

AUTOMATED TEMPERATURE CONTROL FOR RAPID HEATING

RATES IN AN ELEVATED TEMPERATURE ENVIRONMENT

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Mechanical Engineering

in the

College of Graduate Studies

University of Idaho

By

Victoria R. Kampfer

Major Professor: Robert Stephens, Ph.D.

Committee Members: John Crepeau, Ph.D.; David McIlroy, Ph.D.

Department Administrator: John Crepeau, Ph.D.

April 2015

ii

AUTHORIZATION TO SUBMIT THESIS

This thesis of Victoria R. Kampfer, submitted for the degree of Master of Science with a

Major in Mechanical Engineering and titled "Automated Temperature Control For Rapid

Heating Rates In An Elevated Temperature Environment" has been reviewed in final form.

Permission, as indicated by the signatures and dates below, is now granted to submit final

copies to the College of Graduate Studies for approval.

Major Professor:

Date:

 Robert Stephens, Ph.D.

Committee
Members:

Date:

 John Crepeau, Ph.D.

Date:

 David McIlroy, Ph.D.

Department
Administrator:

Date:

 John Crepeau, Ph.D.

iii

ABSTRACT

In order to meet the demands of industries and academic research, a cost effective

temperature control system was developed to provide accelerated heat up rates between

5-10°C/sec. This apparatus was used to perform tensile tests on a 70XX series aluminum

alloy to determine mechanical properties at elevated temperatures.

The automated temperature control system is comprised of two propane torches which

heat each end of a tensile specimen during elevated temperature testing. Specimen

temperatures are controlled by a PID algorithm which regulates stepper motor position

and thus propane torch flame intensity. User inputs to the system are provided via a

graphical user interface, with overall system control provided by an Arduino

microcontroller.

Successful testing of the 70XX series aluminum alloy occurred at temperatures of 25°C,

225°C, and 425°C and strain rates of 0.05/sec and 0.5/sec. The results clearly show a direct

relationship between increased temperatures and material elongation. Yield and ultimate

tensile strength, however, decreased in value as temperature increased. Strain rate had an

opposite effect on material properties and elongations as elevated temperatures, causing

yield strength and ultimate tensile strengths to increase and elongation to decrease.

iv

ACKNOWLEDGMENTS

I would like to express my appreciation for the support and guidance I received from Dr.

Robert Stephens, without whom this research and thesis would never have reached

completion. I would also like to extend my gratitude to committee members, Dr. John

Crepeau and Dr. David McIlroy, for their contributions and recommendations. Many thanks

are also extended to the University of Idaho mechanical engineering machine shop

manager, Russ Porter, for his untiring assistance.

v

TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT THESIS ...ii

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER 1: INTRODUCTION ... 1

1.1 OBJECTIVES ... 2

CHAPTER 2: LITERATURE REVIEW ... 3

2.1 BEHAVIOR AND PROPERTIES OF ALUMINUM ALLOYS ... 3

2.1.1 FCC ALUMINMUM BEHAVIOR ... 3

2.1.2 TEMPERATURE AFFECTS ON MATERIAL PROPERTIES 7

2.2 ELEVATED TEMPERATURE TENSILE TESTING ... 9

2.2.1 TENSILE TESTING AND MATERIAL PROPERTIES ... 9

2.2.2 TESTING STANDARDS ... 12

2.3 REVIEW OF AVAILABLE TECHNOLOGY ... 13

2.3.1 GLEEBLE ... 13

2.3.2 INDUCTION HEATERS ... 15

2.3.3 ELECTRIC HEAT ... 16

2.3.4 PROCESS CONTROL: PID .. 17

CHAPTER 3: TEMPERATURE CONTROL & TENSILE TESTING APPARATUS DESIGN 23

3.1 MECHANICAL COMPONENTS ... 23

3.1.1 SPECIMEN GEOMETRY, GRIP GEOMETRY .. 24

3.1.2 TENSILE TESTING EQUIPMENT... 27

3.1.3 THERMOCOUPLES AND SHIELDS ... 29

3.1.4 TORCH SUPPORTS .. 32

3.1.5 AUTOMATED CONTROL OF THE NOZZLE ... 34

3.1.6 ELECTRONIC HARDWARE ... 39

vi

3.2 SOFTWARE SYSTEM DESIGN .. 44

3.2.1 PLC OVERVIEW ... 45

3.2.2 GLOBAL DECLARATIONS .. 48

3.2.3 VOID SETUP .. 50

3.2.4 VOID LOOP ... 52

3.2.5 SUPPORTING FUNCTIONS .. 53

3.2.6 HMI OVERVIEW .. 54

3.2.7 QT(PYQT4) .. 55

3.2.8 EBLIB .. 56

3.2.9 COM_MONITOR ... 57

3.2.10 LIVE_DATA_FEED ... 57

3.2.11 GUI_PID .. 58

3.2.12 IMPLEMENTATION ... 60

3.3 DEVELOPMENT COSTS .. 60

CHAPTER 4: TESTING PROCEDURE INSTRUCTIONS .. 62

4.1 TEMPERATURE CONTROL SETTINGS .. 62

4.2 SPECIMEN PREPARATION ... 63

4.3 THERMOCOUPLE ATTACHMENT .. 64

4.4 LOAD TRAIN SET-UP ... 66

4.5 TESTSTAR TESTING PROGRAM ... 72

4.6 TEST START ... 73

4.7 POST TEST DATA ANALYSIS .. 75

4.8 TEST PROCEDURE CHECKLIST ... 76

CHAPTER 5: TESTING RESULTS .. 79

5.1 TESTING HEAT RATE PROFILES ... 79

5.2 TENSILE RESULTS; 𝝐 = 0.05/s .. 86

5.3 TENSILE RESULTS; 𝝐 = 0.5/s .. 87

5.4 25°C TENSILE TESTING RESULTS .. 88

5.5 225°c TENSILE TESTING RESULTS ... 89

vii

5.6 425°c TENSILE TESTING RESULTS ... 91

5.7 MECHANICAL PROPERTY ERROR BAR PLOTS ... 92

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS .. 95

6.1 CONCLUSIONS .. 95

6.2 RECOMMENDATIONS ... 96

6.2.1 INCREASING SYSTEM CAPACITY ... 96

6.2.2 VALIDATION FOR ALTERNATE TESTING PLATFORMS 96

6.2.3 MODIFICATIONS TO CURRENT TECHNOLOGY ... 97

6.2.4 PID IMPROVEMENTS .. 98

6.2.5 IMPROVED TEMPERATURE MEASUREMENTS ... 99

APPENDIX A: DRAWING PACKAGE ... 110

APPENDIX B: HMI SOURCE CODE... 134

APPENDIX C: PLC SOURCE CODE .. 157

viii

LIST OF FIGURES

FIGURE 2.1: FCC UNIT CELL, FROM [8] .. 4

FIGURE 2.2: EFFECTS OF TEMPERATURE AND STRAIN RATE ON 6061-T6 ALUMINUM,

ADAPTED FROM [9] ... 8

FIGURE 2.3: STRESS STRAIN CURVES OF VARIOUS MATERIALS, FROM [14] 10

FIGURE 2.4: PROCESS CONTROL OVERVIEW, FROM [29] .. 18

FIGURE 2.5: PID CONTROL IMPLEMENTATION, FROM [29] .. 21

FIGURE 3.1: SYSTEM SETUP ... 24

FIGURE 3.2: SYSTEM OVERVIEW .. 25

FIGURE 3.3: SPECIMEN GEOMETRIES .. 26

FIGURE 3.4: LOAD TRAIN CONFIGURATIONS ... 26

FIGURE 3.5: THERMOCOUPLE CLIP ATTACHMENT .. 31

FIGURE 3.6: COMPARISON OF SHIELD TYPES .. 32

FIGURE 3.7: TORCH SUPPORTS, (A) PINNED, (B) SEATED .. 34

FIGURE 3.8: SINGLE STAGE PRESSURE REGULATOR, ADAPTED FROM [31] 37

FIGURE 3.9: MOTOR ASSEMBLY .. 38

FIGURE 3.10: ELECTRICAL OVERVIEW .. 40

FIGURE 3.11: SAINSMART UNO MICROCONTROLLER BOARD, FROM [32] 41

FIGURE 3.12: PLC SOFTWARE OVERVIEW.. 47

FIGURE 3.13: GUI_PID DISPLAY SCREEN .. 55

FIGURE 4.1: SPECIMEN QUADRANT DIAGRAM ... 65

FIGURE 4.2: SEATED GRIP SPECIMEN ALIGNMENT ... 68

FIGURE 4.3: PINNED GRIP SPECIMEN ALIGNMENT ... 68

FIGURE 4.4: THERMOCOUPLE READER ATTACHMENT .. 70

FIGURE 4.5: EXTENSOMETER ATTACHMENT ... 72

FIGURE 5.1: A3 TCS DATA .. 80

FIGURE 5.2: A4 TCS DATA .. 81

FIGURE 5.3: B3 TCS DATA .. 81

FIGURE 5.4: B4 TCS DATA .. 82

ix

FIGURE 5.5: A5 TCS DATA .. 82

FIGURE 5.6: A7 TCS DATA .. 83

FIGURE 5.7: B5 TCS DATA .. 83

FIGURE 5.8: B6 TCS DATA .. 84

FIGURE 5.9: HEAT-UP RATE ERROR BAR PLOT ... 85

FIGURE 5.10: STRESS STRAIN CURVES FOR 0.05/SEC STRAIN RATE 86

FIGURE 5.11: STRESS STRAIN CURVES FOR 0.5/SEC STRAIN RATE .. 88

FIGURE 5.12: 25° C STRESS STRAIN CURVES ... 89

FIGURE 5.13: 225° C STRESS STRAIN CURVES ... 90

FIGURE 5.14: 425° C STRESS STRAIN CURVES ... 92

FIGURE 5.15: YS ERROR BAR PLOT ... 93

FIGURE 5.16: UTS ERROR BAR PLOT .. 93

FIGURE 5.17: PERCENT ELONGATION ERROR BAR PLOT ... 94

x

LIST OF TABLES

TABLE 3.1: EXTENSOMETER TEMPERATURE MONITORING .. 29

TABLE 3.2: ARDUINO UNO REV2 SPECIFICATIONS, FROM [32] ... 43

TABLE 3.3: TCS SOFTWARE COMPONENTS ... 45

TABLE 3.4: LIST OF EXPENDITURES .. 61

TABLE 5.1: PID TESTING PARAMETERS .. 85

TABLE 5.2: 0.05 / SEC TENSILE TESTING RESULTS ... 87

TABLE 5.3: 0.5 / SEC TENSILE TESTING RESULTS ... 88

1

CHAPTER 1: INTRODUCTION

Industries dependent upon material behavior are continuously seeking new technologies

to increase the performance of materials and to reduce production costs. Depending on

the material and application, extremely large amounts of research and testing go into

product development, with studies focusing on a variety of material properties. For

example, Boeing focused on improving aluminum and titanium alloys to reduce weight for

the design of the 777. This led to higher strengths, toughness, and corrosion resistance in

7000 and 2000 series aluminum alloys, and increased damage tolerance, corrosion

resistance, and temperature resistance in titanium alloys [1].

Of particular interest to the research in this thesis is the testing of materials at elevated

temperatures. This testing occurs in a variety of fields, such as the nuclear industry and in

structural development. The nuclear industry performs oxidation tests at elevated

temperatures to obtain data on advanced oxidation as well as oxidation resistance [2],

while other research has investigated the effects of high temperature exposure to static

and dynamic mechanical properties of cement [3]. Definition of material properties at

elevated temperatures is also critical to the metal casting industry. As technologies

improve, analytical models have been created to predict the material behavior of cooling

casts to prevent cracking and unwanted residual stresses. These models rely heavily upon

research and accurate thermo-mechanical data [4].

Current high temperature testing methods typically rely on resistance heating that can be

initiated from a variety of devices. Direct resistance heating passes an electric current

2

directly through the material to heat it based on the material’s resistance. Induction

heating however, does not directly contact the subject that is to be heated, but rather uses

a magnetic field to induce an electric current in the material which then heats through

resistance. Both of these types of heating apparatuses provide quick heat up times, but can

be fairly expensive to own and operate. Alternatively electric resistance heaters can be

employed, as they are inexpensive and easy to use. The heaters themselves are heated by

an electric current through resistance heating, but then transfer this heat to the specimen

indirectly. Because of this, electric resistance heaters are less efficient and have slower

heat up times.

1.1 OBJECTIVES

Due to barriers in elevated temperature testing, such as low heating rates and high costs,

the objective of this research was to:

1. Develop a cost effective, elevated temperature testing apparatus that can be used

in conjunction with a servo-hydraulic testing frame. Requirements of the device

include maximum temperatures of 470°C, and heating rates between 5-10°C/sec.

Costs were to be held to a minimum, with a goal of under $1000.

2. Perform elevated temperature tensile tests to validate the temperature control

system and determine mechanical properties of a 70XX series aluminum alloy.

Tests were performed at three different temperatures: 25°C, 225°C, and 425°C and

two different strain rates: 0.05/sec and 0.5/sec. Specifically, percent elongation,

0.2% yield strength, and ultimate tensile strength values were to be analyzed and

evaluated.

3

CHAPTER 2: LITERATURE REVIEW

This chapter will provide a brief background on the material behavior and temperature

affects to material properties of aluminum alloys. Standards and procedures for elevated

temperature tensile testing will also be discussed. Because the testing apparatus

developed in this thesis focuses on the elevated temperature testing of a 70XX series

aluminum alloy, the standards and procedures referenced are those applied to metallic

alloys; however, in theory the same testing processes may be applied to non-metals as

well. Current elevated temperature testing facilities and technology will also be reviewed,

as will concepts pertinent to temperature control systems, such as the implementation of

PID process controllers.

2.1 BEHAVIOR AND PROPERTIES OF ALUMINUM ALLOYS

Elevated temperature testing is commonly performed during the development of metallic

alloys and aids in the prediction of material behavior in extreme environments [5]. For

example, environmental temperature and time spent at that temperature may affect both

a material’s composition and its microstructure [6]. The following sections will discuss the

material behavior of aluminum alloys and the effects of temperature on material

properties.

2.1.1 FCC ALUMINMUM BEHAVIOR

Aluminum alloys are polycrystalline structures formed from multiple small crystals

arranged in varying orientations. These small crystals are referred to as grains, while the

edges between crystals are called grain boundaries. The grains are comprised of a lattice of

4

atoms occurring in regular, repetitive patterns similar to a grid. There are 14 unique lattice

arrangements, which result in specific mechanical properties. For example, aluminum has a

face centered cubic (FCC) lattice, as depicted by the unit cell in Figure 2.1, which allows

atoms to be packed as tightly as possible in a cubic formation. The FCC arrangement has an

atom positioned at each corner of the cube as well as along each face of the cube. For

metals, deformation occurs more readily along directions of the cube where atoms are in

closest proximity to one another. These directions and planes of atoms can be described

for any lattice structure using Miller indices. FCC aluminum may have a close packed plane

of the form {111} along the <1̅10> direction as depicted in Figure 2.1, as well other planes

and directions occurring along the diagonal of the cube [7].

Deformation in polycrystalline metals begins with dislocations, or line imperfections, in the

Figure 2.1: FCC Unit Cell, from [8]

5

crystal. These can occur during solidification of the material and when applied loads are

great enough to cause dislocations. The movement of dislocations through crystals is

known as slip, and occurs along what are referred to as slip planes. A common slip system

for FCC aluminum is the {111} plane along the <1̅10> direction. If slip occurs, only a small

number of the metallic bonds throughout the crystal need to be broken to plastically

deform the metal and directly affect the material’s strength. However, by interfering with

slip, the mechanical properties of a metal can be controlled.

One method for preventing the movement of dislocations is through the introduction of

obstacles. Obstacles commonly take the form of interstitial defects which are sites in the

crystal lattice where an extra atom is inserted. These atoms are typically larger than the

interstitial site they occupy and cause compressive stresses in the crystal that resist

dislocation movement. Grain boundaries also hinder dislocation movement. Because of

this, metals with finer grains and larger grain boundary areas typically exhibit higher

strengths. Smaller grain sizes effectively increase the distance that dislocations have to

travel to form a void, and are affected by a cast metal’s cooling or solidification rate. Faster

solidification rates typically lead to smaller grain sizes, while slower rates lead to larger

grain sizes [7].

Alternatively various means of hardening can be applied to enhance the strength of

aluminum. Manufacturers of aluminum alloys employ a variety of methods such as work

hardening (cold working), solid solution hardening, dispersion hardening, and precipitation

hardening. Cold working encompasses all rolling, extruding, drawing, bending, etc… of

6

aluminum products and is performed below the metal’s recrystallization temperature. This

leads to dislocations on different slip planes interfering with one another’s movement,

strengthening the material. Solid solution hardening is typical of most aluminum alloys as it

involves alloying elements being dissolved in an aluminum base. Alloying atoms occupy

positions or empty spaces in the aluminum lattice, causing it to distort and restrict the

movement of dislocations, increasing the strength of the alloy. Dispersion hardening occurs

when fine particles of an insoluble material are added to the base metal’s lattice to

obstruct dislocation movement. For aluminum alloys, this may occur by either the addition

of an alloy that chemically combines with the aluminum, or each other, to create fine

particles that precipitate from the metal, or by combining specific particles with powdered

aluminum and then compressing the mix into a solid. Lastly, precipitation hardening

consists of a solution heat treatment followed by an ageing process. The solution heat

treatment produces a supersaturated condition, and after quenching the material is

artificially aged at a temperature above room temperature. Alloys that undergo

precipitation hardening must contain enough soluble alloying elements to surpass the

room temperature solid solubility limit. They must also be capable of dissolving the excess

soluble alloying elements and then later precipitate them as components of the crystal

lattice. Care must be given during the precipitation reaction such that the components do

not become too coarse and detract from the strengthening potential of the precipitation

hardening process [6].

7

2.1.2 TEMPERATURE AFFECTS ON MATERIAL PROPERTIES

Most materials exhibit temperature dependencies, with yield strength, tensile strength,

and modulus of elasticity decreasing at higher temperatures and ductility increasing. At

higher temperatures it is common for the brittle nature of a material to be reduced and the

ductility of the material to increase. The transition between these two fracture methods

occurs at the ductile to brittle transition temperature, which is determined through impact

testing. Although impact test results are not always related to tensile test results, materials

with high strength and high ductility generally have good tensile toughness. Both test types

are important for predicting material behavior in extreme environments [7].

Aluminum alloys at elevated temperatures typically follow the same material property

trend as other materials, except when it comes to the ductile to brittle transition

temperature. Most FCC metals, such as aluminum, do not exhibit a distinct transition

temperature, because the FCC crystal structure allows for higher absorbed energies and no

transition temperature [7]. However, FCC aluminum properties such as tensile, shear,

compression, bearing and fatigue strengths have been found to follow the established

trends and decrease with temperature. These decreases in property values though do not

extend to the process of age-hardening, which is performed at specific temperature ranges

and for only certain periods of time. The elongation of aluminum is commonly found to

increase with temperature. Cold temperatures typically have a reverse effect on material

properties, resulting in increased tensile, shear, compression, bearing and fatigue

strengths, and decreased elongations [6].

8

This effect can be seen in Figure 2.2 which depicts stress strain plots of 6061-T6, an FCC

aluminum alloy. From the plots it can be seen that 6061-T6 aluminum is not only

temperature dependent, but also strain rate sensitive [9]. Additional elevated temperature

research has tested 6061-T6 at temperatures of 25°C, 100°C, 200°C, and 300°C and at

strain rates of 10-4 s-1, 10-3 s-1, 10-2 s-1, and 10-1 s-1 with similar results. The FCC aluminum

alloy was confirmed to be both temperature and strain rate sensitive with both yield

strength and ultimate tensile strength values decreasing with a corresponding increase in

temperature. No significant strain rate sensitivity was evident during room temperature

(25°C) tests; however, it became much more prominent at higher temperatures. At 300°C

the strain rate sensitivity was significant enough to result in a 20% decrease in elongation

when the strain rate was decreased from 10-1 s-1 to 10-4 s-1 [10].

Figure 2.2: Effects of Temperature and Strain Rate on 6061-T6 Aluminum, adapted from [9]

9

2.2 ELEVATED TEMPERATURE TENSILE TESTING

The following section will discuss in detail tensile testing, stress strain curve generation,

mechanical property calculations, and ASTM testing standards. Tensile tests provide the

means, while generation of the stress strain curve provides the foundation for calculating

mechanical properties. Standards for elevated temperature tensile testing appear in ASTM

International E21. Testing standards specific to non-ferrous metal alloys is also discussed in

ASTM International E21 [11].

2.2.1 TENSILE TESTING AND MATERIAL PROPERTIES

Tensile testing consists of placing a specimen in axial tension, increasing the load until

failure, and recording the corresponding loads and displacements. By measuring the load

and displacement stress and strain may be calculated, as defined in (2.1) and (2.2)

respectively. In (2.1) and (2.2), σ is engineering stress, ε engineering strain, P the applied

load, Dmin the minimum diameter of the specimen, L the gauge section length, and Lo the

original gauge section length.

 𝜎 = 𝑃 𝐴⁄ = 𝑃 (𝐷𝑚𝑖𝑛
2⁄ ∗ (𝜋/4)) (2.1)

 𝜀 = ∆𝐿 𝐿𝑜⁄ = (𝐿 − 𝐿𝑜) 𝐿𝑜⁄ (2.2)

When plotted, these values comprise what is known as the stress strain curve, from which

material properties may be calculated. Figure 2.3 illustrates characteristic tensile stress

strain curves for mild steel, copper, and aluminum specimen. Strain is plotted on the x-axis,

while stress values are plotted on the y-axis. For most metals, the initial portion of the

stress strain curve is linear, and is described as the elastic region. This region follows

10

Hooke’s Law, as defined in (2.3), for a uniaxial stress state. The specimen will not

experience permanent deformation unless the applied load exceeds the elastic limits.

 𝜎 = 𝜀 ∗ 𝐸 (2.3)

σ and ε have previously been defined, however, E is Young’s Modulus of Elasticity. It is

defined as the slope of the linear portion, and is a ratio of stress to strain. When the load

exceeds the maximum limit, the stress strain curve will start to bend over and the

specimen will start to experience permanent deformation. Yield strength, or yield stress,

and ultimate tensile strength (UTS) values may also be determined from the stress strain

curve after it bends over outside the linear region. For ferrous metals the yield stress is

typically a well-defined point, where it can visually be seen that the linear region has

reached its maximum limit.

Figure 2.3: Stress Strain Curves of Various Materials, from [12]

11

However, for non-ferrous metals this point is less evident and is defined by extending and

offsetting the linear slope by 0.2%. This is called the 0.2% yield strength (YS). Because the

research conducted for this thesis focuses on applications specific to aluminum alloys, YS

will refer to the 0.2% yield strength unless otherwise specified. UTS calculations remain the

same for both ferrous and non-ferrous metals, and are defined as the maximum stress,

experienced by the specimen. For Figure 2.3, the highest point of each curve is used to

generate UTS.

Depending on the device used to record displacement measurements, stress and strain

calculations may be categorized as pseudo, engineering, or true. The label “pseudo” is used

for curves with strain values calculated using displacement values measured by the testing

frame’s linear variable differential transformer (LVDT). When the LVDT is used, it is

assumed that the majority of displacement in the load train occurs in the specimen gauge

section due to its reduction in area, or the material’s response to elevated temperature.

However, there is some minimal amount of strain occurring in the load train outside the

specimen gauge section. Thus the curve is labeled as “pseudo” stress and strain.

Engineering, and true stress-strain curves both measure displacement relative to the

specimen gauge section, but calculate stress using different methods. Engineering stress-

strain curves make the assumption that reduction in cross-sectional area is minimal and

that stress can be calculated using the original, minimum, cross-sectional area of the

specimen. A true stress-strain curve on the other hand, requires the instantaneous

calculation of stress and strain. In other words, the deformation in cross section must be

measured and used to calculate the stress at any given instant in time for the duration of

12

the test. It is often difficult to obtain these measurements, and as a result a correlation has

been developed relating the linear region of the engineering stress strain curve, in which

no deformation occurs, to the true stress and strain, as defined in (2.4) and (2.5). σt

represents the true stress while εt is defined as the true strain for the elastic region.

 𝜎𝑡 = 𝜎 ∗ (1 + 𝜀) (2.4)

 𝜀𝑡 = ln(1 + 𝜀) (2.5)

True fracture strength (TFS) may also be of interest and is the stress at which fracture

occurs, as shown by (2.6) [13] where σfrac is the true fracture stress, Pfrac is the load at

failure, and Dfrac is the specimen diameter at failure.

 𝜎𝑓𝑟𝑎𝑐 = 𝑃𝑓𝑟𝑎𝑐 (𝐷𝑓𝑟𝑎𝑐 ∗ (𝜋/4)) ⁄ (2.6)

Lastly, percent elongation measures the percent with respect to the original gauge length

that the specimen deforms during a tensile test taken to failure. The following equation

describes how to calculate percent elongation:

 %𝐸𝑙𝑜𝑛𝑔 = ∆𝐿 𝐿𝑜⁄ = (𝐿 − 𝐿𝑜) 𝐿𝑜⁄ (2.7)

Where %Elong stands for percent elongation, L is the measured specimen gauge length

after failure, and Lo is the original specimen gauge length as is recorded before testing.

2.2.2 TESTING STANDARDS

To homogenize results across industries, the American Society for Testing and Materials,

now recognized as ASTM International, was formed. ASTM International publishes

standards and recommendations for use in research [14]. ASTM International E21 lists the

recommended standards for tensile testing of metals and metallic alloys at elevated

13

temperatures. Key standards taken into account while developing the elevated

temperature tensile testing apparatus are as follows [11]:

 When the specimen gauge length is greater than 1” (25.4 mm), temperature should

be measured at two separate locations along the gauge length.

 The temperature gradient along the specimen gauge length should not vary more

than +/- 3°C

 At set-point (test temperature) the temperature should not vary more than +/- 3°C

2.3 REVIEW OF AVAILABLE TECHNOLOGY

When performing an elevated temperature test, the selection of a heating device is critical.

Often, selection is highly dependent upon the device’s primary mode of heat transfer,

although all modes need to be taken into account. For example, furnaces or ovens typically

used in conjunction with testing frames provide the majority of heat transfer through

radiation, but the heating elements are staggered vertically throughout the oven to

account for natural convection. Other factors to consider include geometry of the heating

device, limits of the mechanical testing apparatus, desired heating rates, process control,

and the device’s responsiveness to a change in temperature. The following section

introduces several high temperature testing facilities and the technologies available at

each.

2.3.1 GLEEBLE

The U.S. Army Armament Research Development and Engineering Center, Benét

Laboratories, used a Gleeble to assess the solid/liquid embrittlement of gun steels by

copper. Three types of steels in un-notched and notched form were pulled to failure at a

14

stroke rate of 0.127m/sec. Temperatures ranged between 868°C and 1,100°C and

specimen were heated to temperature in 3 seconds and held for a soak period for 10

seconds. The tests found that embrittlement of copper plated steels occurred at 1,100°C,

but that there was only minimal evidence for it occurring at lower temperatures [15].

