user survey to clarify the needs of 

stakeholders before the functions for provenance documentation are developed.   

 

More automated technologies and tools should be developed for recording and sharing provenance 

information of AI-based systems. We need efficient tools to document provenance and a better-

digitized environment to archive, share, and distribute the provenance information to a broad 

community. Those tools will document the provenance in standard structures and make the information 

accessible and queryable. In particular, we hope packages can be used for popular workflow platforms 

such as Jupyter and RMarkdown to automatically document provenance. Several recent studies 

mentioned in Section 4 have already made solid progress in that direction. Once those packages are in 

place, there can be a lot of adoptions and adaptations in various scientific domains.    

 

Moreover, we need to understand XAI and TAI as a socio-technical issue, and we need a comprehensive 

approach to tackle the issue from both social and technical aspects. The GDPR released by the European 

Parliament is a good example to help understand this topic. GDPR introduces the standardized data 

protection law, aiming to create consistent protection of users’ data. It states that the data cannot be 

used without user consent. To assist the implementation of this regulation, provenance information can 

be used to track down all the activities, which can help to clarify if the data are used in the right way or 

not. In the world of AI, more work is required to increase awareness and fully establish users’ rights 

and obligations on their data. 
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2.5 Conclusion 

The need for explainability in AI/ML models has attracted great attention in recent years. However, it 

is not sufficient to explain AI/ML models using post-hoc explanations alone. Provenance 

documentation is one of the means to accomplish transparency, traceability, explainability, and 

reproducibility in AI-based systems. This study presented a systematic literature review of recent work 

and advances in the field of XAI, TAI, and provenance. First, we provided the fundamental concepts 

of XAI and TAI and listed the latest discussions on these topics. Second, we analyzed the inter-

relationships between XAI, TAI, and provenance through a bibliometric analysis. We specified how 

provenance documentation plays a crucial role in building explainability and trustworthiness in AI-

based systems, and briefly introduced a few tools and platforms such as Renku, WholeTale, MetaClip, 

and Geoweaver. Third, we presented a vision on the trends of research on XAI, TAI, and provenance 

in the next decade. We hope this literature analysis highlights the importance of provenance in AI-

based systems and encourages AI practitioners/researchers to start documenting provenance. We expect 

to see more AI/ML models become explainable, providing enough details to the end-user, and we 

believe that provenance documentation will be one of the significant approaches to accomplish that. 
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Chapter 3 Provenance in Earth AI 

This chapter is adapted from the published work: 

Amruta Kale, Xiaogang Ma; “Provenance in Earth AI”, 2022. Sun, Z. (ed.) Earth Science 

Artificial Intelligence, Elsevier.   

 

3.1 Introduction 

The growing use of Artificial Intelligence (AI) and Machine learning (ML) has become an 

indispensable part of our modern life. This is due to the advancement of technologies (e.g., deep 

learning (DL)) that have largely contributed to the enormous success of AI/ML systems in terms of 

prediction and accuracy. Even with such unprecedented success, there are still a few challenges that 

slow down or hinder the AI/ML systems, such as the inability to explain their decisions. Although the 

black-box nature of these AI/ML systems allows complex computational tasks with powerful prediction, 

the processes are opaque and lack explainability. Even though we understand the mathematical 

architecture of a machine learning system, getting insight into the interior workings of these models is 

sometimes challenging. Accordingly, there is a strong desire for explicit modeling and reasoning tools 

to explain how and why a result was attained. 

 

Due to the vast availability of big data (volume, variety, and velocity), DL algorithms are now 

frequently used in most domains. The huge success of DL models like Deep Neural Networks (DNN) 

and Artificial Neural Networks (ANN) comprises a combination of multiple layers and millions of 

parameters that extract important features from raw data. Yet, this complex process also makes DNN 

applications into black-box models (Castelvecchi, 2016). Even though these models deliver high 

predictive accuracy they often lack transparency. As the black-box model is increasingly used, the 

demand for explanation is also increasing from various stakeholders in AI (Preece et al., 2018). Another 

risk lies in making and implementing judgments that are not reasonable, lawful, or simply do not allow 

an extensive explanation of their actions especially in critical domains (Gunning and Aha, 2019). It is 
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common to believe that focusing purely on performance will make AI/ML systems opaque, unfair, and 

non-intuitive. As the demand and awareness for ethical AI are increasing, people are hesitant to apply 

AI/ML techniques that are not transparent, interpretable, reproducible, and traceable (Goodman and 

Flaxman, 2017; Zhu et al., 2018). It is a common understanding that there are trade-offs in terms of the 

model’s performance/accuracy and transparency, but as we are moving towards a more automated 

world, AI/ML models should also be human-understandable. To facilitate human understandability 

users often require explanations from AI/ML models as to how these systems arrived at their 

conclusions; this however is often lacking in the existing system (Montavon et al., 2017; Adadi and 

Berrada, 2018; Miller, 2019). 

 

Recently researchers have acknowledged the increasing need for explainable artificial intelligence 

(XAI) and trustworthy artificial intelligence (TAI) into AI/ML systems (Wing, 2020). As a result, 

several survey papers have highlighted the significance of XAI and TAI (Adadi and Berrada, 2018; 

Arrieta et al., 2020; Belle and Papantonis, 2020: Wing, 2021). This research field holds substantial 

promises to address the challenges mentioned above. XAI refers to the methods and techniques in the 

applications such that the results generated by AI/ML models are easily explainable, and 

understandable to humans (Ribeiro et al., 2016, Gunning and Aha, 2019). It may include general 

information about how the system operates, why does the system failed, what underlying features were 

considered, and information about training and test dataset (Guidotti et al., 2018; Lipton, 2018; 

Murdoch et al., 2019). However, we also believe that explanation is user-focused, and the type of 

explanation depends on the user’s role, former knowledge, and domain. Some safety-critical 

applications may require comprehensive knowledge to make judgments, while others may not require 

a detailed description of the systems and how they arrive at their conclusions. For example, a 

meteorologist anticipating weather forecasts and other weather occurrences, such as where a hurricane 

would impact, may require thorough information about the factors that influence atmospheric 
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conditions, and weather patterns over time. However, general users may require information regarding 

the circumstances and safety precautions to be undertaken. To make AI/ML systems transparent, 

explanation is key as it provides extensive knowledge about the system and builds user engagement in 

the AI/ML systems. 

 

Despite the revolutionary success of AI/ML models, there have been many post-hoc explainability 

approaches (Guidotti et al., 2018; Lipton, 2018; Arrieta et al., 2020; Belle and Papantonis 2020) 

designed to provide explanations to AI/ML models that are not transparent by design. More preciously, 

these post-hoc methods are an interpretable model (e.g., linear model or decision tree) which is used to 

train on the black-box model to get a better understanding. These techniques contain explanations about 

the results in the form of natural language explanations (Krening et al., 2016), visualizations of learned 

models (Mahendran and Vedaldi, 2015), and explanations by example (Mikolov et al., 2013) to 

understand the underlying model. However, we believe XAI is a diverse topic, and it cannot be solved 

by a single disciplinary approach. Consequently, some academics stated that provenance is also an 

emerging field that can be used to explain AI/ML systems (Liu et al., 2017; Jentzsch and 

Hochgeschwender, 2019; Frost, 2020). Provenance has the capability of explanation, that has been 

neglected or has not received the attention it deserves. The inclusion of provenance can address what 

and why aspects by documenting the entire process. Several researchers further discussed that enabling 

provenance is essential for determining authenticity, building trust, and ensuring reproducibility in 

AI/ML models (Jaigirdar et al., 2019; Amalina et al., 2019; Jaigirdar et al., 2020). In one of our previous 

literature reviews, we found that including provenance in AI/ML models will bring strength in 

explanation and improve transparency (Kale et al., TBD). We believe that adding provenance in AI/ML 

systems will help generate resourceful and sufficient explanations for users along with reproducibility. 
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In this chapter, we will first provide an overview of basic concepts in provenance, XAI, and TAI. 

Second, we will discuss the related work in the field of provenance and AI in earth science by 

mentioning the state-of-the-art progress. Third, we will present several tools from the communities 

designed for capturing provenance to support explainability and transparency. Finally, we will discuss 

the progress and trends, and wrap up the chapter.  

 

3.2 Overview of Relevant Concepts in Provenance, XAI, and TAI 

3.2.1 Guidelines for Building Trustworthy AI 

AI has enormous potential in revolutionizing everyone's lives. It has spread across all facets of society 

bringing profound changes individually, societally, and environmentally. However, even with such 

unprecedented advancement, they still face challenges in addressing trustworthiness, transparency, and 

intelligibility. In order to build a transparent and fair AI system, the High-level Expert Group (HLEG) 

on AI prepared a document on ethics and guidelines on TAI (AI HLEG, 2019). This guideline listed 

seven fundamental criteria that AI systems must achieve to be considered trustworthy. TAI is built on 

three key components: an AI system should be (1) lawful, adhering to all applicable laws and 

regulations; (2) ethical, respecting the principal and ethical values; and (3) robust, both technically and 

socially (Floridi, 2019; Thiebes et al., 2020; Jain et al., 2020).  
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Figure 3.1: Trustworthy AI with three key components 

As AI/ML systems are increasingly used, the necessity to explain the results has led to new discussions 

and actions in scientific communities. It is essential that these systems must be transparent, unbiased, 

and reliable, which is why these guidelines are so important. These guidelines will help newcomers to 

attain a basic understanding of what is TAI and how to realize it.  Here are the seven European Union 

(EU) guidelines for defining TAI (AI HLEG, 2019): 

• Human agency and oversight: AI systems should support human agency and fundamental 

rights and not limit or mislead human freedom.  

• Technical robustness and safety: Trustworthy AI demand algorithms to be safe, consistent, 

and robust enough to deal with errors or irregularities throughout the AI system's life cycle. 

• Privacy and data governance: Throughout the entire lifecycle, AI systems must maintain 

privacy and data protection where users should have complete control over their own data. 

• Transparency: AI systems should be traceable, explainable, and well communicable even if 

the system has flaws or limitations in it. 

• Diversity, non-discrimination, and fairness: AI systems should be fair to all stakeholders 

regardless of their age, gender, abilities, or characteristics.  
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• Societal and environmental well-being: AI systems should promote social transformation as 

well as enhance environmental sustainability and accountability.  

• Accountability: Mechanisms should be put in place to ensure ownership, accountability, and 

potential compensation for AI systems and their outcomes. 

 

3.2.2 Understanding Explainable AI 

The inability of AI systems to provide comprehensive information has raised social, ethical, and legal 

pressure for the development of new AI techniques that are capable of making explainable and 

understandable decisions. TAI and XAI are often mentioned together. XAI suggests a transition toward 

more transparent AI. However, XAI is not a new field; the term was first coined by Lent et al., (2004) 

to highlight the ability of their system to explain the behavior of AI-controlled entities in simulation 

games. Recently, the topic has received great attention from both academia and industry. As a result, 

several survey papers have highlighted the noteworthy importance of XAI (Adadi and Berrada, 2018; 

Singh et al., 2018; Lecue, 2019; Arrieta et al., 2020; Belle and Papantonis, 2020; Das and Rad, 2020). 

This research field aims to develop a set of strategies that will make the result of AI/ML systems 

understandable to humans. XAI will be essential if the user needs to understand what, why, and how 

aspects of the models. To address this, the Defense Advanced Research Projects Agency (DARPA) 

funded the “Explainable AI (XAI) Program” to improve explainability through the local and post-hoc 

interpretation methods (Gunning, 2019; Arrieta et al., 2020). The program focuses on building 

explainable models while maintaining high predictive accuracy (Gunning and Aha, 2019), with the goal 

of creating new ML techniques that combine explanations, and enable users to understand, manage and 

effectively gain trust. These ML techniques will have the ability to identify flaws and predict how the 

machine will behave in the future.  
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The key objective of XAI is to address trustworthiness and intelligibility in AI/ML models. Figure 3.2 

characterizes the visual representation of DARPA’s XAI program.  However, for greater clarity, we 

have simplified the diagram based on the types of ML models. Traditionally there are two types of ML 

models, and the choice of these models depends upon the different application purposes. Transparent 

ML models (e.g., linear regression, k-nearest neighbors, bayesian models, decision trees) have the 

ability to figure out what went wrong in the system or explain how they arrived at a particular decision 

(Holzinger et al., 2017; Murdoch et al., 2019). These models have a substantial percentage of training 

and test accuracy and work well with simple datasets. However, when dealing with complex 

applications, transparent models are insufficient for analysis which is why opaque models are required. 

