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Abstract

DNA methylation, an epigenetic mechanism, plays an important role in transcription

regulation and in complex diseases. Whereas methylation in gene promoters is known

to be generally associated with silencing, the relationship between transcription and

methylation in other parts of the gene is much less clear. Additionally, substantially

different transcription and methylation profiles have been observed among breast cancer

subtypes, but it is unclear whether and how these differences are influenced by different

relationships between the two processes.

Here, we studied the relationships between transcription and methylation in estro-

gen receptor-positive (ER+) and negative (ER-) patients, using data from The Cancer

Genome Atlas (TCGA) consortium and Genomics Data Common portal (GDC). We

formulated trios, each consisting of the Copy Number Alteration (CNA) of a gene, ex-

pression (E) of this gene, and methylation (M) of a site located near or in the same

gene. Since CNA is prevalent in cancer, it is a highly effective instrumental variable for

this causal inference. In each subtype, we further derived principal components from

genomewide expression and methylation data and identified those that are significantly

associated with each trio as potential confounding variables.

We applied MRGN, a novel causal network inference method that accounts for many

confounding variables under the principle of Mendelian randomization, to each of the

310,412 trios in each subtype. We further examined the features of methylation probes

in mediation models as compared to the baseline models. Our analysis provides a first

comprehensive picture of causal relationships between transcription and methylation in

the two subtypes.
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CHAPTER 1

Introduction

Gene regulatory networks have been an important area of research in understanding

the biological processes involved in the formation of complex diseases. By examining the

interactions between genes and their regulators, scientists can gain insight into how these

networks influence cellular behavior and ultimately impact disease development.

One area of particular interest in gene regulatory network research is the study of

causal relationships. Causal relationships are key in understanding the cause-and-effect

relationships between an outcome and an exposure or risk factor. For instance, in the

Framingham heart survey (1977) [22], researchers found that individuals with higher lev-

els of HDL, commonly known as good cholesterol, had a lower risk of heart disease. This

finding led to billions of dollars being invested in the development of drugs that targeted

HDL to treat heart disease. However, these drugs ultimately proved to be ineffective.

Although an inverse correlation between HDL and heart disease was established, it did

not necessarily establish a causal relationship. As a result, it is essential to make causal

inferences to determine whether a factor is the cause of an observed effect or merely

associated with it [19].

The study of causal relationships also helps understand the regulation of genes in

regard to other biological mechanisms. One such mechanism that has been the focus of

much research is DNA methylation. DNA methylation plays a key role in regulating gene

expression and is implicated in the development of disease. When a promoter region of

DNA is methylated, it reduces expression. However, the relationship between methylation

and gene expression in other parts of the gene is not as clear [8]. In Figure 1.1, we can

observe the six major regions in a gene including TSS1500, TSS200, 5′ UTR, 1st Exon,
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Body, and 3′ UTR (TSS is the Transcription Start Site and UTR is the Untranslated

Region). When the CpG sites of the promoter region are unmethylated, the gene is

expressed. However, methylation in those sites can lead to the suppression of the genes.

We aim to understand these relationships in the remaining parts of the gene which have

not been defined yet. Therefore, causal inference is essential to identify whether changes

in one of these processes are causing a change in the other.

Additionally, DNA methylation and transcription profiles differ substantially between

different breast cancer subtypes, such as estrogen receptor-positive (ER+) and estrogen

receptor-negative (ER-) individuals [16, 20, 4, 3]. ER+ individuals have estrogen recep-

tors in the cancer cells, and drugs that lower estrogen levels can be used to treat breast

cancer, whereas ER- individuals do not have estrogen receptors. Therefore, the difference

between these two subtypes can be an important factor to consider when investigating

the causal effect between methylation and gene expression.

Mendelian Randomization (MR) is a widely used approach in causal inference [2].

It uses a genetic variant that has been randomized in humans through the Principal of

Mendelian Randomization (PMR) as an instrumental variable (Figure 1.2). The genetic

variant aids in studying the causal effect between the genetic variant and the outcome

based on the treatment. Since the genetic variant remains unaffected by external factors,

any relationship between the variant and the outcome can be explained by the exposure

or the risk factor. In this case, CNA is the genetic variant denoted by C and the variables

of interest are DNA methylation and gene expression denoted by M and E respectively.

To examine these relationships, we applied MRGN (Mendelian Randomization Graph

Network), a novel causal network inference method, to each of the 310,412 trios in each

subtype under PMR [13]. The trios were formed using the breast cancer data from The

Cancer Genome Atlas (TCGA) and Genomics Data Common portal (GDC). MRGN

uses the trios formed between the instrumental variable and the variables of interest to
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determine whether a causal relationship exists or not. It accounts for the confounding

variables consisting of Principal Components (PCs) from the genome-wide methylation

and gene expression data as well as the demographic information of individuals. The

models are inferred based on conditional and/or marginal tests between the variables of

interest. The trio data matrix contains the values from each of the three datasets for

the common individuals between the datasets as well as one of the two cancer subtypes.

Similarly, the confounder data matrix has a length similar to the trio data matrix de-

pending on the number of individuals, however, it contains the highly correlated PCs in

the column along with age and race of the selected individuals.

