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Abstract 

Projected and ongoing climate change presents challenges and opportunities for 

wheat-based cropping systems throughout the inland Pacific Northwest (iPNW). 

Producers are interested in reducing the amount of land in fallow to increase overall 

crop production, as well as create more sustainable cropping systems that are 

resilient to a projected variable climate. Examples of crop rotation diversification and 

intensification for wheat systems include the addition of pulse crops such as dry pea 

and chickpea, and multi-species cover crops into rotations. Monitoring arthropod 

community responses to diversification and intensification can inform producers on 

which alternative crops are also associated with increased biodiversity and 

arthropod-mediated ecosystem services, such as pollination and biological control. 

Biological control of weedy pests in fields is a key ecosystem service provided 

predominately by epigeic arthropods and small mammals. The work presented here 

examines epigeal arthropod community structure and weed seed predation under 

three diversified and intensified wheat-based cropping systems at two trial locations. 

Results show that epigeal activity-density and diversity were greatest in winter pea 

plots compared to the other crops tested. Granivore community metrics were not 

affected by crop or sampling date at the St. John, Washington site but at the 

Genesee, Idaho site, winter pea consistently had greater diversity and activity-density 

compared to winter wheat. Generally, activity-density and diversity were greater in 

the crops unique to diversified rotations, though evenness was greater in winter 

wheat plots than in winter pea or cover crop plots. Weed seed removal was greater in 

fallow plots than in plots planted to any crop. Removal rates differed among four 

sample dates but there was no seasonal trend or interaction between sample date 

and crop. In weed seed preference trials, Anthemis cotula was consumed at 

significantly lower rates than Bromus tectorum or Chenopodium album, but when 

physical defenses (seed coverings) were artificially breached, A. cotula was 

consumed at higher rates than B. tectorum. Diversified wheat cropping systems in 

the iPNW either reduce or remove fallow from rotation, which could lead to increased 
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weed abundance in seed banks, exacerbating weed management problems in these 

systems.   
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Chapter 1 | Introduction 

Changing Climate and Agriculture in the Inland Pacific Northwest 

 Climate is shifting globally and maintaining current wheat production is 

presenting new challenges to growers worldwide. While local and regional 

temperatures are increasingly variable, global temperature trends indicate a steady 

increase (Hansen et al. 2006; Shen et al. 2022), as well as increased variability and 

intensity of extreme weather events (i.e. drought, flood). A global reduction in wheat 

production is projected as a result of warming and changes in precipitation (Asseng 

et al. 2011, 2015; Huzsvai et al. 2022; Karatayev et al. 2022; Neupane et al. 2022). 

Growers and researchers are searching for ways to mitigate increased pest and 

disease pressures, maintain or increase crop yield to meet rising demands, and 

increase the overall resiliency of wheat production systems. Currently, growers in 

rainfed regions often rely on fallowing – the practice of leaving farmland uncultivated 

for a period – to conserve water in the soil profile (Schillinger and Papendick 2008; 

Schillinger 2016) for the wheat crop in the following year. However, fallowing is 

associated with increased soil erosion (Singh et al. 2012; Sharratt et al. 2018), soil 

degradation (Mosier et al. 1991; Lemke et al. 1999; Nielsen et al. 2011), and the 

potential for increased greenhouse gas emissions (Liebig et al. 2010; Bista et al. 

2017). Fallowing is also seen as a loss of farm income as there is no crop planted 

and growers may treat fallowed land with herbicides to suppress weed populations 

between growing seasons (Nielsen et al. 2011). Frequent, long-term use of this 

practice is not sustainable in semi-arid production systems with projected climatic 

shifts. 

 The inland Pacific Northwest (iPNW) is a region encompassing central 

Washington to North Idaho and Northeast Oregon. Nearly 17% of the nation’s wheat 

is produced in the iPNW (USDA) and the region is projected to have growing 

seasons with higher temperatures while experiencing less rainfall compared to the 

previous 30 years (Karimi et al. 2018). Increased temperatures and more intense 

drought conditions are expected to harm wheat production in the iPNW (Sharma-

Poudyal and Chen 2011; Karimi et al. 2021). Without a shift in current water 
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management strategies, changes in precipitation regimes and warming (Mote and 

Salathé 2010) are expected to increase the prevalence of fallowing (Kaur et al. 

2017), which could have negative consequences for system-wide sustainability and 

resilience (Pi et al. 2019). A major obstacle that growers face in the iPNW is finding 

economically and ecologically stable crop alternatives to fallowing. 

 Landscapes in Transition (LIT) is a United States Department of Agriculture-

funded Coordinated Agricultural Project that started in 2018, with the goal to guide 

ongoing land-use change in the iPNW. LIT is an interdisciplinary project with 

researchers working to identify the key agronomic, climatic, biological, and economic 

factors that affect wheat-based production systems of the region as its climate 

changes. The project aims to diversify wheat production systems to increase 

sustainability and resiliency in the regional agricultural landscape. The work 

presented in this thesis contributes to identifying the impacts of diversified wheat 

systems in the iPNW on the entomological component of agroecosystems.   

 

Diversification and Intensification 

 The inland Pacific Northwest is characterized by a climate gradient, resulting 

in variable cropping systems across the region. Agroecological classes (AECs) are 

derived from annual land use information from the USDA-NASS Cropland Data Layer 

(‘USDA National Agricultural Statistics Service Cropland Data Layer’ 2017) combined 

with bioclimatic and cultural drivers (Huggins et al. 2014), which sets AECs apart 

from other attempts to delineate land use (agroecological zones). There are three 

main AECs in the iPNW: continuous cropping, continuous cropping-fallow transition, 

and crop-fallow (Huggins et al. 2014). Continuous cropping zones are characterized 

by having less than 10% of land in fallow, receiving more than 457mm of annual 

precipitation, and having a rotational scheme of winter wheat-spring wheat-spring 

legume. The continuous cropping-fallow transition zone has 10-40% of land in fallow, 

304-457mm annual precipitation, and a rotational scheme of winter wheat-spring 

wheat-summer fallow. Crop-fallow zones have more than 40% of land in fallow, 

greater than 304mm of precipitation in a year, and winter wheat-summer fallow 

rotations (Karimi et al. 2017). Knowledge of the crops and limitations posed by 
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climate and soils in each AEC allows for the development of zone-specific farming 

practices for the long-term stability of the entire region.  

Common crop rotations in lower rainfall areas of the iPNW are two- and three-

year rotations of winter wheat-fallow and spring wheat-fallow-winter wheat 

(Schillinger et al. 2015; Schillinger 2016), which creates a patchwork landscape of 

wheat monoculture and bare ground. Alternative options to fallow are needed to 

diversify the production landscape, as well as intensify traditional dryland systems in 

an ecologically and economically stable way. In many semi-arid regions, including the 

iPNW, this includes adding legumes such as dry pea, lentil, and chickpea into the 

rotation (known as a pulse crop) (Gan et al. 2015; McGee et al. 2017; Schillinger 

2017, 2020), as well as incorporating cover crops to be utilized for grazing or haying 

(Adhikari and Menalled 2020; Kumar et al. 2020; Baraibar et al. 2021; Garland et al. 

2021). Incorporating a pulse crop can benefit the wheat production system in several 

ways. For example, faba bean and pea have a high potential for fixing nitrogen in the 

soil (Williams et al. 2014) as well as increasing the yield of the subsequent cereal 

crop (Williams et al. 2014; Gan et al. 2015), which has been attributed to legumes 

using less water than wheat (Chen et al. 2006; Schillinger 2017). Decreased 

applications of nitrogen fertilizer have also been reported for wheat fields following a 

pulse crop (Miller et al. 2003). Cover crops have many similar benefits as pulse crops 
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but have had a slower adoption rate by growers as cover crops are typically not an 

economically viable alternative to fallowing (Acharya et al. 2019).  

Common cropping rotations in the high rainfall areas of the iPNW are three- 

and four-year rotations of winter wheat-spring grain (wheat or barley)-spring legume 

(pea, lentil, chickpea), and winter-wheat-spring grain-winter wheat-spring legume 

(Kirby et al. 2017). Higher rainfall zones in the iPNW have a climate that generally 

supports continuous cropping, though the region’s soils are vulnerable to runoff and 

erosion due to the steep slopes and winter precipitation. Diversification strategies 

include removing conventional tillage practices as well as incorporating winter 

legumes, spring canola, or cover crops into traditional rotations. Some producers 

implement rotations with two consecutive years of broadleaf crops to enhance weed 

management (Kirby et al. 2017). In the iPNW, the adoption of novel cropping systems 

is highly dependent on the regional agroecological classes (AECs) (Stöckle et al. 

2018).  

Figure 1.1 Map of agroecological classes in the inland Pacific Northwest. The two study sites used for 
research presented in this thesis are Genesee, Idaho (yellow star) and St. John, Washington (red 
star). Map from Kaur et al. 2017.  
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The alternatives to fallowing mentioned above simultaneously result in 

diversifying and intensifying iPNW wheat-based cropping systems. Agricultural 

intensification is characterized by higher inputs of fertilizers and pesticides (Cassman 

and Pingali 1995), as well as increased production per unit area (Rudel et al. 2009), 

while the implementation of diverse crop types contributes to ecological 

diversification on-farm and across the agricultural landscape. While work has been 

done to understand how diversification and intensification will affect crop yield 

(Poveda et al. 2008; Nunes et al. 2018; Tamburini et al. 2020) and on-farm diversity 

of weeds (Liebman et al. 2001; Sharma et al. 2021; Adeux et al. 2022), how 

arthropod communities respond to these changes has not been studied.  

 

Diversity in Agroecosystems 

 Diversity in agricultural systems is comprised of spatial and temporal 

components; spatial diversity refers to the diversity within the space of the farm (i.e., 

hedgerows, intercropping) while temporal diversity typically refers to the year-to-year 

diversity of cultivated crops (i.e., crop rotations, cover crops) (Hooper et al. 2005). 

There is evidence that asynchronous crop production at the farm and landscape 

levels lends to the stability of the overall production system (Egli et al. 2020). By 

contributing to habitat heterogeneity, spatial and temporal diversification enhances 

the associated biodiversity of weeds and arthropods (Altieri 1999; Benton et al. 2003; 

Lichtenberg et al. 2017). 

 Arthropods are ubiquitous in agriculture, mainly receiving attention as pests or 

vectors of plant pathogens that constrain production (Marzocchi and Nicoli 1991; 

Zhang et al. 2007; Tschumi et al. 2018; Bin Farook et al. 2019). Annually, pestiferous 

insects cause nearly 18% of global production losses in wheat (Oerke 2006). On the 

other hand, arthropods mediate several ecosystem functions and services that are 

critical to agricultural systems such as pollination, biological control, and nutrient 

cycling (Isaacs et al. 2009; Jankielsohn 2018; Raitif et al. 2019). Conserving the 

ecosystem services and functions provided and maintained by arthropods is essential 

to sustainable agroecosystem management in variable dryland climates (Schowalter 

2013; Schowalter et al. 2018). Agroecosystems with greater vegetational diversity are 
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typically have fewer pests (Root 1973; Andow 1991; Letourneau et al. 2011). In a 

meta-analysis that examined the effects of diversified agroecosystems on arthropod 

pest and predator abundances, Letourneau et al. (2011) found that herbivore 

abundances and crop damage decreased and predator abundances increased in 

systems with increased vegetational diversity. They also found that pest-suppressive 

diversification strategies significantly lower crop yield (Letourneau et al. 2011), a 

potential drawback to diversifying production systems.   

 

Ecosystem Services 

Ecosystem services are the conditions and processes within an ecosystem 

that sustain and maintain human life (Daily 1997). According to the Millennium 

Assessment (2005), ecosystem services fall under four categories: provisioning, 

regulating, supporting, and cultural. Provisioning services include products obtained 

from an ecosystem such as food, fiber, fuel, and water. Regulating services are the 

benefits obtained from the regulation of ecosystem processes, such as air and water 

quality regulation, erosion regulation, disease and pest regulation, and pollination. 

Supporting services include nutrient and water cycling, photosynthesis, and soil 

formation; these services are the foundation of the production of all other ecosystem 

services. 

