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ABSTRACT 

In order to meet the demands of industries and academic research, a cost effective 

temperature control system was developed to provide accelerated heat up rates between 

5-10°C/sec. This apparatus was used to perform tensile tests on a 70XX series aluminum 

alloy to determine mechanical properties at elevated temperatures. 

The automated temperature control system is comprised of two propane torches which 

heat each end of a tensile specimen during elevated temperature testing. Specimen 

temperatures are controlled by a PID algorithm which regulates stepper motor position 

and thus propane torch flame intensity. User inputs to the system are provided via a 

graphical user interface, with overall system control provided by an Arduino 

microcontroller. 

Successful testing of the 70XX series aluminum alloy occurred at temperatures of 25°C, 

225°C, and 425°C and strain rates of 0.05/sec and 0.5/sec. The results clearly show a direct 

relationship between increased temperatures and material elongation. Yield and ultimate 

tensile strength, however, decreased in value as temperature increased. Strain rate had an 

opposite effect on material properties and elongations as elevated temperatures, causing 

yield strength and ultimate tensile strengths to increase and elongation to decrease. 
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CHAPTER 1: INTRODUCTION 

Industries dependent upon material behavior are continuously seeking new technologies 

to increase the performance of materials and to reduce production costs. Depending on 

the material and application, extremely large amounts of research and testing go into 

product development, with studies focusing on a variety of material properties. For 

example, Boeing focused on improving aluminum and titanium alloys to reduce weight for 

the design of the 777. This led to higher strengths, toughness, and corrosion resistance in 

7000 and 2000 series aluminum alloys, and increased damage tolerance, corrosion 

resistance, and temperature resistance in titanium alloys [1].  

Of particular interest to the research in this thesis is the testing of materials at elevated 

temperatures. This testing occurs in a variety of fields, such as the nuclear industry and in 

structural development. The nuclear industry performs oxidation tests at elevated 

temperatures to obtain data on advanced oxidation as well as oxidation resistance [2], 

while other research has investigated the effects of high temperature exposure to static 

and dynamic mechanical properties of cement [3]. Definition of material properties at 

elevated temperatures is also critical to the metal casting industry. As technologies 

improve, analytical models have been created to predict the material behavior of cooling 

casts to prevent cracking and unwanted residual stresses. These models rely heavily upon 

research and accurate thermo-mechanical data [4].  

Current high temperature testing methods typically rely on resistance heating that can be 

initiated from a variety of devices. Direct resistance heating passes an electric current 
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directly through the material to heat it based on the material’s resistance. Induction 

heating however, does not directly contact the subject that is to be heated, but rather uses 

a magnetic field to induce an electric current in the material which then heats through 

resistance. Both of these types of heating apparatuses provide quick heat up times, but can 

be fairly expensive to own and operate. Alternatively electric resistance heaters can be 

employed, as they are inexpensive and easy to use. The heaters themselves are heated by 

an electric current through resistance heating, but then transfer this heat to the specimen 

indirectly. Because of this, electric resistance heaters are less efficient and have slower 

heat up times.  

1.1 OBJECTIVES 

Due to barriers in elevated temperature testing, such as low heating rates and high costs, 

the objective of this research was to: 

1. Develop a cost effective, elevated temperature testing apparatus that can be used 

in conjunction with a servo-hydraulic testing frame. Requirements of the device 

include maximum temperatures of 470°C, and heating rates between 5-10°C/sec. 

Costs were to be held to a minimum, with a goal of under $1000. 

2. Perform elevated temperature tensile tests to validate the temperature control 

system and determine mechanical properties of a 70XX series aluminum alloy. 

Tests were performed at three different temperatures: 25°C, 225°C, and 425°C and 

two different strain rates: 0.05/sec and 0.5/sec. Specifically, percent elongation, 

0.2% yield strength, and ultimate tensile strength values were to be analyzed and 

evaluated.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter will provide a brief background on the material behavior and temperature 

affects to material properties of aluminum alloys. Standards and procedures for elevated 

temperature tensile testing will also be discussed. Because the testing apparatus 

developed in this thesis focuses on the elevated temperature testing of a 70XX series 

aluminum alloy, the standards and procedures referenced are those applied to metallic 

alloys; however, in theory the same testing processes may be applied to non-metals as 

well. Current elevated temperature testing facilities and technology will also be reviewed, 

as will concepts pertinent to temperature control systems, such as the implementation of 

PID process controllers. 

2.1 BEHAVIOR AND PROPERTIES OF ALUMINUM ALLOYS 

Elevated temperature testing is commonly performed during the development of metallic 

alloys and aids in the prediction of material behavior in extreme environments [5]. For 

example, environmental temperature and time spent at that temperature may affect both 

a material’s composition and its microstructure [6]. The following sections will discuss the 

material behavior of aluminum alloys and the effects of temperature on material 

properties. 

2.1.1  FCC ALUMINMUM BEHAVIOR 

Aluminum alloys are polycrystalline structures formed from multiple small crystals 

arranged in varying orientations. These small crystals are referred to as grains, while the 

edges between crystals are called grain boundaries. The grains are comprised of a lattice of 
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atoms occurring in regular, repetitive patterns similar to a grid. There are 14 unique lattice 

arrangements, which result in specific mechanical properties. For example, aluminum has a 

face centered cubic (FCC) lattice, as depicted by the unit cell in Figure 2.1, which allows 

atoms to be packed as tightly as possible in a cubic formation. The FCC arrangement has an 

atom positioned at each corner of the cube as well as along each face of the cube. For 

metals, deformation occurs more readily along directions of the cube where atoms are in 

closest proximity to one another. These directions and planes of atoms can be described 

for any lattice structure using Miller indices. FCC aluminum may have a close packed plane 

of the form {111} along the <1̅10> direction as depicted in Figure 2.1, as well other planes 

and directions occurring along the diagonal of the cube [7].  

Deformation in polycrystalline metals begins with dislocations, or line imperfections, in the 

 

Figure 2.1: FCC Unit Cell, from [8] 
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crystal. These can occur during solidification of the material and when applied loads are 

great enough to cause dislocations. The movement of dislocations through crystals is 

known as slip, and occurs along what are referred to as slip planes. A common slip system 

for FCC aluminum is the {111} plane along the <1̅10> direction. If slip occurs, only a small 

number of the metallic bonds throughout the crystal need to be broken to plastically 

deform the metal and directly affect the material’s strength. However, by interfering with 

slip, the mechanical properties of a metal can be controlled.  

One method for preventing the movement of dislocations is through the introduction of 

obstacles. Obstacles commonly take the form of interstitial defects which are sites in the 

crystal lattice where an extra atom is inserted. These atoms are typically larger than the 

interstitial site they occupy and cause compressive stresses in the crystal that resist 

dislocation movement. Grain boundaries also hinder dislocation movement. Because of 

this, metals with finer grains and larger grain boundary areas typically exhibit higher 

strengths. Smaller grain sizes effectively increase the distance that dislocations have to 

travel to form a void, and are affected by a cast metal’s cooling or solidification rate. Faster 

solidification rates typically lead to smaller grain sizes, while slower rates lead to larger 

grain sizes [7]. 

Alternatively various means of hardening can be applied to enhance the strength of 

aluminum. Manufacturers of aluminum alloys employ a variety of methods such as work 

hardening (cold working), solid solution hardening, dispersion hardening, and precipitation 

hardening. Cold working encompasses all rolling, extruding, drawing, bending, etc… of 
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aluminum products and is performed below the metal’s recrystallization temperature. This 

leads to dislocations on different slip planes interfering with one another’s movement, 

strengthening the material. Solid solution hardening is typical of most aluminum alloys as it 

involves alloying elements being dissolved in an aluminum base. Alloying atoms occupy 

positions or empty spaces in the aluminum lattice, causing it to distort and restrict the 

movement of dislocations, increasing the strength of the alloy. Dispersion hardening occurs 

when fine particles of an insoluble material are added to the base metal’s lattice to 

obstruct dislocation movement. For aluminum alloys, this may occur by either the addition 

of an alloy that chemically combines with the aluminum, or each other, to create fine 

particles that precipitate from the metal, or by combining specific particles with powdered 

aluminum and then compressing the mix into a solid. Lastly, precipitation hardening 

consists of a solution heat treatment followed by an ageing process. The solution heat 

treatment produces a supersaturated condition, and after quenching the material is 

artificially aged at a temperature above room temperature. Alloys that undergo 

precipitation hardening must contain enough soluble alloying elements to surpass the 

room temperature solid solubility limit. They must also be capable of dissolving the excess 

soluble alloying elements and then later precipitate them as components of the crystal 

lattice. Care must be given during the precipitation reaction such that the components do 

not become too coarse and detract from the strengthening potential of the precipitation 

hardening process [6].      
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2.1.2  TEMPERATURE AFFECTS ON MATERIAL PROPERTIES 

Most materials exhibit temperature dependencies, with yield strength, tensile strength, 

and modulus of elasticity decreasing at higher temperatures and ductility increasing. At 

higher temperatures it is common for the brittle nature of a material to be reduced and the 

ductility of the material to increase. The transition between these two fracture methods 

occurs at the ductile to brittle transition temperature, which is determined through impact 

testing. Although impact test results are not always related to tensile test results, materials 

with high strength and high ductility generally have good tensile toughness. Both test types 

are important for predicting material behavior in extreme environments [7].  

Aluminum alloys at elevated temperatures typically follow the same material property 

trend as other materials, except when it comes to the ductile to brittle transition 

temperature. Most FCC metals, such as aluminum, do not exhibit a distinct transition 

temperature, because the FCC crystal structure allows for higher absorbed energies and no 

transition temperature [7]. However, FCC aluminum properties such as tensile, shear, 

compression, bearing and fatigue strengths have been found to follow the established 

trends and decrease with temperature. These decreases in property values though do not 

extend to the process of age-hardening, which is performed at specific temperature ranges 

and for only certain periods of time. The elongation of aluminum is commonly found to 

increase with temperature. Cold temperatures typically have a reverse effect on material 

properties, resulting in increased tensile, shear, compression, bearing and fatigue 

strengths, and decreased elongations [6].  
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This effect can be seen in Figure 2.2 which depicts stress strain plots of 6061-T6, an FCC 

aluminum alloy. From the plots it can be seen that 6061-T6 aluminum is not only 

temperature dependent, but also strain rate sensitive [9]. Additional elevated temperature 

research has tested 6061-T6 at temperatures of 25°C, 100°C, 200°C, and 300°C and at 

strain rates of 10-4 s-1, 10-3 s-1, 10-2 s-1, and 10-1 s-1 with similar results. The FCC aluminum 

alloy was confirmed to be both temperature and strain rate sensitive with both yield 

strength and ultimate tensile strength values decreasing with a corresponding increase in 

temperature. No significant strain rate sensitivity was evident during room temperature 

(25°C) tests; however, it became much more prominent at higher temperatures. At 300°C 

the strain rate sensitivity was significant enough to result in a 20% decrease in elongation 

when the strain rate was decreased from 10-1 s-1 to 10-4 s-1 [10].  

 

Figure 2.2: Effects of Temperature and Strain Rate on  6061-T6 Aluminum, adapted from [9] 
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2.2 ELEVATED TEMPERATURE TENSILE TESTING 

The following section will discuss in detail tensile testing, stress strain curve generation, 

mechanical property calculations, and ASTM testing standards. Tensile tests provide the 

means, while generation of the stress strain curve provides the foundation for calculating 

mechanical properties. Standards for elevated temperature tensile testing appear in ASTM 

International E21. Testing standards specific to non-ferrous metal alloys is also discussed in 

ASTM International E21 [11].  

2.2.1  TENSILE TESTING AND MATERIAL PROPERTIES 

Tensile testing consists of placing a specimen in axial tension, increasing the load until 

failure, and recording the corresponding loads and displacements. By measuring the load 

and displacement stress and strain may be calculated, as defined in (2.1) and (2.2) 

respectively. In (2.1) and (2.2), σ is engineering stress, ε  engineering strain, P the applied 

load, Dmin the minimum diameter of the specimen, L the gauge section length, and Lo the 

original gauge section length. 

 𝜎 =  𝑃 𝐴⁄ =  𝑃 (𝐷𝑚𝑖𝑛
2⁄ ∗ (𝜋/4)) (2.1) 

 𝜀 = ∆𝐿 𝐿𝑜⁄ =  (𝐿 − 𝐿𝑜) 𝐿𝑜⁄  (2.2) 

When plotted, these values comprise what is known as the stress strain curve, from which 

material properties may be calculated. Figure 2.3 illustrates characteristic tensile stress 

strain curves for mild steel, copper, and aluminum specimen. Strain is plotted on the x-axis, 

while stress values are plotted on the y-axis. For most metals, the initial portion of the 

stress strain curve is linear, and is described as the elastic region. This region follows 
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Hooke’s Law, as defined in (2.3), for a uniaxial stress state. The specimen will not 

experience permanent deformation unless the applied load exceeds the elastic limits.  

 𝜎 =  𝜀 ∗ 𝐸 (2.3) 

σ and ε have previously been defined, however, E is Young’s Modulus of Elasticity. It is 

defined as the slope of the linear portion, and is a ratio of stress to strain. When the load 

exceeds the maximum limit, the stress strain curve will start to bend over and the 

specimen will start to experience permanent deformation. Yield strength, or yield stress, 

and ultimate tensile strength (UTS) values may also be determined from the stress strain 

curve after it bends over outside the linear region. For ferrous metals the yield stress is 

typically a well-defined point, where it can visually be seen that the linear region has 

reached its maximum limit.  

 

Figure 2.3: Stress Strain Curves of Various Materials, from [12] 
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However, for non-ferrous metals this point is less evident and is defined by extending and 

offsetting the linear slope by 0.2%. This is called the 0.2% yield strength (YS). Because the 

research conducted for this thesis focuses on applications specific to aluminum alloys, YS 

will refer to the 0.2% yield strength unless otherwise specified. UTS calculations remain the 

same for both ferrous and non-ferrous metals, and are defined as the maximum stress, 

experienced by the specimen. For Figure 2.3, the highest point of each curve is used to 

generate UTS. 

Depending on the device used to record displacement measurements, stress and strain 

calculations may be categorized as pseudo, engineering, or true. The label “pseudo” is used 

for curves with strain values calculated using displacement values measured by the testing 

frame’s linear variable differential transformer (LVDT). When the LVDT is used, it is 

assumed that the majority of displacement in the load train occurs in the specimen gauge 

section due to its reduction in area, or the material’s response to elevated temperature. 

However, there is some minimal amount of strain occurring in the load train outside the 

specimen gauge section. Thus the curve is labeled as “pseudo” stress and strain. 

Engineering, and true stress-strain curves both measure displacement relative to the 

specimen gauge section, but calculate stress using different methods. Engineering stress-

strain curves make the assumption that reduction in cross-sectional area is minimal and 

that stress can be calculated using the original, minimum, cross-sectional area of the 

specimen. A true stress-strain curve on the other hand, requires the instantaneous 

calculation of stress and strain. In other words, the deformation in cross section must be 

measured and used to calculate the stress at any given instant in time for the duration of 



12 

the test. It is often difficult to obtain these measurements, and as a result a correlation has 

been developed relating the linear region of the engineering stress strain curve, in which 

no deformation occurs, to the true stress and strain, as defined in (2.4) and (2.5). σt 

represents the true stress while εt is defined as the true strain for the elastic region. 

 𝜎𝑡 =  𝜎 ∗ (1 + 𝜀) (2.4) 

 𝜀𝑡 =  ln(1 + 𝜀) (2.5) 

True fracture strength (TFS) may also be of interest and is the stress at which fracture 

occurs, as shown by (2.6) [13] where σfrac is the true fracture stress, Pfrac is the load at 

failure, and Dfrac is the specimen diameter at failure. 

 𝜎𝑓𝑟𝑎𝑐 = 𝑃𝑓𝑟𝑎𝑐 (𝐷𝑓𝑟𝑎𝑐 ∗ (𝜋/4)) ⁄  (2.6) 

Lastly, percent elongation measures the percent with respect to the original gauge length 

that the specimen deforms during a tensile test taken to failure. The following equation 

describes how to calculate percent elongation: 

 %𝐸𝑙𝑜𝑛𝑔 = ∆𝐿 𝐿𝑜⁄ = (𝐿 − 𝐿𝑜) 𝐿𝑜⁄  (2.7) 

 

Where %Elong stands for percent elongation, L is the measured specimen gauge length 

after failure, and Lo is the original specimen gauge length as is recorded before testing.  

2.2.2  TESTING STANDARDS 

To homogenize results across industries, the American Society for Testing and Materials, 

now recognized as ASTM International, was formed. ASTM International publishes 

standards and recommendations for use in research [14]. ASTM International E21 lists the 

recommended standards for tensile testing of metals and metallic alloys at elevated 
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temperatures. Key standards taken into account while developing the elevated 

temperature tensile testing apparatus are as follows [11]: 

 When the specimen gauge length is greater than 1” (25.4 mm), temperature should 

be measured at two separate locations along the gauge length. 

 The temperature gradient along the specimen gauge length should not vary more 

than +/- 3°C  

 At set-point (test temperature) the temperature should not vary more than +/- 3°C 

2.3 REVIEW OF AVAILABLE TECHNOLOGY 

When performing an elevated temperature test, the selection of a heating device is critical. 

Often, selection is highly dependent upon the device’s primary mode of heat transfer, 

although all modes need to be taken into account. For example, furnaces or ovens typically 

used in conjunction with testing frames provide the majority of heat transfer through 

radiation, but the heating elements are staggered vertically throughout the oven to 

account for natural convection. Other factors to consider include geometry of the heating 

device, limits of the mechanical testing apparatus, desired heating rates, process control, 

and the device’s responsiveness to a change in temperature. The following section 

introduces several high temperature testing facilities and the technologies available at 

each.  

2.3.1  GLEEBLE  

The U.S. Army Armament Research Development and Engineering Center, Benét 

Laboratories, used a Gleeble to assess the solid/liquid embrittlement of gun steels by 

copper. Three types of steels in un-notched and notched form were pulled to failure at a 
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stroke rate of 0.127m/sec. Temperatures ranged between 868°C and 1,100°C and 

specimen were heated to temperature in 3 seconds and held for a soak period for 10 

seconds. The tests found that embrittlement of copper plated steels occurred at 1,100°C, 

but that there was only minimal evidence for it occurring at lower temperatures [15]. 

The Gleeble systems is distinct in that it combines separately controlled thermal and 

mechanical testing systems [16] to provide physical simulations, or “the reproduction, on a 

laboratory scale and in real time, of the thermal and mechanical parameters of a real-world 

production process [17].” The Gleeble can reach heat up rates of 10,000 °C/sec to perform 

elevated temperature tensile, compressive, and torsional tests. These heating rates are a 

result of the Gleeble’s direct self-resistance heating mechanism, which passes an electric 

current through the gauge section while isolating specimen end sections for attachment to 

the mechanical test frame. The specimen gauge section heats up due to the resistant 

nature of its material. Time, applied current, material resistivity, and geometry all influence 

the heating rate of the specimen [16].  

Currently three models of the Gleeble exist. Basic applications covered by the Gleeble 3180 

include hot tensile tests, continuous casting simulations, weld HAZ simulations, melting and 

solidification tests, and heat treatment testing. The Gleeble 3500 and 3800 can facilitate 

these applications, as well as provide more functions and increased capabilities [18]. With 

increased functionality comes an increased cost. In 2010 the Department of the Navy 

estimated a total cost of $878,553.00 for either a Gleeble 3500 or 3800 with hot-torsion 

and HydraWedge capabilities, a required vacuum pumping system, water chiller, high flow 
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quench system, mounting gauge spacer clips, strip heaters,  heat control shims, installation 

of the system, and training of personnel [19]. The University of Cape Town in Southern 

Africa also purchased a Gleeble 3800 in 2012 that cost approximately $900,000.00 [20]. 

2.3.2  INDUCTION HEATERS 

BAM Federal Institute for Materials Research and Testing employs an induction heater for 

the thermo-mechanical testing of ceramic matrix composites. Specimen can be tested in a 

vacuum or inert gas at temperatures up 1,700°C or in air up to 1,500°C to determine 

properties such as tensile strength, stiffness, and elastic/plastic deformation behavior. The 

testing apparatus consists of a 100 kN servo-mechanical testing machine coupled with an 

integrated chamber. Specimens inside the chamber are heated by radiation through the 

induction heating of susceptors surrounding the test piece [21]. 

Induction heaters are commonly used to heat conductive materials, such as metal, for use 

in metalworking, heat treating, welding, and melting; however, they can also be modified 

for the heating of non-metallic materials. The induction heater operates by inducing 

electrical currents within a metal, or work piece, using an induction coil, metal work piece, 

and an alternating current power supply. The induction coil is typically made out of copper 

tubing, to enable water cooling, and is formed in coils around the work-piece. An 

alternating current is passed through the coil to generate an alternating magnetic field. 

This field induces an electric current, or eddy current, which raises the work-piece 

temperature through Joule heating. Joule heating occurs when the work-piece’s natural 
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resistance to electrical currents produces heat. Ferrous materials, such as iron, respond 

best to induction heating because they are ferromagnetic [22]. 

Effectiveness of the induction heater relies heavily upon geometry of the work-piece and 

induction coil, work-piece material, and magnitude and frequency of the applied ac 

current. When designing the induction coil no set standards govern the design, and most 

are formed based from experience. Thus design of appropriate induction coils takes time 

and can be very costly [22]. Induction heaters themselves are not inexpensive and a 

powerful heater can cost anywhere from $6000.00 and up [23].  

2.3.3  ELECTRIC HEAT 

Both the NASA Langley Research Center and Idaho National Laboratory (INL) employ 

electric furnaces for material property testing [24], [25]. INL uses high temperature 

furnaces that can achieve temperatures of 3,000°C and autoclaves to test materials used in 

nuclear reactor core and support structures [25]. NASA’s Langley Research Center uses 

furnaces during elevated temperature tensile testing of foil-gage metals at temperatures of 

500°F [24]. Other facilities also use furnaces for elevated temperature testing. A 

collaborative effort between Texas A&M University at Qatar, American University of Beirut, 

the University of Michigan, and the University of Lille-North of France was published in 

Materials Science & Engineering detailing a study of AA 6061-T6 under various strain rates 

and temperatures. The testing process describes the detailed use of a computer controlled 

MTS Insight electromechanical testing machine equipped with a LBO-series Thermocraft 

LabTemp laboratory oven (environmental chamber). Tensile testing of the 6061-T6 
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specimens was conducted at temperatures up to 300°C with specimens kept in the 

environmental chamber for 30 minutes before starting the test to ensure a homogenous 

temperature [10]. 

Electric heaters, such as those used in laboratory furnaces, do not heat the work-piece by 

induction or resistance heating, but rather transfer heat to the work-piece via one of the 

three modes of heat transfer. The heater itself is heated by direct resistance heating, and 

that heat is transferred to the work-piece by some combination of conduction, convection, 

or radiation [26].  

Electric heaters come in a variety of forms, such as strips, cables, and tubes. Band heaters, 

a type of electric heater designed for extruders, were explored as a possible electric 

heating source for the developed testing apparatus. The band heaters are cylindrical, meet 

elevated temperature requirements, and cost around $75.00 [27]. However, due to 

geometry limitations that restricted placement of the band heaters, responsiveness of the 

system was significantly limited. Thus, required heating rates and system stability could not 

be achieved. 

2.3.4  PROCESS CONTROL: PID 

PID control is a very common process control method used in a variety of industries. Figure 

2.4 illustrates a generic feedback control loop block diagram that shows the 

implementation of a PID controller within a process. Simply explained, the process begins 

at some initial point and is adjusted by a control element until a sensor indicates that it has 

reached the set-point (SP). The set-point is some target value for the process, often a 
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temperature, pressure, or volume, which is continuously monitored by a sensor. Readings 

from the sensor are known as process variable (PV) readings, and are reported back to the 

PID controller. The controller then compares the PV values to the SP to calculate an error 

which dictates the magnitude of change that is to be made to the control element. This 

progression repeats until the SP and PV are equal to one another or within acceptable 

bounds [28].   

 

Figure 2.4: Process Control Overview, from [29] 
 

Before designing the PID controller it is important to understand how a process system 

functions. PID controllers can be designed to provide positive or negative feedback, and be 

direct or reverse acting. Positive feedback is given by a controller that is programmed to 

enhance the error between the PV and SP. In other words the PV gets driven further away 

from the SP until process limits are reached. This type of feedback is not conducive for use 

with automatic controllers, where negative feedback is preferred. Negative feedback leads 

the controller to issue outputs that minimize the PV and SP error, increasing the stability of 

the system. A direct acting controller is one for which an increase in process inputs results 
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in an increase in the PV. Likewise, a decrease in system inputs should result in a decrease of 

system outputs. For a reverse acting controller the opposite occurs. When inputs to the 

system are increased, the outputs see a decrease in value, while for a decrease in inputs 

the outputs will see an increase in value. Many systems and most PID controllers are direct 

acting with negative feedback [28].  

Looking inside the PID controller it can be seen that there are actually three modes of 

control: the proportional (P), integral (I), and derivative (D). While P and I control modes 

can be used alone, the D mode is almost never used in this fashion. P, I, and D can also be 

combined together. The most common control modes are P, PI, and PID [30].  

Proportional control, or gain, calculates a change to the process that is proportional to the 

error between the PV and SP. It does not rely on past values of the PV nor does it take into 

consideration the rate of change of the error. Thus P mode is computationally simple and 

easy to tune as there is only one input to alter. However, it has a downside: an offset 

typically exists between the SP and PV for most loading conditions. In other words, for a 

given loading of the system the controller may be able to bring the PV to within the SP 

bounds. For this same system and loading an additional disturbance within the process 

may create an offset within the system. This occurs when the controller’s abilities are not 

complex enough to handle the disturbance. Manually we can account for this by adding an 

output bias to the P controller calculations, as seen in the following equation: 

 𝑀𝑉 =  𝐾𝑐 ∗ 𝑒 + 𝑏 (2.8) 
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For (2.8), MV is the manipulated variable or controller output, Kc is the controller gain, e is 

the error between the SP and PV, and b is the output bias. When the output bias is a 

predetermined constant, as is the above case, it is defined as the “manual reset,” and is 

altered by the user [30]. 

To automate the process of adjusting the bias, the Integral mode may be introduced. 

Because the integral term automatically adjusts the bias, it is often referred to as 

“automatic reset,” or just “reset.” Addition of the integral term to controller calculations 

allows the controller to account for past errors in its outputs. It does this by summing the 

past errors to determine whether or not the MV needs to be increased or decreased. If the 

sum of errors is positive this indicates that the MV needs to increase, while if it is negative 

then the MV should be decreased.  Calculations for the PI controller are shown in (2.9). 

