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Abstract 

 Flywheel Energy Storage System (FESS) operating at high angular velocities have 

the potential to be an energy dense, long life storage device. Effective energy dense storage 

will be required for the colonization in extraterrestrial applications with intermittent power 

sources. High-speed FESS may outperform batteries in efficiency, charge cycle life, and 

energy density. To operate at high angular velocities, high-strength, light weight composites 

will be needed for structural integrity. This thesis describes modeling and design of a high-

speed hubless rotor utilizing wrapped, continuous fiber composites. The materials needed 

for motor/generator operations will be included in this design. With the use of a heuristic 

optimization method, the maximum design and angular velocity will be found such that 

structural integrity will be maintained. 
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Chapter 1.     Introduction 

1.1 Motivation 

 Whether it’s production or storage, energy has been an important topic over the last 

several years. Nearly every aspect of modern civilization revolves around the use of energy. 

Energy becomes even more important when one is striving to establish and maintain a 

civilization on a lunar surface where natural resources are not readily available. Due to the 

high cost associated with space travel, conventional energy production and storage means 

are not a viable option. To overcome this obstacle, National Aeronautics and Space 

Administration (NASA) has been working on developing an efficient, effective, energy 

dense means of storing energy. Storing excess energy during power generation for later use 

is a critical feature for lunar applications. An important consideration of possible energy 

storage devices for lunar applications is a high energy density while still being safe and 

reliable.  

 Another important consideration is the ability of a storage device to withstand 

extreme conditions. The extreme lunar conditions are a result of the minimal atmosphere 

with temperatures ranging from 100 K to 400 K between daylight and darkness [1]. The 

slow lunar rotation results in a daytime lasting 14 earth days and nighttime lasting 14 earth 

days. Viable options for energy production includes solar and nuclear. The large period of 

darkness eliminates the possibility of producing power using solar panels for long periods of 

time.  Nuclear generation is another feasible power source but is unable or limited in power 

production at the high daylight temperatures. Intermittent power sources expose the need for 

energy storage during generation for later use. With all storage devices, there are trade-offs 

of power and energy density, life or charge/discharge cycles, and cost [2]. Flywheels are a 
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potential energy dense, efficient storage system. Many characteristic features can be 

implemented to increase the efficiency for lunar applications where it is import to minimize 

energy waist.  

1.2 Flywheel Energy Storage Systems  

 Flywheels are not a new concept and are used for many mechanical systems. 

Flywheels in internal combustion engines use the mass of the flywheel to smoothly continue 

the rotation of the crankshaft. Others are used for continuous drive systems similar to a 

sheave in belt-driven applications. These systems often use flywheels to transfer energy 

mechanically through the system. Development of new technologies has arisen to the use of 

Flywheel Energy Storage System (FESS). FESS’s are used to store energy mechanically 

which is then converted into electrical energy when the motor acts as a generator. The 

kinetic energy stored in a hollow FESS is given in Equation 1.1: 

 𝐾𝐸 =
1

2
𝐼𝜔2     with     𝐼 =

𝑀

2
(𝑟𝑖
2 + 𝑟𝑜

2), 1.1 

 

where KE is the kinetic energy, I is the mass moment of inertia for the flywheel, ω is the 

angular velocity of the flywheel in rad/s, M is the mass of the flywheel, and ri and ro are the 

inside and outside radius respectively for a single material. Many of the FESS’s currently in 

use are hubbed which means the rotor has or is connected to a spinning shaft. If ri = 0, I 

collapses to the moment of inertia for a solid disk.   

 Currently, FESS’s are being used in Uninterruptible Power Supply (UPS) systems, 

store excess power for later consumption, and mitigate power fluctuations [2] [3]. Large 

scale models are often used for rapid discharge rates on the order of magnitude of several 

minutes resulting in a high power density. Despite having a high power density, the large 

mass and lower angular velocity associated with these models results in a lower energy 
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density [2]. With the improvement of material technologies, FESS’s can operate at higher 

speeds allowing for a much greater energy density which results from the ω
2
 term in 

Equation 1.1. NASA is interested in the possibility of replacing batteries in space 

applications if energy density of a FESS can exceed that of batteries [4].  