The Gleeble systems is distinct in that it combines separately controlled thermal and

mechanical testing systems [16] to provide physical simulations, or “the reproduction, on a

laboratory scale and in real time, of the thermal and mechanical parameters of a real-world

production process [17].” The Gleeble can reach heat up rates of 10,000 °C/sec to perform

elevated temperature tensile, compressive, and torsional tests. These heating rates are a

result of the Gleeble’s direct self-resistance heating mechanism, which passes an electric

current through the gauge section while isolating specimen end sections for attachment to

the mechanical test frame. The specimen gauge section heats up due to the resistant

nature of its material. Time, applied current, material resistivity, and geometry all influence

the heating rate of the specimen [16].

Currently three models of the Gleeble exist. Basic applications covered by the Gleeble 3180

include hot tensile tests, continuous casting simulations, weld HAZ simulations, melting and

solidification tests, and heat treatment testing. The Gleeble 3500 and 3800 can facilitate

these applications, as well as provide more functions and increased capabilities [18]. With

increased functionality comes an increased cost. In 2010 the Department of the Navy

estimated a total cost of $878,553.00 for either a Gleeble 3500 or 3800 with hot-torsion

and HydraWedge capabilities, a required vacuum pumping system, water chiller, high flow

15

quench system, mounting gauge spacer clips, strip heaters, heat control shims, installation

of the system, and training of personnel [19]. The University of Cape Town in Southern

Africa also purchased a Gleeble 3800 in 2012 that cost approximately $900,000.00 [20].

2.3.2 INDUCTION HEATERS

BAM Federal Institute for Materials Research and Testing employs an induction heater for

the thermo-mechanical testing of ceramic matrix composites. Specimen can be tested in a

vacuum or inert gas at temperatures up 1,700°C or in air up to 1,500°C to determine

properties such as tensile strength, stiffness, and elastic/plastic deformation behavior. The

testing apparatus consists of a 100 kN servo-mechanical testing machine coupled with an

integrated chamber. Specimens inside the chamber are heated by radiation through the

induction heating of susceptors surrounding the test piece [21].

Induction heaters are commonly used to heat conductive materials, such as metal, for use

in metalworking, heat treating, welding, and melting; however, they can also be modified

for the heating of non-metallic materials. The induction heater operates by inducing

electrical currents within a metal, or work piece, using an induction coil, metal work piece,

and an alternating current power supply. The induction coil is typically made out of copper

tubing, to enable water cooling, and is formed in coils around the work-piece. An

alternating current is passed through the coil to generate an alternating magnetic field.

This field induces an electric current, or eddy current, which raises the work-piece

temperature through Joule heating. Joule heating occurs when the work-piece’s natural

16

resistance to electrical currents produces heat. Ferrous materials, such as iron, respond

best to induction heating because they are ferromagnetic [22].

Effectiveness of the induction heater relies heavily upon geometry of the work-piece and

induction coil, work-piece material, and magnitude and frequency of the applied ac

current. When designing the induction coil no set standards govern the design, and most

are formed based from experience. Thus design of appropriate induction coils takes time

and can be very costly [22]. Induction heaters themselves are not inexpensive and a

powerful heater can cost anywhere from $6000.00 and up [23].

2.3.3 ELECTRIC HEAT

Both the NASA Langley Research Center and Idaho National Laboratory (INL) employ

electric furnaces for material property testing [24], [25]. INL uses high temperature

furnaces that can achieve temperatures of 3,000°C and autoclaves to test materials used in

nuclear reactor core and support structures [25]. NASA’s Langley Research Center uses

furnaces during elevated temperature tensile testing of foil-gage metals at temperatures of

500°F [24]. Other facilities also use furnaces for elevated temperature testing. A

collaborative effort between Texas A&M University at Qatar, American University of Beirut,

the University of Michigan, and the University of Lille-North of France was published in

Materials Science & Engineering detailing a study of AA 6061-T6 under various strain rates

and temperatures. The testing process describes the detailed use of a computer controlled

MTS Insight electromechanical testing machine equipped with a LBO-series Thermocraft

LabTemp laboratory oven (environmental chamber). Tensile testing of the 6061-T6

17

specimens was conducted at temperatures up to 300°C with specimens kept in the

environmental chamber for 30 minutes before starting the test to ensure a homogenous

temperature [10].

Electric heaters, such as those used in laboratory furnaces, do not heat the work-piece by

induction or resistance heating, but rather transfer heat to the work-piece via one of the

three modes of heat transfer. The heater itself is heated by direct resistance heating, and

that heat is transferred to the work-piece by some combination of conduction, convection,

or radiation [26].

Electric heaters come in a variety of forms, such as strips, cables, and tubes. Band heaters,

a type of electric heater designed for extruders, were explored as a possible electric

heating source for the developed testing apparatus. The band heaters are cylindrical, meet

elevated temperature requirements, and cost around $75.00 [27]. However, due to

geometry limitations that restricted placement of the band heaters, responsiveness of the

system was significantly limited. Thus, required heating rates and system stability could not

be achieved.

2.3.4 PROCESS CONTROL: PID

PID control is a very common process control method used in a variety of industries. Figure

2.4 illustrates a generic feedback control loop block diagram that shows the

implementation of a PID controller within a process. Simply explained, the process begins

at some initial point and is adjusted by a control element until a sensor indicates that it has

reached the set-point (SP). The set-point is some target value for the process, often a

18

temperature, pressure, or volume, which is continuously monitored by a sensor. Readings

from the sensor are known as process variable (PV) readings, and are reported back to the

PID controller. The controller then compares the PV values to the SP to calculate an error

which dictates the magnitude of change that is to be made to the control element. This

progression repeats until the SP and PV are equal to one another or within acceptable

bounds [28].

Figure 2.4: Process Control Overview, from [29]

Before designing the PID controller it is important to understand how a process system

functions. PID controllers can be designed to provide positive or negative feedback, and be

direct or reverse acting. Positive feedback is given by a controller that is programmed to

enhance the error between the PV and SP. In other words the PV gets driven further away

from the SP until process limits are reached. This type of feedback is not conducive for use

with automatic controllers, where negative feedback is preferred. Negative feedback leads

the controller to issue outputs that minimize the PV and SP error, increasing the stability of

the system. A direct acting controller is one for which an increase in process inputs results

19

in an increase in the PV. Likewise, a decrease in system inputs should result in a decrease of

system outputs. For a reverse acting controller the opposite occurs. When inputs to the

system are increased, the outputs see a decrease in value, while for a decrease in inputs

the outputs will see an increase in value. Many systems and most PID controllers are direct

acting with negative feedback [28].

Looking inside the PID controller it can be seen that there are actually three modes of

control: the proportional (P), integral (I), and derivative (D). While P and I control modes

can be used alone, the D mode is almost never used in this fashion. P, I, and D can also be

combined together. The most common control modes are P, PI, and PID [30].

Proportional control, or gain, calculates a change to the process that is proportional to the

error between the PV and SP. It does not rely on past values of the PV nor does it take into

consideration the rate of change of the error. Thus P mode is computationally simple and

easy to tune as there is only one input to alter. However, it has a downside: an offset

typically exists between the SP and PV for most loading conditions. In other words, for a

given loading of the system the controller may be able to bring the PV to within the SP

bounds. For this same system and loading an additional disturbance within the process

may create an offset within the system. This occurs when the controller’s abilities are not

complex enough to handle the disturbance. Manually we can account for this by adding an

output bias to the P controller calculations, as seen in the following equation:

 𝑀𝑉 = 𝐾𝑐 ∗ 𝑒 + 𝑏 (2.8)

20

For (2.8), MV is the manipulated variable or controller output, Kc is the controller gain, e is

the error between the SP and PV, and b is the output bias. When the output bias is a

predetermined constant, as is the above case, it is defined as the “manual reset,” and is

altered by the user [30].

To automate the process of adjusting the bias, the Integral mode may be introduced.

Because the integral term automatically adjusts the bias, it is often referred to as

“automatic reset,” or just “reset.” Addition of the integral term to controller calculations

allows the controller to account for past errors in its outputs. It does this by summing the

past errors to determine whether or not the MV needs to be increased or decreased. If the

sum of errors is positive this indicates that the MV needs to increase, while if it is negative

then the MV should be decreased. Calculations for the PI controller are shown in (2.9).

 𝑀𝑉 = 𝐾𝑐 ∗ (𝑒 +
1

𝑇𝐼

∫ 𝑒 𝑑𝑡) (2.9)

In (2.9), TI is the integral time with units of minutes per repeat. If a fast integral response is

desired, mathematically the TI inputs should be small. Conversely larger TI inputs will

result in slower response times. This can be confusing, which is why some controllers are

designed to accept inputs of 1/TI, for which a large input results in fast response times, and

a small input produces slow response times [30].

Additionally the derivative term can be added to further improve performance of the PID

controller as shown in Figure 2.5. Derivative control is based on the rate of change of the

product of the controller gain (Kc) and error, allowing for the controller to predict system

responses into the future. The mathematical addition of the D mode is shown in (2.10).

21

 𝑀𝑉 = 𝐾𝑐 ∗ (𝑒 +
1

𝑇𝐼

∫ 𝑒 𝑑𝑡 + 𝑇𝐷 ∗
𝑑𝑒

𝑑𝑡
) (2.10)

 The tuning parameter, TD, is the derivative time with units in minutes. As mentioned

above, one of the benefits of the D mode is its ability to predict system responses. It also

allows the controller to respond more quickly to disturbances in the system load.

Sometimes, however, this can be of disadvantage. For especially noisy systems, D mode

will actually amplify the noise causing amplified controller responses and an unstable

system [30].

Figure 2.5: PID Control Implementation, from [29]

Equation (2.8) is an example of a traditional PID. This is defined as a controller with a gain

that is multiplied to through all three modes of control. Alternatively, the “parallel” form of

PID allows an independent gain for each mode of control as shown in (2.11).

22

 𝑀𝑉 = 𝐾𝑃 ∗ 𝑒 + 𝐾𝐼 ∗ ∫ 𝑒 𝑑𝑡 + 𝐾𝐷 ∗
𝑑𝑒

𝑑𝑡
 (2.11)

This allows the user to fine tune each parameter. A correlation between the traditional and

parallel forms of the PID can be seen as follows:

 𝐾𝑃 = 𝐾𝐶 (2.12)

 𝐾𝐼 =
𝐾𝐶

𝑇𝐼

 (2.13)

 𝐾𝐷 = 𝐾𝐶 ∗ 𝑇𝐷 (2.14)

Where KP is the proportional gain, KI is the integral gain, and KD is the derivative gain.

These variables have perhaps less physical meaning with respect to their units, but they do

allow for a more simplified tuning process [30].

23

CHAPTER 3: TEMPERATURE CONTROL & TENSILE TESTING APPARATUS
DESIGN

Components of the overall testing apparatus design will be discussed in the following

sections. Section 3.1 will detail the interaction of the system’s mechanical components, 3.2

will discuss software design, and 3.3 will compare the costs associated with the developed

system to those required by other elevated temperature testing platforms. Mechanical

components include specimen geometry, grip geometry, tensile testing equipment,

displacement measurement, thermocouples, shields, propane torch support fixtures,

stepper motors, the coupling device, torque arm, pressure regulator, and the specific

electronics incorporated into the design. Design of the software includes the use of a

programmable logic controller set to respond to a PID control loop, and the

implementation of a graphical user interface (GUI). Costs for the entire system are limited

to hardware purchases, and manual labor associated with manufacturing.

3.1 MECHANICAL COMPONENTS

The mechanical components of the system ensure heating of the test specimen for the

duration of a tensile test. Specimens are suspended in the servo-hydraulic testing frame

through use of a multi-axis gripping system while heat is applied, via flame, by two propane

torches aimed at opposite ends of the specimen. Temperature is varied by individually

changing the flame intensity of each propane torch. This is accomplished by activating a

stepper motor to regulate the single stage pressure regulator housed within the torch

handle. Each stepper motor is operated by the temperature control system which receives

24

inputs from two thermocouples attached to the specimen. An image of the laboratory set-

up is shown in Figure 3.1, while Figure 3.2 displays a diagram of system interactions.

3.1.1 SPECIMEN GEOMETRY, GRIP GEOMETRY

Specimen and grip geometry are interdependent aspects of the tensile testing process:

specimen geometry may dictate grip design or grip design may dictate specimen geometry.

For the purpose of this thesis, specimen geometry was selected first, and grips were

designed second. Figure 3.3(a) illustrates the selected round specimen geometry. The

round specimen has button head ends measuring 12 mm in diameter, a stepped section

with a diameter of 8 mm, and a gauge section diameter of 6 mm that is gradually reduced

by 0.2 mm to ensure failure at the center of the specimen. Note that the button head ends

are filleted down to the reduced section. This fillet was designed to seat into a

Figure 3.1: System Setup

25

 Figure 3.2: System Overview

correspondingly filleted grip. Alternatively, the button head ends may be drilled through to

accommodate a pinned connection as shown in Figure 3.3(b). The load train implementing

a seated grip connection is illustrated in Figure 3.4(a), while the pin connection grip option

is illustrated in Figure 3.4(b). Figure 3.4(a) and (b) also show a threaded connection part, a

clevis grip, and a square pinned connection at the top and bottom of the load train. The

square components thread into the MTS servo-hydraulic testing frame, while the threaded

connection part allows for vertical adjustment of the specimen position, and the clevis grip

adds extra degrees of freedom. These extra degrees of freedom help rectify any minor

misalignments that may exist in the load train. If displacement measurement devices are

going be used, grip geometries should also be checked to avoid interference with the

device’s attachment point and measurement probes.

26

Figure 3.3: Specimen Geometries

Figure 3.4: Load Train Configurations

27

3.1.2 TENSILE TESTING EQUIPMENT

During development, all materials testing and validation was performed on an MTS servo-

hydraulic test frame, model 312.21. This test frame has an actuator with a total stroke of

200 mm, and includes a MTS model 661.21 load cell with a maximum operational capacity

of 100 KN (10 metric tons). The MTS frame is operated by a TestStar II control system in

either load or displacement mode, with testing procedures written and performed via

Testware SX V4.0A software (TWSX). Displacement of the actuator is measured by the

LVDT. It is important to note that measurements obtained using the LVDT refer to the

displacement of the entire load train and are not specific to the specimen gauge section. If

necessary, displacement of the specimen can be measured to provide more accurate strain

calculations. This is accomplished using an MTS model 633.11B20 extensometer with a

range of +/- 0.15” or 3.81 mm, and a circuitry housing temperature limit of 200°C. To avoid

damaging the extensometer, TestStar interlocks may be set to trigger a shut off of the test

frame hydraulics when the extensometer reaches a reading of +/- 2.5 mm. Thus the

extensometer can safely accommodate a total displacement of 5 mm, which correlates to a

14.3% elongation of the specimen described in Section 3.1.1 . Depending on the elongation

of the material being tested, failure may or may not occur before the MTS model

633.11B20 extensometer reaches its limits. Other extensometers that accommodate

greater elongations may be implemented, however, were not available for use during the

research performed in this thesis.

 Tensile testing performed for this thesis measured displacements using the LVDT;

however, the testing apparatus was also designed to accommodate an extensometer. Due

28

to the extension and temperature limits of the available extensometer, a set of extended

arms were designed for the device. These arms doubled the extension range of the

extensometer, as well as moved the extensometer circuitry away from the heated region.

However, increasing the extension range halved the number of recorded data points.

When using the extended arms, Equation (3.1) should be used to convert extensometer

readings to actual values:

 𝐸𝑥𝑡𝐴𝑐𝑡𝑢𝑎𝑙 = 2.5626 ∗ 𝐸𝑥𝑡𝑅𝑒𝑎𝑑𝑖𝑛𝑔 − 0.0008 (3.1)

Where ExtActual is the actual displacement of the extended arms, and ExtReading is the

corresponding measurement recorded by the extensometer. The extended arms work well

if the elastic region of the material being tested is of sufficient length to record enough

data points for an accurate linear fit correlation. However, this was not the case during

testing of the 70XX series aluminum alloy, due to its low yield strength. Also of concern

were the effects of momentum and inertia acting on the extensometer circuitry housing

when using the extended arms at high strain rates. This is because the mass of the housing

is located far enough from the attachment point that it cannot withstand the momentum

generated and causes inaccurate data collection.

Due to these failings the original extensometer set-up was reexamined. It was found that

the circuitry was far enough away from the heated zone around the specimen to be used

for tests up to 400°C. Monitored temperature tests were performed at 300°C and 400°C

with results displayed in Table 3.1. It should be noted that shield design also contributed to

the extensometer temperature. The cone shaped top shield used with the seated grips

29

directed heat from the flame towards the extensometer more than the pinned connection

grip shields. Because the temperature recordings reaching upwards of 150°C during

ramped heating, it was determined that testing specimens above 400°C while using the

original extensometer set-up would be detrimental to the extensometer circuitry.

Table 3.1: Extensometer Temperature Monitoring

Temperature (°C) Time (sec)
Extensometer Housing

Temperature (°C) Notes

300 120.0 55.0 At some points during the heating process,
both tests displayed extensometer
temperatures of 150°C 400 120.0 87.0

3.1.3 THERMOCOUPLES AND SHIELDS

Temperature regulation is monitored through the use of type K thermocouples and is

essential to the operation of the temperature control system. In accordance with ASTM

standard E21, the thermocouples were attached at each end of the specimen to measure

the temperature across the gauge section of the specimen. The thermocouples were

attached using clips made of 301 stainless steel strips, 0.008” thick x 0.25” wide. These

were fastened by 2-56 x 0.25” socket head cap screws and nuts as shown in Figure 3.5. The

design of these clips was selected to emphasize a low profile, producing a minimal heat

sink. However, if the material being tested elongates and causes a significant reduction in

cross-sectional area, the diameter of the specimen can become smaller than that of the

attachment clip, which in turn can result in the thermocouple “popping out” of the clip or a

reduction in contact with the specimen. Alternatively, welding thermocouples to the

specimen was considered. However, this was deemed too extensive a task due to the poor

welding characteristics of aluminum and the quantity of welds necessary for completing all

30

of the tensile tests. A secondary method consisting of an alligator clip with a potted

thermocouple was also considered. The alligator clip was filed to have a curved attachment

point so as not to mar the specimen surface, and was potted with Resbond 906 High

Expansion Adhesive, an electrically resistant adhesive/potting agent. Although the alligator

attachment devices addressed the reduction in cross-sectional area, they proved to be too

great of a heat sink and increased heating rates. A solution was found by moving the

thermocouples and clips further out of the specimen gauge section until they were in

contact with the 5 mm radius shoulder. This solution worked as long as deformation

occurred in the center of the gauge section.

Testing was performed with thermocouples located 27 mm from each end of the test

specimen. This ensured enough room in the specimen gauge section for attachment of an

extensometer, if desired, while still monitoring temperatures at the ends of the specimen

gauge section. As seen in Figure 3.5 the 27 mm was measured from the end of the

specimen button head to the closest edge of the thermocouple clip, with thermocouple

beads positioned at the approximate mid-point of the clips. Symmetry of thermocouple

placement is important if a symmetric and accurate temperature profile is to be

accomplished. Because the specimen is orientated vertically, natural convection affects the

gauge section heating profile. With symmetric thermocouple placement this discrepancy in

temperature becomes significantly apparent, and changes to the system that would offset

the temperature discrepancy are more easily monitored. These changes to the system may

include torch flame position relative to the specimen button heads, and flame intensity.

Flame position may be altered by moving the torch nozzle closer or farther away from the

31

load train, changing the torch nozzles vertical position, or adjusting how many threads are

exposed at the grip connection point in the load train. Flame intensity may be varied by

changing the maximum motor positions, as well as adding fans to remove heat at lower

temperature settings.

Figure 3.5: Thermocouple Clip Attachment

The thermocouples were particularly sensitive to direct flame, resulting in the addition of

shields to the load train. Implementation of the shields helped guard against erroneous

temperature readings, as well protected the specimen gauge section from direct flame and

hot spots. Shields were located between the propane torch flame and nearest

thermocouple attachment point and were supported by the grips. For the seated

connection grips, the top shield was manufactured out of 0.006” shim stock which

wrapped around the grip in a cone shape and was secured by a pinned connection. It was

initially tight enough to support itself, but became loose with use and eventually required a

32

wire hook to hold it up. The lower shield consisted of two 0.010” flat, square shim stock

pieces with slots cut to fit around the specimen. These shields rested flat on the top of the

bottom grip. A second set of shields was designed for the pin connection grips. A

comparison of the three shields can be seen in Figure 3.6 and Appendix A displays the

drawings for these shields.

Figure 3.6: Comparison of Shield Types

3.1.4 TORCH SUPPORTS

As mentioned in the previous section, location of the propane torch nozzles is critical to

achieving a uniform temperature distribution along the specimen gauge section. The

purpose of the torch supports is to provide an adjustable fixture for the torch nozzles so

that heat may be applied to the specimen button heads. For both the seated and pinned

connection grips, torch nozzles are radially positioned in line with the center of the grip

33

openings. Location of the torch nozzle relative to the button head in the z and x direction

can greatly affect temperatures in the gauge section, and may be adjusted to account for

natural convection. A uniform gauge section temperature was accomplished for the seated

grips by locating the top torch nozzle at a distance of 1.68” horizontally from the top grip

opening, and a distance of 0.60” vertically from nozzle center to the bottom of the top grip.

The bottom torch nozzle was located 1.44” horizontally from the bottom grip opening and

0.48” vertically from nozzle center to the top of the bottom grip. For the pinned grip set-up

the top torch nozzle was located 1.68” horizontally from the top grip opening and 0.445”

vertically from nozzle center to the bottom of the top grip. The bottom torch nozzle was

located 1.44” horizontally from the bottom grip opening and 0.92” vertically from nozzle

center to the top of the bottom grip. Appendix A contains drawings detailing the locations

described above

 The torch nozzle locations were thoroughly tested to ensure that the temperature profile

along the length of the specimen was within the acceptable limits of +/-3 degrees. Once

these locations were found, fixtures were manufactured to support the torch nozzles.

These are comprised of steel plates press fit with stainless steel bushings through which

the torch nozzle can slide and adjust position. The steel plates are bolted to the square

grips of the MTS test frame—one just below the load cell and another located on the

actuator. These attachment points allow both torches to stay centered on the button head

as long as the load train is not rotated out of alignment. An L shaped bracket was added to

the bottom torch support to create a rigid member in support of the propane cylinder. This

cautionary feature was added to prevent damage that could occur from the momentum

34

and impact of the actuator moving at high strain rates. A safety wire sling was added to the

top torch as a secondary support point to relieve stress from the top nozzle. Figure 3.7

provides a detailed illustration of the torch supports, while drawings can be viewed in

Appendix A.

Figure 3.7: Torch Supports, (a) Pinned, (b) Seated

3.1.5 AUTOMATED CONTROL OF THE NOZZLE

Automated control of the propane torch nozzle consists of a stepper motor, torque arm,

coupling device, and a single-stage pressure regulator (SSPR, also known as a diaphragm

valve). The stepper motor is used to open the SSPR by turning a threaded connection

within the coupling device to open the valve. The torque arm was implemented to align

and maintain motor position. Figure 3.9 provides an illustration of the torch/motor

assembly.

35

Ignition of the propane torches requires fuel flow at or above a certain level. On an original

Bernzomatic TS3000 this is accomplished by turning the torch handle knob clockwise until

the ignition button can trigger a sustained flame. Flame size can then be regulated by the

torch handle knob; however for the purpose of this research it has been replaced by a

coupling device and stepper motor to automate the process. A CanaKit STM100 stepper

motor was selected for automation because of its relatively high torque, positional

feedback, and unbounded shaft movement. The use of a DC or servo motor was also

considered, but servo motors are typically limited to only 180° of shaft rotation and DC

motors cannot provide positional feedback without additional hardware. The CanaKit

motor is rated for 0.23 N-m of torque, requires a 12 V power supply, and has a 1.8° step

angle (200 steps/revolution). The 200 steps/revolution provides enough resolution to

satisfy the temperature control system requirements, and the torque is great enough to

operate the torch valve without stalling at low fuel flows. One downfall of the stepper

motor is that if a torque greater than what it is rated for is applied to the motor, it will stall

out and lose its position relative to the valve. Because of this feature it is necessary to

define an origin, a minimum, and a maximum motor position. The origin refers to the zero

step point at which there is no flame, while the minimum point has been defined as the

location where the torch can maintain the smallest flame possible without blowing out.

This position is necessary for setting lower motor limits in the system software code. For

implementation in this research, the bottom motor minimum position was set at 203 steps;

while for the top motor was set at 204 steps. The maximum motor position is a user

defined input to the GUI so that it may be changed to satisfy varying heat rates. However,

36

it is important to acknowledge that an upper limit for the motors exist at the position

where the motor begins to stall out. This position will vary depending on motor ratings,

and the resistance of the valve compression spring. This location was found to be at 700

steps for both the top and bottom motor, however, a 50 step buffer was reserved and

upper limits were set at 650 steps. A fourth position, the ignition point, was defined at 600

steps, or 3 rotations of the motor shaft, for both motors. This location provides enough

propane for a successful ignition mixture. At the start of the temperature control program,

the motors ramp up to a position of 600 steps, at which point the user is signaled to ignite

the torches. After ignition the motors will ramp up or down to the GUI defined maximum

motor positions until the PID loop takes action.

By turning the torch handle knob the SSPR can be adjusted. The SSPR allows for the

regulation of fluid flow through a valve. Typically this fluid is a gas, as is the case for the

Bernzomatic TS3000. The inner workings of a SSPR can be seen in Figure 3.8(a), and consist

of a loading mechanism, sensing element, and control element. The loading mechanism is

comprised of a pressure adjustment knob which applies a force to the compression spring.

As the spring compresses it transfers this force to the sensing element, or diaphragm. If the

force is great enough the control element will be activated, opening the orifice by

unseating the poppet. This allows gas to flow from the high pressure inlet through the low

pressure outlet until equilibrium is reached. In total, four forces act on the diaphragm and

contribute to the regulation of fluid flow. As Figure 3.8(b) depicts, a downward force is

applied to the diaphragm by the compression spring, while the inlet gas, outlet gas, and

bonnet all apply upward forces. When the compression spring force is greater than the

37

combined gas pressures and bonnet force, it deflects the diaphragm downward. This forces

the bonnet off its seat, opening the orifice, and allows fluid to flow from the high pressure

region to the low pressure region as seen in Figure 3.8(c) [31].

Figure 3.8: Single Stage Pressure Regulator, adapted from [31]

Diaphragm valves are designed to regulate outlet pressure, despite decreasing high-side

pressures, such as would be the case in the propane cylinder. During the course of this

research, it was found that outlet pressure and flame size remained constant for a given

valve setting, unless the propane cylinder was nearing empty. This only became

problematic during prolonged testing, and solutions and improvements for this aspect of

the design are provided in CHAPTER 6:.

Another issue presented by the valve is that vertical movement is required to compress the

valve spring against the diaphragm. Although the motors provide adequate rotational

movement, they do not provide linear movement to compress the valve spring. This was

solved by designing an aluminum coupling device to interface between the stepper motors

and pressure regulator. A flat spot was ground into the section of motor shaft that slides

into a hollowed out section of 0.375” OD all-thread. The shaft is secured by a set screw,

and the all-thread is inserted into the center of the coupling device. Thus, rotation of the

38

motor shaft threads the all-thread in and out of the coupling device. Also housed in the

center of the coupling device is the original SSPR compression spring which interfaces with

the all-thread via a ball bearing to reduce friction and torque on the motor. The other end

of the spring is fitted with a brass cap that presses against the diaphragm and bonnet when

the spring is compressed. The coupling device connects securely onto the valve chamber by

threaded connection, replacing the original brass fitting and plastic knob of the torch

handle. Figure 3.9(b) provides an exploded view of the motor assembly for which drawings

can be viewed in Appendix A.