 𝑀𝑉 =  𝐾𝑐 ∗ (𝑒 + 
1

𝑇𝐼

∫ 𝑒 𝑑𝑡) (2.9) 

In (2.9), TI is the integral time with units of minutes per repeat. If a fast integral response is 

desired, mathematically the TI inputs should be small. Conversely larger TI inputs will 

result in slower response times. This can be confusing, which is why some controllers are 

designed to accept inputs of 1/TI, for which a large input results in fast response times, and 

a small input produces slow response times [30].  

Additionally the derivative term can be added to further improve performance of the PID 

controller as shown in Figure 2.5. Derivative control is based on the rate of change of the 

product of the controller gain (Kc) and error, allowing for the controller to predict system 

responses into the future. The mathematical addition of the D mode is shown in (2.10). 



21 

 𝑀𝑉 =  𝐾𝑐 ∗ (𝑒 + 
1

𝑇𝐼

∫ 𝑒 𝑑𝑡 + 𝑇𝐷 ∗
𝑑𝑒

𝑑𝑡
 ) (2.10) 

 The tuning parameter, TD, is the derivative time with units in minutes. As mentioned 

above, one of the benefits of the D mode is its ability to predict system responses. It also 

allows the controller to respond more quickly to disturbances in the system load. 

Sometimes, however, this can be of disadvantage. For especially noisy systems, D mode 

will actually amplify the noise causing amplified controller responses and an unstable 

system [30].  

 

Figure 2.5: PID Control Implementation, from [29] 
 

Equation (2.8) is an example of a traditional PID. This is defined as a controller with a gain 

that is multiplied to through all three modes of control. Alternatively, the “parallel” form of 

PID allows an independent gain for each mode of control as shown in (2.11).  
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 𝑀𝑉 =  𝐾𝑃 ∗ 𝑒 +  𝐾𝐼 ∗ ∫ 𝑒 𝑑𝑡 + 𝐾𝐷 ∗
𝑑𝑒

𝑑𝑡
 (2.11) 

This allows the user to fine tune each parameter. A correlation between the traditional and 

parallel forms of the PID can be seen as follows:  

 𝐾𝑃 = 𝐾𝐶  (2.12) 

 𝐾𝐼 =
𝐾𝐶

𝑇𝐼

 (2.13) 

 𝐾𝐷 = 𝐾𝐶 ∗ 𝑇𝐷 (2.14) 

Where KP is the proportional gain, KI is the integral gain, and KD is the derivative gain. 

These variables have perhaps less physical meaning with respect to their units, but they do 

allow for a more simplified tuning process [30]. 
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CHAPTER 3: TEMPERATURE CONTROL & TENSILE TESTING APPARATUS 
DESIGN 

Components of the overall testing apparatus design will be discussed in the following 

sections. Section 3.1 will detail the interaction of the system’s mechanical components, 3.2 

will discuss software design, and 3.3 will compare the costs associated with the developed 

system to those required by other elevated temperature testing platforms. Mechanical 

components include specimen geometry, grip geometry, tensile testing equipment, 

displacement measurement, thermocouples, shields, propane torch support fixtures, 

stepper motors, the coupling device, torque arm, pressure regulator, and the specific 

electronics incorporated into the design. Design of the software includes the use of a 

programmable logic controller set to respond to a PID control loop, and the 

implementation of a graphical user interface (GUI). Costs for the entire system are limited 

to hardware purchases, and manual labor associated with manufacturing.  

3.1 MECHANICAL COMPONENTS 

The mechanical components of the system ensure heating of the test specimen for the 

duration of a tensile test. Specimens are suspended in the servo-hydraulic testing frame 

through use of a multi-axis gripping system while heat is applied, via flame, by two propane 

torches aimed at opposite ends of the specimen. Temperature is varied by individually 

changing the flame intensity of each propane torch. This is accomplished by activating a 

stepper motor to regulate the single stage pressure regulator housed within the torch 

handle. Each stepper motor is operated by the temperature control system which receives 



24 

inputs from two thermocouples attached to the specimen. An image of the laboratory set-

up is shown in Figure 3.1, while Figure 3.2 displays a diagram of system interactions. 

3.1.1  SPECIMEN GEOMETRY, GRIP GEOMETRY 

Specimen and grip geometry are interdependent aspects of the tensile testing process: 

specimen geometry may dictate grip design or grip design may dictate specimen geometry. 

For the purpose of this thesis, specimen geometry was selected first, and grips were 

designed second. Figure 3.3(a) illustrates the selected round specimen geometry. The 

round specimen has button head ends measuring 12 mm in diameter, a stepped section 

with a diameter of 8 mm, and a gauge section diameter of 6 mm that is gradually reduced 

by 0.2 mm to ensure failure at the center of the specimen. Note that the button head ends 

are filleted down to the reduced section. This fillet was designed to seat into a  

 
Figure 3.1: System Setup 
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 Figure 3.2: System Overview 
 

correspondingly filleted grip. Alternatively, the button head ends may be drilled through to 

accommodate a pinned connection as shown in Figure 3.3(b). The load train implementing 

a seated grip connection is illustrated in Figure 3.4(a), while the pin connection grip option 

is illustrated in Figure 3.4(b). Figure 3.4(a) and (b) also show a threaded connection part, a 

clevis grip, and a square pinned connection at the top and bottom of the load train. The 

square components thread into the MTS servo-hydraulic testing frame, while the threaded 

connection part allows for vertical adjustment of the specimen position, and the clevis grip 

adds extra degrees of freedom. These extra degrees of freedom help rectify any minor 

misalignments that may exist in the load train. If displacement measurement devices are 

going be used, grip geometries should also be checked to avoid interference with the 

device’s attachment point and measurement probes. 
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Figure 3.3: Specimen Geometries 
 

 

Figure 3.4: Load Train Configurations 
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3.1.2  TENSILE TESTING EQUIPMENT 

During development, all materials testing and validation was performed on an MTS servo-

hydraulic test frame, model 312.21. This test frame has an actuator with a total stroke of 

200 mm, and includes a MTS model 661.21 load cell with a maximum operational capacity 

of 100 KN (10 metric tons). The MTS frame is operated by a TestStar II control system in 

either load or displacement mode, with testing procedures written and performed via 

Testware SX V4.0A software (TWSX). Displacement of the actuator is measured by the 

LVDT. It is important to note that measurements obtained using the LVDT refer to the 

displacement of the entire load train and are not specific to the specimen gauge section. If 

necessary, displacement of the specimen can be measured to provide more accurate strain 

calculations. This is accomplished using an MTS model 633.11B20 extensometer with a 

range of +/- 0.15” or 3.81 mm, and a circuitry housing temperature limit of 200°C. To avoid 

damaging the extensometer, TestStar interlocks may be set to trigger a shut off of the test 

frame hydraulics when the extensometer reaches a reading of +/- 2.5 mm. Thus the 

extensometer can safely accommodate a total displacement of 5 mm, which correlates to a 

14.3% elongation of the specimen described in Section 3.1.1 . Depending on the elongation 

of the material being tested, failure may or may not occur before the MTS model 

633.11B20 extensometer reaches its limits. Other extensometers that accommodate 

greater elongations may be implemented, however, were not available for use during the 

research performed in this thesis. 

 Tensile testing performed for this thesis measured displacements using the LVDT; 

however, the testing apparatus was also designed to accommodate an extensometer. Due 
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to the extension and temperature limits of the available extensometer, a set of extended 

arms were designed for the device. These arms doubled the extension range of the 

extensometer, as well as moved the extensometer circuitry away from the heated region. 

However, increasing the extension range halved the number of recorded data points.  

When using the extended arms, Equation (3.1) should be used to convert extensometer 

readings to actual values: 

 𝐸𝑥𝑡𝐴𝑐𝑡𝑢𝑎𝑙 = 2.5626 ∗ 𝐸𝑥𝑡𝑅𝑒𝑎𝑑𝑖𝑛𝑔 − 0.0008 (3.1) 

Where ExtActual is the actual displacement of the extended arms, and ExtReading is the 

corresponding measurement recorded by the extensometer. The extended arms work well 

if the elastic region of the material being tested is of sufficient length to record enough 

data points for an accurate linear fit correlation. However, this was not the case during 

testing of the 70XX series aluminum alloy, due to its low yield strength. Also of concern 

were the effects of momentum and inertia acting on the extensometer circuitry housing 

when using the extended arms at high strain rates. This is because the mass of the housing 

is located far enough from the attachment point that it cannot withstand the momentum 

generated and causes inaccurate data collection.  

Due to these failings the original extensometer set-up was reexamined. It was found that 

the circuitry was far enough away from the heated zone around the specimen to be used 

for tests up to 400°C. Monitored temperature tests were performed at 300°C and 400°C 

with results displayed in Table 3.1. It should be noted that shield design also contributed to 

the extensometer temperature. The cone shaped top shield used with the seated grips 
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directed heat from the flame towards the extensometer more than the pinned connection 

grip shields. Because the temperature recordings reaching upwards of 150°C during 

ramped heating, it was determined that testing specimens above 400°C while using the 

original extensometer set-up would be detrimental to the extensometer circuitry.  

Table 3.1: Extensometer Temperature Monitoring 

Temperature (°C) Time (sec) 
Extensometer Housing 

Temperature (°C) Notes 

300 120.0 55.0 At some points during the heating process, 
both tests displayed extensometer 
temperatures of 150°C 400 120.0 87.0 

 

3.1.3  THERMOCOUPLES AND SHIELDS 

Temperature regulation is monitored through the use of type K thermocouples and is 

essential to the operation of the temperature control system. In accordance with ASTM 

standard E21, the thermocouples were attached at each end of the specimen to measure 

the temperature across the gauge section of the specimen. The thermocouples were 

attached using clips made of 301 stainless steel strips, 0.008” thick x 0.25” wide. These 

were fastened by 2-56 x 0.25” socket head cap screws and nuts as shown in Figure 3.5. The 

design of these clips was selected to emphasize a low profile, producing a minimal heat 

sink. However, if the material being tested elongates and causes a significant reduction in 

cross-sectional area, the diameter of the specimen can become smaller than that of the 

attachment clip, which in turn can result in the thermocouple “popping out” of the clip or a 

reduction in contact with the specimen. Alternatively, welding thermocouples to the 

specimen was considered. However, this was deemed too extensive a task due to the poor 

welding characteristics of aluminum and the quantity of welds necessary for completing all 



30 

of the tensile tests. A secondary method consisting of an alligator clip with a potted 

thermocouple was also considered. The alligator clip was filed to have a curved attachment 

point so as not to mar the specimen surface, and was potted with Resbond 906 High 

Expansion Adhesive, an electrically resistant adhesive/potting agent. Although the alligator 

attachment devices addressed the reduction in cross-sectional area, they proved to be too 

great of a heat sink and increased heating rates. A solution was found by moving the 

thermocouples and clips further out of the specimen gauge section until they were in 

contact with the 5 mm radius shoulder. This solution worked as long as deformation 

occurred in the center of the gauge section. 

Testing was performed with thermocouples located 27 mm from each end of the test 

specimen. This ensured enough room in the specimen gauge section for attachment of an 

extensometer, if desired, while still monitoring temperatures at the ends of the specimen 

gauge section. As seen in Figure 3.5 the 27 mm was measured from the end of the 

specimen button head to the closest edge of the thermocouple clip, with thermocouple 

beads positioned at the approximate mid-point of the clips. Symmetry of thermocouple 

placement is important if a symmetric and accurate temperature profile is to be 

accomplished. Because the specimen is orientated vertically, natural convection affects the 

gauge section heating profile. With symmetric thermocouple placement this discrepancy in 

temperature becomes significantly apparent, and changes to the system that would offset 

the temperature discrepancy are more easily monitored. These changes to the system may 

include torch flame position relative to the specimen button heads, and flame intensity. 

Flame position may be altered by moving the torch nozzle closer or farther away from the 
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load train, changing the torch nozzles vertical position, or adjusting how many threads are 

exposed at the grip connection point in the load train. Flame intensity may be varied by 

changing the maximum motor positions, as well as adding fans to remove heat at lower 

temperature settings. 

 

Figure 3.5: Thermocouple Clip Attachment 
 

The thermocouples were particularly sensitive to direct flame, resulting in the addition of 

shields to the load train. Implementation of the shields helped guard against erroneous 

temperature readings, as well protected the specimen gauge section from direct flame and 

hot spots. Shields were located between the propane torch flame and nearest 

thermocouple attachment point and were supported by the grips. For the seated 

connection grips, the top shield was manufactured out of 0.006” shim stock which 

wrapped around the grip in a cone shape and was secured by a pinned connection. It was 

initially tight enough to support itself, but became loose with use and eventually required a 
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wire hook to hold it up. The lower shield consisted of two 0.010” flat, square shim stock 

pieces with slots cut to fit around the specimen. These shields rested flat on the top of the 

bottom grip. A second set of shields was designed for the pin connection grips. A 

comparison of the three shields can be seen in Figure 3.6 and Appendix A displays the 

drawings for these shields. 

 

Figure 3.6: Comparison of Shield Types 

 

3.1.4  TORCH SUPPORTS 

As mentioned in the previous section, location of the propane torch nozzles is critical to 

achieving a uniform temperature distribution along the specimen gauge section. The 

purpose of the torch supports is to provide an adjustable fixture for the torch nozzles so 

that heat may be applied to the specimen button heads. For both the seated and pinned 

connection grips, torch nozzles are radially positioned in line with the center of the grip 
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openings. Location of the torch nozzle relative to the button head in the z and x direction 

can greatly affect temperatures in the gauge section, and may be adjusted to account for 

natural convection. A uniform gauge section temperature was accomplished for the seated 

grips by locating the top torch nozzle at a distance of 1.68” horizontally from the top grip 

opening, and a distance of 0.60” vertically from nozzle center to the bottom of the top grip. 

The bottom torch nozzle was located 1.44” horizontally from the bottom grip opening and 

0.48” vertically from nozzle center to the top of the bottom grip. For the pinned grip set-up 

the top torch nozzle was located 1.68” horizontally from the top grip opening and 0.445” 

vertically from nozzle center to the bottom of the top grip. The bottom torch nozzle was 

located 1.44” horizontally from the bottom grip opening and 0.92” vertically from nozzle 

center to the top of the bottom grip. Appendix A contains drawings detailing the locations 

described above 

 The torch nozzle locations were thoroughly tested to ensure that the temperature profile 

along the length of the specimen was within the acceptable limits of +/-3 degrees. Once 

these locations were found, fixtures were manufactured to support the torch nozzles. 

These are comprised of steel plates press fit with stainless steel bushings through which 

the torch nozzle can slide and adjust position. The steel plates are bolted to the square 

grips of the MTS test frame—one just below the load cell and another located on the 

actuator. These attachment points allow both torches to stay centered on the button head 

as long as the load train is not rotated out of alignment. An L shaped bracket was added to 

the bottom torch support to create a rigid member in support of the propane cylinder. This 

cautionary feature was added to prevent damage that could occur from the momentum 
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and impact of the actuator moving at high strain rates. A safety wire sling was added to the 

top torch as a secondary support point to relieve stress from the top nozzle. Figure 3.7 

provides a detailed illustration of the torch supports, while drawings can be viewed in 

Appendix A.    

 

Figure 3.7: Torch Supports, (a) Pinned, (b) Seated 

 

3.1.5  AUTOMATED CONTROL OF THE NOZZLE 

Automated control of the propane torch nozzle consists of a stepper motor, torque arm, 

coupling device, and a single-stage pressure regulator (SSPR, also known as a diaphragm 

valve). The stepper motor is used to open the SSPR by turning a threaded connection 

within the coupling device to open the valve. The torque arm was implemented to align 

and maintain motor position. Figure 3.9 provides an illustration of the torch/motor 

assembly. 
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Ignition of the propane torches requires fuel flow at or above a certain level. On an original 

Bernzomatic TS3000 this is accomplished by turning the torch handle knob clockwise until 

the ignition button can trigger a sustained flame. Flame size can then be regulated by the 

torch handle knob; however for the purpose of this research it has been replaced by a 

coupling device and stepper motor to automate the process. A CanaKit STM100 stepper 

motor was selected for automation because of its relatively high torque, positional 

feedback, and unbounded shaft movement. The use of a DC or servo motor was also 

considered, but servo motors are typically limited to only 180° of shaft rotation and DC 

motors cannot provide positional feedback without additional hardware. The CanaKit 

motor is rated for 0.23 N-m of torque, requires a 12 V power supply, and has a 1.8° step 

angle (200 steps/revolution). The 200 steps/revolution provides enough resolution to 

satisfy the temperature control system requirements, and the torque is great enough to 

operate the torch valve without stalling at low fuel flows. One downfall of the stepper 

motor is that if a torque greater than what it is rated for is applied to the motor, it will stall 

out and lose its position relative to the valve. Because of this feature it is necessary to 

define an origin, a minimum, and a maximum motor position. The origin refers to the zero 

step point at which there is no flame, while the minimum point has been defined as the 

location where the torch can maintain the smallest flame possible without blowing out. 

This position is necessary for setting lower motor limits in the system software code. For 

implementation in this research, the bottom motor minimum position was set at 203 steps; 

while for the top motor was set at 204 steps. The maximum motor position is a user 

defined input to the GUI so that it may be changed to satisfy varying heat rates. However, 



36 

it is important to acknowledge that an upper limit for the motors exist at the position 

where the motor begins to stall out. This position will vary depending on motor ratings, 

and the resistance of the valve compression spring. This location was found to be at 700 

steps for both the top and bottom motor, however, a 50 step buffer was reserved and 

upper limits were set at 650 steps. A fourth position, the ignition point, was defined at 600 

steps, or 3 rotations of the motor shaft, for both motors. This location provides enough 

propane for a successful ignition mixture. At the start of the temperature control program, 

the motors ramp up to a position of 600 steps, at which point the user is signaled to ignite 

the torches. After ignition the motors will ramp up or down to the GUI defined maximum 

motor positions until the PID loop takes action.  

By turning the torch handle knob the SSPR can be adjusted. The SSPR allows for the 

regulation of fluid flow through a valve. Typically this fluid is a gas, as is the case for the 

Bernzomatic TS3000. The inner workings of a SSPR can be seen in Figure 3.8(a), and consist 

of a loading mechanism, sensing element, and control element. The loading mechanism is 

comprised of a pressure adjustment knob which applies a force to the compression spring. 

As the spring compresses it transfers this force to the sensing element, or diaphragm. If the 

force is great enough the control element will be activated, opening the orifice by 

unseating the poppet. This allows gas to flow from the high pressure inlet through the low 

pressure outlet until equilibrium is reached. In total, four forces act on the diaphragm and 

contribute to the regulation of fluid flow. As Figure 3.8(b) depicts, a downward force is 

applied to the diaphragm by the compression spring, while the inlet gas, outlet gas, and 

bonnet all apply upward forces. When the compression spring force is greater than the 
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combined gas pressures and bonnet force, it deflects the diaphragm downward. This forces 

the bonnet off its seat, opening the orifice, and allows fluid to flow from the high pressure 

region to the low pressure region as seen in Figure 3.8(c) [31]. 

 

Figure 3.8: Single Stage Pressure Regulator, adapted from [31] 

 

Diaphragm valves are designed to regulate outlet pressure, despite decreasing high-side 

pressures, such as would be the case in the propane cylinder. During the course of this 

research, it was found that outlet pressure and flame size remained constant for a given 

valve setting, unless the propane cylinder was nearing empty. This only became 

problematic during prolonged testing, and solutions and improvements for this aspect of 

the design are provided in CHAPTER 6:. 

Another issue presented by the valve is that vertical movement is required to compress the 

valve spring against the diaphragm. Although the motors provide adequate rotational 

movement, they do not provide linear movement to compress the valve spring. This was 

solved by designing an aluminum coupling device to interface between the stepper motors 

and pressure regulator. A flat spot was ground into the section of motor shaft that slides 

into a hollowed out section of 0.375” OD all-thread. The shaft is secured by a set screw, 

and the all-thread is inserted into the center of the coupling device. Thus, rotation of the 
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motor shaft threads the all-thread in and out of the coupling device. Also housed in the 

center of the coupling device is the original SSPR compression spring which interfaces with 

the all-thread via a ball bearing to reduce friction and torque on the motor. The other end 

of the spring is fitted with a brass cap that presses against the diaphragm and bonnet when 

the spring is compressed. The coupling device connects securely onto the valve chamber by 

threaded connection, replacing the original brass fitting and plastic knob of the torch 

handle. Figure 3.9(b) provides an exploded view of the motor assembly for which drawings 

can be viewed in Appendix A. 

 

Figure 3.9: Motor Assembly 

 

Also attached to the motor assembly is a torque arm. This feature was designed to keep 

the motors aligned to the torch nozzle handle, allowing the motor shaft to rotate relative 

to the motor housing, rather than letting it spin freely. The torque arm keeps the motor 
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housing fixed with respect to the torch handle while still allowing for vertical movement of 

the valve without stalling the motor. It is comprised of a 3” long, 1/4”-20, hex bolt that fits 

through a slotted plate attached to the motor housing, and threads into the coupling 

device. This set up of the torque arm was found to work nicely for tests run in LVDT mode; 

however, it created too much vibration for accurate testing results with the extensometer. 

To dampen vibrations, a 0.3125” ID rubber grommet was added to each torque arm set-up.  

3.1.6  ELECTRONIC HARDWARE 

The electronic hardware is responsible for obtaining and communicating inputs and 

outputs to and from the PID control loop. Propane torch motor control is achieved by 

coupling a SainSmart Uno with a SainSmart L239D Motor Drive Shield. Temperature control 

is regulated by coupling the Uno with two Adafruit Thermocouple Amplifier MAX31855 

Breakout Boards. A set-up of the electronic hardware is shown in Fig Figure 3.10. 

Simply put, the SainSmart Uno, as shown in Figure 3.11, is a small computer that can be 

programmed to perform a variety of tasks. It is a clone of the Arduino Uno, an open-source 

computing platform, comprised of a microcontroller board and an integrated development 

environment (IDE) for writing software to control the board. Arduinos were originally 

developed to provide a simple, inexpensive microcontroller platform for students and 

teachers; however, it has grown in popularity due to the fact that all of the technology 

behind the hardware and software is available for anyone to view, use, or develop. This 

expands the device’s target audience from beginning to advanced users, as it allows for the  
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Figure 3.10: Electrical Overview 
 

modification, improvement, and adaptation of the microcontroller to the user’s specific 

needs. Another benefit is that its IDE is compatible on multiple operating systems, 

requiring only a USB port and cable to program the microcontroller. This makes the 

Arduino plug-and-play capable, eliminating the need for an external programmer. 

Arduino produces a variety of boards, the most common of which is the Arduino Uno. 

Currently three revisions of the board have been released, however the board used for 

work in this thesis is a clone of the Uno R2, and it is this version that will be discussed. The 

Uno R2 features an ATmega328 microcontroller, and has a 16 MHz ceramic resonator, 14 

digital input/output (I/O) pins, 6 analog inputs, several pins for ground and power, an in-
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circuit serial programming (ICSP) header, USB interface, power jack, and reset button. The 

USB interface is used for programming, serial UART communication with the computer, 

 

Figure 3.11: SainSmart Uno Microcontroller Board, from [32] 

 

and can be used to power the board. The UART is also available to the digital pins 0 (RX) 

and 1 (TX). Six of the digital pins can be used as pulse-width modulation (PWM) outputs. 

The SainSmart Uno was selected to operate as a programmable logic control (PLC) due to 

its ease of use and minimal cost. Specs for the SainSmart Uno match those of the Arduino 

Uno listed in Table 3.2, except for one minor difference: the SainSmart Uno board has a 16 
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MHz crystal oscillator instead of a 16 MHz ceramic resonator. The SainSmart Uno is also 

100% compatible with the Arduino IDE. Because the Arduino programming language is 

C/C++ based, it allows for sharing within the open source community, expanding resources 

available to the programmer. Several open source libraries were used to program the 

temperature control, including one for motor control, thermocouple readout, and PID 

control. The implementation of these libraries will be discussed later on in the chapter. 

Another advantage of using the Uno is that the board has USB overcurrent protection and 

a voltage regulator. USB overcurrent protection provides an extra level of safety in the 

form of a reusable polyfuse. This fuse protects the user’s computer USB ports from shorts 

and current greater than 500 mA. The Uno board also incorporates a voltage transformer 

that can step power up or down from the input jack to an operating voltage of 5V. The 

recommended power input ranges from 7-12V, although the Uno can handle 6-20V. 

Operating at power levels less than the recommended range can result in the 5V pin 

outputting below 5V, while operating above recommendations can overheat the voltage 

regulator, damaging the board [33].  

A Sainsmart L239D Motor Drive Shield was purchased to operate the stepper motors. It is 

capable of running two stepper motors, two servo motors, or up to 4 bi-directional DC 

motors at once. The motor shield incorporates a L293D 4-channel driver, or H-bridge, to 

control motor direction. The H-bridge is an electric circuit that allows a voltage to be 

applied across a load. It contains 4 switches which are activated 2 at a time to apply a 

positive or negative voltage to the motor which causes the motor shaft to rotate clockwise 

or counterclockwise [34]. Connection to the Uno occurs by stacking the motor shield on 
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top of the Uno as shown in Figure 3.10, snapping it into place. Activation and speed control 

of the motors are linked to the Uno’s digital pins. Pins 11 and 3 correspond to the first 

stepper motor and pins 5 and 6 connect to the second stepper motor. Digital pins 4, 7, 8, 

and 12 drive the stepper motors via the 74HV595 serial-to-parallel latch, while pin 9 is for 

servo control of the first motor and pin 10 provides servo control of the second motor [35]. 

Connection to the motor shield ties up nearly all of the Uno’s pins. This could be alleviated 

by communicating over serial, requiring the implementation of a different motor shield as 

will be discussed in CHAPTER 6:. 

Table 3.2: Arduino Uno Rev2 Specifications, from [32] 

Characteristic Value Units Notes 

Microcontroller ATmega328   

Operating Voltage 5  V  

Input Voltage  6 - 20 V 7 - 12 recommended 

Digital I/O Pins 14  6 of which can be used for PWM output 

Analog Input Pins 6   

DC Current per I/O Pin 40 mA  

DC Current for 3.3V Pin 50 mA  

Flash Memory 32 KB 0.5 KB used by bootloader 

SRAM 2 KB  

EEPROM 1 KB  

Clock Speed 16  MHz  

 

For accurate temperature readings, thermocouples require a good amplifier with a cold-

compensation reference such as is provided by the Adafruit Thermocouple Amplifier 

MAX31855K breakout boards. The MAX31855K Breakout Board was selected for use 

because it provides both of these functions, and is specifically designed to read the voltage 
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across K-type thermocouple leads. Voltage is measured across the thermocouple leads, 

amplified, and converted to digital form to be sent via serial communication to the PLC. 