Opaque ML models (e.g., deep learning and neural networks) are black boxes in nature, despite high 

predictive accuracy, these models cannot be easily examined or understood (Montavon et al., 2017; 

Adadi and Berrada, 2018). But with the new XAI approach, the system takes input from the current 

task and makes decisions, recommendations, and actions that allow users to understand and evaluate 

based on system explanation. This technique will help users regulate their decisions by providing a 

reason or justification, particularly when unexpected assumptions are made. XAI will provide insights 

about the behavior of systems and their unknown flaws, improve models’ transparency, and verify 

predictions, which will lead towards TAI.  
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Figure 3.2: Transparent vs Opaque vs Explainable model (Above image is adapted from DARPA’s XAI program, (Gunning 

and Aha, 2019)) 

3.2.3 Provenance and Provenance Documentation 

XAI provides transparency and increases the intelligibility of a system using post-hoc explanation 

methods (Köhl et al., 2019). In our opinion, gaining transparency using post-hoc methods can be useful, 

but many metadata and context information about these systems are still widely neglected. To achieve 

accurate explanation, provenance documentation should be an essential component for the XAI 

approaches (cf. Singh et al., 2018; Jentzsch and Hochgeschwender, 2019). Experts and researchers are 

interested in documenting provenance for several reasons. Most importantly, well-documented 

provenance confirms the credibility of the scientific results and enables reusability (Moreau et al., 2008; 

Zeng et al., 2019). Provenance determines ownership, as it provides the historical context of who has 

owned the work and when. The term provenance has an exceptionally long history, it is "the origin or 

source of something" (Cheney et al., 2009). In this way, it is like metadata, which is data about data 

(Ma, 2018). Metadata is a crucial component of data collection and distribution. It provides information 

like the author’s details, date created, date modified, and data file versions in a structured and 

standardized form in such a way that the dataset can be potentially reused.  
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According to the definition of World Wide Web Consortium (W3C), provenance is defined as 

“information about entities, activities, and people involved in producing a piece of data or thing, which 

can be used to form assessments about its quality, reliability or trustworthiness” (Groth and Moreau, 

2013; Missier et al., 2013). That definition means provenance can be used to document not only 

metadata but also other entities and steps in a workflow. The W3C PROV family consists of twelve 

documents (PROV-Overview, PROV-PRIMER, PROV-O, PROV-DM, PROV-N, PROV-

CONSTRAINTS, PROV-XML, PROV-AQ, PROV-DICTONARY, PROV-DC, PROV-SEM, and 

PROV-LINKS) which give details to help understand and implement provenance documentation. 

Figure 3.3 illustrates the basic elements of PROV-O (Prov Ontology). It is also known as the starting 

point terms and is built on three fundamental classes (1) prov:Entity, which is a physical, digital, 

conceptual, or other kinds of thing with some fixed aspects; entities may be real or imaginary; (2) 

prov:Activity, which is something that occurs over a period of time and acts upon or with entities; it 

may include consuming, processing, transforming, modifying, relocating, using, or generating entities; 

and (3) prov:Agent, which is something that bears some form of responsibility for an activity taking 

place, for the existence of an entity, or another agent's activity. We believe adding provenance in AI/ML 

systems will help address the issues associated with reproducibility, transparency, explainability, 

accountability, and authenticity.  
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Figure 3.3: The three top classes of PROV-O model and properties. (Above image adapted from W3C PROV family of 

Documents, (Groth and Moreau, 2013)) 

 
3.3 Need for Provenance in Earth AI 

3.3.1 Use of AI in the Earth Science Domain 

In recent years, AI has been widely used to improve or replace conventional tasks in earth science 

domains. These methods have proven to be effective in performing various tasks like climate models, 

anomaly detection, weather prediction, event classification, and space weather, raising the expectation 

that AI could address some of the major challenges in earth science (Rasp et al., 2018). According to 

Intel’s survey from 2018, 74% of the respondents indicated that AI would support solving long-term 

environmental concerns (Intel study, 2018). As a response, Intel is on board, pledging to restore 100% 

of its global water use by 2025. According to the article published by Columbia University’s Earth 

Institute (Cho, 2021), AI has assisted farmers in India in increasing groundnut yields by providing 

knowledge on how to prepare the field, apply fertilizer, and choose sowing dates, resulting in a 30 % 

increase in yields per hectare. According to the same article, Norway uses AI in the development of a 

flexible and autonomous power grid that incorporates more renewable energy. Microsoft’s AI for Earth 

program, launched in 2017, seeks to provide 200 research grants totaling $50 million to projects that 
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use AI to address environmental challenges (Microsoft’s Earth AI program, 2017). IBM’s Green 

Horizon project in China utilized an AI system to predict pollution levels, track pollution sources, and 

generate potential solutions to drastically lower the pollutants (IBM Green Horizon Project, 2016). The 

increasing attention to AI/ML and earth science has also been reflected in the records of publications 

for the past 10 years. Figure 3.4 illustrates the exponential growth of relevant publications found in 

Scopus. 

 

 
Figure 3.4: Distribution of publications line graph 

(Distribution of publications (01/2010 – 12/2020) whose title, abstract and keywords include “earth science” and “artificial 

intelligence” or “machine learning”. The query below was used to extract results from the Scopus database on Dec 29th, 2021. 

(TITLE-ABS-KEY (earth AND science) AND TITLE-ABS-KEY (machine AND learning)  

 OR TITLE-ABS KEY (artificial AND intelligence)) AND PUBYEAR > 2009 AND PUBYEAR < 2021)  

 

3.3.2 Related Work in Provenance and Earth Science 

As the amount of data is increasing in the earth science domain, there are numerous initiatives taken to 

extend and improve practices in preserving provenance. For instance, Lanter (1991, 1993) developed a 

meta-database system for tracking the process of workflow and a system (Geolineus) for recording 

Geographic Information System (GIS) operations. Governments and other funding organizations have 

expressed the need for provenance and have been developing policies related to documenting 
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provenance. In 1998, NASA established the Federation of Earth Science Information Partners (ESIP) 

to involve a larger group of stakeholders in improving techniques for storing, searching, accessing, and 

using earth science data (Showstack, 1998). ESIP has also initiated standard practices for reusability of 

data by addressing the issues of provenance in earth science (e.g., Duerr et al., 2011; ESIP Stewardship 

Committee, 2019; Downs et al., 2015; Mayernik et al., 2015). The Third US National Climate 

Assessment (NCA3) published in 2014 undergo a rigorous review process to ensure transparency and 

credibility (Garfin et al., 2013; Tilmes et al., 2013; Ma et al., 2014a,b). Earth scientists have proposed 

standards to document the provenance of both data and scientific workflows (Sun et al., 2020, 2022). 

Among all those endeavors, the development of Semantic Web technologies, especially those together 

with the W3C PROV, has been proven to be an efficient way for representing and documenting 

provenance (Di et al., 2013, Moreau and Groth, 2013).  

 

Table 3.1: New initiative taken by the research community to extend provenance in Earth Science 

References New Initiatives taken to extend provenance in Earth Science 

Lanter 1991, 1993 Developed a meta-database system for tracking the process of workflow and 

a system for recording GIS system. 

Showstack, 1998 NASA established the Federation of (ESIP) in improving techniques for 

storing, searching, accessing, and using earth science data 

Duerr et al., 2011; ESIP 
Stewardship Committee, 2019; 
Downs et al., 2015; Mayernik et 
al., 2015 

ESIP initiated standard practices for reusability of data by addressing the 

issues of provenance in earth science. 

Garfin et al., 2013; Tilmes et al., 
2013; Ma et al., 2014a,b 

The Third US National Climate Assessment (NCA3) published in 2014 

undergo a rigorous review process to ensure transparency and credibility. 

Sun et al., 2020, 2022 Earth scientists have proposed standards to document the provenance of 

both data and scientific workflows 

Di et al., 2013, Moreau and 
Groth, 2013 

The development W3C PROV, has been proven to be an efficient way for 

representing and documenting provenance 
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The growing use of data across all domains is leading to an era of data abundance. Abundant data can 

certainly be helpful for AI/ML models to generate predictions and results, but only when their roots are 

known. Provenance is the bloodline of data; it provides historical context and ensures authenticity. In 

real-world practices, provenance allows users to understand where the data came from, how it was 

collected, what important steps were involved in creating a result. Further, it allows AI/ML models to 

be effective and trustworthy (Moreau et al., 2008; Moreau and Groth, 2013). Despite this, compared 

with the widespread of AI/ML systems and data science applications, only a limited number of research 

projects have fully implemented provenance in their system architecture. Moreover, according to the 

recent poll, most academics are still unfamiliar with metadata standardization in their field (Tenopir et 

al., 2020). We believe data is a suspect when origins cannot be verified. In a recent example (Eisenman 

et al., 2014), an unreported change was discovered in the Antarctic sea ice cover that seemed to be 

increasing at a significant rate. Later, it turned out that the volume of Antarctic sea ice does not seem 

to be rising at the same rate as previously anticipated. In reality, much of the past artifact could have 

been caused by a satellite observation error that was undocumented. This mistake could have been 

avoided if the provenance of the data was fully recorded. Transparency and verifiability are the essential 

components in research and scientists must always verify if the data is trustworthy before analysis. 

Earth science community must keep up the rapid pace in building AI/ML models that are more 

transparent by design. As this research field is still at its early stages of development, it provides lots 

of scopes for the research community to design new models that are explainable, transparent, and most 

importantly reproducible. Therefore, with this chapter, we want to emphasize that provenance has the 

potential and needs to be considered in future earth science applications. 

 

3.4 Technical Approaches 

There is a wide variety of software tools developed to support reproducible results and provenance 

tracking in scientific research, such as Kepler (Altintas et al., 2004), DataRobot (DataRobot, 2012), 
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Neptune (Talia, 2013), Datatron (Datatron, 2016), Metaclip (Bedia et al., 2019), Geoweaver (Sun et al., 

2020), Amazon SageMaker (Das et al., 2020) and Collibra (Hilger and Wahl, 2022). These tools 

provide several ways to explore the provenance repository by tracking model activity, recording all 

changes in the data and the model, and outlining best practices for data management and disposal. This 

section gives a detailed introduction to three platforms, Metaclip, Kepler, and Geoweaver to illustrate 

the state-of-the-art technologies for ensuring the quality of data along with the workflow process in 

Earth and environmental sciences. 

 

3.4.1 Metaclip (METAdata for CLImate Products) 

Metaclip is a framework designed for documenting and presenting the provenance of climate products 

(Iturbide et al., 2019). An important part of it is the metaclipR package, which is developed as an 

additional component of the climate4R framework for climate data analysis in the R environment. The 

documented provenance is based on the Resource Description Framework (RDF) and focuses on 

semantic description of climate products such as maps, plots, or datasets, allowing each product and its 

provenance information to be delivered jointly. Thus, Metaclip enables climate data users to assess the 

quality, reliability, and trustworthiness of the data that they are using (Bedia et al., 2019). The 

documented provenance is understandable to a wide range of users from professionals who require 

technical details to common users who are interested in higher-level information.  To realize that 

Metaclip has developed four core vocabularies (Datasource, Calibration, Verification, and 

Graphical_output). These vocabularies extend the basic PROV-O classes and properties, providing 

appropriate descriptions in order to offer meaningful information involved in the creation of specific 

data products. 