 There are many advantages for FESS’s that make them a good candidate for the 

possible replacement of batteries. With the use of Active Magnetic Bearings (AMB) the 

friction and maintenance can greatly be reduced [5] [6]. The use of an evacuated chamber in 

conjunction with AMB has the ability to increase the efficiency of the system to 90% [6] [7]. 

A schematic of a FESS used for an UPS is shown in Figure 1.1 below.  

 
Figure 1.1: Diagram of the key components used for a typical FESS [7] 

 Unlike batteries with a typical lifetime of 5 years, flywheels have the capability of a 

lifetime that is approximately 20 years which may be able to offset the large initial startup 

cost. Chemical batteries have hazardous materials that have to be disposed of where 

flywheels have nearly none. Currently, FESS’s have an energy density in the range of       

50-100 Wh/kg however NASA theorizes that FESS’s may eventually reach an energy 

density of 2,700 Wh/kg with an increase of carbon nanofiber technology [4] [7]. 
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1.3 University of Idaho FESS 

 NASA has provided funding for Phase III of the Steckler Space Grant for the 

continuation of research into the University of Idaho Flywheel Energy Storage System 

(UIFESS). The goals for this phase is the extension of research for the use of a hubless, low-

speed UIFESS, advancement of education for both undergraduate and graduate students in 

the STEM workforce, promote interdisciplinary work, develop, test and optimize a high-

speed FESS. Concurrently, research is being done by professors and students from Electrical 

and Computer Engineering, Mechanical Engineering, and Physics departments on the 

UIFESS. The UIFESS is being designed to store excess power generated from an 

intermittent power source for later use. The design of the UIFESS will need to simulate the 

actual operating conditions on the lunar surface to account for possible complication and 

implementation.  

 The current low-speed UIFESS is intended to rotate at 1,800 rpm but has been 

overdesigned to operate at speeds up to 5,000 rpm [8]. At low speeds, much of the analysis 

can be done for control and debugging issues. As previously stated, the UIFESS is a hubless 

design. This design decreases the friction losses by removing mechanical bearings. A 

hubless corresponds to an “inside-out” configuration meaning that the rotor, or flywheel, 

rotates around a stationary stator. The flywheel consequently needs to be larger which 

greatly increase the moment of inertia resulting in greater energy storage. An “outside-in” 

design, incorporating a hub, developed at the NASA Glenn Research Center reached 

velocities of 60,000 rpm [9]. This flywheel is much smaller than required for actual 

implementation. The stator is responsible for producing the torque that converts electrical 
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energy into kinetic energy as well as converting the kinetic energy back to electrical energy. 

Illustrations of the UIFESS is given in Figure 1.2. 

 
Figure 1.2: Labeled diagram of the UIFESS [8] 

 To increase the efficiency of the overall system, a Passive Magnetic Bearing (PMB) 

was implemented to decrease the friction produced from mechanical bearings. The 

permanent magnetic plate and copper plate embedded with superconductors operates as the 

PMB for the UIFESS. This frictionless bearing mostly controls the displacement in the       

z-direction while allowing rotation about the z-axis. A hubless design allows for movement 

in the x-y plane. Some restoring forces in the x-y plane and resistance to rotation about the 

x- and y- axis are also applied by the PMB. The PMB operates using high temperature 

YBCO superconductors and permanent magnets oriented in a Halbach array. Halbach array 

orients permanent magnetics in specific directions which increases the field gradient and 

intensity thus increasing levitation forces [10]. These magnets are pressed into a stainless 

steel plate at the bottom of the rotor labeled as “Permanent magnet plate”. Many FESS’s 

currently being used operate using AMB to control the radial displacement of a hubbed shaft 
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for a contactless bearing; analogues to that shown in Figure 1.1. AMB’s require electrical 

power to create levitation force whereas PMB’s do not. Use of a PMB allows for a decrease 

in power consumption during operation increasing the efficiency. The superconductors do 

however require cooling below a critical temperature for levitation to occur. Critical 

temperatures for YBCO superconductors are typically ~91 Kelvin [11]. A copper plate and 

liquid nitrogen are used to cool the superconductors which are size referenced to a guitar 

pick in Figure 1.3. To control the tilt of the flywheel, a stabilizer bearing, acting as an AMB, 

is used by delivering radial forces near the top of the flywheel. This induces a corrective 

moment about the x- and y-axis to re-center the flywheel about the stator. If the flywheel is 

dynamically balanced, the stabilizing bearing is not needed and becomes a precautionary 

device.  

