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Abstract 

Breast cancer is one of the most common types of cancer and despite the advancements in the 

medical field, it still remains one of leading causes of death among women. In recent years, 

Breast Ultrasound (BUS) has emerged as a promising imaging modality for breast cancer 

diagnosis, offering high sensitivity and specificity. However, the interpretation of BUS images 

can be challenging and subject to human error. Computer-aided diagnosis (CAD) systems 

based on Machine Learning approaches have demonstrated a potential to assist radiologists in 

the interpretation of medical images. Nevertheless, the black-box nature of best performing 

CAD systems has raised concerns about their interpretability and trustworthiness.   

This thesis introduces MT-BI-RADS (Multi-Task BI-RADS), a novel explainable deep 

learning approach for breast cancer detection in BUS images. The proposed approach provides 

three levels of explanations for enabling radiologists to understand the decision-making 

process in predicting the presence of tumors in BUS images. First, the deep learning model 

outputs the categories of the BI-RADS descriptors that are used by radiologists for BUS image 

analysis and reporting. Second, the deep learning model outputs segmented regions in images 

that correspond to tumors. And third, the proposed approach outputs quantified contributions 

of each BI-RADS category toward the prediction of benign or malignant class, based on post-

hoc explanation with Shapley values. By utilizing a combination of explanations at different 

levels of abstraction using ad-hoc and post-hoc methods, the aim is to increase the transparency 

of the internal mechanisms employed by the deep learning model for analysis of BUS images.    

Experimental validation on a large BUS dataset demonstrates that the proposed model 

achieved high accuracy, sensitivity, and specificity for breast cancer detection. In addition, the 
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proposed approach achieved high-level of performance for prediction of the BI-RADS 

descriptors and lesion segmentation. The design of explainable AI methods for cancer 

detection can enhance the trustworthiness and acceptance of CAD systems by clinicians. 
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CHAPTER 1: INTRODUCTION     

1.1 Breast Cancer Diagnosis 

Breast cancer is one of the most common forms of cancer worldwide [1], affecting women 

and, less frequently, men [2]. According to the World Health Organization (WHO), breast 

cancer is the most common cancer in women both in the developed and developing world, with 

a staggering 2.3 million new cases diagnosed in 2020 alone [3]. Unfortunately, despite 

advances in medical technology and increased awareness, breast cancer remains a significant 

cause of mortality, accounting for approximately 11.7% of emerging cancer cases, and 6.9% 

of cancer deaths globally [4]. Early detection and accurate diagnosis of breast cancer are 

essential for improving patient outcomes and reducing mortality rates.    

1.2 Breast Ultrasound (BUS) 

Medical imaging plays a crucial role in the early detection and diagnosis of breast cancer. 

Mammography, Magnetic Resonance Imaging (MRI), and Ultrasound imaging are among the 

most commonly used imaging modalities for breast cancer detection [5]. Breast Ultrasound 

(BUS) is a non-invasive imaging technique that uses high-frequency sound waves to create 

images of breast tissue [6]. The BI-RADS (Breast Imaging Reporting and Data System) 

lexicon is commonly used by clinicians to interpret BUS images and classify breast 

abnormalities [7].  

In the past, mammography was considered the most efficient method for detecting breast 

cancer at an early stage. Nevertheless, due to several advantages such as absence of radiation, 
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quicker imaging, greater sensitivity and accuracy, and reduced cost, ultrasound (US) imaging 

has emerged as a significant alternative to mammography [8]. 

1.3 BUS Imaging 

Breast ultrasound imaging is a widely used diagnostic tool in clinical settings for detecting and 

diagnosing breast diseases. CAD system based on the US image involves the following steps: 

image preprocessing, feature extraction and selection, classification and/or segmentation. The 

classification task refers to classifying the images with tumors into benign or malignant 

category. The segmentation task refers to separating the lesion region from the background 

tissue [8]. Segmentation plays a significant role in image analysis and includes detection, 

feature extraction, classification, and treatment. Segmentation helps physicians quantify the 

volume of tissue in the breast for treatment planning [9]. In recent years, there has been 

significant research on developing breast ultrasound image analysis methods to improve 

diagnostic accuracy and assist clinicians in making better decisions [8].  

1.4 Computer-Aided Diagnosis (CAD) 

Computer-aided diagnosis (CAD) refers to the use of computer technology to assist medical 

professionals in interpretation of medical images. CAD systems have been widely used in 

various medical imaging applications, such as mammography, ultrasound, chest radiography, 

and computed tomography (CT) scans. CAD systems are designed to analyze medical images 

and provide a second opinion to radiologists and clinicians, improving diagnostic accuracy and 

efficiency [10, 11, 12]. 

In recent years, machine learning techniques have been increasingly applied to CAD systems 

to improve their performance. Machine learning algorithms such as support vector machines 
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(SVMs), artificial neural networks (ANNs), and random forests (RFs) have been used to 

analyze medical images and make diagnostic decisions. These machine learning approaches 

have shown promising results in improving the accuracy of CAD systems and reducing the 

workload of radiologists and clinicians [13,14]. 

Despite the potential benefits of CAD systems, their adoption in clinical practice has been 

limited. One of the main barriers to their adoption is the lack of transparency and 

interpretability of these systems [15]. Radiologists and clinicians may be hesitant to rely on 

CAD systems that provide limited or no information about the decision-making process. To 

address this issue, researchers have been developing explainable AI (XAI) techniques to 

improve the transparency and interpretability of CAD systems, which can help increase their 

acceptance by medical professionals [16]. 

1.5 Explainable AI 

To overcome challenges resulting from the black-box nature of machine learning algorithms 

designed for CAD systems, researchers have developed explainable AI (XAI) techniques to 

understand and interpret machine learning models. By providing insights into the most 

important features and variables that drive the predictions, XAI techniques can enable humans 

to trust and validate the decisions made by these models. Some of these techniques include 

model-agnostic methods, such as LIME and SHAP, which provide insights into the features 

that are most important for a given prediction, and model-specific techniques, such as decision 

trees and rule-based systems, which generate human-readable explanations of the decision-

making process [17].  
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In the medical field, XAI is of particular importance as it can help doctors and clinicians to 

understand how AI systems make predictions, ultimately leading to better clinical decision-

making [18]. XAI techniques can help to increase their acceptance by medical doctors and 

healthcare systems. With greater trust and understanding of AI systems, doctors may be more 

willing to adopt and utilize these systems in their clinical practice, leading to better patient 

outcomes and improved healthcare delivery. 

1.6 Proposed Method 

This thesis introduces an explainable deep learning model, MT-BI-RADS, for breast cancer 

detection using BUS images. The proposed model aims to provide transparent explanations for 

its predictions, enabling clinicians to understand how the model arrived at its decisions and 

increasing their confidence in the model's accuracy.  