The inferred mediation models are further evaluated based on the three major regions

in a gene: the TSS (including TSS1500 and TSS200), the gene body (including 1st Exon

and Body), and the 5′/3′ UTR as shown in Figure 1.1. Additionally, the features of

the methylation probes, such as the CpG island location of the probe, its distance from

a nearby island, and the length of the gene, give insights into how each of the mediation

models is distributed [18]. This also helps identify the similarities and differences between

the baseline and mediation models in the two breast cancer subtypes. Our approach

provides refined results by accounting for confounding variables, improving on previous

studies [6, 7, 9, 10] that have investigated the relationship between methylation and gene

expression.

We have included these components in our data analysis pipeline, which we imple-

mented in the R package MRTrios (discussed later). Our primary objective is to infer a

causal network and identify the relationships between the variables of interest. To achieve

this, we use mediation models to examine various probes’ characteristics and highlight

any noteworthy features. By leveraging these relationships, we aim to identify genes

and gain insights that can help us develop targeted therapies for complex diseases. Our

ultimate goal is to advance our understanding of the underlying biological mechanisms
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in complex diseases.

Figure 1.1: DNA methylation and gene expression. Methylation in the promoter
of a gene can lead to silencing of the gene: the gene is not expressed or has much reduced
expression. However, this is not always the case. The impact of methylation in other
parts of a gene is even less clear.
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Figure 1.2: Principle of Mendelian Randomization (PMR). The study of a causal
relationship between a risk factor and outcome with the genetic variant as the instrumen-
tal variable. It helps classify the exposure into groups to identify the factor of influence.
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CHAPTER 2

Materials and Methods

2.1 Overview of breast cancer data

We used The Cancer Genome Atlas (TCGA) breast cancer data downloaded from

cbioportal [16] which consists of the gene expression, CNA, and clinical datasets. The

methylation data is obtained from the Genomics Data Common portal (GDC) managed

by the National Cancer Institute. The features of methylation probes are from Illumina

and the features of the genes are from the Ensembl genome browser. The methylation

and gene expression datasets consist of continuous values for methylation and expression

in individuals whereas the CNA values range from -2 to 2 (integer) depending on the loss

or gain of DNA sequence. The clinical datasets contain the individual information i.e.

ID, age, and race of individuals.

The dimensions for the included datasets are as follows:

1. Methylation: 485577 probes and 895 individuals;

2. Gene Expression: 20531 genes and 1100 individuals;

3. Copy Number Alteration (CNA): 24776 genes and 1080 individuals;

4. Clinical data: 1053 individuals (814 ER+ and 239 ER-);

5. Methylation probe info: 486428 probes and 32 features;

6. Ensembl gene info: 63677 genes and 5 features.

We applied the logit transformation to the original methylation data which are pro-

portions of methylation at each location.
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2.2 Causal network inference for trios

Genes in the human body have been predisposed to MR which influences how they

function. It allows researchers to group people based on their genetic code to identify

potential factors and disease outcomes based on causal inference (Figure 1.2).

The causal inference models are aimed to be inferred by forming trios where the

genetic variant is CNA (denoted as C) and the variables of interest are methylation and

gene expression (denoted as M and E respectively). Among the models, M0.1 (C → E)

and M0.2 (C → M) are null models, M1.1 (C → E → M) and M1.2 (C → M → E) are

the mediation models, M2.1 (C→ E← M) and M2.2 (C→ M← E) are the v-structured

models, M3 (M← C→ E) is conditionally independent model, and M4 is fully connected

model (Figure 2.1).
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Figure 2.1: Potential causal inference models. The causal inference models are

M0.1, M0.2, M1.1, M1.2, M2.1, M2.2, M3, and M4 model types. Any trios that are not

classified in these model types are assigned as “Other”.

Each edge denotes that there exists a causal relationship between the nodes or the

variables and the direction of the edge implies the direction of regulation. The assumption

is that the genetic variant cannot be affected by the variables of interest. For example,

in the case of the M1.1 model, we can say that there exists a causal relationship between

C and M but it is mediated by E.
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MRGN is a causal inference network method that uses a genetic variant as the in-

strumental variable to perform regression on the variables of interest under PMR. It uses

regression on each of the variables of interest. Then based on the conditional and/or

marginal tests on those variables (Table 2.2), it determines whether there is an edge or

not and the direction of the edge.

The confounding variables are PC scores calculated using the Principal Component

Analysis (PCA) that identifies the key variables in the data. We deduced the PC scores

that are highly associated with the genes and methylation probes across the genome which

are used as confounding variables. Each individual in the clinical data has been diagnosed

with a certain cancer type: ER+ or ER-. We divided the individuals based on the

category and extract their age and race information which are appended as confounding

variables.

MRGN models the trio with regression of M (or E) on E (or M), C, and the con-

founding variables (denoted by the matrix U).

E = β0 + β11C + β12M + Γ1U + ϵ (2.1)

M = β0 + β21C + β22E + Γ2U + ϵ (2.2)
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Table 2.1: conditional and marginal tests. This table shows the conditional and

marginal tests used to infer the causal models. Conditional tests are used on all the

models but additional marginal tests are used on M2 and M4 because they have the

same conditional test.