 
Figure 1.3: Superconductor ring and copper heat conduction plate 

 The flywheel operates using a Field Regulated Reluctance Machine (FRRM). 

Operation of FRRM’s is done by exciting stator windings in a manner that allows the 

controlling of the torque and flux to be independent of each other [12]. As the flywheel 

Guitar Pick 

Super Conductors 

Copper Plate 
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accelerates or decelerates, a significant amount of heat is produced in the stator windings. 

The UIFESS uses cold water that is pumped through the stator shaft to cool the stator 

windings. For rotation to occur an airgap is required between the rotor and stator. The size 

of this airgap will limit the forces that can be applied through the stabilizer bearing and the 

torque that can be induced into the rotor. Applied force is inversely proportional to the 

square of the airgap size; therefore, the smaller the airgap the larger the applied force. 

 Introducing the use of iron laminations will increase the efficiency of the overall 

system. Both the stator and rotor laminations utilize 26 gauge M-36 electrical grade silicon 

steel. This steel is used for its relatively high magnetic saturation point. Laminations are 

used to reduce eddy current losses that form perpendicular to the magnetic flux flow when a 

change in flux occurs. Laminations restrict the size of the eddy current loops thus increasing 

the efficiency of the system. Geometry used for the stator and rotor laminations used for the 

FRRM is shown in Figure 1.4.  A large magnetic flux penetrates the iron laminations 

making it desirable to have the ability of a degaussing routine. This is used to eliminate or 

greatly reduce residual flux in the laminations that occurs from extended use [13]. The 

FRRM chosen by Wimer utilizes four poles [14]. Six coils per pole results in a total of 24 

stator teeth as shown in Figure 1.4 [14]. The stabilizing bearing uses eight coils that are 

coupled together. Two coils per pole for a total of eight coils are used for the stabilizing 

bearing as shown in Figure 1.5. Laminations for the AMB are rings with inner and outer 

radius of 67.49 mm and 95.25 mm respectively. Rotor laminations of the FRRM are the 

same dimensions for the inner and outer most radii.  



8 
 

 

Figure 1.4: Stator and rotor lamination geometry [14] 

 

 
Figure 1.5: Stabilizing laminations and wrapped FRRM laminations 

Stabilizer Stator 
Laminations 
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 Similar to mechanical bearings, wind drag can be an extensive source of friction 

loss; especially so at high speeds. A vacuum chamber as shown in Figure 1.6, was selected 

by Ramus and is capable of an air pressure to 10
-4

 Torr (1.32X10
-7

 atm) [15]. While 

reducing drag, the vacuum chamber also simulates a portion of the operating conditions of 

the lunar surface. The use of a vacuum chamber will increase the efficiency during terrestrial 

operation and testing. Some commercial FESS’s use light gases such as helium-air mixtures 

to reduce losses by up to 42% for a 50% volume of helium to a complete vacuum [16].  

 

 
Figure 1.6: UIFESS assembly with vacuum chamber. Power electronics excluded 
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Eddy current position sensors, which are accurate to a micrometer, measure the 

radial location of the rotor to determine if the rotor is centered about the stator. These 

positions are the inputs into the control circuit for the stabilizer bearing. The flywheel being 

centered is vital for ensuring that contact between the rotor and stator will not occur. Having 

the rotor centered also ensures that the forces for the FRRM control acts uniformly on the 

rotor laminations. The position sensors selected by Ramus are used to determine if the 

airgap needed between the stator and rotor is being maintained [15]. An airgap of 1 mm was 

determined by Wimer to have an effective applied force for the stabilizing AMB and FRRM 

[14]. The control and implementation of the AMB to maintain the 1 mm airgap was 

developed by Kisling [8]. 