Regulating and provisioning services are of particular interest to researchers in 

recent years (Vihervaara et al. 2010). The provisioning services of pollination and 

biological control are critical ecosystem services mediated by arthropods in 

agricultural systems (Kremen and Chaplin-Kramer 2007; Noriega et al. 2018). While 

research on ecosystem services has steadily increased in recent years, services 

provided by arthropods are severely understudied, comprising only 6.7% of the total 

body of ecosystem service research (Noriega et al. 2018). Pollination and biological 

control are perhaps the most valued arthropod-mediated ecosystem service in 

agroecosystems. Losey and Vaughan (2006) estimated that native pollinators are 

responsible for $3.07 billion worth of fruits and vegetables produced in the United 

States. Honeybees (Apis mellifera) have been estimated to contribute $5.2 billion in 

pollination services in the United States (Southwick and Southwick 1992). Pest 
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control services from natural enemies, which can directly substitute for insecticides, 

have been estimated to contribute $4.5 billion per year to the agricultural industry 

(Losey and Vaughan 2006). Climate change, agricultural intensification, and habitat 

fragmentation all threaten the ecosystem services provided by arthropods (Allen-

Wardell et al. 1998; Kremen et al. 2012). The loss of these services in the agricultural 

landscape, especially at the farm level, present ecological and economic challenges 

for agriculture globally, as well as wheat production in the iPNW. 

 

Weed Seed Predation 

 Weed management in agriculture is resource-intensive, requiring considerable 

monetary resources and time (Holm and Johnson 2009, Pimentel et al. 2005). 

Herbicides are the major strategy for controlling weeds in North America but 

increased dependence on them has resulted in problems such as herbicide-resistant 

weeds (Nakka et al. 2019), environmental pollution (Guzzella et al. 2006; Lewis et al. 

2009; Rosculete et al. 2019), and effects on non-target plants (Power et al. 2013; 

Boutin et al. 2014; Mehdizadeh et al. 2021). Management of broadleaf crops is 

especially challenging in wheat production systems diversified with pulse crops, as 

few herbicide options do not also damage the crop. Therefore, an integrated weed 

management approach is needed to mitigate the negative consequences of 

traditional weed management in diversified systems. Among options available, 

biological control of weeds is a potential alternative.  

Weed seed predation is a regulatory service that falls under biological control 

of pest species. Seed predation by both vertebrates and invertebrates is well 

documented in agroecosystems (Westerman et al. 2003; O’Rourke et al. 2006; 

Kulkarni et al. 2015), indicating it is a key ecosystem service that contributes to in-

field weed management. Mice and birds comprise the vertebrate granivore population 

in agroecosystems while Carabidae, Gryllidae, and Formicidae are the main taxa 

responsible for invertebrate seed predation (Carmona et al. 1999; Cromar et al. 1999; 

van der Laat et al. 2015; Blubaugh et al. 2016; Evans and Gleeson 2016). Post-

dispersal seed predation can benefit producers by removing weed seeds from the 

seedbank (Bohan et al. 2011; Carbonne et al. 2020) and has the potential to 
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decrease on-farm costs of herbicide (Mauchline et al. 2005) and increase crop yield 

(Petit et al. 2017; Gaba et al. 2020). However, differential mobility, food and habitat 

preferences, and population dynamics may dictate how granivores respond to 

diversified and intensified agricultural practices (Kulkarni et al. 2015; Sarabi 2019).  

 

Thesis Aims 

 The overall aim of the work described here is to improve the understanding of 

crop diversity and management on arthropod communities and to explore the 

relationships between weed seed regulation, seed predator diversity, and agricultural 

intensification and diversification in dryland wheat production systems. The specific 

objectives were to (1) to characterize the epigeic arthropod communities in crops that 

are prevalent in two different agroecological classes in the inland Pacific Northwest 

and (2) to determine the post-dispersal weed seed predation rates of three common 

weeds wheat production system and investigate potential defenses of these weed 

seeds. 
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Chapter 2 | Arthropod abundance, diversity, and evenness depend 

on crop and sampling date in diversified wheat production systems 

Abstract 

 Projected and ongoing climate change presents challenges and opportunities 

for wheat-based cropping systems throughout the inland Pacific Northwest (iPNW). 

Producers are interested in reducing the amount of land in fallow to increase overall 

crop production, as well as create more sustainable production systems that are 

resilient to projected climate change. Examples of crop diversification and 

intensification for wheat systems include the addition of pulse crops such as dry pea 

and chickpea, and multi-species cover crops into rotations. Monitoring arthropod 

community responses to diversification and intensification can inform producers on 

which alternative crops are also associated with increased biodiversity and 

arthropod-mediated ecosystem services (i.e., biological control, pollination). The goal 

of this chapter is to determine the arthropod community composition and function 

associated with traditional and diversified alternative crops in iPNW wheat-based 

cropping systems. Arthropods were sampled using pitfall traps in six crop treatments 

in a large-plot field trial during the 2018 and 2019 growing seasons in Genesee, 

Idaho and St. John, Washington; these arthropods were identified to family and 

binned into granivorous or predator functional groups. Epigeal activity-density and 

diversity were greatest in winter pea plots across sites compared to the other crops 

tested. Granivore community metrics were not affected by crop or sampling date at 

the St. John site but at the Genesee site, winter pea consistently had greater diversity 

and activity-density compared to winter wheat. Predator activity-density was greater 

in spring wheat plots in Genesee and fallow plots in St. John, though across sites 

predator communities were more even in winter wheat plots compared to winter pea 

or cover crop plots. Generally, activity-density and diversity were greater in the crops 

within diversified rotations, though evenness was greater in winter wheat plots.  
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Introduction 

 Dryland cropping systems are found in regions with average annual 

precipitation of less than 600mm and where no irrigation is used (Schillinger et al. 

2015). Land devoted to dryland cropping in the western United States is 4,380,000 

ha and around 76% of that land is situated in the inland Pacific Northwest (iPNW) 

(Schillinger et al. 2015), a region that stretches from eastern and central Washington, 

to northeastern Oregon, and the Idaho Panhandle. In the iPNW, current cropping 

systems typically consist of a two-year rotation of winter wheat and summer fallow or 

wheat-legume rotations (Schillinger and Papendick 2008). Growing concerns among 

producers and researchers for fallow-based production include degraded soil health 

and declining productivity, as fallowing is associated with increased soil erosion 

(Singh et al. 2012; Sharratt et al. 2018), soil degradation (Mosier et al. 1991; Lemke 

et al. 1999; Nielsen et al. 2011), and the potential for increased greenhouse gas 

emissions (Liebig et al. 2010; Bista et al. 2017).  

 Researchers and producers have experimented with a variety of alternative 

crops such as pea, sunflower, canola, and flax; however, an alternative crop has not 

yet been found that competes agronomically or economically with the winter wheat-

summer fallow rotation (Schillinger and Papendick 2008). Research has shown that 

the addition of legumes or oilseeds into rotations have multiple short- and long-term 

benefits, such as improved weed management, improved soil structure, and reduced 

greenhouse gas emissions (N2O emissions) (Awale et al. 2017; Burke et al. 2017; 

Karimi et al. 2021). Winter pea and canola are potential candidates for alternative 

crops (Schillinger 2020), as it is well-documented for wheat yields to be higher 

following pea compared to following wheat (Miller et al. 2003; Williams et al. 2014). 

Canola is a non-host crop for multiple soil pathogens (Smith et al. 2004), although it 

is unclear how canola affects wheat yield in the subsequent growing season 

(Schillinger and Paulitz 2018).   

 The LIT project builds on REACCH by working with stakeholders at multiple 

points in the wheat-based supply chain to diversify the wheat-fallow cropping system. 

The main alternative crops of interest in this project include winter pea and cover 

crops. In this project, cover crops are defined as a crop comprised of multiple species 
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that are harvested with the intention of haying for livestock. Cover crops have the 

potential to enhance on-farm ecosystem services by promoting spatial and temporal 

diversity (Reiss and Drinkwater 2022).  

 Biodiversity in agroecosystems is increasingly being recognized as a major 

determinant of ecosystem functioning (Hooper et al. 2005). Diversity can refer to 

genetic variations within a species to the distribution of species within a biome 

(Wilson 1988). Diversity in agriculture can also be thought of in terms of spatial 

(within-field, field-level, and landscape-level) and temporal scales (within and outside 

of a growing season). There are several mechanisms through which biodiversity 

positively affects ecosystem services (Hooper et al. 2005). Through the sampling 

effect (the greater likelihood of finding species with a strong impact on ecosystem 

function in highly diversified communities (Huston 1997; Wardle 1999)), diverse 

communities are more likely to have assemblages containing multiple species that 

contribute to an ecosystem service, an attribute of a resilient system. Diverse 

communities may also include combinations of species that complement and 

facilitate each other in resource use (Ives et al. 2005). These mechanisms contribute 

to the evidence that biodiversity supports ecosystem services such as pollination and 

pest suppression through supporting ecosystem functioning (Dainese et al. 2019). It 

is established that species richness increases the supply of some ecosystem 

services (Costanza et al. 2007; Obrist and Duelli 2010; García and Martínez 2012) 

but the effect of species richness on the stability of those services has yet to be 

established. Community evenness, and more specifically predator community 

evenness, is at least as important as richness. In some cases, predator community 

evenness was a better determinant of biological control services than was predator 

richness (Crowder et al. 2010, 2012). Crowder et al. (2010) experimentally 

manipulated predator and pathogen evenness in enclosures in potato fields to 

monitor effects on plant growth and potato beetle mortality and found that predator 

and pathogen evenness increased plant biomass and yield, as well as increased 

potato beetle mortality. The results suggest that high abundance, richness, and 

evenness are all essential components of biologically diverse communities. 

Arthropods in the study presented in this thesis were caught with pitfall traps, 
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meaning that catches more accurately reflect the interaction of the activity and the 

density (referred to as activity-density) of each taxon rather than actual abundances 

(Saska et al. 2013). 

 The diversity of functionally equivalent species (functional diversity) is 

hypothesized to stabilize ecosystem functioning and the provision of ecosystem 

services (Hooper et al. 2005). The portfolio concept in ecology posits that the 

combination of diverse species' responses to environmental variation along with 

redundancy in species resource use will conserve ecosystem services when species 

are lost or cannot contribute (Schindler et al. 2015). For example, in the event of an 

extreme weather event that inhibits one or more predatory species, community 

diversity expressed in an overlap of climatic niches ensures that at least one predator 

species will feed on the pest. More diverse communities can be comprised of 

predator species that use different modes of attack on pests, attack at different times, 

or in different spaces; ultimately maximizing pest mortality (Ives et al. 2005; Snyder 

2019). Although there is mounting evidence for the benefits of biodiversity to 

ecosystem services, there is still a lack of information supporting the importance of 

biodiversity to the stability of ecosystem services in agroecosystems.  

 The main goal of this chapter was to characterize the epigeic arthropod 

communities in current and projected dryland wheat production systems in the iPNW 

within two multi-year replicated field trials and to determine the taxonomic and 

functional composition of those communities. Hypotheses tested include: (H1) 

granivorous and predaceous arthropod communities are dissimilar among crops; (H2) 

activity-density, diversity, and evenness (community metrics) of arthropod 

communities differ among crops; (H3) metrics of arthropod communities differ among 

sampling dates. Both H2 and H3 are composite hypotheses. 
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Methods 

Site Description 

Three three-year, wheat-based rotations were established in replicated field 

plots in St. John, Washington (47.121055, -117.539027) and Genesee, Idaho 

(46.514564, -116.823590) as part of the LIT project to evaluate alternative and 

business-as-usual (BAU) rotations. Field plots (9.7m x 22.8m) were established in the 

fall of 2017. Rotations had staggered starts, such that each crop of each rotation was 

present in a block, yielding nine plots (Figure 2.1A). This was replicated five times for 

a total of 45 plots (3 rotations x 3 crops within rotation x 5 replications) at each site so 

that all three crops in each rotation were present within a season (Figure 2.1B). 

Rotational treatments differed slightly between the St. John, WA and Genesee ID 

Figure 2.1 Experimental design for field plots. Three replications of three rotations (WP-WW-SW 
(green); CC-WW-CP (purple); and CP-WW-SW (yellow)) were present at both sites (A). This was 
replicated five times at each study site (B) for a total of 45 plots at each site. 
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study sites to accommodate the unique agroecological class within which the site 

was located. These agroecological classes are derived from the land classification 

from the USDA-NASS Cropland Data Layer combined with bioclimatic and socio-

economic drivers (Huggins et al. 2017). Climate in the iPNW is generally 

Mediterranean-like with cold, wet winters and hot, dry summers (Schillinger et al. 