The proposed explainable deep learning (DL) model uses a hybrid ad-hoc and post-hoc 

explainability approach and provides both visual and quantitative explanations. Specifically, 

the model outputs the predicted category of each BI-RADS descriptor, as well as providing 

visual explanations via highlighting tumor regions in the images by employing image 

segmentation. In addition, SHAP technique is applied to provide post-hoc quantitative 

explanations of the significance of each BI-RADS descriptor toward the model predictions.  

To evaluate the performance of the proposed model, we conducted experiments using a 

relatively large dataset of BUS images. The results demonstrate that the model achieves high 

accuracy and interpretability, with high sensitivity and specificity. 

The proposed explainable deep learning model for breast cancer detection has the potential to 

significantly improve the accuracy and interpretability of BUS image analysis for breast cancer 
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detection. The transparent explanations provided by the model can help medical professionals 

to better understand the diagnostic process and increase their confidence in the use of machine 

learning models for cancer detection.  

1.7 Thesis Contributions 

The thesis offers several contributions, as follows. 

• Development of an ad-hoc explainable multitask learning approach for breast cancer 

detection that concurrently outputs BI-RADS descriptors, tumor segmentation masks, 

and the tumor class. 

• Improvement in the predictive abilities of the model by incorporating branches for BI-

RADS descriptors classification and tumor segmentation into a multi-task learning 

framework. 

• Providing post-hoc explanations using Shapley Values to quantify the contributions of 

the BI-RADS descriptors to the tumor classification into benign or malignant 

categories. 

1.8 Thesis Organization 

The thesis is organized as follows. Chapter 2 reviews related works, and Chapter 3 describes 

the architecture of the proposed deep learning model and used explainability approaches.  

Chapter 4 presents the results of experimental validation of the proposed approach and 

describes the explainability of the model. Chapter 5 provides a summary and concludes the 

thesis. 
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CHAPTER 2: RELATED WORKS 

2.1 Breast Ultrasound Image Analysis 

Breast Ultrasound is a non-invasive imaging technique that uses high-frequency sound waves 

to produce images of the internal structures of the breast. It is particularly useful in evaluating 

breast lumps or abnormalities that are detected on a mammogram or clinical breast exam. BUS 

can help determine whether a lump is solid or fluid-filled, and whether it is benign or 

malignant, or for evaluation of breast abnormalities. In recent years, there has been increasing 

interest in the use of BUS for breast cancer screening and diagnosis. The ease of use and real-

time imaging capability make BUS a method of choice for guiding breast biopsies and other 

interventional procedures. The developments in BUS imaging tools, combined with the 

formulation of a standardized lexicon of solid mass features, have improved the diagnostic 

performance [19].  

In the past few decades, numerous ML and DL approaches were developed for analysis of BUS 

images to categorize the images as normal or abnormal. In a study conducted by Liao et al. 

[20], a deep learning-based classification algorithm was utilized to differentiate between 

benign and malignant breast lesions in BUS images. The algorithm demonstrated high 

accuracy, achieving an area under the curve (AUC) of 0.98. Almajalid et al. [21] modified the 

U-Net architecture which is frequently for medical image segmentation, to create a robust and 

accurate tumor segmentation network for BUS images. Kalaf et al. [22] presented an 

architecture for breast cancer classification with an attention mechanism in an adapted VGG16 

framework that distinguishes between the features of the background and targeted lesions. 

Tanaka et al. [23] designed a CAD scheme to classify benign and malignant tumors using an 
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ensemble of two CNN architectures. In another study [24], a Bayesian network based on Monte 

Carlo dropout was proposed to reduce accidental false positives and achieved a sensitivity of 

0.88. In [25], radiomic features were extracted from breast lesion images to aid in the tumor 

segmentation. The model used a convolutional deep autoencoder to simultaneously perform 

segmentation of the breast lesions and extract radiomic features from the segmented regions. 

The authors in [26] proposed a mobile phone-based model that takes a photo of the ultrasound 

report as input and performs diagnosis on each image in three steps: reducing noise in the taken 

photo, classifying the image into malignant or benign, and detecting anomalies in the model 

performance to reduce false negative rates. Chen et al [27] utilized a convolutional neural 

network (CNN) to segment breast lesions in BUS images. 

2.2 Explainability in ML 

The recent progress in Machine Learning algorithms has facilitated the resolution of numerous 

problems that were once challenging for humans to solve [28, 29]. Decision tree, linear 

regression, SVM, and other ML algorithms can produce models that make highly accurate 

predictions. However, they fall short in scenarios where large amounts of training data are 

involved or when tackling complex issues, such as image classification and speech recognition. 

Deep learning models have demonstrated ability to process vast amounts of complex data and 

resolve intricate challenges. However, a major disadvantage of deep learning models, in 

contrast to ML algorithms like decision trees, is their lack of interpretability, thereby are 

referred to as "black-box" models. This is because the model's calculations and the basis of the 

predictions are not transparent to the model developer. In contrast, a prediction made by a 

decision tree, for example, can be tracked to examine the steps that led to the model's ultimate 

prediction. Although accuracy is paramount in developing an ML model, in certain sectors 
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such as healthcare, finance, and criminal justice, the transparency and interpretability of a 

model's predictions are extremely important to ensure that relevant experts and stakeholders 

have a clear understanding of the behavior of the model [30]. This will allow them to make 

informed decisions and avoid making costly errors that could impact people's health, company 

finances, and more [31, 32, 33]. 

The approaches to interpretability and explainability in ML are broadly categorized into ad-

hoc (integrated) and post-hoc methods [28]. Integrated methods are based on using transparent 

ML approaches like linear regression, that are interpretable by the virtue of their design. Or, 

for more complex tasks using a hybrid approach, such as a combination of logistic regression 

and SVMs, can provide enhanced interpretability along with making up for the original 

model’s performance [28].   

Post-hoc explainable approaches extract information from a trained model to provide 

explanations. Thus, this class of approaches does not compromise a black-box model’s 

performance [28]. In these approaches the trained model is inspected to find a set of parameters 

that illuminate how the model calculates the predictions. This category usually includes 

explanations using visualizations of internal features [34, 35, 36], visualizations of local 

regions [37, 38, 39, 40], or textual explanations [41, 42, 43]. Many post-hoc methods are model 

agnostic and can be applied to provide explanations regardless of the trained model [44]. 

Among the many introduced post-hoc methods, SHAP [37] has been commonly used for 

interpreting model predictions by assigning an importance value to the contribution of each 

feature to a particular prediction. 
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2.3 Explainable ML in Medical Imaging 

Despite numerous efforts to utilize ML models for medical image analysis, these methods have 

yet to be widely embraced by healthcare professionals, primarily due to a lack of transparency 

in those models' predictions. As healthcare is a high-risk domain, it is imperative that experts 

have a full understanding of the models to make informed decisions that mitigate potential 

consequences, as there are concerns about the black-box nature of the developed ML methods 

in medical image analysis [44]. 