Figure 3.9: Motor Assembly

Also attached to the motor assembly is a torque arm. This feature was designed to keep

the motors aligned to the torch nozzle handle, allowing the motor shaft to rotate relative

to the motor housing, rather than letting it spin freely. The torque arm keeps the motor

39

housing fixed with respect to the torch handle while still allowing for vertical movement of

the valve without stalling the motor. It is comprised of a 3” long, 1/4”-20, hex bolt that fits

through a slotted plate attached to the motor housing, and threads into the coupling

device. This set up of the torque arm was found to work nicely for tests run in LVDT mode;

however, it created too much vibration for accurate testing results with the extensometer.

To dampen vibrations, a 0.3125” ID rubber grommet was added to each torque arm set-up.

3.1.6 ELECTRONIC HARDWARE

The electronic hardware is responsible for obtaining and communicating inputs and

outputs to and from the PID control loop. Propane torch motor control is achieved by

coupling a SainSmart Uno with a SainSmart L239D Motor Drive Shield. Temperature control

is regulated by coupling the Uno with two Adafruit Thermocouple Amplifier MAX31855

Breakout Boards. A set-up of the electronic hardware is shown in Fig Figure 3.10.

Simply put, the SainSmart Uno, as shown in Figure 3.11, is a small computer that can be

programmed to perform a variety of tasks. It is a clone of the Arduino Uno, an open-source

computing platform, comprised of a microcontroller board and an integrated development

environment (IDE) for writing software to control the board. Arduinos were originally

developed to provide a simple, inexpensive microcontroller platform for students and

teachers; however, it has grown in popularity due to the fact that all of the technology

behind the hardware and software is available for anyone to view, use, or develop. This

expands the device’s target audience from beginning to advanced users, as it allows for the

40

Figure 3.10: Electrical Overview

modification, improvement, and adaptation of the microcontroller to the user’s specific

needs. Another benefit is that its IDE is compatible on multiple operating systems,

requiring only a USB port and cable to program the microcontroller. This makes the

Arduino plug-and-play capable, eliminating the need for an external programmer.

Arduino produces a variety of boards, the most common of which is the Arduino Uno.

Currently three revisions of the board have been released, however the board used for

work in this thesis is a clone of the Uno R2, and it is this version that will be discussed. The

Uno R2 features an ATmega328 microcontroller, and has a 16 MHz ceramic resonator, 14

digital input/output (I/O) pins, 6 analog inputs, several pins for ground and power, an in-

41

circuit serial programming (ICSP) header, USB interface, power jack, and reset button. The

USB interface is used for programming, serial UART communication with the computer,

Figure 3.11: SainSmart Uno Microcontroller Board, from [32]

and can be used to power the board. The UART is also available to the digital pins 0 (RX)

and 1 (TX). Six of the digital pins can be used as pulse-width modulation (PWM) outputs.

The SainSmart Uno was selected to operate as a programmable logic control (PLC) due to

its ease of use and minimal cost. Specs for the SainSmart Uno match those of the Arduino

Uno listed in Table 3.2, except for one minor difference: the SainSmart Uno board has a 16

42

MHz crystal oscillator instead of a 16 MHz ceramic resonator. The SainSmart Uno is also

100% compatible with the Arduino IDE. Because the Arduino programming language is

C/C++ based, it allows for sharing within the open source community, expanding resources

available to the programmer. Several open source libraries were used to program the

temperature control, including one for motor control, thermocouple readout, and PID

control. The implementation of these libraries will be discussed later on in the chapter.

Another advantage of using the Uno is that the board has USB overcurrent protection and

a voltage regulator. USB overcurrent protection provides an extra level of safety in the

form of a reusable polyfuse. This fuse protects the user’s computer USB ports from shorts

and current greater than 500 mA. The Uno board also incorporates a voltage transformer

that can step power up or down from the input jack to an operating voltage of 5V. The

recommended power input ranges from 7-12V, although the Uno can handle 6-20V.

Operating at power levels less than the recommended range can result in the 5V pin

outputting below 5V, while operating above recommendations can overheat the voltage

regulator, damaging the board [33].

A Sainsmart L239D Motor Drive Shield was purchased to operate the stepper motors. It is

capable of running two stepper motors, two servo motors, or up to 4 bi-directional DC

motors at once. The motor shield incorporates a L293D 4-channel driver, or H-bridge, to

control motor direction. The H-bridge is an electric circuit that allows a voltage to be

applied across a load. It contains 4 switches which are activated 2 at a time to apply a

positive or negative voltage to the motor which causes the motor shaft to rotate clockwise

or counterclockwise [34]. Connection to the Uno occurs by stacking the motor shield on

43

top of the Uno as shown in Figure 3.10, snapping it into place. Activation and speed control

of the motors are linked to the Uno’s digital pins. Pins 11 and 3 correspond to the first

stepper motor and pins 5 and 6 connect to the second stepper motor. Digital pins 4, 7, 8,

and 12 drive the stepper motors via the 74HV595 serial-to-parallel latch, while pin 9 is for

servo control of the first motor and pin 10 provides servo control of the second motor [35].

Connection to the motor shield ties up nearly all of the Uno’s pins. This could be alleviated

by communicating over serial, requiring the implementation of a different motor shield as

will be discussed in CHAPTER 6:.

Table 3.2: Arduino Uno Rev2 Specifications, from [32]

Characteristic Value Units Notes

Microcontroller ATmega328

Operating Voltage 5 V

Input Voltage 6 - 20 V 7 - 12 recommended

Digital I/O Pins 14 6 of which can be used for PWM output

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB 0.5 KB used by bootloader

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

For accurate temperature readings, thermocouples require a good amplifier with a cold-

compensation reference such as is provided by the Adafruit Thermocouple Amplifier

MAX31855K breakout boards. The MAX31855K Breakout Board was selected for use

because it provides both of these functions, and is specifically designed to read the voltage

44

across K-type thermocouple leads. Voltage is measured across the thermocouple leads,

amplified, and converted to digital form to be sent via serial communication to the PLC.

However, if the thermocouples are surrounded by a noisy environment, a 0.01μF may

need to be added across the thermocouple leads to reduce the noise. Space on the motor

shield is limited, and the MAX31855K board is connected to the Uno via jumper cables and

a breadboard. Extra circuitry was added to the breadboard to account for the fact that the

MAX31855 boards are not compatible with grounded thermocouples. Further discussion

on this topic is included in later in the chapter as it directly affects software programming

methods [36].

3.2 SOFTWARE SYSTEM DESIGN

The Temperature Control System (TCS) is comprised of two subsystems, the PLC and the

Human Machine Interface (HMI). The PLC is responsible for reading temperatures and

setting motor positions through the use of two separate PID control loops. The HMI is

comprised of a standalone computer running a custom GUI written in Python using the

PyQt graphical toolkit. Additional modules are also used to assist with communication and

data management. The HMI’s primary responsibility is to control the overall process of the

TCS, and provide the user with a real time graphical display of time, temperature, and

motor position data. After initial communication is established between the HMI and PLC,

the TCS is designed to carry out a sequence of events, culminating in the termination of

motor movement. Programming of the TCS code is discussed in the following sections, with

an overview of the software components listed in Table 3.3

45

Table 3.3: TCS Software Components

Refs. Cat. Name Description

TC
S_

P
LC

PID_Motor_Control PLC sketch

 AFMotor A class used to control the servo-motors

 EEPROM Library to manage reading and writing data to EEPROM

 Adafruit_MAX31855 Arduino Library designed to ease the use of the MAX31855
thermo-couple breakout boards

 PID_v1.h PID control library

TC
S_

H
M

I

GUI_PID.py Defines the GUI of the HMI.

 com_monitor.py Defines the ComMonitorThread() class, which resides in its own
thread and reads data from the serial port and posts it to
LiveDataFeed()

 live_data_feed.py Defines LiveDataFeed() class. Stores/returns the most recent data
from ComMonitorThread()

 PyQt4 Python bindings for Qt4 – a powerful cross platform GUI tool-kit

 eblib A package that provides access to the computers short and full
port names, and all the data in a queue.

P
yt

h
o

n
 2

.7

St
an

d
ar

d
 L

ib
ra

ry

__future__ Provides future Python 3 changes to Python 2

 sys Provides access to system parameters used by the Python
Interpreter

 Queue Python’s built in Queue which is thread safe. Used for storing data
from TCS_PLC

 collections Python’s High performance container datatypes. deque was used
for storing plotting data

 time Used to keep track of time.

 PyQt4 Cross platform graphical toolkit originally designed for C++

3.2.1 PLC OVERVIEW

In order to regulate test temperatures via motor position, an Arduino compatible

microcontroller was implemented as a PLC to manage the PID algorithm, motor control,

and temperature readings. The selected SainSmart Uno is 100% compatible with the

46

Arduino platform, and is programmed through the Arduino IDE [32]. The Arduino program,

or sketch, utilizes the availability of several open source libraries, as will be discussed. Code

for the sketch is broken into three sections: global declarations, the setup function, and the

loop function. The following is a discussion of this code, with excerpts from the sketch

appearing in bold. A copy of the sketch is included in Appendix C.

For ease of understanding, Figure 3.12 provides an overview of the PLC code layout. The

first section of the sketch is labeled global declarations. This section is technically not a

function, but rather provides support for the operation of later functions. Figure 3.12

illustrates the importation of libraries, assignment of pins, reading of motor positions to

the EEPROM, declaration of variables, assignment of constants, and creation of objects for

the global declaration section occurring in a sequential manner. In reality the sequence of

events does not affect the program; however, it is important that these actions occur

before any other functions are implemented. The setup function follows, and Figure 3.12

depicts the necessary steps to prepare the PLC for application of the PID control loop.

Unlike the global declaration section, the setup function does require sequential

organization as the order of events is important. Lastly the loop function is shown. As its

name implies, the contents of the loop are repeatedly cycled through. This section contains

logic for merging motor control, temperature reading, and PID control. The following 4

sections will walk through the PLC Arduino code step by step, which can be viewed in its

entirety in Appendix C.

47

Figure 3.12: PLC Software Overview

48

3.2.2 GLOBAL DECLARATIONS

The first part of an Arduino sketch declares global items. Items which are global can be

accessed by all other functions within the sketch, eliminating the need to pass variables

between functions. This section includes the importation of libraries, and declaration of

variables, constants, and objects.

Currently the sketch utilizes the AFMotor.h, EEPROM.h, Adafruit_MAX31855.h, and

PID_v1.h libraries which are initialized by the keyword #include. The EEPROM.h library

is a standard Arduino library whose purpose is to read and write data from the Electrically

Erasable Programmable Read-Only Memory (EEPROM). AFMotor.h and

Adafruit_MAX31855.h libraries were both obtained from the Adafruit website and

interface with the motors and thermocouples respectively. The AFMotor.h library allows

for simplified control of the L293D motor shield. Note that the library has been slightly

changed to support simultaneous movement of two motors. The Adafruit_MAX31855.h

library is used to read temperatures from the thermocouple breakout boards via the

readCelcius() function, while the PID_v1.h library defines a robust PID algorithm that

accepts a series of inputs and parameters, and calculates outputs for the control process.

Once the libraries have been initialized, pin assignments are created. The L293D motor

shield does not require pin assignments as its pins are physically constrained to mate with

those of the Uno board. However, the MAX31855 board does require pin assignments.

Digital output and clock assignments are shared over the same pins for both boards, while

chip select and Vin pins are assigned separately.

49

After pins are assigned, temporary motor position variables are initialized, and stored

values from the EEPROM are read to them. The EEPROM maintains its memory even when

the board is turned off, providing an ideal form of storage for motor position data. A flag

which indicates if the motors were moving during shutdown is also stored to the EEPROM.

Next variables are initialized and defined. As previously mentioned, the variables in this

section of code are global, and do not have to be passed into functions throughout the

entirety of the program. The values of these variables can be changed as long as they

maintain the type to which they are cast. Those variables cast as constants take up less

program memory, but their values cannot be changed.

Objects are then created based on the imported libraries and include AF_Stepper,

Adafruit_MAX31855, and PID. The AF_stepper(steps, num) motor object is

initialized with the value of 200steps/rev and the specific motor’s position on the motor

driver shield. The Adafruit_MAX31855(SCLK, CS, MISO) object is created with

the previously assigned clock, chip select, and digital output pins as attributes with respect

to the corresponding thermocouple. The PID(*Input, *Output, *Setpoint,

Kp, Ki, Kd, ControllerDirection) object is initialized with three pointers and

four parameters. The *Input pointer, temps, stores the most current temperatures. The

*Output pointer, bottomOutput and topOutput is where the PID object stores the next

calculated motor positions. The *Setpoint pointer, desiredTemp, stores the target

temperature that the PID is trying to maintain. Kp, Ki, and Kd are the initial tuning

50

parameters, and ConrollerDirection is set as DIRECT, indicating that an increased

input will lead to an increased output.

3.2.3 VOID SETUP

The function void setup()is a function that is ran at the beginning of the sketch and

will only run once per power cycle of the Uno. Because the function is only ran once, it is a

convenient location to place commands which only need to be ran at startup, such as

setting the values of variables, pin modes, and setting object parameters. Inside the

function, communication is established with the HMI, and the data rate is set to 9600 bits

per second. pinMode for the MAX31855 boards sets the power pins to OUTPUT so that

they may be independently powered on or off. This becomes necessary later in the

program when ground looping must be accounted for. The function also checks the

EEPROM for indications of an unclean shutdown of the Uno.

Next, moveMotors(0) is issued and the motors are moved to a starting position of zero

steps if they are not already there. Note that the input 0 to the function does not signal a

move to zero steps, but is an operational mode. The moveMotors() function begins by

checking to see if the motors are currently at the predetermined desired location. If they

are not, it calculates the number of steps the motor needs to move, and constrains it

within a starting position of 0 and an end position of 1200 steps. This prevents the motors

from attempting to exceed the system’s mechanical limits. The function then checks to see

if motor speeds have been changed, and recalculates the speed at which the PLC needs to

control the motors. The motor direction is determined, and finally the motors are signaled

51

to move. This part of the moveMotor() function code was implemented from the

AFMotor.h library and revised to control the simultaneous movement of two motors.

Before the function ends, the new motor positions are saved by

saveMotorPosition(), a function that will be discussed later, and the motors are

“released” or powered off so as to prevent overheating.

After the moveMotors() function is issued, receiveParameters() is called and

waits to receive parameters specific to the temperature set-point, maximum motor

positions, and P, I, and D parameters as entered by the user from the HMI. The

receiveParameters function waits in a while loop until serial from the HMI is detected. The

while loop calls the printStatus() function to continually update the HMI with current

motor and temperature data. Upon exit from the while loop, values of the parameters are

read.

After successful reading of the input parameters, both PID loops are configured using

functions from the PID_v1.h library. SetTunings(Kp, Ki, Kd) updates the P,I, and D

gain values, while SetMode(Mode) defines the PID algorithm mode. The mode can

either be AUTOMATIC or MANUAL. Automatic mode describes a closed feedback loop

where the feedback is used to adjust the outputs, while manual mode is open looped

without feedback and the user manually adjusts the outputs. SetOutputLimits(Min,

Max) defines the range for the PID output in terms of motor position limits, and

SetSampleTime(NewSampleTime) sets the PID computation time in milliseconds.

52

The setSpeed(rpm) function from the AFmotor.h library allows us to set the motor

speed in RPM. However, the function has been modified to return the required delay, in

microseconds, between motor step movements. This value is saved as usperstep and is

of significance because it is required by the custom function moveMotors(), as

discussed above.

Lastly, lightFires() is called to start the heating process. This function begins by

sending a message to the HMI indicating testing is ready to start. The function then

remains in a while loop, continuing to update the HMI with printStatus(), until it

receives the start trigger “s” from the HMI. At this point the moveMotors() function is

called, and the motors are moved to their ignition locations at 600 steps. Starting

temperatures are also noted, and after the bottom temperature rises 3 degrees the PLC

sends the command “CMD: Started” to notify the HMI that ignition has occurred. This

concludes the void setup() function and the sketch moves on to the void loop().

3.2.4 VOID LOOP

After the void setup() function, the sketch continuously runs the void loop()

function until the PLC is power cycled. The loop begins by calling the printStatus()

function to report the motor positions and temperatures to the HMI. Next the

bottomPID.Compute() and topPID.Compute(), as defined by the PID_v1.h

library, are called. When these functions are called, they reference the recently read

temperature values and evaluate the PID algorithm to compute new motor positions. Next

53

moveMotors(0) moves the motors from their current position to their newly computed

positions. Lastly parseSerial() is called to check if more data is available to read.

3.2.5 SUPPORTING FUNCTIONS

saveMotorPositions(bottomDesired, topDesired) records the bottom and

top motor positions to the EEPROM. Because the motors are allowed to move to a

maximum position of 1200 steps, and the EEPROM is comprised of 8 bit bytes, two bytes of

EEPROM must be used to save each motor position. The task of saving the integer value to

two bytes is presented as follows. The first byte stores the number of times the motor

position is completely divisible by 256, or the maximum value of one byte. The second byte

stores the remainder. After each value is computed, they are saved to the EEPROM. The

motor position may then be determined by multiplying the first byte by 256, and adding it

to the second byte. In the moveMotors() function, a flag is set to indicate that the

motors have started to move. This flag is then set to low in saveMotorPositions()

after the values have been successfully saved. This provides the ability to determine if a

power loss/cycle occurs while the motors are moving. If a power loss/cycle occurs during

motor movement the position of the motors could be recorded incorrectly, whereas if it

occurs while the motors are stationary, their positions are known, and the PLC may safely

return the motors back to a position of zero.

printStatus() is called to communicate the motor positions and temperatures over

serial. Motor positions should already be stored to a variable and are directly referenced by

the printStatus() function. Temperatures, on the other hand, are determined by

54

calling readTemps(&temps[0]), which saves both temperatures to an array. The

readTemps() function is responsible for reading both temperatures through the

breakout board. Because of limitations of the breakout boards, ground looping issues

occur. These issues are accounted for by quickly powering on and off the MAX31855

boards, resulting in a minimum cycle time of approximately 300 ms.

3.2.6 HMI OVERVIEW

The HMI is a GUI designed to display a central real-time plot displaying motor positions and

temperatures with respect to time. Above the plot, information pertinent to the test is

displayed and periodically updated throughout the test as needed. These fields include

temperatures, motor positions, and heating rates for the top and bottom heaters; com

port information; and the total test time with a 3 second countdown timer for when both

temperatures are within set-point boundaries. Figure 3.13 provides an illustration of what

the GUI looks like. The HMI is programmed in Python, and is comprised of a PyQt GUI file, a

thread safe serial com monitor, and several other utilities. It is derived from a Python PyQt

real-time graphing demonstration program named plotting_data_monitor [37]

accessible at GitHub [38]. The following sections will follow the Python code as found in

Appendix B and discuss the independent HMI components, and how they interact as a

whole.

55

Figure 3.13: GUI_PID Display Screen

3.2.7 QT(PYQT4)

Qt is an open-source framework specific to developing graphical user interfaces (GUI), that

can be implemented across many platforms [39]. This framework was selected for use

because it provides high level graphing capabilities, a well-documented application

programming interface (API), an extensive online development community, and is actively

developed. Qt is currently on its fifth version; however the developed GUI was

implemented using Qt4 due to package dependencies for Qwt, a compilation of classes and

widgets for plotting. Qt is written in C++, but bindings have been developed for various

programming languages, including Python.

56

Python’s bindings for Qt4 are handled by a package known as PyQt4. PyQt4 is divided into

modules, with the modules QtGui and QtCore being used. The QtGui module contains most

GUI classes, while QtCore contains essential non-GUI related classes. Especially important

is its implementation of signals and slots for dealing with events [40].

Signals and slots are used to communicate between objects when an event occurs. A signal

is emitted when a certain event happens, while a slot is typically a Python callable which is

called when the signal connected to it is emitted. The version of PyQt4.5 as programmed

for use in this thesis, introduced a new style API which implements the key phrase

QtCore.SIGNAL('clicked()') to emit a signal. The concept of signals and slots was

instrumental in the creation of the HMI as it allowed for the user to interact and select

buttons to ease the control of certain aspects of the temperature control program [41].

3.2.8 EBLIB

The eblib is a package of utilities [42] used by the plotting_data_monitor [37]. The

serialutils and utils modules from eblib define four functions, full_port_name(),

enumerate_serial_ports(), and two communication thread-safe functions

get_all_from_queue(), get_item_from_queue(). The full_port_name()

function gets the full serial port name based off the provided short name.

enumerate_serial_ports() uses the windows registry to return a list of serial com

ports (shorthand names). The get_all_from_queue()function gets all the items from

any queue without hanging up the application when there are no items in the queue. It is

used in conjunction with the data_from_arduino queue, which is shared with the

57

com_monitor object and runs in its own thread. The get_item_from_queue()

function attempts to get single items from the queue, however, if 0.01 sec passes without

the function finding anything, it returns none indicating an empty queue. It is also used to

check for errors from the error_queue which is also shared with com_monitor. In

summary the eblib utilities are important because they allow for the acquisition of the

short and full serial port names, as well as provide functions that can access one or all

items from a queue [43].

3.2.9 COM_MONITOR

The com_monitor module is included to provide communication over the serial port

using PySerial, by implementing a run function to continuously read and write to the serial

port in a thread safe manner [38]. PySerial is an imported module for the purpose of

accessing the computer’s serial port. It automatically selects the appropriate backend for

Python, depending on which operating system is in use. PySerial is known for its cross-

platform ease of use, as its syntax remains the same despite being used with different

operating systems [44]. The com_monitor module [37] was originally designed to only

receive information; however, two-way communication was desired between the HMI and

PLC. A small modification was made to the code, resulting in the successful sending and

receiving of messages.

3.2.10 LIVE_DATA_FEED

The live_data_feed module contains LiveDataFeed(), a class that houses new

data and allows the user to post or read data from it. It also keeps track of whether the

58

new data has been previously read [38]. With respect to GUI_PID, live_data_feed

provides a location for the GUI to store data and allows the function

update_info_and_plot() to quickly decide if new data exists and whether the real-

time plot needs to be updated.

3.2.11 GUI_PID

The GUI_PID is the script file that creates a GUI for the HMI. It consists of a central widget

and status bar. Functionality is brought to the widget by adding labels, fields, and displays

which are organized by boxes. Placing the boxes in the widget arranges the overall look of

the GUI, and allows for customization. The GUI also communicates with the PLC to

populate specific fields or displays. To achieve these results, GUI_PID defines five classes

as discussed below.

The CoupledBox(QtGui.QWidget) class combines a label and a type of field to

create an information display. The field may be defined as a QLabel, QLineEdit, or

QComboBox. QLabel displays text; QLineEdit displays a single line text editor, which

is commonly used as an input box; and QComboBox displays a dropdown list. These fields

are used to accommodate user inputs and show relevant test information. This class was

created to simplify the main GUI display and standardize formatting.

The RealTimePlot(QWidget) class produces a real-time plot of selected data vs.

time. Its main purpose is to set the graph backgrounds, axis properties scales, and legends.

Motor positions and bottom and top temperatures vs. time are plotted by the

RealTimePlot(QWidget). The RealTimeCurve(Qwt.QwtPlotCurve) class

59

defines curves based on the available data as well as determines such parameters as solid

lines for the curve’s display, colors of the curves, and setting y-axes on both the left and

right sides of the graph.

The MyLCDCounter(QLCDNumber) class creates a countdown timer with LCD-like

digits. The timer counts down from three seconds when the top and bottom temperatures

are within bounds of the temperature set-point. If the temperatures slip below or rise

above the bounding temperatures the countdown timer will wait until the limits are again

met to start over. The timer is based off the QtCore.QTimer class and automatically

updates the LCD numbers.

The PlottingDataMonitor(QtGui.QMainWindow) class is the main class of

GUI_PID and is responsible for creating and managing graphical entities of the GUI. This

class uses the data types dequeues and lists to store data, initializes com_monitor and

live_data_feed, and finally creates and manages GUI specific components. The

PlottingDataMonitor(QtGui.QMainWindow) class is comprised of four sub

functions: create_status_bar(), create_top_info(), create_mid_plot(),

and create_bottom_inputs(). create_status_bar()creates the status bar for

displaying text messages from the PLC. create_top_info() creates and populates a

box at the top of the GUI widget to display information about the top motors and

temperatures, bottom motors and temperatures, communication of the program, and test

information such as total time and status. The create_mid_plot() function creates a

real-time plot displaying motor positions and temperatures vs. time. It also includes a

60

button for turning a curve displaying the delta between the set-point and top temperature

on and off. The create_bottom_inputs() function creates and populates two boxes

at the bottom of the GUI for user interactions. The topmost box has entry fields for

specimen name, set-point temperature, top and bottom maximum motor positions, PID

parameters, and a button for updating the settings. The bottom box contains three

buttons: start, stop, and connect. Various buttons are toggled on or off depending on the

sequence of the test process.

3.2.12 IMPLEMENTATION

The modules described above all contribute to the functionality of the GUI_PID script.

They can be found throughout the various classes defined in GUI_PID, and provide critical

functionality. As mentioned, PlottingDataMonitor(QtGui.QMainWindow) is the

main class for GUI_PID, and it utilizes all the other classes in the script, except for

RealTimeCurve(Qwt.QwtPlotCurve) class which is called by the class

RealTimePlot(QWidget). PlottingDataMonitor(QtGui.QMainWindow) is

the name of the script which calls the main() function. This is the main function of the

script and is triggers the creation of the GUI.

3.3 DEVELOPMENT COSTS

A driving force behind the design of the testing apparatus was overall cost. As described in

Chapter two, systems capable of maintaining ASTM standards and achieving acceptable

heating rates already exist. However, these systems are extremely expensive. Gleeble

61

Systems can cost up to $900,000.00 [20] and used induction heaters can cost around

$6,000.00 [23].

In comparison the developed testing apparatus’ temperature control hardware totaled

around $200, with raw material costs estimated to be approximately $100.00. It is

important to note that the developed system is intended as an add-on to existing test

frames such as the MTS servo-hydraulic frame used for the research displayed in this

thesis. Also, the prices displayed do not account for the cost of manual labor associated

with manufacturing, such as for the machining of grip parts, or time associated with tuning

the PID control settings. Table 3.4 provides a detailed list of system expenditures which

total approximately $300.

Table 3.4: List of Expenditures

Component Vendor Cost ($)

MAX31855 Thermocouple Breakout
Board (x2)

Adafruit Industries
29.90

Breadboard + Jumper Cables Amazon 9.69

SainSmart Uno Amazon 17.69

SainSmart L293D Motor Shield Amazon 11.18

Canakit Stepper Motor (x2) Amazon 37.90

Type K Thermocouples (5 pack) Omega 35.00

Bernzomatic TS3000KC (x2) Home Depot 49.94

Raw Materials U of I Machine Shop 100.00

Total: 291.30

62

CHAPTER 4: TESTING PROCEDURE INSTRUCTIONS

The following sections detail and lay out the steps necessary to perform testing using the

elevated temperature testing apparatus. It is important to note that the following series of

instructions assumes that the testing platform has been set up according to the methods

laid out in this thesis. This includes specimen and grip geometry, thermocouple locations,

nozzle locations, and upper and lower motor limits for the temperature control system. It

also assumes that the torch supports, and automated motor control assemblies have been

attached to the test frame.