However, if the thermocouples are surrounded by a noisy environment, a 0.01μF may 

need to be added across the thermocouple leads to reduce the noise. Space on the motor 

shield is limited, and the MAX31855K board is connected to the Uno via jumper cables and 

a breadboard. Extra circuitry was added to the breadboard to account for the fact that the 

MAX31855 boards are not compatible with grounded thermocouples. Further discussion 

on this topic is included in later in the chapter as it directly affects software programming 

methods [36]. 

3.2 SOFTWARE SYSTEM DESIGN 

The Temperature Control System (TCS) is comprised of two subsystems, the PLC and the 

Human Machine Interface (HMI). The PLC is responsible for reading temperatures and 

setting motor positions through the use of two separate PID control loops. The HMI is 

comprised of a standalone computer running a custom GUI written in Python using the 

PyQt graphical toolkit. Additional modules are also used to assist with communication and 

data management. The HMI’s primary responsibility is to control the overall process of the 

TCS, and provide the user with a real time graphical display of time, temperature, and 

motor position data. After initial communication is established between the HMI and PLC, 

the TCS is designed to carry out a sequence of events, culminating in the termination of 

motor movement. Programming of the TCS code is discussed in the following sections, with 

an overview of the software components listed in Table 3.3 
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Table 3.3: TCS Software Components 

Refs. Cat. Name Description 

 

TC
S_

P
LC

 

 

PID_Motor_Control PLC sketch 

 AFMotor A class used to control the servo-motors 

 EEPROM Library to manage reading and writing data to EEPROM 

 Adafruit_MAX31855 Arduino Library designed to ease the use of the MAX31855 
thermo-couple breakout boards 

 PID_v1.h PID control library 

    

 

TC
S_

H
M

I 

 

GUI_PID.py Defines the GUI of the HMI. 

 com_monitor.py Defines the  ComMonitorThread() class, which resides in its own 
thread and reads data from the serial port and posts it to  
LiveDataFeed() 

 live_data_feed.py Defines LiveDataFeed() class.  Stores/returns the most recent data 
from ComMonitorThread() 

 PyQt4 Python bindings for Qt4 – a powerful cross platform GUI tool-kit 

 eblib A package that provides access to the computers short and full 
port names, and all the data in a queue. 

    

 

P
yt

h
o

n
 2

.7
 

St
an

d
ar

d
 L

ib
ra

ry
 

__future__ Provides future Python 3 changes to Python 2 

 sys Provides access to system parameters used by the Python 
Interpreter 

 Queue Python’s built in Queue which is thread safe.  Used for storing data 
from TCS_PLC 

 collections Python’s High performance container datatypes. deque was used 
for storing plotting data 

 time Used to keep track of time.  

 PyQt4 Cross platform graphical toolkit originally designed for C++ 

 

3.2.1  PLC OVERVIEW 

In order to regulate test temperatures via motor position, an Arduino compatible 

microcontroller was implemented as a PLC to manage the PID algorithm, motor control, 

and temperature readings. The selected SainSmart Uno is 100% compatible with the 
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Arduino platform, and is programmed through the Arduino IDE [32]. The Arduino program, 

or sketch, utilizes the availability of several open source libraries, as will be discussed. Code 

for the sketch is broken into three sections: global declarations, the setup function, and the 

loop function. The following is a discussion of this code, with excerpts from the sketch 

appearing in bold. A copy of the sketch is included in Appendix C. 

For ease of understanding, Figure 3.12 provides an overview of the PLC code layout. The 

first section of the sketch is labeled global declarations. This section is technically not a 

function, but rather provides support for the operation of later functions. Figure 3.12 

illustrates the importation of libraries, assignment of pins, reading of motor positions to 

the EEPROM, declaration of variables, assignment of constants, and creation of objects for 

the global declaration section occurring in a sequential manner. In reality the sequence of 

events does not affect the program; however, it is important that these actions occur 

before any other functions are implemented. The setup function follows, and Figure 3.12 

depicts the necessary steps to prepare the PLC for application of the PID control loop. 

Unlike the global declaration section, the setup function does require sequential 

organization as the order of events is important. Lastly the loop function is shown. As its 

name implies, the contents of the loop are repeatedly cycled through. This section contains 

logic for merging motor control, temperature reading, and PID control. The following 4 

sections will walk through the PLC Arduino code step by step, which can be viewed in its 

entirety in Appendix C. 
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Figure 3.12: PLC Software Overview 
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3.2.2  GLOBAL DECLARATIONS 

The first part of an Arduino sketch declares global items. Items which are global can be 

accessed by all other functions within the sketch, eliminating the need to pass variables 

between functions. This section includes the importation of libraries, and declaration of 

variables, constants, and objects.  

Currently the sketch utilizes the AFMotor.h, EEPROM.h, Adafruit_MAX31855.h, and 

PID_v1.h libraries which are initialized by the keyword #include. The EEPROM.h library 

is a standard Arduino library whose purpose is to read and write data from the Electrically 

Erasable Programmable Read-Only Memory (EEPROM). AFMotor.h and 

Adafruit_MAX31855.h libraries were both obtained from the Adafruit website and 

interface with the motors and thermocouples respectively. The AFMotor.h library allows 

for simplified control of the L293D motor shield. Note that the library has been slightly 

changed to support simultaneous movement of two motors. The Adafruit_MAX31855.h 

library is used to read temperatures from the thermocouple breakout boards via the 

readCelcius() function, while the PID_v1.h library defines a robust PID algorithm that 

accepts a series of inputs and parameters, and calculates outputs for the control process. 

Once the libraries have been initialized, pin assignments are created. The L293D motor 

shield does not require pin assignments as its pins are physically constrained to mate with 

those of the Uno board. However, the MAX31855 board does require pin assignments. 

Digital output and clock assignments are shared over the same pins for both boards, while 

chip select and Vin pins are assigned separately.  
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After pins are assigned, temporary motor position variables are initialized, and stored 

values from the EEPROM are read to them. The EEPROM maintains its memory even when 

the board is turned off, providing an ideal form of storage for motor position data. A flag 

which indicates if the motors were moving during shutdown is also stored to the EEPROM. 

Next variables are initialized and defined. As previously mentioned, the variables in this 

section of code are global, and do not have to be passed into functions throughout the 

entirety of the program. The values of these variables can be changed as long as they 

maintain the type to which they are cast. Those variables cast as constants take up less 

program memory, but their values cannot be changed. 

Objects are then created based on the imported libraries and include AF_Stepper, 

Adafruit_MAX31855, and PID. The AF_stepper(steps, num) motor object is 

initialized with the value of 200steps/rev and the specific motor’s position on the motor 

driver shield. The Adafruit_MAX31855(SCLK, CS, MISO) object is created with 

the previously assigned clock, chip select, and digital output pins as attributes with respect 

to the corresponding thermocouple. The PID(*Input, *Output, *Setpoint, 

Kp, Ki, Kd, ControllerDirection) object is initialized with three pointers and 

four parameters. The *Input pointer, temps, stores the most current temperatures. The 

*Output pointer, bottomOutput and topOutput is where the PID object stores the next 

calculated motor positions. The *Setpoint pointer, desiredTemp, stores the target 

temperature that the PID is trying to maintain. Kp, Ki, and Kd are the initial tuning 
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parameters, and ConrollerDirection is set as DIRECT, indicating that an increased 

input will lead to an increased output. 

3.2.3  VOID SETUP 

The function void setup()is a function that is ran at the beginning of the sketch and 

will only run once per power cycle of the Uno. Because the function is only ran once, it is a 

convenient location to place commands which only need to be ran at startup, such as 

setting the values of variables, pin modes, and setting object parameters. Inside the 

function, communication is established with the HMI, and the data rate is set to 9600 bits 

per second. pinMode for the MAX31855 boards sets the power pins to OUTPUT so that 

they may be independently powered on or off. This becomes necessary later in the 

program when ground looping must be accounted for. The function also checks the 

EEPROM for indications of an unclean shutdown of the Uno. 

Next, moveMotors(0) is issued and the motors are moved to a starting position of zero 

steps if they are not already there. Note that the input 0 to the function does not signal a 

move to zero steps, but is an operational mode. The moveMotors() function begins by 

checking to see if the motors are currently at the predetermined desired location. If they 

are not, it calculates the number of steps the motor needs to move, and constrains it 

within a starting position of 0 and an end position of 1200 steps. This prevents the motors 

from attempting to exceed the system’s mechanical limits. The function then checks to see 

if motor speeds have been changed, and recalculates the speed at which the PLC needs to 

control the motors. The motor direction is determined, and finally the motors are signaled 
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to move. This part of the moveMotor() function code was implemented from the 

AFMotor.h library and revised to control the simultaneous movement of two motors. 

Before the function ends, the new motor positions are saved by 

saveMotorPosition(), a function that will be discussed later, and the motors are 

“released” or powered off so as to prevent overheating.   

After the moveMotors() function is issued, receiveParameters() is called and 

waits to receive parameters specific to the temperature set-point, maximum motor 

positions, and P, I, and D parameters as entered by the user from the HMI. The 

receiveParameters function waits in a while loop until serial from the HMI is detected. The 

while loop calls the printStatus() function to continually update the HMI with current 

motor and temperature data. Upon exit from the while loop, values of the parameters are 

read.  

After successful reading of the input parameters, both PID loops are configured using 

functions from the PID_v1.h library. SetTunings(Kp, Ki, Kd) updates the P,I, and D 

gain values, while SetMode(Mode) defines the PID algorithm mode. The mode can 

either be AUTOMATIC or MANUAL. Automatic mode describes a closed feedback loop 

where the feedback is used to adjust the outputs, while manual mode is open looped 

without feedback and the user manually adjusts the outputs. SetOutputLimits(Min, 

Max) defines the range for the PID output in terms of motor position limits, and 

SetSampleTime(NewSampleTime) sets the PID computation time in milliseconds.  
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The setSpeed(rpm) function from the AFmotor.h library allows us to set the motor 

speed in RPM. However, the function has been modified to return the required delay, in 

microseconds, between motor step movements. This value is saved as usperstep and is 

of significance because it is required by the custom function moveMotors(), as 

discussed above. 

Lastly, lightFires() is called to start the heating process. This function begins by 

sending a message to the HMI indicating testing is ready to start. The function then 

remains in a while loop, continuing to update the HMI with printStatus(), until it 

receives the start trigger “s” from the HMI. At this point the moveMotors() function is 

called, and the motors are moved to their ignition locations at 600 steps. Starting 

temperatures are also noted, and after the bottom temperature rises 3 degrees the PLC 

sends the command “CMD: Started” to notify the HMI that ignition has occurred. This 

concludes the void setup() function and the sketch moves on to the void loop(). 

3.2.4  VOID LOOP 

After the void setup() function, the sketch continuously runs the void loop() 

function until the PLC is power cycled. The loop begins by calling the printStatus() 

function to report the motor positions and temperatures to the HMI. Next the 

bottomPID.Compute() and topPID.Compute(), as defined by the PID_v1.h 

library, are called. When these functions are called, they reference the recently read 

temperature values and evaluate the PID algorithm to compute new motor positions. Next 
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moveMotors(0) moves the motors from their current position to their newly computed 

positions. Lastly parseSerial() is called to check if more data is available to read.  

3.2.5  SUPPORTING FUNCTIONS 

saveMotorPositions(bottomDesired, topDesired) records the bottom and 

top motor positions to the EEPROM. Because the motors are allowed to move to a 

maximum position of 1200 steps, and the EEPROM is comprised of 8 bit bytes, two bytes of 

EEPROM must be used to save each motor position. The task of saving the integer value to 

two bytes is presented as follows. The first byte stores the number of times the motor 

position is completely divisible by 256, or the maximum value of one byte. The second byte 

stores the remainder. After each value is computed, they are saved to the EEPROM. The 

motor position may then be determined by multiplying the first byte by 256, and adding it 

to the second byte. In the moveMotors() function, a flag is set to indicate that the 

motors have started to move. This flag is then set to low in saveMotorPositions() 

after the values have been successfully saved. This provides the ability to determine if a 

power loss/cycle occurs while the motors are moving. If a power loss/cycle occurs during 

motor movement the position of the motors could be recorded incorrectly, whereas if it 

occurs while the motors are stationary, their positions are known, and the PLC may safely 

return the motors back to a position of zero. 

printStatus() is called to communicate the motor positions and temperatures over 

serial. Motor positions should already be stored to a variable and are directly referenced by 

the printStatus() function. Temperatures, on the other hand, are determined by 



54 

calling readTemps(&temps[0]), which saves both temperatures to an array. The 

readTemps() function is responsible for reading both temperatures through the 

breakout board. Because of limitations of the breakout boards, ground looping issues 

occur. These issues are accounted for by quickly powering on and off the MAX31855 

boards, resulting in a minimum cycle time of approximately 300 ms. 

3.2.6  HMI OVERVIEW 

The HMI is a GUI designed to display a central real-time plot displaying motor positions and 

temperatures with respect to time. Above the plot, information pertinent to the test is 

displayed and periodically updated throughout the test as needed. These fields include 

temperatures, motor positions, and heating rates for the top and bottom heaters; com 

port information; and the total test time with a 3 second countdown timer for when both 

temperatures are within set-point boundaries. Figure 3.13 provides an illustration of what 

the GUI looks like. The HMI is programmed in Python, and is comprised of a PyQt GUI file, a 

thread safe serial com monitor, and several other utilities. It is derived from a Python PyQt 

real-time graphing demonstration program named plotting_data_monitor [37] 

accessible at GitHub [38]. The following sections will follow the Python code as found in 

Appendix B and discuss the independent HMI components, and how they interact as a 

whole. 
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Figure 3.13: GUI_PID Display Screen 

 

3.2.7   QT(PYQT4) 

Qt is an open-source framework specific to developing graphical user interfaces (GUI), that 

can be implemented across many platforms [39]. This framework was selected for use 

because it provides high level graphing capabilities, a well-documented application 

programming interface (API), an extensive online development community, and is actively 

developed. Qt is currently on its fifth version; however the developed GUI was 

implemented using Qt4 due to package dependencies for Qwt, a compilation of classes and 

widgets for plotting. Qt is written in C++, but bindings have been developed for various 

programming languages, including Python. 
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Python’s bindings for Qt4 are handled by a package known as PyQt4. PyQt4 is divided into 

modules, with the modules QtGui and QtCore being used. The QtGui module contains most 

GUI classes, while QtCore contains essential non-GUI related classes. Especially important 

is its implementation of signals and slots for dealing with events [40].  

Signals and slots are used to communicate between objects when an event occurs. A signal 

is emitted when a certain event happens, while a slot is typically a Python callable which is 

called when the signal connected to it is emitted. The version of PyQt4.5 as programmed 

for use in this thesis, introduced a new style API which implements the key phrase 

QtCore.SIGNAL('clicked()') to emit a signal. The concept of signals and slots was 

instrumental in the creation of the HMI as it allowed for the user to interact and select 

buttons to ease the control of certain aspects of the temperature control program [41]. 

3.2.8  EBLIB 

The eblib is a package of utilities [42] used by the plotting_data_monitor [37]. The 

serialutils and utils modules from eblib define four functions, full_port_name(), 

enumerate_serial_ports(), and two communication thread-safe functions 

get_all_from_queue(),  get_item_from_queue(). The full_port_name() 

function gets the full serial port name based off the provided short name.  

enumerate_serial_ports() uses the windows registry to return a list of serial com 

ports (shorthand names). The get_all_from_queue()function gets all the items from 

any queue without hanging up the application when there are no items in the queue. It is 

used in conjunction with the data_from_arduino queue, which is shared with the 
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com_monitor object and runs in its own thread. The get_item_from_queue() 

function attempts to get single items from the queue, however, if 0.01 sec passes without 

the function finding anything, it returns none indicating an empty queue. It is also used to 

check for errors from the error_queue which is also shared with com_monitor. In 

summary the eblib utilities are important because they allow for the acquisition of the 

short and full serial port names, as well as provide functions that can access one or all 

items from a queue [43]. 

3.2.9  COM_MONITOR 

The com_monitor module is included to provide communication over the serial port 

using PySerial, by implementing a run function to continuously read and write to the serial 

port in a thread safe manner [38]. PySerial is an imported module for the purpose of 

accessing the computer’s serial port. It automatically selects the appropriate backend for 

Python, depending on which operating system is in use. PySerial is known for its cross-

platform ease of use, as its syntax remains the same despite being used with different 

operating systems [44]. The com_monitor module [37] was originally designed to only 

receive information; however, two-way communication was desired between the HMI and 

PLC. A small modification was made to the code, resulting in the successful sending and 

receiving of messages.  

3.2.10  LIVE_DATA_FEED  

The live_data_feed module contains LiveDataFeed(), a class that houses new 

data and allows the user to post or read data from it. It also keeps track of whether the 
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new data has been previously read [38]. With respect to GUI_PID, live_data_feed 

provides a location for the GUI to store data and allows the function 

update_info_and_plot() to quickly decide if new data exists and whether the real-

time plot needs to be updated. 

3.2.11  GUI_PID 

The GUI_PID is the script file that creates a GUI for the HMI. It consists of a central widget 

and status bar. Functionality is brought to the widget by adding labels, fields, and displays 

which are organized by boxes. Placing the boxes in the widget arranges the overall look of 

the GUI, and allows for customization. The GUI also communicates with the PLC to 

populate specific fields or displays. To achieve these results, GUI_PID defines five classes 

as discussed below. 

The CoupledBox(QtGui.QWidget) class combines a label and a type of field to 

create an information display. The field may be defined as a QLabel, QLineEdit, or 

QComboBox. QLabel displays text; QLineEdit displays a single line text editor, which 

is commonly used as an input box; and QComboBox displays a dropdown list. These fields 

are used to accommodate user inputs and show relevant test information. This class was 

created to simplify the main GUI display and standardize formatting. 

The RealTimePlot(QWidget) class produces a real-time plot of selected data vs. 

time. Its main purpose is to set the graph backgrounds, axis properties scales, and legends. 

Motor positions and bottom and top temperatures vs. time are plotted by the 

RealTimePlot(QWidget). The RealTimeCurve(Qwt.QwtPlotCurve) class 
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defines curves based on the available data as well as determines such parameters as solid 

lines for the curve’s display, colors of the curves, and setting y-axes on both the left and 

right sides of the graph. 

The MyLCDCounter(QLCDNumber) class creates a countdown timer with LCD-like 

digits. The timer counts down from three seconds when the top and bottom temperatures 

are within bounds of the temperature set-point. If the temperatures slip below or rise 

above the bounding temperatures the countdown timer will wait until the limits are again 

met to start over. The timer is based off the QtCore.QTimer class and automatically 

updates the LCD numbers. 

The PlottingDataMonitor(QtGui.QMainWindow) class is the main class of 

GUI_PID and is responsible for creating and managing graphical entities of the GUI. This 

class uses the data types dequeues and lists to store data, initializes com_monitor and 

live_data_feed, and finally creates and manages GUI specific components. The 

PlottingDataMonitor(QtGui.QMainWindow) class is comprised of four sub 

functions: create_status_bar(), create_top_info(), create_mid_plot(), 

and create_bottom_inputs(). create_status_bar()creates the status bar for 

displaying text messages from the PLC. create_top_info() creates and populates a 

box at the top of the GUI widget to display information about the top motors and 

temperatures, bottom motors and temperatures, communication of the program, and test 

information such as total time and status. The create_mid_plot() function creates a 

real-time plot displaying motor positions and temperatures vs. time. It also includes a 
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button for turning a curve displaying the delta between the set-point and top temperature 

on and off. The create_bottom_inputs() function creates and populates two boxes 

at the bottom of the GUI for user interactions. The topmost box has entry fields for 

specimen name, set-point temperature, top and bottom maximum motor positions, PID 

parameters, and a button for updating the settings. The bottom box contains three 

buttons: start, stop, and connect. Various buttons are toggled on or off depending on the 

sequence of the test process. 

3.2.12   IMPLEMENTATION 

The modules described above all contribute to the functionality of the GUI_PID script. 

They can be found throughout the various classes defined in GUI_PID, and provide critical 

functionality. As mentioned, PlottingDataMonitor(QtGui.QMainWindow) is the 

main class for GUI_PID, and it utilizes all the other classes in the script, except for 

RealTimeCurve(Qwt.QwtPlotCurve) class which is called by the class 

RealTimePlot(QWidget). PlottingDataMonitor(QtGui.QMainWindow) is 

the name of the script which calls the main() function. This is the main function of the 

script and is triggers the creation of the GUI. 

3.3 DEVELOPMENT COSTS 

A driving force behind the design of the testing apparatus was overall cost. As described in 

Chapter two, systems capable of maintaining ASTM standards and achieving acceptable 

heating rates already exist. However, these systems are extremely expensive. Gleeble 
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Systems can cost up to $900,000.00 [20] and used induction heaters can cost around 

$6,000.00 [23].  

In comparison the developed testing apparatus’ temperature control hardware totaled 

around $200, with raw material costs estimated to be approximately $100.00. It is 

important to note that the developed system is intended as an add-on to existing test 

frames such as the MTS servo-hydraulic frame used for the research displayed in this 

thesis. Also, the prices displayed do not account for the cost of manual labor associated 

with manufacturing, such as for the machining of grip parts, or time associated with tuning 

the PID control settings. Table 3.4 provides a detailed list of system expenditures which 

total approximately $300. 

 

Table 3.4: List of Expenditures 

Component Vendor Cost ($) 

MAX31855 Thermocouple Breakout 
Board (x2) 

Adafruit Industries 
29.90 

Breadboard + Jumper Cables Amazon 9.69 

SainSmart Uno Amazon 17.69 

SainSmart L293D Motor Shield Amazon 11.18 

Canakit Stepper Motor (x2) Amazon 37.90 

Type K Thermocouples (5 pack) Omega 35.00 

Bernzomatic TS3000KC (x2) Home Depot 49.94 

Raw Materials U of I Machine Shop 100.00 

Total: 291.30 
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CHAPTER 4: TESTING PROCEDURE INSTRUCTIONS 

The following sections detail and lay out the steps necessary to perform testing using the 

elevated temperature testing apparatus. It is important to note that the following series of 

instructions assumes that the testing platform has been set up according to the methods 

laid out in this thesis. This includes specimen and grip geometry, thermocouple locations, 

nozzle locations, and upper and lower motor limits for the temperature control system. It 

also assumes that the torch supports, and automated motor control assemblies have been 

attached to the test frame. 

4.1 TEMPERATURE CONTROL SETTINGS 

Before an actual test can be run, the PID settings and maximum motor positions must be 

defined and entered into the GUI. One of the downfalls to using a PID control algorithm can 

be the tuning of input parameters. For the set-up described in this thesis it is necessary to 

tune the PID settings before testing begins. This means one has to set up a secondary, 

expendable test specimen with thermocouples attached and connected. Validation of the 

PID settings should be performed on a load train set-up as similar to the real testing 

environment as possible; this includes starting each tuning test with a room temperature 

specimen and grips.  

When first tuning a PID control loop, it is advised to approach the situation in a logical 

manner. Most literature recommends beginning by tuning the proportional value (setting 

I=0, and D=0) to the best of ones abilities. Start by setting P to a low value such as 1, and 

take note of the system’s response to each tuning test performed. At a low P value the 
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system should struggle to reach the temperature set point. Next increase the P setting to a 

value that causes the system to oscillate around the set point. This will be an indicator that 

the P value is too great, creating an unstable system. Now decrease the P value until the 

system starts to steady out. At this point an offset like that described in CHAPTER 2: may 

occur. In order to compensate for this offset an integral value may be introduced. Repeat 

the same series of steps for the integral value as were followed for the P value, taking note 

of how the system responds to each set of inputs. CHAPTER 2: also mentions that the PI 

controller is one of the most common types of controllers used in industry. Depending on 

the system, this may be all the control necessary to meet one’s requirements. If not, the 

derivative value can be introduced. The D value will help to accelerate the rate at which the 

system approaches the set point. However, the D value should only be altered by small 

amounts, such as on the order of tenths of a point. Just as the D value can cause the 

system to quickly reach equilibrium, if entered incorrectly, it can also cause the system to 

become very unstable. Tuning the PID values may require keeping a log of system 

responses to various P, I, and D values. By acquiring this knowledge, an adequate set of 

values can be found that satisfy the system temperature testing requirements. It is also 

important to keep in mind that PID settings and the stability of the system may be affected 

by empty propane cylinders, incorrectly assembled load trains, unsymmetrical 

thermocouple placement, and altered maximum motor positions.  

4.2 SPECIMEN PREPARATION 

Before testing can begin the specimen geometry must be measured to record the 

minimum gauge section diameter and length of the gauge section. The minimum diameter 
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is necessary for calculating the cross-sectional area of the specimen for generating stress 

strain plots, while gauge length is used in percent elongation calculations. Percent 

Elongation can be measured off of the shoulders of the specimen, but more accurate 

measurements are preferred. This is accomplished by scribing two small lines at a set 

distance apart in the reduced section of the specimen. The original distance between 

marks is the initial gauge section length and should be recorded for later use in percent 

elongation calculations. These marks should be deep enough that they can still be seen 

after testing, but small enough to not create inclusions or imperfections where cracks may 

start. The validation testing performed in CHAPTER 5: used original gauge section lengths 

of approximately 25.00 mm and were created using calipers and a razor blade. 

Measurement of the elongation gauge section needs to be accurate, and should be 

measured using an appropriate device.  

4.3 THERMOCOUPLE ATTACHMENT 

It is important to determine thermocouple position and attachment technique before 

testing begins because both attributes can greatly affect PID values, as well as nozzle 

position and flame intensity. As stated in Section 3.1.3 , thermocouples are attached 27 

mm from each end of the specimen, using clips made from stainless steel strip. The clip and 

thermocouple attachment location can be seen in Figure 3.5. 

When attaching the thermocouples it is important to not place the thermocouple weld 

bead near the gauge marks. This is because the thermocouples could scratch or disfigure 

the gauge marks, causing an inaccurate or unreadable final gauge length measurement. It 
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is also important to locate the torch nozzles and displacement measurement device on 

separate sides of the specimen as well. Figure 4.1 depicts a recommended orientation for 

these components around the specimen. In it the round cross section of the specimen is 

reduced to quadrants, each of which is reserved for one of the previously mentioned 

functions. In Figure 4.1 it can be seen that the torch nozzles and thermocouples occupy 

opposite quadrants as a supplementary means of preventing the thermocouples from 

picking up inaccurate temperature readings. The elongation gauge marks are also located 

perpendicular from the torch nozzles and thermocouples, and opposite the displacement 

measurement device. This is particularly important if an extensometer is used because the 

knife edge attachment points could leave marks on the specimen which would disfigure the 

gauge section marks. 