2006). Annual precipitation ranges from 460mm in St. John, WA to 600mm in 

Genesee, ID. Crop varieties at both sites are Jasper winter wheat, WB9518 spring 

wheat, and Windham winter pea. The chickpea variety planted at Genesee was 

Billybeans. Different plant species comprised the cover crop mixtures at either site. 

St. John: oat, barley, pea, sunflower, and turnip. Genesee: oat, pea, crimson clover, 

radish, and turnip.  

The St. John site is in the Annual Crop/Fallow Transition agroecological class 

(Huggins et al. 2014, 2015). The soil at this site was predominately mesic Cumulic 

haploxerolls (Soil Survey Staff 2021a). The rotational treatments were a BAU: fallow-

winter wheat-spring wheat rotation, and two alternatives: winter pea-winter wheat-

spring wheat, and cover crop-winter wheat-spring wheat. For the 2017-2018 growing 

year, winter crops were planted on 3 Oct. 2017 and spring crops were planted on 30 

Mar. 2018. For the 2018-2019 growing year, winter crops were planted on 25 Sep. 

2018 and spring crops were planted on 24 April 2019.  

The Genesee site is in the continuous cropping agroecological class (Huggins 

et al. 2014, 2015). The soil at this site was mesic Pachic Ultic Haploxerolls and mesic 

Typic Argixerolls (Soil Survey Staff 2021b). The rotations were a business-as-usual: 

chickpea-winter wheat-spring wheat rotation, and two alternatives: winter pea-winter 

wheat-spring wheat, and chickpea-winter wheat-cover crop. For the 2017-2018 

growing year, winter crops were planted on 5 Oct. 2017 and spring crops were 

planted on 27 April 2018. For the 2018-2019 growing year, winter crops were planted 

on 4 Oct. 2018 and spring crops were planted on 2 May 2019.  

 

Pitfall Traps 

 Pitfall traps were two 470 ml plastic cups (Dart Container, Inc.) nested and 

buried in the soil so that the lip of the inner cup was flush with the soil surface. The 
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outer cup was used to stabilize the hole so that the inner 

cup could be easily removed for sample collection and 

refilling of the trap. Propylene glycol (Colonial Chemical 

Solutions, Inc.) was used as a preservative and a 

surfactant in the pitfall trap – 100 ml of a 30% propylene 

glycol solution was replaced in each trap at weekly 

intervals. Two pitfall traps were placed within each plot, 

two meters from the center of the plot (Figure 2.2). This 

trap design follows the recommendations of Brown and 

Matthews (2016). Traps were left open continuously, with 

sampling taking place in the morning once every seven 

days at each site throughout the growing seasons of 

2018 and 2019. Traps were removed from plots at the time of crop harvest.  

Pitfall trap catches were stored in 70% ethanol solution. Individuals that are 

considered to be predominately epigeal were identified to Family, following Borror 

and DeLong’s Study of Insects 7th edition (Triplehorn et al. 2005). Individuals 

belonging to Mollusca, Acari, Thysanoptera, and Collembola were identified to order. 

Ground beetles (Coleoptera: Carabidae) were identified to Genus. Taxa were 

assigned to functional groups based on primary habitat (foliar, epigeic) and mode of 

feeding (predator, granivore), meaning that some taxa are included in more than one 

community subset. These assignments were based on life history information in 

Triplehorn et al. (2005).  

 

Statistical Analysis 

 All statistical analyses were done in RStudio open-source software R version 

4.0.2 (R Core Team 2020). Samples with a ‘zero community’ – no individuals 

captured in a trap during a sampling period – were removed from the dataset before 

ordinal community analyses were conducted. Due to the potential usefulness of 

bycatch in the pitfall traps (Hatten et al. 2013; Hung et al. 2015; McCravy 2018), 

analyses were done with five sets of community data: all taxa present in pitfalls, 

epigeic taxa, foliar taxa, granivorous taxa, and predatory taxa. For all communities, 

Figure 2.2 Pitfall trap 
placement within each plot. 
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data were analyzed separately by site and year. This is due to the uneven rotational 

treatments at each site, as well as only having two levels for both site and year 

variables.  

 Hypotheses were tested using a repeated-measures analysis of variance 

(ANOVA). Fixed effects were crop, sampling date, and their interaction. Random 

effects were plot, nested within replication. Activity-density was transformed to log(x 

+ 1) to increase the normality based on residuals. When significant effects of crop 

were detected, pairwise comparisons were made using the ‘emmeans’ package with 

alpha levels adjusted for multiple comparisons using the Bonferroni correction (Lenth 

et al. 2022). Due to uneven sampling effort across the growing season, data were 

only analyzed for the intervals that all crops or fallow were present at the site, 

meaning that samples taken after the first crop was harvested are not analyzed here. 

Sampling dates for St. John were 26 April-19 July 2018 and 10 May-12 July 2019; 

sampling dates for Genesee were 25 May-20 July 2018 and 15 May-20 July 2019. 

Cover crop plots were excluded from Genesee for the 2019 analysis because there 

are only three sampling dates for those plots in that year due to complications of 

pitfall traps drying out during high heat periods and yielding no arthropod catches.  

 Diversity indices used to compare arthropod communities include Simpson’s 

diversity, Simpson’s evenness, and species abundance or activity-density. The 

Simpson’s diversity index was calculated as 𝐷 = 1/(Σ𝑝𝑖
2), where pi is the proportion 

of individuals of a species i among the total individuals collected (Magurran 2004). 

The Simpson’s evenness index was calculated as 𝐸1/𝐷 = (1/𝐷)/𝑆, where S is the 

number of taxa collected (Magurran 2004).   

 The activity-density of the epigeic, granivorous, and predator communities 

during the whole sampling period were compared among the crop treatments using 

nonmetric multidimensional scaling (NMDS). NMDS was used because it attempts to 

represent pairwise dissimilarity between objects using a dissimilarity matrix in low-

dimensional space and does not make assumptions about linear relationships of the 

data. NMDS was conducted using the ‘vegan’ package (Dixon 2003; Oksanen et al. 

2013). The metaMDS function was used to create NMDS ordination plots with Bray–

Curtis distances. Stress (s), non-metric fit (r2), and PERMANOVA (p), statistics 
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measuring goodness-of-fit of the NMDS ordination distances to the data dissimilarity, 

were also computed (Oksanen et al. 2013). Again, sites and years were analyzed 

separately. 

 

Results 

 Cumulatively at both sites, pitfall traps collected 45,129 total individuals (Table 

2.1), of which 11,300 individuals are predaceous. A total of 35,831 foliar-dwelling 

individuals were collected. There were 9,298 epigeic individuals collected and of 

those, 2,034 individuals are granivorous (Table 2.1). The most abundant family 

collected was Aphididae (Hemiptera). Among the foliar, epigeic, granivorous, and 

predaceous taxa, Lycosidae (Araneae), Aphididae, and Carabidae (Coleoptera) were 

the most abundant, respectively.  

 Tests were conducted to evaluate (H1) granivorous and predaceous arthropod 

communities are dissimilar among crops; (H2) activity-density, diversity, and 

evenness (community metrics) of arthropod communities differ among crops; (H3) 

metrics of arthropod communities differ among sampling dates 

 Low stress solutions were found for NMDS ordinations for granivorous and 

predaceous communities at St. John and Genesee in both years (Figure 2.3, Figure 

2.4) and distances within ordinations were highly correlated to pitfall trap data 

dissimilarity (Table 2.2). Although the community separation was not visibly striking, 

PERMANOVA results indicate significant separation of granivorous communities 

between crops in Genesee both years (p = 0.001 for 2018 and p = 0.003 for 2019), 

but not at St. John (Table 2.2A) and significant separation of predator communities 

between crops at both sites and years (p = 0.012 for St. John 2018, p = 0.001 for St. 

John 2019 and Genesee both years) (Table 2.2B).   

 

Crop x Date Interaction 

 The crop x date interaction had variable effects on community metrics at both 

sites. The interaction of crop and date significantly affected activity-density of foliar 

and predator communities at both sites in both years (Table 2.3, Table 2.6), though 
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not on activity-density of epigeic or granivore communities (Table 2.4, Table 2.5). 

Foliar community diversity was significantly affected by the crop-date interaction at 

Genesee in 2018 and at St. John in 2019 (Table 2.3). Foliar community evenness 

was also significantly affected by the crop-date interaction at Genesee in 2018 and at 

St. John in 2019 (Table 2.3). Epigeic community evenness was significantly affected 

by the crop-date interaction at St. John (Table 2.4). Arthropod abundance and 

diversity loosely followed crop stand maturity – abundance and diversity were lower 

in the beginning of the season and during crop senescence and were greater in the 

two weeks leading up to peak maturity. The different crop stands mature at different 

times during the growing season, greatly contributing to the crop x date interaction. 

 

Crop 

 Overall, crop had an effect on nearly all community metrics at Genesee 

(except for predator evenness) but only affected foliar and predator community 

metrics at St. John. Activity-density and diversity of foliar and predator communities 

were significantly affected by crop at St. John (Table 2.3, Table 2.6), but not activity-

density of epigeic and granivore communities (Table 2.4, Table 2.5). Crop 

significantly affected epigeic and predator evenness at St. John (Table 2.4, Table 

2.6). Crop generally did not affect epigeic or granivorous communities at St. John, 

with the exception of epigeic evenness. Crop significantly affected activity-density, 

diversity, and evenness of all communities tested at Genesee (Table 2.3, Table 2.4, 

Table 2.5), except for predator diversity (Table 2.6).  

 

Date 

 The effect of date was more prevalent at St. John than at Genesee. Date 

significantly affected activity-density of all communities tested at St. John (Table 2.3, 

Table 2.4, Table 2.5, Table 2.6) but only on foliar and predator communities at 

Genesee (Table 2.3, Table 2.6). Diversity was similarly affected by date, with 

diversity of all communities tested at St. John significantly affected by sampling date 

(Table 2.3, Table 2.4, Table 2.5, Table 2.6). Date had effects only on the foliar 
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community diversity evenness at Genesee in both years (Table 2.3) and on the 

predator community diversity and evenness at Genesee in 2019 (Table 2.6). 

Evenness of all communities tested at St. John was affected by date (Table 2.3, 

Table 2.4, Table 2.5, Table 2.6).  
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Table 2.1 Table of taxa collected, their abundances, and the community dataset they were included in 
for statistical analysis. 

Arthropod Taxa Abundance Foliar Epigeic Granivore Predator 

Acrididae 275  x   

Alydidae 22 x    

Anthicidae 184 x    

Anthocoridae 68 x   x 

Aphididae 11404 x    

Berytidae 43 x   x 

Buprestidae 53 x    

Caliscelidae 1 x    

Cantharidae 38 x    

Carabidae 865  x x x 

Chilopoda 7  x  x 

Cercopidae 207 x    

Chrysomelidae 665 x    

Chrysopidae 1 x   x 

Cicadellidae 968 x    

Coccinellidae 1165 x   x 

Coreidae 8 x    

Cryptophagidae 173 x    

Curculionidae 1801 x    

Dermestidae 500  x   

Dictynidae 344  x  x 

Elateridae 251  x   

Forficulidae 265  x   

Formicidae 726  x x x 

Geocoridae 2095 x   x 

Gryllidae 443  x x  

Histeridae 70  x   

Latridiidae 789  x   

Linyphiidae 787  x  x 

Lycosidae 2511  x  x 

Lygaeidae 1286 x    

Meloidae 548 x    

Melyridae 371 x   x 

Membracidae 1 x    

Miridae 289 x    

Molusca 20  x   

Mordellidae 126 x    

Nabidae 307 x   x 
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Arthropod Taxa Abundance Foliar Epigeic Granivore Predator 

Opiliones 119  x  x 

Pentatomidae 78 x    

Reduviidae 8 x    

Rhaphidophoridae 78  x   

Rhopalidae 12 x    

Rhyparochromidae 375 x    

Salticidae 194 x   x 

Scarabaeidae 61 x    

Scraptiidae 584 x    

Scutelleridae 2 x    

Silphidae 474  x   

Staphylinidae 639  x  x 

Tenebrionidae 135  x   

Tettigoniidae 4 x    

Thomisidae 1058 x   x 

Thysanoptera 11631 x       

 

 
 

Table 2.2 NMDS goodness-of-fit values for the granivore community (A) and predator community (B). 
k is the number of dimensions for each NMDS, S (stress value) is a goodness-of-fit value based on the 
sum of squared differences between ordination-based distances and the distances predicted by the 
regression, r2 is a non-metric fit between ordination distances and the observed dissimilarities, and p is 
the p-value for the PERMANOVA, which tests if the centroids of the distance matrices differ between 
groups. 