4.1 TEMPERATURE CONTROL SETTINGS

Before an actual test can be run, the PID settings and maximum motor positions must be

defined and entered into the GUI. One of the downfalls to using a PID control algorithm can

be the tuning of input parameters. For the set-up described in this thesis it is necessary to

tune the PID settings before testing begins. This means one has to set up a secondary,

expendable test specimen with thermocouples attached and connected. Validation of the

PID settings should be performed on a load train set-up as similar to the real testing

environment as possible; this includes starting each tuning test with a room temperature

specimen and grips.

When first tuning a PID control loop, it is advised to approach the situation in a logical

manner. Most literature recommends beginning by tuning the proportional value (setting

I=0, and D=0) to the best of ones abilities. Start by setting P to a low value such as 1, and

take note of the system’s response to each tuning test performed. At a low P value the

63

system should struggle to reach the temperature set point. Next increase the P setting to a

value that causes the system to oscillate around the set point. This will be an indicator that

the P value is too great, creating an unstable system. Now decrease the P value until the

system starts to steady out. At this point an offset like that described in CHAPTER 2: may

occur. In order to compensate for this offset an integral value may be introduced. Repeat

the same series of steps for the integral value as were followed for the P value, taking note

of how the system responds to each set of inputs. CHAPTER 2: also mentions that the PI

controller is one of the most common types of controllers used in industry. Depending on

the system, this may be all the control necessary to meet one’s requirements. If not, the

derivative value can be introduced. The D value will help to accelerate the rate at which the

system approaches the set point. However, the D value should only be altered by small

amounts, such as on the order of tenths of a point. Just as the D value can cause the

system to quickly reach equilibrium, if entered incorrectly, it can also cause the system to

become very unstable. Tuning the PID values may require keeping a log of system

responses to various P, I, and D values. By acquiring this knowledge, an adequate set of

values can be found that satisfy the system temperature testing requirements. It is also

important to keep in mind that PID settings and the stability of the system may be affected

by empty propane cylinders, incorrectly assembled load trains, unsymmetrical

thermocouple placement, and altered maximum motor positions.

4.2 SPECIMEN PREPARATION

Before testing can begin the specimen geometry must be measured to record the

minimum gauge section diameter and length of the gauge section. The minimum diameter

64

is necessary for calculating the cross-sectional area of the specimen for generating stress

strain plots, while gauge length is used in percent elongation calculations. Percent

Elongation can be measured off of the shoulders of the specimen, but more accurate

measurements are preferred. This is accomplished by scribing two small lines at a set

distance apart in the reduced section of the specimen. The original distance between

marks is the initial gauge section length and should be recorded for later use in percent

elongation calculations. These marks should be deep enough that they can still be seen

after testing, but small enough to not create inclusions or imperfections where cracks may

start. The validation testing performed in CHAPTER 5: used original gauge section lengths

of approximately 25.00 mm and were created using calipers and a razor blade.

Measurement of the elongation gauge section needs to be accurate, and should be

measured using an appropriate device.

4.3 THERMOCOUPLE ATTACHMENT

It is important to determine thermocouple position and attachment technique before

testing begins because both attributes can greatly affect PID values, as well as nozzle

position and flame intensity. As stated in Section 3.1.3 , thermocouples are attached 27

mm from each end of the specimen, using clips made from stainless steel strip. The clip and

thermocouple attachment location can be seen in Figure 3.5.

When attaching the thermocouples it is important to not place the thermocouple weld

bead near the gauge marks. This is because the thermocouples could scratch or disfigure

the gauge marks, causing an inaccurate or unreadable final gauge length measurement. It

65

is also important to locate the torch nozzles and displacement measurement device on

separate sides of the specimen as well. Figure 4.1 depicts a recommended orientation for

these components around the specimen. In it the round cross section of the specimen is

reduced to quadrants, each of which is reserved for one of the previously mentioned

functions. In Figure 4.1 it can be seen that the torch nozzles and thermocouples occupy

opposite quadrants as a supplementary means of preventing the thermocouples from

picking up inaccurate temperature readings. The elongation gauge marks are also located

perpendicular from the torch nozzles and thermocouples, and opposite the displacement

measurement device. This is particularly important if an extensometer is used because the

knife edge attachment points could leave marks on the specimen which would disfigure the

gauge section marks.

Figure 4.1: Specimen Quadrant Diagram

66

4.4 LOAD TRAIN SET-UP

Once the specimen measurements have been taken and thermocouples attached, it is time

to place the specimen in the load train. As mentioned in Chapter 3, the research in this

thesis developed two different types of grip connections, however if the seated connection

grips are employed the process becomes much simpler and can be accomplished more

quickly. When using the seated connection grips, lower the test frame actuator so that

there is enough room to hang the full length of the load train without any interference.

Next assemble both the top and bottom halves of the load train. Attach the top half of the

load train first, using a 0.375” x 2” dowel pin to connect the load train to the test frame.

Ensure that the seated connection grip is facing the torch nozzle and insert the specimen’s

top button head into the grip’s opening. Pull down so that the specimen seats securely in

the grip. This may be difficult to maintain until the bottom grip is attached due to the

thermocouple wires pulling on the specimen. Next attach the bottom half of the load train

in the same manner that the top was attached, confirming that the bottom grip opening

also faces the torch nozzle as seen in Figure 4.2. The load train should be fairly balanced

now, but if it is not check to make sure that the specimen is seated securely in both grips.

Bring the actuator up so that the bottommost connection of the load train can slide into

the slot on the actuator grip, but do not insert the pin. It was found that the extra step of

raising the actuator helps provide more stability when connecting thermocouple leads.

Alternatively, the pin connection grips may be used. In contrast with the seated connection

grips, it was found that assembling the entire load train before attaching it to the test

frame was easiest, as seen in Figure 4.3. Assemble both the top and bottom halves of the

67

load train separately from the test specimen. Then check that the 0.1875” x 2” dowel pins

slide easily through the holes at each end of the specimen. If they do not, run a 0.1885”

reamer through the hole by hand until the pin slides nicely through. Next pin the specimen

to the top and bottom grips, making sure to match the top to the top and bottom to the

bottom. For repeatability mark the sides of the grips that are to face the torch nozzles, and

ensure that the opposite side of the specimen is where the thermocouples are connected.

At this point a slight gap between specimen edges and grip sides may be noticeable. If this

is the case, it may be necessary to add shims. The shims seen in Figure 4.3 were made from

a variety of shim stock thicknesses, cut in the shape of a tab, and punched with either a

0.375” or 0.25” hole. Add the shims to either side of the specimen, as symmetrically as

possible to take up slack between the specimen and grip sides at both the top and bottom

connection points. The load train is now ready to be attached to the test frame. Again

ensure that the appropriate grip and specimen side are facing the torch nozzles, and lower

then raise the actuator to add stability when attaching the thermocouples.

Once the load train is in place, verify that the specimen is oriented correctly and matches

the diagram shown in Figure 4.1. The thermocouples should be located opposite the

propane torch nozzles while the elongation gauge marks should be located midway

between the two. When this has been accomplished connect the thermocouples to the

MAX31855 break out boards. When the electronic components of the control system were

set up, it should have been noted which MAX31855 board corresponded to which

temperature read out. Thus, depending on how the Arduino code is written, one

68

Figure 4.2: Seated Grip Specimen Alignment

Figure 4.3: Pinned Grip Specimen Alignment

69

board should be designated for connection to the thermocouple located at the top of the

specimen, and one should be designated for connection to the thermocouple at the

bottom of the specimen. The boards used for testing in this thesis were labeled “T” or “B”

for top and bottom so as to reduce the possibility of error when connecting

thermocouples. Tags with similar labels were also taped to the thermocouple wires near

their leads to further simplify the process. A proper connection between the board and

thermocouple can be seen in Figure 4.4. If it should occur that thermocouple positions get

swapped and that the top is connected to the bottom readout while the bottom is

connected to the top readout, the GUI will most likely display feedback where the

temperature for one thermocouple remains constant while its corresponding motor

position increases towards its maximum value. Alternatively, the other thermocouple

readout will display a temperature that is constantly increasing while its corresponding

motor position remains at the minimum value. Thus it is imperative to correctly connect

the thermocouples to the corresponding boards. When connecting the thermocouples it is

also critical to correctly match leads to the appropriate connection. As seen in Figure 4.4

the board is already labeled with a + or - and the corresponding thermocouple lead is

colored, yellow (+) and red (-). When the thermocouple leads are reversed the GUI will

respond by displaying the temperature of the corresponding thermocouple decreasing into

negative values, rather than increasing.

70

Figure 4.4: Thermocouple Reader Attachment

It is the author’s opinion that attaching the shields after putting the load train in place and

connecting the thermocouple leads is easiest, however, the order of operations is

insignificant to testing, as long as care is taken and no parts are damaged. That being said,

as previously mentioned, the seated connection grips are easier to work with and this

continues to be true when attaching the shields. The shields used in conjunction with the

seated connection grips are described in Section 3.1.3 and can be seen in Figure 3.6(a) and

(b). Note that a “tongue” formed out of 0.006” shim stock was used to deflect the torch

flame from shooting down the top grip opening, directly onto the specimen gauge section.

For the pinned connection grips a different type of attachment provides for the same level

of protection, and allows for symmetry between the top and bottom shield geometry.

71

These shields are designed to be supported by the pin connecting the specimen to the load

train, and they come in two parts which effectively surround the top quarter of the grip. A

flat bottom plate on the shield has a central hole, big enough to allow the specimen to fit

through with room to self-align, but small enough to block any heat from the torch flame

that may impact thermocouple readings. The two halves are held together in the front and

back by straps fashioned out of shim stock or by a screw and nut. Curved sections

perpendicular to the flat plate provide some alignment, and match the grip geometry, as

shown in Figure 3.6(c).

It was also found that heating rates and profiles are not affected despite the difference in

shield geometry and attachment techniques. This is attributed to changes in heat sinks due

to the varied grip geometries. If an extensometer or other displacement measuring device

is used it is advisable to attach it to the specimen after attaching the grips. As previously

mentioned, the extensometer should be positioned on the side opposite the specimen

gauge marks, and can be attached with stainless steel springs. The springs shown in Figure

4.5 are 0.125” in OD, 0.45” long, and formed of 0.017” 302SS wire. When the knife edges

have been securely fastened, zero the COD reading and remove the extensometer pin. The

load train should now be ready for the testing process to begin.

72

Figure 4.5: Extensometer Attachment

4.5 TESTSTAR TESTING PROGRAM

After the load train and thermocouples have been set up, testing parameters should be

entered into the temperature and testing control programs. Depending on the type of

testing platform in use, the control software will vary; however, the system available for

use during the development of this thesis will be used as an example. Section 3.1.2

provides an overview of the MTS test frame, control system, and sensors. For the TWSX

software in use, procedures developed for tensile testing typically operate at a constant

strain rate, which was determined based on the following equations:

∈̇ =

∆𝐿
𝑠𝑒𝑐⁄

𝐿0

=
1.75 𝑚𝑚

𝑠𝑒𝑐⁄

35 𝑚𝑚
= 0.05/𝑠𝑒𝑐 (4.1)

∈̇ =

∆𝐿
𝑠𝑒𝑐⁄

𝐿0

=
17.5 𝑚𝑚

𝑠𝑒𝑐⁄

35 𝑚𝑚
= 0.5/𝑠𝑒𝑐 (4.2)

73

Where based off a 35 mm gauge section, 1.75 mm/sec and 17.5 mm/sec are the required

LVDT rates to achieve the desired strain rates of 0.05/sec and 0.5/sec respectively. In the

Testware SX procedure it is important to make sure that the correct LVDT rate value and

units are entered before beginning a test, as well as the correct data acquisition rates.

Again, depending on the limits of the testing device, this value may need to be altered. It

was determined that collecting data every 0.01 mm of actuator movement was sufficient

to provide accurate data, and was within the limits of the TestStar controls. The MTS

testing frame has data collection limits set at a maximum of 5 KHz, as found in the user’s

manual. Data collection may also be defined in terms of extensometer movement, for

which the limits vary depending on the strain rate at which tests are performed. When

considering the mechanical limits of the system, it may also be useful to initialize bounds

based on LVDT or COD readings. These limits may be implemented from inside the

Testware SX program, or externally by placing interlocks on the TestStar platform.

4.6 TEST START

Once the load train has been set-up and correct settings entered into the control programs,

testing can begin. Briefly double check the entire system to make sure everything is correct

before raising the actuator to a level where a pin can easily slide through the actuator grip

and bottom load connection point. Do not actually pin the connection, but leave the test

frame hydraulics running. The load train should not be connected at the bottom because

the specimen could elongate during heating. If elongation were to occur while the load

train was pinned at both ends then the specimen could become unseated or placed under

a compressive load, neither of which creates a desirable test starting condition. If an

74

extensometer is in use, zero the COD and remove the extensometer’s pin. Next verify that

the TWSX program is in “Execute” mode and click the Connect button on the GUI. Wait for

the temperature and motor positions to start plotting on the GUI graph, and the message

“Serial Connected, Enter Settings” to be displayed in the message bar in the bottom left

corner of the screen. Enter the temperature settings, completing the Specimen Name, Set

Temp, Top Maximum Motor Position, Bottom Maximum Motor Position, PID p, PID i, and

PID d fields. When these have been filled out select the Update Settings button, at which

point the message, “Press Start to Begin Test” should appear and the Start button should

become activated. When it is time to begin the heating portion of the test, click the Start

button to move the motors and propane torch valves to the ignition position. When this

occurs, the hiss of propane being released from the cylinders should be audible and “Ignite

Propane Torches” will be displayed in the message bar. Simultaneously pull the ignition

triggers on the propane torch handles to begin heating of the specimen. Once the torches

are lit and the bottom thermocouple has sensed a change in temperature greater than 3°C

the message bar will change to read “Fires Lit, Waiting for SS Target,” or in other words,

the PID control is waiting until temperatures are close enough to the set point, or steady

state, to make adjustments.

When the temperature reads approximately 50°C below the set point begin connecting the

load train and zeroing controls. This reference point was found through trial and error, and

may need to be adjusted depending on the user’s abilities. The first step in readying to

start the tensile test is to zero the load cell. This may be accomplished using the Actuator

Positioning Control (APC). Next adjust the actuator and slide in the pin so that the load

75

train is connected at both ends. Gloves may be necessary at this point to prevent burns.

Finally turn off the APC and wait for the temperature to reach the set point. Depending on

the desired heating rate and selected conditions, the GUI will notify the user when both

the top and bottom temperatures are within +/-3°C of the set-point temperature by

displaying “GO!” in a yellow box near the top of the GUI. If a hold period is desired, a timer

counting down from 3 seconds is displayed above the yellow box. This 3 second hold may

be adjusted by changing values in the GUI code. The 3 seconds is reset every time the

temperature falls or rises outside the acceptable +/-3°C limits. When the clock reaches 0.0

seconds, the yellow box changes to green and displays the message “SUCCESS.” At the

users discretion the tensile test may be started as soon as the yellow message appears, or

they may wait for the green message to be displayed. Tensile testing is started by pressing

the “Run” button on the APC or on the computer display screen. The actuator should

immediately move downwards at the specified rate, and will continue to do so until the

program limits or mechanical limits are reached. Alternatively, the test may be ended by

hitting the “Stop” button on the APC or computer screen. The propane torches may also be

turned off by hitting the “Stop” button on the GUI.

4.7 POST TEST DATA ANALYSIS

Once the specimen has been tested to failure stop the test, but DO NOT touch any part of

the load train. Depending on the set point temperature of the test this could result in

severe burns. Let the load train cool down before collecting the specimen pieces for

measurement—this should take anywhere from 5 to 15 minutes, depending on how cool

the specimen is desired to be. During this time it is advisable to review the data collected

76

from the test and verify that it follows acceptable trends. As described in Section 2.2, this

requires creating a stress strain plot from the load-displacement data generated during the

test. Depending on if displacement was measured using the LVDT or extensometer, the

corresponding plot will either be labeled “pseudo” stress strain, or “engineering” stress

strain respectively. Typically a decrease in material properties can be expected for a

corresponding increase in specimen temperature. This trend may also be expected for a

decrease in strain rate as well. When the specimen has cooled enough, detach the

thermocouple leads from the MAX31855 boards and remove the specimen pieces from the

load train. It is advised at this point to mark the ends of the two halves so that they match

one another and will not be lost or mixed up with other specimen. Re-assemble the

specimen by matching up the fracture surface so that the gauge marks are in line with one

another. Fastening the two halves together in an acceptable fashion, re-measure the

distance between gauge marks using the same approach as when the marks were created.

The percent elongation can now be found using (2.1). Typically percent elongation

increases with temperature and decreases relative to strain rate. This is opposite of the

trends seen for YS and UTS.

4.8 TEST PROCEDURE CHECKLIST

1. Attach specimen to corresponding grips

a. For a pinned connection, add shims around the specimen if necessary

b. Check thermocouple and gauge mark orientation relative to the grips

2. Pin the grips and specimen to the top of the test frame

a. Lower actuator out of the way, and check that the LVDT settings will allow

for enough travel during the current test

77

b. Check that the grips are oriented correctly with respect to the torch nozzles

3. Attach shields, and extensometer if necessary

a. Minimize any gaps in the shields

b. Check that the extensometer springs are tight enough to hold the knife

edges in place

4. Attach the thermocouple leads to the break out boards

a. Check that the leads are attached correctly (colors and +/- symbols match)

b. Check that the top and bottom thermocouples are attached to the correct

break out board

5. Review the TWSX program

a. Check LVDT rates and displacement limits

b. Verify that the COD or LVDT data collection rates are within limits

c. Check that the correct data file name has been entered

d. Zero the TWSX display meters

e. Check that the program is in “Execute” mode

f. Enable interlocks if desired

6. Set up the temperature program

a. Check the physical motor start position

b. Check that the GUI is connected to the desired COM port

c. Click on the “Connect” button to ensure that the GUI can connect to the

microcontroller

d. Enter the specimen name, temperature set-point, maximum motor

positions, and PID settings

e. Click on the “Update Settings” button and verify that the plot is updating

7. Raise the actuator up to level with the bottom pin connection

a. Check that the LVDT is in the appropriate mode

b. Zero the LVDT position if desired

c. If an extensometer is being used, zero the COD reading and remove the

extensometer pin

78

8. Double check that all aspects of the system are ready for test start

9. Click the “Start” button on the GUI

a. Pull the torch triggers to ignite flames

b. Monitor the testing temperatures via the GUI display

10. Approximately 50°C before the set-point temperature, ready the system for tensile

test start

a. Zero the load cell

b. Adjust the actuator and pin it to the bottom of the load train

c. Turn off the APC

11. Hit the “Run” button on either the APC or TestStar program to begin the tensile test

79

CHAPTER 5: TESTING RESULTS

Elevated temperature tensile testing was performed to evaluate stress strain curve

reproducibility, material property trends, heating conditions, and to verify effectiveness of

the developed propane torch and temperature control system. A series of six different

tensile tests were performed at three different temperatures and two different strain

rates, with duplicate tests performed for each set of criteria totaling twelve tests.

Specimens made of a 70XX series aluminum alloy were tested at 25°C, 225°C, and 425°C at

strain rates of 0.05/sec and 0.5/sec. Evaluated material properties include YS, UTS, and

percent elongation. Heat up rates, and temperatures at tensile test start were also

recorded. Modulus of elasticity values were not evaluated as testing was performed using

the LVDT. Further discussion of these properties and trends is included in the following

sections.

5.1 TESTING HEAT RATE PROFILES

Temperature heating profiles in relation to motor positions for both the top and bottom

positons can be seen in Figure 5.1 through Figure 5.8. These plots are generated when

temperature data is sent from the Arduino to the GUI and are displayed for the user;

however, the Arduino is only capable of doing so when the motors are stationary. Thus the

plots are not 100% real time, but provide a very good representation of what is happening

with the system. To remedy this, a secondary Arduino would need to be implemented.

Improvements to this aspect of the system are further discussed in CHAPTER 6:. In Figure

5.1 through Figure 5.8 the horizontal light blue dashed lines indicate the set point

temperature, while the vertical green dashed lines indicate the tensile test start time. From

80

the plots it can be seen that all tests, except A5, were conducted when the temperature

had reached a steady state at the target temperature. Figure 5.5 provides data for the

testing of specimen A5. This test was conducted at temperatures above the set point due

to an incorrectly entered Integral value in the PID settings. The effects of this error will be

discussed later in the chapter. From the lower motor position plots it can be seen how the

PID algorithm reacted to temperature changes via motor position. When the temperature

is significantly far from its target temperature the motors are at their maximum positions.

However, the closer to the set point that the temperature gets, the more the PID becomes

active. This is evident in the lower positioned peaks on the motor position plots, as the PID

tries to prevent and counteract any significant changes in temperature.

Figure 5.1: A3 TCS Data

81

Figure 5.2: A4 TCS Data

Figure 5.3: B3 TCS Data

82

Figure 5.4: B4 TCS Data

Figure 5.5: A5 TCS Data

83

Figure 5.6: A7 TCS Data

Figure 5.7: B5 TCS Data

84

Figure 5.8: B6 TCS Data

Table 5.1 provides an overview of minimum and maximum motor positions, PID values, and

average heat up rates for the 225°C and 425°C tests. Minimum motor positions remained

the same for testing at both temperatures, while the maximum motor positions were

shifted up 100 steps on both the top and bottom motors for the 425°C tests. This was done

to initiate faster heating rates, due to the fact that heat up rates start to slow as the overall

system capacity becomes hotter. As discussed in CHAPTER 2:, increasing P values results in

faster system response times as well, however caution must be taken as this can also result

in an unstable system. Thus the P value was increased from 15.00 to 18.00 for the 425°C

tests. These changes produced an average heat up rate of 6.0°C/sec for the four tests

performed at 225°C, while the four 425°C tests averaged a heat up rate of 5.6°C/sec.

85

Table 5.1: PID Testing Parameters

Temp.

 (°C)

Min motor position

Top (steps) Bottom (steps)

Max motor position

Top (steps) Bottom (steps)

P

I

D

Average
Heat Rate

(°C/sec)

225 203 204 550 500 15.00 2.00 0.06 6.0

425 203 204 650 600 18.00 2.00 0.06 5.6

Figure 5.9 displays a standard deviation error bar plot for heating rates during the 225°C

and 425°C tests. It can be seen that the 225°C tests exhibited a much tighter, repetitive

range of heating rates than the 425°C tests. 225°C heat up rates ranged from 5.9-

6.1°C/sec, while 425°C heat up rates ranged from 5.2-6.1°C/sec. Overlap of the two error

bars indicate that mean heating rates for both temperatures have a likely propensity to fall

within the range of 5.9-6.1°C/sec.

 Figure 5.9: Heat-Up Rate Error Bar Plot

86

5.2 TENSILE RESULTS; �̇� = 0.05/S

Stress strain curves for a strain rate of 0.05/sec at 25°C, 225°C, and 425°C are displayed in

Figure 5.10. The plot serves to illustrate the effects temperature has on material

properties. This is can be seen in the steepness of the elastic region, UTS magnitudes, and

strain values. Note that specimen A5 displays a greater strain than the other tests. This is

due to an incorrectly entered integral value and resulting temperature overshoot as

mentioned in Section 5.1. Mechanical properties and other test specific information for the

0.05/sec tests are tabulated in Table 5.2. Looking at the table it is clear that an increase in

temperature causes a decrease in YS and UTS values, and an increase in percent

elongations. This is particularly evident when comparing UTS values. For 25°C tests the

average UTS is 157.2 MPa, 101.9 MPa at 225°C, and 39.4 MPa at 425°C.

Figure 5.10: Stress Strain Curves for 0.05/sec Strain Rate

87

Table 5.2: 0.05 / sec Tensile Testing Results

Specimen

Test Temp.

(°C)

0.2% YS

(MPa)
UTS

(MPa)

% Elongation

Heating rate

(°C/sec)

Temp. at Tensile Test Start

Top (°C) Bottom (°C)

A1 25 71.6 158.2 5.4

A2 25 76.6 156.2 5.6

A3 225 60.6 102.2 8.6 6.1 224.00 219.00

A4 225 58.2 101.5 8.4 5.9 225.00 221.25

A5 425 33.0 35.3 126.2 5.8 422.50 424.25

A7 425 40.2 42.4 131.9 6.1 423.50 424.25

5.3 TENSILE RESULTS; �̇� = 0.5/S

Stress strain curves for a strain rate of 0.5/sec for 25°C, 225°C, and 425°C are shown in

Figure 5.11. This plot also displays the effect of temperature on material properties. Table

5.3 displays the mechanical properties and other information relevant to the elevated

temperature portion of the tests. From both the stress strain curves and tabulated data it

can be seen that that an increase in temperature causes a decrease in YS and UTS values,

while increasing percent elongation. Again this is most visible when comparing UTS values.

25°C tests averaged a UTS value of 158.5 MPa, a UTS value of 109.0 MPa was averaged for

the 225°C tests, and an average UTS value of 63.8 MPa was calculated for the 425°C tests.

88

Figure 5.11: Stress Strain Curves for 0.5/sec Strain Rate

Table 5.3: 0.5 / sec Tensile Testing Results

Specimen

Test Temp.

(°C)

0.2% YS

(MPa)
UTS

(MPa)

% Elongation

Heating rate

(°C/sec)

Temp. at Tensile Test Start

Top (°C) Bottom (°C)

B1 25 75.3 157.1 5.4

B2 25 72.9 159.9 4.8

B3 225 60.2 109.3 5.2 6.0 224.00 225.25

B4 225 60.1 108.7 5.6 5.9 225.25 222.25

B5 425 56.8 62.1 49.7 5.2 421.75 428.00

B6 425 57.9 65.6 61.8 5.3 427.25 421.75

5.4 25°C TENSILE TESTING RESULTS

Stress strain plots for the 25°C tests are shown in Figure 5.12 and exhibit minimal to non-

existent differences in material properties between the two strain rates. For a strain rate of

89

0.05/sec an average YS of 74.1 MPa, average UTS of 157.2 MPa, and an average elongation

of 5.5% were calculated. At a strain rate of 0.5/sec the material exhibited an average YS of

74.1 MPa, an average UTS of 158.5 MPa, and an average elongation of 5.1%. Of the 25°C

tests, specimen B2 shows the greatest pseudo strain, but has the smallest measured

elongation at 4.8%. This is due to the specimen experiencing deformation outside of the

gauge section in the shoulders where it seats into the grips.

 Figure 5.12: 25° C Stress Strain Curves

5.5 225°C TENSILE TESTING RESULTS

Stress strain plots for the 225°C tests are shown in Figure 5.13. From these plots it can be

seen how strain rate impacts material properties at elevated temperature. Specimens

tested at lower strain rates showed a significant increase in pseudo strain as well as an

90

increase in elongation. Specimens at 225°C and a strain rate of 0.05/sec averaged a YS of

59.4 MPa, UTS of 101.9 MPa, and an elongation of 8.5%. At a strain rate of 0.5/sec the tests

averaged a YS of 60.2 MPa, UTS of 109.0 MPa, and an elongation of 5.6%. These results

indicate that higher strain rates correlate to higher UTS values, while lower strain rates

result in higher elongations. Looking at both Figure 5.12 and Figure 5.13 it can be seen that

temperature also affects material property values. As temperature increases the YS and

UTS decrease, while elongation increases.