Model
Sub
model Description Conditional tests Marginal tests

E ⊥⊥
C | (M, U)

E ⊥⊥
M | (C, U)

M ⊥⊥
C | (E, U)

M ⊥⊥
E | (C, U) C ⊥⊥ E C ⊥⊥M

M0 M0.1

C → E;no
relationship
between
E and M ̸= 0 = 0 = 0 = 0 - -

M0.2

C →M ;no
relationship
between
E and M = 0 = 0 ̸= 0 = 0 - -

M1 M1.1 C → E →M ̸= 0 ̸= 0 = 0 ̸= 0 - -

M1.2 C → M → E = 0 ̸= 0 ̸= 0 ̸= 0 - -

M2 M2.1 C → E ← M ̸= 0 ̸= 0 ̸= 0 ̸= 0 Yes No

M2.2 C → M ← E ̸= 0 ̸= 0 ̸= 0 ̸= 0 No Yes

M3 E ← C →M ̸= 0 = 0 ̸= 0 = 0 - -

M4 E ← C →M ;E −M ̸= 0 ̸= 0 ̸= 0 ̸= 0 No No

The β coefficients in the equation are the potential pairwise conditional tests between

C, E, and M. For the hypothesis test, H0 = β11 = 0 and HA = β11 ̸= 0 shows the

conditional test between E and C conditioned by M and the confounding variables. This

can also be written as H0 : E ⊥⊥ C| (M, U) and HA : E ⊥̸⊥ C| (M, U). The conditional

test using the β coefficients can be used to infer M0, M1, and M3 but marginal tests are
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required for M2 and M4 since they have the same conditional relationship (Table 2.2).

For instance, after applying the regression in equations 2.1 and 2.2, we use the

significant conditional tests from the Wald test and significant marginal tests from the

Pearson correlations test to infer which model each trio belongs to. If a trio has a

significant test for E ⊥⊥ C| (M, U) but the other tests are not significant, we identify

that trio as M0.1 (Table 2.2) (Figure 2.1). Once the trios have been allocated into their

respective model, we summarize them to study the distribution and investigate further

to review the features of trios in the mediation models. The causal network inference is

the core of using MRGN on the datasets. This section has been implemented in Step 4

of the Section 2.3.

2.3 The R package MRTrios: a data analysis pipeline for trios

In this pipeline, we formed trios between a genetic variant (CNA) and the molecular

phenotypes (methylation and gene expression) based on gene names and their Entrez

IDs. Then we applied MR to the trios along with the confounders and inferred a genetic

regulatory network. The data analysis pipeline has been implemented in the R package

MRTrios available on GitHub [11]

Step 1: Generating trios:

(a) Splitting gene names: We split the gene names accessed from the methylation

data for each probe, as one probe may be associated with multiple genes. We

then identified unique gene names and found a total of 21,054 unique genes in

the dataset;

(b) Skipping missing values: We checked for missing values across all individuals

for each probe or gene. If a probe or gene had missing values for all individuals,
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we skipped that gene and its trios;

(c) Duplicates (genes with the same Entrez ID for gene expression and CNA): In

the CNA and Gene Expression data, there are duplicated rows that have a

different gene name but the same Entrez ID and values for all the individuals

introducing repetition in the data. Within the datasets, we found that there

are 70 genes (duplicates) in the CNA data and 8 genes (duplicates) in the

gene expression data. (Note: these are the number of duplicates and not the

appearances.);

(d) Matching gene names: We matched each of the unique gene names from (a)

between all three datasets. Then we extracted the row numbers where the

genes were found in the corresponding datasets and saved them to a file with

4 columns (gene name in the first column and the remaining 3 columns for

row numbers in each of the 3 datasets);

(e) Entrez ID matching: We used the rows in the trio dataset which was matched

based on gene names and extracted rows that have missing values in either the

CNA column or gene expression column. Then we picked one out of the two

columns mentioned earlier without a missing value and extracted an Entrez

ID in their respective dataset. The Entrez ID was used to find a match in

the dataset with a missing value in the trio dataset. For instance, if we had

missing values in the CNA column, we picked the row number in the gene

expression column and extracted the Entrez ID for the specific gene in the

gene expression dataset. Then we selected that Entrez ID to find a match in

the CNA dataset. If a match was found, we replaced the missing value in the

CNA column in the trio dataset with the row number of the new match that

was found in the CNA dataset;
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(f) Fitting in missing Entrez IDs: Following the steps above, there were still

Entrez IDs missing in some of the rows of the trio dataset in either the CNA

column or gene expression column. Therefore, we used an external package

“org.Hs.eg.db” from Bioconductor consisting of gene names and their Entrez

IDs. We matched the gene names in the CNA and gene expression data to

the gene names in the library “org.Hs.eg.db” to extract the Entrez ID and

replaced it with the missing values in the respective dataset if a match was

found. Since the “org.Hs.eg.db” package consists of multiple Entrez IDs for

a particular gene in some cases, we saved the additional match to a different

file and merge the datasets together in the end. We also made sure that the

newly matched Entrez ID from the package and its associated row(s) is not

one of the duplicated rows that we found earlier. If it was, we skipped over

that particular row.