 

Figure 4.1: Specimen Quadrant Diagram 
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4.4 LOAD TRAIN SET-UP 

Once the specimen measurements have been taken and thermocouples attached, it is time 

to place the specimen in the load train. As mentioned in Chapter 3, the research in this 

thesis developed two different types of grip connections, however if the seated connection 

grips are employed the process becomes much simpler and can be accomplished more 

quickly. When using the seated connection grips, lower the test frame actuator so that 

there is enough room to hang the full length of the load train without any interference. 

Next assemble both the top and bottom halves of the load train. Attach the top half of the 

load train first, using a 0.375” x 2” dowel pin to connect the load train to the test frame. 

Ensure that the seated connection grip is facing the torch nozzle and insert the specimen’s 

top button head into the grip’s opening. Pull down so that the specimen seats securely in 

the grip. This may be difficult to maintain until the bottom grip is attached due to the 

thermocouple wires pulling on the specimen. Next attach the bottom half of the load train 

in the same manner that the top was attached, confirming that the bottom grip opening 

also faces the torch nozzle as seen in Figure 4.2. The load train should be fairly balanced 

now, but if it is not check to make sure that the specimen is seated securely in both grips. 

Bring the actuator up so that the bottommost connection of the load train can slide into 

the slot on the actuator grip, but do not insert the pin. It was found that the extra step of 

raising the actuator helps provide more stability when connecting thermocouple leads. 

Alternatively, the pin connection grips may be used. In contrast with the seated connection 

grips, it was found that assembling the entire load train before attaching it to the test 

frame was easiest, as seen in Figure 4.3. Assemble both the top and bottom halves of the 
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load train separately from the test specimen. Then check that the 0.1875” x 2” dowel pins 

slide easily through the holes at each end of the specimen. If they do not, run a 0.1885” 

reamer through the hole by hand until the pin slides nicely through. Next pin the specimen 

to the top and bottom grips, making sure to match the top to the top and bottom to the 

bottom. For repeatability mark the sides of the grips that are to face the torch nozzles, and 

ensure that the opposite side of the specimen is where the thermocouples are connected. 

At this point a slight gap between specimen edges and grip sides may be noticeable. If this 

is the case, it may be necessary to add shims. The shims seen in Figure 4.3 were made from 

a variety of shim stock thicknesses, cut in the shape of a tab, and punched with either a 

0.375” or 0.25” hole. Add the shims to either side of the specimen, as symmetrically as 

possible to take up slack between the specimen and grip sides at both the top and bottom 

connection points. The load train is now ready to be attached to the test frame. Again 

ensure that the appropriate grip and specimen side are facing the torch nozzles, and lower 

then raise the actuator to add stability when attaching the thermocouples. 

Once the load train is in place, verify that the specimen is oriented correctly and matches 

the diagram shown in Figure 4.1. The thermocouples should be located opposite the 

propane torch nozzles while the elongation gauge marks should be located midway 

between the two. When this has been accomplished connect the thermocouples to the 

MAX31855 break out boards. When the electronic components of the control system were 

set up, it should have been noted which MAX31855 board corresponded to which 

temperature read out. Thus, depending on how the Arduino code is written, one 
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Figure 4.2: Seated Grip Specimen Alignment 

Figure 4.3: Pinned Grip Specimen Alignment 
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board should be designated for connection to the thermocouple located at the top of the 

specimen, and one should be designated for connection to the thermocouple at the 

bottom of the specimen. The boards used for testing in this thesis were labeled “T” or “B” 

for top and bottom so as to reduce the possibility of error when connecting 

thermocouples. Tags with similar labels were also taped to the thermocouple wires near 

their leads to further simplify the process. A proper connection between the board and 

thermocouple can be seen in Figure 4.4. If it should occur that thermocouple positions get 

swapped and that the top is connected to the bottom readout while the bottom is 

connected to the top readout, the GUI will most likely display feedback where the 

temperature for one thermocouple remains constant while its corresponding motor 

position increases towards its maximum value. Alternatively, the other thermocouple 

readout will display a temperature that is constantly increasing while its corresponding 

motor position remains at the minimum value. Thus it is imperative to correctly connect 

the thermocouples to the corresponding boards. When connecting the thermocouples it is 

also critical to correctly match leads to the appropriate connection. As seen in Figure 4.4 

the board is already labeled with a + or - and the corresponding thermocouple lead is 

colored, yellow (+) and red (-). When the thermocouple leads are reversed the GUI will 

respond by displaying the temperature of the corresponding thermocouple decreasing into 

negative values, rather than increasing. 
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Figure 4.4: Thermocouple Reader Attachment 

 

It is the author’s opinion that attaching the shields after putting the load train in place and 

connecting the thermocouple leads is easiest, however, the order of operations is 

insignificant to testing, as long as care is taken and no parts are damaged. That being said, 

as previously mentioned, the seated connection grips are easier to work with and this 

continues to be true when attaching the shields. The shields used in conjunction with the 

seated connection grips are described in Section 3.1.3 and can be seen in Figure 3.6(a) and 

(b).  Note that a “tongue” formed out of 0.006” shim stock was used to deflect the torch 

flame from shooting down the top grip opening, directly onto the specimen gauge section. 

For the pinned connection grips a different type of attachment provides for the same level 

of protection, and allows for symmetry between the top and bottom shield geometry. 
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These shields are designed to be supported by the pin connecting the specimen to the load 

train, and they come in two parts which effectively surround the top quarter of the grip. A 

flat bottom plate on the shield has a central hole, big enough to allow the specimen to fit 

through with room to self-align, but small enough to block any heat from the torch flame 

that may impact thermocouple readings. The two halves are held together in the front and 

back by straps fashioned out of shim stock or by a screw and nut. Curved sections 

perpendicular to the flat plate provide some alignment, and match the grip geometry, as 

shown in Figure 3.6(c). 

It was also found that heating rates and profiles are not affected despite the difference in 

shield geometry and attachment techniques. This is attributed to changes in heat sinks due 

to the varied grip geometries. If an extensometer or other displacement measuring device 

is used it is advisable to attach it to the specimen after attaching the grips. As previously 

mentioned, the extensometer should be positioned on the side opposite the specimen 

gauge marks, and can be attached with stainless steel springs. The springs shown in Figure 

4.5 are 0.125” in OD, 0.45” long, and formed of 0.017” 302SS wire. When the knife edges 

have been securely fastened, zero the COD reading and remove the extensometer pin. The 

load train should now be ready for the testing process to begin. 
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Figure 4.5: Extensometer Attachment 

 

4.5 TESTSTAR TESTING PROGRAM 

After the load train and thermocouples have been set up, testing parameters should be 

entered into the temperature and testing control programs. Depending on the type of 

testing platform in use, the control software will vary; however, the system available for 

use during the development of this thesis will be used as an example. Section 3.1.2 

provides an overview of the MTS test frame, control system, and sensors. For the TWSX 

software in use, procedures developed for tensile testing typically operate at a constant 

strain rate, which was determined based on the following equations: 

 
∈̇ =  

∆𝐿
𝑠𝑒𝑐⁄

𝐿0

=  
1.75 𝑚𝑚

𝑠𝑒𝑐⁄

35 𝑚𝑚
= 0.05/𝑠𝑒𝑐 (4.1) 

 
∈̇ =  

∆𝐿
𝑠𝑒𝑐⁄

𝐿0

=  
17.5 𝑚𝑚

𝑠𝑒𝑐⁄

35 𝑚𝑚
= 0.5/𝑠𝑒𝑐 (4.2) 
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Where based off a 35 mm gauge section, 1.75 mm/sec and 17.5 mm/sec are the required 

LVDT rates to achieve the desired strain rates of 0.05/sec and 0.5/sec respectively. In the 

Testware SX procedure it is important to make sure that the correct LVDT rate value and 

units are entered before beginning a test, as well as the correct data acquisition rates. 

Again, depending on the limits of the testing device, this value may need to be altered. It 

was determined that collecting data every 0.01 mm of actuator movement  was sufficient 

to provide accurate data, and was within the limits of the TestStar controls. The MTS 

testing frame has data collection limits set at a maximum of 5 KHz, as found in the user’s 

manual. Data collection may also be defined in terms of extensometer movement, for 

which the limits vary depending on the strain rate at which tests are performed. When 

considering the mechanical limits of the system, it may also be useful to initialize bounds 

based on LVDT or COD readings. These limits may be implemented from inside the 

Testware SX program, or externally by placing interlocks on the TestStar platform. 

4.6 TEST START 

Once the load train has been set-up and correct settings entered into the control programs, 

testing can begin. Briefly double check the entire system to make sure everything is correct 

before raising the actuator to a level where a pin can easily slide through the actuator grip 

and bottom load connection point. Do not actually pin the connection, but leave the test 

frame hydraulics running. The load train should not be connected at the bottom because 

the specimen could elongate during heating. If elongation were to occur while the load 

train was pinned at both ends then the specimen could become unseated or placed under 

a compressive load, neither of which creates a desirable test starting condition. If an 
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extensometer is in use, zero the COD and remove the extensometer’s pin. Next verify that 

the TWSX program is in “Execute” mode and click the Connect button on the GUI. Wait for 

the temperature and motor positions to start plotting on the GUI graph, and the message 

“Serial Connected, Enter Settings” to be displayed in the message bar in the bottom left 

corner of the screen. Enter the temperature settings, completing the Specimen Name, Set 

Temp, Top Maximum Motor Position, Bottom Maximum Motor Position, PID p, PID i, and 

PID d fields. When these have been filled out select the Update Settings button, at which 

point the message, “Press Start to Begin Test” should appear and the Start button should 

become activated. When it is time to begin the heating portion of the test, click the Start 

button to move the motors and propane torch valves to the ignition position. When this 

occurs, the hiss of propane being released from the cylinders should be audible and “Ignite 

Propane Torches” will be displayed in the message bar. Simultaneously pull the ignition 

triggers on the propane torch handles to begin heating of the specimen. Once the torches 

are lit and the bottom thermocouple has sensed a change in temperature greater than 3°C 

the message bar will change to read “Fires Lit, Waiting for SS Target,” or in other words, 

the PID control is waiting until temperatures are close enough to the set point, or steady 

state, to make adjustments. 

When the temperature reads approximately 50°C below the set point begin connecting the 

load train and zeroing controls. This reference point was found through trial and error, and 

may need to be adjusted depending on the user’s abilities. The first step in readying to 

start the tensile test is to zero the load cell. This may be accomplished using the Actuator 

Positioning Control (APC). Next adjust the actuator and slide in the pin so that the load 
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train is connected at both ends. Gloves may be necessary at this point to prevent burns. 

Finally turn off the APC and wait for the temperature to reach the set point. Depending on 

the desired heating rate and selected conditions, the GUI will notify the user when both 

the top and bottom temperatures are within +/-3°C of the set-point temperature by 

displaying “GO!” in a yellow box near the top of the GUI. If a hold period is desired, a timer 

counting down from 3 seconds is displayed above the yellow box. This 3 second hold may 

be adjusted by changing values in the GUI code. The 3 seconds is reset every time the 

temperature falls or rises outside the acceptable +/-3°C limits. When the clock reaches 0.0 

seconds, the yellow box changes to green and displays the message “SUCCESS.” At the 

users discretion the tensile test may be started as soon as the yellow message appears, or 

they may wait for the green message to be displayed. Tensile testing is started by pressing 

the “Run” button on the APC or on the computer display screen. The actuator should 

immediately move downwards at the specified rate, and will continue to do so until the 

program limits or mechanical limits are reached. Alternatively, the test may be ended by 

hitting the “Stop” button on the APC or computer screen. The propane torches may also be 

turned off by hitting the “Stop” button on the GUI. 

4.7 POST TEST DATA ANALYSIS 

Once the specimen has been tested to failure stop the test, but DO NOT touch any part of 

the load train. Depending on the set point temperature of the test this could result in 

severe burns. Let the load train cool down before collecting the specimen pieces for 

measurement—this should take anywhere from 5 to 15 minutes, depending on how cool 

the specimen is desired to be. During this time it is advisable to review the data collected 
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from the test and verify that it follows acceptable trends. As described in Section 2.2, this 

requires creating a stress strain plot from the load-displacement data generated during the 

test. Depending on if displacement was measured using the LVDT or extensometer, the 

corresponding plot will either be labeled “pseudo” stress strain, or “engineering” stress 

strain respectively. Typically a decrease in material properties can be expected for a 

corresponding increase in specimen temperature. This trend may also be expected for a 

decrease in strain rate as well. When the specimen has cooled enough, detach the 

thermocouple leads from the MAX31855 boards and remove the specimen pieces from the 

load train. It is advised at this point to mark the ends of the two halves so that they match 

one another and will not be lost or mixed up with other specimen. Re-assemble the 

specimen by matching up the fracture surface so that the gauge marks are in line with one 

another. Fastening the two halves together in an acceptable fashion, re-measure the 

distance between gauge marks using the same approach as when the marks were created. 

The percent elongation can now be found using (2.1). Typically percent elongation 

increases with temperature and decreases relative to strain rate. This is opposite of the 

trends seen for YS and UTS. 

4.8 TEST PROCEDURE CHECKLIST 

1. Attach specimen to corresponding grips 

a. For a pinned connection, add shims around the specimen if necessary 

b. Check thermocouple and gauge mark orientation relative to the grips 

2. Pin the grips and specimen to the top of the test frame 

a. Lower actuator out of the way, and check that the LVDT settings will allow 

for enough travel during the current test 
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b. Check that the grips are oriented correctly with respect to the torch nozzles 

3. Attach shields, and extensometer if necessary 

a. Minimize any gaps in the shields 

b. Check that the extensometer springs are tight enough to hold the knife 

edges in place 

4. Attach the thermocouple leads to the break out boards 

a. Check that the leads are attached correctly (colors and +/- symbols match) 

b. Check that the top and bottom thermocouples are attached to the correct 

break out board 

5. Review the TWSX program 

a. Check LVDT rates and displacement limits 

b. Verify that the COD or LVDT data collection rates are within limits 

c. Check that the correct data file name has been entered 

d. Zero the TWSX display meters 

e. Check that the program is in “Execute” mode 

f. Enable interlocks if desired 

6. Set up the temperature program 

a. Check the physical motor start position 

b. Check that the GUI is connected to the desired COM port 

c. Click on the “Connect” button to ensure that the GUI can connect to the 

microcontroller 

d. Enter the specimen name, temperature set-point, maximum motor 

positions, and PID settings 

e. Click on the “Update Settings” button and verify that the plot is updating 

7. Raise the actuator up to level with the bottom pin connection 

a. Check that the LVDT is in the appropriate mode 

b. Zero the LVDT position if desired 

c. If an extensometer is being used, zero the COD reading and remove the 

extensometer pin  
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8. Double check that all aspects of the system are ready for test start 

9. Click the “Start” button on the GUI 

a. Pull the torch triggers to ignite flames 

b. Monitor the testing temperatures via the GUI display 

10. Approximately 50°C before the set-point temperature, ready the system for tensile 

test start 

a. Zero the load cell 

b. Adjust the actuator and pin it to the bottom of the load train 

c. Turn off the APC 

11. Hit the “Run” button on either the APC or TestStar program to begin the tensile test 

 

 

  



79 

CHAPTER 5: TESTING RESULTS 

Elevated temperature tensile testing was performed to evaluate stress strain curve 

reproducibility, material property trends, heating conditions, and to verify effectiveness of 

the developed propane torch and temperature control system. A series of six different 

tensile tests were performed at three different temperatures and two different strain 

rates, with duplicate tests performed for each set of criteria totaling twelve tests. 

Specimens made of a 70XX series aluminum alloy were tested at 25°C, 225°C, and 425°C at 

strain rates of 0.05/sec and 0.5/sec. Evaluated material properties include YS, UTS, and 

percent elongation. Heat up rates, and temperatures at tensile test start were also 

recorded. Modulus of elasticity values were not evaluated as testing was performed using 

the LVDT. Further discussion of these properties and trends is included in the following 

sections. 

5.1 TESTING HEAT RATE PROFILES 

Temperature heating profiles in relation to motor positions for both the top and bottom 

positons can be seen in Figure 5.1 through Figure 5.8. These plots are generated when 

temperature data is sent from the Arduino to the GUI and are displayed for the user; 

however, the Arduino is only capable of doing so when the motors are stationary. Thus the 

plots are not 100% real time, but provide a very good representation of what is happening 

with the system. To remedy this, a secondary Arduino would need to be implemented. 

Improvements to this aspect of the system are further discussed in CHAPTER 6:. In Figure 

5.1 through Figure 5.8 the horizontal light blue dashed lines indicate the set point 

temperature, while the vertical green dashed lines indicate the tensile test start time. From 
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the plots it can be seen that all tests, except A5, were conducted when the temperature 

had reached a steady state at the target temperature. Figure 5.5 provides data for the 

testing of specimen A5. This test was conducted at temperatures above the set point due 

to an incorrectly entered Integral value in the PID settings. The effects of this error will be 

discussed later in the chapter. From the lower motor position plots it can be seen how the 

PID algorithm reacted to temperature changes via motor position. When the temperature 

is significantly far from its target temperature the motors are at their maximum positions. 

However, the closer to the set point that the temperature gets, the more the PID becomes 

active. This is evident in the lower positioned peaks on the motor position plots, as the PID 

tries to prevent and counteract any significant changes in temperature. 

 

Figure 5.1: A3 TCS Data 
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Figure 5.2: A4 TCS Data 
 
 
 

 

Figure 5.3: B3 TCS Data 
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Figure 5.4: B4 TCS Data 
 
 
 

 

Figure 5.5: A5 TCS Data 
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Figure 5.6: A7 TCS Data 
 
 
 

 

Figure 5.7: B5 TCS Data 
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Figure 5.8: B6 TCS Data 

 

Table 5.1 provides an overview of minimum and maximum motor positions, PID values, and 

average heat up rates for the 225°C and 425°C tests. Minimum motor positions remained 

the same for testing at both temperatures, while the maximum motor positions were 

shifted up 100 steps on both the top and bottom motors for the 425°C tests. This was done 

to initiate faster heating rates, due to the fact that heat up rates start to slow as the overall 

system capacity becomes hotter. As discussed in CHAPTER 2:, increasing P values results in 

faster system response times as well, however caution must be taken as this can also result 

in an unstable system. Thus the P value was increased from 15.00 to 18.00 for the 425°C 

tests. These changes produced an average heat up rate of 6.0°C/sec for the four tests 

performed at 225°C, while the four 425°C tests averaged a heat up rate of 5.6°C/sec. 
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Table 5.1: PID Testing Parameters 

Temp. 

 (°C)  

Min motor position 

Top (steps)  Bottom (steps) 

Max motor position  

Top (steps)  Bottom (steps) 

P 

 

I 

 

D 

 

Average 
Heat Rate 

(°C/sec) 

225 203 204 550 500 15.00 2.00 0.06 6.0 

425 203 204 650 600 18.00 2.00 0.06 5.6 

 

Figure 5.9 displays a standard deviation error bar plot for heating rates during the 225°C 

and 425°C tests. It can be seen that the 225°C tests exhibited a much tighter, repetitive 

range of heating rates than the 425°C tests. 225°C heat up rates ranged from 5.9-

6.1°C/sec, while 425°C heat up rates ranged from 5.2-6.1°C/sec. Overlap of the two error 

bars indicate that mean heating rates for both temperatures have a likely propensity to fall 

within the range of 5.9-6.1°C/sec. 

 Figure 5.9: Heat-Up Rate Error Bar Plot 
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5.2 TENSILE RESULTS; �̇� = 0.05/S 

Stress strain curves for a strain rate of 0.05/sec at 25°C, 225°C, and 425°C are displayed in 

Figure 5.10. The plot serves to illustrate the effects temperature has on material 

properties. This is can be seen in the steepness of the elastic region, UTS magnitudes, and 

strain values. Note that specimen A5 displays a greater strain than the other tests. This is 

due to an incorrectly entered integral value and resulting temperature overshoot as 

mentioned in Section 5.1. Mechanical properties and other test specific information for the 

0.05/sec tests are tabulated in Table 5.2. Looking at the table it is clear that an increase in 

temperature causes a decrease in YS and UTS values, and an increase in percent 

elongations. This is particularly evident when comparing UTS values. For 25°C tests the 

average UTS is 157.2 MPa, 101.9 MPa at 225°C, and 39.4 MPa at 425°C. 

 

Figure 5.10: Stress Strain Curves for 0.05/sec Strain Rate 
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Table 5.2: 0.05 / sec Tensile Testing Results 

Specimen 

 

Test Temp.  

(°C) 

0.2% YS  

(MPa) 
UTS 

(MPa) 

% Elongation 

 

Heating rate 

(°C/sec) 

Temp. at Tensile Test Start 

Top (°C)   Bottom (°C) 

A1 25 71.6 158.2 5.4    

A2 25 76.6 156.2 5.6    

A3 225 60.6 102.2 8.6 6.1 224.00 219.00 

A4 225 58.2 101.5 8.4 5.9 225.00 221.25 

A5 425 33.0 35.3 126.2 5.8 422.50 424.25 

A7 425 40.2 42.4 131.9 6.1 423.50 424.25 

 

5.3 TENSILE RESULTS; �̇� = 0.5/S 

Stress strain curves for a strain rate of 0.5/sec for 25°C, 225°C, and 425°C are shown in 

Figure 5.11. This plot also displays the effect of temperature on material properties. Table 

5.3 displays the mechanical properties and other information relevant to the elevated 

temperature portion of the tests. From both the stress strain curves and tabulated data it 

can be seen that that an increase in temperature causes a decrease in YS and UTS values, 

while increasing percent elongation. Again this is most visible when comparing UTS values. 

25°C tests averaged a UTS value of 158.5 MPa, a UTS value of 109.0 MPa was averaged for 

the 225°C tests, and an average UTS value of 63.8 MPa was calculated for the 425°C tests. 
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Figure 5.11: Stress Strain Curves for 0.5/sec Strain Rate 

 

Table 5.3: 0.5 / sec Tensile Testing Results 

Specimen 

 

Test Temp.  

(°C) 

0.2% YS  

(MPa) 
UTS 

(MPa) 

% Elongation 

 

Heating rate 

(°C/sec) 

Temp. at Tensile Test Start 

Top (°C)   Bottom (°C) 

B1 25 75.3 157.1 5.4    

B2 25 72.9 159.9 4.8    

B3 225 60.2 109.3 5.2 6.0 224.00 225.25 

B4 225 60.1 108.7 5.6 5.9 225.25 222.25 

B5 425 56.8 62.1 49.7 5.2 421.75 428.00 

B6 425 57.9 65.6 61.8 5.3 427.25 421.75 

 

5.4 25°C TENSILE TESTING RESULTS 

Stress strain plots for the 25°C tests are shown in Figure 5.12 and exhibit minimal to non-

existent differences in material properties between the two strain rates. For a strain rate of 
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0.05/sec an average YS of 74.1 MPa, average UTS of 157.2 MPa, and an average elongation 

of 5.5% were calculated. At a strain rate of 0.5/sec the material exhibited an average YS of 

74.1 MPa, an average UTS of 158.5 MPa, and an average elongation of 5.1%. Of the 25°C 

tests, specimen B2 shows the greatest pseudo strain, but has the smallest measured 

elongation at 4.8%. This is due to the specimen experiencing deformation outside of the 

gauge section in the shoulders where it seats into the grips.  

 Figure 5.12: 25° C Stress Strain Curves 

 

5.5 225°C TENSILE TESTING RESULTS 

Stress strain plots for the 225°C tests are shown in Figure 5.13. From these plots it can be 

seen how strain rate impacts material properties at elevated temperature. Specimens 

tested at lower strain rates showed a significant increase in pseudo strain as well as an 
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increase in elongation. Specimens at 225°C and a strain rate of 0.05/sec averaged a YS of 

59.4 MPa, UTS of 101.9 MPa, and an elongation of 8.5%. At a strain rate of 0.5/sec the tests 

averaged a YS of 60.2 MPa, UTS of 109.0 MPa, and an elongation of 5.6%. These results 

indicate that higher strain rates correlate to higher UTS values, while lower strain rates 

result in higher elongations. Looking at both Figure 5.12 and Figure 5.13 it can be seen that 

temperature also affects material property values. As temperature increases the YS and 

UTS decrease, while elongation increases. 

 Figure 5.13: 225° C Stress Strain Curves 
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5.6 425°C TENSILE TESTING RESULTS 

Stress strain results for the 425°C tests can be seen in Figure 5.14. Tests performed at a 

strain rate of 0.05/sec averaged a YS of 36.5 MPa, UTS of 39.4 MPa, and elongation of 

129.0%. Testing at 0.5/sec resulted in an average YS of 57.4 MPa, UTS of 63.8 MPa, and 

elongation of 55.8%. Comparing these values to the 25°C and 225°C tests further 

demonstrates how YS and UTS values drop with higher temperatures while elongations 

increase. It should be noted however, that due to the selected material’s elongation at high 

temperatures (400°C and greater), thermocouple attachment was difficult to maintain and 

inconsistent in reading temperatures when the thermocouples came loose as the specimen 

elongated and the gauge section reduced. Results are typically reliable for the type of 

thermocouple attachment described in this thesis, and are especially so throughout the 

specimen’s elastic region in which there is negligible deformation, or until the 

thermocouples come loose. Testing for which there was minimal reduction in the gauge 

section, such as the 25°C and 225°C tests, provided more consistent results, as can be seen 

in Figure 5.12 and Figure 5.13. The results of these tests highlight how important it is to 

find a suitable method for thermocouple attachment or an alternative temperature 

measurement approach. It is also important to note that 425°C is near in temperature to 

the 70XX aluminum alloy semi-solid region. The semi-solid region occurs when 

temperatures are hot enough to melt portions of the aluminum alloy, while other sections 

remain solid. This formation of two phases at once in the alloy significantly weakens the 

material’s ability to withstand applied loads and could affect testing results. 
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Figure 5.14: 425° C Stress Strain Curves 

 

5.7 MECHANICAL PROPERTY ERROR BAR PLOTS 

The following figures depict error bar plots for the evaluated YS, UTS, and percent 

elongation values. Red indicates tests ran at the 0.05/sec strain rate, while blue represents 

tests performed at the 0.5/sec test. From Figure 5.15 and Figure 5.16 it can be expected 

that for the 70XX series aluminum alloy, YS and UTS values recorded at lower temperatures 

will be fairly similar in value. During the 25°C and 225°C tests the range of recorded 

property values was quite minimal as evidenced from the plots. However, at higher 

temperatures, YS and UTS values see a change in behavior between the two strain rates. At 

425°C greater material property values can be expected at the higher strain rate. Thus it 

can be concluded that a relationship exists between the material’s properties and the 

effects of strain rate and temperature.    
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Figure 5.15: YS Error Bar Plot 

 

Figure 5.16: UTS Error Bar Plot 
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Figure 5.17: Percent Elongation Error Bar Plot 

 

Figure 5.17 depicts a bar plot illustrating the calculated percent elongations for tests 

occurring at 25°C, 225°C, and 425°C and at strain rates of 0.05/sec and 0.5/sec. Again, the 

range of data at for each test situation is minimal, meaning there is not much variance 

from the mean and suggesting valid testing results. It can also be seen that the error bars 

overlap one another. This suggests that the material is less susceptible to variations in 

strain rate, especially at low temperatures.   
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

The elevated temperature tensile testing apparatus described in this thesis provides a 

means for industry and academics to perform materials testing that conforms to standards 

and achieves fast heating rates, while at a significantly reduced cost to the user. The 

developed system consists of a servo-hydraulic test frame, capable of performing tensile 

tests, to which two propane torches have been affixed. These torches apply heat to both 

ends of the test specimen and are automated using stepper motors. The stepper motors 

are part of a temperature control loop and accept positional outputs from the PLC, while 

specimen temperature is monitored by two thermocouples and provides the PLC with 

inputs. Temperature control is regulated by a PID algorithm run by the PLC, which accepts 

system inputs such as set-point and PID settings from a GUI. 