• Datasource: This vocabulary indicates the source of input data as well as the change it has 

experienced throughout, like subsetting, aggregation, anomalies, principal component analysis 
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(PCA), and climate indices. It also provides the connections between the various transformation 

commands and arguments used in each stage. 

• Calibration: This vocabulary translates the metadata describing bias correction, downscaling, and 

other forms of statistical adjustment. The calibration vocabulary is based on the framework 

designed by VALUE (Gutiérrez et al., 2019; see also: http://www.value-cost.eu/), which aims to 

systematically validate and improve downscaling methods in climate research. 

• Verification: This vocabulary includes metadata related to the verification of seasonal forecast 

products, providing a description of the verification measures applied, as well as describing the 

verification aspect that each measure addresses. In addition, this vocabulary also includes a 

theoretical model for describing other forms of climate validation. 

• Graphical_output: This vocabulary aims at describing graphical products, like charts and maps, 

including a characterization of uncertainty types and how they are communicated. 

 

The example below is taken from the Metaclip interpreter (http://www.metaclip.org/interpreter) to 

highlight the main functionality of metaclipR in describing a complete workflow. The architecture of 

the interpreter is designed based on two components: (1) a backend service to extract and parse 

provenance information and (2) a front-end component that handles interactive visualization. The 

image on the left of Figure 3.5 is a climatological map of specific indexes. All the provenance 

information of the workflow generating that image is encoded in RDF and embedded in the JPG file. 

For such a provenance-embedded climate product, the Metaclip interpreter can extract and visualize 

the provenance information at different levels of granularity (right part of Figure 3.5). For instance, it 

can provide high-level provenance information about the climate product like how the image was 

generated, who was involved in producing the image, and steps in the workflow process. Then, by 

clicking on the corresponding node for a step in the workflow, a user can get additional technical details 

and a full description of the data or code.  
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Figure 3.5: Metaclip web interface 

(Metaclip interpreter displaying a climate index product on the left and provenance visualization on the right. By double-

clicking on each of the nodes in the provenance network the user can get additional details and sub-properties for the node. 

The image is captured from the Metaclip interpreter website: http://www.metaclip.org/interpreter) 

 

3.4.2 Kepler Scientific Workflow System 

Kepler is an open-source, Java-based collaborative platform for scientists from all disciplines (Altintas 

et al., 2004). It is one of the most widely used scientific workflow systems in a variety of projects to 

manage, process, and analyze scientific data. The goal of Kepler is to simplify the workflow creation 

and execution process so that scientists can quickly design, monitor, re-run, and discuss analytical 

methods with minimal effort. Kepler is built upon the Ptolemy II system which is an actor-oriented 

design methodology (Eker et al., 2003). From the underlying Ptolemy II system, Kepler inherits several 

advanced functionalities such as variable (director-based) execution models, nested workflows, and the 

Vergil graphical user interface (GUI) which makes the system more versatile. Kepler’s GUI is powerful 

yet user-friendly for both engineers and end users allowing efficient solutions for scientific problems 

in any domain (Figure 3.6). 
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Figure 3.6: The demo workflow from Kepler’s software 

(The demo workflow from Kepler’s software. The sample workflows can be found on the website: https://kepler-

project.org/users/sample-workflows.html) 

 

3.4.3 Geoweaver 

Geoweaver is a web-based workflow system that helps AI practitioners to integrate multiple steps such 

as preprocessing, training, testing, and post-processing into a single automated workflow (Sun et al., 

2020). It provides great benefits to earth scientists and has the capability to run, modify, reproduce, 

share, track, and reuse AI workflows in a single or distributed environment. Geoweaver runs on a web 

browser and can be installed by any individual or group to manage their resources. The core design of 

Geoweaver is divided into three modules (Host, Process, and Workflow) which help AI practitioners 

sort their experiments and allow reusability. 

• Host: This module is the foundation of the entire framework. It allows users to connect different 

resources like SSH (Secure Shell), Jupyter Lab, and third-party computing platforms such as 

Jupyter Notebook Server, Google Earth Engine, and Google Colab.  

• Process: This module supports Python, Jupyter Notebook, Shell script (bash), and SSH for running 

different programs. It allows users to create new processes and edit existing ones. 
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• Workflow: This module enables users to create workflows from the existing processes. The 

graphical panel allows users to drag and drop different processes and link them into a workflow. 

Once the workflow is created it can be downloaded, uploaded, and edited.   

 

 
Figure 3.7: The user interface of Geoweaver 

(The user interface of Geoweaver. It consists of a workspace canvas, a top main menu, a left-side menu panel, and a logout 

window. There are three main folders in the Left menu panel: Host, Process, and Workflow. They each include a list of child 

nodes with multiple options. The Host consists of a machine that can be either physical or virtual. The Process consists of four 

child folders: Shell scripts, Python code, Jupyter Notebooks, and built-in processes. The Workflow folder gives users the 

flexibility to create a new workflow based on the existing processes. Geoweaver makes all these entities manageable in one 

place and can help the AI community to share, track and reproduce results. The live demo of Geoweaver can be found on the 

website: https://geobrain.csiss.gmu.edu/Geoweaver/) 

 
Here is the step-by-step guide to connecting to a host, creating processes, managing workflows, and 

viewing recorded provenance in Geoweaver. 

Step 1: Connect to the host 

In Geoweaver, hosts are the computing platforms where we connect to different recourses, in this 

example, we have established the connection through localhost. Once the connection is successfully 

established, we may proceed to our next step i.e., creating a process.  
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Figure 3.8: Connecting to host in Geoweaver 

 
Step 2: Create a Process 

Processes are programs like Python code, shell scripts, Jupyter notebook, and Google Earth Engine 

scripts. All of the code can be managed in one place and executed on different hosts. In this example, 

we will be creating all our processes using Python. Once you finish writing the code click on the run 

button to execute the process. In the popup window, select "Localhost" and click "Execute". In the 

popup Python environment dialog, click "Confirm" to the default and add your password. If you see 

the output printed in the logging window, it means you have successfully created and run your first 

process in Geoweaver! Congrats! 
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Figure 3.9: Writing the first Python program in Geoweaver 

 
All the history of each process execution will be saved in the Geoweaver database, even if the used 

hosts are no longer available. This is how the provenance is documented in Geoweaver. The below 

image (Figure 3.10) displays the execution ID of each process, at what time the process was run, and 

information about whether the process ran successfully or failed.   

 

 
Figure 3.10: A Geoweaver dashboard to browse the provenance recorded for each process 

(A Geoweaver dashboard to browse the provenance recorded for each process. Here category is the type of process we are 

executing, the name is the given program name and ID is the unique identification of each program.)  
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Step 3: Create a Workflow 

Normally, workflows are the connected pipelines of several (>2) processes, but Geoweaver also 

supports isolated processes, that is, processes not connected to each other are also allowed. Complex 

scientific experiments can simply be broken down into a number of workflows, which can then be 

executed and managed here. The weaver workspace allows users to create new workflows or edit the 

existing ones. The “add to weaver” button in the process module allows users to add different processes 

to the weaver workspace. In Figure 3.11 we have three processes created in Python. For better 

understandability we have demonstrated simple Python programs “addition” (addition of two numbers), 

“for_loop” (running a for loop to print a series of numbers), and “if_else” (print the greater number).  

To create a workflow the processes can be linked with each other by pressing and holding the SHIFT 

key on the keyboard. Once the workflow is created you can click on the “plus” button in the top floating 

bar, then add details in the popup window “Input Workflow Name” (write the name of your workflow) 

and a simple description in the “Description”, once you add all the information click confirm to 

complete. To run the workflow, click on the “play” button in the top floating bar, in the pop window 

select the “one-host” option, then choose localhost and set the environment to default. Finally, click 

Run, enter the password for localhost and confirm.  
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Figure 3.11: Demonstration of workflow created in Geoweaver using different process 

While the workflow is in the execution mode, you will notice different colors: blue means the process 

is waiting, yellow means the corresponding process is running, green means the process execution is 

finished, and red means the process execution is failed for some reason. 

 

 
Figure 3.12: Web interface representing different colors in the execution mode. The image is captured from Geoweaver in-

browser software 
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To export the workflow from Geoweaver click on the downward icon button in the top floating bar. 

The workflow exportations will provide two options “Workflow with process code” and “Workflow 

with process code and history”. The first option will only download source code and workflow json, 

but the latter will download source code, workflow json along with the detail history of the previous 

execution. The second option is recommended as it is provenance enabled.  Click “Confirm” and a ZIP 

file will be automatically downloaded to your machine. Another best feature of Geoweaver is the ability 

to reproduce and edit the existing workflows. To import the shared workflow, click on the upward icon 

in the top floating bar and drag and drop the Geoweaver ZIP file and click “Start”. Once the uploading 

is finished and if the workflow file is valid, it will ask “The upload workflow is valid. Do you want to 

proceed to save it into the database?” “You can click OK, then the workflow will be automatically 

loaded in the workspace and ready to reuse.  

All three platforms introduced above have their websites where detailed tutorials and sample workflows 

can be accessed, including examples in Earth and environmental sciences. Interested readers are 

suggested to go to their websites (see links in captions of Figures 3.7 to 3.10) to see and practice the 

different technical approaches for provenance or metadata documentation.  

 

3.5 Discussion 

Provenance in Earth AI is closely relevant to reproducibility. In our opinion, one of the most important 

aspects of making AI/ML more reproducible is to record or document all the core primitives such as 

hyperparameters, model architecture, code commits, datasets, and all the metadata associated with the 

training process. We understand there are plenty of different factors such as data changes, different 

software environments or versions, and numerous other small variations that can result in a 

reproducibility crisis. As it is not necessary to document all the detailed information, AI practitioners 

must prioritize documenting the most important elements of a project from day one to enable other 
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researchers to easily reproduce their work when necessary. Adding a standardized format of 

reproducibility also ensures efficiency and accuracy. This will not only help researchers to reproduce 

results but will also ensure transparency and trust. Beyond documenting the fundamental components 

of an AI/ML system, the concept of reproducibility can be viewed as a systematic way of working in 

data-intensive Earth AI. 

 

Another advantage enabled by provenance is interpretability. Although interpretability and 

explainability are often discussed interchangeably, interpretability is concerned with the factors that 

influence a model’s decisions, while explainability deals with the reasoning process that a model 

follows to arrive at a final decision. The need for interpretability has been highlighted in many studies, 

especially when the decisions made by AI/ML algorithms have generated unintended biased, 

discriminatory, and even harmful outcomes. This issue has raised concerns of transparency and ethics 

for AI practitioners, such as when algorithms are deployed in critical domains like healthcare. In our 

opinion, interpretability is a prerequisite for humans to trust AI/ML models. It allows users to 

understand the causes behind decisions of real-world AI/ML applications, and thereby improve the 

fairness of the models. Enabling interpretability in AL/ML models will improve confidence and trust 

in the model. It will help data scientists to draw explanations from the black-box model for why certain 

decisions or predictions have been made. Recent techniques such as LIME (Local Interpretable Model-

Agnostic Explanation) and SHAP (SHapley Additive exPLanations) show great promise for model 

interpretability.  However, there is still ample room for improvement from a data science and 

engineering perspective. In order to understand opaque models, we need new initiatives and techniques 

to design systems that are safe, robust, ethical, and most importantly, interpretable. 

 

As AI/ML systems expand to include more diverse applications, the need for capturing provenance is 

gaining traction in the research community. We believe that the inclusion of provenance will not only 
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strengthen AI/ML systems but will also improve transparency and explainability. Adding domain-

specific documentation standards can help the community to grasp and begin employing appropriate 

practices routinely. In our opinion, data only adds value when it is accompanied by provenance 

information (for example, Wikipedia is not considered a trustworthy source due to the fact that many 

of its sources cannot be verified).  Relying purely on data without verifying its source could be an 

unhealthy practice. On the other hand, documenting the necessary detail of a workflow will help 

researchers with troubleshooting in the event of errors, shedding light on the behavior of the model. It 

is worth noting that, manual documentation can put model provenance at risk, particularly when 

working with large datasets. For this reason, we encourage automating the process of provenance 

tracking by using workflow platforms, tools, and packages to limit manual operation. Fortunately, more 

adequate tools for recording and sharing provenance information are already being developed, which 

will greatly facilitate the automation of provenance documentation. The future of provenance 

documentation looks promising because governments and funding organizations are already 

recognizing the need for data preservation and provenance and are increasingly providing guidelines 

and support for works in that direction. 