Step 2: Filtering:

(a) We selected the trios of the protein-coding genes and lncRNAs. We also

selected the common individuals between the datasets (CNA, methylation,

gene expression, and clinical) and extracted their ages and race. We observed

292534 trios that were further used for analysis.

Step 3: Principal component:

(a) We used PCA to calculate and identify principal components which are the

key variables in the data. Then we derived the PCs that are highly associated

with the genes and methylation probes across the genome. The PCs along

with age and race were used as confounders (potential variables that could

influence the causal inference).
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Step 4: Trio analysis with MRGN:

(a) We applied MRGN to the trio data along with the confounders to infer the

causal models (Figure 2.1) based on their conditional or/and marginal tests

as discussed in Section 2.2.

Step 5: Post hoc filtering:

Since MRGN applies conditional tests for all the models but only applies marginal

tests for M2 and M4, we do post hoc filtering to make sure the results are reliable.

(a) Since all the models are supposed to have at least one edge, we employed the

marginal tests of C and M or C and E to make sure there exists a strong

correlation. Any trio without a significant p-value is reassigned as “Other”;

(b) The M0 and M2 trios have only one edge either between C and M or C and

E according to the conditional tests performed using MRGN. However, if the

marginal tests are highly significant for both edges in M0 or M2 models, it

creates a disparity with the results from MRGN’s conditional tests. There-

fore, we reassigned the trios with significant marginal tests for both edges as

“Other”;

(c) For M1.1 trios, since E is mediating the network, there should be a strong

correlation between C and M. We reassigned any trio without a significant

marginal p-value as “Other”. We repeated the process for M2.1 where M is

the mediator and we verified the correlation between C and E.

Step 6: Examining features of methylation probes in mediation trios:

The features of methylation probes are generated to further investigate the

probes assigned in the mediation models. However, we only evaluated the unique

probes since a probe can be associated with multiple genes.
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(a) The MRGN output data consists of row numbers in trios and model types for

each trio. The trio data consists of previously mentioned row numbers and the

row numbers of individual trios in methylation data. Therefore, we matched

the trio row numbers from MRGN output data and trio data to get the row

number in methylation data;

(b) Since the methylation data consists of probe IDs, we used the row numbers

obtained from part (a) to extract the probe IDs of the individual trios;

(c) Then we matched the probe IDs in the methylation data with the probe IDs

in the human methylation data to extract any probe information necessary;

(d) We identified the midpoint of the nearby CpG island for every probe. Then

we calculated the distance between that midpoint and the location of the CpG

in the methylation probe;

(e) We extracted the location of the CpG in the methylation probe and calculated

its distance from the start site of a gene;

(f) We calculated the length of the gene using the start and end site of a gene;

(g) We summarized the location of the CpG in the methylation probe relative to

the CpG island;

(h) We extracted the methylation levels for every probe in a trio and calculated

the mean for every common individual among the 3 datasets (methylation,

CNA, and gene expression);

(i) We extracted the Guanine-Cytosine (GC) content for each probe in a trio.



16

 

 

 

 

 

Step 2: Filtering 

Step 1: Generating Trios 

Matching gene names 

Matching Entrez IDs 

Selecting protein coding genes 

and lncRNAs 

Selecting common individuals 

along with their age and race 

Step 3: Calculating and identifying PCs 

associated with gene expression and 

methylation 

Step 4: Trio analysis with associated PCs 

to infer causal model with MRGN 

Step 5: Post hoc filtering 

Step 6: Examining features of 

methylation probes in mediation trios 

On all trios with PV1:T1 and 

PV1:T2 > 0.05 

On M0 & M2 trios with 

PV1:T1 and PV1:T2 < 0.01 

• On M1.1 trios with PV1:T2 > 0.05 

• On M1.2 trios with PV1:T1 > 0.05 
  

Figure 2.2: Flow chart of the data analysis pipeline. The figure gives an overview

of each of the main steps in the data analysis pipeline which has been included in the

MRTRios package.
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CHAPTER 3

Results

We applied the causal inference network inference method to all trios involving

protein-coding genes and lncRNAs and we summarized the results in this chapter.

In Section 3.1, we examined the distribution of the selected confounders and the

inferred causal models in the two subtypes following the application of MRGN on the

genomic trios. This helps us further understand the proportion of mediation models and

identify genes or probes subsequently involved in the biological mechanisms underlying

the relationship.

To gain a deeper understanding of the relationship between gene expression and

methylation, we evaluated the mediation models, wherein either methylation or gene

expression acts as a mediator. In this approach, the mediator regulates the outcome,

while the instrumental variable has no direct causal relationship, although a high corre-

lation exists between them. By applying this technique, we can assess the relationship

between the mediator and the outcome. This enables us to examine how the outcome is

regulated by the mediator and gain insights into the causal relationship between these

variables.