In the published literature, prior works have used saliency maps, such as CAM [45], GradCAM 

[46], and other visualization methods, to provide visual explanations of the models predictions 

[47, 48]. In [49] a CNN was developed that visualized the last convolution layer in order to 

explain the model developed for the classification of liver lesions. In [50, 51] the authors 

developed a network for breast cancer detection and used Grad-CAM to highlight the important 

regions of the input image. In [52] a convolution feature extractor along with a SVM classifier 

were implemented to classify images with signs of prostate cancer and generated CAM 

heatmaps to display the important regions of the lesions. The goal in these works is to explain 

the predictions by visualizing the regions of the image that lead to the final classification. Even 

though these visualizations can provide some level of explanation, highlighting a specific part 

of image does not provide full explanation, because there might be more than one pattern 

present in that specific part of image, and highlighting a region cannot explain if the model has 

been able to capture all those patterns or not.  

In recent years, there has been growing interest in developing explainable deep learning models 

for medical image analysis, particularly for cancer detection [53, 54, 55, 56, 57]. Explainable 

AI (XAI) has emerged as a promising approach for addressing the interpretability and 
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explainability issues of machine learning models, making them more accessible and 

trustworthy to clinicians and several works have focused on making explainable models for 

CAD [58, 59, 60].  

Several related studies introduced XAI methods for breast cancer detection based on the BI-

RADS lexicon. For example, Shen et al. [61] introduced an explainable ML classifier for 

locating suspected lesions in mammograms. Wu et al. [62] proposed DeepMiner, a DL 

architecture for tumor classification that uses BI-RADS descriptors for generating text 

explanations in mammography. Also, Kim et al. [63] developed DL models that utilized the 

tumor shape and margin in mammograms to predict the class label and BI-RADS category. 

One major drawback of these approaches in mammography is that they rely on only two or 

three BI-RADS descriptors, which may not provide enough information to fully elucidate the 

complex process of tumor classification. 

Among the XAI methods for BUS images, Zhang et al. [64] employed only the shape and 

margin descriptors to predict the tumor class in BUS images. In [65], an ensemble model was 

proposed with explanations based on statistical texture features of BUS images, which are less 

useful for radiologists. Also, approaches that concentrated on generating textual reports for 

explaining NN models for BUS [66], were proposed in the literature. BI-RADS-Net [67] 

proposed an ad-hoc explainable DL model for tumor classification and an extension of that 

work, BI-RADS-NET V2 [68], incorporates a quantitative explainer that employs a linear 

model to provide an interpretable alternative to the "black-box" classifier. Despite the 

advancements by the efforts in related works, the explainability of CAD systems for breast 

cancer diagnosis is still an open research problem that requires further attention. 
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CHAPTER 3: METHODS 

3.1 BI-RADS Lexicon 

The Breast Imaging Reporting and Data System (BI-RADS) lexicon is a standardized reporting 

system used by radiologists to communicate the findings of mammography, ultrasound, and 

MRI breast imaging studies. It was developed by the American College of Radiology (ACR) 

to improve communication between radiologists and referring physicians and to ensure 

consistent and accurate interpretation of breast imaging studies. 

The BI-RADS lexicon uses standardized terminology to describe the features of breast lesions, 

including size, shape, margins, density, and other characteristics. Each lesion is assigned a 

category based on the likelihood of malignancy, ranging from 0 (incomplete evaluation) to 6 

(known biopsy-proven malignancy). 

In simpler terms, the BI-RADS lexicon is a standardized language that radiologists use to 

describe breast imaging studies to other healthcare professionals. It helps ensure that everyone 

is using the same terminology and that the findings are accurately communicated. It also helps 

guide clinical decision-making by providing information about the likelihood of malignancy 

for each lesion.  

For BUS images, the BI-RADS descriptors are listed in Table 3-1. They include shape, 

orientation, margin, echo pattern, and posterior features. Examples of BUS images for the BI-

RADS descriptors are presented in the following figures. 
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Table 3-1 - Descriptors for BUS images 

BI-RADS Descriptors Descriptors Class 

Shape Oval, Round, Irregular 

Orientation Parallel, Not parallel 

Margin 

Circumscribed, Not circumscribed 

(Indistinct, Angular, Micro-lobulated, 

Spiculated) 

Echo Pattern 

Anechoic, Hypoechoic, Isoechoic, 

Hyperechoic, Complex cystic and solid, 

Heterogeneous 

Posterior Features 
No posterior features, Enhancement, 

Shadowing, Combined pattern 

 

Shape: This BI-RADS descriptor describes the shape of a mass seen on breast imaging, such 

as mammography or ultrasound. The possible shapes include round, oval, and irregular. Figure 

3-1 shows different shapes in breast tumors. 

 

Figure 3-1 Examples of breast tumors categorized by the defined shape patterns in the BI-RADS 

lexicon. The shape patterns include round, oval, and irregular, which describe the shape of a mass 

seen in a breast image. 

a) Round shaped tumor b) Oval shaped tumor c) Irregular shaped tumor 
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Margin: This BI-RADS descriptor describes the edges of a mass seen in breast imaging. The 

possible margin types include circumscribed and not-circumscribed, which itself divides into 

four subcategories of micro-lobulated, angular, indistinct, and spiculated margin (Figure 3-2). 

 

a) Circumscribed margin 

 

b) Indistinct margin 

 

c) Spiculated margin 

d) 

Angular margin 

 

e) Micro-lobulated margin 

 

 

Figure 3-2 Examples of breast tumors categorized by the defined margin patterns in the BI-RADS 

lexicon. The margin patterns include circumscribed and not-circumscribed, which divides into 

indistinct, spiculated, angular, and micro-lobulated categories, describing the edge of a mass seen on 

a breast image. 

Orientation: This BI-RADS descriptor describes the direction of a mass in relation to the 

surrounding breast tissue. The possible orientations include parallel to the skin and not parallel 

to the skin (Figure 3-3). 
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Echo pattern: This BI-RADS descriptor refers to the appearance of echoes on a breast 

ultrasound image (Figure 3-4). The ultrasound machine sends high-frequency sound waves 

through the breast tissue, and the echoes that bounce back are then translated into an image on 

the screen. The echo pattern is a description of the density and distribution of the echoes within 

the breast tissue. 

Posterior features: This BI-RADS descriptor describes the appearance of the tissue behind a 

mass or lesion seen on ultrasound. The possible features include posterior acoustic 

enhancement (increased brightness behind the mass), posterior acoustic shadowing (decreased 

brightness behind the mass), no posterior features, or a combination of both enhancement and 

acoustic shadowing (Figure 3-5). 