 

Looking into the future, we propose a few points for discussion. The first is that AI/ML systems need 

to be adaptive and interactive, providing explanations based on users’ needs, expertise, and 

requirements. The success of W3C PROV is a perfect example of making AI/ML processes 

reproducible or repeatable. However, we believe that as the research progresses, we will need more 

adoption of provenance standards to enable open science in various disciplines, including those in earth 

science. Our second point is that more functions of data management and provenance documentation 

need to be enabled in workflow platforms. To speed up scientific research and comprehension, open 

data will allow researchers to share data, information, and expertise (with clear licensing) enabling 

transparency and reproducibility. The increasing availability of open data comes with the need for data 
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management. However, the humongous amount of data available today makes manual management an 

unrealistic approach. There is the need for more platforms like Geoweaver which automate the AI/ML 

workflow and enable users to perform all tasks in one place more efficiently. The third point is about 

leveraging cloud service in data-intensive Earth AI. Many of the existing automated data management 

and analysis platforms are cloud-based, and we will undoubtedly see a continuation of rapid adoption 

and growth of cloud platforms. This will likely result in a shift in focus from complex high-cost local 

computation to cloud computing. This fact will be the primary motivator for the researchers to migrate 

to cloud platforms. 

 

3.6 Conclusion 

With the increasing adoption of AI/ML systems, there is an increasing need for the results to be 

interpretable, reproducible, traceable, and explainable. Although the post hoc explainability approaches 

could be one way to explain a black-box model, we believe they are still in their infancy stage and not 

completely reliable. We suggest adopting established methods from the field of data and software 

provenance will be an ideal solution for providing explanations to AI/ML systems. Provenance will not 

only help users to trace, evaluate, understand, and reproduce the AI/ML results but will also enhance 

users’ decisions about how much trust to place in data and results generated from the original sources. 

In this study first, we presented a summary highlighting the fundamental concepts of XAI, TAI, and 

provenance. Second, we discussed how AI/ML models have advanced in the earth science discipline 

and the related work in provenance. Third, we illustrated three different tools that support reproducible 

results and provenance tracking. Lastly, we presented a research outline in the discussions to analyze 

the challenges and suggest further research opportunities. We hope this chapter provides enough justice 

to the importance of provenance and gives insight into new tools and the progress that can be made in 

AI/ML systems. We believe that provenance remains an important topic and has much more to offer 

the earth science community.  
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Chapter 4 Geoweaver_cwl: Transforming Geoweaver AI Workflows to 
Common Workflow Language to Extend Interoperability 

 
This chapter is adapted from the preprint: 

Amruta Kale, Ziheng Sun, Chao Fan, Xiaogang Ma; “Geoweaver_cwl: Transforming Geoweaver 

AI Workflows to Common Workflow Language to Extend Interoperability”, 2022. SSRN 

Elsevier Preprint available. DOI:  http://dx.doi.org/10.2139/ssrn.4284586 

 

4.1 Introduction 

We are witnessing a widespread adoption of AI/ML in our everyday life. The recent success of DL has 

largely contributed to the huge success of AI/ML models. DL algorithms are widely used in mission-

critical applications like healthcare, autonomous robots and vehicles, image classification, and 

detection. Despite the significant improvement in performance and predictions, the black-box nature of 

DL algorithms can raise social and ethical questions about their operations and results. Even the 

programmer designing the complex AI/ML model finds it difficult to gain insight into an internal 

system that is often opaque. This issue has extended the research focus from improving accuracy to 

explainable and interpretable ML models (Doshi-Velez et al., 2017; Gilpin et al., 2018; Adadi and 

Berrada, 2018; Wing, 2020; Sun et al., 2022). 

 

Recent interests in XAI and TAI have achieved great momentum in making AI/ML models more 

explainable, interpretable, and transparent (Adadi and Berrada, 2018; Rudin, 2018; Rudin, 2019; Wing, 

2020). XAI proposes a shift toward more transparent AI. It aims to develop a set of strategies to make 

ML models more explainable while maintaining their high predictive accuracy (Ribeiro et al., 2016, 

Gunning and Aha, 2019). Several strategic plans have shown the growing dynamics in the field of XAI. 

For instance, Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) and 

SHapely Additive exPLanations (SHAP) (Lundberg and Lee, 2017) are two popular approaches to 
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explaining ML and  DL models. SHAP values can be used to explain a variety of models including 

both classification and regression problems. While both LIME and SHAP are model-agnostic 

approaches, SHAP is widely used and more acceptable because it guarantees the fair distribution of 

contribution for each of the variables. Government agencies like GDPR, and the AI HLEG have also 

highlighted the importance of transparent and fair AI systems (Goddard, 2017, AI HLEG, 2019).  

 

As the field of XAI continues to expand, it is important to develop new research strategies that include 

the provenance of upstream steps and history model runs. The diverse nature of AI/ML models in the 

field of XAI requires a multi-disciplinary approach, and in our previous papers, we highlighted the 

importance of provenance documentation and its benefit for AI/ML models (Kale et al., 2022; Kale and 

Ma, 2022 In press). We suggest that adopting approaches and methods from the field of provenance 

will help to generate resourceful explanations and improve reproducibility (Ma et al., 2017; Kale et al., 

2022). When data is captured or generated, it is always accompanied by a plethora of additional 

information, which is generally referred to as metadata. Data type, document size, or any other 

information that specifies a property of the actual data can all be considered metadata (Baca, 2016; Ma, 

2022). Provenance, on the other hand, might be considered an expansion of metadata. It includes 

information about the origin of the data and any other objects of interest, as well as information about 

the workflow (Cheney et al., 2009; Tilmes et al., 2013; Ma et al., 2014). The term provenance is defined 

by World Wide Web Consortium (W3C) (Moreau and Missier, 2013) as: “Provenance is the 

information about entities, activities, and people involved in producing a piece of data or a thing which 

can be used to form assessment about its quality, reliability, or trustworthiness”. Provenance 

documentation answers questions like “Who is the author?”, “How was the data created?”, and “What 

earlier processing steps were done to the data before it reached the current form?”. 
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There are a wide variety of computing environments and software tools designed to track and manage 

AI/ML experiments. These tools provide several ways to explore the provenance repository by tracking 

model activity, recording changes in the data and model, and outlining best practices for data processing. 

Kepler (Altintas et al., 2004), DataRobot (DataRobot, 2012), Datatron (Datatron, 2016), Metaclip 

(Bedia et al., 2019), and Amazon SageMaker (Das et al., 2020) are some of the tools which fall under 

these categories. However, to the best of our knowledge, none of these tools provides satisfying 

solutions for full-stack AI/ML workflow management, along with full access to the files, data flow, 

code, and most importantly, enabling reproducibility and portability of workflows. Therefore, in this 

paper, we emphasize the new workflow management system (WfMS) named “Geoweaver” which 

enables users to share, replicate, and reuse AI/ML workflows all in one place more efficiently. 

Geoweaver supports connecting all the preprocessing steps, training and testing of AI/ML models, and 

post-processing steps into a single automated workflow (Sun et al., 2020).  

 

To further extend the interoperability of AI/ML workflows, in this paper we present the python package 

geoweaver_cwl, a wrapper tool that transforms Geoweaver AI/ML workflows into Common Workflow 

Language (CWL) scripts in a way that makes them portable and scalable across a variety of software 

and hardware environments. This paper will describe how the tool is developed and implemented in 

our use cases and is organized as follows. In section 2, we first describe an overview of CWL, followed 

by the conceptual framework of Geoweaver, and then describe the architecture of geoweaver_cwl. In 

section 3, we demonstrate our python package by applying a use case from the Geoweaver platform 

and assess the quality of the package and its influence in Geoweaver. In section 4, we discuss the 

importance of adopting CWL standards and highlight the future direction of our work. Finally, we 

conclude with a few additional remarks. 
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4.2 Technical Framework of the geoweaver_cwl Package  

4.2.1 An Overview of the Common Workflow Language 

CWL is a community standard to describe command-line-based workflows (Amstutz et al., 2016, 

Crusoe et at, 2022). It offers a typical but simplified set of generalizations that are commonly 

implemented in many popular WfMS. The language’s declarative format enables users to describe the 

process of executing diverse software tools and workflows through their command-line interface. 

Previously, to link the command-line tools researchers need to write shell scripts. Although these scripts 

offer an efficient approach to accessing the tools, writing, and maintaining them requires specialized 

knowledge. As a result, researchers spend more time maintaining the scripts than conducting their 

research. However, with the increase in workflow popularity, the number of workflow management 

tools has increased, and each of them has its standards for specifying the tools and workflows. This has 

reduced the portability and interoperability of these workflows. CWL aims to reduce the barrier to 

researchers using these technologies by providing a standard to unify them. In order to ensure 

reproducibility, CWL standards explicitly support the usage of container technologies. These standards 

ensure portability, so the same workflow can be executed in both local and high-performance cloud 

environments. 

 

4.2.2 Conceptual Framework of the Geoweaver Workflow Management System 

Geoweaver is a stable practical platform for NASA's Earth Observing System Data and Information 

System (EOSDIS) that enables earth scientists to manage, share, replicate and reuse their AI/ML 

workflows. Geoweaver helps AI practitioners by providing more sophisticated AI workflows that not 

only include data preprocessing, training, and testing of AI algorithms but also post-processing of 

results into an ad hoc automated workflow (Sun et al., 2020). Earth scientists increasingly begin to 

manage their workflows, but because of the uncertainty and complexity of AI/ML models, scientists 

often find solo management problematic, particularly when massive data is involved. Geoweaver offers 
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a great solution to these problems. The fundamental design of Geoweaver is organized into three 

modules (Host, Process, and Workflow), which enable AI practitioners to sort and reuse their AI/ML 

experiments.  

• Host: This module serves as the cornerstone for the framework, differentiating it from other WfMS. 

It enables users to connect to several resources such as virtual machines, Jupyter server instances, 

Secure shell (SSH), and third-party computing platforms like Google Earth Engine, Jupyter 

Notebook Server, and Google Colab. Additionally, the file transfer services (file uploading from 

local computers to remote servers, and file downloading from remote servers to local computers) 

provided by the host module allow users to transfer their workflow from one platform to another. 

• Process: This module includes five submodules and one database. As most of the current AI/ML 

experiments employ Python programming, the process module supports Python, Jupyter Notebook, 

Shell scripting (bash), and SSH for running system-level programs. All the dependent libraries like 

DeepLearning, Keras, PyTorch, and TensorFlow are easily accessible in the process. The process 

editor/creator interface allows users to create new processes and edit existing ones. Whenever a 

new process is created, it gets stored in a MySQL database. The process monitor is responsible for 

all the execution events in the process module and reports the real-time status. Once the execution 

is complete the input, output, and code that has been executed will be recorded and stored in a 

database. The provenance manager is responsible for evaluating the recorded history of each 

process in order to assess data quality and recover from failure. 

• Workflow: The term "Workflow" is a wide-ranging phrase that can be interpreted in a variety of 

ways (WMP, 1998; S. Jablonski and C. Bussler, 1996). For instance, many geoscientists often refer 

to Jupyter Notebook or bash script as a workflow. In Geoweaver, workflow denotes a pipeline 

linking multiple processes together. The workflow module consists of two functions (1) Building 

workflows from the existing process and (2) Managing the query, edits, and execution of the 

workflows. The workflows in Geoweaver are Directed Acyclic Graphs (DAG), which means the 
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workflow follows a certain direction.  Once the workflow is created it can run using localhost or 

by setting the default environment. The workflow module displays a color-coded real-time status 

of each process in the execution mode. Different colors represent the status of each process: blue 

means the process is waiting; yellow means the process is running; green means the process is 

finished running; and red means the process failed. A more detailed demonstration of Geoweaver 

is described in a previous paper (Kale and Ma, 2022 In press). Exporting and importing the existing 

workflows in Geoweaver is simple and easy. The downloaded workflow can be automatically 

loaded into the workspace and ready for execution and reuse. Figure 4.1 and Table 4.1 describes 

the framework of Geoweaver with the three core modules.  