In Section 3.2, we discuss the features of the probes categorized into the mediation

models as compared to the baseline models as the relationship between our variables of

interest depends on the features of the genes in each trio [1]. This provides an insight

into the similarities and differences between these models as well as their effect on the

overall structure of the models. The features are where a methylation probe is relative

to the nearby CpG island, how far it is from the start of a gene, its average methylation

level, and the length and the GC content of the gene.
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3.1 Confounder Selection

Before application to trios, we identified confounders from the PCs generated using

all the gene expression and methylation data. A large number of PCs were identified for

those trios, especially for ER+ patients. The range of PC count for ER+ individuals

is between 6 and 44 while the range of PC count for ER- individuals is between 1 and

19. The average PC count for ER+ individuals is 24 whereas the average PC count for

ER- individuals is 9 (Figure 3.1). This variation could be due to a larger sample size

for ER+ individuals. These PCs are identified from the PC score matrix generated for

each dataset i.e. methylation and gene expression. They are used to find significantly

associated PCs that are important in the analysis which helps reduce bias in the causal

inference. The PC scores that were highly correlated with each of the probes or each of

the genes in the genome-wide data were selected to be used in the analysis. This helps

identify variables that are potentially associated with the outcome and exposure that

could introduce bias in the results.
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Figure 3.1: Principle Component (PC) distribution for ER+ and ER- individ-

uals. The figure shows the distribution of PC counts in ER+ and - sub-types. For ER+,

the mean is 26 and the median is 24. For ER-, the mean is 9 and the median is 9.

3.2 Inferred causal models

We incorporated the confounders and applied MRGN on the 292534 trios. These trios

were categorized in each of the potential causal inference models. For the ER+ patients,

we identified that 32% of all trios are Null models (M0), 6% are mediation (M1), 4%

the v-structure (M2), 16% conditionally independent (M3), and 6% fully connected (M4)

among the three nodes and the remaining are “Other”. For the ER- patients, we identified

that 42% of all trios are Null models (M0), 3% are mediation (M1), 2% v-structure (M2),

9% conditionally independent (M3), and 1% fully connected (M4) among the three nodes

and the remaining are “Other” (Table 3.2).

The mediation (M1), v-structure (M2), conditional independence (M3), and fully con-

nected (M4) models are more meaningful because there exists a regulatory edge between
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the variables of interest. These results are obtained after a stringent filtering process

to make them reliable. We observed that about 32% of the trios have an interesting

causal model after rigorous filtering. Among them, M3 was the most common followed

by M1, M4, and M2 for ER+ cancer type. We observed a similar trend for ER- cancer

type except we found more M2 than M4. Among the two mediation models, M1.1 is

more common which means on average the mediation models have gene expression as

the mediator compared to M1.2 (Figure 3.2).

After conducting our analysis, we observed that there is a higher proportion of M1.1

models than M1.2 models. While it is widely recognized that DNA methylation in the

promoter region can suppress gene expression, it remains unclear whether this is a causal

factor or a consequence of gene expression. Although studies have revealed varying

correlations between methylation and gene expression, with both positive and negative

outcomes, the underlying mechanism for this relationship is still a topic of ongoing dis-

cussion [14, 17]. However, it is worth considering that a higher number of trios have been

inferred as M1.1 instead of M1.2, despite the uncertainty surrounding the mechanism

involved.
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Table 3.1: Inferred causal models by MRGN for ER+ and ER- individuals.

The table summarizes the counts of the trios inferred for each of the models and their

percentages.

ER type M0 M1.1 M1.2 M2 M3 M4 Other

Pos 92331 14557 3239 11228 45512 17620 107978

Pos % 0.316 0.05 0.011 0.038 0.156 0.06 0.369

Neg 123404 7758 1044 4579 27208 2937 125401

Neg % 0.422 0.026 0.004 0.016 0.093 0.01 0.429

0
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Causal Inference Models

Figure 3.2: Counts of the inferred causal models by MRGN for ER+ and ER-

individuals. The figure demonstrates the counts of trios classified in each of the model

types for both ER+ and - individuals.
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3.3 Features of methylation probes in mediation models

The mediation models are further evaluated because either methylation or gene

expression acts as a mediator and the genetic variant acts as an instrumental variable.

This results in the mediator regulating the outcome whereas the instrumental variable

has no causal relationship although a high correlation exists between them. Since our

goal is to understand the relationship between gene expression and methylation, the

mediation models help us determine the effect given an independent genetic variant.

We investigated the M1.1 and M1.2 mediation models to determine the location of

probes in genes where gene expression and methylation act as mediators, respectively.

For ER+ patients in M1.1 model, 16.8% of the probes are in TSS1500, 12.8% are in

TSS200, 16.7% are in 5′ UTR, 7.6% are in 1stExon, 41.6% are in the gene body, and

4.5% are in 3′ UTR. For ER- patients in M1.1 model, 18.3% of the probes are in TSS1500,

13.6% are in TSS200, 17.8% are in 5′ UTR, 8.1% are in 1stExon, 38.2% are in the gene

body, and 4% are in 3′ UTR (Table 3.2).

For ER+ patients in M1.2 model, 12.7% of the probes are in TSS1500, 8.5% are in

TSS200, 14.2% are in 5′ UTR, 7.4% are in 1stExon, 52% are in the gene body, and 5.2%

are in 3′ UTR. For ER- patients in M1.2 model, 9.2% of the probes are in TSS1500, 7.9%

are in TSS200, 9.5% are in 5′ UTR, 7.9% are in 1stExon, 62.4% are in the gene body,

and 3.1% are in 3′ UTR (Table 3.4).