 

 

a) Tumor parallel to the skin 

 

b) Tumor not-parallel to the skin 

 

Figure 3-3 Examples of breast tumors categorized by the defined orientation patterns in the BI-

RADS lexicon. The orientation patterns include parallel and not-parallel, which describe the 

alignment of a mass seen on a breast image. 
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a) Anechoic echo pattern 

 

b) Hyperechoic echo pattern 

 

c) Complex cystic and solid 

echo pattern 

 

d) Hypoechoic echo pattern 

 

e) Isoechoic echo pattern 

 

f) Heterogeneous echo pattern 

 

Figure 3-4 Examples of breast tumors categorized by the defined echo patterns in the BI-RADS 

lexicon. The echo patterns include anechoic, hyperechoic, complex, hypoechoic, isoechoic, and 

heterogeneous, which describe the internal echo texture of a mass seen on a breast ultrasound. 
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a) No posterior features 

 

b) Enhancement posterior feature 

 

c) Shadowing posterior feature 

 

d) Combined posterior features 

 

Figure 3-5 Examples of breast tumors categorized by the defined posterior features in the BI-RADS 

lexicon. The posterior feature patterns include no posterior feature, posterior enhancement, 

shadowing, and combined features, which describe the characteristics of the posterior aspect of a 

mass seen on a breast ultrasound. 

The BI-RADS descriptors are crucial in assisting medical experts to identify the type of tumor 

and decide on the appropriate course of action to ensure the patient's optimal outcome. These 

standardized reporting tools allow physicians to precisely convey the tumor's properties and 

cooperate more efficiently with their peers to deliver complete care. As a result, the lexicon 

promotes a streamlined and productive decision-making procedure that ultimately leads to 

enhanced patient results. 
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The BI-RADS assessment categories are used to standardize the interpretation and reporting 

of breast imaging studies, including mammography, ultrasound, and MRI. There are six 

assessment categories in the BI-RADS system, ranging from 0 to 5, with additional sub-

categories that can be used to provide more specific information about the findings. Category 

0 is an incomplete assessment, indicating that additional imaging evaluation or comparison 

with prior studies is needed to make a final assessment. Category 1 is a negative assessment, 

indicating that there are no suspicious findings. Category 2 is a benign assessment, indicating 

the presence of benign findings such as cysts or lymph nodes. Category 3 is a probably benign 

assessment, indicating that there is a low likelihood (less than or equal to 2%) of malignancy, 

but short-term follow-up is recommended to ensure stability. Category 4 is a suspicious 

assessment, indicating that there are findings suspicious for malignancy, and biopsy or other 

further evaluation is recommended. Category 5 is a highly suggestive of malignancy 

assessment, indicating a high likelihood of malignancy, and biopsy or other appropriate action 

is recommended [69]. A summary of the 6 categories is provided found in Table 3-2. 

It is worth highlighting that the BI-RADS assessment categories do not provide a definitive 

diagnosis but serve as a framework to assist radiologists in evaluating breast abnormalities. 

The ultimate diagnosis and management strategy should be determined based on various 

factors, including imaging results, clinical data, and input from other healthcare professionals, 

and should involve discussions with the patient. The use of the BI-RADS system helps 

guarantee that an adequate level of assessment and follow-up is performed for every patient 

according to their imaging outcomes. 
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3.2 Data 

The proposed method was evaluated using 2,186 BUS images which were obtained by 

combining three different data sets: BUSI [70], BUSIS [71] and HMSS [72] dataset. The 

BUSIS dataset consists of 562 images, of which 306 images contain benign masses in 256 

contain malignant tumors. For the BUSI dataset, we used a subset of 630 images that contain  

Table 3-2 - BI-RADS assessment categories 

BI-RADS Category Assessment Malignancy Risk 

0 Incomplete/Need further imaging evaluation N/A 

1 Negative <1% 

2 Benign <1% 

3 Probably benign 2-10% 

4A Low suspicion of malignancy 2-10% 

4B Moderate suspicion of malignancy 10-50% 

4C High suspicion of malignancy 50-95% 

5 Highly suggestive of malignancy >95% 

6 Known biopsy-proven malignancy N/A 

 

mass findings, of which 421 have benign and 209 have malignant tumors. HMSS consists of 

1,700 images, out of which 720 are benign samples and the other 994 are malignant.   

The patterns of tumors in BUS images of benign samples are typically characterized by being 

parallel with the skin surface, oval-shaped, and possessing a circumscribed margin. In contrast, 

malignant samples exhibit a more diverse range of appearance and can vary significantly from 

image to image. Accordingly, learning features representations of malignant images is more 

challenging for the ML models in comparison to benign images. Given the limited number of 
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breast ultrasound images available from the three datasets, we used solely the malignant 

samples from the HMSS dataset with the other two datasets. Consequently, the models were 

evaluated on all BUSIS 562 and BUSI 630 images, as well as the 994 malignant images from 

the HMSS dataset.   

For more information on the BUSI, BUSIS, and HMSS datasets, please refer to their respective 

sources [70, 71, 72]. 

3.3 Network Architecture 

The proposed model MT-BI-RADS is an extension of BI-RADS-NET V1 and BI-RADS-NET 

V2 [68], which were also developed by our team. To provide a historical perspective in the 

development of the proposed method, we will first briefly introduce BI-RADS-NET V1 and 

BI-RADS-NET V2.   

3.3.1 BI-RADS-NET V1 

The structure of the BI-RADS-NET V1 is shown in Fig 3-6. It consists of two main parts: a 

shared backbone network and specific networks for each task, which include branches for 

predicting the BI-RADS descriptors, BI-RADS assessment category (i.e., likelihood of 

malignancy), and tumor category. The backbone network utilizes convolutional and max-

polling layers to extract important features from the input BUS images. The learned feature 

maps are used by the BI-RADS descriptors branch to predict the five descriptors from Table 

3-1. The outputs of the BI-RADS descriptors are combined with the feature maps from the 

base network and passed on to a regression branch to determine the likelihood of malignancy, 

which outputs a continuous value ranging from 0% to 100%. The tumor classification branch 
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combines the features maps from the backbone network and the other two branches to output 

a binary benign or malignant class label. 

 

Figure 3-6 Architecture of BI-RADS-NET V1 

The BI-RADS descriptors have specific ground-truth labels listed in Table 3-1, which include 

two classes for shape, three classes for orientation, six classes for echo pattern, and four classes 

for posterior features. Since the margin descriptor may have multiple annotations, the first 

branch for the margin in BI-RADS-NET V1 has only two classes (circumscribed and not-

circumscribed), and another sub-branch is introduced afterward that outputs binary values for 

the indistinct, angular, micro-lobulated, and spiculated margin sub-classes.    