 

Table 4.1: Geoweaver demonstrating different modules and features 

 

 

 

 

 

 

 

 

Geoweaver 

Modules Features 

 

 

Host 

(This module enables users to connect to 

several resources) 

Virtual machines 

Jupyter server instance 

Secure Shell 

Google Earth Engine 

Jupyter Notebook Server 

Google Colab 

 

Process 

(This module includes five submodules 

and one database) 

Python  

Jupyter notebook 

Shell Script 

Secure Shell 

MySQL 

Workflow 

(This module allows a pipeline linking 

multiple processes together) 

Build workflows from existing 

process 

Manage query, edits, and execution 

of workflow 
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Figure 4.1: Workflow management framework of Geoweaver and its core modules (Host, Process, and Workflow), adapted 

from (Sun et al., 2020) 

 
4.2.3 Architecture of the geoweaver_cwl Wrapper Tool 

A wrapper tool is used to simplify the process of editing, running, and sharing tools in a digital 

environment. In this paper, we regard “wrapper tool” as a process of using CWL to describe command-

line tools so that they can be run as an application or a tool in part of a larger workflow. Using the 

wrapper tool with CWL will make all the documents portable, sharable, and executable. The 

preliminary step for creating a workflow in Geoweaver is through the workflow module. The 

workspace allows users to compose a workflow using existing processes. Once the workflow is created 

it can be downloaded with two options “workflow with process code” or “workflow with process code 

and history”. The first will simply download the workflow and source code. The latter will download 

all the history of the prior workflow executions in addition to the source code and workflow. The 

downloaded workflow comes with a Zip file that includes a code folder, a history folder, and a workflow 

file. The code folder contains the code files (processes) used to form the workflow, the history folder 

contains the historical details of each process like the begin_time, end_time, input, and output. The 

workflow file contains the information on the nodes and edges that link together to form the workflow. 
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To further extend the portability and interoperability of workflows built in the Geoweaver framework, 

we designed geoweaver_cwl, a python package that captures inputs (source and target processes) from 

a Geoweaver workflow file and transforms them into CWL scripts. A key contribution to our work is 

an add-on functionality that dynamically generates corresponding CWL code without the user having 

to know the CWL syntax. The CWL file features text fields that comprehensively describe workflow 

commands and parameters. 

 
Figure 4.2: Architecture of geoweaver_cwl package with key functions 

 
Figure 4.2 illustrates a brief architecture of geoweaver_cwl. The package contains two main functions 

“generate_cwl” and “generate_yml”. The generate_cwl function takes workflow.json from Geoweaver 

as the input, captures the nodes, and the edges from the workflow, and writes the steps that form the 

data flow into CWL scripts. To capture the source and target from the workflow file, we iteratively visit 

each node in the workflow, and each visited node that has not been previously processed becomes a 

source node. Then, for each source node, we compile the child nodes, and each child node serves as a 

target for the source node. Each source-target pair is processed by writing a CWL script that provides 

explicit inputs and outputs for each phase. Carrying out this procedure eventually enables us to generate 
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the CWL scripts for the whole workflow. Equations 1 and 2 below describes the process of translating 

the workflow file into CWL.  

 

𝑃𝐿 = 𝜌(𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤. 𝑗𝑠𝑜𝑛)         (1) 

[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤. 𝑐𝑤𝑙, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦𝑐𝑤𝑙𝑓𝑖𝑙𝑒𝑠] = 	∀𝑝:	𝑊@𝑝, ∈ (𝑝)B,								𝑝 ∈ 𝑃𝐿	    (2) 

where 𝑃𝐿 = process_list 

𝜌 = Graph edge extraction function 

 W, ∈ = file writing functions 

Additionally, the function also generates a new subdirectory called “elementary_cwl_files” which 

stores new CWL files (the processes used in the workflow) translated from the code folder. Below is 

the pseudo-code of the generate_cwl and generate_yml functions. 

 

Graph edge extraction function 

 

 

 

 

Read edges from workflow.json 

Let process_list, target_list be empty list 

 For each edge in edges 

 Let source be edge.source 

 Let target be edge.target 

  If source not in process_list 

   Append source to process_list 

  If source is in target_list 

   Remove source from target_list 

  If target not in target_list 

   Append target to target_list 

Add elements from target_list to process_list 
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File writing function for workflow.cwl 

 

File writing function for elementary CWL files 

 

The generate_yml function produces a Yet Another Markup Language (YAML) file, which writes the 

input to run the workflow.cwl file. The YAML file describes which input to run for the cwl files. 

 
 
The geoweaver_cwl package is fully open access and the installation is simple. The package can be 

downloaded from: https://pypi.org/project/geoweaver-cwl/0.0.1/. Figure 4.3 demonstrates the 

installation steps for the geoweaver_cwl package along with the use of some functions. To facilitate 

reuse and adaptation, we have made the source code, a detailed user guide, and concrete self-contained 

examples file available on GitHub under an open-source license: 

https://github.com/amrutakale08/geoweaver_cwl and self-contained example on 

https://github.com/amrutakale08/geoweaver_cwl-usecases.  

 

read process_list -> workflow.json 

for process in process_list 

write process_name 

write run command 

write input command 

write output command 

create an elementary_cwl_files 

 

 

 

 

 

 

 

Create a new elementary_cwl_files 
 write baseCommand  
 write input 
 write output 
  

Class: Directory/file 
Path: path of the file or directory 
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Figure 4.3: Installation and usage of the geoweaver_cwl package 

Once the workflow files are described in CWL scripts, they can be executed using any other software 

that supports CWL, like cwltool, Arvados, Toil, CWL-Airflow, and more. Some advanced applications 

like Rabix are also available to run the process faster. Rabix is an open-source desktop application that 

allows researchers to create and edit CWL documents (Amstutz et.al, 2021). The application provides 

a text-based visual editor’s interface which allows users to edit and create new workflows. However, 

many of the researchers who are unfamiliar with CWL may find Rabix's composer too hands-on and 

less intuitive. Therefore, in this dissertation, we are going to use the traditional cwltool.  To run the 

newly generated CWL files from Geoweaver, we will use the below command. We invoke cwl_runner 

with workflow.cwl and input object input.yml on the command line.  

                                   

The command will trigger all the functions inside the CWL and YAML files in the same order as 

Geoweaver and is supposed to get the same results. As mentioned above, the advantage of CWL is that 

it provides a solution for describing portable and reusable workflows. The transformation from 

Geoweaver to CWL through the geoweaver_cwl package allows geoscientists to easily share, exchange, 

modify, and reuse workflows. Additionally, CWL-compliant applications are highly portable and can 

be run in a variety of environments, including local or cloud infrastructures.  

 

cwl-runner workflow.cwl input.yml 
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4.3 Use Case Implementation, Result, and Evaluation  

Based on the geoweaver_cwl package, we tested a list of workflows from simple to complicated ones. 

Here we use a Geoweaver workflow available on GitHub (https://github.com/earth-artificial-

intelligence/kenya-crop-mask-geoweaver) to demonstrate and verify the usability of our package. The 

scientific topic of that workflow is the annual and in-season mapping of cropland in Kenya (Tseng et 

al., 2020). The GitHub repository contains the code folder, history folder, and workflow.json file.  

 

We installed the geoweaver_cwl package and followed the above-mentioned procedures to describe the 

workflow in the CWL text document. After using the functions generate_cwl and generate_yml, we 

obtained the files “input.yml”, “workflow.cwl”, and “elementary cwl files folder”, which included the 

cwl files used in creating the workflow. The workflow translation process was fast and easy, and we 

also noticed that using cwltool speeds up workflow execution compared to the original procedure in 

Geoweaver. 

 

 
Figure 4.4: Exemplar scripts of workflow steps 

(Exemplar scripts of workflow steps in the workflow.cwl from workflow.json file (left) and the CWL text document 

scripts_export.cwl describing computational steps present in the elementary_cwl_files folder (right))  
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We successfully transformed the Geoweaver workflow of Kenya cropland mapping into CWL format 

using the geoweaver_cwl package. The left part of Figure 4.4 shows the described workflow in CWL 

from the workflow.json in Geoweaver. The CWL file contains a cwlVersion section which indicates 

the version of the CWL document. The class section with a value of Workflow indicates that this 

document describes the workflow. The inputs and outputs sections describe the inputs and outputs of 

the workflow, respectively. The steps section describes the actual steps of the workflow. In this example, 

the first step is to run the “scripts_exports.cwl” present in the folder elementary_cwl_files. The code of 

“scripts_exports.cwl” is illustrated in the right part of Figure 4.4. The workflow steps in CWL do not 

always run in the written sequence. Instead, the order is determined by the dependencies across steps. 

To evaluate the result of the transformation we ran the CWL text document using cwltool, and we 

observed that it executed smoothly and generated the same result as in Geoweaver. The CWL result of 

this example is accessible on GitHub: https://github.com/amrutakale08/geoweaver_cwl-usecases. We 

are now transforming more Geoweaver AI workflows with this package and sharing the results on 

GitHub. 

 

Geoweaver provides a unique combination of features, such as a user-friendly interface, full-stack code, 

a history of previous versions, and sharable AI/ML workflows. It is a user-friendly entry point to solve 

AI-related workflow issues for a variety of disciplines in geosciences as well as beyond. The 

geoweaver_cwl package developed in this work further extends the portability and interoperability of 

workflows created in Geoweaver. The package can quickly transform Geoweaver workflows into CWL 

format, and the result can be run on many CWL-compliant software applications. Moreover, the CWL 

result can be also executed on diverse computing platforms including local computers, cloud 

environments, or high-performance clusters. The transformation process is intuitive and new users will 

spend less time getting familiar with the package.  
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4.4 Discussion  

We encourage geoscientists as well as other AI practitioners to use Geoweaver and the geoweaver_cwl 

package to increase the reproducibility and interoperability of their work. The developed package helps 

automatically transform Geoweaver AI/ML workflows to a community standard CWL. As an extension 

to Geoweaver, the CWL result can be executed on diverse computing platforms which gives users more 

opportunities to run the workflow without compromising provenance or having to recreate the 

workflow if they want to use another WfMS. CWL can formally describe inputs, outputs, and other 

execution details of the workflow in a text-based document. It supports workflows that specify 

dependencies among tools and use one device output as input to another. CWL documents are text-

based so that they can be created manually, without or with less computer programming.  However, 

ensuring that these documents adhere to the CWL syntax specification may restrict some users from 

adopting it. The developed geoweaver_cwl addresses this gap. It can automatically describe workflows 

into CWL to make it effortless for geoscientists to share data analysis workflows in varied formats 

without learning the technical details of the CWL syntax. 

 

There are a wide variety of WfMS software tools available all over the research community, that are 

constantly being developed, revised, and improved every day. While the availability of such tools 

benefits the community, it also presents a great challenge: as more and more tools are created, a set of 

standards needs to be adopted in order to ensure the portability and reproducibility of the resulting 

workflows. CWL, as reflected in its name, aims to be such a community standard to harmonize the 

workflow formats proposed by various WfMS software tools. Reproducibility enables researchers to 

track and debug potential errors and validate the authenticity of the results, and as such it plays a vital 

role to make scientific research accurate, efficient, and cost-effective. Because CWL tracks code 

versions, inputs, outputs, and more, researchers can use it to pinpoint where the analysis went wrong, 

or where in the analysis the particular piece of data leads to new insights. Therefore, the transformation 
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from Geoweaver workflows to CWL format is a necessary extension with regards to broad portability 

and reproducibility.  