 Figure 5.13: 225° C Stress Strain Curves

91

5.6 425°C TENSILE TESTING RESULTS

Stress strain results for the 425°C tests can be seen in Figure 5.14. Tests performed at a

strain rate of 0.05/sec averaged a YS of 36.5 MPa, UTS of 39.4 MPa, and elongation of

129.0%. Testing at 0.5/sec resulted in an average YS of 57.4 MPa, UTS of 63.8 MPa, and

elongation of 55.8%. Comparing these values to the 25°C and 225°C tests further

demonstrates how YS and UTS values drop with higher temperatures while elongations

increase. It should be noted however, that due to the selected material’s elongation at high

temperatures (400°C and greater), thermocouple attachment was difficult to maintain and

inconsistent in reading temperatures when the thermocouples came loose as the specimen

elongated and the gauge section reduced. Results are typically reliable for the type of

thermocouple attachment described in this thesis, and are especially so throughout the

specimen’s elastic region in which there is negligible deformation, or until the

thermocouples come loose. Testing for which there was minimal reduction in the gauge

section, such as the 25°C and 225°C tests, provided more consistent results, as can be seen

in Figure 5.12 and Figure 5.13. The results of these tests highlight how important it is to

find a suitable method for thermocouple attachment or an alternative temperature

measurement approach. It is also important to note that 425°C is near in temperature to

the 70XX aluminum alloy semi-solid region. The semi-solid region occurs when

temperatures are hot enough to melt portions of the aluminum alloy, while other sections

remain solid. This formation of two phases at once in the alloy significantly weakens the

material’s ability to withstand applied loads and could affect testing results.

92

Figure 5.14: 425° C Stress Strain Curves

5.7 MECHANICAL PROPERTY ERROR BAR PLOTS

The following figures depict error bar plots for the evaluated YS, UTS, and percent

elongation values. Red indicates tests ran at the 0.05/sec strain rate, while blue represents

tests performed at the 0.5/sec test. From Figure 5.15 and Figure 5.16 it can be expected

that for the 70XX series aluminum alloy, YS and UTS values recorded at lower temperatures

will be fairly similar in value. During the 25°C and 225°C tests the range of recorded

property values was quite minimal as evidenced from the plots. However, at higher

temperatures, YS and UTS values see a change in behavior between the two strain rates. At

425°C greater material property values can be expected at the higher strain rate. Thus it

can be concluded that a relationship exists between the material’s properties and the

effects of strain rate and temperature.

93

Figure 5.15: YS Error Bar Plot

Figure 5.16: UTS Error Bar Plot

94

Figure 5.17: Percent Elongation Error Bar Plot

Figure 5.17 depicts a bar plot illustrating the calculated percent elongations for tests

occurring at 25°C, 225°C, and 425°C and at strain rates of 0.05/sec and 0.5/sec. Again, the

range of data at for each test situation is minimal, meaning there is not much variance

from the mean and suggesting valid testing results. It can also be seen that the error bars

overlap one another. This suggests that the material is less susceptible to variations in

strain rate, especially at low temperatures.

95

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The elevated temperature tensile testing apparatus described in this thesis provides a

means for industry and academics to perform materials testing that conforms to standards

and achieves fast heating rates, while at a significantly reduced cost to the user. The

developed system consists of a servo-hydraulic test frame, capable of performing tensile

tests, to which two propane torches have been affixed. These torches apply heat to both

ends of the test specimen and are automated using stepper motors. The stepper motors

are part of a temperature control loop and accept positional outputs from the PLC, while

specimen temperature is monitored by two thermocouples and provides the PLC with

inputs. Temperature control is regulated by a PID algorithm run by the PLC, which accepts

system inputs such as set-point and PID settings from a GUI.

Operational verification of the apparatus and testing process was validated through testing

of a 70XX series aluminum alloy at three different temperatures and two different strain

rates. Twelve tensile tests were performed in total, eight of which were performed at

elevated temperatures. It was found that increased temperature corresponds to increases

in percent elongation measurements and decreases in YS and UTS values. All of the tests

were performed according to ASTM standards, and testing occurred within +/-3°C of the

temperature set-point. Heating rates also fell within the target range of 5-10°C, and

averaged 6.0°C/sec for tests performed at 225°C and 5.8°C/sec for testing at 425°C. Costs

for the system are a fraction of what other devices cost, totaling approximately $300.

96

6.2 RECOMMENDATIONS

The work presented in this thesis meets all design requirements. However, some

improvements could be implemented to increase the functionality of the system. These

improvements fall under one of five categories which will be discussed in this section:

increasing system capacity, alternate testing platform validation, modifications to current

technology, PID improvements, and improved temperature measurement.

6.2.1 INCREASING SYSTEM CAPACITY

Currently the testing apparatus’ capabilities are limited to the intensity of the torch flame,

and the capacity of the propane cylinders. Torch flame is directly related to the degree to

which the stepper motor can open the pressure regulator without stalling. Introducing a

motor with higher torque could increase the flame, resulting in higher heating rates. This

was not investigated as the current motors provide sufficient flame intensities for the

required testing. For prolonged testing it is recommended to develop an alternate fuel

supply system. The current propane cylinders have a finite volume that required

replacement. A larger fuel supply with a gauge to indicate container propane levels would

be ideal.

6.2.2 VALIDATION FOR ALTERNATE TESTING PLATFORMS

In theory the developed temperature testing apparatus can be introduced to any testing

platform. This was not investigated, and it would be interesting to see how changes to

specimen material and geometry, and load train material and geometry affect heating

97

rates and system cohesion. More specifically, verification of system capabilities with

respect to non-metallic specimen, and non-circular specimen should be completed.

6.2.3 MODIFICATIONS TO CURRENT TECHNOLOGY

The current testing procedure consists of starting the heat up process, and then starting

the tensile test process when the temperature set-point has been reached. Testing times

are recorded separately for these two actions and it is up to the user to record at what

time the tensile test is started relative to the recorded temperature. Combining the two

processes would be advantageous and could be accomplished by triggering a flag in the PLC

program. Set-up would require connecting another sensor to the SainSmart Uno that

would indicate when the tensile test begins. This could be implemented in the form of a

circuit that is easily broken when the test frame actuator moves downward.

Another improvement would be to replace the current motor driver shield with one that

communicates over serial and has its own PWM driver chip. This is because the current

motor shield does not have its own processor, and is dependent upon the Uno to control

motor position. This is extremely time intensive for the Uno, as it cannot send data to the

GUI, or enter new temperatures into the PID control loop until the motors have moved to

their next position. Because of this, cycle times for the PID loop are dependent upon how

long it takes the motors to move from one position to the next. Implementing a shield such

as the ‘Adafruit Motor/Stepper/Servo Shield for Arduino v2’ would improve cycle times, as

well as free up the Uno to focus on reading temperatures, the PID loop, and updates for

the next desired motor position. Another benefit is that the Adafruit motor shields are

98

stackable and use fewer I/O pins on the Uno so that the MAX31855 breakout boards could

be directly connected.

6.2.4 PID IMPROVEMENTS

The existing PID control system is implemented in such a manner that P, I, and D values

must be predetermined and entered into the control program before testing begins. In

order to reduce time spent tuning parameters several adjustments to the algorithm can be

explored. Developing a mathematical process model to simulate heating of the test

specimen and load train would reduce time spent testing heating and cooling of the

system. However, this model may require unavailable parameters, such as the thermal

conductivity of the specimen. Intensive study of system parameters including flame

temperature, thermal conductivity of the grip material, and system heat sinks would need

to be acquired. Alternatively the temperature control algorithm could be edited to accept

new PID parameters during testing. This would provide the user with the ability to

manually change parameters on the fly if they noticed the system was not behaving in a

satisfactory manner. A third improvement to the PID control algorithm would be to

introduce a cascading PID loop. Because initiating a change to the bottom specimen

temperature results in a change to the top temperature, and vice versa, a cascading PID

loop would be ideal. Cascading PID loops consist of two PID loops, with one controlling the

set-point of another. For implementation with respect to temperature control of the

testing apparatus, an initial PID loop would control the specimen’s top temperature and a

secondary PID loop would control the specimen’s bottom temperature. The top

99

temperature PID would operate based off a user defined set-point, while the bottom PID

would operate with a set-point defined by the top temperature.

6.2.5 IMPROVED TEMPERATURE MEASUREMENTS

As noted in 5.6 accurate temperature measurement became difficult to sustain at higher

temperatures. The stainless steel thermocouple clips used to ensure a secure contact

between the thermocouples and test specimen could not account for the reduced

diameter of the 70XX aluminum alloy when it elongated at 425°C. To improve temperature

measurement at these elevated temperatures it is recommended to implement an

alternative thermocouple attachment method. The new method must be able to account

for the significant change in geometry that the test specimen undergoes during elongation.

Several suggestions include spot welding the thermocouples to the specimen or using a

high temperature adhesive compound. Both methods may prove more costly, but should

provide the desired results. Alternatively, a non-contact method of temperature

measurement could be implemented such as an infrared (IR) camera.

100

REFERENCES

[1] Smith, Brian, "The Boeing 777," Advanced Materials & Processes, vol. 161, no. 9, pp.

41-44, 2003.

[2] J. Martin-Bermejo, G. Van Goethem and M. Hugon, "Research Activities on High-

temperature Gas-cooled Reactors (HTRs) in the 5th Euratom RTD Framework

Programme," in The Second Information Exchane Meeting on Basic Studies in the Field

of High-temperature Engineering, Paris, 2001.

[3] Z. Li, J. Xu and E. Bai, "Static and Dynamic Mechanical Properties of Concrete After

High Temperature Exposure," Materials Science and Engineering, vol. 544, pp. 27-32,

2012.

[4] B. Santillana, R. Boom, D. Eskin, H. Mizukami, M. Hanao and M. Kawamoto, "High

Temperature Mechanical Behavior and Fracture Analysis of a Low-Carbon Steel

Related to Cracking," Metallurgical and Materials Transactions A, vol. 43A, pp. 5048-

5057, 2012.

[5] W. Kasprzak, B. S. Amirkhiz and M. Niewczas, "Structure and properties of cast Al-Si

based alloy," Journal of Alloys and Compounds, vol. 595, pp. 67-79, 2013.

[6] R. Cobden and et. all, "Aluminum: Physical Properties, Characteristics and Alloys,"

Training in Aluminum Application Technologies, vol. 1.0, pp. 1-60, 1994.

101

[7] D. R. Askeland and P. P. Phule, The Science and Engineering of Materials, Stamford,

CT: CENGAGE Learning, 2008.

[8] K. P. Shah, "Plastic Deformation and Fracture," Practical Maintenance, 01 May 2009.

[Online]. Available: http://practicalmaintenance.net/?page_id=38. [Accessed 29

December 2014].

[9] K. G. Hoge, "Influence of Strain Rate on Mechanical Properties of 6061-T6 Aluminum

under Uniaxial and Biaxial States of Stress," Experimental Mechanics, vol. 6, no. 4, pp.

204-211, 1966.

[10] A. Dorbane, G. Ayoub, B. Mansoor, R. Hamade, G. Kridli and A. Imad, "Observations of

the Mechanical Response and Evolution of Damage of AA 6061-T6 Under Different

Strain Rates and Temperatures," Materials Scence & Engineering , vol. 624, no. A, pp.

239-249, 2015.

[11] "Standard Test Methods for Elevated Temperature Tension Tests of Metallic

Materials," in Annual Book of ASTM Standards, ASTM Standard E21, 1999.

[12] E. J. Hearn, Mechanics of Materials, Volume 1 : An Introduction to the Mechanics of

Elastic and Plastic Deformation of Solids and Structural Materials, Oxford:

Butterworth-Heinemann, August 1997.

102

[13] R. I. Stephens, A. Fatemi, R. R. Stephens and H. O. Fuchs, Metal Fatigue in Engineering,

New York : John Wiley & Sons, Inc., 2001.

[14] R. F. Legget, "AMERICAN SOCIETY FOR TESTING AND MATERIALS," NATURE, vol. 203,

no. 4945, pp. 565-568, 1964.

[15] G. Vigilante, S. Bartolucci, J. Izzo, M. Witherell and S. Smith, "Gleeble Testing to Assess

Solid/Liquid Metal Embrittlement of Gun Steels by Copper," Materials and

Manufacturing Processes, vol. 27, pp. 835-839, 2012.

[16] N. L. Lindeman, "Technique For Applying Direct Resistance Heating Current to a

Specific Location in a Specimen Under Test While Substantially Reducing Thermal

Gradients in the Specimen Gauge Length". United States Patent 7,363,822 B2, 29 April

2008.

[17] Todd Bonesteel, "Physical Simulation Speeds Product Development," Advanced

Materials & Processes, vol. 164, no. 12, pp. 37-39, 2006.

[18] "Gleeble Systems: The Standard for Thermal-Mechanical Physical Simulation,"

Dynamic Systems Inc., 2014. [Online]. Available:

http://www.gleeble.com/index.php/products.html. [Accessed 23 July 2013].

[19] "66--Gleeble 3500 Thermo Mechanical Simulator," 04 August 2010. [Online].

103

Available: https://www.neco.navy.mil/synopsis_file/N00167-10-P-

0250_Redacted_JA.pdf. [Accessed 09 October 2014].

[20] T. U. o. C. Town, "New Machine to Ease Metal Processing Studies," Monday Paper, p.

2, May-June 2012.

[21] B. F. I. f. M. R. a. Testing, "Tensile Tests at High Temperatures up to 1900C," 4 March

2013. [Online]. Available:

http://www.bam.de/en/kompetenzen/fachabteilungen/abteilung_5/fg52/fg52_medie

n/fg52_ht-zugversuch_englisch.pdf. [Accessed 23 March 2015].

[22] S. Zinn, I. Harry, R. Jeffress and S. Semiatin, Elements of Induction Heating: Design,

Control, and Applications, Novelty: ASM International, 1998.

[23] Proposal, Scottsville: Ambrell Precision Induction Heating, 2014.

[24] L. B. Blackburn and J. R. Ellingsworth, "Tensile Testing Apparatus". United States of

America Patent 4,535,636, 19 March 1984.

[25] Idaho National Laboratory, "High Temperature Test Laboratory," Idaho National

Laboratory, [Online]. Available:

https://inlportal.inl.gov/portal/server.pt/community/distinctive_signature__icis/315/

httl. [Accessed 4 April 2015].

104

[26] E. A. Wilcox, Electric Heating, New York: McGraw-Hill Book Company, Inc. , 1928.

[27] Watlow, "Mineral Insulated (MI) Band Heaters," Watlow, 2014. [Online]. Available:

https://www.watlow.com/products/heaters/mineral-insulated-band-heaters.cfm.

[Accessed 12 October 2014].

[28] W. Y. Svrcek, D. P. Mahoney and B. R. Young , A Real-Time Approach to Process

Control, West Sussex: John Wiley & Sons, Ltd, 2014.

[29] J. Hogenson, "PID for Dummies," Control Solutions, Inc., 2010. [Online]. Available:

http://www.csimn.com/CSI_pages/PIDforDummies.html. [Accessed 9 October 2014].

[30] H. L. Wade, Basic and Advanced Regulatory Control: System Design and Application,

Durham: The Instrumentation, Systems and Automation Society, 2004.

[31] P. Fry, "Specialty Gas Regulators - How They Work," CAC Gas & Instruments, 27

October 2013. [Online]. Available:

http://www.cacgas.com.au/blog/bid/344734/Specialty-Gas-Regulators-How-They-

Work. [Accessed 26 September 2014].

[32] "SainSmart UNO ATMEGA328P-PU ATMEGA8U2 Microcontroller For Arduino,"

SainSmart, 2010. [Online]. Available: http://www.sainsmart.com/sainsmart-uno-

atmega328p-pu-atmega8u2-microcontroller-for-arduino.html. [Accessed 30 08 2014].

105

[33] Arduino, "Arduino Uno," Arduino, 2014. [Online]. Available:

http://arduino.cc/en/Main/arduinoBoardUno. [Accessed 2 October 2014].

[34] "SainSmart L293D Motor Drive Shield For Arduino Duemilanove Mega UNO R3 AVR

ATMEL," SainSmart, 2014. [Online]. Available: http://www.sainsmart.com/sainsmart-

l293d-motor-drive-shield-for-arduino-duemilanove-mega-uno-r3-avr-atmel.html.

[Accessed 10 October 2014].

[35] L. Fried, "Adafruit Motor Shield," 12 May 2014. [Online]. Available:

https://learn.adafruit.com/downloads/pdf/adafruit-motor-shield.pdf. [Accessed 10

October 2014].

[36] "Thermocouple Amplifier MAX31855 Breakout Board (MAX6675 Upgrade) - v2.0,"

Adafruit, 2014. [Online]. Available: http://www.adafruit.com/product/269. [Accessed

10 October 2014].

[37] E. Bendersky, "A "live" data monitor with Python, PyQt and PySerial," Eli Bendersky's

website, 7 August 2009. [Online]. Available:

http://eli.thegreenplace.net/2009/08/07/a-live-data-monitor-with-python-pyqt-and-

pyserial. [Accessed 14 October 2014].

[38] E. Bendersky, "plotting_data_monitor," GitHub, Inc., 2014. [Online]. Available:

https://github.com/eliben/code-for-blog/tree/master/2009/plotting_data_monitor.

106

[Accessed 14 October 2014].

[39] Q. Project, "Qt Project," Qt Project, 2014. [Online]. Available: http://qt-project.org/.

[Accessed 14 October 2014].

[40] R. C. Limited, "What is PyQt4," Riverbank Computing Limited, 2013. [Online].

Available: http://www.riverbankcomputing.co.uk/software/pyqt/intro. [Accessed 14

October 2014].

[41] J. Bodnar, "Events and Signals in PyQt4," ZetCode, 6 October 2013. [Online]. Available:

http://zetcode.com/gui/pyqt4/eventsandsignals/. [Accessed 14 October 2014].

[42] E. Bendersky, "eblib Source," Google Project Hosting, 20 September 2010. [Online].

Available: https://code.google.com/r/arthur19891106-

eli/source/browse/eblib_dir/#eblib_dir%2Feblib. [Accessed 14 October 2014].

[43] P. S. Foundation, "Queue-A Synchronized Queue Class," Python Software Foundation,

2014. [Online]. Available: https://docs.python.org/2/library/queue.html. [Accessed 14

October 2014].

[44] C. Liechti, "pySerial," pySerial, 2013. [Online]. Available:

http://pyserial.sourceforge.net/pyserial.html#overview. [Accessed 14 October 2014].

[45] C. R. Simcoe, "The Discovery of Strong Aluminum," Advanced Materials & Processes,

107

vol. 169, no. 8, pp. 35-36, 2011.

[46] Bossi, Richard H., "NDE DEVELOPMENTS FOR COMPOSITE STRUCTURES," in AIP

Conference Proceedings, Ipswich, 2006.

[47] Y. Liu and S. Kumar, "Recent Progress in Fabrication, Structure, and Properties of

Carbon Fibers," Taylor & Francis Group, LLC, Atlanta, 2012.

[48] "Arduino," Arduino, 2014. [Online]. Available: http://arduino.cc/. [Accessed 30 08

2014].

[49] K. Motzfeldt, "High Temperature Experiments in Chemistry and Materials Science,"

John Wiley & Sons, 2013.

[50] M. McRoberts, Beginning Arduino, New York: Apress, 2013.

[51] "ARDUINO," Arduino, 2014. [Online]. Available:

http://arduino.cc/en/Guide/Introduction. [Accessed 17 03 2014].

[52] D. McWhan, Sand and Silicon, Oxford: Oxford University Press, 2012.

[53] F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and

Mass Trainsfer, Danvers: John Wile & Sons, 2007.

[54] M. Ashby, H. Shercliff and D. Cebon, Materials-Engineering, Science, Processing and

108

Design, Oxford: Elsevier, 2007.

[55] K. Motzfeldt, High Temperature Experiments in Chemistry and Materials Science,

Chichester: John Wiley & Sons, Ltd., 2013.

[56] D. Polka, Motors and Drives - A Practical Technology Guide, Durham: The

Instrumentation, Systems, and Automation Society, 2003.

[57] B. Zhang, "On Typical Materials Acting as the Dividing Standard of the Development

Stages of Human Substance Civilization," Interdisciplinary Description of Complex

Systems, vol. 10, no. 2, pp. 114-126, 2012.

[58] S. Li, Hot Tearing in Cast Aluminum Alloys: Measures and Effects of Process Variables,

Worcester: Worcester Polytechnic Institute, 2010.

[59] B. S. Mitchell, Materials Engineering and Science for Chemical and Materials

Engineers, Hoboken: John Wiley & Sons, Inc., 2004.

[60] "Stepper Motor with Cable," Cana Kit Corporation, 2014. [Online]. Available:

http://www.canakit.com/stepper-motor-with-cable-rob-09238.html. [Accessed 11

October 2014].

[61] B. Beauregard, "Arduino PID Library," Arduino, 2014. [Online]. Available:

http://playground.arduino.cc/Code/PIDLibrary. [Accessed 13 October 2014].

109

[62] P. Raybaut, "Ecosystem Pverview," Python(x,y), March 209. [Online]. Available:

http://pythonxy.googlecode.com/files/python_2722.png. [Accessed 2014].

110

APPENDIX A: DRAWING PACKAGE

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

APPENDIX B: HMI SOURCE CODE

GUI_PID.py:

"""

Victoria Kampfer

08-31-2014

This GUI was developed to display the progress of temperatures and

motor positions for a high temperature testing apparatus. The apparatus

consists of two propane torches operated by stepper motors to heat a

metal specimen. The temperature control system is managed by a

SainSmart Uno microcontroller coupled with a motor driver shield and

two thermocouple breakout boards. The Uno runs a PID control algorithm

and communicates with this GUI to accept inputs and display outputs.

Key features of the GUI include two numerical temperature displays; two

numerical motor position displays; a real-time plot visually displaying

time, motor position, and temperature; input fields for specimen name,

temperature set-point, maximum motor positions, and PID settings; and a

timer that displays a three second countdown monitoring if the

temperature is within the +/-3 degC range of the set-point.

"""

from __future__ import division

from __future__ import print_function

import sys

import Queue

from collections import deque

import this

import time

import PyQt4.QtCore as QtCore

import PyQt4.QtGui as QtGui

import PyQt4.Qwt5 as Qwt

from com_monitor import ComMonitorThread

from eblib.serialutils import full_port_name, enumerate_serial_ports

from eblib.utils import get_all_from_queue, get_item_from_queue

from live_data_feed import LiveDataFeed

class PlottingDataMonitor(QtGui.QMainWindow):

 """

 The main class of the GUI_PID. GUI dequeues and lists are created

 to hold data, GUI components are created and set up, and the

 com_monitor/data feed are initialized. Program flags are also set.

 This class is responsible for creating and managing graphical

 entities

 of the GUI.

 :param parent: Always a top-level widget, never used

 :type parent: QWidget

 The following sub functions are part of __init__ and help

135

 organize the

 class

 - create_status_bar()

 Creates a status bar below the central widget to display text

 messages.

 - create_top_info()

 Creates and populates the top h-box, which is sub-divided into

 four group-boxes, one each for displaying information about the

 top motors and temperatures, bottom motors and temperatures,

 communication of the program, and test information such as time

 and status.

 - create_mid_plot()

 Creates the real-time plot and plot controls which are grouped

 together in the middle of the main h-box. It contains five

 curves:

 - bottom_motor_position

 - top_motor_position

 - bottom_temp,

 - top_temp,

 - top_temps_delta

 It also has a widget for turning the display of the

 top_temps_delta curve on and off.