Operational verification of the apparatus and testing process was validated through testing 

of a 70XX series aluminum alloy at three different temperatures and two different strain 

rates. Twelve tensile tests were performed in total, eight of which were performed at 

elevated temperatures. It was found that increased temperature corresponds to increases 

in percent elongation measurements and decreases in YS and UTS values. All of the tests 

were performed according to ASTM standards, and testing occurred within +/-3°C of the 

temperature set-point. Heating rates also fell within the target range of 5-10°C, and 

averaged 6.0°C/sec for tests performed at 225°C and 5.8°C/sec for testing at 425°C. Costs 

for the system are a fraction of what other devices cost, totaling approximately $300. 
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6.2 RECOMMENDATIONS 

The work presented in this thesis meets all design requirements. However, some 

improvements could be implemented to increase the functionality of the system. These 

improvements fall under one of five categories which will be discussed in this section: 

increasing system capacity, alternate testing platform validation, modifications to current 

technology, PID improvements, and improved temperature measurement. 

6.2.1  INCREASING SYSTEM CAPACITY 

Currently the testing apparatus’ capabilities are limited to the intensity of the torch flame, 

and the capacity of the propane cylinders. Torch flame is directly related to the degree to 

which the stepper motor can open the pressure regulator without stalling. Introducing a 

motor with higher torque could increase the flame, resulting in higher heating rates. This 

was not investigated as the current motors provide sufficient flame intensities for the 

required testing. For prolonged testing it is recommended to develop an alternate fuel 

supply system. The current propane cylinders have a finite volume that required 

replacement. A larger fuel supply with a gauge to indicate container propane levels would 

be ideal. 

6.2.2  VALIDATION FOR ALTERNATE TESTING PLATFORMS 

In theory the developed temperature testing apparatus can be introduced to any testing 

platform. This was not investigated, and it would be interesting to see how changes to 

specimen material and geometry, and load train material and geometry affect heating 



97 

rates and system cohesion. More specifically, verification of system capabilities with 

respect to non-metallic specimen, and non-circular specimen should be completed. 

6.2.3  MODIFICATIONS TO CURRENT TECHNOLOGY 

The current testing procedure consists of starting the heat up process, and then starting 

the tensile test process when the temperature set-point has been reached. Testing times 

are recorded separately for these two actions and it is up to the user to record at what 

time the tensile test is started relative to the recorded temperature. Combining the two 

processes would be advantageous and could be accomplished by triggering a flag in the PLC 

program. Set-up would require connecting another sensor to the SainSmart Uno that 

would indicate when the tensile test begins. This could be implemented in the form of a 

circuit that is easily broken when the test frame actuator moves downward. 

Another improvement would be to replace the current motor driver shield with one that 

communicates over serial and has its own PWM driver chip. This is because the current 

motor shield does not have its own processor, and is dependent upon the Uno to control 

motor position. This is extremely time intensive for the Uno, as it cannot send data to the 

GUI, or enter new temperatures into the PID control loop until the motors have moved to 

their next position. Because of this, cycle times for the PID loop are dependent upon how 

long it takes the motors to move from one position to the next. Implementing a shield such 

as the ‘Adafruit Motor/Stepper/Servo Shield for Arduino v2’ would improve cycle times, as 

well as free up the Uno to focus on reading temperatures, the PID loop, and updates for 

the next desired motor position. Another benefit is that the Adafruit motor shields are 
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stackable and use fewer I/O pins on the Uno so that the MAX31855 breakout boards could 

be directly connected. 

6.2.4  PID IMPROVEMENTS 

The existing PID control system is implemented in such a manner that P, I, and D values 

must be predetermined and entered into the control program before testing begins. In 

order to reduce time spent tuning parameters several adjustments to the algorithm can be 

explored. Developing a mathematical process model to simulate heating of the test 

specimen and load train would reduce time spent testing heating and cooling of the 

system. However, this model may require unavailable parameters, such as the thermal 

conductivity of the specimen. Intensive study of system parameters including flame 

temperature, thermal conductivity of the grip material, and system heat sinks would need 

to be acquired. Alternatively the temperature control algorithm could be edited to accept 

new PID parameters during testing. This would provide the user with the ability to 

manually change parameters on the fly if they noticed the system was not behaving in a 

satisfactory manner. A third improvement to the PID control algorithm would be to 

introduce a cascading PID loop. Because initiating a change to the bottom specimen 

temperature results in a change to the top temperature, and vice versa, a cascading PID 

loop would be ideal. Cascading PID loops consist of two PID loops, with one controlling the 

set-point of another. For implementation with respect to temperature control of the 

testing apparatus, an initial PID loop would control the specimen’s top temperature and a 

secondary PID loop would control the specimen’s bottom temperature. The top 
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temperature PID would operate based off a user defined set-point, while the bottom PID 

would operate with a set-point defined by the top temperature. 

6.2.5  IMPROVED TEMPERATURE MEASUREMENTS 

As noted in 5.6 accurate temperature measurement became difficult to sustain at higher 

temperatures. The stainless steel thermocouple clips used to ensure a secure contact 

between the thermocouples and test specimen could not account for the reduced 

diameter of the 70XX aluminum alloy when it elongated at 425°C. To improve temperature 

measurement at these elevated temperatures it is recommended to implement an 

alternative thermocouple attachment method. The new method must be able to account 

for the significant change in geometry that the test specimen undergoes during elongation. 

Several suggestions include spot welding the thermocouples to the specimen or using a 

high temperature adhesive compound. Both methods may prove more costly, but should 

provide the desired results. Alternatively, a non-contact method of temperature 

measurement could be implemented such as an infrared (IR) camera.   
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APPENDIX B: HMI SOURCE CODE 

GUI_PID.py: 

""" 

Victoria Kampfer 

08-31-2014 

 

This GUI was developed to display the progress of temperatures and 

motor positions for a high temperature testing apparatus. The apparatus 

consists of two propane torches operated by stepper motors to heat a 

metal specimen. The temperature control system is managed by a 

SainSmart Uno microcontroller coupled with a motor driver shield and 

two thermocouple breakout boards. The Uno runs a PID control algorithm 

and communicates with this GUI to accept inputs and display outputs. 

Key features of the GUI include two numerical temperature displays; two 

numerical motor position displays; a real-time plot visually displaying 

time, motor position, and temperature; input fields for specimen name, 

temperature set-point, maximum motor positions, and PID settings; and a 

timer that displays a three second countdown monitoring if the 

temperature is within the +/-3 degC range of the set-point. 

""" 

 

from __future__ import division 

from __future__ import print_function 

 

import sys 

import Queue 

from collections import deque 

import this 

import time 

 

import PyQt4.QtCore as QtCore 

import PyQt4.QtGui as QtGui 

import PyQt4.Qwt5 as Qwt 

 

from com_monitor import ComMonitorThread 

from eblib.serialutils import full_port_name, enumerate_serial_ports 

from eblib.utils import get_all_from_queue, get_item_from_queue 

from live_data_feed import LiveDataFeed 

 

 

class PlottingDataMonitor(QtGui.QMainWindow): 

    """ 

    The main class of the GUI_PID. GUI dequeues and lists are created 

    to hold data, GUI components are created and set up, and the 

    com_monitor/data feed are initialized. Program flags are also set. 

    This class is responsible for creating and managing graphical 

    entities 

    of the GUI. 

 

    :param parent: Always a top-level widget, never used 

    :type parent: QWidget 

 

    The following sub functions are part of __init__ and help 
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    organize the 

    class 

 

     - create_status_bar() 

        Creates a status bar below the central widget to display text 

        messages. 

 

     - create_top_info() 

        Creates and populates the top h-box, which is sub-divided into 

        four group-boxes, one each for displaying information about the 

        top motors and temperatures, bottom motors and temperatures, 

        communication of the program, and test information such as time 

        and status. 

 

     - create_mid_plot() 

        Creates the real-time plot and plot controls which are grouped 

        together in the middle of the main h-box. It contains five 

        curves: 

        - bottom_motor_position 

        - top_motor_position 

        - bottom_temp, 

        - top_temp, 

        - top_temps_delta 

        It also has a widget for turning the display of the 

        top_temps_delta curve on and off. 

 

     - create_bottom_inputs() 

        Creates and populates two, stacked h-boxes at the bottom of the 

        GUI. The upper h-box is the input_h_box houses entry fields for 

        system input parameters. The lower h-box is the control_h_box 

        and contains three push buttons: 

 

        - start 

        - stop 

        - connect 

 

    """ 

    signalUpdateInfo = QtCore.pyqtSignal(str) 

 

    def __init__(self, parent=None): 

        super(PlottingDataMonitor, self).__init__(parent) 

 

        def create_status_bar(): 

            self.status_text = QtGui.QLabel('Monitor idle') 

            self.statusBar().addWidget(self.status_text, 1) 

 

        def create_top_info(): 

            # INFO H BOX ############################################### 

            # top group box 

            top_info_v_box = QtGui.QVBoxLayout() 

            top_info_group_box = QtGui.QGroupBox('Top Heater') 

            top_info_group_box.setLayout(top_info_v_box) 

 

            self.top_temp = CoupledBox(top_info_v_box, 'Temperature: ') 

 

            self.top_motor_position = CoupledBox(top_info_v_box, 

                                                 'Motor Position: ') 
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            self.top_heat_rate = CoupledBox(top_info_v_box, 

                                            'Heat Rate: ') 

 

            # bottom group box 

            bottom_info_v_box = QtGui.QVBoxLayout() 

            bottom_info_group_box = QtGui.QGroupBox('Bottom Heater') 

            bottom_info_group_box.setLayout(bottom_info_v_box) 

 

            self.bottom_temp = CoupledBox(bottom_info_v_box, 

                                          'Temperature: ') 

 

            self.bottom_motor_position = CoupledBox(bottom_info_v_box, 

                                                    'Motor Position: ') 

 

            self.bottom_heat_rate = CoupledBox(bottom_info_v_box, 

                                               'Heat Rate: ') 

 

            # com port group box 

            com_info_v_box = QtGui.QVBoxLayout() 

            com_info_group_box = QtGui.QGroupBox('Com Port Info') 

            com_info_group_box.setLayout(com_info_v_box) 

 

            self.com_select = CoupledBox(com_info_v_box, 

                                         'Selected Port: ', 

                                         field_type=QtGui.QComboBox) 

 

            self.com_select.field.addItems(self.on_update_ports()) 

            self.port_name = str(self.com_select.field.currentText()) 

 

            self.com_baud = CoupledBox(com_info_v_box, 'Baud Rate: ') 

            self.com_cycle = CoupledBox(com_info_v_box, 'Cycle Rate: ') 

 

            # test info group box 

            test_info_v_box = QtGui.QVBoxLayout() 

            test_info_group_box = QtGui.QGroupBox('Test Info') 

            test_info_group_box.setLayout(test_info_v_box) 

 

            self.lcd_count_down = MyLCDCounter(3, 1000) 

 

            self.test_time_coupled_box = CoupledBox(test_info_v_box, 

                                                    'Test Duration: ') 

 

            self.btn_ready = QtGui.QPushButton() 

            self.btn_ready.setStyleSheet("background-color:#333333") 

 

            test_info_v_box.addWidget(self.lcd_count_down) 

            test_info_v_box.addWidget(self.btn_ready) 

 

            # info box layout 

            info_h_box = QtGui.QHBoxLayout() 

            info_h_box.setAlignment(QtCore.Qt.AlignLeft) 

 

            info_h_box.addWidget(top_info_group_box) 

            info_h_box.addWidget(bottom_info_group_box) 

            info_h_box.addWidget(com_info_group_box) 

            info_h_box.addWidget(test_info_group_box) 



137 

            info_h_box.setAlignment(QtCore.Qt.AlignLeft) 

 

            self.main_v_layout.addLayout(info_h_box) 

 

        def create_mid_plot(): 

            # PLOT HELPERS 

            # ############################################### 

            self.startMarker = Qwt.QwtPlotMarker() 

 

            # PLOT H BOX 

            # ################################################# 

            self.plot = RealTimePlot() 

            self.plot.add_curve('bottom_motor_position', 

                                self.time_display, 

                                self.bottom_motor_display, 

                                penStyle=QtCore.Qt.DashDotDotLine) 

 

            self.plot.add_curve('top_motor_position', 

                                self.time_display, 

                                self.top_motor_display, 

                                color='yellow', 

                                penStyle=QtCore.Qt.DashDotDotLine) 

 

            self.plot.add_curve('bottom_temp', 

                                self.time_display, 

                                self.bottom_temps_display, 

                                yAxisRight=True) 

            self.plot.add_curve('top_temp', 

                                self.time_display, 

                                self.top_temps_display, 

                                color='yellow', 

                                yAxisRight=True) 

 

            self.plot.add_curve('top_temps_delta', 

                                self.time_display, 

                                self.top_temps_delta, 

                                color='red', 

                                yAxisRight=True) 

 

            # PLOT CONTROLS 

            btn_top_dt_curve = QtGui.QPushButton('Top DT Curve') 

 

            self.connect(btn_top_dt_curve, 

                         QtCore.SIGNAL('clicked()'), 

                         self.plot.curves[ 

                             'top_temps_delta'].toggle_curves) 

 

            # Create VBox and add controls 

            plot_controls_v_box = QtGui.QVBoxLayout() 

            plot_controls_v_box.addWidget(btn_top_dt_curve) 

 

            # Add controls to groupBox 

            plot_controls_group_box = QtGui.QGroupBox('Plot Controls') 

            plot_controls_group_box.setLayout(plot_controls_v_box) 

 

            plot_h_box = QtGui.QHBoxLayout() 

            plot_h_box.addWidget(plot_controls_group_box) 
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            plot_h_box.addWidget(self.plot) 

 

            self.main_v_layout.addLayout(plot_h_box) 

 

        def create_bottom_inputs(): 

            # INPUTS ################################################### 

            input_sub_h_box = QtGui.QHBoxLayout() 

 

            self.set_point = CoupledBox(input_sub_h_box, 

                                        'Set Temp: ', 

                                        field_type=QtGui.QLineEdit, 

                                        default_str=str(200)) 

 

            self.top_max_position = \ 

                CoupledBox(input_sub_h_box, 

                           'Top Max Motor ' 

                           'Position: ', 

                           field_type=QtGui.QLineEdit, 

                           default_str=str(600)) 

 

            self.bottom_max_position = \ 

                CoupledBox(input_sub_h_box, 

                           'Bottom Max Motor Position: ', 

                           field_type=QtGui.QLineEdit, 

                           default_str=str(600)) 

 

            self.proportional = CoupledBox(input_sub_h_box, 'PID p: ', 

                                           field_type=QtGui.QLineEdit, 

                                           default_str=str(10)) 

 

            self.integral = CoupledBox(input_sub_h_box, 'PID i: ', 

                                       field_type=QtGui.QLineEdit, 

                                       default_str=str(2)) 

 

            self.derivative = CoupledBox(input_sub_h_box, 'PID d: ', 

                                         field_type=QtGui.QLineEdit, 

                                         default_str=str(0.06)) 

 

            self.btn_update_settings = \ 

                QtGui.QPushButton('Update\nSettings') 

 

            self.btn_update_settings.setDisabled(True) 

 

            self.connect(self.btn_update_settings, 

                         QtCore.SIGNAL('clicked()'), 

                         self.on_update_settings) 

 

            input_group_box = QtGui.QGroupBox('Arduino Settings') 

            input_group_box.setLayout(input_sub_h_box) 

            input_h_box = QtGui.QHBoxLayout() 

 

            self.specimen_name = CoupledBox(input_h_box, 

                                            'Specimen Name: ', 

                                            field_type=QtGui.QLineEdit, 

                                            default_str='') 

 

            self.specimen_name.field.setMinimumWidth(100) 
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            input_h_box.addWidget(input_group_box) 

            input_sub_h_box.addWidget(self.btn_update_settings) 

 

            # CONTROL ################################################## 

            control_h_box = QtGui.QHBoxLayout() 

 

            self.btn_start = QtGui.QPushButton('Start') 

            self.btn_start.setDisabled(True) 

 

            self.connect(self.btn_start, QtCore.SIGNAL('clicked()'), 

                         self.on_start) 

 

            self.btn_stop = QtGui.QPushButton('Stop') 

 

            self.connect(self.btn_stop, QtCore.SIGNAL('clicked()'), 

                         self.on_stop) 

 

            self.btn_connect = QtGui.QPushButton('Connect') 

 

            self.connect(self.btn_connect, QtCore.SIGNAL('clicked()'), 

                         self.on_connect) 

 

            control_h_box.addWidget(self.btn_start) 

            control_h_box.addWidget(self.btn_stop) 

            control_h_box.addWidget(self.btn_connect) 

 

            self.main_v_layout.addLayout(input_h_box) 

            self.main_v_layout.addLayout(control_h_box) 

 

        # Create data ques / lists 

        self.time_display = deque(maxlen=100) 

        self.bottom_temps_display = deque(maxlen=100) 

        self.bottom_motor_display = deque(maxlen=100) 

        self.top_temps_display = deque(maxlen=100) 

        self.top_motor_display = deque(maxlen=100) 

        self.top_temps_delta = deque(maxlen=100) 

 

        self.time = deque() 

        self.bottom_temperatures = deque() 

        self.bottom_motor = deque() 

        self.top_temperatures = deque() 

        self.top_motor = deque() 

 

        self.arduino_inputs = list() 

 

        # Creates GUI components 

        self.main_v_layout = QtGui.QVBoxLayout() 

        create_top_info() 

        create_mid_plot() 

        create_bottom_inputs() 

        create_status_bar() 

 

        # Sets up GUI components 

        self.main_frame = QtGui.QWidget() 

        self.main_frame.setLayout(self.main_v_layout) 

        self.setCentralWidget(self.main_frame) 
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        # Set up com monitor / data feed 

        self.data_from_arduino = Queue.Queue() 

        self.error_que = Queue.Queue() 

        self.msg_to_send = deque(maxlen=1) 

        self.com_monitor_active = False 

 

        self.com_monitor = ComMonitorThread( 

            self.data_from_arduino, 

            self.error_que, 

            self.msg_to_send, 

            full_port_name(self.port_name), 

            9600) 

 

        self.live_data_feed = LiveDataFeed() 

 

        print(self.port_name) 

 

        # Set program flags 

        self.flag_ready = False 

        self.test_started = False 

        self.go_time = 0.0 

        self.start_time = 0.0 

 

    def on_update_settings(self): 

        """ 

        Is called when the 'clicked' signal from btn_update is emitted. 

        Sends program parameters to the PLC. Builds a string from the 

        input_h_box entries and posts it to the deque, msg_to_send. It 

        also updates plot settings and stores inputs in a list for 

        future 

        reference. 

        """ 

 

        # Inputs stored as deque: msg_to_send 

        inputs = [self.set_point.val(), 

                  self.top_max_position.val(), 

                  self.bottom_max_position.val(), 

                  self.proportional.val(), 

                  self.integral.val(), 

                  self.derivative.val()] 

 

        str_msg = str(inputs[0]) + '\t' 

        str_msg += str(inputs[1]) + '\t' 

        str_msg += str(inputs[2]) + '\t' 

        str_msg += str(inputs[3]) + '\t' 

        str_msg += str(inputs[4]) + '\t' 

        str_msg += str(inputs[5]) 

 

        # Inputs added to deque 

        self.msg_to_send.append(str_msg) 

 

        # Plot title from inputs 

        self.plot.plot.setTitle(str_msg) 

 

        # Setting motor axis based on max motor position 

        self.plot.set_motor_axis( 

            max([self.top_max_position.val(), 
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                 self.bottom_max_position.val()])) 

 

        # Adding inputs to arduino list 

        self.arduino_inputs = inputs 

 

    @staticmethod 

    def on_update_ports(): 

        """ 

        Uses pySerial's enumerate_serial_ports() to determine available 

        serial ports. Is called when the serial port's 

        combo-box is created. 

 

        :return: List of serial port names. 

        :rtype: list 

        """ 

        ports = list(enumerate_serial_ports()) 

        return ports 

 

    def on_stop(self): 

        """ 

        Is called when the 'clicked' signal from btn_stop is emitted. A 

        message to move motors to the zero positions at a speed of 75 is 

        posted to msg_to_send. A file is saved reporting time, 

        temperature, and motor position data for both the top and bottom 

        locations with a name containing the specimen name, date, and 

        time. A .png image of the GUI real-time curves plot is saved 

        with the same file name as the text document. 

        """ 

        self.msg_to_send.append('0 0 75') 

 

        file_name = str( 

            self.specimen_name.lbl_2.text() + '_' + time.strftime( 

                "%d-%m-%Y") + 

            '_' + time.strftime("%I-%M-%S") + '.txt') 

 

        with open(file_name, 'w') as f: 

            line = 'TIME' + \ 

                   '\t' + 'BOTTOM TEMP' + \ 

                   '\t' + 'BOTTOM MOTOR' + \ 

                   '\t' + 'TOP TEMP' + \ 

                   '\t' + 'TOP MOTOR' + '\n ' 

 

            f.write(line) 

            for i1, t in enumerate(self.time): 

                str_1 = self.bottom_temperatures[i1] 

                str_2 = self.bottom_motor[i1] 

                str_3 = self.top_temperatures[i1] 

                str_4 = self.top_motor[i1] 

 

                line = '{0}\t{1}\t{2}\t{3}\t{4}\n'.format(str(t), 

                                                          str_1, 

                                                          str_2, 

                                                          str_3, 

                                                          str_4) 

 

                f.write(line) 
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        f.close() 

 

        QtGui.QPixmap.grabWidget(self.plot.plot).save( 

            file_name.rstrip('.txt') + '.png', 'PNG') 

 

    def on_connect(self): 

        """ 

        Is called when the 'clicked' signal from btn_connect is emitted. 

        Clears previous test data, establishes communication over the 

        com_monitor, and sets up the com_timer 

        """ 

 

        # Clear previous test data 

        self.time_display.clear() 

        self.bottom_temps_display.clear() 

        self.bottom_motor_display.clear() 

        self.top_temps_display.clear() 

        self.top_motor_display.clear() 

        self.top_temps_delta.clear() 

        self.bottom_temperatures.clear() 

        self.bottom_motor.clear() 

        self.top_temperatures.clear() 

        self.top_motor.clear() 

        self.time.clear() 

 

        # Ensures com_timer is disconnected from serial to begin with 

        self.com_timer = None 

 

        # If a valid port is unavailable, exit function 

        if self.port_name == '': 

            return 

 

        # Create and start the com_monitor object 

        self.com_monitor = ComMonitorThread( 

            self.data_from_arduino, 

            self.error_que, 

            self.msg_to_send, 

            full_port_name(self.port_name), 

            9600) 

        self.com_monitor.start() 

 

        # Checks for com monitor error 

        com_error = get_item_from_queue(self.error_que) 

        if com_error is not None: 

 

            QtGui.QMessageBox.critical(self, 

                                       'ComMonitorThread error', 

                                       com_error) 

 

            self.com_monitor = None 

 

        # Creates, connects, and starts com timer. Separate from 

        # com_monitor's thread. 

        self.portTimer = time.clock() 

        self.com_timer = QtCore.QTimer() 

 

        self.connect(self.com_timer, QtCore.SIGNAL('timeout()'), 
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                     self.on_timer) 

 

        self.com_timer.start(1000.0 / 100) 

 

    def on_start(self): 

        """ 

        Is called when the 'clicked' signal from btn_start is emitted. 

        Posts start trigger 's' to msg_to_send. If the specimen name 

        entry field is empty the user is notified and the start trigger 

        is not posted. 

        """ 

 

        if len(self.specimen_name.lbl_2.text()) > 0: 

            self.msg_to_send.append('s') 

        else: 

            QtGui.QMessageBox.critical(self, 'Invalid Specimen Name', 

                                       'Please Enter Specimen Name and ' 

                                       'Press Start') 

 

    def read_serial_data(self): 

        """ 

        Function called periodically by the update timer to read data 

        from the serial port. 

 

        Check to see if data is a message or command. Messages will be 

        displayed by the status bar. 

 

        If data is a command, determine type and action to be taken. 

         - *Parameters* indicates the PLC is ready to accept input 

           parameters, disables the connect button and enables the 

           update settings button in the GUI. 

 

         - *Ready* indicates the PLC is ready to begin test, disables 

           the update settings button and enables the start button. 

 

         - *Ignited* indicates the PLC has witnessed a 3degC change in 

           temperature, and that the bottom heating element is working. 

           test_started is set to True to trigger updating the plot and 

           info. Plotting parameters are started. 

 

         - *Stopped* initiates the closing of the com monitor, and the 

           start button is disabled while the connect button is enabled. 

           test_started is set to False. 

 

         If neither MSG or CMD is issued, continue plotting time and 

         data over the live_data_feed. 

        """ 

        q_data = list(get_all_from_queue(self.data_from_arduino)) 

        if len(q_data) > 0: 

            _time = q_data[-1][1] 

            _data = q_data[-1][0].split() 

            if _data[0].startswith("MSG:"): 

                msg = q_data[-1][0] 

                self.status_text.setText(msg) 

 

            elif _data[0].startswith("CMD:"): 

                cmd = _data[1] 
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                if cmd == 'Parameters': 

                    self.btn_connect.setDisabled(True) 

                    self.btn_update_settings.setDisabled(False) 

 

                elif cmd == 'Ready': 

                    self.btn_update_settings.setDisabled(True) 

                    self.btn_start.setDisabled(False) 

 

                elif cmd == 'Started': 

                    self.btn_start.setDisabled(True) 

                    self.btn_connect.setDisabled(True) 

 

                elif cmd == 'Ignited': 

                    self.test_started = True 

                    self.start_time = _time 

                    self.startMarker.setXValue(_time) 

                    self.startMarker.setYValue(0) 

                    self.startMarker.setLineStyle( 

                        Qwt.QwtPlotMarker.HLine) 

 

                    self.startMarker.attach(self.plot.plot) 

 

                elif cmd == 'Stopped': 

                    self.com_monitor.close() 

                    self.com_monitor = None 

                    self.btn_start.setDisabled(True) 

                    self.btn_connect.setDisabled(False) 

                    self.test_started = False 

 

            else: 

                self.live_data_feed.add_data((_time, _data)) 

 

    def on_timer(self): 

        """ 

        Is called when the timeout signal from the com_timer is emitted. 