The likelihood of malignancy branch outputs continuous values corresponding to the BI-RADS 

assessment categories shown in Table 3-2, with the median likelihood of malignancy adopted 

as follows: Category 3 – 1%, Category 4A – 6%, Category 4B – 30%, Category 4C – 72.5%, 

and Category 5 – 97.5%. Using a regression branch to predict continuous values for the 

likelihood of malignancy rather than categorical variables helps the network deal with inter-
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observer variability in the BI-RADS category labels. It is also worth noting that the used 

datasets do not contain images with BI-RADS 0, 1, 2, or 6 categories.   

In the multitask model, Task 1 to 5 are the BI-RADS descriptors, Task 6 to 9 are the sub-

classes for the margin BI-RADS descriptor, Task 10 is the BI-RADS likelihood of malignancy, 

and Task 11 is the tumor classification branch. For each task 𝑘, the network loss function is 

denoted by ℒ𝑘(𝑋𝑘, 𝑌𝑘), where 𝑋𝑘 is the predicted value and 𝑌𝑘 is the ground-truth label (for 

classification) or value (for regression). Since the outputs of the likelihood of malignancy 

branch (Task 10) and the tumor classification branch (Task 11) both reflect the level of risk 

that the present tumor in the image is malignant, we added an additional loss term ℒ𝑎 to enforce 

an agreement between the two branches. The total loss of the model is calculated as the 

weighted sum of all tasks, that is, ∑ 𝜆𝑖ℒ𝑖(𝑋𝑖 , 𝑌𝑖)𝐾
𝑖=1  + 𝜆𝑎ℒ𝑎 ( |𝑌11 − 𝑋10|,  |𝑌11 − 𝑌10|) 

[67]. The symbol 𝜆𝑖 denotes the weight coefficient of task 𝑖, 𝐾 = 11 is the number of tasks, and 

𝜆𝑎 is the weight coefficient for the ℒ𝑎 term 

3.3.2 BI-RADS-NET V2 

The second version of BI-RADS-NET introduced a quantitative explainer, that approximates 

the classifier, considered a 'black-box', with an explainable linear model. Fig 3-7 shows the 

architecture of BI-RADS-NET V2. The quantitative explainer predicts two weight vectors for 

benign and malignant descriptors, respectively, and calculates the dot products between the 

feature groups and the predicted weights. The outputs of the explainer, corresponding to benign 

and malignant, are expected to be equal to the classifier output before the final SoftMax layer. 

The residual is defined as the average differences between the explainer output and the 

classifier output on benign and malignant, reflecting the similarity between them. The 

explainer’s contribution of each descriptor is evaluated by the corresponding weight. The 
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different BI-RADS descriptors are not equally important in the diagnostic process, and the 

explainer provides a way to evaluate the contribution of each descriptor. 

 

Figure 3-7 Architecture of BI-RADS-NET V2 

3.3.3 MT-BI-RADS 

The explainable network proposed in this thesis is MT-BI-RADS, which is a revised version 

of BI-RADS-NET V1, with the aim to provide a greater level of explainability to the users for 

understanding the predictions made by the model. The architecture of MT-BI-RADS is 

depicted in Fig 3-8. One important addition in the new architecture is a segmentation branch 

to predict the tumor region in BUS images. The outputs of the proposed model provide 

information to radiologists regarding the model’s ability to differentiate the tumor region from 

the surrounding tissue in an ultrasound image and the area being considered as tumor region. 

Also, since the primary goal of this work is to explain the role of different BI-RADS descriptors 
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in the final prediction of the model, the BI-RADS category branch was removed from the 

architecture. 

 

Figure 3-8 Architecture of the proposed model 

 The proposed architecture offers explainability in the context of tumor detection by providing 

a comprehensive set of information about the input image. The system classifies each BI-

RADS descriptor into one of several categories and reports the corresponding probability of 

each category. Additionally, it produces a segmentation mask that highlights the region of the 

input image corresponding to the detected tumor.    

In this model architecture, Task 1 to 5 are the BI-RADS descriptors, Task 6 to 9 are the sub-

classes for the margin BI-RADS descriptor, Task 10 is the tumor classification branch, and last 

but not least, Task 11 is the image segmentation. The loss function for each task is denoted by 

ℒ, where 𝑋 is the predicted value and 𝑌 is the ground-truth label (for classification) or value 

(for regression). The total loss of the model is calculated as the weighted sum of all tasks, with 
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𝜆 denoting the weight coefficient of each task. Cross-entropy is used as loss function for the 

classification branches and Dice Loss with smoothness of 1 is used for the decoder (semantic 

segmentation) branch.  

∑ 𝜆𝑖ℒ𝑖(𝑋𝑖 , 𝑌𝑖)𝐾
𝑖=1  + 𝜆11ℒ𝐷𝑖𝑐𝑒 

The symbol 𝜆𝑖 denotes the weight coefficient of task 𝑖, 𝐾 is the number of tasks except image 

segmentation, and 𝜆11 is the weight coefficient for the dice loss term. For the loss weight 

coefficients 𝜆1 to 𝜆11, we adopted the following values: (0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 

0.5, 0.6). That is, the largest weight was assigned to the tumor class branch.  

To enhance the explainability this framework utilized Shapley Values to calculate the 

contribution of the different BI-RADS descriptors to the final classification of the input 

samples. This explanation can provide the medical staff with a clearer idea of how much 

emphasis the model exerts on the different BI-RADS descriptors when predicting the 

malignancy or benignancy of a tumor. In the next subsection we will elaborate on the 

implementation of this feature. 

3.4 Shapley Values 

Shapley values is a technique used in cooperative game theory to distribute the collective 

reward earned by a group of players among themselves in a just and equitable manner. The 

idea was initially proposed by economist Lloyd Shapley back in 1953 [74].   

In the domain of data science and machine learning, Shapley values are utilized to explain the 

results of a model by assessing the contribution of each feature towards the final outcome. 
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Shapley values permit the estimation of the significance of individual features in a prediction, 

taking into consideration the interactions between them.  

To compute the Shapley value for a specific feature, all feasible alliances of features must be 

taken into account, and the marginal contribution of the feature to the prediction for each group 

must be calculated. The Shapley value for the feature is the average of these marginal 

contributions across all conceivable alliances. The Shapley value provides an average 

measurement of its contribution to the prediction compared to all possible feature 

combinations. This approach helps evaluate the relative significance of various features in a 

model and pinpoint the features that have the most influence on the predictions.  

Shapley values have gained widespread acceptance in machine learning to explain complex 

models, including neural networks and decision trees. By offering a method to comprehend 

the individual features' contributions to the prediction, Shapley values can help build 

confidence in the model and improve decision-making transparency.   