 - create_bottom_inputs()

 Creates and populates two, stacked h-boxes at the bottom of the

 GUI. The upper h-box is the input_h_box houses entry fields for

 system input parameters. The lower h-box is the control_h_box

 and contains three push buttons:

 - start

 - stop

 - connect

 """

 signalUpdateInfo = QtCore.pyqtSignal(str)

 def __init__(self, parent=None):

 super(PlottingDataMonitor, self).__init__(parent)

 def create_status_bar():

 self.status_text = QtGui.QLabel('Monitor idle')

 self.statusBar().addWidget(self.status_text, 1)

 def create_top_info():

 # INFO H BOX ###

 # top group box

 top_info_v_box = QtGui.QVBoxLayout()

 top_info_group_box = QtGui.QGroupBox('Top Heater')

 top_info_group_box.setLayout(top_info_v_box)

 self.top_temp = CoupledBox(top_info_v_box, 'Temperature: ')

 self.top_motor_position = CoupledBox(top_info_v_box,

 'Motor Position: ')

136

 self.top_heat_rate = CoupledBox(top_info_v_box,

 'Heat Rate: ')

 # bottom group box

 bottom_info_v_box = QtGui.QVBoxLayout()

 bottom_info_group_box = QtGui.QGroupBox('Bottom Heater')

 bottom_info_group_box.setLayout(bottom_info_v_box)

 self.bottom_temp = CoupledBox(bottom_info_v_box,

 'Temperature: ')

 self.bottom_motor_position = CoupledBox(bottom_info_v_box,

 'Motor Position: ')

 self.bottom_heat_rate = CoupledBox(bottom_info_v_box,

 'Heat Rate: ')

 # com port group box

 com_info_v_box = QtGui.QVBoxLayout()

 com_info_group_box = QtGui.QGroupBox('Com Port Info')

 com_info_group_box.setLayout(com_info_v_box)

 self.com_select = CoupledBox(com_info_v_box,

 'Selected Port: ',

 field_type=QtGui.QComboBox)

 self.com_select.field.addItems(self.on_update_ports())

 self.port_name = str(self.com_select.field.currentText())

 self.com_baud = CoupledBox(com_info_v_box, 'Baud Rate: ')

 self.com_cycle = CoupledBox(com_info_v_box, 'Cycle Rate: ')

 # test info group box

 test_info_v_box = QtGui.QVBoxLayout()

 test_info_group_box = QtGui.QGroupBox('Test Info')

 test_info_group_box.setLayout(test_info_v_box)

 self.lcd_count_down = MyLCDCounter(3, 1000)

 self.test_time_coupled_box = CoupledBox(test_info_v_box,

 'Test Duration: ')

 self.btn_ready = QtGui.QPushButton()

 self.btn_ready.setStyleSheet("background-color:#333333")

 test_info_v_box.addWidget(self.lcd_count_down)

 test_info_v_box.addWidget(self.btn_ready)

 # info box layout

 info_h_box = QtGui.QHBoxLayout()

 info_h_box.setAlignment(QtCore.Qt.AlignLeft)

 info_h_box.addWidget(top_info_group_box)

 info_h_box.addWidget(bottom_info_group_box)

 info_h_box.addWidget(com_info_group_box)

 info_h_box.addWidget(test_info_group_box)

137

 info_h_box.setAlignment(QtCore.Qt.AlignLeft)

 self.main_v_layout.addLayout(info_h_box)

 def create_mid_plot():

 # PLOT HELPERS

 # ###

 self.startMarker = Qwt.QwtPlotMarker()

 # PLOT H BOX

 # ###

 self.plot = RealTimePlot()

 self.plot.add_curve('bottom_motor_position',

 self.time_display,

 self.bottom_motor_display,

 penStyle=QtCore.Qt.DashDotDotLine)

 self.plot.add_curve('top_motor_position',

 self.time_display,

 self.top_motor_display,

 color='yellow',

 penStyle=QtCore.Qt.DashDotDotLine)

 self.plot.add_curve('bottom_temp',

 self.time_display,

 self.bottom_temps_display,

 yAxisRight=True)

 self.plot.add_curve('top_temp',

 self.time_display,

 self.top_temps_display,

 color='yellow',

 yAxisRight=True)

 self.plot.add_curve('top_temps_delta',

 self.time_display,

 self.top_temps_delta,

 color='red',

 yAxisRight=True)

 # PLOT CONTROLS

 btn_top_dt_curve = QtGui.QPushButton('Top DT Curve')

 self.connect(btn_top_dt_curve,

 QtCore.SIGNAL('clicked()'),

 self.plot.curves[

 'top_temps_delta'].toggle_curves)

 # Create VBox and add controls

 plot_controls_v_box = QtGui.QVBoxLayout()

 plot_controls_v_box.addWidget(btn_top_dt_curve)

 # Add controls to groupBox

 plot_controls_group_box = QtGui.QGroupBox('Plot Controls')

 plot_controls_group_box.setLayout(plot_controls_v_box)

 plot_h_box = QtGui.QHBoxLayout()

 plot_h_box.addWidget(plot_controls_group_box)

138

 plot_h_box.addWidget(self.plot)

 self.main_v_layout.addLayout(plot_h_box)

 def create_bottom_inputs():

 # INPUTS ###

 input_sub_h_box = QtGui.QHBoxLayout()

 self.set_point = CoupledBox(input_sub_h_box,

 'Set Temp: ',

 field_type=QtGui.QLineEdit,

 default_str=str(200))

 self.top_max_position = \

 CoupledBox(input_sub_h_box,

 'Top Max Motor '

 'Position: ',

 field_type=QtGui.QLineEdit,

 default_str=str(600))

 self.bottom_max_position = \

 CoupledBox(input_sub_h_box,

 'Bottom Max Motor Position: ',

 field_type=QtGui.QLineEdit,

 default_str=str(600))

 self.proportional = CoupledBox(input_sub_h_box, 'PID p: ',

 field_type=QtGui.QLineEdit,

 default_str=str(10))

 self.integral = CoupledBox(input_sub_h_box, 'PID i: ',

 field_type=QtGui.QLineEdit,

 default_str=str(2))

 self.derivative = CoupledBox(input_sub_h_box, 'PID d: ',

 field_type=QtGui.QLineEdit,

 default_str=str(0.06))

 self.btn_update_settings = \

 QtGui.QPushButton('Update\nSettings')

 self.btn_update_settings.setDisabled(True)

 self.connect(self.btn_update_settings,

 QtCore.SIGNAL('clicked()'),

 self.on_update_settings)

 input_group_box = QtGui.QGroupBox('Arduino Settings')

 input_group_box.setLayout(input_sub_h_box)

 input_h_box = QtGui.QHBoxLayout()

 self.specimen_name = CoupledBox(input_h_box,

 'Specimen Name: ',

 field_type=QtGui.QLineEdit,

 default_str='')

 self.specimen_name.field.setMinimumWidth(100)

139

 input_h_box.addWidget(input_group_box)

 input_sub_h_box.addWidget(self.btn_update_settings)

 # CONTROL ##

 control_h_box = QtGui.QHBoxLayout()

 self.btn_start = QtGui.QPushButton('Start')

 self.btn_start.setDisabled(True)

 self.connect(self.btn_start, QtCore.SIGNAL('clicked()'),

 self.on_start)

 self.btn_stop = QtGui.QPushButton('Stop')

 self.connect(self.btn_stop, QtCore.SIGNAL('clicked()'),

 self.on_stop)

 self.btn_connect = QtGui.QPushButton('Connect')

 self.connect(self.btn_connect, QtCore.SIGNAL('clicked()'),

 self.on_connect)

 control_h_box.addWidget(self.btn_start)

 control_h_box.addWidget(self.btn_stop)

 control_h_box.addWidget(self.btn_connect)

 self.main_v_layout.addLayout(input_h_box)

 self.main_v_layout.addLayout(control_h_box)

 # Create data ques / lists

 self.time_display = deque(maxlen=100)

 self.bottom_temps_display = deque(maxlen=100)

 self.bottom_motor_display = deque(maxlen=100)

 self.top_temps_display = deque(maxlen=100)

 self.top_motor_display = deque(maxlen=100)

 self.top_temps_delta = deque(maxlen=100)

 self.time = deque()

 self.bottom_temperatures = deque()

 self.bottom_motor = deque()

 self.top_temperatures = deque()

 self.top_motor = deque()

 self.arduino_inputs = list()

 # Creates GUI components

 self.main_v_layout = QtGui.QVBoxLayout()

 create_top_info()

 create_mid_plot()

 create_bottom_inputs()

 create_status_bar()

 # Sets up GUI components

 self.main_frame = QtGui.QWidget()

 self.main_frame.setLayout(self.main_v_layout)

 self.setCentralWidget(self.main_frame)

140

 # Set up com monitor / data feed

 self.data_from_arduino = Queue.Queue()

 self.error_que = Queue.Queue()

 self.msg_to_send = deque(maxlen=1)

 self.com_monitor_active = False

 self.com_monitor = ComMonitorThread(

 self.data_from_arduino,

 self.error_que,

 self.msg_to_send,

 full_port_name(self.port_name),

 9600)

 self.live_data_feed = LiveDataFeed()

 print(self.port_name)

 # Set program flags

 self.flag_ready = False

 self.test_started = False

 self.go_time = 0.0

 self.start_time = 0.0

 def on_update_settings(self):

 """

 Is called when the 'clicked' signal from btn_update is emitted.

 Sends program parameters to the PLC. Builds a string from the

 input_h_box entries and posts it to the deque, msg_to_send. It

 also updates plot settings and stores inputs in a list for

 future

 reference.

 """

 # Inputs stored as deque: msg_to_send

 inputs = [self.set_point.val(),

 self.top_max_position.val(),

 self.bottom_max_position.val(),

 self.proportional.val(),

 self.integral.val(),

 self.derivative.val()]

 str_msg = str(inputs[0]) + '\t'

 str_msg += str(inputs[1]) + '\t'

 str_msg += str(inputs[2]) + '\t'

 str_msg += str(inputs[3]) + '\t'

 str_msg += str(inputs[4]) + '\t'

 str_msg += str(inputs[5])

 # Inputs added to deque

 self.msg_to_send.append(str_msg)

 # Plot title from inputs

 self.plot.plot.setTitle(str_msg)

 # Setting motor axis based on max motor position

 self.plot.set_motor_axis(

 max([self.top_max_position.val(),

141

 self.bottom_max_position.val()]))

 # Adding inputs to arduino list

 self.arduino_inputs = inputs

 @staticmethod

 def on_update_ports():

 """

 Uses pySerial's enumerate_serial_ports() to determine available

 serial ports. Is called when the serial port's

 combo-box is created.

 :return: List of serial port names.

 :rtype: list

 """

 ports = list(enumerate_serial_ports())

 return ports

 def on_stop(self):

 """

 Is called when the 'clicked' signal from btn_stop is emitted. A

 message to move motors to the zero positions at a speed of 75 is

 posted to msg_to_send. A file is saved reporting time,

 temperature, and motor position data for both the top and bottom

 locations with a name containing the specimen name, date, and

 time. A .png image of the GUI real-time curves plot is saved

 with the same file name as the text document.

 """

 self.msg_to_send.append('0 0 75')

 file_name = str(

 self.specimen_name.lbl_2.text() + '_' + time.strftime(

 "%d-%m-%Y") +

 '_' + time.strftime("%I-%M-%S") + '.txt')

 with open(file_name, 'w') as f:

 line = 'TIME' + \

 '\t' + 'BOTTOM TEMP' + \

 '\t' + 'BOTTOM MOTOR' + \

 '\t' + 'TOP TEMP' + \

 '\t' + 'TOP MOTOR' + '\n '

 f.write(line)

 for i1, t in enumerate(self.time):

 str_1 = self.bottom_temperatures[i1]

 str_2 = self.bottom_motor[i1]

 str_3 = self.top_temperatures[i1]

 str_4 = self.top_motor[i1]

 line = '{0}\t{1}\t{2}\t{3}\t{4}\n'.format(str(t),

 str_1,

 str_2,

 str_3,

 str_4)

 f.write(line)

142

 f.close()

 QtGui.QPixmap.grabWidget(self.plot.plot).save(

 file_name.rstrip('.txt') + '.png', 'PNG')

 def on_connect(self):

 """

 Is called when the 'clicked' signal from btn_connect is emitted.

 Clears previous test data, establishes communication over the

 com_monitor, and sets up the com_timer

 """

 # Clear previous test data

 self.time_display.clear()

 self.bottom_temps_display.clear()

 self.bottom_motor_display.clear()

 self.top_temps_display.clear()

 self.top_motor_display.clear()

 self.top_temps_delta.clear()

 self.bottom_temperatures.clear()

 self.bottom_motor.clear()

 self.top_temperatures.clear()

 self.top_motor.clear()

 self.time.clear()

 # Ensures com_timer is disconnected from serial to begin with

 self.com_timer = None

 # If a valid port is unavailable, exit function

 if self.port_name == '':

 return

 # Create and start the com_monitor object

 self.com_monitor = ComMonitorThread(

 self.data_from_arduino,

 self.error_que,

 self.msg_to_send,

 full_port_name(self.port_name),

 9600)

 self.com_monitor.start()

 # Checks for com monitor error

 com_error = get_item_from_queue(self.error_que)

 if com_error is not None:

 QtGui.QMessageBox.critical(self,

 'ComMonitorThread error',

 com_error)

 self.com_monitor = None

 # Creates, connects, and starts com timer. Separate from

 # com_monitor's thread.

 self.portTimer = time.clock()

 self.com_timer = QtCore.QTimer()

 self.connect(self.com_timer, QtCore.SIGNAL('timeout()'),

143

 self.on_timer)

 self.com_timer.start(1000.0 / 100)

 def on_start(self):

 """

 Is called when the 'clicked' signal from btn_start is emitted.

 Posts start trigger 's' to msg_to_send. If the specimen name

 entry field is empty the user is notified and the start trigger

 is not posted.

 """

 if len(self.specimen_name.lbl_2.text()) > 0:

 self.msg_to_send.append('s')

 else:

 QtGui.QMessageBox.critical(self, 'Invalid Specimen Name',

 'Please Enter Specimen Name and '

 'Press Start')

 def read_serial_data(self):

 """

 Function called periodically by the update timer to read data

 from the serial port.

 Check to see if data is a message or command. Messages will be

 displayed by the status bar.

 If data is a command, determine type and action to be taken.

 - *Parameters* indicates the PLC is ready to accept input

 parameters, disables the connect button and enables the

 update settings button in the GUI.

 - *Ready* indicates the PLC is ready to begin test, disables

 the update settings button and enables the start button.

 - *Ignited* indicates the PLC has witnessed a 3degC change in

 temperature, and that the bottom heating element is working.

 test_started is set to True to trigger updating the plot and

 info. Plotting parameters are started.

 - *Stopped* initiates the closing of the com monitor, and the

 start button is disabled while the connect button is enabled.

 test_started is set to False.

 If neither MSG or CMD is issued, continue plotting time and

 data over the live_data_feed.

 """

 q_data = list(get_all_from_queue(self.data_from_arduino))

 if len(q_data) > 0:

 _time = q_data[-1][1]

 _data = q_data[-1][0].split()

 if _data[0].startswith("MSG:"):

 msg = q_data[-1][0]

 self.status_text.setText(msg)

 elif _data[0].startswith("CMD:"):

 cmd = _data[1]

144

 if cmd == 'Parameters':

 self.btn_connect.setDisabled(True)

 self.btn_update_settings.setDisabled(False)

 elif cmd == 'Ready':

 self.btn_update_settings.setDisabled(True)

 self.btn_start.setDisabled(False)

 elif cmd == 'Started':

 self.btn_start.setDisabled(True)

 self.btn_connect.setDisabled(True)

 elif cmd == 'Ignited':

 self.test_started = True

 self.start_time = _time

 self.startMarker.setXValue(_time)

 self.startMarker.setYValue(0)

 self.startMarker.setLineStyle(

 Qwt.QwtPlotMarker.HLine)

 self.startMarker.attach(self.plot.plot)

 elif cmd == 'Stopped':

 self.com_monitor.close()

 self.com_monitor = None

 self.btn_start.setDisabled(True)

 self.btn_connect.setDisabled(False)

 self.test_started = False

 else:

 self.live_data_feed.add_data((_time, _data))

 def on_timer(self):

 """

 Is called when the timeout signal from the com_timer is emitted.

 Serial data is read and the plot is updated.

 """

 self.read_serial_data()

 self.update_info_and_plot()

 def update_info_and_plot(self):

 """

 It is repeatedly called from on_timer and updates test

 information in the info_h_box, and plot.

 """

 if self.live_data_feed.has_new_data:

 _time, _data = self.live_data_feed.read_data()

 self.time_display.append(_time)

 self.bottom_motor_display.append(float(_data[0]))

 self.bottom_temps_display.append(float(_data[1]))

 self.top_motor_display.append(float(_data[2]))

 self.top_temps_display.append(float(_data[3]))

 # Determines if parameters have been sent to the PLC

 if len(self.arduino_inputs) > 0:

145

 self.top_temps_delta.append(

 self.arduino_inputs[0] - self.top_temps_display[-1])

 # On each test_start trigger, append new data to dequeues

 if self.test_started:

 _testDuration = _time - self.start_time

 self.test_time_coupled_box.lbl_2.setText(

 "%.1f" % _testDuration)

 self.time.append(_time - self.start_time)

 self.bottom_motor.append(float(_data[0]))

 self.bottom_temperatures.append(float(_data[1]))

 self.top_motor.append(float(_data[2]))

 self.top_temperatures.append(float(_data[3]))

 # Starts countdown timer to determine 3 sec wait period

 # if temperature is within +/-3degC of set-point

 if abs(self.bottom_temps_display[

 -1] - self.set_point.val()) < 3 and abs(

 self.top_temps_display[

 -1] - self.set_point.val()) < 3:

 if not self.flag_ready:

 self.lcd_count_down.start()

 self.btn_ready.setStyleSheet(

 "background-color:yellow")

 self.btn_ready.setText('GO!')

 self.flag_ready = True

 self.go_time = _time

 elif self.flag_ready and _time > self.go_time + 3:

 self.btn_ready.setText('SUCCESS')

 self.btn_ready.setStyleSheet(

 "background-color:green")

 else:

 self.btn_ready.setStyleSheet("background-color:red")

 self.flag_ready = False

 self.go_time = 0.0

 self.btn_ready.setText('')

 self.plot.update_plot()

 # Updates info_h_box. Starts after 9 data points to

 # provide a

 # more accurate avg for the heat up rate

 if len(self.time_display) > 9:

 cycle_rate = \

 (self.time_display[-1] - self.time_display[-2])

 self.bottom_motor_position.lbl_2.setText(_data[0])

 self.bottom_temp.lbl_2.setText(_data[1])

146

 dt1_dt = \

 (self.bottom_temps_display[-1] -

 self.bottom_temps_display[-10]) / \

 (self.time_display[-1] - self.time_display[-10])

 self.bottom_heat_rate.lbl_2.setText("%.4f" % dt1_dt)

 self.top_motor_position.lbl_2.setText(_data[2])

 self.top_temp.lbl_2.setText(_data[3])

 dt2_dt = (self.top_temps_display[-1] -

 self.top_temps_display[-10]) / \

 (self.time_display[-1] -

 self.time_display[-10])

 self.top_heat_rate.lbl_2.setText("%.4f" % dt2_dt)

 self.com_cycle.lbl_2.setText("%.4f" % cycle_rate)

class CoupledBox(QtGui.QWidget):

 """

 Class to combine a label and a second object known as field. field

 may be a QLabel, QLineEdit, or QComboBox

 :param parent: The QWidget that will house the new coupled box

 :type parent: QWidget

 :param label: A string to be displayed as a label

 :type label: str

 :param default_str: The default string to display in the coupled box

 :type default_str: str

 :param field_type: Specifies the type of the combo box

 :type field_type: QLabel, QComboBox, QLineEdit

 :return: Nothing

 """

 def __init__(self, parent, label, default_str='NA',

 field_type=QtGui.QLabel):

 super(CoupledBox, self).__init__()

 assert isinstance(default_str,

 str), "Make sure CoupledBox default_str is " \

 "a sting and not an int!!!"

 _label = QtGui.QLabel(label)

 _label.setAlignment(QtCore.Qt.AlignLeft)

 if field_type == QtGui.QLabel:

 self.field = QtGui.QLabel(default_str)

 self.field.setFixedWidth(40)

 self.field.setAlignment(QtCore.Qt.AlignRight)

 elif field_type == QtGui.QLineEdit:

 self.field = QtGui.QLineEdit()

 self.field.setText(default_str)

 elif field_type == QtGui.QComboBox:

 self.field = QtGui.QComboBox()

147

 h_box = QtGui.QHBoxLayout()

 h_box.addWidget(_label)

 h_box.addWidget(self.field)

 self.setLayout(h_box)

 parent.addWidget(self)

 def val(self):

 """

 Returns value of field as a float.

 :return: Value of field

 :rtype: float

 """

 return float(self.field.text())

 def set_val(self, value):

 """

 Sets the value of field as a str.

 :param value: Value to be set

 :type value: str, float, int

 """

 self.field.setText(str(value))

class RealTimePlot(QtGui.QWidget):

 """

 Class to plot real time data.

 :var plot: a Qwt.QwtPlot

 :var curves: A dictionary that contains the curves to be plotted

 onto plot

 """

 def __init__(self):

 super(RealTimePlot, self).__init__()

 self.plot = self.create_plot()

 self.curves = {}

 layout = QtGui.QHBoxLayout()

 layout.addWidget(self.plot)

 self.setLayout(layout)

 def create_plot(self):

 """

 Creates plot titles, axes, labels, etc...

 :return: plot

 :rtype plot: Qwt.QwtPlot

 """

 plot = Qwt.QwtPlot(Qwt.QwtText('title'), self)

 plot.setCanvasBackground(QtCore.Qt.black)

 plot.setAxisTitle(Qwt.QwtPlot.xBottom, 'Time')

148

 plot.setAxisScale(Qwt.QwtPlot.xBottom, 0, 10, 1)

 plot.setAxisTitle(Qwt.QwtPlot.yLeft, 'Motor')

 plot.setAxisScale(Qwt.QwtPlot.yLeft, 0, 700)

 plot.enableAxis(Qwt.QwtPlot.yRight)

 plot.setAxisTitle(Qwt.QwtPlot.yRight, 'Temperature')

 plot.setAxisScale(Qwt.QwtPlot.yRight, 0, 500)

 legend = Qwt.QwtLegend(plot)

 plot.insertLegend(legend, Qwt.QwtPlot.TopLegend)

 plot.replot()

 return plot

 def set_motor_axis(self, max_position):

 """

 Sets motor position axis limits with respect to user inputs.

 :param max_position: Max motor position as entered in the GUI

 inputs

 :type max_position: float

 """

 self.plot.setAxisScale(Qwt.QwtPlot.yLeft, 0, max_position)

 print("max position:", max_position)

 def add_curve(self, name, x_data, y_data, color='limegreen',

 yAxisRight=False, penStyle=QtCore.Qt.SolidLine):

 """

 Adds curves to plot.

 :param name: name of curve

 :type name: str

 :param x_data: x values for curve plot (time)

 :type x_data: deque

 :param y_data: y values for curve plot (motor position or

 temperature)

 :type y_data: deque

 :param color: color changes with motor and temperature position.

 :type color: str

 :param yAxisRight: sets y-axis to the right of the plot

 :type yAxisRight: bool

 :param penStyle: sets curve line styles

 :type penStyle: QtCore.Qt.SolidLine

 """

 curve = RealTimeCurve(name, x_data, y_data, color, yAxisRight)

 curve.attach(self.plot)

 self.curves[name] = curve

 def update_plot(self):

 """

 Updates plot's curves and reset x-axis limits.

 """

 for name, curve in self.curves.iteritems():

 curve.update_curve()

 x_data = list(self.curves.values()[0].x_data)

 self.plot.setAxisScale(Qwt.QwtPlot.xBottom, x_data[0],

 max(20, x_data[-1]))

149

 self.plot.replot()

class RealTimeCurve(Qwt.QwtPlotCurve):

 """

 Class to define curve as used by the RealTimePlot.

 :param name: name of curve

 :type name: str

 :param x_data: x values for curve plot (time)

 :type x_data: deque

 :param y_data: y values for curve plot (motor position or

 temperature)

 :type y_data: deque

 :param color: color changes with motor and temperature position.

 :type color: str

 :param yAxisRight: sets y-axis to the right of the plot

 :type yAxisRight: bool

 :param penStyle: sets curve line styles

 :type penStyle: QtCore.Qt.SolidLine

 """

 def __init__(self, name, x_data, y_data, color='limegreen',

 yAxisRight=False, penStyle=QtCore.Qt.SolidLine):

 Qwt.QwtPlotCurve.__init__(self)

 self.x_data = x_data

 self.y_data = y_data

 self.setRenderHint(Qwt.QwtPlotItem.RenderAntialiased)

 pen = QtGui.QPen(QtGui.QColor(color), penStyle)

 pen.setWidth(2)

 self.setPen(pen)

 self.setData(list(x_data), list(y_data))

 self.setTitle(name)

 if yAxisRight:

 self.setAxis(Qwt.QwtPlot.yRight, True)

 def update_curve(self):

 """

 Updates x and y curve data. Call this function when new data is

 available and plot should be updated.

 """

 self.setData(list(self.x_data), list(self.y_data))

 def toggle_curves(self):

 """

 Hides or un-hides selected plot curves.

 """

 if self.isVisible():

 self.hide()

 print('Hidden')

 else:

 self.show()

 print('Shown')

150

class MyLCDCounter(QtGui.QLCDNumber):

 """

 Class to create a countdown timer based off of QtGui.QLCDNumber. It

 incorporates the QtCore.QTimer to automatically

 update the QtGui.QLCDNumber.

 :param start_time: Starting time of LCD countdown

 :type start_time: int, float

 :param interval: Time decremented from start_time value

 :type interval: int, float

 """

 def __init__(self, start_time, interval):

 QtGui.QLCDNumber.__init__(self)

 self.interval = interval

 self.value = start_time

 self.timer = QtCore.QTimer()

 self.connect(self.timer, QtCore.SIGNAL("timeout()"), self,

 QtCore.SLOT("update()"))

 @QtCore.pyqtSlot()

 def update(self):

 """

 Updates the countdown timer display values. This function is

 automatically called by the QtCore.QtTimer.

 """

 if self.value == 0:

 self.display(self.value)

 self.stop()

 else:

 self.display(self.value)

 self.value -= self.interval / 1000

 def start(self):

 """

 Initiates countdown. Call this function to start.

 """

 self.timer.start(self.interval)

 def stop(self):

 """

 Stops countdown timer. Automatically called when countdown

 reaches

 zero.

 """

 self.timer.stop()

def main():

 """

 Main Function of GUI script

 """

 app = QtGui.QApplication(sys.argv)

 form = PlottingDataMonitor()

151

 form.setFixedSize(1335, 890)

 form.show()

 # form.showMaximized()

 app.exec_()

Main script:

if __name__ == "__main__":

 main()

live_data_feed.py:

class LiveDataFeed(object):

 """

 Class to house the latest data. It allows the user to post or read

 data. It keeps track of if the current data has

 ever been read.

 :var cur_data: The newest data

 :type cur_data: tuple

 """

 def __init__(self):

 self.cur_data = None

 self.has_new_data = False

 def add_data(self, data):

 """

 Adds new data to the object.

 :param data: The data

 :type data: tuple

 """

 self.cur_data = data

 self.has_new_data = True

 def read_data(self):

 """

 Returns data.

 :return cur_data: Returns most recent data

 ":rtype cur_data: tuple

 """

 self.has_new_data = False

 return self.cur_data

if __name__ == "__main__":

 pass

com_monitor.py:

from __future__ import print_function

import threading

import time

152

import serial

class ComMonitorThread(threading.Thread):

 """ A thread for monitoring a COM port. The COM port is

 opened when the thread is started.

 data_q:

 Queue for received data. Items in the queue are

 (data, timestamp) pairs, where data is a binary

 string representing the received data, and timestamp

 is the time_display elapsed from the thread's start (in

 seconds).

 error_q:

 Queue for error messages. In particular, if the

 serial port fails to open for some reason, an error

 is placed into this queue.

 port_num:

 The COM port to open. Must be recognized by the

 system.

 port_baud/stopbits/parity:

 Serial communication parameters

 port_timeout:

 The timeout used for reading the COM port. If this

 value is low, the thread will return data in finer

 grained chunks, with more accurate timestamps, but

 it will also consume more CPU.

 """

 def __init__(self,

 data_q, error_q, msg2Send,

 port_num,

 port_baud,

 port_stopbits=serial.STOPBITS_ONE,

 port_parity=serial.PARITY_NONE,

 port_timeout=0.01):

 threading.Thread.__init__(self)

 self.serial_port = None

 self.serial_arg = dict(port=port_num,

 baudrate=port_baud,

 stopbits=port_stopbits,

 parity=port_parity,

 timeout=port_timeout)

 self.data_q = data_q

 self.error_q = error_q

 self.msg2Send = msg2Send

 self.alive = threading.Event()

 self.alive.set()

 def run(self):

153

 try:

 if self.serial_port:

 self.serial_port.close()

 self.serial_port = serial.Serial(**self.serial_arg)

 except serial.SerialException, e:

 self.error_q.put(e.message)

 return

 # Restart the clock

 time.clock()

 while self.alive.isSet():

 # Reading 1 byte, followed by whatever is left in the

 # read buffer, as suggested by the developer of

 # PySerial.

 #

 #print(self.msg_to_send)

 if len(self.msg2Send) > 0:

 self.serial_port.write(self.msg2Send[-1])

 self.msg2Send.pop()

 data = self.serial_port.readline()

 if len(data) > 0:

 print(data)

 timestamp = time.clock()

 self.data_q.put((data, timestamp))

 # clean up

 if self.serial_port:

 self.serial_port.close()

 def join(self, timeout=None):

 self.alive.clear()

 threading.Thread.join(self, timeout)

 def close(self):

 self.alive.clear()

serialutils.py:

"""

Some serial port utilities for Windows and PySerial

Eli Bendersky (eliben@gmail.com)

License: this code is in the public domain

"""

import re, itertools

import _winreg as winreg

def full_port_name(portname):

 """

 Given a port-name (of the form COM7, COM12, CNCA0, etc.) returns a

 full name suitable for opening with the Serial class.

 """

154

 m = re.match('^COM(\d+)$', portname)

 if m and int(m.group(1)) < 10:

 return portname

 return '\\\\.\\' + portname

def enumerate_serial_ports():

 """

 Uses the Win32 registry to return an iterator of serial (COM) ports

 existing on this computer.

 """

 path = 'HARDWARE\\DEVICEMAP\\SERIALCOMM'

 try:

 key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, path)

 except WindowsError:

 raise StopIteration

 for i in itertools.count():

 try:

 val = winreg.EnumValue(key, i)

 yield str(val[1])

 except EnvironmentError:

 break

if __name__ == "__main__":

 import serial

 for p in enumerate_serial_ports():

 print p, full_port_name(p)

utils.py:

import random, time

import Queue

class Timer(object):

 def __init__(self, name=None):

 self.name = name

 def __enter__(self):

 self.tstart = time.time()

 def __exit__(self, type, value, traceback):

 if self.name:

 print '[%s]' % self.name,

 print 'Elapsed: %s' % (time.time() - self.tstart)

def get_all_from_queue(Q):

 """

 Generator to yield one after the others all items currently in the

 queue Q, without any waiting.