 

Portability is crucial when it comes to scientific research and analysis. When one workflow is designed 

for a type of computational environment such as a personal computer it may not function in a similar 

way as in the cloud. Therefore, researchers may spend more time and effort in debugging the tool to 

make it work in the desired environment. This could result in inconsistent outcomes or errors. In 

contrast, CWL enables portability by being explicit about inputs, outputs, data location, and execution 

models that can be executed on any of the CWL-compliant environments. CWL-based documents can 

be downloaded, edited, and executed on local infrastructure or uploaded and executed in the cloud. 

  

The scientific provenance research community has evolved significantly in recent years to provide 

several strategic capabilities, to make AI/ML workflows more explainable and reproducible. The 

declarative approach to describe workflow in CWL scripts facilitates and encourages users to explicitly 

declare every single step, improving the white box view of reviewing process and potential provenance. 

Such workflows will eliminate the "black box" nature by offering insights into the entire process used 

to build artifacts. This will support the research community in carrying out thorough studies that will 

enable them to satisfy those essential requirements for building a transparent and explainable AI/ML 

application. Documenting provenance to support published research should be considered a best 

practice rather than an afterthought. The community should be encouraged to follow well-established 

and consensus best practices for workflow design and software environment deployment. The aim of 

Geoweaver and the geoweaver_cwl package is to promote the efforts in that direction.  

 

In order to improve the efficiency of the developed geoweaver_cwl package, our plan is to continue 

using Geoweaver and the package with more AI research projects. So far, we have only tested our 
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package on definite workflows created by Geoweaver, and we believe further analyses are necessary 

to validate the broad utility of the package. For our future work, we would like to collaborate with a 

diverse research team from different domains and collect complex use cases from them. Testing 

different use cases will confirm additional details and novel functions and also ensure that our package 

satisfies the end-user requirement.  

 

4.5 Conclusion 

In this chapter, we first introduce Geoweaver and present a wrapper tool that overcomes current 

challenges of achieving repeatability, reproducibility, and reusability of workflows. To assess the 

outcome, we tested geoweaver_cwl with multiple use cases provided by Geoweaver. The study 

demonstrates that the geoweaver_cwl package can bring great benefits to the earth science community. 

The code is publicly available on GitHub (https://github.com/amrutakale08/geoweaver_cwl) and is 

currently used for translating Geoweaver AI/ML workflows. We encourage the AI community to 

participate in the adoption of Geoweaver by integrating the geoweaver_cwl package into their projects 

and to address any issues whenever possible to facilitate the development of new functionality in future 

versions. 

 

Code Availability:  

The geoweaver_cwl Python package is made open access at: https://pypi.org/project/geoweaver-

cwl/0.0.1/. The source code of the package is accessible at: 

https://github.com/amrutakale08/geoweaver_cwl and exemplar results are accessible at: 

https://github.com/amrutakale08/geoweaver_cwl-usecases. The source code of the Geoweaver 

platform is accessible at: https://github.com/ESIPFed/Geoweaver.  
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Chapter 5 Utility of the Python package Geoweaver_cwl for improving 

workflow reusability: An illustration with multidisciplinary use cases 

 

5.1 Introduction 

Scientific workflow management systems (WfMS) like Kepler (Altintas et al., 2004), VisTrails 

(Callahan et al., 2006), Apache Oozie (Apache Oozie, 2012), Apache Taverna (Apache Taverna, 2014), 

Apache Airflow (Apache Airflow, 2015), and Geoweaver (Sun et al, 2020) have become increasingly 

popular. Not only do they support the automation of repetitive tasks, but also capture complex details 

at various levels and systematically record provenance information for the derived data products (Gil 

et al., 2007, Kale et al., 2022). WfMS have emerged as an alternative to ad-hoc approaches for 

constructing data-intensive machine learning (ML) experiments and provenance tracking. In general, a 

WfMS can be thought of as a program that consists of a set of modules connected by data flow, where 

each module can take input data from previous modules, parameter settings, and data from external 

sources. The visual representation can be considered as a graph, where each node represents the 

modules and edges represent the flow of data between them. Once the processes are linked together, 

the WfMS enables users to execute workflows automatically and monitor the progress in real-time. 

 

The growing popularity of workflows has also raised numerous concerns about reproducibility and 

portability among the scientific community. Ad-hoc methods of data exploration (e.g., Perl scripts) 

have been widely used in the scientific community but also have significant limitations. This could 

hamper the collaboration between several researchers unless we standardized computational reusability 

and portability of workflows. To enable reusability and interoperability, the WfMS communities, for 

example, the Organization for the Advancement of Structured Information Standard (OASIS) (OASIS, 

1998), Workflow Management Coalition (WfMC) (WfMC, 2001), Kepler (Altintas et al., 2004), 

Galaxy (Goecks et al., 2010), and World Wide Web Consortium (W3C) (Missier et al., 2013) have 
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proposed a series of workflow languages that describe and record these workflow links and the involved 

processes. The standard languages commonly used in the industrial sector include BPEL (Business 

Process Execution Language) (Akram et al., 2006), BPMN (Business Process Model and Notation) 

(Chinosi and Trombetta, 2012), and Common Workflow Language (CWL) (Crusoe et al., 2021). For 

scientific workflows, most WfMS define their own languages, such as Taverna SCUFL2 (Simple 

Conceptual Unified Flow Language), and YAWL (Yet Another Workflow Language). These workflow 

languages offer information about the models and describe the process in a portable and reusable 

manner. Despite the fact that there are numerous WfMS being developed in the community, only a 

handful of them use the standard languages to describe their workflows. Whereas other WfMS have 

their unique syntax or approach for describing workflows and infrastructure needs. This approach might 

restrict computational portability and reusability.  As a result, the majority of workflows created cannot 

be shared among different WfMS. Therefore, choosing the WfMS should be exercised with attention 

because the process of transitioning the workflow could be complicated and time-consuming especially 

when qualifying reproducibility. Table 5.1 highlights the different workflow automation software 

representing the workflow language and the important features they support.  

 
In the below Table 5.1, we demonstrated different workflow automation software and its feature to 

make scientific workflows reproducible, portable, and provenance-enabled. However, in this 

dissertation, we would like to draw attention to Geoweaver a WfMS that helps scientists to sort AI 

experiments (create, manage, execute, share and record) and improves automation and reproducibility 

of workflows (Sun et al., 2020). Geoweaver is a simple-to-learn and adaptable application that can be 

used by anyone having prior experience with python scripting. The accessibility barrier is minimal for 

reproducing the existing workflows and downloaded workflows can be carried out independently 

without the need for software installation. Geoweaver has the capability to automate the workflow, 

record provenance, and export history without worrying about the technical debts and potential loss of 



  72 

 

 

their experiment’s history and source code. To ensure interoperability of the designed workflows, we 

went one step further and automatically translated Geoweaver AI/ML workflows into CWL by our very 

first python package geoweaver_cwl (Kale et al., 2022 Preprint). We firmly believe that employing a 

CWL standard can offer a great solution for describing portable, flexible, and reusable workflows while 

also reducing the software engineering burden accompanying large-scale data analysis. 

 
Table 5.1: Different workflow automation software highlighting the important features  

Tool Process Workflow 

Language 

Open 

Source 

Features 

Kepler Web services 

Unix commands 

Shell script 

XML 

(Extensible Markup 

Language) 

 

✔ 

Allows user to reuse data, workflow, 

and components 

Freely available under BSD (Berkeley 

Source Distribution) license 

Apache 

Airflow 

Bash 

Python 

DAGs 

(Directed Acyclical 

Graphs) 

  

✔ 

Highly scalable 

Allows user to monitor and manage 

task easily 

Apache 

Taverna 

Local and remote 

servers 

RESTful services 

Shell script 

R processor 

SCUFL2 

(Simple Conceptual 

Unified Flow 

Language) 

 

✔ 

Wide range of services and extensible 

architecture 

Workflow provenance 

Secure 

Apache Oozie Java 

Hadoop jobs 

(MapReduce, Pig, 

Hive, Sqoop) 

Shell scripts 

DAGs 

(Directed Acyclical 

Graphs) 

 

     X 

  

Scalable 

Reliable 

Extensible 

Integrated 

VisTrails Python 

Local and remote 

servers 

Web services 

XML 

(Extensible Markup 

Language) 

 

✔ 

Flexible Provenance architecture 

Support collaborative exploration and 

visualization  

Geoweaver Python  

Shell script 

Local and remote 

servers 

Secure Shell 

CWL (Common 

Workflow 

Language) 

 

 

✔ 

Hybrid Workflow 

Full access to Remote files 

Process-oriented provenance 

Code machine separation 

Hidden data flow 
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Our objective is to highlight the importance of scientific workflows and encourage the research 

community to adopt the CWL standards. In this chapter, we first provide the brief methodology of a 

provenance-enabled platform named Geoweaver and the python package “geoweaver_cwl” which 

transforms Geoweaver AI workflows into CWL. Second, we present several use cases from different 

domains to test the useability of the derived package. Third, we demonstrate results from the use cases 

and underline that CWL standards can assist in overcoming major challenges when sharing workflows 

between institutions and users. Finally, we conclude with some future research directions. 

 

5.2 Methodology of Geoweaver and Geoweaver_cwl 

Reproducible analyses require sharing data, methodology, and computational algorithms (Peng, 2011). 

In recent years, methods for organizing big data analysis through computational workflow and 

workflow description language have become increasingly popular to enable reproducibility and 

interoperability in the earth science domain (Kale and Ma, 2022 In press). In this chapter, we work on 

Geoweaver (Sun et al., 2020) as a WfMS tool for researchers and students to improve their research 

productivity and workflow FAIRness. It is an in-browser software application that allows researchers 

to create and execute full-stack data processing workflows by utilizing online spatial data resources, 

high-performance computing environments, and open-source deep learning frameworks. Geoweaver 

offers a comprehensive solution that includes server management, a code repository, workflow 

orchestration tools, and a history logger (Sun et al., 2020). We consider Geoweaver as an ideal WfMS 

which captures crucial provenance data that can reliably trace the history of analytical results. In our 

previous chapter, we demonstrated how to successfully create and execute a workflow in Geoweaver 

with a simple example (Kale and Ma, 2022 In press). One of the major benefits of Geoweaver is that it 

does not take long to understand, and users can run the Geoweaver workflow package without having 

Geoweaver installed. Figure 5.1 demonstrates the workflow shared by user A to user B and how the 

workflows created in Geoweaver are shareable, reproducible, and standardized in CWL format. 
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Figure 5.1: Working structure of Geoweaver and translation of AI/ML workflows shared between user A and user B to 

enable portability and reproducibility of workflows 

 
The framework of Geoweaver is based on three core modules host, process, and workflow. The host 

module is the foundation of the entire framework which opens the entry to existing resources like 

servers, virtual machines, Jupyter servers, and third-party computing platforms like Google Earth 

Engine and Google Colab. The process module is widely used to write scripts, programs, commands, 

or code for the current AI/ML experiments (refer to experimental code in figure 5.1). As most of the 

AI/ML experiments commonly employ python, the process module supports Python, Jupyter Notebook, 

Shell Scripts, and Deep Learning libraries like Keras, TensorFlow, and PyTorch. Provenance support 

in scientific workflows is paramount, and Geoweaver is ideally positioned to record critical provenance 

information that can document the lineage of analytical results. The process monitor tracks all the 

events during the execution and stores all the execution results, inputs, and outputs in the database. The 

provenance manager is responsible for evaluating the quality of the stored history or fixing the process 

execution from failures.  The workflow module is used to compose workflow by connecting multiple 

processes into the graphical workflow system. The workflow module also provides real-time status of 

each executed process indicating a progress bar with a different color. To make the workflow 
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knowledgeable and shareable Geoweaver allows users to import and export (upload and download) the 

created workflow into a simple zip file with the intent that users can directly start working on the 

existing files. The zip file contains a code folder, history folder, and workflow.json file. The code folder 

contains all the experimental code written by a user, the history folder contains the history of all the 

executed processes in the workflow, and the workflow.json file contains the structured information of 

nodes and edges that form a workflow. Once the workflow is exported, a zip file can be shared on 

GitHub or another sharing medium in order for others to reuse the existing work. Any user who wishes 

to replicate or reproduce the existing work can import the zip file in Geoweaver or can also run the 

workflow package without having Geoweaver installed.  