One popular tool for calculating the Shapley Values is SHAP (SHapley Additive exPlanations) 

[37] which is a popular open-source library that build upon Shapley Values and externs them 

to the problem of interpreting and explaining the output of machine learning models.  

The formula for calculating the Shapley value of a feature i in a given instance x is given below 

[74]. Intuitively, the Shapley value of a feature i represents the average contribution of that 

feature to all possible coalitions in a game. It considers all possible orderings of the features 

and computes the marginal contribution of feature i when it is added to each possible subset of 

features. The Shapley value is then the weighted average of these marginal contributions, 

where the weights are given by the combinatorial factor [74]: 
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𝜙𝑖(𝑓) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|! 
𝑆⊆𝐹\{𝑖}

[ 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

where 𝜙𝑖(𝑓) is the Shapley value of feature i in instance 𝑓. The sum is taken over all subsets 

S of features that do not include i, and 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆) is the marginal contribution of the 

feature i when it is added to the subset S. 

In the proposed approach, we used SHAP as a post-hoc approach to calculate the contribution 

of the BI-RADS descriptors to the final output for the tumor class. Thus, a submodel was 

extracted from a trained BI-RADS NET V3, whereas the outputs of the BI-RADS predictors 

in the MT-BI-RADS are the inputs and the output of the tumor class branch is the output. The 

extracted submodel is used by SHAP to determine what is the marginal contribution of each 

input of the submodel (each BI-RADS descriptor) to the output of submodel (tumor class).  
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CHAPTER 4: EXPERIMENTAL RESULTS 

4.1 Data Preprocessing 

The original BUS images in the dataset were of various sizes and needed to be resized before 

used for modeling. Unlike general object recognition tasks, resizing BUS images can affect the 

tumor's shape and orientation labels, as the morphological features of the tumor can be 

distorted. To prevent this distortion, the original BUS images were first cropped to the largest 

square segment that encompassed the tumor and then resized to 256x256 pixels. Additionally, 

for the single-channel grayscale BUS images, two more channels were added. One channel 

was created by applying histogram equalization, and another by smoothing. This simple pre-

processing step proved to improve the model's performance reducing variations across the 

images in the BUSIS, BUSI, and HMSS datasets and resulting in a more uniformly distributed 

set of images. 

4.2 Cross Validation 

In our experiments, we employed a five-fold cross-validation approach, which involved 

randomly dividing the entire dataset into five equally sized subsets. In each round of 

experiments, we designated four of these subsets as the training set and the remaining subset 

as the test set, with 80% of the samples used for training and 20% for testing. During each 

round of experiments, 15% of the training samples were set aside as the validation dataset, to 

monitor the model's performance on this dataset and determine the appropriate 

hyperparameters and to overfitting. We evaluated the performance of the system based on the 

average of the five-fold cross validation.  
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4.3 Parameter initialization 

The backbone selection has a notable effect on the performance of the model, hence, we 

evaluated the performance differences of different backbones. , were updated to learn specific 

features of BUS images from the training data.  

4.4 Data Augmentation 

We enhanced the accuracy of our BUS image model by implementing data augmentation 

techniques, which including zoom (20%), width shift (10%), rotation (5 degrees), shear (20%), 

and horizontal flip. We did not use up-down flip as it alters the relative position of tissues and 

could not preserve the morphological features of tissues and positional relationships between 

organs in the image. Our experiments showed that incorporating these data augmentation 

methods enhanced the performance of the system. 

4.5 Hyperparameter Tuning 

The hyperparameters for the training process were chosen through empirical evaluation. A 

batch size of 6 was used, and the models were optimized with the adaptive moment estimator 

(Adam) algorithm. The initial learning rate was 10^-5, and if the validation loss did not 

decrease for 15 epochs, it was reduced to 10^-6. Training was stopped if the validation loss did 

not decrease for 30 epochs to avoid overfitting. The weight coefficients for the loss terms were 

assigned values of (0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.5, 0.6) to the orientation, shape, 

margin, echo pattern, posterior features, indistinct margin, angular margin, spiculated margin, 

microlobulated margin, tumor classification, and the image segmentation branches, 

respectively, with the highest weight assigned to the segmentation branch and the tumor class 

branch was assigned the second largest weight. In the loss function presented in the Chapter 3, 

these weight coefficients were noted as 𝜆i where i denotes the index of each task. 
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4.6 Evaluation Metrics 

The performance of the classifier is evaluated using accuracy, sensitivity, and specificity. 

Denoting the number of true positive, true negative, false positive, and false negative as TP, 

TN, FP, and FN, we can calculate the accuracy sensitivity and specificity.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4-1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4-2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4-3) 

4.7 Ablation Studies 

The results from the experimental validation of MT-BI-RADS are shown in Table 4-3. The 

results indicate that the network achieved over 80% accuracy for all five BI-RADS descriptors, 

whereas the tumor class accuracy reached 91.3%. Importantly, the model achieved 94% 

sensitivity. Due to space limitation, the results for the margin sub-classes are not presented in 

the table, however, for all 4 sub-classes the accuracy exceeded 80%. The table also presents 

the results of an ablation study performed to evaluate the impact of the different components 

in the design of MT-BI-RADS. The ablation study assesses the contributions by the data 

augmentation, pretrained network parameters, additional image channels with histogram 

equalization and smoothing, and cropping of the original images to square-size segments. 

Table 4-3 also presents a comparison between the proposed model with a VGG-16 backbone 

to ResNet50 and DenseNet121 backbones. The proposed approach furnishes ad-hoc 

explainability concurrently with the training/testing phases, by offering explanations regarding 

the tumor class, the segmented tumor region, and the predicted BI-RADS categories. Sharing 



30 

 

the encoder by all branches in MT-BI-RADS ensures that the feature maps used for tumor 

classification are also used for obtaining the explanations for the BI-RADS descriptors and the 

segmentation mask. 