        Serial data is read and the plot is updated. 

        """ 

        self.read_serial_data() 

        self.update_info_and_plot() 

 

    def update_info_and_plot(self): 

        """ 

        It is repeatedly called from on_timer and updates test 

        information in the info_h_box, and plot. 

        """ 

 

        if self.live_data_feed.has_new_data: 

            _time, _data = self.live_data_feed.read_data() 

            self.time_display.append(_time) 

            self.bottom_motor_display.append(float(_data[0])) 

            self.bottom_temps_display.append(float(_data[1])) 

            self.top_motor_display.append(float(_data[2])) 

            self.top_temps_display.append(float(_data[3])) 

 

            # Determines if parameters have been sent to the PLC 

            if len(self.arduino_inputs) > 0: 
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                self.top_temps_delta.append( 

                    self.arduino_inputs[0] - self.top_temps_display[-1]) 

 

            # On each test_start trigger, append new data to dequeues 

            if self.test_started: 

                _testDuration = _time - self.start_time 

 

                self.test_time_coupled_box.lbl_2.setText( 

                    "%.1f" % _testDuration) 

 

                self.time.append(_time - self.start_time) 

                self.bottom_motor.append(float(_data[0])) 

                self.bottom_temperatures.append(float(_data[1])) 

                self.top_motor.append(float(_data[2])) 

                self.top_temperatures.append(float(_data[3])) 

 

                # Starts countdown timer to determine 3 sec wait period 

                # if temperature is within +/-3degC of set-point 

                if abs(self.bottom_temps_display[ 

                    -1] - self.set_point.val()) < 3 and abs( 

                                self.top_temps_display[ 

                                    -1] - self.set_point.val()) < 3: 

 

                    if not self.flag_ready: 

                        self.lcd_count_down.start() 

 

                        self.btn_ready.setStyleSheet( 

                            "background-color:yellow") 

 

                        self.btn_ready.setText('GO!') 

                        self.flag_ready = True 

                        self.go_time = _time 

 

                    elif self.flag_ready and _time > self.go_time + 3: 

                        self.btn_ready.setText('SUCCESS') 

 

                        self.btn_ready.setStyleSheet( 

                            "background-color:green") 

 

                else: 

                    self.btn_ready.setStyleSheet("background-color:red") 

                    self.flag_ready = False 

                    self.go_time = 0.0 

                    self.btn_ready.setText('') 

 

            self.plot.update_plot() 

 

            # Updates info_h_box. Starts after 9 data points to 

            # provide a 

 

            # more accurate avg for the heat up rate 

            if len(self.time_display) > 9: 

                cycle_rate = \ 

                    (self.time_display[-1] - self.time_display[-2]) 

 

                self.bottom_motor_position.lbl_2.setText(_data[0]) 

                self.bottom_temp.lbl_2.setText(_data[1]) 
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                dt1_dt = \ 

                    (self.bottom_temps_display[-1] - 

                     self.bottom_temps_display[-10]) / \ 

                    (self.time_display[-1] - self.time_display[-10]) 

 

                self.bottom_heat_rate.lbl_2.setText("%.4f" % dt1_dt) 

 

                self.top_motor_position.lbl_2.setText(_data[2]) 

                self.top_temp.lbl_2.setText(_data[3]) 

 

                dt2_dt = (self.top_temps_display[-1] - 

                          self.top_temps_display[-10]) / \ 

                         (self.time_display[-1] - 

                          self.time_display[-10]) 

 

                self.top_heat_rate.lbl_2.setText("%.4f" % dt2_dt) 

 

                self.com_cycle.lbl_2.setText("%.4f" % cycle_rate) 

 

 

class CoupledBox(QtGui.QWidget): 

    """ 

    Class to combine a label and a second object known as field. field 

    may be a QLabel, QLineEdit, or QComboBox 

 

    :param parent: The QWidget that will house the new coupled box 

    :type parent: QWidget 

    :param label: A string to be displayed as a label 

    :type label: str 

    :param default_str: The default string to display in the coupled box 

    :type default_str: str 

    :param field_type: Specifies the type of the combo box 

    :type field_type: QLabel, QComboBox, QLineEdit 

    :return: Nothing 

    """ 

 

    def __init__(self, parent, label, default_str='NA', 

                 field_type=QtGui.QLabel): 

 

        super(CoupledBox, self).__init__() 

 

        assert isinstance(default_str, 

                          str), "Make sure CoupledBox default_str is " \ 

                                "a sting and not an int!!!" 

 

        _label = QtGui.QLabel(label) 

        _label.setAlignment(QtCore.Qt.AlignLeft) 

        if field_type == QtGui.QLabel: 

            self.field = QtGui.QLabel(default_str) 

            self.field.setFixedWidth(40) 

            self.field.setAlignment(QtCore.Qt.AlignRight) 

        elif field_type == QtGui.QLineEdit: 

            self.field = QtGui.QLineEdit() 

            self.field.setText(default_str) 

        elif field_type == QtGui.QComboBox: 

            self.field = QtGui.QComboBox() 
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        h_box = QtGui.QHBoxLayout() 

        h_box.addWidget(_label) 

        h_box.addWidget(self.field) 

        self.setLayout(h_box) 

 

        parent.addWidget(self) 

 

    def val(self): 

        """ 

        Returns value of field as a float. 

 

        :return: Value of field 

        :rtype: float 

        """ 

        return float(self.field.text()) 

 

    def set_val(self, value): 

        """ 

        Sets the value of field as a str. 

 

        :param value: Value to be set 

        :type value: str, float, int 

        """ 

        self.field.setText(str(value)) 

 

 

class RealTimePlot(QtGui.QWidget): 

    """ 

    Class to plot real time data. 

 

    :var plot: a Qwt.QwtPlot 

    :var curves: A dictionary that contains the curves to be plotted 

        onto plot 

 

    """ 

 

    def __init__(self): 

        super(RealTimePlot, self).__init__() 

        self.plot = self.create_plot() 

 

        self.curves = {} 

 

        layout = QtGui.QHBoxLayout() 

        layout.addWidget(self.plot) 

        self.setLayout(layout) 

 

    def create_plot(self): 

        """ 

        Creates plot titles, axes, labels, etc... 

 

        :return: plot 

        :rtype plot: Qwt.QwtPlot 

        """ 

        plot = Qwt.QwtPlot(Qwt.QwtText('title'), self) 

        plot.setCanvasBackground(QtCore.Qt.black) 

        plot.setAxisTitle(Qwt.QwtPlot.xBottom, 'Time') 
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        plot.setAxisScale(Qwt.QwtPlot.xBottom, 0, 10, 1) 

        plot.setAxisTitle(Qwt.QwtPlot.yLeft, 'Motor') 

        plot.setAxisScale(Qwt.QwtPlot.yLeft, 0, 700) 

        plot.enableAxis(Qwt.QwtPlot.yRight) 

        plot.setAxisTitle(Qwt.QwtPlot.yRight, 'Temperature') 

        plot.setAxisScale(Qwt.QwtPlot.yRight, 0, 500) 

        legend = Qwt.QwtLegend(plot) 

        plot.insertLegend(legend, Qwt.QwtPlot.TopLegend) 

        plot.replot() 

 

        return plot 

 

    def set_motor_axis(self, max_position): 

        """ 

        Sets motor position axis limits with respect to user inputs. 

 

        :param max_position: Max motor position as entered in the GUI 

            inputs 

        :type max_position: float 

        """ 

        self.plot.setAxisScale(Qwt.QwtPlot.yLeft, 0, max_position) 

        print("max position:", max_position) 

 

    def add_curve(self, name, x_data, y_data, color='limegreen', 

                  yAxisRight=False, penStyle=QtCore.Qt.SolidLine): 

        """ 

        Adds curves to plot. 

 

        :param name: name of curve 

        :type name: str 

        :param x_data: x values for curve plot (time) 

        :type x_data: deque 

        :param y_data: y values for curve plot (motor position or 

            temperature) 

        :type y_data: deque 

        :param color: color changes with motor and temperature position. 

        :type color: str 

        :param yAxisRight: sets y-axis to the right of the plot 

        :type yAxisRight: bool 

        :param penStyle: sets curve line styles 

        :type penStyle: QtCore.Qt.SolidLine 

        """ 

        curve = RealTimeCurve(name, x_data, y_data, color, yAxisRight) 

        curve.attach(self.plot) 

        self.curves[name] = curve 

 

    def update_plot(self): 

        """ 

        Updates plot's curves and reset x-axis limits. 

        """ 

        for name, curve in self.curves.iteritems(): 

            curve.update_curve() 

 

        x_data = list(self.curves.values()[0].x_data) 

 

        self.plot.setAxisScale(Qwt.QwtPlot.xBottom, x_data[0], 

                               max(20, x_data[-1])) 
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        self.plot.replot() 

 

 

class RealTimeCurve(Qwt.QwtPlotCurve): 

    """ 

    Class to define curve as used by the RealTimePlot. 

 

    :param name: name of curve 

    :type name: str 

    :param x_data: x values for curve plot (time) 

    :type x_data: deque 

    :param y_data: y values for curve plot (motor position or 

        temperature) 

    :type y_data: deque 

    :param color: color changes with motor and temperature position. 

    :type color: str 

    :param yAxisRight: sets y-axis to the right of the plot 

    :type yAxisRight: bool 

    :param penStyle: sets curve line styles 

    :type penStyle: QtCore.Qt.SolidLine 

    """ 

 

    def __init__(self, name, x_data, y_data, color='limegreen', 

                 yAxisRight=False, penStyle=QtCore.Qt.SolidLine): 

 

        Qwt.QwtPlotCurve.__init__(self) 

        self.x_data = x_data 

        self.y_data = y_data 

 

        self.setRenderHint(Qwt.QwtPlotItem.RenderAntialiased) 

        pen = QtGui.QPen(QtGui.QColor(color), penStyle) 

        pen.setWidth(2) 

        self.setPen(pen) 

        self.setData(list(x_data), list(y_data)) 

 

        self.setTitle(name) 

 

        if yAxisRight: 

            self.setAxis(Qwt.QwtPlot.yRight, True) 

 

    def update_curve(self): 

        """ 

        Updates x and y curve data. Call this function when new data is 

        available and plot should be updated. 

        """ 

        self.setData(list(self.x_data), list(self.y_data)) 

 

    def toggle_curves(self): 

        """ 

        Hides or un-hides selected plot curves. 

        """ 

        if self.isVisible(): 

            self.hide() 

            print('Hidden') 

        else: 

            self.show() 

            print('Shown') 
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class MyLCDCounter(QtGui.QLCDNumber): 

    """ 

    Class to create a countdown timer based off of QtGui.QLCDNumber. It 

    incorporates the QtCore.QTimer to automatically 

    update the QtGui.QLCDNumber. 

 

    :param start_time: Starting time of LCD countdown 

    :type start_time: int, float 

    :param interval: Time decremented from start_time value 

    :type interval: int, float 

    """ 

 

    def __init__(self, start_time, interval): 

        QtGui.QLCDNumber.__init__(self) 

        self.interval = interval 

        self.value = start_time 

        self.timer = QtCore.QTimer() 

 

        self.connect(self.timer, QtCore.SIGNAL("timeout()"), self, 

                     QtCore.SLOT("update()")) 

 

    @QtCore.pyqtSlot() 

    def update(self): 

        """ 

        Updates the countdown timer display values. This function is 

        automatically called by the QtCore.QtTimer. 

        """ 

        if self.value == 0: 

            self.display(self.value) 

            self.stop() 

        else: 

            self.display(self.value) 

            self.value -= self.interval / 1000 

 

    def start(self): 

        """ 

        Initiates countdown. Call this function to start. 

        """ 

        self.timer.start(self.interval) 

 

    def stop(self): 

        """ 

        Stops countdown timer. Automatically called when countdown 

        reaches 

        zero. 

        """ 

        self.timer.stop() 

 

 

def main(): 

    """ 

    Main Function of GUI  script 

    """ 

    app = QtGui.QApplication(sys.argv) 

    form = PlottingDataMonitor() 
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    form.setFixedSize(1335, 890) 

    form.show() 

    # form.showMaximized() 

    app.exec_() 

 

# Main script: 

if __name__ == "__main__": 

    main() 

live_data_feed.py: 

class LiveDataFeed(object): 

    """ 

    Class to house the latest data. It allows the user to post or read 

    data. It keeps track of if the current data has 

    ever been read. 

 

    :var cur_data: The newest data 

    :type cur_data: tuple 

    """ 

 

    def __init__(self): 

        self.cur_data = None 

        self.has_new_data = False 

     

    def add_data(self, data): 

        """ 

        Adds new data to the object. 

 

        :param data: The data 

        :type data: tuple 

        """ 

        self.cur_data = data 

        self.has_new_data = True 

     

    def read_data(self): 

        """ 

        Returns data. 

 

        :return cur_data: Returns most recent data 

        ":rtype cur_data: tuple 

        """ 

        self.has_new_data = False 

        return self.cur_data 

 

 

if __name__ == "__main__": 

    pass 

com_monitor.py: 

 

from __future__ import print_function 

import threading 

import time 
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import serial 

 

 

class ComMonitorThread(threading.Thread): 

    """ A thread for monitoring a COM port. The COM port is  

        opened when the thread is started. 

     

        data_q: 

            Queue for received data. Items in the queue are 

            (data, timestamp) pairs, where data is a binary  

            string representing the received data, and timestamp 

            is the time_display elapsed from the thread's start (in 

            seconds). 

         

        error_q: 

            Queue for error messages. In particular, if the  

            serial port fails to open for some reason, an error 

            is placed into this queue. 

         

        port_num: 

            The COM port to open. Must be recognized by the  

            system. 

         

        port_baud/stopbits/parity:  

            Serial communication parameters 

         

        port_timeout: 

            The timeout used for reading the COM port. If this 

            value is low, the thread will return data in finer 

            grained chunks, with more accurate timestamps, but 

            it will also consume more CPU. 

    """ 

    def __init__(   self,  

                    data_q, error_q, msg2Send, 

                    port_num, 

                    port_baud, 

                    port_stopbits=serial.STOPBITS_ONE, 

                    port_parity=serial.PARITY_NONE, 

                    port_timeout=0.01): 

 

        threading.Thread.__init__(self) 

         

        self.serial_port = None 

        self.serial_arg = dict( port=port_num, 

                                baudrate=port_baud, 

                                stopbits=port_stopbits, 

                                parity=port_parity, 

                                timeout=port_timeout) 

 

        self.data_q = data_q 

        self.error_q = error_q 

        self.msg2Send = msg2Send 

         

        self.alive = threading.Event() 

        self.alive.set() 

         

    def run(self): 
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        try: 

            if self.serial_port:  

                self.serial_port.close() 

            self.serial_port = serial.Serial(**self.serial_arg) 

        except serial.SerialException, e: 

            self.error_q.put(e.message) 

            return 

         

        # Restart the clock 

        time.clock() 

         

        while self.alive.isSet(): 

            # Reading 1 byte, followed by whatever is left in the 

            # read buffer, as suggested by the developer of  

            # PySerial. 

            #  

            #print(self.msg_to_send) 

            if len(self.msg2Send) > 0: 

                self.serial_port.write(self.msg2Send[-1]) 

                self.msg2Send.pop() 

                 

            data = self.serial_port.readline() 

             

            if len(data) > 0: 

                print(data) 

                timestamp = time.clock() 

                self.data_q.put((data, timestamp)) 

             

        # clean up 

        if self.serial_port: 

            self.serial_port.close() 

 

    def join(self, timeout=None): 

        self.alive.clear() 

        threading.Thread.join(self, timeout) 

         

    def close(self): 

        self.alive.clear() 

serialutils.py: 

""" 

Some serial port utilities for Windows and PySerial 

 

Eli Bendersky (eliben@gmail.com) 

License: this code is in the public domain 

""" 

import re, itertools 

import _winreg as winreg 

 

    

def full_port_name(portname): 

    """ 

    Given a port-name (of the form COM7, COM12, CNCA0, etc.) returns a 

    full name suitable for opening with the Serial class. 

    """ 
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    m = re.match('^COM(\d+)$', portname) 

    if m and int(m.group(1)) < 10: 

        return portname     

    return '\\\\.\\' + portname     

     

 

def enumerate_serial_ports(): 

    """ 

    Uses the Win32 registry to return an iterator of serial (COM) ports 

    existing on this computer. 

    """ 

    path = 'HARDWARE\\DEVICEMAP\\SERIALCOMM' 

    try: 

        key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, path) 

    except WindowsError: 

        raise StopIteration 

 

    for i in itertools.count(): 

        try: 

            val = winreg.EnumValue(key, i) 

            yield str(val[1]) 

        except EnvironmentError: 

            break 

 

 

if __name__ == "__main__": 

    import serial 

    for p in enumerate_serial_ports(): 

        print p, full_port_name(p)   

utils.py: 

import random, time 

import Queue 

 

 

class Timer(object): 

    def __init__(self, name=None): 

        self.name = name 

 

    def __enter__(self): 

        self.tstart = time.time() 

 

    def __exit__(self, type, value, traceback): 

        if self.name: 

            print '[%s]' % self.name, 

        print 'Elapsed: %s' % (time.time() - self.tstart) 

 

 

def get_all_from_queue(Q): 

    """ 

    Generator to yield one after the others all items currently in the 

    queue Q, without any waiting. 

    """ 

    try: 

        while True: 
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            yield Q.get_nowait() 

    except Queue.Empty: 

        raise StopIteration 

 

 

def get_item_from_queue(Q, timeout=0.01): 

    """ 

    Attempts to retrieve an item from the queue Q. If Q is empty, None 

    is returned. Blocks for 'timeout' seconds in case the queue is 

    empty, so don't use this method for speedy retrieval of multiple 

    items (use get_all_from_queue for that). 

    """ 

    try: 

        item = Q.get(True, 0.01) 

    except Queue.Empty: 

        return None 

 

    return item 

 

 

def flatten(iterables): 

    """  

    Flatten an iterable of iterables. Returns a generator. 

    list(flatten([[2, 3], [5, 6]])) => [2, 3, 5, 6] 

    """ 

    return (elem for iterable in iterables for elem in iterable) 

 

 

def argmin_list(seq, func): 

    """ 

    Return a list of elements of seq[i] with the lowest func(seq[i]) 

    scores. 

 

    argmin_list(['one', 'to', 'three', 'or'], len) 

    ['to', 'or'] 

    """ 

    best_score, best = func(seq[0]), [] 

    for x in seq: 

        x_score = func(x) 

        if x_score < best_score: 

            best, best_score = [x], x_score 

        elif x_score == best_score: 

            best.append(x) 

    return best 

 

 

def argmin_random_tie(seq, func): 

    """ 

    Return an element with lowest func(seq[i]) score; break ties at 

    random. 

    """ 

    return random.choice(argmin_list(seq, func)) 

 

 

def argmin(seq, func): 

    """ 

    Return an element with lowest func(seq[i]) score; tie goes to first 
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    one. 

    argmin(['one', 'to', 'three'], len) 

    'to' 

    """ 

    return min(seq, key=func) 

 

 

def argmax_list(seq, func): 

    """ Return a list of elements of seq[i] with the highest  

        func(seq[i]) scores. 

        >>> argmax_list(['one', 'three', 'seven'], len) 

        ['three', 'seven'] 

    """ 

    return argmin_list(seq, lambda x: -func(x)) 

 

 

def argmax_random_tie(seq, func): 

    """ Return an element with highest func(seq[i]) score; break  

        ties at random. 

    """ 

    return random.choice(argmax_list(seq, func)) 

 

 

def argmax(seq, func): 

    """ Return an element with highest func(seq[i]) score; tie  

        goes to first one. 

        >>> argmax(['one', 'to', 'three'], len) 

        'three' 

    """ 

    return max(seq, key=func) 

 

 

# ----------------------------------------------------------------- 

if __name__ == "__main__": 

    #~ print list(flatten([[1, 2], (4, 5), [5], [6, 6, 8]])) 

    #~ print argmin_random_tie(['one', 'to', 'three', 'or'], len) 

 

    print min(['one', 'to', 'three', 'or'], key=len) 

    print argmin(['one', 'to', 'three', 'or'], len) 
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APPENDIX C: PLC SOURCE CODE 

PID_Motor_control.ino: 

/* Victoria Kampfer 

03-18-2014 

 

PID responsive motor positioning program: 

 

The goal of this program is to run a temperature control system with a 

heat source from two propane torches. These torches are operated by 

stepper motors whose position is kept track of on a global coordinate 

system with lower and upper bounds defined by the mechanical limits of the 

propane torch dials, and stall position of the motors. A PID algorithm 

controls movement of the motors based off of inputs from two thermocouples 

and user inputs such as temperature set point and PID values.   

*/ 

 

//INCLUDED LIBRARIES: 

#include <AFMotor.h> 

#include <EEPROM.h> 

#include "Adafruit_MAX31855.h" 

#include <PID_v1.h> 

 

//PIN ASSIGNMENTS: 

#define thermoDO A0 

#define thermoCLK A1 

#define thermo1CS A2 

#define thermo2CS A3 

#define thermo1VIN A4 

#define thermo2VIN A5 

 

//EEPROM VARIABLES: 

//Top motor position, part a 

int TMP_a = EEPROM.read(0);                                   

//Top motor position, part b 

int TMP_b = EEPROM.read(1);                                   

//Bottom motor position, part a 

int BMP_a = EEPROM.read(2);                                   

//Bottom motor position, part a 

int BMP_b = EEPROM.read(3);                                   

//Power error flag 

int flag_PWR_ERROR = EEPROM.read(4);                          

 

//VARIABLES: 

int topMotorPosition = TMP_a*256 + TMP_b;            

int bottomMotorPosition = BMP_a*256 + BMP_b;         

int bottomSteps = 0; 

int topSteps = 0; 

int bottomDesired = 0; 

int topDesired = 0; 

int speedVal = 50; 

int newSpeedVal = speedVal; 

int oldBottomDesired = bottomMotorPosition; 

int oldTopDesired = topMotorPosition; 
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unsigned long thermoReadTime; 

 

uint8_t bottomDir; 

uint8_t topDir; 

uint32_t usperstep; 

 

double temps[2]; 

double desiredTemp; 

double bottomOutput; 

double topOutput; 

 

float bottomMaxPosition; 

float topMaxPosition; 

 

//Starting PID values acting as place holders, will be reset by GUI  

//inputs 

float pid_P = 100.1;   

float pid_I = 10.1;    

float pid_D = 10.1;    

 

//CONSTANT VARIABLES: 

//Start position of motor 

const int startPosition = 0;                                    

//Steps per revolution 

const int stepsPerRev = 200;   

//Upper bound for torch valve (mechanical limit) 

const float maxTurns = 6;          

//Pre-defined upper limits of motor position 

const int endPosition = maxTurns*stepsPerRev;       

//Pre-defined lower limits of bottom motor position 

const int bottomMinPosition = 203; 

//Pre-defined lower limits of top motor position 

const int topMinPosition = 204;                                 

 

//OBJECTS: 

AF_Stepper bottomMotor(stepsPerRev, 1);                                                       

AF_Stepper topMotor(stepsPerRev, 2); 

 

Adafruit_MAX31855 thermo1(thermoCLK, thermo1CS, thermoDO); 

Adafruit_MAX31855 thermo2(thermoCLK, thermo2CS, thermoDO); 

 

PID bottomPID(&temps[0], &bottomOutput, &desiredTemp, pid_P, \ 

pid_I, pid_D, DIRECT); 

 

PID topPID(&temps[1], &topOutput, &desiredTemp, pid_P, pid_I, \ 

pid_D, DIRECT); 

 

void setup() {   

  //Opens serial port, sets data rate to 9600 

  Serial.begin(9600);                   

  //Sets bottom thermocouple pin to low (powered off)   

  pinMode(thermo1VIN, OUTPUT); digitalWrite(thermo1VIN, LOW);  

  //Sets top thermocouple pin to low (powered off)   

  pinMode(thermo2VIN, OUTPUT); digitalWrite(thermo2VIN, LOW);     

  //Message for HMI to display in status bar   

  Serial.println("MSG: Serial Connected, Enter Settings");       
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  Serial.println("CMD: Parameters"); 

  //Check power error flag for unclean shutdown indication 

  if (flag_PWR_ERROR == 1){                                                                                               

    Serial.print("MSG: ERROR: Unclean Shutdown..." 

   " please reset motor positions and EEPROM"); 

    

    while(1){ 

    } 

  } 

 

  //Initiate motors at starting positions [0,0] 

  moveMotors(0);  

  //Reads input parameters from HMI   

  receiveParameters();                                               

 

  //Update PID loops... 