Additionally, we summarized the results above by merging locations with similar

regions in the gene. Specifically, we merged TSS1500 and TSS200 as TSS, 1stExon and

Body as Body, and 5′ UTR and 3′ UTR as 5′/3′ UTR (Table 3.3 and 3.5). This

provides a general overview of the distribution of probes in the three major regions of the

gene. Following the merger, we observed that the majority of methylation probes are in

the gene body in both mediation models (M1.1 and M1.2) between the two cancer types
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followed by TSS and 5′/3′ UTR. In M1.1, TSS is higher, Body is lower, and 5′/3′ UTR

is similar as compared to M1.2 for ER+. We see a similar trend between M1.1 and M1.2

for ER- except 5′/3′ UTR is much higher in M1.1 than M1.2 (Figure 3.3).

We performed a Chi-square test to compare the trio distribution in three locations

(TSS, Body, and 5′/3′ UTR) between two groups: M1.1 and M1.2 models in ER+ in-

dividuals versus Overall model (including both ER+ and ER- individuals) as presented

in (Table 3.3). The results indicate that the counts for the two groups are significantly

different (p < 0.05) in both M1.1 ER + and M1.2 ER+ versus Overall comparisons. An-

alyzing the percentages of M1.1 ER+ and Overall in each location, we found that TSS

regions had similar proportions in both groups while the Body and 5′/3′ UTR regions

showed some disparity. Therefore, the observed differences in the Chi-square test re-

sults could be attributed primarily to the differences in the Body and 5′/3′ UTR regions.

Similarly, for M1.2 ER+ and Overall comparison, we observed that 5′/3′ UTR regions

had similar proportions in both groups while the Body and TSS regions showed some

disparity. Hence, the differences observed in the Chi-square test could be primarily due

to the differences in the Body and TSS regions.

CpG islands are regions in a genome that contain a high concentration of Cytosine-

Guanine pairs. The CpG content at a promoter could affect how that gene is regulated

as high CpG content in promoter regions can enhance transcriptional activity [21, 15, 5].

They have been known as a crucial part of a gene because methylated CpG sites found in

cancer tumors are generally responsible for silencing the expression of tumor suppressor

genes [18]. The CpG location of methylation probes and their distance from the nearby

CpG island or start site of the gene in our mediation models helps us study the variations

between the former models as compared to the baseline across the cancer subtypes. In

addition to this, we also inspected the location of the CpG relative in a methylation probe

relative to the nearby CpG island, the length of the corresponding gene, the distribution
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of methylation values in each probe, and its GC content.

For ER+ patients, on average the probe tends to be 2.524 Kb, 2.694 Kb, 2.642 Kb,

and 2.743 Kb away from the nearby CpG island for M0.1, M0.2, M1.1, and M1.2 models

respectively. For ER- patients, on average the probe tends to be 2.531 Kb, 2.675 Kb,

2.639 Kb, and 2.772 Kb away from the nearby CpG island for M0.1, M0.2, M1.1, and

M1.2 models respectively (Figure 3.4). The distribution of the distance appears to be

consistent for all the models with a mode between 2 and 3 Kb, however, the M1.2 model

for the ER- patients has a comparably higher frequency.

The distribution of the distance from a CpG in methylation probe to the start site of

the gene tends to be bimodal for both ER+ and ER- patients. The modes are between 2

and 3 and 4 and 5 in increasing order of frequencies. Although the distribution appears

similar for all the models across the two types, the frequencies for M0.2 and M1.2 models

for ER- patients seem to be more peaked. (Figure 3.5).

For ER+ patients, the average length of the gene is 4.492 Kb, 4.433 Kb, 4.468 Kb,

and 4.523 Kb for M0.1, M0.2, M1.1, and M1.2 models respectively. For ER- patients,

the average length of the gene is 4.493 Kb, 4.482 Kb, 4.539 Kb, and 4.633 Kb for M0.1,

M0.2, M1.1, and M1.2 models respectively (Figure 3.6). Although we observe a similar

trend between the respective baseline models and the mediation models across the ER+

and ER- patients, the shape of the distribution for the M0.1 and M1.1 models is more

peaked as compared to the M0.2 and M1.2 models.

The area 2 kb upstream and downstream of CpG islands are referred to as CpG shores,

and the area 2 kb upstream and downstream of CpG shores as CpG shelves. For the

M0.1 model of the ER+ patients, 46% of the probes were found in CpG island followed

by 14% in N Shore, 12% S Shore, 3% in N Shelf, 3% S Shelf, and the remaining 22% no

relation. Similarly, for M0.2, the order is Island (28%), N Shore (11%), S Shore (9%),

N Shelf (4%), S Shelf (3%), and remaining 45% no relation. Additionally, for M1.1, the
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order is Island (36%), N Shore (16%), S Shore (13%), N Shelf (5%), S Shelf (4%), and

remaining 26% no relation and for M1.2, Island (25%), N Shore (13%), S Shore (11%),

N Shelf (5%), S Shelf (4%), and remaining 42% no relation.