 
 A Site Year k s r2 p 

 St. John 2018 2 0.09 1 .938 

  2019 2 0.09 0.99 .225 

 Genesee 2018 2 0.01 1 .001 

  2019 3 0.01 1 .003 

       

B Site Year k s r2 p 

 St. John 2018 4 0.14 0.97 .012 

  2019 3 0.14 0.98 .001 

 Genesee 2018 3 0.11 0.99 .001 

  2019 4 0.12 0.98 .001 



 
 

 

 
 

 

  

Figure 2.3 NMDS ordination for the granivore communities at both sites in both years. Centroid points represent mean community 
composition for each crop. 



 
 

 

 
 

 

  

Figure 2.4 NMDS ordination for the predator communities at both sites and both years. Centroid points represent mean 
community composition for each crop. 



 
 

 

 
 

Table 2.1 ANOVA table for foliar community metrics for both sites and years. 

  

St. John Genesee 

2018 2019 2018 2019 

F df P F df P F df P F df P 

Activity-density             

 Crop 14.427 4, 38 <0.0001 26.898 4, 36 <0.0001 9.0930 4, 36 <0.0001 32.975 3, 32 <0.0001 

 Date 139.117 1, 360 <0.0001 92.566 1, 262 <0.0001 36.921 1, 106 <0.0001 5.118 1, 115 0.0250 

 Crop*Date 0.979 4, 360 <0.0001 7.420 4, 262 <0.0001 2.942 4, 106 0.023 4.674 3, 115 0.0030 

Simpson's 
Diversity             

 Crop 10.657 4, 38 <0.0001 4.294 4, 36 0.006 1.082 4, 36 0.3796 6.571 3, 32 0.001 

 Date 25.806 1, 360 <0.0001 60.217 1, 262 <0.0001 15.017 1, 106 0.0002 32.746 1, 115 <0.0001 

 Crop*Date 2.294 4, 360 0.0580 6.994 4, 262 <0.0001 6.046 4, 106 0.0002 1.726 3, 115 0.1640 

Simpson's 
Evenness             

 Crop 8.907 4, 38 <0.0001 2.593 4, 36 0.0527 5.979 4, 36 0.0009 0.929 3, 32 0.437 

 Date 35.916 1, 360 <0.0001 50.504 1, 262 <0.0001 26.569 1, 106 <0.0001 27.436 1, 115 <0.0001 

  Crop*Date 0.810 4, 360 0.5180 2.581 4, 262 0.0370 1.669 4, 106 0.0370 0.545 3, 115 0.6510 

  



 
 

 

 
 

 
Table 2.2 ANOVA table for epigeic community metrics for both sites and years. 

  

St. John Genesee 

2018 2019 2018 2019 

F df P F df P F df P F df P 

Activity-density             

 Crop 1.672 4, 38 0.177 1.704 4, 36 0.170 6.977 4, 36 0.003 1.218 3, 32 0.318 

 Date 2.675 1, 360 0.103 9.901 1, 262 0.001 0.340 1, 106 0.561 1.693 1, 115 0.196 

 Crop*Date 1.982 4, 360 0.098 3.076 4, 262 0.017 1.003 4, 106 0.411 1.806 3, 115 0.151 

Simpson's 
Diversity             

 Crop 0.732 4, 38 0.576 3.311 4, 36 0.020 2.968 4, 36 0.032 5.536 3, 32 0.003 

 Date 13.456 1, 360 0.0003 1.477 1, 262 0.225 1.894 1, 106 0.172 0.33 1, 115 0.566 

 Crop*Date 2.041 4, 360 0.089 0.143 4, 262 0.965 0.41 4, 106 0.800 1.402 3, 115 0.247 

Simpson's 
Evenness             

 Crop 0.783 4, 38 0.543 2.633 4, 36 0.050 3.731 4, 36 0.012 2.222 3, 32 0.104 

 Date 4.217 1, 360 0.041 6.070 1, 262 0.014 1.072 1, 106 0.303 1.354 1, 115 0.247 

  Crop*Date 2.628 4, 360 0.035 2.13 4, 262 0.078 0.425 4, 106 0.789 2.031 3, 115 0.115 

 
 
 
 
 
 
 
 
 
 



 
 

 

 
 

Table 2.3 ANOVA table for granivore community metrics for both sites and years. 

  

St. John Genesee 

2018 2019 2018 2019 

F df P F df P F df P F df P 

Activity-density             

 Crop 0.288 4, 38 0.883 0.683 4, 36 0.608 11.428 4, 36 <0.0001 3.398 3, 32 0.030 

 Date 10.297 1, 360 0.001 18.225 1, 262 <0.0001 1.691 1, 106 0.197 0.418 1, 115 0.520 

 Crop*Date 0.433 4, 360 0.784 0.655 4, 262 0.624 2.350 4, 106 0.063 1.431 3, 115 0.243 

Simpson's Diversity             

 Crop 0.578 4, 38 0.680 0.690 4, 36 0.603 3.456 4, 36 0.018 5.586 3, 32 0.003 

 Date 5.222 1, 360 0.024 9.323 1, 262 0.002 2.558 1, 106 0.114 0.402 1, 115 0.528 

 Crop*Date 0.298 4, 360 0.878 0.581 4, 262 0.677 1.759 4, 106 0.147 0.214 3, 115 0.886 

Simpson's Evenness             

 Crop 0.527 4, 38 0.716 0.502 4, 36 0.733 5.293 4, 36 0.002 3.476 3, 32 0.027 

 Date 6.392 1, 360 0.013 11.940 1, 262 0.0008 3.226 1, 106 0.077 0.119 1, 115 0.731 

  Crop*Date 0.318 4, 360 0.084 0.526 4, 262 0.716 2.117 4, 106 0.088 0.510 3, 115 0.676 

 
 
 
 
 
 
 
 
 
 



 
 

 

 
 

 

Table 2.4 ANOVA table for predator community metrics for both sites and years. 

  

St. John Genesee 

2018 2019 2018 2019 

F df P F df P F df P F df P 

Activity-density             

 Crop 5.69 4, 38 0.001 4.455 4, 36 0.005 10.271 4, 36 <0.0001 4.979 3, 32 <0.0001 

 Date 4.241 1, 360 0.040 0.480 1, 262 0.488 17.936 1, 106 <0.0001 17.510 1, 115 <0.0001 

 Crop*Date 2.937 4, 360 0.020 1.764 4, 262 0.136 4.410 4, 106 0.002 6.943 3, 115 <0.0001 

Simpson's 
Diversity             

 Crop 5.382 4, 38 0.001 4.901 4, 36 0.002 2.506 4, 36 0.059 1.056 3, 32 0.381 

 Date 37.934 1, 360 <0.0001 10.489 1, 262 0.001 1.321 1, 106 0.252 4.326 1, 115 0.039 

 Crop*Date 1.949 4, 360 0.101 0.442 4, 262 0.778 1.401 4, 106 0.238 1.115 3, 115 0.345 

Simpson's 
Evenness             

 Crop 3.818 4, 38 0.010 5.43 4, 36 0.001 2.892 4, 36 0.035 1.948 3, 32 0.141 

 Date 15.807 1, 360 0.0001 7.732 1, 262 0.005 3.061 1, 106 0.082 8.424 1, 115 0.004 

  Crop*Date 1.239 4, 360 0.293 0.695 4, 262 0.595 2.219 4, 106 0.071 0.729 3, 115 0.536 
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Table 2.5 Foliar community metric means for both sites and years. Letters denote significance 
differences within crop among site and year. 

Site Year Crop Activity-Density Diversity Evenness 

St. John 2018 Cover Crop 15.55±2.56b 2.77±0.19bc 0.18±0.03 

  Fallow 15.58±3.06b 3.10±0.22c 0.14±0.02 

  Spring Wheat 20.20±2.73b 2.28±0.09ab 0.31±0.03 

  Winter Pea 13.70±5.10ab 2.13±0.14ab 0.32±0.05 

  Winter Wheat 7.52±1.02a 1.96±0.08a 0.46±0.03 

 2019 Cover Crop 20.92±3.57bc 3.79±0.35b 0.11±0.03 

  Fallow 13.13±1.34ab 2.76±0.21a 0.15±0.03 

  Spring Wheat 11.38±1.15a 3.23±0.12ab 0.11±0.01 

  Winter Pea 31.30±4.23b 2.61±0.23a 0.15±0.03 

  Winter Wheat 8.78±0.70a 3.08±0.15b 0.18±0.02 

Genesee 2018 Chickpea 11.80±1.99ab 2.14±0.21 0.41±0.06ab 

  Cover Crop 18.00±7.34ab 2.26±0.25 0.21±0.05a 

  Spring Wheat 27.30±5.21b 2.10±0.16 0.28±0.05a 

  Winter Pea 55.81±28.38b 1.82±0.15 0.19±0.02a 

  Winter Wheat 8.29±1.85a 1.83±0.15 0.51±0.06b 

 2019 Chickpea 14.13±2.09ab 2.48±0.16b 0.19±0.04 

  Cover Crop       

  Spring Wheat 33.33±7.49b 2.36±0.15b 0.19±0.04 

  Winter Pea 77.00±8.22c 1.42±0.06a 0.17±0.03 

    Winter Wheat 12.49±1.49a 2.43±0.15b 0.25±0.04 
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Table 2.6 Epigeic community metric means for both sites and years. Letters denote significance 
differences within crop among site and year. 

Site Year Crop Activity-Density Diversity Evenness 

St. John 2018 Cover Crop 4.65±0.56 1.86±0.14 0.51±0.06 

  Fallow 4.48±0.48 1.74±0.13 0.54±0.06 

  Spring Wheat 5.26±0.36 2.02±0.10 0.46±0.03 

  Winter Pea 4.05±0.60 1.61±0.12 0.60±0.06 

  Winter Wheat 3.91±0.28 1.80±0.08 0.52±0.03 

 2019 Cover Crop 4.90±0.48 2.67±0.18ab 0.25±0.05ab 

  Fallow 4.39±0.63 2.18±0.15ab 0.32±0.05ab 

  Spring Wheat 5.08±0.30 2.69±0.12b 0.26±0.03a 

  Winter Pea 4.92±0.50 2.42±0.18ab 0.29±0.05ab 

  Winter Wheat 3.90±0.38 1.97±0.10a 0.46±0.04b 

Genesee 2018 Chickpea 2.94±0.42ab 1.68±0.14ab 0.58±0.07b 

  Cover Crop 7.24±2.02bc 1.82±0.19ab 0.47±0.10ab 

  Spring Wheat 6.50±0.83c 1.71±0.12ab 0.49±0.06ab 

  Winter Pea 7.47±1.18c 1.98±0.17b 0.33±0.09a 

  Winter Wheat 2.17±0.21a 1.39±0.08a 0.71±0.05b 

 2019 Chickpea 5.55±1.11 1.77±0.12a 0.46±0.06ab 

  Cover Crop       

  Spring Wheat 7.44±0.80 2.79±0.21b 0.25±0.05b 

  Winter Pea 8.10±2.12 2.67±0.28b 0.26±0.07ab 

    Winter Wheat 6.49±0.68 2.32±0.13ab 0.26±0.04a 
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Table 2.7 Granivore community metric means for both sites and years. Letters denote significance 
differences within crop among site and year. 

Site Year Crop Activity-Density Diversity Evenness 

St. John 2018 Cover Crop 1.23±0.17 1.14±0.09 0.89±0.08 

  Fallow 1.42±0.23 1.00±0.00 1.00±0.00 

  Spring Wheat 1.54±0.15 1.05±0.03 0.95±0.03 

  Winter Pea 1.46±0.18 1.08±0.08 0.94±0.06 

  Winter Wheat 1.43±0.11 1.08±0.04 0.94±0.03 

 2019 Cover Crop 1.68±0.23 1.14±0.08 0.88±0.06 

  Fallow 2.30±0.55 1.08±0.05 0.91±0.05 

  Spring Wheat 2.02±0.17 1.19±0.05 0.85±0.04 

  Winter Pea 1.47±0.16 1.09±0.07 0.92±0.05 

  Winter Wheat 1.90±0.30 1.11±0.05 0.91±0.04 

Genesee 2018 Chickpea 2.39±0.33ab 1.28±0.10ab 0.81±0.07b 

  Cover Crop 5.62±1.43bc 1.34±0.13ab 0.66±0.11ab 

  Spring Wheat 5.80±0.83c 1.21±0.06ab 0.75±0.06ab 

  Winter Pea 6.29±1.07c 1.55±0.10b 0.44±0.08a 

  Winter Wheat 1.90±0.27a 1.14±0.06a 0.88±0.05b 

 2019 Chickpea 5.48±1.45b 1.16±0.05ab 0.80±0.06ab 

  Cover Crop       

  Spring Wheat 2.87±0.34ab 1.38±0.08b 0.66±0.07b 

  Winter Pea 2.45±0.43ab 1.49±0.20b 0.65±0.12ab 

    Winter Wheat 2.19±0.38a 1.07±0.04a 0.92±0.04a 
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Table 2.8 Predator community metric means for both sites and years. Letters denote significance 
differences within crop among site and year. 