Table 4-3 Ablation study of the impact of different components in the network on the performance of 

the classifier 

Method 
Tumor Class BI-RADS Descriptors Segmentation 

Accuracy Sensitivity Specificity Orientation Shape Margin Echo. Pat Pos. Feat Dice Score 

MT-BI-RADS 0.913 0.940 0.858 0.845 0.884 0.886 0.806 0.839 0.827 

Without 

Augmentation* 
0.892 0.897 0.880 0.850 0.887 0.875 0.808 0.835 0.813 

Without Pretraining* 0.876 0.895 0.837 0.778 0.841 0.838 0.696 0.718 0.790 

Single Channel 

Images* 
0.828 0.917 0.650 0.765 0.823 0.810 0.664 0.689 0.781 

Without Image 

Cropping* 
0.790 0.931 0.508 0.734 0.788 0.777 0.646 0.654 0.742 

DenseNet Backbone 0.908 0.912 0.898 0.850 0.874 0.880 0.815 0.805 0.837 

ResNet Backbone 0.903 0.925 0.856 0.864 0.882 0.891 0.814 0.820 0.842 

MobileNet Backbone 0.909 0.930 0.869 0.848 0.885 0.807 0.796 0.867 0.841 

BI-RADS-NET V1 0.900 0.923 0.885 0.848 0.877 0.887 0.814 0.834 N/A 

 

4.8 Image Segmentation 

Image segmentation is a powerful technique in medical image analysis, particularly in cancer 

tumor detection models, as it can extract specific regions of interest from medical images, such 

as tumors, organs, or blood vessels. Accurate segmentation can provide detailed and precise 

information about the location and extent of the tumor within the image, enabling better 

diagnosis, treatment planning, and monitoring of disease progression. In addition, 

segmentation can help explain the tumor region in input images by providing a segmentation 
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mask that highlights the specific region of the image containing the tumor. As stated before, 

the VGG-16 [75] model had proved to contribute the most to the overall accuracy of network’s 

tumor classification.   

VGG-16 is a deep convolutional neural network architecture that was introduced in 2014 by a 

team of researchers at the University of Oxford. It is named after the Visual Geometry Group, 

which is the research group where the network was developed [75]. VGG-16 is composed of 

16 layers, which include 13 convolutional layers and 3 fully connected layers. The 

convolutional layers have small 3x3 filters and are stacked on top of each other, which leads 

to a deep representation of the input image. Fig 4-9 shows the architecture of VGG-16. 

 

Figure 4-9 VGG-16 architecture [76] 

On the other hand, U-Net [77] is considered one of the most effective deep neural network 

architectures for image segmentation, especially in biomedical applications. It has been shown 

to achieve state-of-the-art performance on several benchmark datasets and has been widely 



32 

 

adopted in the medical imaging community  [77, 78, 79]. Fig 4-10 shows the architecture of U-

Net.  

 

Figure 4-10 U-Net architecture [77] 

As it can be inferred from the image, the U-Net architecture consists of an encoder, which 

progressively down-samples the input image. The down-sampling helps to extract higher-level 

features and abstract representations of the input image. The decoder in U-Net is responsible 

for up-sampling the feature maps generated by the encoder back to the original input size while 

also combining the features from the encoder's corresponding layers. The decoder's role is to 

reconstruct the original image while preserving the spatial information of the input image.  

Our proposed network uses VGG-16 as the backbone Encoder, whereas the second part of the 

U-Net was used as the Decoder for the image segmentation task. The convolution layers of the 

VGG-16 were mapped to the up-sampling blocks of U-Net. The combination of VGG-16 and 

U-Net in medical image analysis offers multiple advantages. VGG-16 can extract high-level 

features from the input image, which U-Net can use to produce a precise segmentation map 
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that can identify the tumor's location and size. This approach has demonstrated state-of-the-art 

results in various medical image analysis tasks, including tumor detection, segmentation, and 

classification [77, 80]. Additionally, VGG-16's simple architecture allows it to be readily 

integrated with other neural networks, such as U-Net, to improve their performance. The use 

of transfer learning, where a pre-trained VGG-16 model is fine-tuned on medical image 

datasets, has been shown to enhance the accuracy and robustness of U-Net models for tumor 

segmentation [81]. combining the two architectures provided us with a highly accurate image 

segmentation branch with a dice score of 82.74%. Fig 4-11 shows examples of two tumor 

images and their respected segmentation mask.  
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a) A BUS image 

 

b) The corresponding segmentation mask 

 

Figure 4-11 Presentation of two input BUS images and the constructed segmentation mask for them 

4.9 Quantitative Explanations 

As stated before, the radiologist, the medical doctors and the data scientist examining this 

framework not only need to know the accuracy of the model in differentiating between the 

malignant and benign tumors, but also they need to be able to verify the predictions and ensure 

that the basis of the classification is valid. We implemented three different explanations 

 

c) A BUS image 

 

d)  The corresponding segmentation mask 
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including image segmentation that reveals predicted tumor regions, probability of the different 

categories of BI-RADS descriptors and also Shapley Values that quantify the contribution of 

the BI-RADS descriptors to the tumor classification.  

SHAP provides visualization of the calculated Shapley Values in which the descriptors that 

are pictured with red color explain how they led to benignancy of a sample and blue values 

explain how they led to the malignancy of sample. The value in front of each descriptor 

indicates the predicted probability of the category. Since the inputs to the SHAP explainer are 

one-hot vector outputs of the descriptor classifiers, the model predicts a probability for each of 

the one-hot vectors. For instance, for orientation feature of a sample the model might predict 

two values of [0.15, 0.85] which means the probability of being parallel is 15% and the 

probability of being not-Parallel is 85%.   

In this subsection we present the SHAP explanations of several benign and malignant tumor 

samples.  Each figure presents the BUS ultrasound image, ground truth labels of the tumor, 

ground truth tumor class and the predicted tumor class. 
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a)              

   

 

Figure 4-12 Image and the post-hoc explanations of a benign sample with parallel orientation, 

circumscribed margin, hypoechoic echo pattern and oval shape 

Fig 4-12 displays a benign sample. The model predicted that the sample has a non-lobulated 

Margin pattern with a probability of 99.45%, echo pattern of type Hypoechoic with a 

probability of 99.58%, is Oval shaped with a probability of 98.88%, and the probability of 

having lobulated margin is less than 1%. On the other side of the visualization we can see that 

model predicted that this sample has no posterior feature with a probability of 99.61%. Being 

in the blue section means that it contributed to the malignancy of the sample, however, in 

general, having no posterior features does not necessarily contribute to malignancy of a sample. 

However, since the model is assigning a slight probability to acoustic shadowing of the sample, 

it is assigning a slight contribution to the malignancy of the sample.   