For the M0 model of the ER- patients, 45% of the probes were found in CpG island

followed by 13% in N Shore, 11% S Shore, 4% in N Shelf, 3% S Shelf, and the remaining

24% no relation. Similarly, for M0.2, the order is Island (32%), N Shore (12%), S Shore

(9%), N Shelf (4%), S Shelf (4%), and remaining 39% no relation. Additionally, for M1.1,

the order is Island (38%), N Shore (18%), S Shore (14%), N Shelf (4%), S Shelf (3%), and

remaining 23% no relation and for M1.2, Island (26%), N Shore (17%), S Shore (11%),

N Shelf (5%), S Shelf (3%), and remaining 38% no relation (Figure 3.7).

Among the two subtypes, the proportion of genes in the various locations seems to be

more or less similar. However, there is a higher proportion of genes in the CpG island of

the M0.1 and M1.1 models compared to the M0.2 and M1.2 models followed by N Shore,

S Shore, N Shelf, and S Shelf. This again shows the similarities between the respective

baseline and mediation models.

The distribution of methylation means is obtained from the log transformation of the

original distribution by assuming a normal distribution on the transformed data for any

single gene (Figure 3.8). We can observe that the distributions for both the baseline

models have a large difference although they have a bimodal distribution. For ER+

patients, the bimodal distribution has modes between -3 and -2.5 which has a higher

frequency and between 2 and 3 which has a lower frequency in M0.1 and M1.1 models.

Although M0.1 is similar to M1.1 there is a noticeable difference in the mode. For the

first peak in the distribution, M0.1 has a higher frequency in comparison to M1.1. The

pattern in M0.2 and M1.2 is entirely different with 3 modes between -3 and -2.5, -0.5 and

0.5, and 2 and 2.5 with increasing order of frequency. For ER- patients, we observe a

similar trend in the modes, however, the frequency peaks between M0.1 and M1.1 seem
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to be more alike in this case. While the second peak is the lowest in M0.2, it tends to be

the highest in M1.2 followed by the first peak and the third peak in both models.

To elaborate, GC content is the percentage of nucleotide bases that are either Gua-

nine (G) or Cytosine (C) out of the total bases in a DNA or RNA molecule. Previous

research has found a strong positive correlation between GC content and gene expression

levels, underscoring the importance of this factor in our analysis [12]. For ER+ patients,

the mean GC content for the probe is approximately 46.793%, 47.284%, 47.339, and%

47.393% for M0.1, M0.2, M1.1, and M1.2 models respectively. For ER- patients, the

mean GC content for the probe is approximately 46.625%, 47.6%, 46.966%, and 47.466%

for M0.1, M0.2, M1.1, and M1.2 models respectively (Figure 3.9) The distribution of

the GC content appears to be alike for all the models with a mode around 40%, however,

the M1.2 model for the ER- patients has a comparably higher frequency.

Among all of the features we studied, the M0.1 model serves as a baseline for the M1.1

models whereas the M0.2 model serves as a baseline for M1.2 because of their respective

edge between C and M or C and E.

Table 3.2: M1.1 model inferred by MRGN for ER+ and ER- individuals based

on probe location. The table summarizes the counts for the locations of the M1.1 trios

and their percentages.

ER type TSS1500 TSS200 5′ UTR 1stExon Body 3′ UTR

Pos 5105 3897 5067 2315 12654 1348

Pos % 0.168 0.128 0.167 0.076 0.416 0.045

Neg 3022 2254 2943 1336 6300 659

Neg % 0.183 0.136 0.178 0.081 0.382 0.04
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Table 3.3: Counts and percentage of the M1.1 model by MRGN for ER+ and

ER- individuals merged into 3 locations. The table summarizes the counts for the

locations of the M1.1 trios and their percentages.

ER type TSS Body 5′/3′ UTR

Pos 9002 14969 6415

Pos % 0.296 0.493 0.211

Neg 5276 7636 3602

Neg % 0.32 0.462 0.218

Overall 382330 724208 243254

Overall % 0.283 0.537 0.18

Table 3.4: Counts and percentage of the M1.2 model by MRGN for ER+ and

ER- individuals. The table summarizes the counts for the locations of the M1.2 trios

and their percentages.

ER type TSS1500 TSS200 5′ UTR 1stExon Body 3′ UTR

Pos 887 597 996 516 3636 365

Pos % 0.127 0.085 0.142 0.074 0.52 0.052

Neg 305 263 313 263 2072 103

Neg % 0.092 0.079 0.095 0.079 0.624 0.031
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Table 3.5: Counts and percentage of the M1.2 model by MRGN for ER+ and

ER- individuals merged into 3 locations. The table summarizes the counts for the

locations of the M1.2 trios and their percentages.

ER type TSS Body 5′/3′ UTR

Pos 1484 4152 1361

Pos % 0.212 0.593 0.195

Neg 568 2335 416

Neg % 0.171 0.704 0.125

Overall 382330 724208 243254

Overall % 0.283 0.537 0.18
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Figure 3.3: Counts of the mediation models (M1.1 and M1.2) based on their

locations for ER+ and ER- individuals. The figure shows the counts for the loca-

tions in the gene where the mediation trios are located for both ER+ and - individuals.