 

Despite the fact that workflow systems are popular prior to CWL standards, very few WfMS are 

compatible with each other. This implies that users who do not follow CWL standards must express 

their computational workflow differently every time they adopt a new workflow system, resulting in 

local success but global non-portability. This is due to the lack of standards or practices which makes 

it difficult for effective collaboration on computational methodologies. To overcome this challenge, we 

designed geoweaver_cwl a python package that automatically describes Geoweaver AI/ML workflows 

into CWL (Kale et al., 2022 Preprint). Describing these workflows into CWL will provide a structured 

and standard approach when sharing information or reproducing existing work. Once the zip file is 

exported from GitHub, users can install the geoweaver_cwl package and easily translate their 

workflows into CWL scripts. The  geoweaver_cwl  has two core functions generate_cwl and 

generate_yml that enables the easy translations of workflow into CWL files. The Generate_cwl function 

takes the input workflow.json file and describes the workflow into the workflow.cwl file. Additionally, 

the function also creates a subdirectory named elementary_cwl_files where all the processes involved 

in creating a workflow will be translated into CWL files. The generate_yml function produces a Yet 

Another Markup Language (YAML) file, which writes the input to run the workflow.cwl file. The 
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declarative approach to describe the workflow into CWL scripts keeps provenance organized by 

documenting the inputs, outputs, workflow steps, and latest version. In addition to Geoweaver, the 

CWL result can be used on a variety of computer platforms, giving users more opportunities to run the 

workflow without sacrificing provenance or needing to redo the workflow if they want to use another 

WfMS. Geoweaver is the unique combination of hybrid workflows, remote access to files, hidden data 

flow, code-machine separation, well-documented provenance, and standardized CWL-complaint 

workflows which makes the user experience complete. Using Geoweaver is a long-term investment and 

will make every scientist’s work preserved and be understandable even years after the original 

experiments. 

 

5.3 Use Cases, Results and Evaluation 

We have previously tested geoweaver_cwl with simple and complex workflows provided by 

Geoweaver.  However, to verify the utility of our package, we decided to validate with more use cases 

from different domains. Below is a list of five different uses cases we tested on our package. 

 

Use case 1: CMAQ-predict-geoweaver 

The scientific topic of this workflow is to monitor and predict air quality  index in California, that 

integrates the conventional air quality model, the Community Multi-scale Air Quality Model (CMAQ), 

and AI models. This workflow was created by Geoweaver and publicly available on GitHub 

(https://github.com/earth-artificial-intelligence/cmaq-predict-geoweaver). The GitHub repository 

contains the code folder, history folder, and workflow.json file.  

 

We installed the geoweaver_cwl package and used the generate_cwl and generate_yml functions to 

translate this workflow into CWL. We obtained the files “input.yml”, “workflow.cwl”, and “elementary 

cwl files folder”, which included the cwl files used in creating the workflow. The workflow translation 
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process was fast and easy, and we also noticed that using cwltool speeds up workflow execution 

compared to the original procedure in Geoweaver. The translated code for this use case is also made 

available on GitHub:  https://github.com/amrutakale08/geoweaver_cwl-usecases/tree/main/cmaq-

predict-geoweaver-master.  

 

 
Figure 5.2: Installation of geoweaver_cwl package with the functions generate_cwl and generate_yml 

(Installation of geoweaver_cwl package with the functions generate_cwl and generate_yml to successfully translate the 

Geoweaver workflows into CWL (top). Translated CWL files which consist of elementary_cwl_files folder, workflow.cwl, 

input.yml and the translate_cwl.ipynb file (python file where we have written the code to install the package and try to run 

functions generate_cwl and generate_yml) (bottom)). 

 

Once the workflows are described into CWL scripts they can be executed on variety of software 

environments like cwltool, Arvados, Toil, CWL-Airflow, and more. Additionally, there are several 

cutting-edge applications like Rabix that can speed up the procedure. Rabix is an open-source desktop 
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application that allows researchers to create and edit CWL documents (Kaushik et al., 2017; Amstutz 

et.al, 2021). In our previous chapter we used cwltool to execute the CWL scripts generated from the 

python package (Kale et al., Preprint). We invoke cwl_runner with workflow.cwl and input object 

input.yml on the command line. 

                                 
 

The command is intended to provide the same outcomes as workflow files in Geoweaver by triggering 

all the CWL and YAML files' internal functions in the same order. The benefit of CWL offers a way 

to describe reusable and portable workflows. Researchers, students from any domain can easily share, 

exchange, edit, and reuse workflows by translating Geoweaver AI/ML workflows into CWL scripts 

using the geoweaver_cwl package. Another advantage of CWL is that applications written with CWL 

are portable and can be used in a multitude of environments, such as local or cloud infrastructures. 

 

Use case 2: Emission-AI-geoweaver 

This workflow is generated by Geoweaver to replicate the experiments done in Emission AI's published 

article, which is to build ML models to train on satellite observations (Sentinel 5), ground observed 

data (EPA eGRID), and meteorological observations (MERRA) data to directly predict the Nitrogen 

Dioxide (NO2) emission rate of coal-fired power plants. This workflow is publicly available on GitHub 

(https://github.com/earth-artificial-intelligence/emissionai-geoweaver). The GitHub repository 

contains the code folder, history folder, and workflow.json file. We followed similar steps as figure 5.2 

to translate the workflow in CWL and successfully generated CWL files. The translated workflow code 

and files are available on GitHub: https://github.com/amrutakale08/geoweaver_cwl-

usecases/tree/main/emissionai-geoweaver-main.  

 

 

cwl-runner workflow.cwl input.yml 
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Use case 3: Eddy-detection-geoweaver 

This workflow is generated by Geoweaver to replicate the experiment from the Jet Propulsion 

Laboratory (JPL) notebook. The workflow aims to train an ML model and use it to detect ocean eddies 

from remote sensing imagery automatically. This workflow is publicly available on GitHub 

(https://github.com/earth-artificial-intelligence/eddy_detection_geoweaver). The GitHub repository 

contains the code folder, history folder, and workflow.json file. We followed similar steps as figure 5.2 

to translate the workflow in CWL and successfully generated cwl files. The translated workflow code 

and files are available on GitHub: https://github.com/amrutakale08/geoweaver_cwl-

usecases/tree/main/eddy_detection_geoweaver-main.  

 

Use case 4: Interdisciplinary use cases  

The majority of the use cases we used in this dissertation and our previous chapter (Kale et al., Preprint) 

are acquired from Geoweaver. To confirm the portability and reliability of our package we tested a few 

other use cases from different domains. The first use case demonstrates the proposed framework of ML 

application in determining Multiple Sclerosis (MS) types and progression levels in MS patients. The 

second use case demonstrates the data preprocessing steps for the Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite data. Although these workflows are much simpler and smaller 

than the above use cases (1,2, and 3) we are certain that geoweaver_cwl successfully translates all types 

of workflows into CWL files. The workflows created in Geoweaver are publicly available on GitHub: 

https://github.com/amrutakale08/workflows. The GitHub repository contains the code folder, history 

folder, and workflow.json file for each workflow. We followed similar steps as figure 5.2 to translate 

the workflow in CWL and successfully generated CWL files. The translated workflow code and files 

are available on GitHub: https://github.com/amrutakale08/geoweaver_cwl-usecases/tree/main/MS-

patients and https://github.com/amrutakale08/geoweaver_cwl-usecases/tree/main/ModisDataProcess . 
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Code Availability:  

The geoweaver_cwl Python package is made open access at: https://pypi.org/project/geoweaver-

cwl/0.0.1/. The source code of the package is accessible at: 

https://github.com/amrutakale08/geoweaver_cwl and exemplar results are accessible at: 

https://github.com/amrutakale08/geoweaver_cwl-usecases. The source code of the Geoweaver 

platform is accessible at: https://github.com/ESIPFed/Geoweaver.  

 

5.4 Conclusion 

The issue of standardizing computational workflows is becoming increasingly significant and has a 

prominent impact on the research community. To address this issue various domains in science, 

industry, and government have already transitioned to workflows, but initiative focusing on portability, 

scalability, and standardizing workflows still remains fragmented. In this dissertation, we call attention 

to this issue and provide a community-driven solution geoweaver_cwl, which addresses the current 

struggles in attaining portability, reproducibility, and scalability of workflows. We evaluated 

geoweaver_cwl using various use cases from different domains. The study indicates that the 

geoweaver_ cwl package can greatly assist the students, researchers, and geoscience community in 

translating their AI/ML workflows into CWL-compliant WfMS software applications.  In our future 

projects, we hope to maintain the current package and add new functionality as requested by the users. 

The package offers basic workflow translation of Geoweaver workflows into CWL scripts. In the future, 

we want to enhance our package by including more detailed workflow steps in order to provide more 

insight to the user. We encourage the research community to embrace WfMS and adopt the CWL 

standards in creating and sharing portable and complete workflow descriptions. The code for the python 

package is publicly available on GitHub (https://github.com/amrutakale08/geoweaver_cwl) and the 

translations of use cases into CWL is available on GitHub 

(https://github.com/amrutakale08/geoweaver_cwl-usecases ).  
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Chapter 6 Conclusion, Limitations and Future Work 

6.1 A Reflection on the Dissertation Objective and Research Topics   

With the increasing adoption of AI/ML systems, there is an increasing need for the results to be 

interpretable, reproducible, traceable, and explainable. Although the post-hoc explainability approaches 

could be one way to explain a black-box model, we believe they are still in their infancy stage and not 

completely reliable. We suggest adopting established methods from the field of data and software 

provenance will be an ideal solution for providing explanations to AI/ML systems. Provenance will not 

only help users to trace, evaluate, understand, and reproduce the AI/ML results but will also enhance 

users’ decisions about how much trust to place in data and results generated from the original sources. 

Our objective with this PhD research was to analyze the inter-relationship between provenance, XAI, 

and TAI, build a software package to document provenance and extend reproducibility of AI/ML 

workflows, and test the package in real-world applications to support XAI and TAI has been achieved 

successfully. We encourage the research community to participate in the adoption of Geoweaver by 

integrating the geoweaver_cwl package into their projects in order to enable reproducibility and well 

documented provenance.  

 

There is also a need for more platforms like Geoweaver which automate the AI/ML workflows and 

enable users to perform all tasks in one place more efficiently. At the same time, we encourage the 

research community to adopt CWL standards when describing their AI/ML workflows to enable 

reusability. In order to facilitate the reproduction, reuse, and replication of computational methods, it 

is crucial to provide a complete and comprehensive description that encompasses what computer 

applications were utilized, how exactly they were used, and how they were connected to each other. 

This goal is prominently achieved by geoweaver_cwl. The package enables portability by being explicit 

about inputs/outputs to form the data flow, data locations, and execution models. Translating 

Geoweaver AI/ML workflows has not only supported users in getting detailed provenance information 
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but has also offered more opportunities for students and researchers to reuse and reproduce the existing 

work. Furthermore, CWL supports using software container technologies, such as Docker and 

Singularity, to enable portability and delivers open standards, open-source code, and an open 

community. We expect to see more WfMS adopting CWL standards describing their workflows in 

order to have effective collaboration and reproducible research. We hope this research highlights the 

importance of provenance in AI-based systems and encourages AI practitioners/researchers to start 

documenting provenance. We expect to see more AI/ML models become explainable, providing 

enough details to the end-user, and we believe that provenance documentation will be one of the 

significant approaches to accomplish that. 

 

6.2 Summary of Results and Their Inter-Relationship 

Based on this Ph.D. research, we have successfully conducted literature reviews, built software 

packages, and implemented use case studies towards the overall objective. Below is a short summary 

of the activities and results following the layout of the research questions as stated in Chapter 1.  