By observing the red labels and their respected values and comparing them with the ground 

truth label of the sample we can tell that being circumscribed, parallel, micro-lobulated, 
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hypoechoic, oval shaped and having no posterior features are all correctly predicted by the 

model. Also, the longer the bars in the SHAP graph, the greater is the contribution to the 

malignancy or benignancy of a sample. In this case the margin (circumscribed), orientation 

(parallel) and non-lobulation are the main contributions to the classification decision of the 

model. Thus, regarding the fact that the labels are predicted correctly and the SHAP 

explanations comply with the BI-RADS lexicon, it can be concluded that the explanation for 

this sample is accurate.  

b)  

  

  

Figure 4-13 Image and the post-hoc explanations of a benign sample with parallel orientation, 

circumscribed margin, hypoechoic echo pattern, enhancement and oval shape 

For the image in Figure 4-13, the ground truth tumor class is benign, and the model also has 

classified it as benign. By comparing the labels of the BI-RADS descriptors with the ground 

truth labels, we can see that the model has been able to accurately predict the type of margin, 

shape, orientation, posterior feature and echo pattern of the sample. According to the 
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explanation, having all these features and having a close-to-zero probability for angular and 

lobulated margin all lead to the benignancy of the sample, which complies with the BI-RADS 

lexicon. 

c) 

  

  

Figure 4-14 Image and the post-hoc explanations of a benign case with a circumscribed margin, 

being parallel to the skin, enhancement, a hypoechoic echo pattern, spiculation and oval shape, 

having with both malignancy and benignancy signs 

Fig 4-14 displays the output mask of the model for a benign tumor sample. The SHAP 

explanations reveal that although the attributes of having a hypoechoic echo pattern and low 

probability of being oval shaped (which we assume is because the model assigns a probability 

to the irregular shape of the tumor),  and low probability of spiculated margin contributed 

towards the tumor’s malignancy (indicated by the blue bar), still the posterior enhancement, 

being parallel to the skin, and having a circumscribed margin were stronger predictors of 

benignancy, ultimately leading to being classified as benign.  
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d) 

   

 

Figure 4-15 A benign case with parallel orientation, circumscribed margin, and hypoechoic echo 

pattern 

Fig 4-15 displays the predicted segmentation mask and the SHAP values for a benign sample. 

The values indicate that the probability of the sample being parallel to the skin is 99.87%, 

having a circumscribed margin is 99.99%, having a hypoechoic echo pattern is 100%, as well 

as there is a fairly low probability of the sample having lobulated and angular margins. These 

explanations imply that the model correctly interpreted that all these descriptors led to the 

benignancy of the prediction, as expected.  
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e) 

   

  

Figure 4-16 A benign sample with a parallel orientation, hypoechoic echo pattern, circumscribed 

margin, no posterior features shadowing and oval shaped 

This sample is identified as benign. By comparing the predicted values we can see that all the 

descriptors (parallel orientation, hypoechoic echo pattern, circumscribed margin, no posterior 

features shadowing and oval shaped) have been predicted correctly, and according to BI-RADS 

lexicon all these contribute to benignancy of a tumor. The reason that 98.9% probability of 

having no posterior feature is identified as a malignancy factor by SHAP is that in fact the 

model has identified some very slight indications of acoustic shadowing (1.1%) in the tumor 

image and thus considers posterior feature as a factor that can slightly lead to malignancy. 



41 

 

f) 

  

 

Figure 4-17 A malignant sample with not-parallel orientation, not-circumscribed margin, anechoic 

echo pattern, spiculated margin and irregular shape 

According to both the ground truth and the model’s prediction this sample is malignant, and 

as can be seen the not-circumscribed margin, acoustic shadowing, spiculated margin, irregular 

shape, not-parallel orientation and anechoic echo pattern have been predicted correctly by the 

model, all of which, according to the explainer, contribute to malignancy of the sample. 

According to BI-RADS lexicon all these features are considered contributors to tumor’s 

malignancy and the explainer is justifying the predictions accurately.  
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g) 

  

  

Figure 0-18 A malignant sample with a parallel orientation, hypoechoic echo pattern, circumscribed 

margin, and oval shape that the model has misclassified as benign 

According to the ground truth label this tumor is malignant, however, the model has identified 

the sample as benign. Considering the model’s predictions for the sample having a 

circumscribed margin, parallel orientation, hypoechoic echo pattern and not having posterior 

features or angular and micro-lobulated margins and classifying it as an oval shaped sample, 

all the predicted labels match with the ground truth and also according to both BI-RADS 

lexicon and the explainer, all of those features are contributors to tumor’s benignancy. In other 

words, all the descriptors are counting towards the sample’s benignancy, and provided that 

information the model’s classification can be considered correct. Still, the biopsy has indicated 

that this sample is malignant, although all the descriptors of the image are benign signs. 



43 

 

h) 

  

 

Figure 0-19 A malignant sample with irregular shape, not-circumscribed margin, not parallel 

orientation, heterogenous echo pattern, and micro-lobulated margin 

This sample is malignant and the model has classified it correctly as malignant. All the 

descriptor labels, such as not circumscribed margin, irregular shape, not-parallel orientation, 

heterogeneous echo pattern, lobulated margin are predicted correctly. The model has identified 

shadowing in the image, however, the ground truth assigns no posterior features to this sample. 

It is believed that this happened because of the similarity of the right side of the image to 

acoustic shadowing.  
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j) 

  

 

Figure 0-20 A malignant case with a non-circumscribed margin, isoechoic echo pattern, spiculated 

and angular margin, and irregular shape, and an orientation not parallel to the skin 

Fig 4-20 displays the output mask of the model for a malignant case. According to the SHAP 

explanations, the spiculated margin, angular margin, not being parallel to the skin, not having 

a circumscribed margin, and having an irregular shape contributed the most to the malignancy. 

This is expected, as these are well-known malignancy characteristics of breast tumors. 

Although the isoechoic echo pattern contributed to the prediction, this is not a typical 

malignancy sign, and requires further analysis.  
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k) 

  

 

Figure 0-21 A malignant case with a non-circumscribed margin, hypoechoic echo pattern, lobulated 

and angular margin, an irregular shape, and an orientation parallel to the skin having acoustic 

shadowing. 

Fig 4-21 displays the output mask of the model for a malignant case with a non-circumscribed 

margin, irregular shape, acoustic shadowing, micro-lobulated margin, angular margin, and 

hypoechoic echo pattern. SHAP explanations show that these characteristics have significantly 

contributed to the malignant prediction, whereas being parallel to the skin had small benign 

contributions. These explanations match well the malignancy characteristics of breast tumors.  
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CHAPTER 5: CONCLUSION 

In conclusion, this thesis proposes an explainable deep learning model for breast cancer 

detection using Breast Ultrasound Images and BI-RADS descriptors. The model incorporates 

image segmentation and Shapley Values to provide transparent explanations for its predictions, 

enabling clinicians to understand how the model arrived at its decision and increasing their 

confidence in the model's accuracy. 

The proposed model achieves high accuracy and interpretability, with high sensitivity and 

specificity. The use of image segmentation provides transparent visual explanations for the 

tumor regions in the input images, and the application of Shapley Values as a post-hoc method 

provides an additional level of explainability without compromising the performance. By 

quantifying the contribution of each BI-RADS descriptor to the final prediction, we provide 

transparent and verifiable explanations for the model's decision-making process. 

Our proposed model takes advantage of the BI-RADS lexicon and has the potential to improve 

the accuracy and interpretability of CAD systems for breast cancer detection. The transparent 

explanations provided by our model can help medical professionals to better understand the 

diagnostic process and increase their confidence in the use of machine learning models for 

cancer detection. 
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