Site Year Crop Activity-Density Diversity Evenness 

St. John 2018 Cover Crop 6.25±0.81ab 2.29±0.16ab 0.34±0.05ab 

  Fallow 6.00±0.56b 2.24±0.15ab 0.35±0.06ab 

  Spring Wheat 6.21±0.40b 2.35±0.11b 0.36±0.03a 

  Winter Pea 4.16±0.59a 1.79±0.11a 0.45±0.05ab 

  Winter Wheat 4.20±0.27a 1.87±0.08a 0.50±0.03b 

 2019 Cover Crop 8.72±0.87b 3.43±0.24b 0.18±0.05ab 

  Fallow 8.71±0.97b 3.32±0.23b 0.17±0.04ab 

  Spring Wheat 8.15±0.42b 3.32±0.11b 0.13±0.02a 

  Winter Pea 8.13±0.72b 3.00±0.20ab 0.16±0.03ab 

  Winter Wheat 5.57±0.38a 2.53±0.12a 0.31±0.04b 

Genesee 2018 Chickpea 2.95±0.42a 2.05±0.17 0.45±0.06ab 

  Cover Crop 4.87±0.87ab 2.44±0.31 0.35±0.11ab 

  Spring Wheat 6.68±1.06b 1.96±0.14 0.42±0.06ab 

  Winter Pea 6.67±1.25b 2.28±0.25 0.24±0.06a 

  Winter Wheat 2.54±0.26a 1.71±0.12 0.59±0.06b 

 2019 Chickpea 8.22±1.04ab 2.34±0.14 0.25±0.04 

  Cover Crop       

  Spring Wheat 10.79±1.83b 2.68±0.20 0.20±0.04 

  Winter Pea 6.65±1.17ab 2.51±0.20 0.25±0.07 

    Winter Wheat 5.35±0.53a 2.31±0.15 0.34±0.05 
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Discussion 

 The objective of this study was to measure the effects of crop diversity in 

wheat-based production systems on the composition of epigeic arthropods. Over two 

years at two sites in the iPNW, there were significant differences in community 

metrics in different functional subsets of arthropods among crop and sampling date 

some of which were consistent with H2 and H3. Ordinations of granivorous and 

predaceous communities showed significant differences in composition among crops, 

consistent with H1.  

 Regarding the first hypothesis, that granivorous and predaceous communities 

are dissimilar among crops, ordinations and PERMANOVA suggest that both of these 

communities are significantly dissimilar among crops across sites (Figure 2.3, Figure 

2.4, Table 2.2). Bray-Curtis dissimilarity was used for NMDS ordinations, which 

incorporate arthropod species richness and evenness values for each crop type. The 

NMDS performed here includes all the sampling dates for the growing season of 

each year. The dissimilarity of both communities between crops could be due to 

differences in resource availability between crops, such as food or shelter. Abiotic 

factors such as temperature and relative humidity within and beneath the crop 

canopy can also affect the activity-density of arthropods (Prather et al. 2020), which 

is what was used to calculate the Bray-Curtis values.  

 The second hypothesis, arthropod community metrics differ among crops, 

received varying support. Crop had significant effects on community metrics of foliar 

and predator communities, but generally not on epigeic or granivorous community 

metrics. Significance of crop, particularly on diversity, varied by site and year. Epigeic 

diversity was significantly affected by crop, but activity-density and evenness were 

not. However, granivore community metrics were significantly affected by crop at 

Genesee. Activity-density of all four arthropod communities was typically lowest in 

winter wheat plots (Table 2.7, Table 2.8, Table 2.9, Table 2.10). Activity-density was 

generally greatest in winter pea (Table 2.7, Table 2.8, Table 2.9, Table 2.10), though 

predator activity-density was greatest in fallow at St. John and spring wheat at 

Genesee (Table 2.10).  
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 Crop effects on diversity measures are highly dependent on arthropod 

community, site, and year. For example, at St. John in 2018, foliar diversity was 

lowest in winter wheat and greatest in fallow but in 2019 at the same site, foliar 

diversity was lowest in winter pea and greatest in cover crop (Table 2.7). Managing 

fallow plots was difficult during this project, which could contribute to the greater 

diversity in fallow. Foliar arthropod diversity at Genesee in 2019 was lowest in winter 

pea and greatest in chickpea (Table 2.7). Epigeic diversity was generally lowest in 

winter wheat, though which crops harbored more diverse epigeal communities 

depended on site and year. Epigeic diversity at St. John in 2019 was greatest in 

spring wheat (Table 2.8), and greatest in winter pea and cover crop at Genesee in 

2018 and 2019, respectively (Table 2.8). Granivore diversity was lowest in winter 

wheat and greatest in winter pea (Table 2.9). Arthropod predator diversity between 

crops also depended on year, with the lowest diversity found in winter pea and winter 

wheat plots in 2018 and 2019 and the greatest diversity in spring wheat and fallow 

plots, 2018 and 2019, respectively (Table 2.10).  

 Farm management could have impacted the abundance and diversity of 

sampled arthropods. The plots in this study were conventionally managed for 

whichever crop was planted, with reduced tillage. For example, the winter pea plots 

were treated with Asana XL (Valent) insecticide on 30 May 2018, 7 June 2018, and 

27 June 2018 and with Mustang Maxx (FMC) on 10 June 2019 and 29 June 2019 to 

control Bruchus pisorum L. (pea weevil), which could have negatively influenced all 

arthropod communities in winter pea plots, not just the targeted pest. 

 The third hypothesis, metrics of arthropod communities differ among sampling 

dates, received full or partial support, depending on site and arthropod community. 

Sampling date had significant effects on activity-density, diversity, and evenness of 

all four communities investigated at St. John (Table 2.3, Table 2.4, Table 2.5, Table 

2.6). Foliar arthropod activity-density, diversity, and evenness were affected by date 

at Genesee, and predator community metrics were affected by sampling date at 

Genesee only in 2019 (Table 2.3, Table 2.6). Contrasts were not performed with 

sampling dates as the focus of this thesis and the LIT project is concerned with 

differences between crops or crop rotations. 
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 The effect of sampling date on community metrics can be due to changes in 

ambient temperatures and relative humidity under the crop canopy (Lessard et al. 

2011; Prather and Kaspari 2019; Prather et al. 2020), which depends on the stage of 

plant development, contributing to the interaction of date and crop. There may also 

be a temporal component to food and shelter resources for the taxa in these 

communities (Boyer et al. 2003; M. Crutsinger et al. 2008; Mello et al. 2022). For 

example, Crutsinger et al. (2008) found differences in arthropod activity-density and 

species richness among sampling dates in a Solidago common garden experiment.  

 Pitfall sampling occurred through the growing season of each crop, and in 

fallow plots until the last crop was harvested. Life-history traits of ubiquitous 

arthropods would influence trappable populations of arthropod species. For example, 

Carabid beetles are either spring-breeders or fall-breeders (Honek et al. 2006; 

Kulkarni et al. 2016), with spring-breeders being more active May-June.  

 The interaction between crop and sampling date generally affected community 

metrics of foliar taxa, indicating that foliar communities may be more sensitive to the 

crop maturing throughout the growing season compared to other communities that 

were tested. This makes sense due to the crop-specific pests that colonize fields 

(Clement et al. 1990, 2010; Clement 2006). For example, the pea aphid 

(Acyrthosiphon pisum Harris) tends to have low density in pea fields earlier in the 

growing season (May-June), with a population boom occurring early- to mid-June, 

and then declining in early- to mid-July, loosely following the maturity and 

senescence of peas (Clement et al. 2010).  

 When all taxa were considered, effects were similar to those detected with the 

foliar communities, due to foliar taxa comprising the majority of arthropods trapped 

(Table 2.1). An ANOVA was still conducted to test the effects of the crop, date, and 

their interaction (Appendix A) but is not discussed here. 

 The community metrics tested here varied between sampling sites and years. 

However, foliar and predator communities were generally affected by crop. Epigeic 

and granivorous communities were affected by crop only at Genesee. All 

communities tested were affected by sampling date at St. John, with only foliar and 

predator communities affected by date at Genesee. Foliar and predator communities 
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may be more generalizable across agroecological classes (AECs) and epigeic and 

granivorous communities may be more site-specific or AEC-specific in their activity-

density, diversity, and evenness measurements.  

  

Implications 

 Increasing diversity in rotation schemes is generally beneficial to arthropod 

communities (Bullock 1992; Smith et al. 2008; Davis et al. 2012). Results presented 

here indicate that epigeic and granivorous communities are not affected by altering 

the crop planted in iPNW production systems (Table 2.4, Table 2.5). On the other 

hand, the foliar communities may be more sensitive to crop changes (Table 2.3), 

which may increase the need for crop-specific pest control.  

 Increased vegetational diversity has been shown to have positive effects on 

arthropod abundance (Letourneau et al. 2011). However, cover crop plots did not 

have significantly greater activity-density or diversity for epigeic, foliar, granivorous, 

or predatory communities compared with the single-species crop plots (Table 2.7, 

Table 2.8, Table 2.9, Table 2.10). Augmenting a wheat production system with pulse 

crops and cover crops has agronomic and ecological benefits to the farm (Gan et al. 

2015; Schillinger 2020) and surrounding landscape (Landis et al. 2000) and 

increasing the species of crop cover across the landscape may provide more suitable 

resources for beneficial arthropods (Altieri 1999; Landis et al. 2000). Though in this 

study there were no significant differences in activity-density or diversity of foliar, 

epigeic, or predator communities between fallow and cover crop plots at St. John 

(Table 2.5, Table 2.6,Table 2.7, Table 2.8). This could be due poor establishment of 

cover crops or that fallow was difficult to maintain. Reducing fallow and the 

disturbances that come with it, such as tillage, may be more beneficial to the epigeic 

and granivorous arthropod communities (Cromar et al. 1999), though ecosystem 

services mediated by these communities, such as seed predation, may depreciate 

(Chapter 3).  

 Results typically varied by site, indicating that the agroecological class may be 

an important factor in arthropod community structure, and possibly function, within 

crop fields. For example, granivore community metrics were idiosyncratic across 
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study sites. Community metrics of granivores were affected by date at St. John and 

by crop at Genesee (Table 2.5). The study site in St. John has a mean average 

temperature (MAT) of 9.1°C and mean average precipitation (MAP) of 1.04mm and 

Genesee site has a MAT of 16.32°C and MAP of 1.24mm. typically experiences 

lower annual precipitation and slightly warmer temperatures in the summer (Huggins 

et al. 2014). 

 

Limitations 

 While diversifying rotational schemes is the driving force behind this project, 

and others associated with the Landscapes in Transition project, this study was 

limited to two years of data collection – one year short of the full rotational 

treatments. Conclusions cannot be drawn about the rotations, only the differences 

between crops. Though, some preliminary legacy effect investigation was conducted 

(Appendix A). General trends indicate that arthropod activity-density is greater in 

winter wheat plots proceeded by winter pea compared to fallow (Figure A1.A, Figure 

A2.A, Figure A3.A). Diversity and evenness trends were less consistent between 

previous crops in winter wheat.  

 The plots for this study were 9.7m x 22.8m, which is a relatively small patch for 

some of the arthropods sampled (i.e., Lycosidae and Carabidae). The small plot size 

could introduce sampling bias due to some arthropods being more active.  