  //PID parameters 

  bottomPID.SetTunings(pid_P, pid_I, pid_D);  

  //PID mode   

  bottomPID.SetMode(AUTOMATIC);        

  //Motor limits   

  bottomPID.SetOutputLimits(bottomMinPosition, (int)bottomMaxPosition);    

  //1 millisec sample time   

  bottomPID.SetSampleTime(1);                                                  

   

  topPID.SetTunings(pid_P, pid_I, pid_D); 

  topPID.SetMode(AUTOMATIC); 

  topPID.SetOutputLimits(topMinPosition, (int)topMaxPosition); 

  topPID.SetSampleTime(1); 

   

  //Delay between each motor movement 

  usperstep = bottomMotor.setSpeed(speedVal);                                  

  usperstep = topMotor.setSpeed(speedVal); 

   

  //Release motors to avoid overheating 

  bottomMotor.release(); 

  topMotor.release(); 

   

  //Begin start process for lighting propane torches 

  lightFires(); 

 

} 

 

//Monitor start time 

unsigned long controlStart = millis();                                         

 

void loop() {   

  printStatus();                                                               

 

  //Prints motor positions and temps to serial port 

  //Compute PID loop for bottom heater system 

  bottomPID.Compute(); 

  //Compute PID loop for top heater system   

  topPID.Compute();                                                             

   

  //Store bottom system PID outputs 

  bottomDesired = (int)bottomOutput;     
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  //Store top system PID outputs   

  topDesired = (int)topOutput;                                                   

 

  //Move motors to new positions 

  moveMotors(0);      

  //Check serial port for data from HMI   

  parseSerial();                                                               

   

} 

 

 

 

 

//Get starting test parameters from HMI 

void receiveParameters() { 

  //If serial is not available check for motor positions  

  //and temperatures 

  while(!Serial.available()){ 

    printStatus(); 

  } 

  //Else read in testing parameters from the HMI 

  desiredTemp = Serial.parseFloat(); 

  topMaxPosition = Serial.parseFloat(); 

  bottomMaxPosition = Serial.parseFloat(); 

  pid_P = float(Serial.parseFloat()); 

  pid_I = float(Serial.parseFloat()); 

  pid_D = float(Serial.parseFloat()); 

} 

 

 

//Begin start process for lighting propane torches 

void lightFires(){ 

  //Message sent to HMI to be displayed to user 

  Serial.println("MSG: Press Start to Begin Test");  

  //Indicates arduino is ready for test start   

  Serial.println("CMD: Ready");           

  //If serial is not availabe keep checking for data   

  while(!Serial.available()){                                                  

    printStatus(); 

  } 

  //Set exit flag condition 

  bool exitFlag = false;      

  //Enter while loop to get serial data   

  while(exitFlag == false){                                                    

    //Print motor positions and temperatures to serial port 

    printStatus();     

    //If available serial is greater than zero check for start "trigger" 

from HMI     

    if(Serial.available()>0){                                                  

      //Start trigger from HMI 

      if(Serial.read() == 's'){   

        //Trigger exit flag condition         

        exitFlag = true;                                                       

      } 

    } 

  } 

  //Indicates testing has started 
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  Serial.println("CMD: Started");                                              

  //Ignition point bottom motor position 

  bottomDesired = 600;                                                         

  //Ignition point top motor position 

  topDesired = 600;  

  //Move motors to locations for iginition   

  moveMotors(0);       

  //Msg for HMI status bar   

  Serial.println("MSG: Ignite Propane Torches");                               

   

  //Save bottom starting temperature 

  double startingBotTemp = temps[0];  

  //Save top starting temperature   

  double startingTopTemp = temps[1];     

  //Enter while loop when bottom temperature is 3 degC greater than   

  //starting temp   

  while(temps[0] < 3 + startingBotTemp){     

    //Print motor positions and temperatures to HMI     

    printStatus();                                                             

  } 

  //Indicates torches have been ignited 

  Serial.println("CMD: Ignited");   

  //Msg for status bar   

  Serial.println("MSG: Fires lit, waiting for SS target");                     

} 

 

 

//Moves motors to next positions 

void moveMotors(int mode){ 

   

  //test to see if a move is desired 

  if((bottomMotorPosition != bottomDesired) || (topMotorPosition != 

topDesired)){ 

   

    //constrain and calculate steps to move 

    bottomSteps = constrain(bottomDesired, startPosition, endPosition) - 

bottomMotorPosition; 

    topSteps = constrain(topDesired, startPosition, endPosition) - 

topMotorPosition; 

     

    //set speed if if it has changed 

    if(speedVal != constrain(newSpeedVal, 10, 600)){ 

      Serial.print("MSG: new speed "); 

      Serial.print(constrain(newSpeedVal, 10, 600)); 

      Serial.println(""); 

      speedVal = constrain(newSpeedVal, 10, 600); 

      usperstep = bottomMotor.setSpeed(speedVal); 

      usperstep = topMotor.setSpeed((speedVal)); 

    } 

     

    //set motor movement direction 

    if(bottomSteps > 0){ 

      bottomDir = BACKWARD; 

    } 

    else if (bottomSteps < 0){ 

      bottomDir =  FORWARD; 

      bottomSteps = -1*bottomSteps; 
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    } 

    if(topSteps > 0){ 

      topDir = BACKWARD; 

    } 

    else if (topSteps < 0){ 

      topDir =  FORWARD; 

      topSteps = -1*topSteps; 

    } 

     

    //Move motors! 

    uint8_t retBottom = 0; 

    uint8_t retTop = 0; 

    int count = 0; 

    while((bottomSteps > 0) || (topSteps > 0)){ 

      count ++; 

      EEPROM.write(4,1);     

      if(bottomSteps > 0){ 

        retBottom = bottomMotor.onestep(bottomDir, DOUBLE); 

        bottomSteps --; 

      } 

      if(topSteps > 0){ 

        retTop = topMotor.onestep(topDir, DOUBLE); 

        topSteps --; 

      } 

       

      //Modes; mode(0) is currently the only mode  

      //called mode(1) available if desired 

      if(mode == 0){ 

        //do nothing 

      } 

      else if(mode == 1){ 

        //check for serial 

        parseSerial(); 

      } 

      //Set timing of motor movement using a delay 

      delay(usperstep/1000);                                                   

    } 

    //Save motor positions 

    saveMotorPositions(bottomDesired, topDesired);  

    //Release motors to prevent overheating     

    bottomMotor.release();                                                     

    topMotor.release(); 

  } 

} 

 

 

//Save motor positions for reference 

void saveMotorPositions(int bottomPosition, int topPosition){ 

     

  //Update motor positions: 

    bottomMotorPosition = bottomPosition; 

    topMotorPosition = topPosition; 

     

    //save bottom motor position to EEPROM 

    BMP_a = bottomMotorPosition/256; 

    BMP_b = bottomMotorPosition; 

    EEPROM.write(2,BMP_a); 
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    EEPROM.write(3,BMP_b); 

     

    //save top motor position to EEPROM 

    TMP_a = topMotorPosition/256; 

    TMP_b = topMotorPosition; 

    EEPROM.write(0,TMP_a); 

    EEPROM.write(1,TMP_b);   

    EEPROM.write(4,0); 

} 

 

 

//Checks for data from HMI after the test has started 

void parseSerial(){ 

  if(Serial.available()){ 

    while(1){ 

      while(Serial.available() > 0) { 

         

        //correct motor positions 

        int topActual; 

        int bottomActual; 

        //Checking for and setting correct motor positions 

        if(topDesired != topMotorPosition){ 

          topActual = topDesired + (topMotorPosition - 

topDesired)/abs(topMotorPosition - topDesired)*topSteps; 

        } 

        else{ 

          topActual = topMotorPosition; 

        } 

        if(bottomDesired != bottomMotorPosition){ 

          bottomActual = bottomDesired + (bottomMotorPosition - 

bottomDesired)/abs(bottomMotorPosition - bottomDesired)*bottomSteps; 

        } 

        else{ 

          bottomActual = bottomMotorPosition; 

        } 

        //Save motor positions 

        saveMotorPositions(bottomActual, topActual); 

         

        //Record new desired motor positions 

        bottomDesired = Serial.parseInt(); 

        topDesired = Serial.parseInt(); 

        newSpeedVal = Serial.parseInt(); 

        moveMotors(0);      //Move motors 

        Serial.println("CMD: Stopped"); 

      } 

    } 

  } 

} 

 

 

//read in temperatures from MAX31855 breakout boards 

void readTemps(double *ptemps) 

{ 

  //read values until acceptable 

  double val_1;                                                                

//Bottom temp temperature 
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  double val_2;                                                                

//Top temp temperature 

  //Power MAX31855 boards on and off to avoid ground looping effects 

  thermoReadTime = millis(); 

  digitalWrite(thermo1VIN, HIGH);                                              

//Power bottom thermocouple board on                                           

  while(1){ 

    val_1 = thermo1.readCelsius();                                             

//Store bottom temperature 

    if((!isnan(val_1))&(!(val_1==0))){ 

      digitalWrite(thermo1VIN, LOW);                                           

//Power bottom thermocouple board off 

      digitalWrite(thermo2VIN, HIGH);                                          

//Power top thermocouple board on  

      while(1){ 

        val_2 = thermo2.readCelsius();                                         

//Store top temperature  

        if((!isnan(val_2))&(!(val_2==0))){ 

          digitalWrite(thermo2VIN, LOW);                                       

//Power top thermocouple pin off  

          break; 

        } 

      } 

      break; 

    } 

  } 

  thermoReadTime = millis() - thermoReadTime; 

 

  //Cold bath temperature offsets   

  const float b_o = -1.25;                                                     

//Bottom thermocouple offset (board specific)  

  const float t_o = -0.5;                                                      

//Top thermocouple offset (board specific) 

   

  //Apply cold offset to temps and save 

  ptemps[0] = val_1 + b_o;                                                     

//bottom temperature 

  ptemps[1] = val_2 + t_o;                                                     

//top temperature 

} 

 

 

//Print data to serial port 

void printStatus(){ 

  readTemps(&temps[0]);                                                        

//Access temperature array 

   

  //Bottom Motor Position: 

  Serial.print(bottomMotorPosition); 

  Serial.print("\t"); 

   

  //Bottom Temperature: 

  Serial.print(temps[0]); 

  Serial.print("\t"); 

     

  //Top Motor Position: 

  Serial.print(topMotorPosition); 
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  Serial.print("\t"); 

   

  //Top Temperature: 

  Serial.println(temps[1]); 

} 

AFMotor.h: 

// Adafruit Motor shield library 

// copyright Adafruit Industries LLC, 2009 

// this code is public domain, enjoy! 

 

/* 

 * Usage Notes: 

 * For PIC32, all features work properly with the following two  

 * exceptions: 

 * 

 * 1) Because the PIC32 only has 5 PWM outputs, and the AFMotor shield  

 *    needs 6 to completely operate (four for motor outputs and two for RC  

 *    servos), the M1 motor output will not have PWM ability when used    

 *    with a PIC32 board. However, there is a very simple workaround. If  

 *    you need to drive a stepper or DC motor with PWM on motor output M1,   

 *    you can use the PWM output on pin 9 or pin 10 (normally use for RC  

 *    servo outputs on Arduino, not needed for RC servo outputs on PIC32)  

 *    to drive the PWM input for M1 by simply putting a jumper from pin 9  

 *    to pin 11 or pin 10 to pin 11. Then uncomment one of the two  

 *    #defines below to activate the PWM on either pin 9 or pin 10. You  

 *    will then have a fully functional micro-stepping for 2 stepper  

 *    motors, or four DC motor outputs with PWM. 

 * 

 * 2) There is a conflict between RC Servo outputs on pins 9 and pins 10  

 *    and the operation of DC motors and stepper motors as of 9/2012. This  

 *    issue will get fixed in future MPIDE releases, but at the present  

 *    time it means that the Motor Party example will NOT work properly.  

 *    Any time you attach an RC servo to pins 9 or pins 10, ALL PWM  

 *    outputs on the whole board will stop working. Thus no steppers or DC  

 *    motors. 

 *  

 */ 

// <BPS> 09/15/2012 Modified for use with chipKIT boards 

 

 

#ifndef _AFMotor_h_ 

#define _AFMotor_h_ 

 

#include <inttypes.h> 

#if defined(__AVR__) 

    #include <avr/io.h> 

 

    //#define MOTORDEBUG 1 

 

    #define MICROSTEPS 16                       // 8 or 16 

 

    #define MOTOR12_64KHZ _BV(CS20)             // no prescale 

    #define MOTOR12_8KHZ _BV(CS21)              // divide by 8 

    #define MOTOR12_2KHZ _BV(CS21) | _BV(CS20)  // divide by 32 
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    #define MOTOR12_1KHZ _BV(CS22)              // divide by 64 

 

    #define MOTOR34_64KHZ _BV(CS00)             // no prescale 

    #define MOTOR34_8KHZ _BV(CS01)              // divide by 8 

    #define MOTOR34_1KHZ _BV(CS01) | _BV(CS00)  // divide by 64 

     

    #define DC_MOTOR_PWM_RATE   MOTOR34_8KHZ    // PWM rate for DC motors 

    #define STEPPER1_PWM_RATE   MOTOR12_64KHZ   // PWM rate for stepper 1 

    #define STEPPER2_PWM_RATE   MOTOR34_64KHZ   // PWM rate for stepper 2 

     

#elif defined(__PIC32MX__) 

    //#define MOTORDEBUG 1 

     

    // Uncomment the one of following lines if you have put a jumper from  

    // either pin 9 to pin 11 or pin 10 to pin 11 on your Motor Shield. 

    // Either will enable PWM for M1 

    //#define PIC32_USE_PIN9_FOR_M1_PWM 

    //#define PIC32_USE_PIN10_FOR_M1_PWM 

 

    #define MICROSTEPS 16       // 8 or 16 

 

    // For PIC32 Timers, define prescale settings by PWM frequency 

    #define MOTOR12_312KHZ  0   // 1:1, actual frequency 312KHz 

    #define MOTOR12_156KHZ  1   // 1:2, actual frequency 156KHz 

    #define MOTOR12_64KHZ   2   // 1:4, actual frequency 78KHz 

    #define MOTOR12_39KHZ   3   // 1:8, acutal frequency 39KHz 

    #define MOTOR12_19KHZ   4   // 1:16, actual frequency 19KHz 

    #define MOTOR12_8KHZ    5   // 1:32, actual frequency 9.7KHz 

    #define MOTOR12_4_8KHZ  6   // 1:64, actual frequency 4.8KHz 

    #define MOTOR12_2KHZ    7   // 1:256, actual frequency 1.2KHz 

    #define MOTOR12_1KHZ    7   // 1:256, actual frequency 1.2KHz 

 

    #define MOTOR34_312KHZ  0   // 1:1, actual frequency 312KHz 

    #define MOTOR34_156KHZ  1   // 1:2, actual frequency 156KHz 

    #define MOTOR34_64KHZ   2   // 1:4, actual frequency 78KHz 

    #define MOTOR34_39KHZ   3   // 1:8, acutal frequency 39KHz 

    #define MOTOR34_19KHZ   4   // 1:16, actual frequency 19KHz 

    #define MOTOR34_8KHZ    5   // 1:32, actual frequency 9.7KHz 

    #define MOTOR34_4_8KHZ  6   // 1:64, actual frequency 4.8KHz 

    #define MOTOR34_2KHZ    7   // 1:256, actual frequency 1.2KHz 

    #define MOTOR34_1KHZ    7   // 1:256, actual frequency 1.2KHz 

     

    // PWM rate for DC motors. 

    #define DC_MOTOR_PWM_RATE   MOTOR34_39KHZ 

    // Note: for PIC32, both of these must be set to the same value 

    // since there's only one timebase for all 4 PWM outputs 

    #define STEPPER1_PWM_RATE   MOTOR12_39KHZ 

    #define STEPPER2_PWM_RATE   MOTOR34_39KHZ 

     

#endif 

 

// Bit positions in the 74HCT595 shift register output 

#define MOTOR1_A 2 

#define MOTOR1_B 3 

#define MOTOR2_A 1 

#define MOTOR2_B 4 

#define MOTOR4_A 0 
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#define MOTOR4_B 6 

#define MOTOR3_A 5 

#define MOTOR3_B 7 

 

// Constants that the user passes in to the motor calls 

#define FORWARD 1 

#define BACKWARD 2 

#define BRAKE 3 

#define RELEASE 4 

 

// Constants that the user passes in to the stepper calls 

#define SINGLE 1 

#define DOUBLE 2 

#define INTERLEAVE 3 

#define MICROSTEP 4 

 

/* 

#define LATCH 4 

#define LATCH_DDR DDRB 

#define LATCH_PORT PORTB 

 

#define CLK_PORT PORTD 

#define CLK_DDR DDRD 

#define CLK 4 

 

#define ENABLE_PORT PORTD 

#define ENABLE_DDR DDRD 

#define ENABLE 7 

 

#define SER 0 

#define SER_DDR DDRB 

#define SER_PORT PORTB 

*/ 

 

// Arduino pin names for interface to 74HCT595 latch 

#define MOTORLATCH 12 

#define MOTORCLK 4 

#define MOTORENABLE 7 

#define MOTORDATA 8 

 

class AFMotorController 

{ 

  public: 

    AFMotorController(void); 

    void enable(void); 

    friend class AF_DCMotor; 

    void latch_tx(void); 

    uint8_t TimerInitalized; 

}; 

 

class AF_DCMotor 

{ 

 public: 

  AF_DCMotor(uint8_t motornum, uint8_t freq = DC_MOTOR_PWM_RATE); 

  void run(uint8_t); 

  void setSpeed(uint8_t); 
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 private: 

  uint8_t motornum, pwmfreq; 

}; 

 

class AF_Stepper { 

 public: 

  AF_Stepper(uint16_t, uint8_t); 

  void step(uint16_t steps, uint8_t dir,  uint8_t style = SINGLE); 

  uint32_t setSpeed(uint16_t); 

  uint8_t onestep(uint8_t dir, uint8_t style); 

  void release(void); 

  uint16_t revsteps; // # steps per revolution 

  uint8_t steppernum; 

  uint32_t usperstep, steppingcounter; 

 private: 

  uint8_t currentstep; 

 

}; 

 

uint8_t getlatchstate(void); 

 

#endif 

AFMotor.cpp: 

// Adafruit Motor shield library 

// copyright Adafruit Industries LLC, 2009 

// this code is public domain, enjoy! 

 

 

#if (ARDUINO >= 100) 

  #include "Arduino.h" 

#else 

  #if defined(__AVR__) 

    #include <avr/io.h> 

  #endif 

  #include "WProgram.h" 

#endif 

 

#include "AFMotor.h" 

 

 

 

static uint8_t latch_state; 

 

#if (MICROSTEPS == 8) 

uint8_t microstepcurve[] = {0, 50, 98, 142, 180, 212, 236, 250, 255}; 

#elif (MICROSTEPS == 16) 

uint8_t microstepcurve[] = {0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 

212, 225, 236, 244, 250, 253, 255}; 

#endif 

 

AFMotorController::AFMotorController(void) { 

    TimerInitalized = false; 

} 
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void AFMotorController::enable(void) { 

  // setup the latch 

  /* 

  LATCH_DDR |= _BV(LATCH); 

  ENABLE_DDR |= _BV(ENABLE); 

  CLK_DDR |= _BV(CLK); 

  SER_DDR |= _BV(SER); 

  */ 

  pinMode(MOTORLATCH, OUTPUT); 

  pinMode(MOTORENABLE, OUTPUT); 

  pinMode(MOTORDATA, OUTPUT); 

  pinMode(MOTORCLK, OUTPUT); 

 

  latch_state = 0; 

 

  latch_tx();  // "reset" 

 

  //ENABLE_PORT &= ~_BV(ENABLE); // enable the chip outputs! 

  digitalWrite(MOTORENABLE, LOW); 

} 

 

 

void AFMotorController::latch_tx(void) { 

  uint8_t i; 

 

  //LATCH_PORT &= ~_BV(LATCH); 

  digitalWrite(MOTORLATCH, LOW); 

 

  //SER_PORT &= ~_BV(SER); 

  digitalWrite(MOTORDATA, LOW); 

 

  for (i=0; i<8; i++) { 

    //CLK_PORT &= ~_BV(CLK); 

    digitalWrite(MOTORCLK, LOW); 

 

    if (latch_state & _BV(7-i)) { 

      //SER_PORT |= _BV(SER); 

      digitalWrite(MOTORDATA, HIGH); 

    } else { 

      //SER_PORT &= ~_BV(SER); 

      digitalWrite(MOTORDATA, LOW); 

    } 

    //CLK_PORT |= _BV(CLK); 

    digitalWrite(MOTORCLK, HIGH); 

  } 

  //LATCH_PORT |= _BV(LATCH); 

  digitalWrite(MOTORLATCH, HIGH); 

} 

 

static AFMotorController MC; 

 

/****************************************** 

               MOTORS 

******************************************/ 

inline void initPWM1(uint8_t freq) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 
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    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer2A on PB3 (Arduino pin #11) 

    TCCR2A |= _BV(COM2A1) | _BV(WGM20) | _BV(WGM21);  

    TCCR2B = freq & 0x7; 

    // fast PWM, turn on oc2a  

    OCR2A = 0; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 11 is now PB5 (OC1A) 

    TCCR1A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a 

    TCCR1B = (freq & 0x7) | _BV(WGM12); 

    OCR1A = 0; 

#elif defined(__PIC32MX__) 

    #if defined(PIC32_USE_PIN9_FOR_M1_PWM) 

        // Make sure that pin 11 is an input, since we have tied together  

        // 9 and 11 

        pinMode(9, OUTPUT); 

        pinMode(11, INPUT); 

        if (!MC.TimerInitalized) 

        {   // Set up Timer2 for 80MHz counting from 0 to 256 

            // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;    

            // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 

            T2CON = 0x8000 | ((freq & 0x07) << 4);  

            TMR2 = 0x0000; 

            PR2 = 0x0100; 

            MC.TimerInitalized = true; 

        } 

         // Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase 

        OC4CON = 0x8006;    // OC32 = 0, OCTSEL=0, OCM=6 

        OC4RS = 0x0000; 

        OC4R = 0x0000; 

    #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) 

        // Make sure that pin 11 is an input, since we have tied together  

        // 9 and 11 

        pinMode(10, OUTPUT); 

        pinMode(11, INPUT); 

        if (!MC.TimerInitalized) 

        {   // Set up Timer2 for 80MHz counting from 0 to 256’ 

            // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;  

            // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 

            T2CON = 0x8000 | ((freq & 0x07) << 4);  

            TMR2 = 0x0000; 

            PR2 = 0x0100; 

            MC.TimerInitalized = true; 

        } 

         // Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase 

        OC5CON = 0x8006;    // OC32 = 0, OCTSEL=0, OCM=6 

        OC5RS = 0x0000; 

        OC5R = 0x0000; 

    #else 

        // If we are not using PWM for pin 11, then just do digital 

        digitalWrite(11, LOW); 

    #endif 

#else 

   #error "This chip is not supported!" 

#endif 
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    #if !defined(PIC32_USE_PIN9_FOR_M1_PWM) && 

!defined(PIC32_USE_PIN10_FOR_M1_PWM) 

        pinMode(11, OUTPUT); 

    #endif 

} 

 

inline void setPWM1(uint8_t s) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer2A on PB3 (Arduino pin #11) 

    OCR2A = s; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 11 is now PB5 (OC1A) 

    OCR1A = s; 

#elif defined(__PIC32MX__) 

    #if defined(PIC32_USE_PIN9_FOR_M1_PWM) 

        // Set the OC4 (pin 9) PMW duty cycle from 0 to 255 

        OC4RS = s; 

    #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) 

        // Set the OC5 (pin 10) PMW duty cycle from 0 to 255 

        OC5RS = s; 

    #else 

        // If we are not doing PWM output for M1, then just use on/off 

        if (s > 127) 

        { 

            digitalWrite(11, HIGH); 

        } 

        else 

        { 

            digitalWrite(11, LOW); 

        } 

    #endif 

#else 

   #error "This chip is not supported!" 

#endif 

} 

 

inline void initPWM2(uint8_t freq) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer2B (pin 3) 

    TCCR2A |= _BV(COM2B1) | _BV(WGM20) | _BV(WGM21);  

    TCCR2B = freq & 0x7; 

    // fast PWM, turn on oc2b 

    OCR2B = 0; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 3 is now PE5 (OC3C) 

    TCCR3A |= _BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c 

    TCCR3B = (freq & 0x7) | _BV(WGM12); 

    OCR3C = 0; 

#elif defined(__PIC32MX__) 
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    if (!MC.TimerInitalized) 

    {   // Set up Timer2 for 80MHz counting from 0 to 256 

        // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;  

        // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 

        T2CON = 0x8000 | ((freq & 0x07) << 4);  

        TMR2 = 0x0000; 

        PR2 = 0x0100; 

        MC.TimerInitalized = true; 

    } 

    // Setup OC1 (pin3) in PWM mode, with Timer2 as timebase 

    OC1CON = 0x8006;    // OC32 = 0, OCTSEL=0, OCM=6 

    OC1RS = 0x0000; 

    OC1R = 0x0000; 

#else 

   #error "This chip is not supported!" 

#endif 

 

    pinMode(3, OUTPUT); 

} 

 

inline void setPWM2(uint8_t s) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer2A on PB3 (Arduino pin #11) 

    OCR2B = s; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 11 is now PB5 (OC1A) 

    OCR3C = s; 

#elif defined(__PIC32MX__) 

    // Set the OC1 (pin3) PMW duty cycle from 0 to 255 

    OC1RS = s; 

#else 

   #error "This chip is not supported!" 

#endif 

} 

 

inline void initPWM3(uint8_t freq) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer0A / PD6 (pin 6) 

    TCCR0A |= _BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on 

OC0A 

    //TCCR0B = freq & 0x7; 

    OCR0A = 0; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 6 is now PH3 (OC4A) 

    TCCR4A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a 

    TCCR4B = (freq & 0x7) | _BV(WGM12); 

    //TCCR4B = 1 | _BV(WGM12); 

    OCR4A = 0; 

#elif defined(__PIC32MX__) 
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    if (!MC.TimerInitalized) 

    {   // Set up Timer2 for 80MHz counting from 0 to 256 

        // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;  

        // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 

        T2CON = 0x8000 | ((freq & 0x07) << 4);  

        TMR2 = 0x0000; 

        PR2 = 0x0100; 

        MC.TimerInitalized = true; 

    } 

    // Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase 

    OC3CON = 0x8006;    // OC32 = 0, OCTSEL=0, OCM=6 

    OC3RS = 0x0000; 

    OC3R = 0x0000; 

#else 

   #error "This chip is not supported!" 

#endif 

    pinMode(6, OUTPUT); 

} 

 

inline void setPWM3(uint8_t s) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer0A on PB3 (Arduino pin #6) 

    OCR0A = s; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 6 is now PH3 (OC4A) 

    OCR4A = s; 

#elif defined(__PIC32MX__) 

    // Set the OC3 (pin 6) PMW duty cycle from 0 to 255 

    OC3RS = s; 

#else 

   #error "This chip is not supported!" 

#endif 

} 

 

 

 

inline void initPWM4(uint8_t freq) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer0B / PD5 (pin 5) 

    TCCR0A |= _BV(COM0B1) | _BV(WGM00) | _BV(WGM01);  

    // fast PWM, turn on oc0a 

    //TCCR0B = freq & 0x7; 

    OCR0B = 0; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 5 is now PE3 (OC3A) 

    TCCR3A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a 

    TCCR3B = (freq & 0x7) | _BV(WGM12); 

    //TCCR4B = 1 | _BV(WGM12); 

    OCR3A = 0; 
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#elif defined(__PIC32MX__) 

    if (!MC.TimerInitalized) 

    {   // Set up Timer2 for 80MHz counting from 0 to 256 

        // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;  

        // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 

        T2CON = 0x8000 | ((freq & 0x07) << 4);  

        TMR2 = 0x0000; 

        PR2 = 0x0100; 

        MC.TimerInitalized = true; 

    } 

    // Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase 

    OC2CON = 0x8006;    // OC32 = 0, OCTSEL=0, OCM=6 

    OC2RS = 0x0000; 

    OC2R = 0x0000; 

#else 

   #error "This chip is not supported!" 