 """

 try:

 while True:

155

 yield Q.get_nowait()

 except Queue.Empty:

 raise StopIteration

def get_item_from_queue(Q, timeout=0.01):

 """

 Attempts to retrieve an item from the queue Q. If Q is empty, None

 is returned. Blocks for 'timeout' seconds in case the queue is

 empty, so don't use this method for speedy retrieval of multiple

 items (use get_all_from_queue for that).

 """

 try:

 item = Q.get(True, 0.01)

 except Queue.Empty:

 return None

 return item

def flatten(iterables):

 """

 Flatten an iterable of iterables. Returns a generator.

 list(flatten([[2, 3], [5, 6]])) => [2, 3, 5, 6]

 """

 return (elem for iterable in iterables for elem in iterable)

def argmin_list(seq, func):

 """

 Return a list of elements of seq[i] with the lowest func(seq[i])

 scores.

 argmin_list(['one', 'to', 'three', 'or'], len)

 ['to', 'or']

 """

 best_score, best = func(seq[0]), []

 for x in seq:

 x_score = func(x)

 if x_score < best_score:

 best, best_score = [x], x_score

 elif x_score == best_score:

 best.append(x)

 return best

def argmin_random_tie(seq, func):

 """

 Return an element with lowest func(seq[i]) score; break ties at

 random.

 """

 return random.choice(argmin_list(seq, func))

def argmin(seq, func):

 """

 Return an element with lowest func(seq[i]) score; tie goes to first

156

 one.

 argmin(['one', 'to', 'three'], len)

 'to'

 """

 return min(seq, key=func)

def argmax_list(seq, func):

 """ Return a list of elements of seq[i] with the highest

 func(seq[i]) scores.

 >>> argmax_list(['one', 'three', 'seven'], len)

 ['three', 'seven']

 """

 return argmin_list(seq, lambda x: -func(x))

def argmax_random_tie(seq, func):

 """ Return an element with highest func(seq[i]) score; break

 ties at random.

 """

 return random.choice(argmax_list(seq, func))

def argmax(seq, func):

 """ Return an element with highest func(seq[i]) score; tie

 goes to first one.

 >>> argmax(['one', 'to', 'three'], len)

 'three'

 """

 return max(seq, key=func)

if __name__ == "__main__":

 #~ print list(flatten([[1, 2], (4, 5), [5], [6, 6, 8]]))

 #~ print argmin_random_tie(['one', 'to', 'three', 'or'], len)

 print min(['one', 'to', 'three', 'or'], key=len)

 print argmin(['one', 'to', 'three', 'or'], len)

157

APPENDIX C: PLC SOURCE CODE

PID_Motor_control.ino:

/* Victoria Kampfer

03-18-2014

PID responsive motor positioning program:

The goal of this program is to run a temperature control system with a

heat source from two propane torches. These torches are operated by

stepper motors whose position is kept track of on a global coordinate

system with lower and upper bounds defined by the mechanical limits of the

propane torch dials, and stall position of the motors. A PID algorithm

controls movement of the motors based off of inputs from two thermocouples

and user inputs such as temperature set point and PID values.

*/

//INCLUDED LIBRARIES:

#include <AFMotor.h>

#include <EEPROM.h>

#include "Adafruit_MAX31855.h"

#include <PID_v1.h>

//PIN ASSIGNMENTS:

#define thermoDO A0

#define thermoCLK A1

#define thermo1CS A2

#define thermo2CS A3

#define thermo1VIN A4

#define thermo2VIN A5

//EEPROM VARIABLES:

//Top motor position, part a

int TMP_a = EEPROM.read(0);

//Top motor position, part b

int TMP_b = EEPROM.read(1);

//Bottom motor position, part a

int BMP_a = EEPROM.read(2);

//Bottom motor position, part a

int BMP_b = EEPROM.read(3);

//Power error flag

int flag_PWR_ERROR = EEPROM.read(4);

//VARIABLES:

int topMotorPosition = TMP_a*256 + TMP_b;

int bottomMotorPosition = BMP_a*256 + BMP_b;

int bottomSteps = 0;

int topSteps = 0;

int bottomDesired = 0;

int topDesired = 0;

int speedVal = 50;

int newSpeedVal = speedVal;

int oldBottomDesired = bottomMotorPosition;

int oldTopDesired = topMotorPosition;

158

unsigned long thermoReadTime;

uint8_t bottomDir;

uint8_t topDir;

uint32_t usperstep;

double temps[2];

double desiredTemp;

double bottomOutput;

double topOutput;

float bottomMaxPosition;

float topMaxPosition;

//Starting PID values acting as place holders, will be reset by GUI

//inputs

float pid_P = 100.1;

float pid_I = 10.1;

float pid_D = 10.1;

//CONSTANT VARIABLES:

//Start position of motor

const int startPosition = 0;

//Steps per revolution

const int stepsPerRev = 200;

//Upper bound for torch valve (mechanical limit)

const float maxTurns = 6;

//Pre-defined upper limits of motor position

const int endPosition = maxTurns*stepsPerRev;

//Pre-defined lower limits of bottom motor position

const int bottomMinPosition = 203;

//Pre-defined lower limits of top motor position

const int topMinPosition = 204;

//OBJECTS:

AF_Stepper bottomMotor(stepsPerRev, 1);

AF_Stepper topMotor(stepsPerRev, 2);

Adafruit_MAX31855 thermo1(thermoCLK, thermo1CS, thermoDO);

Adafruit_MAX31855 thermo2(thermoCLK, thermo2CS, thermoDO);

PID bottomPID(&temps[0], &bottomOutput, &desiredTemp, pid_P, \

pid_I, pid_D, DIRECT);

PID topPID(&temps[1], &topOutput, &desiredTemp, pid_P, pid_I, \

pid_D, DIRECT);

void setup() {

 //Opens serial port, sets data rate to 9600

 Serial.begin(9600);

 //Sets bottom thermocouple pin to low (powered off)

 pinMode(thermo1VIN, OUTPUT); digitalWrite(thermo1VIN, LOW);

 //Sets top thermocouple pin to low (powered off)

 pinMode(thermo2VIN, OUTPUT); digitalWrite(thermo2VIN, LOW);

 //Message for HMI to display in status bar

 Serial.println("MSG: Serial Connected, Enter Settings");

159

 Serial.println("CMD: Parameters");

 //Check power error flag for unclean shutdown indication

 if (flag_PWR_ERROR == 1){

 Serial.print("MSG: ERROR: Unclean Shutdown..."

 " please reset motor positions and EEPROM");

 while(1){

 }

 }

 //Initiate motors at starting positions [0,0]

 moveMotors(0);

 //Reads input parameters from HMI

 receiveParameters();

 //Update PID loops...

 //PID parameters

 bottomPID.SetTunings(pid_P, pid_I, pid_D);

 //PID mode

 bottomPID.SetMode(AUTOMATIC);

 //Motor limits

 bottomPID.SetOutputLimits(bottomMinPosition, (int)bottomMaxPosition);

 //1 millisec sample time

 bottomPID.SetSampleTime(1);

 topPID.SetTunings(pid_P, pid_I, pid_D);

 topPID.SetMode(AUTOMATIC);

 topPID.SetOutputLimits(topMinPosition, (int)topMaxPosition);

 topPID.SetSampleTime(1);

 //Delay between each motor movement

 usperstep = bottomMotor.setSpeed(speedVal);

 usperstep = topMotor.setSpeed(speedVal);

 //Release motors to avoid overheating

 bottomMotor.release();

 topMotor.release();

 //Begin start process for lighting propane torches

 lightFires();

}

//Monitor start time

unsigned long controlStart = millis();

void loop() {

 printStatus();

 //Prints motor positions and temps to serial port

 //Compute PID loop for bottom heater system

 bottomPID.Compute();

 //Compute PID loop for top heater system

 topPID.Compute();

 //Store bottom system PID outputs

 bottomDesired = (int)bottomOutput;

160

 //Store top system PID outputs

 topDesired = (int)topOutput;

 //Move motors to new positions

 moveMotors(0);

 //Check serial port for data from HMI

 parseSerial();

}

//Get starting test parameters from HMI

void receiveParameters() {

 //If serial is not available check for motor positions

 //and temperatures

 while(!Serial.available()){

 printStatus();

 }

 //Else read in testing parameters from the HMI

 desiredTemp = Serial.parseFloat();

 topMaxPosition = Serial.parseFloat();

 bottomMaxPosition = Serial.parseFloat();

 pid_P = float(Serial.parseFloat());

 pid_I = float(Serial.parseFloat());

 pid_D = float(Serial.parseFloat());

}

//Begin start process for lighting propane torches

void lightFires(){

 //Message sent to HMI to be displayed to user

 Serial.println("MSG: Press Start to Begin Test");

 //Indicates arduino is ready for test start

 Serial.println("CMD: Ready");

 //If serial is not availabe keep checking for data

 while(!Serial.available()){

 printStatus();

 }

 //Set exit flag condition

 bool exitFlag = false;

 //Enter while loop to get serial data

 while(exitFlag == false){

 //Print motor positions and temperatures to serial port

 printStatus();

 //If available serial is greater than zero check for start "trigger"

from HMI

 if(Serial.available()>0){

 //Start trigger from HMI

 if(Serial.read() == 's'){

 //Trigger exit flag condition

 exitFlag = true;

 }

 }

 }

 //Indicates testing has started

161

 Serial.println("CMD: Started");

 //Ignition point bottom motor position

 bottomDesired = 600;

 //Ignition point top motor position

 topDesired = 600;

 //Move motors to locations for iginition

 moveMotors(0);

 //Msg for HMI status bar

 Serial.println("MSG: Ignite Propane Torches");

 //Save bottom starting temperature

 double startingBotTemp = temps[0];

 //Save top starting temperature

 double startingTopTemp = temps[1];

 //Enter while loop when bottom temperature is 3 degC greater than

 //starting temp

 while(temps[0] < 3 + startingBotTemp){

 //Print motor positions and temperatures to HMI

 printStatus();

 }

 //Indicates torches have been ignited

 Serial.println("CMD: Ignited");

 //Msg for status bar

 Serial.println("MSG: Fires lit, waiting for SS target");

}

//Moves motors to next positions

void moveMotors(int mode){

 //test to see if a move is desired

 if((bottomMotorPosition != bottomDesired) || (topMotorPosition !=

topDesired)){

 //constrain and calculate steps to move

 bottomSteps = constrain(bottomDesired, startPosition, endPosition) -

bottomMotorPosition;

 topSteps = constrain(topDesired, startPosition, endPosition) -

topMotorPosition;

 //set speed if if it has changed

 if(speedVal != constrain(newSpeedVal, 10, 600)){

 Serial.print("MSG: new speed ");

 Serial.print(constrain(newSpeedVal, 10, 600));

 Serial.println("");

 speedVal = constrain(newSpeedVal, 10, 600);

 usperstep = bottomMotor.setSpeed(speedVal);

 usperstep = topMotor.setSpeed((speedVal));

 }

 //set motor movement direction

 if(bottomSteps > 0){

 bottomDir = BACKWARD;

 }

 else if (bottomSteps < 0){

 bottomDir = FORWARD;

 bottomSteps = -1*bottomSteps;

162

 }

 if(topSteps > 0){

 topDir = BACKWARD;

 }

 else if (topSteps < 0){

 topDir = FORWARD;

 topSteps = -1*topSteps;

 }

 //Move motors!

 uint8_t retBottom = 0;

 uint8_t retTop = 0;

 int count = 0;

 while((bottomSteps > 0) || (topSteps > 0)){

 count ++;

 EEPROM.write(4,1);

 if(bottomSteps > 0){

 retBottom = bottomMotor.onestep(bottomDir, DOUBLE);

 bottomSteps --;

 }

 if(topSteps > 0){

 retTop = topMotor.onestep(topDir, DOUBLE);

 topSteps --;

 }

 //Modes; mode(0) is currently the only mode

 //called mode(1) available if desired

 if(mode == 0){

 //do nothing

 }

 else if(mode == 1){

 //check for serial

 parseSerial();

 }

 //Set timing of motor movement using a delay

 delay(usperstep/1000);

 }

 //Save motor positions

 saveMotorPositions(bottomDesired, topDesired);

 //Release motors to prevent overheating

 bottomMotor.release();

 topMotor.release();

 }

}

//Save motor positions for reference

void saveMotorPositions(int bottomPosition, int topPosition){

 //Update motor positions:

 bottomMotorPosition = bottomPosition;

 topMotorPosition = topPosition;

 //save bottom motor position to EEPROM

 BMP_a = bottomMotorPosition/256;

 BMP_b = bottomMotorPosition;

 EEPROM.write(2,BMP_a);

163

 EEPROM.write(3,BMP_b);

 //save top motor position to EEPROM

 TMP_a = topMotorPosition/256;

 TMP_b = topMotorPosition;

 EEPROM.write(0,TMP_a);

 EEPROM.write(1,TMP_b);

 EEPROM.write(4,0);

}

//Checks for data from HMI after the test has started

void parseSerial(){

 if(Serial.available()){

 while(1){

 while(Serial.available() > 0) {

 //correct motor positions

 int topActual;

 int bottomActual;

 //Checking for and setting correct motor positions

 if(topDesired != topMotorPosition){

 topActual = topDesired + (topMotorPosition -

topDesired)/abs(topMotorPosition - topDesired)*topSteps;

 }

 else{

 topActual = topMotorPosition;

 }

 if(bottomDesired != bottomMotorPosition){

 bottomActual = bottomDesired + (bottomMotorPosition -

bottomDesired)/abs(bottomMotorPosition - bottomDesired)*bottomSteps;

 }

 else{

 bottomActual = bottomMotorPosition;

 }

 //Save motor positions

 saveMotorPositions(bottomActual, topActual);

 //Record new desired motor positions

 bottomDesired = Serial.parseInt();

 topDesired = Serial.parseInt();

 newSpeedVal = Serial.parseInt();

 moveMotors(0); //Move motors

 Serial.println("CMD: Stopped");

 }

 }

 }

}

//read in temperatures from MAX31855 breakout boards

void readTemps(double *ptemps)

{

 //read values until acceptable

 double val_1;

//Bottom temp temperature

164

 double val_2;

//Top temp temperature

 //Power MAX31855 boards on and off to avoid ground looping effects

 thermoReadTime = millis();

 digitalWrite(thermo1VIN, HIGH);

//Power bottom thermocouple board on

 while(1){

 val_1 = thermo1.readCelsius();

//Store bottom temperature

 if((!isnan(val_1))&(!(val_1==0))){

 digitalWrite(thermo1VIN, LOW);

//Power bottom thermocouple board off

 digitalWrite(thermo2VIN, HIGH);

//Power top thermocouple board on

 while(1){

 val_2 = thermo2.readCelsius();

//Store top temperature

 if((!isnan(val_2))&(!(val_2==0))){

 digitalWrite(thermo2VIN, LOW);

//Power top thermocouple pin off

 break;

 }

 }

 break;

 }

 }

 thermoReadTime = millis() - thermoReadTime;

 //Cold bath temperature offsets

 const float b_o = -1.25;

//Bottom thermocouple offset (board specific)

 const float t_o = -0.5;

//Top thermocouple offset (board specific)

 //Apply cold offset to temps and save

 ptemps[0] = val_1 + b_o;

//bottom temperature

 ptemps[1] = val_2 + t_o;

//top temperature

}

//Print data to serial port

void printStatus(){

 readTemps(&temps[0]);

//Access temperature array

 //Bottom Motor Position:

 Serial.print(bottomMotorPosition);

 Serial.print("\t");

 //Bottom Temperature:

 Serial.print(temps[0]);

 Serial.print("\t");

 //Top Motor Position:

 Serial.print(topMotorPosition);

165

 Serial.print("\t");

 //Top Temperature:

 Serial.println(temps[1]);

}

AFMotor.h:

// Adafruit Motor shield library

// copyright Adafruit Industries LLC, 2009

// this code is public domain, enjoy!

/*

 * Usage Notes:

 * For PIC32, all features work properly with the following two

 * exceptions:

 *

 * 1) Because the PIC32 only has 5 PWM outputs, and the AFMotor shield

 * needs 6 to completely operate (four for motor outputs and two for RC

 * servos), the M1 motor output will not have PWM ability when used

 * with a PIC32 board. However, there is a very simple workaround. If

 * you need to drive a stepper or DC motor with PWM on motor output M1,

 * you can use the PWM output on pin 9 or pin 10 (normally use for RC

 * servo outputs on Arduino, not needed for RC servo outputs on PIC32)

 * to drive the PWM input for M1 by simply putting a jumper from pin 9

 * to pin 11 or pin 10 to pin 11. Then uncomment one of the two

 * #defines below to activate the PWM on either pin 9 or pin 10. You

 * will then have a fully functional micro-stepping for 2 stepper

 * motors, or four DC motor outputs with PWM.

 *

 * 2) There is a conflict between RC Servo outputs on pins 9 and pins 10

 * and the operation of DC motors and stepper motors as of 9/2012. This

 * issue will get fixed in future MPIDE releases, but at the present

 * time it means that the Motor Party example will NOT work properly.

 * Any time you attach an RC servo to pins 9 or pins 10, ALL PWM

 * outputs on the whole board will stop working. Thus no steppers or DC

 * motors.

 *

 */

// <BPS> 09/15/2012 Modified for use with chipKIT boards

#ifndef _AFMotor_h_

#define _AFMotor_h_

#include <inttypes.h>

#if defined(__AVR__)

 #include <avr/io.h>

 //#define MOTORDEBUG 1

 #define MICROSTEPS 16 // 8 or 16

 #define MOTOR12_64KHZ _BV(CS20) // no prescale

 #define MOTOR12_8KHZ _BV(CS21) // divide by 8

 #define MOTOR12_2KHZ _BV(CS21) | _BV(CS20) // divide by 32

166

 #define MOTOR12_1KHZ _BV(CS22) // divide by 64

 #define MOTOR34_64KHZ _BV(CS00) // no prescale

 #define MOTOR34_8KHZ _BV(CS01) // divide by 8

 #define MOTOR34_1KHZ _BV(CS01) | _BV(CS00) // divide by 64

 #define DC_MOTOR_PWM_RATE MOTOR34_8KHZ // PWM rate for DC motors

 #define STEPPER1_PWM_RATE MOTOR12_64KHZ // PWM rate for stepper 1

 #define STEPPER2_PWM_RATE MOTOR34_64KHZ // PWM rate for stepper 2

#elif defined(__PIC32MX__)

 //#define MOTORDEBUG 1

 // Uncomment the one of following lines if you have put a jumper from

 // either pin 9 to pin 11 or pin 10 to pin 11 on your Motor Shield.

 // Either will enable PWM for M1

 //#define PIC32_USE_PIN9_FOR_M1_PWM

 //#define PIC32_USE_PIN10_FOR_M1_PWM

 #define MICROSTEPS 16 // 8 or 16

 // For PIC32 Timers, define prescale settings by PWM frequency

 #define MOTOR12_312KHZ 0 // 1:1, actual frequency 312KHz

 #define MOTOR12_156KHZ 1 // 1:2, actual frequency 156KHz

 #define MOTOR12_64KHZ 2 // 1:4, actual frequency 78KHz

 #define MOTOR12_39KHZ 3 // 1:8, acutal frequency 39KHz

 #define MOTOR12_19KHZ 4 // 1:16, actual frequency 19KHz

 #define MOTOR12_8KHZ 5 // 1:32, actual frequency 9.7KHz

 #define MOTOR12_4_8KHZ 6 // 1:64, actual frequency 4.8KHz

 #define MOTOR12_2KHZ 7 // 1:256, actual frequency 1.2KHz

 #define MOTOR12_1KHZ 7 // 1:256, actual frequency 1.2KHz

 #define MOTOR34_312KHZ 0 // 1:1, actual frequency 312KHz

 #define MOTOR34_156KHZ 1 // 1:2, actual frequency 156KHz

 #define MOTOR34_64KHZ 2 // 1:4, actual frequency 78KHz

 #define MOTOR34_39KHZ 3 // 1:8, acutal frequency 39KHz

 #define MOTOR34_19KHZ 4 // 1:16, actual frequency 19KHz

 #define MOTOR34_8KHZ 5 // 1:32, actual frequency 9.7KHz

 #define MOTOR34_4_8KHZ 6 // 1:64, actual frequency 4.8KHz

 #define MOTOR34_2KHZ 7 // 1:256, actual frequency 1.2KHz

 #define MOTOR34_1KHZ 7 // 1:256, actual frequency 1.2KHz

 // PWM rate for DC motors.

 #define DC_MOTOR_PWM_RATE MOTOR34_39KHZ

 // Note: for PIC32, both of these must be set to the same value

 // since there's only one timebase for all 4 PWM outputs

 #define STEPPER1_PWM_RATE MOTOR12_39KHZ

 #define STEPPER2_PWM_RATE MOTOR34_39KHZ

#endif

// Bit positions in the 74HCT595 shift register output

#define MOTOR1_A 2

#define MOTOR1_B 3

#define MOTOR2_A 1

#define MOTOR2_B 4

#define MOTOR4_A 0

167

#define MOTOR4_B 6

#define MOTOR3_A 5

#define MOTOR3_B 7

// Constants that the user passes in to the motor calls

#define FORWARD 1

#define BACKWARD 2

#define BRAKE 3

#define RELEASE 4

// Constants that the user passes in to the stepper calls

#define SINGLE 1

#define DOUBLE 2

#define INTERLEAVE 3

#define MICROSTEP 4

/*

#define LATCH 4

#define LATCH_DDR DDRB

#define LATCH_PORT PORTB

#define CLK_PORT PORTD

#define CLK_DDR DDRD

#define CLK 4

#define ENABLE_PORT PORTD

#define ENABLE_DDR DDRD

#define ENABLE 7

#define SER 0

#define SER_DDR DDRB

#define SER_PORT PORTB

*/

// Arduino pin names for interface to 74HCT595 latch

#define MOTORLATCH 12

#define MOTORCLK 4

#define MOTORENABLE 7

#define MOTORDATA 8

class AFMotorController

{

 public:

 AFMotorController(void);

 void enable(void);

 friend class AF_DCMotor;

 void latch_tx(void);

 uint8_t TimerInitalized;

};

class AF_DCMotor

{

 public:

 AF_DCMotor(uint8_t motornum, uint8_t freq = DC_MOTOR_PWM_RATE);

 void run(uint8_t);

 void setSpeed(uint8_t);

168

 private:

 uint8_t motornum, pwmfreq;

};

class AF_Stepper {

 public:

 AF_Stepper(uint16_t, uint8_t);

 void step(uint16_t steps, uint8_t dir, uint8_t style = SINGLE);

 uint32_t setSpeed(uint16_t);

 uint8_t onestep(uint8_t dir, uint8_t style);

 void release(void);

 uint16_t revsteps; // # steps per revolution

 uint8_t steppernum;

 uint32_t usperstep, steppingcounter;

 private:

 uint8_t currentstep;

};

uint8_t getlatchstate(void);

#endif

AFMotor.cpp:

// Adafruit Motor shield library

// copyright Adafruit Industries LLC, 2009

// this code is public domain, enjoy!

#if (ARDUINO >= 100)

 #include "Arduino.h"

#else

 #if defined(__AVR__)

 #include <avr/io.h>

 #endif

 #include "WProgram.h"

#endif

#include "AFMotor.h"

static uint8_t latch_state;

#if (MICROSTEPS == 8)

uint8_t microstepcurve[] = {0, 50, 98, 142, 180, 212, 236, 250, 255};

#elif (MICROSTEPS == 16)

uint8_t microstepcurve[] = {0, 25, 50, 74, 98, 120, 141, 162, 180, 197,

212, 225, 236, 244, 250, 253, 255};

#endif

AFMotorController::AFMotorController(void) {

 TimerInitalized = false;

}

169

void AFMotorController::enable(void) {

 // setup the latch

 /*

 LATCH_DDR |= _BV(LATCH);

 ENABLE_DDR |= _BV(ENABLE);

 CLK_DDR |= _BV(CLK);

 SER_DDR |= _BV(SER);

 */

 pinMode(MOTORLATCH, OUTPUT);

 pinMode(MOTORENABLE, OUTPUT);

 pinMode(MOTORDATA, OUTPUT);

 pinMode(MOTORCLK, OUTPUT);

 latch_state = 0;

 latch_tx(); // "reset"

 //ENABLE_PORT &= ~_BV(ENABLE); // enable the chip outputs!

 digitalWrite(MOTORENABLE, LOW);

}

void AFMotorController::latch_tx(void) {

 uint8_t i;

 //LATCH_PORT &= ~_BV(LATCH);

 digitalWrite(MOTORLATCH, LOW);

 //SER_PORT &= ~_BV(SER);

 digitalWrite(MOTORDATA, LOW);

 for (i=0; i<8; i++) {

 //CLK_PORT &= ~_BV(CLK);

 digitalWrite(MOTORCLK, LOW);

 if (latch_state & _BV(7-i)) {

 //SER_PORT |= _BV(SER);

 digitalWrite(MOTORDATA, HIGH);

 } else {

 //SER_PORT &= ~_BV(SER);

 digitalWrite(MOTORDATA, LOW);

 }

 //CLK_PORT |= _BV(CLK);

 digitalWrite(MOTORCLK, HIGH);

 }

 //LATCH_PORT |= _BV(LATCH);

 digitalWrite(MOTORLATCH, HIGH);

}

static AFMotorController MC;

/**

 MOTORS

**/

inline void initPWM1(uint8_t freq) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

170

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer2A on PB3 (Arduino pin #11)

 TCCR2A |= _BV(COM2A1) | _BV(WGM20) | _BV(WGM21);

 TCCR2B = freq & 0x7;

 // fast PWM, turn on oc2a

 OCR2A = 0;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 11 is now PB5 (OC1A)

 TCCR1A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a

 TCCR1B = (freq & 0x7) | _BV(WGM12);

 OCR1A = 0;

#elif defined(__PIC32MX__)

 #if defined(PIC32_USE_PIN9_FOR_M1_PWM)

 // Make sure that pin 11 is an input, since we have tied together

 // 9 and 11

 pinMode(9, OUTPUT);

 pinMode(11, INPUT);

 if (!MC.TimerInitalized)

 { // Set up Timer2 for 80MHz counting from 0 to 256

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0

 T2CON = 0x8000 | ((freq & 0x07) << 4);

 TMR2 = 0x0000;

 PR2 = 0x0100;

 MC.TimerInitalized = true;

 }

 // Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase

 OC4CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6

 OC4RS = 0x0000;

 OC4R = 0x0000;

 #elif defined(PIC32_USE_PIN10_FOR_M1_PWM)

 // Make sure that pin 11 is an input, since we have tied together

 // 9 and 11

 pinMode(10, OUTPUT);

 pinMode(11, INPUT);

 if (!MC.TimerInitalized)

 { // Set up Timer2 for 80MHz counting from 0 to 256’

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0

 T2CON = 0x8000 | ((freq & 0x07) << 4);

 TMR2 = 0x0000;

 PR2 = 0x0100;

 MC.TimerInitalized = true;

 }

 // Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase

 OC5CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6

 OC5RS = 0x0000;

 OC5R = 0x0000;

 #else

 // If we are not using PWM for pin 11, then just do digital

 digitalWrite(11, LOW);

 #endif

#else

 #error "This chip is not supported!"