 

1. How can provenance contribute to the explainability and transparency of AI/ML models to 

support the goals of XAI and TAI? 

In order to answer this question, we did a thorough literature review to understand how provenance, 

XAI, and TAI are interrelated with each other in Chapter 2. We also demonstrated the inter-relationship 

through bibliometric analysis which is simple but effective enough to demonstrate the research 

highlights for the past 10 years. Based on the analysis we comprehended that the key to establishing 

TAI is by documenting provenance in order to ensure that the results generated by AI-based systems 

are easily understandable and interpretable to humans.   Explainability plays a crucial role in achieving 

trust and transparency in AI algorithms. Moreover, to improve explainability, data science practitioners 

have developed many approaches and strategic plans in order to support provenance documentation. 
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To increase transparency and explainability in AI-based systems, applying provenance documentation 

can be an essential technology to the existing XAI approaches. Provenance documentation is extremely 

important in the world of data and geospatial data production. Inclusion of provenance promises in 

increasing transparency as it can be used for many purposes, such as understanding how data were 

collected, determining ownership and rights, tracing steps in the data analysis process, and making 

judgments about resources to use.  

 

2.  Would adopting domain-specific provenance standards be necessary, or can we rely on 

universal standards such as PROV-DM (Provenance Data Model) to document all the 

necessary complex details? 

In Chapters 2 and 3, we highlighted that despite the increasing attention and community effort dedicated 

to establishing standards for documenting provenance, the development of these standards for 

workflows involving AI/ML models is still in its early stages and has yet to reach full maturity. PROV-

DM provides a standard data model for representing provenance information in a consistent and 

interoperable way, which defines a basic universal core data model for almost all kinds of the 

provenance information. However, there is uncertainty about using such a recommendation to record 

the provenance generated by AI/ML workflows that incorporate big geospatial data. Chapter 2 and 3 

emphasize that there is need for domain-specific provenance standards. Adding domain-specific 

documentation standards will help the community to grasp essential details. It will help to capture the 

nuances and specific details of the data and processes involved in a particular domain, such as in the 

case of medical or environmental data. The decision to use a universal web provenance data model or 

a domain-specific provenance standard depends on the specific requirements and characteristics of the 

data and processes being documented and should be carefully evaluated on a case-by-case basis. 
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3. What software tools and WfMS are available for documenting provenance? 

We presented a wide range of software tools, including Kepler, DataRobot Neptune, Datatron, Metaclip, 

and Geoweaver, in Chapter 3 and Chapter 5. These software tools are designed to promote reproducible 

outcomes and provenance tracking in scientific research. These tools provide several ways to explore 

the provenance repository by tracking model activity, recording all changes in the data and the model, 

and outlining best practices for data management and disposal. In Chapter 3, we also provided examples 

for the three tools Kepler, MetaClip, and Geoweaver to help readers better comprehend the various 

features that each tool has to offer. Following our analysis of these tools, we find that Geoweaver offers 

excellent capabilities for users to create, edit, and reuse AI/ML workflows all in one place.  

 

4. What sets Geoweaver apart from other WfMS? 

Geoweaver is a web-based workflow system that helps AI practitioners to integrate multiple steps such 

as preprocessing, training, testing, and post-processing into a single automated workflow. It provides 

great benefits to earth scientists and has the capability to run, modify, reproduce, share, track, and reuse 

AI workflows in a single or distributed environment. The strongest feature of Geoweaver is its 

capability to record the history of each process in order to assess data quality, recover from errors, and 

give users a complete sense of what time the file as open, what changes were made, by whom it was 

made, did the file run successfully or failed. Geoweaver offers great solutions to earth scientists in 

managing complex workflows when massive, big earth data is involved. The comprehensive 

demonstration and technical framework of Geoweaver is described in Chapter 3 and 4. We also 

compared Geoweaver with several other workflow automation software based on the number of 

features and workflow language they supports in Chapter 5, Table 5.1. We found out that none of WfMS 

supports standardizing workflow language in order to enable reproducibility and reusability except 

Geoweaver.   
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The current AI processing is done by a combination of software, scripts, libraries, and command-line 

tools. AI practitioners sometimes rely on their own proprietary ways to maintain their workflows, which 

are frequently developed without much consideration for accessibility or other people's ability to utilize 

or comprehend them. As many disparate and distributed entities are involved, it becomes a challenge 

to streamline all the processes to help scientists organize their deep learning projects into a manageable 

and organized manner. In the meanwhile, it is still challenging for the geoscientific community to 

exchange and reuse the developed AI workflows and findings, which leads to low efficiency in AI 

model training and deployment. Because scientists do not have access to the original AI processes, it is 

challenging for them to replicate the results due to the lack of information regarding workflow and 

platform conditions. 

 

The majority of WfMS define their own languages for scientific processes, including Kepler, Taverna 

SCUFL2, and YAWL (Yet Another Workflow Language). These workflow languages provide 

abstractions and information models for processes. WfMS uses these abstractions and models to 

execute the corresponding workflows.  Nevertheless, even though hundreds of WfMS have been 

created, only a handful of them implement the standard workflow language like CWL in order to enable 

reproducibility and reusability of workflow and one of them is Geoweaver. 

 

5. What are the long-term benefits of  standardizing workflows using CWL? 

Chapter 4 demonstrates the working technical development of our python package geoweaver_cwl 

which translates Geoweaver AI/ML workflows into CWL scripts.  CWL is a community standard to 

describe command-line-based workflows.  It provides a standard but condensed set of generalizations 

procedures that are easily understood by every user. The language’s declarative format enables users 

to describe the process of executing diverse software tools and workflows through their command-line 

interface. Previously, to link the command-line tools researchers need to write shell scripts. Although 
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these scripts offer an efficient approach to accessing the tools, writing, and maintaining them requires 

specialized knowledge. CWL aims to reduce the barrier to researchers using these technologies by 

providing a standard to unify them. In order to ensure reproducibility, CWL standards explicitly support 

the usage of container technologies. These standards ensure portability, so the same workflow can be 

executed in both local and high-performance cloud environments.  

 

6.3  Scientific Contribution of this Ph.D. Research 

• With this research we have proven that provenance documentation is a functional approach 

towards explainable and trustworthy AI. 

• The translation of Geoweaver AI/ML workflows into the Common Workflow Language (CWL) 

scripts have further improved the interoperability of the documented provenance and provides 

flexibility to users to run their AI/ML workflows on local or cloud environment.  

• The real-world use cases built from the TickBase and Geoweaver projects has demonstrated 

the scalability and portability of our python package. 

 
6.4 Limitations 

Although our Python package provides useful functions and features, there are several limitations that 

should be noted. 

Performance: Sometimes the package may require significant computational resources and could 

experience slow run times when working with large datasets and complex workflows. 

Platform Compatibility: Our Python package is primarily designed to translate Geoweaver AI/ML 

workflows into CWL scripts and only support python programs for now and does not support R or other 

programming languages. In order to work on Geoweaver platform you need to translate your code into 

python and then creates workflows in Geoweaver . 
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Documentation: While we have made every effort to provide comprehensive and up-to-date 

documentation, some areas of the package may be poorly documented or difficult to understand for 

users without prior experience in the field. 

Dependencies: Our Python package only translates workflow generated by Geoweaver WfMS, which 

may cause issues with version conflicts or installation errors, particularly for users who are not using 

Geoweaver . 

 

6.5 Future Work/Recommendation 

The issue of standardizing computational workflows is becoming increasingly significant and has a 

prominent impact on the research community. To address this issue various domains in science, 

industry, and government have already transitioned to workflows, but initiative focusing on portability, 

scalability, and standardizing workflows still remains fragmented. In this research, we call attention to 

this issue and provide a community-driven solution geoweaver_cwl, which addresses the current 

struggles in attaining portability, reproducibility, and scalability of workflows. We evaluated 

geoweaver_cwl using various use cases from different domains. The study indicates that the 

geoweaver_ cwl package can greatly assist the students, researchers, and geoscience community in 

translating their AI/ML workflows into CWL-compliant WfMS software applications.  In our future 

projects, we hope to maintain the current package and add new functionality as requested by the users. 

The package offers basic workflow translation of Geoweaver workflows into CWL scripts. In the future, 

we want to enhance our package by including more detailed workflow steps in order to provide more 

insight to the user. We encourage the research community to embrace WfMS and adopt the CWL 

standards in creating and sharing portable and complete workflow descriptions. The code for the python 

package is publicly available on GitHub: https://github.com/amrutakale08/geoweaver_cwl and the 

translations of use cases into CWL is available at: https://github.com/amrutakale08/geoweaver_cwl-

usecases.    
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List of Publications, Presentation and Awards 

Publications 

1. Utility of the Python package Geoweaver_cwl for improving workflow reusability: An 

illustration with multidisciplinary use cases.  This chapter will be submitted to the Journal Earth 

Science Informatics. 

2. Geoweaver_cwl:  Transforming Geoweaver AI Workflows to Common Workflow Language to 

Extend Interoperability. SSRN Electronic Journal, Preprint 2022. 

Amruta Kale, Ziheng Sun, Chao Fan, Xiaogang Ma 

3. Provenance in Earth AI. Elsevier Book Chapter  

Amruta Kale, Xiaogang Ma 

4. Provenance documentation to enable explainable and trustworthy AI: A literature review. Data 

Intelligence journal, MIT Press, 2022. In press. 

Amruta Kale, Tin Nguyen, Frederick Harris, Chenhao Li, Jiyin Zhang, Xiaogang Ma 

5. A knowledge graph and service for regional geological time 

Chao Ma, Amruta Kale, Jiyin Zhang, Xiaogang Ma 

 

Presentations 

1. Provenance documentation to enable explainable AI and trustworthy AI, National Science 

Foundation Annual Meeting, Coeur D Alene, ID, March 2022. 

2. Geoweaver_cwl: A tool wrapper to translate Geoweaver AI workflows into Common Workflow 

Language.  Earth Science Information Partners Summer Meeting, Pittsburg, PA, July 2022. 

3. Semantics of FAIR geoscience data: A key factor to facilitate the data science workflow. GSA 

Annual Meeting, Denver, CO, October 2022 



  89 

 

 

Xiaogang Ma, Amruta Kale, Chenhao Li, Que Xiang, Sanaz Salati, Anirudh Prabhu, Robert 

Hazen 

4. Geoweaver_cwl: A python package for reproducible and interoperable workflows. American 

Geological Union Fall Meeting, Chicago, IL, December 2022.  

5. Knowledge graphs for global and regional geologic time scales and an associated R package. 

AGU Fall Meeting 2020.  

Chao Ma, Xiaogang Ma, Amruta Kale 

6. Approaches to improve semantic description and reasoning capability in the deep time knowledge 

base. GSA 2020 Annual Meeting. 

Xiaogang Ma, Chao Ma, Amruta Kale 

 

Awards 
 
1. Awarded a $3000 mini research grant for pitching a research plan at the FUNding Friday Poster 

Competition organized by Earth Science Information Partners (ESIP) in Summer Meeting 2022, 

Pittsburg, PA. 

2. Early Career NSF Earth Cube travel award by American Geological Union (AGU) to present the 

research at the AGU Fall 2022 Meeting, in Chicago, IL.  

3. Graduate Program and Student Association (GPSA) travel award to attend the Grace hopper 

celebration 2022 world's biggest women’s conference in technology, Orlando, FL.  
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Code and Dataset Availability 

1.  Python package  geoweaver_cwl is made open access at: https://pypi.org/project/geoweaver-

cwl/0.0.1/ 

2. The source code of the package is accessible at the GitHub repository: 

https://github.com/amrutakale08/geoweaver_cwl 

3. Exemplar results of the tested use cases are accessible at the GitHub repository: 

https://github.com/amrutakale08/geoweaver_cwl-usecases 

4. New workflows created in Geoweaver are accessible at the GitHub repository: 

https://github.com/amrutakale08/workflows 

5. The source code of the Geoweaver platform is accessible at: 

https://github.com/ESIPFed/Geoweaver 
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