Transcription Start Site (TSS) is in the gene’s promoter region, Body is the body of the

gene, and 5′/3′ UTR is in the end region of the gene.
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Figure 3.4: Distribution of the log10 (distance) between the nearby CpG island

and the CpG in the methylation probe. The figure uses the midpoint of the nearby

CpG island to calculate the difference and shows how far the CpG in a probe is from

a repeated CG pair sequence nearby in the baseline and mediation models across the

cancer subtypes.
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Figure 3.5: Distribution of the log 10 (distance) between the CpG in the methy-

lation probe and the start position of a gene. The figure shows how far the CpG

site in a probe is from the start site of the corresponding gene in the baseline and medi-

ation models across the cancer subtypes.
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Figure 3.6: Distribution of the log 10 (length) between the start position and

the end position of a gene. This figure shows the average length of the gene in the

baseline and mediation models across the cancer subtypes.
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Figure 3.7: Distribution of the relation to CpG island. The location relative to

CpG island is divided into five sections: Island, N shore, S shore, N shelf, S shelf, and No

Info which shows how close or far they are from the island in the baseline and mediation

models across the cancer subtypes. The “No Info” indicates that no nearby CpG island

was found.
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Figure 3.8: Distribution of methylation values. The figure shows the distribution

of methylation values in the baseline and mediation models across the cancer subtypes.

The genes selected are protein-coding or lncRNAs and we selected common individuals

between the 3 datasets.
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Figure 3.9: Distribution of the GC content. The figure shows the distribution of the

GC content which is the percentage of C and G among the four nucleotide base pairs (A,

T, C, and G) in the baseline and mediation models across the cancer subtypes.
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CHAPTER 4

Conclusions and Discussions

In this thesis, we conducted an extensive analysis to explore the relationship between

methylation and gene expression and establish a causal inference network. To infer a

causal framework, we utilized both conditional and marginal relationships between the

genetic variant and the variable of interest. Our post-filtering process further tests for

disparities between these tests, which significantly improves the inference method. One

of the primary challenges in causal inference is bias, as the analysis is susceptible to

external confounders. To account for this, our analysis takes into consideration the effect

of confounding variables in genome-wide associations. By identifying and implementing

confounders, we streamlined the analysis and eliminate potential bias introduced by these

variables.

Our analysis revealed that approximately 32% of the trios exhibited an interesting

causal model. ER+ patients exhibited the most common model as M3, followed by

M1, M4, and M2. Meanwhile, ER- patients demonstrated the most common model as

M3, followed by M1, M2, and M4. However, some models remained as M0 or “Other”

indicating a higher percentage of single-edged or no-edged models. We acknowledge

that one of the reasons for a higher percentage of single-edged or no-edged models was

the demanding filtering procedure. However, we also recognize that other unknown

factors may have contributed to this outcome. It is possible that these models accurately

represent the true biological mechanism, or it may be due to our model’s inability to

capture the actual case. Therefore, we plan to continue evaluating our methodology to

make it better and more reliable for the analysis.

We aimed to gain a deeper understanding of the mediation models (M1.1 and M1.2)

by performing a detailed analysis of their features. We focused on several key features,



37

including the proximity of the methylation probe to the nearest CpG island, its distance

from the start of the gene, its average methylation level, and the gene’s length and

GC content. Our findings revealed similarities between the baseline models and the

mediation models. Specifically, we observed that the M0.1 model closely resembled the

M1.1 model, while the M0.2 model was similar to the M1.2 model. This could suggest

that the mediation models build upon the baseline models by incorporating additional

information, rather than introducing entirely new features. We noticed comparable trends

in the distribution of these features, indicating that they are similar across both subtypes.

However, we did observe noticeable differences in the frequency peaks, suggesting that

there may be some subtype-specific differences in the relationship between methylation

and gene expression.

An essential factor during the analysis process is the trio formation step. It comprises

of matches between datasets (e.g., methylation, gene expression, CNA) based on gene

name or their unique identifiers. This can result in data loss for genes when matches

aren’t found. Additionally, implementing genomic data can be challenging, as much of

it tends to be incomplete or ever-changing. Therefore, it is necessary to consider these

factors to ensure that the results aren’t affected by data availability or lack thereof.

To make the analysis more effective, we focused on studying the features of protein-

coding genes and lncRNA, as variations in expression from these genes lead to the de-

velopment or continuation of complex diseases. Although this method of analysis is only

applicable to molecular phenotypes like methylation and gene expression in the presence

of a genetic variant due to the PMR assumption, it can be applied across various trios

in the omics discipline. Hence, we aim to expand and examine the causal relationship

between various biological processes in other cancer types. This can help locate genetic

factors responsible for the growth of the disease and establish targeted therapy or treat-

ment with improved accuracy.
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While we have meticulously processed and filtered our analysis, it is important to

acknowledge that the results may be influenced by the current sample size. It may not

provide a complete representation of the relationships between the variables of interest

in the two subtypes. Additionally, the results could also be affected by the unequal

sample sizes between the ER+ and ER- groups. Notably, the ER+ group contains a

significantly higher number of samples than the ER- group. To address this issue, we

will perform additional analyses by downsampling the ER+ group. This will enable us

to assess whether our findings are robust across different sample sizes or whether they

are driven by unequal group sizes.

Overall, our method for inferring causal networks provides valuable insights into the

underlying mechanisms of diseases, enabling the identification of potential therapeutic

targets and the development of targeted therapies. While challenges such as bias and

data availability must be addressed, our analysis can help pave the way for understanding

the biological mechanisms of cancers in the future.
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