 This study relies entirely on pitfall trapping, which has limitations such as 

catches being dependent on body mass of individuals, ambient temperature, and the 

number of traps per sampling area (Saska et al. 2013; Engel et al. 2017). The main 

limitation of pitfall trapping is that catch rates reflect the interaction of the activity and 

the density of each taxon, referred to as activity-density (Saska et al. 2013). So, 

conclusions about community structure based on pitfall trap data must be made 

cautiously.  Despite these limitations, pitfall traps are commonly used to survey 

epigeal communities (Jansen and Metz 1979; Southwood and Henderson 2000) 

because they are low cost, easily maintained, and do not interfere with producer 

activities in the field.   
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Chapter 3 | Weed seed predation depends on crop and weed 

species in diversified wheat production systems   

Abstract 

 Climate models predict summer drought conditions to worsen in semi-arid 

regions. Given these predictions, progressive wheat producers are seeking to 

implement more resilient, diversified systems. Among the challenges to doing so is 

increased pressure from annual weeds which are more difficult to control when 

broadleaf crops and cover crops increase in the rotational schemes. The goals of this 

chapter are to determine the removal rates of three weed pest species in five 

different crops in the inland Pacific Northwest, USA (iPNW), and to determine the 

weed seed preferences of a common granivore in agricultural systems. Seed removal 

rates were assessed using bait stations within each crop for two months during 2019. 

Exclusion cages were used to separate the effects of vertebrate and invertebrate 

seed predators. Weed seeds were removed from bait stations with and without 

exclusion cages at similar rates, implicating invertebrates as important seed 

predators in this study. Weed seed removal was greater in fallow plots than in plots 

planted to any crop. Removal rates differed among four sample dates but there was 

no seasonal trend or interaction between sample date and crop. The effect of crop 

species and fallow on seed removal rates could have several potential drivers such 

as microhabitat under the crop canopy or the availability of competing food sources. 

Weed seed preference trials were conducted in a lab setting with live-captured 

Amara spp. (Coleoptera: Carabidae). Results from the seed preference trials indicate 

that Anthemis cotula may be defended against seed predators. In the first 

experiment, A. cotula was consumed at significantly lower rates than Bromus 

tectorum or Chenopodium album, though when physical defenses were removed, A. 

cotula was consumed at higher rates than B. tectorum. Diversified wheat cropping 

systems in the iPNW either reduce or remove fallow from rotation, which could have 

implications for weed seed banks after adoption and subsequent control of annual 

weeds that could constrain the system.  
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Introduction 

Weed seed predation by invertebrates is well-documented in agroecosystems 

(O’Rourke et al. 2006; Bohan et al. 2011; Kulkarni et al. 2015), indicating it is a key 

ecosystem service that contributes to weed management. It has been estimated that 

there is a 25% yield loss for winter wheat in the United States and a 33% yield loss in 

spring wheat due to weeds (Flessner et al. 2021). Flessner et al. (2021) report that 

this is a potential loss of $2.19 billion and $1.14 billion for winter wheat and spring 

wheat, respectively. Although vertebrate seed predators have been shown to remove 

more weed seeds than invertebrates in agricultural systems (Westerman et al. 2003), 

invertebrate seed predators have the ability to effectively remove seeds from a field 

(White et al. 2007; Blubaugh and Kaplan 2015). Seed predators in agroecosystems 

can decrease seed density by 50% (Davis et al. 2011), potentially leading to a 

reduction in weed populations. High activity-density of Carabidae (Coleoptera) has 

been found to correlate negatively with seedbank abundance, indicating that seed 

predators can regulate the weed seedbank and alter weed community dynamics 

(Bohan et al. 2011).  

Producers in the inland Pacific Northwest (iPNW) are increasingly interested in 

adopting novel more resilient cropping systems (Kaur et al. 2017; McGee et al. 2017; 

Pan et al. 2017) and are expected to adopt novel, resilient cropping systems to 

mitigate the negative impacts of projected climate variability (Stöckle et al. 2018). 

This includes ongoing and projected regional warming, accompanied by shifts in the 

seasonality of precipitation (Mote and Salathé 2010; Abatzoglou et al. 2014). Current 

practices in dryland agriculture in many parts of the world, including the drier parts of 

the iPNW, commonly include a fallow period in the rotation to conserve water in the 

soil profile (Schillinger and Papendick 2008; Schillinger 2016). Without a shift in 

current water management strategies, anticipated climate change in the iPNW could 

lead to an increase in reliance on fallow (Karimi et al. 2017; Kaur et al. 2017), which 

could have negative consequences for sustainability (Nielsen et al. 2011; Singh et al. 

2012; Sharratt et al. 2018). Alternatives are needed to diversify and intensify these 

traditional dryland systems in an ecologically and economically sound way. In many 

semi-arid regions, including the iPNW, this includes adding legumes into the rotation 



 
 

 

39 
 

 
(Angadi et al. 2011; Cutforth et al. 2013; Schillinger 2017, 2020), as well as 

incorporating cover crops to be utilized for grazing or haying (Andrade et al. 2017; 

Adhikari and Menalled 2020; Kumar et al. 2020; Baraibar et al. 2021; Garland et al. 

2021). 

In-field diversification and other alternative management strategies can affect 

the removal rates of weed seeds and the relative importance of vertebrate and 

invertebrate granivores in the system (Shelton and Edwards 1983; Menalled et al. 

2007; Lami et al. 2020). One of the potential risks of cropping system modifications 

includes increased vulnerability to weeds (Peairs et al. 2005; Adhikari and Menalled 

2018), although this remains largely understudied in dryland cropping systems (Maaz 

et al. 2017; Schillinger 2017).  

Weeds are deleterious and cause significant yield loss in wheat production 

systems in the United States (Rydrych and Muzik 1968; Flessner et al. 2021). In 

iPNW cereal-based systems, numerous weeds (PNW Invasive Plant Council 2022) 

can negatively affect crop growth and production. Broadleaf weeds present a 

challenge to diversifying annual cropping systems due to the difficulty of selecting 

appropriate herbicides (Young et al. 2000; Yenish 2007). Bromus tectorum L. (downy 

brome, cheatgrass) is one of the most challenging grass weeds for producers in the 

iPNW (Schillinger et al. 2015). For example, B. tectorum directly competes with 

wheat and when not managed properly (Figure 3.1A) significantly decreases wheat 

yield (Rydrych 1974; Lenssen et al. 2013). There is a range of dormancy period with 

B. tectorum seeds (Figure 3.1D) in the soil (Hauvermale and Sanad 2019), though 

the average is two to three years (Thorne et al. 2007). Chenopodium album L. 

(common lambsquarters) is a globally persistent agricultural weed (Holm et al. 1977) 

that is particularly difficult to manage in pulse crops due to limited herbicide 

availability (Figure 3.1C) (Yenish and Eaton 2002). Chenopodium album is palatable 

to both invertebrate seed predators and small mammals (Lundgren and Rosentrater 

2007) and is abundant in the seedbank in many regions, including the iPNW 

(Clements et al. 1996; Teasdale et al. 2004; Burke et al. 2017), and the study site 

(Figure 3.1F). Seeds of C. album (Figure 3.1C) can be viable in the seedbank for up 

to 39 years (Toole and Brown 1946; Lewis 1973). Anthemis cotula L. (Mayweed 
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chamomile) is a globally invasive broadleaf weed that poses ecological and economic 

challenges with increasing concerns surrounding herbicide resistance in cereal and 

pulse crop fields (Lyon et al. 2017; Adhikari et al. 2020). Anthemis cotula can be 

difficult to control and poses a barrier to adopting diversified rotations in wheat-based 

cropping systems due to its abundance and high phenotypic variability (Adhikari et al. 

2021). It is particularly aggressive at the field site used in this study (Figure 3.1B) and 

comprised the majority of weed seeds found in the seedbank at the study site (Figure 

C0.2A). 

The goal of this study was to compare the removal rates of B. tectorum, C. 

album, and A. cotula in field and laboratory conditions. Field conditions include five 

different crops in a long-term experimental strip trial in St. John, Washington, and 

laboratory bioassays were conducted to determine weed seed preference of Amara 

spp. beetles (Coleoptera: Carabidae). We hypothesized that (HF1) seed removal 

across and within weed species depends on crop; (HF2) removal rates are dependent 

on weed species; (HF3) removal rates of seeds differ throughout the growing season; 

and (HF4) removal rates differ between exposure to vertebrate or invertebrate 

predators. Based on different removal rates of each weed species detected in the 

field, we compared their removal rates in choice and no-choice laboratory bioassays 

with representative seed predators. We hypothesized that (HL1) feeding on seeds by 

Amara spp. (Coleoptera: Carabidae) depends on species of seed; (HL2) seeds of A. 

cotula are chemically defended from predation; and (HL3) seeds of A. cotula, B. 

tectorum, and C. album are physically defended from predation. 
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Methods 

Site Description 

Three three-year, wheat-based rotations were established in a replicated field 

plot study in St. John, Washington as part of a USDA-NIFA-funded project to 

evaluate alternative and business as usual rotations. The site is within the transitional 

AEC in the region (Kaur et al. 2017). The soil at this site was predominately mesic 

Cumulic haploxerolls (Soil Survey Staff 2021a). Climate in the iPNW is generally 

Mediterranean-like with cold, wet winters and hot, dry summers (Schillinger et al. 

2006). Mean annual precipitation is 1.04mm in St. John.  

Figure 3.1 Weeds of interest in this chapter, with their seeds. Bromus tectorum (A,D), 
Anthemis cotula (B,E), and Chenopodium album (C,F). 
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Field plots were planted in a randomized complete block design with five 

blocks and three rotations. Each three-year rotation was planted into each of its three 

crops, yielding nine plots per block and a total N = 45 (Figure 3.2). Due to space 

constraints in the field, block 5 was situated slightly adjacent to the other four blocks, 

separated by a creek running through the farm. The rotations were a business-as-

usual rotation: fallow-winter wheat-spring wheat, and two diversified rotations: winter 

pea-winter wheat-spring wheat, and cover crop-winter wheat-spring wheat. Weed 

seed removal rates were assessed during the second year of the trial (May – Aug 

2019). Plots (9.7m x 22.8m) were established beginning in fall 2017. The number of 

plots in each crop treatment differed because wheat was included in all three 

rotations, but other crops and fallow were not. Each year there were 15 plots each of 

Figure 3.2 Experimental design. Three cropping rotations were established (F-WW-SW 
(yellow), WP-WW-SW (green), CC-WW-SW (purple)) (A). This block was replicated five 
times in the field, with one of the blocks situated adjacent to the rest of the trial (B). 
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winter wheat and spring wheat, and five plots each of winter pea, cover crop, and 

fallow. 

Winter wheat and winter pea crops were planted on 25 Sep. 2018. Spring 

wheat and cover crop plots were planted on 25 April 2019. Crop varieties are Jasper 

winter wheat, WB9518 spring wheat, and Windham winter pea. The cover crop mix 

included barley (22.4 kg/ha), oat (22.4 kg/ha), pea (44.8 kg/ha), sunflower (1.1 

kg/ha), and turnip (1.4 kg/ha). Fallow plots were treated with glyphosate and 2,4-D on 

19 April, 11 June, and 19 July 2018, at 3.2 liters/hectare. Winter wheat herbicide 

treatments were Anthem Flex (FMC Corp.) at .32 l/ha on 28 Sep 2018, Brox-2EC 

(Albaugh Inc.) at 2.3 l/ha on 1 April 2019, and Huskie (Bayer CropScience LP) at 1.1 

l/ha, MCPA-Amine (Albaugh Inc.) at 1.2 l/ha, and Affinity BS (FMC Corp.) at .7 ml/ha 

on 21 June 2019. Spring wheat herbicide treatments include glyphosate and 2,4-D at 

2.3 l/ha on 19 April 2019 and Bronate (Bayer CropScience LP) at 1.8 l/ha and Axial 

Star (Syngenta) at 1.2 l/ha on 11 June 2019. Winter pea herbicide treatments include 

Anthem Flex (FMC Corp.) at .32 l/ha, Diurex at 3.7 l/ha, and Spartan (FMC Corp.) at 

.6 l/ha on 28 Sep 2018, Tricor (United Phosphorous Inc.) at 0.2 ml/ha on 1 April 

2019, Assure II (AMVAC Chemical Corp.) at 0.6 l/ha on 21 June 2019, and 

Gramoxone SL (Syngenta) at 2.3 l/ha on 22 July and 29 July 2019. Winter pea 

insecticide treatments include Mustang Max (FMC Corps.) at .3 l/ha and Digon 400 

(Wilbur-Ellis Company Inc.) at 0.4 l/ha on 11 June and 1 July 2019. Harvest dates 

were 12 July, 2 Aug., 20 Aug., and 27 Aug. for cover crop, winter pea, winter wheat, 

and spring wheat, respectively.  