#endif 

    pinMode(5, OUTPUT); 

} 

 

inline void setPWM4(uint8_t s) { 

#if defined(__AVR_ATmega8__) || \ 

    defined(__AVR_ATmega48__) || \ 

    defined(__AVR_ATmega88__) || \ 

    defined(__AVR_ATmega168__) || \ 

    defined(__AVR_ATmega328P__) 

    // use PWM from timer0A on PB3 (Arduino pin #6) 

    OCR0B = s; 

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) 

    // on arduino mega, pin 6 is now PH3 (OC4A) 

    OCR3A = s; 

#elif defined(__PIC32MX__) 

    // Set the OC2 (pin 5) PMW duty cycle from 0 to 255 

    OC2RS = s; 

#else 

   #error "This chip is not supported!" 

#endif 

} 

 

AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) { 

  motornum = num; 

  pwmfreq = freq; 

 

  MC.enable(); 

 

  switch (num) { 

  case 1: 

    latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B);  

    // set both motor pins to 0 

    MC.latch_tx(); 

    initPWM1(freq); 

    break; 

  case 2: 

    latch_state &= ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B);  

    // set both motor pins to 0 

    MC.latch_tx(); 

    initPWM2(freq); 
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    break; 

  case 3: 

    latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B);  

    // set both motor pins to 0 

    MC.latch_tx(); 

    initPWM3(freq); 

    break; 

  case 4: 

    latch_state &= ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B);  

    // set both motor pins to 0 

    MC.latch_tx(); 

    initPWM4(freq); 

    break; 

  } 

} 

 

void AF_DCMotor::run(uint8_t cmd) { 

  uint8_t a, b; 

  switch (motornum) { 

  case 1: 

    a = MOTOR1_A; b = MOTOR1_B; break; 

  case 2: 

    a = MOTOR2_A; b = MOTOR2_B; break; 

  case 3: 

    a = MOTOR3_A; b = MOTOR3_B; break; 

  case 4: 

    a = MOTOR4_A; b = MOTOR4_B; break; 

  default: 

    return; 

  } 

   

  switch (cmd) { 

  case FORWARD: 

    latch_state |= _BV(a); 

    latch_state &= ~_BV(b);  

    MC.latch_tx(); 

    break; 

  case BACKWARD: 

    latch_state &= ~_BV(a); 

    latch_state |= _BV(b);  

    MC.latch_tx(); 

    break; 

  case RELEASE: 

    latch_state &= ~_BV(a);     // A and B both low 

    latch_state &= ~_BV(b);  

    MC.latch_tx(); 

    break; 

  } 

} 

 

void AF_DCMotor::setSpeed(uint8_t speed) { 

  switch (motornum) { 

  case 1: 

    setPWM1(speed); break; 

  case 2: 

    setPWM2(speed); break; 

  case 3: 
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    setPWM3(speed); break; 

  case 4: 

    setPWM4(speed); break; 

  } 

} 

 

/****************************************** 

               STEPPERS 

******************************************/ 

 

AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) { 

  MC.enable(); 

 

  revsteps = steps; 

  steppernum = num; 

  currentstep = 0; 

 

  if (steppernum == 1) { 

    latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) & 

      ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0 

    MC.latch_tx(); 

     

    // enable both H bridges 

    pinMode(11, OUTPUT); 

    pinMode(3, OUTPUT); 

    digitalWrite(11, HIGH); 

    digitalWrite(3, HIGH); 

 

    // use PWM for micro-stepping support 

    initPWM1(STEPPER1_PWM_RATE); 

    initPWM2(STEPPER1_PWM_RATE); 

    setPWM1(255); 

    setPWM2(255); 

 

  } else if (steppernum == 2) { 

    latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) & 

      ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0 

    MC.latch_tx(); 

 

    // enable both H bridges 

    pinMode(5, OUTPUT); 

    pinMode(6, OUTPUT); 

    digitalWrite(5, HIGH); 

    digitalWrite(6, HIGH); 

 

    // use PWM for micro-stepping support 

    // use PWM for micro-stepping support 

    initPWM3(STEPPER2_PWM_RATE); 

    initPWM4(STEPPER2_PWM_RATE); 

    setPWM3(255); 

    setPWM4(255); 

  } 

} 

 

uint32_t AF_Stepper::setSpeed(uint16_t rpm) { 

  usperstep = 60000000 / ((uint32_t)revsteps * (uint32_t)rpm); 

  steppingcounter = 0; 
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  return usperstep; 

} 

 

void AF_Stepper::release(void) { 

  if (steppernum == 1) { 

    latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) & 

      ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0 

    MC.latch_tx(); 

  } else if (steppernum == 2) { 

    latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) & 

      ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0 

    MC.latch_tx(); 

  } 

} 

 

void AF_Stepper::step(uint16_t steps, uint8_t dir,  uint8_t style) { 

  uint32_t uspers = usperstep; 

  uint8_t ret = 0; 

 

  if (style == INTERLEAVE) { 

    uspers /= 2; 

  } 

 else if (style == MICROSTEP) { 

    uspers /= MICROSTEPS; 

    steps *= MICROSTEPS; 

#ifdef MOTORDEBUG 

    Serial.print("steps = "); Serial.println(steps, DEC); 

#endif 

  } 

 

  while (steps--) { 

    ret = onestep(dir, style); 

    delay(uspers/1000); // in ms 

    steppingcounter += (uspers % 1000); 

    if (steppingcounter >= 1000) { 

      delay(1); 

      steppingcounter -= 1000; 

    } 

  } 

  if (style == MICROSTEP) { 

    while ((ret != 0) && (ret != MICROSTEPS)) { 

      ret = onestep(dir, style); 

      delay(uspers/1000); // in ms 

      steppingcounter += (uspers % 1000); 

      if (steppingcounter >= 1000) { 

    delay(1); 

    steppingcounter -= 1000; 

      }  

    } 

  } 

} 

 

uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) { 

  uint8_t a, b, c, d; 

  uint8_t ocrb, ocra; 
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  ocra = ocrb = 255; 

 

  if (steppernum == 1) { 

    a = _BV(MOTOR1_A); 

    b = _BV(MOTOR2_A); 

    c = _BV(MOTOR1_B); 

    d = _BV(MOTOR2_B); 

  } else if (steppernum == 2) { 

    a = _BV(MOTOR3_A); 

    b = _BV(MOTOR4_A); 

    c = _BV(MOTOR3_B); 

    d = _BV(MOTOR4_B); 

  } else { 

    return 0; 

  } 

 

  // next determine what sort of stepping procedure we're up to 

  if (style == SINGLE) { 

    if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird 

      if (dir == FORWARD) { 

    currentstep += MICROSTEPS/2; 

      } 

      else { 

    currentstep -= MICROSTEPS/2; 

      } 

    } else {           // go to the next even step 

      if (dir == FORWARD) { 

    currentstep += MICROSTEPS; 

      } 

      else { 

    currentstep -= MICROSTEPS; 

      } 

    } 

  } else if (style == DOUBLE) { 

    if (! (currentstep/(MICROSTEPS/2) % 2)) {  

      // we're at an even step, weird 

      if (dir == FORWARD) { 

    currentstep += MICROSTEPS/2; 

      } else { 

    currentstep -= MICROSTEPS/2; 

      } 

    } else {           // go to the next odd step 

      if (dir == FORWARD) { 

    currentstep += MICROSTEPS; 

      } else { 

    currentstep -= MICROSTEPS; 

      } 

    } 

  } else if (style == INTERLEAVE) { 

    if (dir == FORWARD) { 

       currentstep += MICROSTEPS/2; 

    } else { 

       currentstep -= MICROSTEPS/2; 

    } 

  }  

 

  if (style == MICROSTEP) { 
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    if (dir == FORWARD) { 

      currentstep++; 

    } else { 

      // BACKWARDS 

      currentstep--; 

    } 

 

    currentstep += MICROSTEPS*4; 

    currentstep %= MICROSTEPS*4; 

 

    ocra = ocrb = 0; 

    if ( (currentstep >= 0) && (currentstep < MICROSTEPS)) { 

      ocra = microstepcurve[MICROSTEPS - currentstep]; 

      ocrb = microstepcurve[currentstep]; 

    } else if  ( (currentstep >= MICROSTEPS) && (currentstep < 

MICROSTEPS*2)) { 

      ocra = microstepcurve[currentstep - MICROSTEPS]; 

      ocrb = microstepcurve[MICROSTEPS*2 - currentstep]; 

    } else if  ( (currentstep >= MICROSTEPS*2) && (currentstep < 

MICROSTEPS*3)) { 

      ocra = microstepcurve[MICROSTEPS*3 - currentstep]; 

      ocrb = microstepcurve[currentstep - MICROSTEPS*2]; 

    } else if  ( (currentstep >= MICROSTEPS*3) && (currentstep < 

MICROSTEPS*4)) { 

      ocra = microstepcurve[currentstep - MICROSTEPS*3]; 

      ocrb = microstepcurve[MICROSTEPS*4 - currentstep]; 

    } 

  } 

 

  currentstep += MICROSTEPS*4; 

  currentstep %= MICROSTEPS*4; 

 

#ifdef MOTORDEBUG 

  Serial.print("current step: "); Serial.println(currentstep, DEC); 

  Serial.print(" pwmA = "); Serial.print(ocra, DEC);  

  Serial.print(" pwmB = "); Serial.println(ocrb, DEC);  

#endif 

 

  if (steppernum == 1) { 

    setPWM1(ocra); 

    setPWM2(ocrb); 

  } else if (steppernum == 2) { 

    setPWM3(ocra); 

    setPWM4(ocrb); 

  } 

 

 

  // release all 

  latch_state &= ~a & ~b & ~c & ~d; // all motor pins to 0 

 

  //Serial.println(step, DEC); 

  if (style == MICROSTEP) { 

    if ((currentstep >= 0) && (currentstep < MICROSTEPS)) 

      latch_state |= a | b; 

    if ((currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2)) 

      latch_state |= b | c; 

    if ((currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3)) 
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      latch_state |= c | d; 

    if ((currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4)) 

      latch_state |= d | a; 

  } else { 

    switch (currentstep/(MICROSTEPS/2)) { 

    case 0: 

      latch_state |= a; // energize coil 1 only 

      break; 

    case 1: 

      latch_state |= a | b; // energize coil 1+2 

      break; 

    case 2: 

      latch_state |= b; // energize coil 2 only 

      break; 

    case 3: 

      latch_state |= b | c; // energize coil 2+3 

      break; 

    case 4: 

      latch_state |= c; // energize coil 3 only 

      break;  

    case 5: 

      latch_state |= c | d; // energize coil 3+4 

      break; 

    case 6: 

      latch_state |= d; // energize coil 4 only 

      break; 

    case 7: 

      latch_state |= d | a; // energize coil 1+4 

      break; 

    } 

  } 

 

  

  MC.latch_tx(); 

  return currentstep; 

} 

Adafruit_MAX81855.h: 

/********************************************************************* 

  This is a library for the Adafruit Thermocouple Sensor w/MAX31855K 

 

  Designed specifically to work with the Adafruit Thermocouple Sensor 

  ----> https://www.adafruit.com/products/269 

 

  These displays use SPI to communicate, 3 pins are required to   

  Interface Adafruit invests time and resources providing this open  

  Source code, please support Adafruit and open-source hardware by    

  purchasing products from Adafruit! 

 

  Written by Limor Fried/Ladyada for Adafruit Industries.   

  BSD license, all text above must be included in any redistribution 

 ********************************************************************/ 

 

 

#if (ARDUINO >= 100) 
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 #include "Arduino.h" 

#else 

 #include "WProgram.h" 

#endif 

 

class Adafruit_MAX31855 { 

 public: 

  Adafruit_MAX31855(int8_t SCLK, int8_t CS, int8_t MISO); 

 

  double readInternal(void); 

  double readCelsius(void); 

  double readFarenheit(void); 

  uint8_t readError(); 

 

 private: 

  int8_t sclk, miso, cs; 

  uint32_t spiread32(void); 

}; 

Adafruit_MAX81855.cpp: 

/********************************************************************* 

  This is a library for the Adafruit Thermocouple Sensor w/MAX31855K 

 

  Designed specifically to work with the Adafruit Thermocouple Sensor 

  ----> https://www.adafruit.com/products/269 

 

  These displays use SPI to communicate, 3 pins are required to   

  Interface Adafruit invests time and resources providing this open  

  source code, please support Adafruit and open-source hardware by   

  purchasing products from Adafruit! 

 

  Written by Limor Fried/Ladyada for Adafruit Industries.   

  BSD license, all text above must be included in any redistribution 

 ********************************************************************/ 

 

#include "Adafruit_MAX31855.h" 

#include <avr/pgmspace.h> 

#include <util/delay.h> 

#include <stdlib.h> 

 

 

Adafruit_MAX31855::Adafruit_MAX31855(int8_t SCLK, int8_t CS, int8_t MISO) 

{ 

  sclk = SCLK; 

  cs = CS; 

  miso = MISO; 

 

  //define pin modes 

  pinMode(cs, OUTPUT); 

  pinMode(sclk, OUTPUT);  

  pinMode(miso, INPUT); 

 

  digitalWrite(cs, HIGH); 

} 
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double Adafruit_MAX31855::readInternal(void) { 

  uint32_t v; 

 

  v = spiread32(); 

 

  // ignore bottom 4 bits - they're just thermocouple data 

  v >>= 4; 

 

  // pull the bottom 11 bits off 

  float internal = v & 0x7FF; 

  internal *= 0.0625; // LSB = 0.0625 degrees 

  // check sign bit! 

  if (v & 0x800)  

    internal *= -1; 

  //Serial.print("\tInternal Temp: "); Serial.println(internal); 

  return internal; 

} 

 

double Adafruit_MAX31855::readCelsius(void) { 

 

  int32_t v; 

 

  v = spiread32(); 

 

  //Serial.print("0x"); Serial.println(v, HEX); 

 

  /* 

  float internal = (v >> 4) & 0x7FF; 

  internal *= 0.0625; 

  if ((v >> 4) & 0x800)  

    internal *= -1; 

  Serial.print("\tInternal Temp: "); Serial.println(internal); 

  */ 

 

  if (v & 0x7) { 

    // uh oh, a serious problem! 

    return NAN;  

  } 

 

  // get rid of internal temp data, and any fault bits 

  v >>= 18; 

  //Serial.println(v, HEX); 

   

  double centigrade = v; 

 

  // LSB = 0.25 degrees C 

  centigrade *= 0.25; 

  return centigrade; 

} 

 

uint8_t Adafruit_MAX31855::readError() { 

  return spiread32() & 0x7; 

} 

 

double Adafruit_MAX31855::readFarenheit(void) { 

  float f = readCelsius(); 
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  f *= 9.0; 

  f /= 5.0; 

  f += 32; 

  return f; 

} 

 

uint32_t Adafruit_MAX31855::spiread32(void) {  

  int i; 

  uint32_t d = 0; 

 

  digitalWrite(sclk, LOW); 

  _delay_ms(1); 

  digitalWrite(cs, LOW); 

  _delay_ms(1); 

 

  for (i=31; i>=0; i--) 

  { 

    digitalWrite(sclk, LOW); 

    _delay_ms(1); 

    d <<= 1; 

    if (digitalRead(miso)) { 

      d |= 1; 

    } 

 

    digitalWrite(sclk, HIGH); 

    _delay_ms(1); 

  } 

 

  digitalWrite(cs, HIGH); 

  //Serial.println(d, HEX); 

  return d; 

} 

PID_v1.h: 

#ifndef PID_v1_h 

#define PID_v1_h 

#define LIBRARY_VERSION 1.0.0 

 

class PID 

{ 

 

 

  public: 

 

  //Constants used in some of the functions below 

  #define AUTOMATIC 1 

  #define MANUAL    0 

  #define DIRECT  0 

  #define REVERSE  1 

 

  //commonly used functions 

************************************************************************** 

    // * constructor.  links the PID to the Input, Output, and 

    PID(double*, double*, double*,         

        double, double, double, int);      
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    //   Setpoint.  Initial tuning parameters are also set here 

    // * sets PID to either Manual (0) or Auto (non-0) 

    void SetMode(int Mode);                

 

    // * performs the PID calculation.  it should be 

    //   called every time loop() cycles. ON/OFF and 

    //   calculation frequency can be set using SetMode 

    //   SetSampleTime respectively 

    bool Compute(); 

 

    //clamps the output to a specific range. 0-255 by default, but     

    //it's likely the user will want to change this depending on 

    //the application 

    void SetOutputLimits(double, double);  

                                           

  //available but not commonly used functions 

******************************************************** 

    // * While most users will set the tunings once in the 

    //   constructor, this function gives the user the option 

    //   of changing tunings during runtime for Adaptive control 

    void SetTunings(double, double, double);               

 

    // * Sets the Direction, or "Action" of the controller. DIRECT 

    //   means the output will increase when error is positive. REVERSE 

    //   means the opposite.  it's very unlikely that this will be needed 

    //   once it is set in the constructor. 

    // * sets the frequency, in Milliseconds, with which                                    

    void SetControllerDirection(int);    

 

    //   the PID calculation is performed.  default is 100   

    void SetSampleTime(int);               

 

  //Display functions 

**************************************************************** 

    double GetKp();   // These functions query the pid for interal values. 

    double GetKi();   //  they were created mainly for the pid front-end, 

    double GetKd();   // where it's important to know what is actually  

    int GetMode();    //  inside the PID. 

    int GetDirection();                   

 

  private: 

    void Initialize(); 

     

    double dispKp;    // * we'll hold on to the tuning parameters in user-  

    double dispKi;    //   entered format for display purposes 

    double dispKd;     

    double kp;        // * (P)roportional Tuning Parameter 

    double ki;        // * (I)ntegral Tuning Parameter 

    double kd;        // * (D)erivative Tuning Parameter 

 

    int controllerDirection; 

 

    double *myInput;   // * Pointers to the Input, Output, and Setpoint  

    double *myOutput;  //   This creates a hard link between the variables  

    double *mySetpoint;//   and the variables PID, freeing the user from  

                       //   having to constantly tell us  what these  

                  //   values are.  with pointers we'll just know. 
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    unsigned long lastTime; 

    double ITerm, lastInput; 

 

    unsigned long SampleTime; 

    double outMin, outMax; 

    bool inAuto; 

}; 

#endif 

PID_v1.cpp: 

/************************************************************************* 

 * Arduino PID Library - Version 1.0.1 

 * by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com 

 * 

 * This Library is licensed under a GPLv3 License 

 

*************************************************************************/ 

 

#if ARDUINO >= 100 

  #include "Arduino.h" 

#else 

  #include "WProgram.h" 

#endif 

 

#include <PID_v1.h> 

 

/*Constructor(...)********************************************************   

 *    The parameters specified here are those for which we can't set      

 *    up reliable defaults, so we need to have the user set them. 

*************************************************************************/ 

PID::PID(double* Input, double* Output, double* Setpoint, 

        double Kp, double Ki, double Kd, int ControllerDirection) 

{ 

     

    myOutput = Output; 

    myInput = Input; 

    mySetpoint = Setpoint; 

    inAuto = false; 

     

    PID::SetOutputLimits(0, 255);    //default output limit corresponds to  

                                     //the arduino pwm limits 

 

    SampleTime = 100;      //default Controller Sample Time is 0.1 seconds 

 

    PID::SetControllerDirection(ControllerDirection); 

    PID::SetTunings(Kp, Ki, Kd); 

 

    lastTime = millis()-SampleTime;              

} 

  

  

/* Compute() 

********************************************************************** 

 *     This, as they say, is where the magic happens.  this function  

 *     should be called every time "void loop()" executes.  the function  
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*    will decide for itself whether a new pid Output needs to be computed.   

*    returns true when the output is computed, false when nothing has been 

*    done. 

*************************************************************************/  

bool PID::Compute() 

{ 

   if(!inAuto) return false; 

   unsigned long now = millis(); 

   unsigned long timeChange = (now - lastTime); 

   if(timeChange>=SampleTime) 

   { 

      /*Compute all the working error variables*/ 

      double input = *myInput; 

      double error = *mySetpoint - input; 

      ITerm+= (ki * error); 

      if(ITerm > outMax) ITerm= outMax; 

      else if(ITerm < outMin) ITerm= outMin; 

      double dInput = (input - lastInput); 

  

      /*Compute PID Output*/ 

      double output = kp * error + ITerm- kd * dInput; 

       

      if(output > outMax) output = outMax; 

      else if(output < outMin) output = outMin; 

      *myOutput = output; 

       

      /*Remember some variables for next time*/ 

      lastInput = input; 

      lastTime = now; 

      return true; 

   } 

   else return false; 

} 

 

 

/*SetTunings(...)********************************************************* 

 * This function allows the controller's dynamic performance to be  

 * adjusted. it's called automatically from the constructor, but tunings   

 * can also be adjusted on the fly during normal operation 

*************************************************************************/  

void PID::SetTunings(double Kp, double Ki, double Kd) 

{ 

   if (Kp<0 || Ki<0 || Kd<0) return; 

  

   dispKp = Kp; dispKi = Ki; dispKd = Kd; 

    

   double SampleTimeInSec = ((double)SampleTime)/1000;   

   kp = Kp; 

   ki = Ki * SampleTimeInSec; 

   kd = Kd / SampleTimeInSec; 

  

  if(controllerDirection ==REVERSE) 

   { 

      kp = (0 - kp); 

      ki = (0 - ki); 

      kd = (0 - kd); 

   } 



187 

} 

   

/*SetSampleTime(...)****************************************************** 

 * sets the period, in Milliseconds, at which the calculation is performed   

*************************************************************************/ 

void PID::SetSampleTime(int NewSampleTime) 

{ 

   if (NewSampleTime > 0) 

   { 

      double ratio  = (double)NewSampleTime 

                      / (double)SampleTime; 

      ki *= ratio; 

      kd /= ratio; 

      SampleTime = (unsigned long)NewSampleTime; 

   } 

} 

  

/* 

SetOutputLimits(...)**************************************************** 

 *     This function will be used far more often than SetInputLimits.   

 *     while the input to the controller will generally be in the 0-1023   

 *     range (which is the default already,)  the output will be a little  

 *     different.  maybe they'll be doing a time window and will need 0- 

 *     8000 or something.  or maybe they'll want to clamp it from 0-125.   

 *     who knows.  at any rate, that can all be done here. 

*************************************************************************/ 

void PID::SetOutputLimits(double Min, double Max) 

{ 

   if(Min >= Max) return; 

   outMin = Min; 

   outMax = Max; 

  

   if(inAuto) 

   { 

       if(*myOutput > outMax) *myOutput = outMax; 

       else if(*myOutput < outMin) *myOutput = outMin; 

      

       if(ITerm > outMax) ITerm= outMax; 

       else if(ITerm < outMin) ITerm= outMin; 

   } 

} 

 

/*SetMode(...)************************************************************ 

 * Allows the controller Mode to be set to manual (0) or Automatic (non- 

 * zero) when the transition from manual to auto occurs, the controller is 

 * automatically initialized 

*************************************************************************/  

void PID::SetMode(int Mode) 

{ 

    bool newAuto = (Mode == AUTOMATIC); 

    if(newAuto == !inAuto) 

    {  /*we just went from manual to auto*/ 

        PID::Initialize(); 

    } 

    inAuto = newAuto; 

} 
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/*Initialize()************************************************************ 

 *  does all the things that need to happen to ensure a bumpless transfer 

 *  from manual to automatic mode. 

*************************************************************************/  

void PID::Initialize() 

{ 

   ITerm = *myOutput; 

   lastInput = *myInput; 

   if(ITerm > outMax) ITerm = outMax; 

   else if(ITerm < outMin) ITerm = outMin; 

} 

 

/*SetControllerDirection(...)********************************************* 

 * The PID will either be connected to a DIRECT acting process (+Output  

 * leads to +Input) or a REVERSE acting process(+Output leads to -Input.)   

 * we need to know which one, because otherwise we may increase the output  

 * when we should be decreasing.  This is called from the constructor. 

*************************************************************************/ 

void PID::SetControllerDirection(int Direction) 

{ 

   if(inAuto && Direction !=controllerDirection) 

   { 

      kp = (0 - kp); 

      ki = (0 - ki); 

      kd = (0 - kd); 

   }    

   controllerDirection = Direction; 

} 

 

/* Status Functions******************************************************* 

 * Just because you set the Kp=-1 doesn't mean it actually happened.    

 * these functions query the internal state of the PID.  they're here for  

 * display purposes.  this are the functions the PID Front-end uses for  

 * example 

*************************************************************************/ 

double PID::GetKp(){ return  dispKp; } 

double PID::GetKi(){ return  dispKi;} 

double PID::GetKd(){ return  dispKd;} 

int PID::GetMode(){ return  inAuto ? AUTOMATIC : MANUAL;} 

int PID::GetDirection(){ return controllerDirection;} 

EEPROM.h: 

/* 

  EEPROM.h - EEPROM library 

  Copyright (c) 2006 David A. Mellis.  All right reserved. 

 

  This library is free software; you can redistribute it and/or 

  modify it under the terms of the GNU Lesser General Public 

  License as published by the Free Software Foundation; either 

  version 2.1 of the License, or (at your option) any later version. 

 

  This library is distributed in the hope that it will be useful, 

  but WITHOUT ANY WARRANTY; without even the implied warranty of 

  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

  Lesser General Public License for more details. 
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  You should have received a copy of the GNU Lesser General Public 

  License along with this library; if not, write to the Free Software 

  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301    

  USA 

*/ 

 

#ifndef EEPROM_h 

#define EEPROM_h 

 

#include <inttypes.h> 

 

class EEPROMClass 

{ 

  public: 

    uint8_t read(int); 

    void write(int, uint8_t); 

}; 

 

extern EEPROMClass EEPROM; 

 

#endif 

EEPROM.cpp: 

/* 

  EEPROM.cpp - EEPROM library 

  Copyright (c) 2006 David A. Mellis.  All right reserved. 

 

  This library is free software; you can redistribute it and/or 

  modify it under the terms of the GNU Lesser General Public 

  License as published by the Free Software Foundation; either 

  version 2.1 of the License, or (at your option) any later version. 

 

  This library is distributed in the hope that it will be useful, 

  but WITHOUT ANY WARRANTY; without even the implied warranty of 

  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

  Lesser General Public License for more details. 

 

  You should have received a copy of the GNU Lesser General Public 

  License along with this library; if not, write to the Free Software 

  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301   

  USA 

*/ 

 

/************************************************************************* 

 * Includes 

*************************************************************************/ 

 

#include <avr/eeprom.h> 

#include "Arduino.h" 

#include "EEPROM.h" 

 

/************************************************************************* 

 * Definitions 

*************************************************************************/ 
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/************************************************************************* 

 * Constructors 

*************************************************************************/ 

 

/************************************************************************* 

 * User API 

*************************************************************************/ 

 

uint8_t EEPROMClass::read(int address) 

{ 

    return eeprom_read_byte((unsigned char *) address); 

} 

 

void EEPROMClass::write(int address, uint8_t value) 

{ 

    eeprom_write_byte((unsigned char *) address, value); 

} 

 

EEPROMClass EEPROM; 

 