#endif

171

 #if !defined(PIC32_USE_PIN9_FOR_M1_PWM) &&

!defined(PIC32_USE_PIN10_FOR_M1_PWM)

 pinMode(11, OUTPUT);

 #endif

}

inline void setPWM1(uint8_t s) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer2A on PB3 (Arduino pin #11)

 OCR2A = s;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 11 is now PB5 (OC1A)

 OCR1A = s;

#elif defined(__PIC32MX__)

 #if defined(PIC32_USE_PIN9_FOR_M1_PWM)

 // Set the OC4 (pin 9) PMW duty cycle from 0 to 255

 OC4RS = s;

 #elif defined(PIC32_USE_PIN10_FOR_M1_PWM)

 // Set the OC5 (pin 10) PMW duty cycle from 0 to 255

 OC5RS = s;

 #else

 // If we are not doing PWM output for M1, then just use on/off

 if (s > 127)

 {

 digitalWrite(11, HIGH);

 }

 else

 {

 digitalWrite(11, LOW);

 }

 #endif

#else

 #error "This chip is not supported!"

#endif

}

inline void initPWM2(uint8_t freq) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer2B (pin 3)

 TCCR2A |= _BV(COM2B1) | _BV(WGM20) | _BV(WGM21);

 TCCR2B = freq & 0x7;

 // fast PWM, turn on oc2b

 OCR2B = 0;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 3 is now PE5 (OC3C)

 TCCR3A |= _BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c

 TCCR3B = (freq & 0x7) | _BV(WGM12);

 OCR3C = 0;

#elif defined(__PIC32MX__)

172

 if (!MC.TimerInitalized)

 { // Set up Timer2 for 80MHz counting from 0 to 256

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0

 T2CON = 0x8000 | ((freq & 0x07) << 4);

 TMR2 = 0x0000;

 PR2 = 0x0100;

 MC.TimerInitalized = true;

 }

 // Setup OC1 (pin3) in PWM mode, with Timer2 as timebase

 OC1CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6

 OC1RS = 0x0000;

 OC1R = 0x0000;

#else

 #error "This chip is not supported!"

#endif

 pinMode(3, OUTPUT);

}

inline void setPWM2(uint8_t s) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer2A on PB3 (Arduino pin #11)

 OCR2B = s;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 11 is now PB5 (OC1A)

 OCR3C = s;

#elif defined(__PIC32MX__)

 // Set the OC1 (pin3) PMW duty cycle from 0 to 255

 OC1RS = s;

#else

 #error "This chip is not supported!"

#endif

}

inline void initPWM3(uint8_t freq) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer0A / PD6 (pin 6)

 TCCR0A |= _BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on

OC0A

 //TCCR0B = freq & 0x7;

 OCR0A = 0;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 6 is now PH3 (OC4A)

 TCCR4A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a

 TCCR4B = (freq & 0x7) | _BV(WGM12);

 //TCCR4B = 1 | _BV(WGM12);

 OCR4A = 0;

#elif defined(__PIC32MX__)

173

 if (!MC.TimerInitalized)

 { // Set up Timer2 for 80MHz counting from 0 to 256

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0

 T2CON = 0x8000 | ((freq & 0x07) << 4);

 TMR2 = 0x0000;

 PR2 = 0x0100;

 MC.TimerInitalized = true;

 }

 // Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase

 OC3CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6

 OC3RS = 0x0000;

 OC3R = 0x0000;

#else

 #error "This chip is not supported!"

#endif

 pinMode(6, OUTPUT);

}

inline void setPWM3(uint8_t s) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer0A on PB3 (Arduino pin #6)

 OCR0A = s;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 6 is now PH3 (OC4A)

 OCR4A = s;

#elif defined(__PIC32MX__)

 // Set the OC3 (pin 6) PMW duty cycle from 0 to 255

 OC3RS = s;

#else

 #error "This chip is not supported!"

#endif

}

inline void initPWM4(uint8_t freq) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer0B / PD5 (pin 5)

 TCCR0A |= _BV(COM0B1) | _BV(WGM00) | _BV(WGM01);

 // fast PWM, turn on oc0a

 //TCCR0B = freq & 0x7;

 OCR0B = 0;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 5 is now PE3 (OC3A)

 TCCR3A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a

 TCCR3B = (freq & 0x7) | _BV(WGM12);

 //TCCR4B = 1 | _BV(WGM12);

 OCR3A = 0;

174

#elif defined(__PIC32MX__)

 if (!MC.TimerInitalized)

 { // Set up Timer2 for 80MHz counting from 0 to 256

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0;

 // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0

 T2CON = 0x8000 | ((freq & 0x07) << 4);

 TMR2 = 0x0000;

 PR2 = 0x0100;

 MC.TimerInitalized = true;

 }

 // Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase

 OC2CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6

 OC2RS = 0x0000;

 OC2R = 0x0000;

#else

 #error "This chip is not supported!"

#endif

 pinMode(5, OUTPUT);

}

inline void setPWM4(uint8_t s) {

#if defined(__AVR_ATmega8__) || \

 defined(__AVR_ATmega48__) || \

 defined(__AVR_ATmega88__) || \

 defined(__AVR_ATmega168__) || \

 defined(__AVR_ATmega328P__)

 // use PWM from timer0A on PB3 (Arduino pin #6)

 OCR0B = s;

#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 // on arduino mega, pin 6 is now PH3 (OC4A)

 OCR3A = s;

#elif defined(__PIC32MX__)

 // Set the OC2 (pin 5) PMW duty cycle from 0 to 255

 OC2RS = s;

#else

 #error "This chip is not supported!"

#endif

}

AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) {

 motornum = num;

 pwmfreq = freq;

 MC.enable();

 switch (num) {

 case 1:

 latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B);

 // set both motor pins to 0

 MC.latch_tx();

 initPWM1(freq);

 break;

 case 2:

 latch_state &= ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B);

 // set both motor pins to 0

 MC.latch_tx();

 initPWM2(freq);

175

 break;

 case 3:

 latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B);

 // set both motor pins to 0

 MC.latch_tx();

 initPWM3(freq);

 break;

 case 4:

 latch_state &= ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B);

 // set both motor pins to 0

 MC.latch_tx();

 initPWM4(freq);

 break;

 }

}

void AF_DCMotor::run(uint8_t cmd) {

 uint8_t a, b;

 switch (motornum) {

 case 1:

 a = MOTOR1_A; b = MOTOR1_B; break;

 case 2:

 a = MOTOR2_A; b = MOTOR2_B; break;

 case 3:

 a = MOTOR3_A; b = MOTOR3_B; break;

 case 4:

 a = MOTOR4_A; b = MOTOR4_B; break;

 default:

 return;

 }

 switch (cmd) {

 case FORWARD:

 latch_state |= _BV(a);

 latch_state &= ~_BV(b);

 MC.latch_tx();

 break;

 case BACKWARD:

 latch_state &= ~_BV(a);

 latch_state |= _BV(b);

 MC.latch_tx();

 break;

 case RELEASE:

 latch_state &= ~_BV(a); // A and B both low

 latch_state &= ~_BV(b);

 MC.latch_tx();

 break;

 }

}

void AF_DCMotor::setSpeed(uint8_t speed) {

 switch (motornum) {

 case 1:

 setPWM1(speed); break;

 case 2:

 setPWM2(speed); break;

 case 3:

176

 setPWM3(speed); break;

 case 4:

 setPWM4(speed); break;

 }

}

/**

 STEPPERS

**/

AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) {

 MC.enable();

 revsteps = steps;

 steppernum = num;

 currentstep = 0;

 if (steppernum == 1) {

 latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) &

 ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0

 MC.latch_tx();

 // enable both H bridges

 pinMode(11, OUTPUT);

 pinMode(3, OUTPUT);

 digitalWrite(11, HIGH);

 digitalWrite(3, HIGH);

 // use PWM for micro-stepping support

 initPWM1(STEPPER1_PWM_RATE);

 initPWM2(STEPPER1_PWM_RATE);

 setPWM1(255);

 setPWM2(255);

 } else if (steppernum == 2) {

 latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) &

 ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0

 MC.latch_tx();

 // enable both H bridges

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

 digitalWrite(5, HIGH);

 digitalWrite(6, HIGH);

 // use PWM for micro-stepping support

 // use PWM for micro-stepping support

 initPWM3(STEPPER2_PWM_RATE);

 initPWM4(STEPPER2_PWM_RATE);

 setPWM3(255);

 setPWM4(255);

 }

}

uint32_t AF_Stepper::setSpeed(uint16_t rpm) {

 usperstep = 60000000 / ((uint32_t)revsteps * (uint32_t)rpm);

 steppingcounter = 0;

177

 return usperstep;

}

void AF_Stepper::release(void) {

 if (steppernum == 1) {

 latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) &

 ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0

 MC.latch_tx();

 } else if (steppernum == 2) {

 latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) &

 ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0

 MC.latch_tx();

 }

}

void AF_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) {

 uint32_t uspers = usperstep;

 uint8_t ret = 0;

 if (style == INTERLEAVE) {

 uspers /= 2;

 }

 else if (style == MICROSTEP) {

 uspers /= MICROSTEPS;

 steps *= MICROSTEPS;

#ifdef MOTORDEBUG

 Serial.print("steps = "); Serial.println(steps, DEC);

#endif

 }

 while (steps--) {

 ret = onestep(dir, style);

 delay(uspers/1000); // in ms

 steppingcounter += (uspers % 1000);

 if (steppingcounter >= 1000) {

 delay(1);

 steppingcounter -= 1000;

 }

 }

 if (style == MICROSTEP) {

 while ((ret != 0) && (ret != MICROSTEPS)) {

 ret = onestep(dir, style);

 delay(uspers/1000); // in ms

 steppingcounter += (uspers % 1000);

 if (steppingcounter >= 1000) {

 delay(1);

 steppingcounter -= 1000;

 }

 }

 }

}

uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) {

 uint8_t a, b, c, d;

 uint8_t ocrb, ocra;

178

 ocra = ocrb = 255;

 if (steppernum == 1) {

 a = _BV(MOTOR1_A);

 b = _BV(MOTOR2_A);

 c = _BV(MOTOR1_B);

 d = _BV(MOTOR2_B);

 } else if (steppernum == 2) {

 a = _BV(MOTOR3_A);

 b = _BV(MOTOR4_A);

 c = _BV(MOTOR3_B);

 d = _BV(MOTOR4_B);

 } else {

 return 0;

 }

 // next determine what sort of stepping procedure we're up to

 if (style == SINGLE) {

 if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird

 if (dir == FORWARD) {

 currentstep += MICROSTEPS/2;

 }

 else {

 currentstep -= MICROSTEPS/2;

 }

 } else { // go to the next even step

 if (dir == FORWARD) {

 currentstep += MICROSTEPS;

 }

 else {

 currentstep -= MICROSTEPS;

 }

 }

 } else if (style == DOUBLE) {

 if (! (currentstep/(MICROSTEPS/2) % 2)) {

 // we're at an even step, weird

 if (dir == FORWARD) {

 currentstep += MICROSTEPS/2;

 } else {

 currentstep -= MICROSTEPS/2;

 }

 } else { // go to the next odd step

 if (dir == FORWARD) {

 currentstep += MICROSTEPS;

 } else {

 currentstep -= MICROSTEPS;

 }

 }

 } else if (style == INTERLEAVE) {

 if (dir == FORWARD) {

 currentstep += MICROSTEPS/2;

 } else {

 currentstep -= MICROSTEPS/2;

 }

 }

 if (style == MICROSTEP) {

179

 if (dir == FORWARD) {

 currentstep++;

 } else {

 // BACKWARDS

 currentstep--;

 }

 currentstep += MICROSTEPS*4;

 currentstep %= MICROSTEPS*4;

 ocra = ocrb = 0;

 if ((currentstep >= 0) && (currentstep < MICROSTEPS)) {

 ocra = microstepcurve[MICROSTEPS - currentstep];

 ocrb = microstepcurve[currentstep];

 } else if ((currentstep >= MICROSTEPS) && (currentstep <

MICROSTEPS*2)) {

 ocra = microstepcurve[currentstep - MICROSTEPS];

 ocrb = microstepcurve[MICROSTEPS*2 - currentstep];

 } else if ((currentstep >= MICROSTEPS*2) && (currentstep <

MICROSTEPS*3)) {

 ocra = microstepcurve[MICROSTEPS*3 - currentstep];

 ocrb = microstepcurve[currentstep - MICROSTEPS*2];

 } else if ((currentstep >= MICROSTEPS*3) && (currentstep <

MICROSTEPS*4)) {

 ocra = microstepcurve[currentstep - MICROSTEPS*3];

 ocrb = microstepcurve[MICROSTEPS*4 - currentstep];

 }

 }

 currentstep += MICROSTEPS*4;

 currentstep %= MICROSTEPS*4;

#ifdef MOTORDEBUG

 Serial.print("current step: "); Serial.println(currentstep, DEC);

 Serial.print(" pwmA = "); Serial.print(ocra, DEC);

 Serial.print(" pwmB = "); Serial.println(ocrb, DEC);

#endif

 if (steppernum == 1) {

 setPWM1(ocra);

 setPWM2(ocrb);

 } else if (steppernum == 2) {

 setPWM3(ocra);

 setPWM4(ocrb);

 }

 // release all

 latch_state &= ~a & ~b & ~c & ~d; // all motor pins to 0

 //Serial.println(step, DEC);

 if (style == MICROSTEP) {

 if ((currentstep >= 0) && (currentstep < MICROSTEPS))

 latch_state |= a | b;

 if ((currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2))

 latch_state |= b | c;

 if ((currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3))

180

 latch_state |= c | d;

 if ((currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4))

 latch_state |= d | a;

 } else {

 switch (currentstep/(MICROSTEPS/2)) {

 case 0:

 latch_state |= a; // energize coil 1 only

 break;

 case 1:

 latch_state |= a | b; // energize coil 1+2

 break;

 case 2:

 latch_state |= b; // energize coil 2 only

 break;

 case 3:

 latch_state |= b | c; // energize coil 2+3

 break;

 case 4:

 latch_state |= c; // energize coil 3 only

 break;

 case 5:

 latch_state |= c | d; // energize coil 3+4

 break;

 case 6:

 latch_state |= d; // energize coil 4 only

 break;

 case 7:

 latch_state |= d | a; // energize coil 1+4

 break;

 }

 }

 MC.latch_tx();

 return currentstep;

}

Adafruit_MAX81855.h:

/***

 This is a library for the Adafruit Thermocouple Sensor w/MAX31855K

 Designed specifically to work with the Adafruit Thermocouple Sensor

 ----> https://www.adafruit.com/products/269

 These displays use SPI to communicate, 3 pins are required to

 Interface Adafruit invests time and resources providing this open

 Source code, please support Adafruit and open-source hardware by

 purchasing products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.

 BSD license, all text above must be included in any redistribution

 **/

#if (ARDUINO >= 100)

181

 #include "Arduino.h"

#else

 #include "WProgram.h"

#endif

class Adafruit_MAX31855 {

 public:

 Adafruit_MAX31855(int8_t SCLK, int8_t CS, int8_t MISO);

 double readInternal(void);

 double readCelsius(void);

 double readFarenheit(void);

 uint8_t readError();

 private:

 int8_t sclk, miso, cs;

 uint32_t spiread32(void);

};

Adafruit_MAX81855.cpp:

/***

 This is a library for the Adafruit Thermocouple Sensor w/MAX31855K

 Designed specifically to work with the Adafruit Thermocouple Sensor

 ----> https://www.adafruit.com/products/269

 These displays use SPI to communicate, 3 pins are required to

 Interface Adafruit invests time and resources providing this open

 source code, please support Adafruit and open-source hardware by

 purchasing products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.

 BSD license, all text above must be included in any redistribution

 **/

#include "Adafruit_MAX31855.h"

#include <avr/pgmspace.h>

#include <util/delay.h>

#include <stdlib.h>

Adafruit_MAX31855::Adafruit_MAX31855(int8_t SCLK, int8_t CS, int8_t MISO)

{

 sclk = SCLK;

 cs = CS;

 miso = MISO;

 //define pin modes

 pinMode(cs, OUTPUT);

 pinMode(sclk, OUTPUT);

 pinMode(miso, INPUT);

 digitalWrite(cs, HIGH);

}

182

double Adafruit_MAX31855::readInternal(void) {

 uint32_t v;

 v = spiread32();

 // ignore bottom 4 bits - they're just thermocouple data

 v >>= 4;

 // pull the bottom 11 bits off

 float internal = v & 0x7FF;

 internal *= 0.0625; // LSB = 0.0625 degrees

 // check sign bit!

 if (v & 0x800)

 internal *= -1;

 //Serial.print("\tInternal Temp: "); Serial.println(internal);

 return internal;

}

double Adafruit_MAX31855::readCelsius(void) {

 int32_t v;

 v = spiread32();

 //Serial.print("0x"); Serial.println(v, HEX);

 /*

 float internal = (v >> 4) & 0x7FF;

 internal *= 0.0625;

 if ((v >> 4) & 0x800)

 internal *= -1;

 Serial.print("\tInternal Temp: "); Serial.println(internal);

 */

 if (v & 0x7) {

 // uh oh, a serious problem!

 return NAN;

 }

 // get rid of internal temp data, and any fault bits

 v >>= 18;

 //Serial.println(v, HEX);

 double centigrade = v;

 // LSB = 0.25 degrees C

 centigrade *= 0.25;

 return centigrade;

}

uint8_t Adafruit_MAX31855::readError() {

 return spiread32() & 0x7;

}

double Adafruit_MAX31855::readFarenheit(void) {

 float f = readCelsius();

183

 f *= 9.0;

 f /= 5.0;

 f += 32;

 return f;

}

uint32_t Adafruit_MAX31855::spiread32(void) {

 int i;

 uint32_t d = 0;

 digitalWrite(sclk, LOW);

 _delay_ms(1);

 digitalWrite(cs, LOW);

 _delay_ms(1);

 for (i=31; i>=0; i--)

 {

 digitalWrite(sclk, LOW);

 _delay_ms(1);

 d <<= 1;

 if (digitalRead(miso)) {

 d |= 1;

 }

 digitalWrite(sclk, HIGH);

 _delay_ms(1);

 }

 digitalWrite(cs, HIGH);

 //Serial.println(d, HEX);

 return d;

}

PID_v1.h:

#ifndef PID_v1_h

#define PID_v1_h

#define LIBRARY_VERSION 1.0.0

class PID

{

 public:

 //Constants used in some of the functions below

 #define AUTOMATIC 1

 #define MANUAL 0

 #define DIRECT 0

 #define REVERSE 1

 //commonly used functions

**

 // * constructor. links the PID to the Input, Output, and

 PID(double*, double*, double*,

 double, double, double, int);

184

 // Setpoint. Initial tuning parameters are also set here

 // * sets PID to either Manual (0) or Auto (non-0)

 void SetMode(int Mode);

 // * performs the PID calculation. it should be

 // called every time loop() cycles. ON/OFF and

 // calculation frequency can be set using SetMode

 // SetSampleTime respectively

 bool Compute();

 //clamps the output to a specific range. 0-255 by default, but

 //it's likely the user will want to change this depending on

 //the application

 void SetOutputLimits(double, double);

 //available but not commonly used functions

**

 // * While most users will set the tunings once in the

 // constructor, this function gives the user the option

 // of changing tunings during runtime for Adaptive control

 void SetTunings(double, double, double);

 // * Sets the Direction, or "Action" of the controller. DIRECT

 // means the output will increase when error is positive. REVERSE

 // means the opposite. it's very unlikely that this will be needed

 // once it is set in the constructor.

 // * sets the frequency, in Milliseconds, with which

 void SetControllerDirection(int);

 // the PID calculation is performed. default is 100

 void SetSampleTime(int);

 //Display functions

**

 double GetKp(); // These functions query the pid for interal values.

 double GetKi(); // they were created mainly for the pid front-end,

 double GetKd(); // where it's important to know what is actually

 int GetMode(); // inside the PID.

 int GetDirection();

 private:

 void Initialize();

 double dispKp; // * we'll hold on to the tuning parameters in user-

 double dispKi; // entered format for display purposes

 double dispKd;

 double kp; // * (P)roportional Tuning Parameter

 double ki; // * (I)ntegral Tuning Parameter

 double kd; // * (D)erivative Tuning Parameter

 int controllerDirection;

 double *myInput; // * Pointers to the Input, Output, and Setpoint

 double *myOutput; // This creates a hard link between the variables

 double *mySetpoint;// and the variables PID, freeing the user from

 // having to constantly tell us what these

 // values are. with pointers we'll just know.

185

 unsigned long lastTime;

 double ITerm, lastInput;

 unsigned long SampleTime;

 double outMin, outMax;

 bool inAuto;

};

#endif

PID_v1.cpp:

/***

 * Arduino PID Library - Version 1.0.1

 * by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com

 *

 * This Library is licensed under a GPLv3 License

***/

#if ARDUINO >= 100

 #include "Arduino.h"

#else

 #include "WProgram.h"

#endif

#include <PID_v1.h>

/*Constructor(...)**

 * The parameters specified here are those for which we can't set

 * up reliable defaults, so we need to have the user set them.

***/

PID::PID(double* Input, double* Output, double* Setpoint,

 double Kp, double Ki, double Kd, int ControllerDirection)

{

 myOutput = Output;

 myInput = Input;

 mySetpoint = Setpoint;

 inAuto = false;

 PID::SetOutputLimits(0, 255); //default output limit corresponds to

 //the arduino pwm limits

 SampleTime = 100; //default Controller Sample Time is 0.1 seconds

 PID::SetControllerDirection(ControllerDirection);

 PID::SetTunings(Kp, Ki, Kd);

 lastTime = millis()-SampleTime;

}

/* Compute()

**

 * This, as they say, is where the magic happens. this function

 * should be called every time "void loop()" executes. the function

186

* will decide for itself whether a new pid Output needs to be computed.

* returns true when the output is computed, false when nothing has been

* done.

***/

bool PID::Compute()

{

 if(!inAuto) return false;

 unsigned long now = millis();

 unsigned long timeChange = (now - lastTime);

 if(timeChange>=SampleTime)

 {

 /*Compute all the working error variables*/

 double input = *myInput;

 double error = *mySetpoint - input;

 ITerm+= (ki * error);

 if(ITerm > outMax) ITerm= outMax;

 else if(ITerm < outMin) ITerm= outMin;

 double dInput = (input - lastInput);

 /*Compute PID Output*/

 double output = kp * error + ITerm- kd * dInput;

 if(output > outMax) output = outMax;

 else if(output < outMin) output = outMin;

 *myOutput = output;

 /*Remember some variables for next time*/

 lastInput = input;

 lastTime = now;

 return true;

 }

 else return false;

}

/*SetTunings(...)***

 * This function allows the controller's dynamic performance to be

 * adjusted. it's called automatically from the constructor, but tunings

 * can also be adjusted on the fly during normal operation

***/

void PID::SetTunings(double Kp, double Ki, double Kd)

{

 if (Kp<0 || Ki<0 || Kd<0) return;

 dispKp = Kp; dispKi = Ki; dispKd = Kd;

 double SampleTimeInSec = ((double)SampleTime)/1000;

 kp = Kp;

 ki = Ki * SampleTimeInSec;

 kd = Kd / SampleTimeInSec;

 if(controllerDirection ==REVERSE)

 {

 kp = (0 - kp);

 ki = (0 - ki);

 kd = (0 - kd);

 }

187

}

/*SetSampleTime(...)**

 * sets the period, in Milliseconds, at which the calculation is performed

***/

void PID::SetSampleTime(int NewSampleTime)

{

 if (NewSampleTime > 0)

 {

 double ratio = (double)NewSampleTime

 / (double)SampleTime;

 ki *= ratio;

 kd /= ratio;

 SampleTime = (unsigned long)NewSampleTime;

 }

}

/*

SetOutputLimits(...)**

 * This function will be used far more often than SetInputLimits.

 * while the input to the controller will generally be in the 0-1023

 * range (which is the default already,) the output will be a little

 * different. maybe they'll be doing a time window and will need 0-

 * 8000 or something. or maybe they'll want to clamp it from 0-125.

 * who knows. at any rate, that can all be done here.

***/

void PID::SetOutputLimits(double Min, double Max)

{

 if(Min >= Max) return;

 outMin = Min;

 outMax = Max;

 if(inAuto)

 {

 if(*myOutput > outMax) *myOutput = outMax;

 else if(*myOutput < outMin) *myOutput = outMin;

 if(ITerm > outMax) ITerm= outMax;

 else if(ITerm < outMin) ITerm= outMin;

 }

}

/*SetMode(...)**

 * Allows the controller Mode to be set to manual (0) or Automatic (non-

 * zero) when the transition from manual to auto occurs, the controller is

 * automatically initialized

***/

void PID::SetMode(int Mode)

{

 bool newAuto = (Mode == AUTOMATIC);

 if(newAuto == !inAuto)

 { /*we just went from manual to auto*/

 PID::Initialize();

 }

 inAuto = newAuto;

}

188

/*Initialize()**

 * does all the things that need to happen to ensure a bumpless transfer

 * from manual to automatic mode.

***/

void PID::Initialize()

{

 ITerm = *myOutput;

 lastInput = *myInput;

 if(ITerm > outMax) ITerm = outMax;

 else if(ITerm < outMin) ITerm = outMin;

}

/*SetControllerDirection(...)***

 * The PID will either be connected to a DIRECT acting process (+Output

 * leads to +Input) or a REVERSE acting process(+Output leads to -Input.)

 * we need to know which one, because otherwise we may increase the output

 * when we should be decreasing. This is called from the constructor.

***/

void PID::SetControllerDirection(int Direction)

{

 if(inAuto && Direction !=controllerDirection)

 {

 kp = (0 - kp);

 ki = (0 - ki);

 kd = (0 - kd);

 }

 controllerDirection = Direction;

}

/* Status Functions***

 * Just because you set the Kp=-1 doesn't mean it actually happened.

 * these functions query the internal state of the PID. they're here for

 * display purposes. this are the functions the PID Front-end uses for

 * example

***/

double PID::GetKp(){ return dispKp; }

double PID::GetKi(){ return dispKi;}

double PID::GetKd(){ return dispKd;}

int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}

int PID::GetDirection(){ return controllerDirection;}

EEPROM.h:

/*

 EEPROM.h - EEPROM library

 Copyright (c) 2006 David A. Mellis. All right reserved.

 This library is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

189

 You should have received a copy of the GNU Lesser General Public

 License along with this library; if not, write to the Free Software

 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301

 USA

*/

#ifndef EEPROM_h

#define EEPROM_h

#include <inttypes.h>

class EEPROMClass

{

 public:

 uint8_t read(int);

 void write(int, uint8_t);

};

extern EEPROMClass EEPROM;

#endif

EEPROM.cpp:

/*

 EEPROM.cpp - EEPROM library

 Copyright (c) 2006 David A. Mellis. All right reserved.

 This library is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public

 License along with this library; if not, write to the Free Software

 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301

 USA

*/

/***

 * Includes

***/

#include <avr/eeprom.h>

#include "Arduino.h"

#include "EEPROM.h"

/***

 * Definitions

***/

190

/***

 * Constructors

***/

/***

 * User API

***/

uint8_t EEPROMClass::read(int address)

{

 return eeprom_read_byte((unsigned char *) address);

}

void EEPROMClass::write(int address, uint8_t value)

{

 eeprom_write_byte((unsigned char *) address, value);

}

EEPROMClass EEPROM;