 

Sentinel Stations    

Removal rates of the seed of the three weed species, B. tectorum, C. album, 

and A. cotula were measured using sentinel seed stations. Sentinel seed stations 

(Figure 3.3A) (Honek et al. 2003) were constructed of Petri dish bottoms (100mm x 

15mm, polystyrene, Fisher Scientific, Inc.) that were filled with sulfur-free plasticine 

clay (EnvironMolds, LLC). Anthemis cotula seeds were collected from ten farms 

within 95 km of the trial location in the summer of 2018. Bromus tectorum seeds were 
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collected from B. tectorum 

common garden 

experimental plots within 

95 km of the study site. 

Chenopodium album 

seeds were collected from 

one chickpea field within 

95 km of the study site. 

Seeds from C. album and 

A. cotula were one year 

old, and seeds from B. 

tectorum were c. two years old. All seeds were stored in paper envelopes at ambient 

lab temperature until use in this study. Twenty seeds of each of the three weed 

species were pressed into the clay of each station so that approximately half of each 

seed was exposed to potential predators. Seeds from each species occupied 

approximately one-third of the surface area of each seed station. Seed locations 

among species within the clay were randomized. Seed stations were reused for each 

trial. Seed stations (N = 90) were placed flush with the soil to not impede the 

movement of seed feeders and to minimize seed loss due to wind. Four trials were 

conducted during the 2019 season. All seed stations were exposed in the field for 

one week and the remaining seeds were counted immediately following removal from 

the field. Station placement and collection occurred between the hours of 10:00 am 

and 12:00 pm for four one-week periods during the season: 28 June - 5 July, 19 July 

- 26 July, 1 Aug. - 8 Aug., and 16 Aug. - 23 Aug. 2019. Crops were harvested 

throughout the duration of this field experiment. All crops had emerged by the first 

trial date. Cover crop plots were harvested before the second trial date; winter pea 

plots were harvested before the third trial date; and winter wheat plots were 

harvested before the fourth trial date. Before each new trial, seeds that remained on 

stations from previous trials were removed, the stations were washed, and the clay 

was heated and resmoothed. Stations were retrieved from the field and seed removal 

was assessed in the laboratory. Partially consumed seeds were rarely observed but 

Figure 3.3 Seed stations used to determine seed predation rates. 
Seed trays (A) had 20 seeds of each weed species. Stations had 
open and closed treatments to differentiate vertebrate and 
invertebrate seed predation (B). 



 
 

 

45 
 

 
were counted as fully removed from the station because they would not mature to a 

viable plant.  

To differentiate seed removal due to invertebrates and vertebrates, exclusion 

cages (13cm x 5cm boxes made from hardware cloth with 12mm x 12mm mesh size) 

(Figure 3.3B) were placed over half of the seed stations in each plot. Potential 

vertebrate seed predators in this system include birds and small mammals (Cardina 

et al. 1996; Cromar et al. 1999). Invertebrate seed predators present in these plots, 

based on pitfall samples taken throughout the season included species of Carabidae, 

Formicidae, and Gryllidae (Chapter 2). The most abundant granivorous Carabidae 

genera captured were Harpalus, Amara, and Poecilius. 

 

Laboratory Bioassays 

Bioassays were conducted in the fall and winter of 2020-2021. Seeds of B. 

tectorum, C. album, and A. cotula for the bioassays had the same sources described 

for the field experiment above. Adult carabid beetles (Amara spp.) were live caught in 

dry pitfall traps at the University of Idaho’s Soil Stewards Farm (46.736729, -

117.022338) between October and November 2020. Amara spp. were selected due 

to their high trapping rates at this collection site and in the St. John field site 

compared to other granivorous genera. Beetles were placed individually into “rest 

trays” consisting of 100mm Petri dishes with a 4cm2 moistened paper towel to 

provide water and shelter between trials (an average of seven days). No food was 

provided to beetles while they were held in rest trays.  

 Experiment 1: Three-way choice trial with A. cotula, C. album, and B. 

tectorum. Trial trays were made by lining the bottom of 100mm Petri dishes with 

moistened filter paper and placing five seeds of each species on the filter paper. 

There were three treatment groups in each dish, one for each weed species. Forty 

beetles were placed individually in trial trays and left for 12 hours after which they 

were moved back to their rest trays. Each beetle underwent 17 trials from 13 Nov. 

2020 to 8 Dec. 2020. The number of seeds partially and wholly consumed was 

recorded at the completion of each trial. 
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 Experiment 2: Basis of avoidance of A. cotula seed by seed predators. Based 

on the results of the field trial and Experiment 1, seed of A. cotula was removed less 

than the other two species. To determine the basis of this discrimination, seeds of A. 

cotula were treated to remove potential defenses. The species is known for the 

strong scent of its flowers, which are unpleasant for most humans (Adhikari et al. 

2020) suggesting that the seeds may be chemically defended. Anthemis cotula seed 

was treated with two chemical rinses, n-hexane and methanol to remove compounds 

of different polarity. A third treatment to disrupt physical defenses by breaking open 

the pericarp was performed. For each of the rinses, 20 seeds were put into a 50 mL 

beaker with hexanes (99.9%) or methanol (99.9%) to completely cover them (c. 25-

30 mL). The suspended seeds were swirled by hand for 30 seconds and poured onto 

filter paper to completely dry. Disrupting the physical barrier was done by holding a 

seed with forceps, grasping the funiculus end of the seed, and using a razor blade to 

cut through the pericarp or seed coat (depending on weed species) until roughly one-

third of the seed was visible within. Fifteen surviving individual Amara from 

Experiment 1 were randomly placed into four test groups of three or four individuals. 

Each test group was then presented with A. cotula seeds from one of the four 

treatments in a no-choice test: hexane rinse, methanol rinse, pericarp breached, or 

control. Trial trays for Experiment 2 were constructed as described above with 20 

seeds of A. cotula from each treatment placed on the filter paper. Beetles were 

placed in trial trays for 12 hours, for four trial periods. The number of seeds partially 

and wholly consumed was recorded at the completion of each trial.  

Figure 3.4 Example of 'cut' pericarp or seed coat for B. tectorum (A), A. cotula 
(B), and C. album (C). Each photo shows one seed that has had physical barriers 
breached, along with two intact seeds. 
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 Experiment 3: Determine if cutting the pericarp or seedcoat affects relative 

predation on the three weed species by Amara spp. The pericarp from A. cotula and 

C. album, and the seedcoat from B. tectorum were cut using the procedure described 

above to expose approximately one-third of the seed (Figure 3.4). Fifteen Amara spp. 

underwent a three-way no-choice trial with five seeds from each species. Exposure 

time was 12 hours, for five trial periods. The number of seeds partially and wholly 

consumed was recorded at the completion of each of the five trials. 

 

Statistical Analysis 

 For the field seed removal experiment, the response variable ‘number of 

seeds removed per station/20’ was arcsin(square-root(x))-transformed for analysis to 

satisfy assumptions of normality and homogeneity of error variances. All statistical 

analyses were done in RStudio open-source software R version 4.0.2 (R Core Team 

2020). Tests used the lm function and when effects were significant, contrasts were 

conducted using the ‘emmeans’ package. 

 A 4-way Analysis of Variance (ANOVA) was performed to determine the 

impacts of ‘crop’ (five levels), ‘cage’ (two levels), ‘weed species’ (three levels), and 

‘date’ (four levels) on seed removal (Table 3.1). A p-value  0.05 was considered 

significant. The following hypotheses were tested using contrasts: (HF1) seeds of the 

three species are not removed at different rates; (HF2) seed removal rates across and 

within species do not depend on crop; (HF3) seed removal rates by invertebrate 

predators do not differ from removal rates by vertebrate predators; and (HF4) seeds 

are not removed at different rates throughout the growing season. 

 For the laboratory bioassays, the response variable ‘seeds consumed per trial’ 

was arcsin(square-root(x))-transformed to satisfy assumptions of normality and 

homogeneity of error variances. Figures show untransformed data. A generalized 

linear model was used to fit the data to test the following hypotheses: (HL1) Amara 

spp. beetles have no preference between A. cotula, B. tectorum, or C. album seeds; 

(HL2) There are no differences in seed removal rates among species after seeds are 

treated with solvents to remove putative chemical defenses; and (HL3) There are no 
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differences in seed removal rates among species after seed coats are breached to 

remove putative physical defenses.  

 Partially and wholly consumed seeds were counted as consumed for this 

analysis. A p-value  0.05 was considered significant. Trials in which no seeds in any 

treatment were consumed (non-events) were removed from the dataset prior to 

analysis. Ten out of 42, 135 out of 217, 90 out of 437 non-events occurred in 

experiments 1, 2, and 3 respectively. Weed species was the only explanatory 

variable used in models for experiments 1 and 3, while seed defense removal 

treatment was the explanatory variable for experiment 2. Significance of treatment 

was assessed using the anova function from the ‘car’ package. Data visualizations 

were made with the ‘ggplot2’ package in R.  

Table 3.1 ANOVA table for weed seed 
predation field trials. 
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Results 

Field Trials 

 The effects of weed species, crop, and trial date on weed seed removal rates 

were significant, as was the interaction between weed species and trial date (Table 

3.1). Total seed removal differed among crops (p < 0.001), with fallow plots having 

the greatest total seed removal compared to other crops (p < 0.001) (Figure 3.5A). 

Total seed removal differed among weed species (p < 0.001). Removal of B. 

tectorum seeds was greater than C. album or A. cotula seeds (p < 0.01) (Figure 

3.5C), but this was driven primarily by the much greater rate of removal of B. 

tectorum in the final sample date (Figure 3.6A) (p < 0.001), accounting in part for the 

interaction between seed species and date (p < 0.001). The greater removal of A. 

Figure 3.5 Effect of crop (A), date (B), weed species (C), and cage treatment (D) on weed seed 
predation from field trials. Different letters denote significant difference in means. 
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cotula on the 26 July also contributed to the interaction (Figure 3.6A). Total seed 

removal was greater in later trials compared to earlier trials (p < 0.001) (Figure 3.5B). 

Seed removal rates were not significantly different between caged and uncaged seed 

trays (Figure 3.5D).  

 

Laboratory Bioassays 

Total seed consumption by Amara spp. across trials differed among weed 

species with a total of 90, 67, and 14 seeds consumed of B. tectorum, C. album, and 

A. cotula respectively (p < 0.01). Anthemis cotula seeds were consumed at a 

significantly lower rate than B. tectorum or C. album (p < 0.01) (Figure 3.7A). 

Consumption of A. cotula seeds with treatments to remove possible defenses 

differed; those that had the pericarp physically broken open were consumed in 

greater numbers than seeds that were rinsed with either methanol or hexane and 

Figure 3.6 The interactions between weed species and date (A) and cage type and date (B) also 
had significant effects on weed seed removal. 
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untreated controls (p < 0.001) (Figure 3.7B). When all three weed species with 

pericarp broken were tested in a three-way choice test, consumption differed among 

them (p < 0.01); consumption of B. tectorum was significantly less than consumption 

of C. album or A. cotula (p < 0.01) (Figure 3.7C).  

 

Discussion 

Seed removal rates of three important weed species were assessed 

throughout the season from a replicated field trial in the iPNW. We hypothesized that 

(HF1) seed removal across and within weed species depends on crop; (HF2) removal 

rates are dependent on weed species; (HF3) removal rates of seeds differ throughout 

the growing season; and (HF4) removal rates differ between exposure to invertebrate 

or both vertebrate and invertebrate predators. 

Figure 3.7 Weed seed consumption from experiments one (A), two (B), and three (C) of the seed 
preference bioassays. 
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Seed removal differed among crops, with the greatest consumption occurring 

for seed placed within fallow treatments. Most studies report that weed seed 

predation generally increases with vegetation cover. For example, weed seed 

predation was measured in conventionally managed soybean, with and without red 

clover cover, and compared to weed seed predation in fallow plots by Blubaugh et al. 

(2016), who found that clover cover increased the likelihood of carabid beetles 

feeding on C. album seeds by 75%, compared to bare ground. Meiss et al. (2010) 

compared predation rates of Viola arvensis (field pansy), Alopecurus myosuroides 

(black grass), and Sinapis arvensis (wild mustard) in alfalfa, cocksfoot, and bare 

ground and found that weed seed predation was significantly greater in uncut alfalfa 

fields compared to bare ground. Unlike these prior studies, weed seed removal was 

greatest from fallow, regardless of weed species. The fallow treatment in this study 

was unseeded and herbicide applications of glyphosate and 2,4-D (3.2 liters/hectare) 

took place on 3 April and 15 June to control weeds. Greater seed removal in fallow 

could be due to microclimate on bare ground favoring mobility and foraging by seed 

predators. Some studies have measured weed seed predation in fallow fields 

(Williams et al. 2009; Baraibar et al. 2017) but information is still lacking. Williams et 

al. (2009) reported 69-91% removal of Abutilon theophrasti (velvetleaf) and Setaria 

faberi (bristlegrass) in maize-corn rotations, though there was considerable variation 

in seed predation between years. Baraibar et al. (2017) examined Lolium rigidum 

(rigid ryegrass) and Galium aparine (catchweed bedstraw) seed predation in summer 

fallow fields with conventional or no-tillage and reported 62% and 49% predation, 

respectively. Results from Baraibar et al. (2017) suggest that leaving fields untilled 

may reduce inputs to the weed seed bank.  

Weed seed removal rates also differed among weed species, with A. cotula 

removed less than the other species on three of four sample dates and based on an 

overall mean across all dates, except for the first trial period. Seeds of different 

species are often taken at different rates by carabids (Honek et al. 2007; White et al. 

2007; Kulkarni et al. 2016) but none of these studies evaluated A. cotula. Differential 

seed removal rates can be attributed to size of the seed, size of the seed consumer, 

hardness of seed coat or pericarp, and nutritional content of the seed (Kulkarni et al. 
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2015; Sarabi 2019). Bromus tectorum removal rates were much greater than other 

species in the final trial period, which could be due to granivore community shifts 

within the season, the availability of alternative prey sources decreased later in the 

season, or the stage of crop altered conditions and the relative vulnerability of seeds 

in the field. There was not a change in the effect of vertebrate exclusion cages that 

could indicate more rodent or bird activity later in the season.   

Trial date had a significant effect on seed removal rates. Overall seed removal 

was lowest in the first trial period, initiated on 5 July, with around 2.5 seeds/seed tray 

removed. There was an increase in seed removal on the second trial date, in which 

an average of 4.5 seeds/seed tray were removed. Seed removal was relatively 

consistent for the third and fourth trial dates, with 3.5 and 4 seeds/seed tray removed 

on 9 Aug. and 23 Aug. 2019 respectively. Lower removal rates in the first trial period 

could be due to all four crops being present at the study site. Throughout the season, 

crops were harvested at different dates, which could have affected conditions on the 

ground and seed removal rates. A spike in seed removal rate in cover crops occurred 

after their harvest on 12 July, but a similar effect was not observed after harvests of 

the other crops.  

There was an interaction between weed species and trial date. Anthemis 

cotula removal was consistent across dates. Seeds of other species were removed at 

variable rates throughout the trial. Chenopodium album seed removal was highest 

during the 19-26 July 2019 trial period, and B. tectorum seed removal was highest 

during the 16-23 Aug. 2019 trial period. Shifts in relative removal rates of weed 

species throughout the season could reflect shifts in the seed predator community, 

changes in preferences of individual species within that community over the season, 

or both. The community of epigeic arthropods shifted throughout the season based 

on pitfall samples (Chapter 2). 

Pitfall trapping captured more carabids than other granivorous taxa from the 

fallow plots throughout the season, though activity-density of granivorous taxa were 

comparable between fallow and spring wheat plots. Carabids are often considered 

important in agroecosystems, as they are generally omnivorous, feeding on small 

invertebrates and opportunistically feeding on seeds (Kulkarni et al. 2015; Blubaugh 
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et al. 2016). Numerous factors contribute to the efficacy of granivores in 

agroecosystems. Crops that have not reached senescence may be host to alternative 

prey sources to granivorous arthropods. Carabid beetles are facultative seed 

predators and also consume arthropod prey. Based on pitfall data, more prey taxa 

(aphids, thrips) were present under crops and cover crops than in fallow. The 

availability of these animal prey may have reduced seed consumption by predators in 

our study. 

  The basis for the differences in consumption by a key seed predator of 

different weed seed species was examined with laboratory bioassays. We 

hypothesized that (HL1) feeding on seeds by Amara spp. depends on the species of 

seed; (HL2) seeds of A. cotula are chemically defended from predation; and (HL3) 

seeds of A. cotula, B. tectorum, and C. album are physically defended from 

predation. The focal predators for these bioassays, Amara spp., were chosen to be 

representative of later season dates based on their prevalence in pitfall samples. 

Amara spp. are effective seed predators (White et al. 2007; Kulkarni et al. 2016), 

though their small size constrains the size and number of seeds they can consume 

per capita (Honek et al. 2003).  

To determine the basis of lower predation rates of A. cotula by Amara spp., 

two laboratory bioassays were conducted focused on chemical and physical 

defenses. Chemical and physical characteristics differ among the three species 

tested. Anthemis cotula is known as stinking chamomile because of its offensive 

floral odor (Adhikari et al. 2020), and some of those odorants may be present in the 

seed and function as deterrents to seed predators. The small size and hardness of 

the seed may also contribute to low rates of A. cotula removal in the field. Rinsing A. 

cotula with a nonpolar solvent (hexane) or methanol to remove or disrupt chemical 

defenses had no effect on the consumption of these seeds in bioassay. Disrupting 

physical defense by cutting the pericarp, in contrast, greatly increased A. cotula seed 

consumption in bioassay. When the pericarp of all three species was cut to disrupt 

the physical defenses, A. cotula seed removal was similar to C. album and both 

greater than B. tectorum. The preference by Amara spp. for A. cotula seed when 

physical barriers are removed by cutting the pericarp could be attributed to gustatory 
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cues present in the seed, the nutritional quality of the seed, or both. To my 

knowledge, this is the first time chemical defenses of A. cotula have been tested in a 

seed predation experiment.  

Low rates of A. cotula removal from the field trials are consistent with near 

rejection of A. cotula seeds in laboratory experiment 1, though it is possible that other 

seed predators are less discriminating in the field. Results from laboratory experiment 

3 indicate that the seeds tested here could have physical barriers that limit granivore 

consumption in the field, contributing to the low consumption rates observed in the 

field study.  

 

Implications 

 Seed removal is greater in fallow compared to other crops, which could mean 

that the fallow period is an important phase of dryland production systems that 

facilitate seed predator movement in the field. This could mean complications for 

weed management as growers make moves towards diversified wheat cropping 

systems in the iPNW. In iPNW cereal systems, the widely implemented practice of 

fallowing seems to improve weed seed biological control 

Anthemis cotula is a successful invasive annual weed (Adhikari et al. 2020) 

and the results here suggest that low rates of post-dispersal seed predation may 

contribute to the plant’s invasive nature. The physical defenses of A. cotula seed 

against seed predation could contribute to the invasiveness of A. cotula (Adhikari et 

al. 2020). Chenopodium album seeds can persist in the seed bank for at least 20 

years (Davis et al. 2008). Individual A. cotula plants can produce anywhere from 

5,000 to 27,000 seeds that have the potential to be viable for 25 years in the soil 

(Darlington 1931; Rashid et al. 2007) but the persistence of A. cotula in the seed 

bank is unknown (Adhikari et al. 2020). Most (96-99%) of B. tectorum seeds 

germinate within the first two years of being added to the seed bank (Burnside et al. 

1996; D. C. Smith et al. 2008). Blubaugh et al. (2016) found a 38% reduction in weed 

emergence that could be attributed to seed predators. A recent study found a 

reduction of the seedbank by carabids just prior to crop harvest, but found that 
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granivore activity-density had no significant effect on seedbank reduction (Carbonne 

et al. 2020). 

 

Limitations 

Limitations of the study are methodological: there was a single location and 

season for the field study and there were three seed predator species as the focus 

for the laboratory bioassays. Amara spp. were caught in pitfall traps in crop plots in 

St. John, Washington, but a different population was used in the bioassays; two of 

the species overlapped, but one was unique to the Soil Stewards Farm. The seed 

predators responsible for seed removal in field trials were not determined here. Two 

pitfall traps placed within the plots were used to determine the activity-density of 

potential granivores (Chapter 2), but direct observation was not made of what 

species were removing seeds from the stations. Anthemis cotula seeds used in the 

bioassay were collected from flower heads and dried. In the field, seeds will be 

hydrated, and some may be several years old (Adhikari et al. 2020). Seeds of these 

species may differ in how readily they are taken after they have been in the soil 

environment. 
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Appendix A – Legacy Effects 

 

Figure A0.1 Abundance (A), diversity (B), and evenness (C) of epigeic community in winter wheat 
plots, based on the previous year's crop. 

Figure A0.2 Abundance (A), diversity (B), and evenness (C) of granivorous community in winter wheat 
plots, based on the previous year's crop. 
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Figure A0.3. Abundance (A), diversity (B), and evenness (C) of the predator community in winter 
wheat plots, based on the previous year's crop. 
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Appendix B – Whole Arthropod Community Analysis 

 
Table B1. ANOVA results from whole community analysis. 

  

St. John Genesee 

2018 2019 2018 2019 

F df P F df P F df P F df P 

Activity-
density             

 Crop 3.159 4, 38 0.025 8.682 4, 36 0.0001 6.526 4, 36 0.0005 7.586 3, 32 <0.0001 

 Date 258.854 1, 360 <0.0001 81.675 1, 262 <0.0001 87.764 1, 106 <0.0001 38.471 1, 115 <0.0001 

 Crop*Date 4.677 4, 360 0.001 0.274 4, 262 0.894 2.848 4, 106 0.028 15.629 3, 115 <0.0001 

Simpson's 
Diversity             

 Crop 2.652 4, 38 0.048 2.716 4, 36 0.044 5.551 4, 36 0.001 4.095 3, 32 0.014 

 Date 6.307 1, 360 0.012 64.089 1, 262 <0.0001 0.043 1, 106 0.834 3.919 1, 115 0.050 

 Crop*Date 0.0598 4, 360 0.664 3.939 4, 262 0.004 3.505 4, 106 0.010 2.21 3, 115 0.091 

Simpson's 
Evenness             

 Crop 4.541 4, 38 0.004 1.817 4, 36 0.146 4.402 4, 36 0.005 3.111 3, 32 0.039 

 Date 66.224 1, 360 <0.0001 74.936 1, 262 <0.0001 6.272 1, 106 0.014 5.092 1, 115 0.026 

  Crop*Date 0.719 4, 360 0.579 1.221 4, 262 0.303 1.538 4, 106 0.197 4.667 3, 115 0.004 
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Table B2. Means table for whole trappable community. 

Site Year Crop Activity-Density Diversity Evenness 

St. John 2018 Cover Crop 19.35±2.71 3.67±0.25 0.12±0.03 

  Fallow 18.83±2.97 3.98±0.31 0.11±0.03 

  Spring Wheat 24.08±2.85 3.15±0.13 0.19±0.02 

  Winter Pea 16.37±5.09 2.79±0.20 0.19±0.04 

  Winter Wheat 9.77±1.02 2.75±0.11 0.27±0.03 

 2019 Cover Crop 25.00±3.73 5.26±0.43 0.09±0.04 

  Fallow 16.92±1.58 3.96±0.29 0.06±0.01 

  Spring Wheat 15.98±1.17 5.08±0.19 0.05±0.01 

  Winter Pea 35.78±4.11 3.63±0.33 0.07±0.02 

  Winter Wheat 11.49±0.79 4.10±0.19 0.11±0.02 

Genesee 2018 Chickpea 13.57±1.98 2.88±0.27 0.23±0.04 

  Cover Crop 22.53±8.40 2.99±0.32 0.18±0.07 

  Spring Wheat 33.20±5.39 2.95±0.23 0.11±0.02 

  Winter Pea 62.81±28.07 2.85±0.33 0.08±0.01 

  Winter Wheat 8.50±1.61 2.29±0.16 0.35±0.05 

 2019 Chickpea 18.23±2.19 3.25±0.20 0.13±0.03 

  Cover Crop       

  Spring Wheat 39.89±7.86 3.53±0.23 0.10±0.03 

  Winter Pea 85.10±9.12 1.73±0.10 0.09±0.02 

    Winter Wheat 17.78±1.73 3.79±0.22 0.13±0.03 
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Appendix C – Seed Bank Composition 

 
 
 
 
 
 
 
 
 
 
 

Figure C0.1 Weed biomass sampled from each crop at St. John, Washington (A) and Genesee, 
ID (B) in 2019. 
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Figure C0.2 Seed bank counts by crop and species at St. John, WA (A) and Genesee, ID 
(B). 
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Figure C0.3 Anthemis cotula headcount at St. John, WA (A) and Genesee, ID (B). Flower heads were 
counted from the weed biomass samples. 
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