1.4 Thesis objectives 

 Active rotation of the UIFESS has yet to occur. The current UIFESS is a low-speed, 

proof-of-concept design to determine the feasibility of a hubless, high-speed FESS. The 

UIFESS is a critical step in achieving high-speed rotation. From Equation 1.1, high 

rotational speeds will drastically increase the kinetic energy stored and therefor increase the 

overall energy density of the FESS.  Centrifugal forces at high speeds become very 

significant; inducing large stresses throughout the rotor. These stresses are a limiting factor 

for the high-speed UIFESS design. 

 The primary objective of the work covered in this thesis is to develop a numerical 

model that defines the stress state of the high-speed UIFESS. This model needs include the 

needed materials for the FRRM as discussed by Wimer [14]. A numerical model is needed 

to incorporate the use of wrapped fiber composites. Fiber composites, specifically carbon 

fiber, can be used for high strength applications while simultaneously reducing weight. High 



11 
 

strength materials are needed to withstand the stresses induced by the high rotational speeds. 

The model needs to be able to evaluate stresses through multiple physical layers for the iron 

laminations and possibly multiple composite rings. The anisotropic properties of composites 

must be incorporated into the model as well.  

The second objective is the modification and implementation of the model in an 

optimization scheme. Two optimization schemes are developed to meet specific 

requirements. One is to maximize the kinetic energy of the system while the other is to 

minimize the change in displacement of the inner surface. An intensive optimization scheme 

allows for the widespread coverage of the design space such that a multiple of design points 

are considered to find the optimum location. An optimization scheme will consider the 

strengths of the materials such that failure does not occur. Likewise, consideration of the 

electrical engineering parameters, such as the stator size, needs to be included. 

The final objective is to investigate options for the substitution of the iron 

laminations and the replacement of the stainless “caps” on the rotor which are currently 

being used to hold the laminations together. The low strength and the geometry needed to 

contain the Halbach magnetic array is not able to withstand the rotational speeds for the 

high-speed UIFESS. For this reason, an alternate method or material is required. A 

substitute for iron laminations may allow for the removal of the upper stainless steel plate 

completely and most likely the bottom plate as well. This will contribute to the finalization 

of the overall rotor design which will later be used to produce a dynamic model for the 

control algorithm.  
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1.5 Scope  

The work described in this thesis is performed as part of Phase III of the Steckler 

Space Grant provided by NASA. Phase I resulted in analytical and experimental proof that 

losses can be reduced during idling periods. It also selected the FRRM as the driving 

mechanism for the FESS. Phase II is covered in the theses of Kevin Ramus [15], Brent 

Kisling [8], and Bridget Wimer [14]. Phase II is the design and construction of a low-speed 

proof-of-concept FESS. This low-speed flywheel is intended for developing control 

algorithms and to test degaussing routines. Phase III is to evaluate the performance of the 

low-speed FESS then to design, build, and test the high-speed FESS. The results of Phase II 

greatly affect Phase III. For this reason, a list is given for the main results from this thesis 

and that provided by Kevin Ramus [15], Brent Kisling [8], and Bridget Wimer [14]. 

In this thesis: 

 Discussion of composite behaviors 

 Development and modification for an axisymmetric rotor design 

 Optimization schemes for the minimization of the inner rotor radius and 

maximization of energy 

By Kisling [8]: 

 AMB control algorithm  

 Stabilizer bearing design 

 FRRM control algorithm framework 

By Ramus [15]: 

 UIFESS component selection including microcontrollers, vacuum chamber, power 

amplifier, and sensors 
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 Printed circuit boards for interfacing power electronic components 

 Investigation of the speed capabilities of power electronics 

By Wimer [14]: 

 Design of the FRRM 

 Dynamic model and simulation for the UIFESS 

 Derivation of AMB force expressions 

The overview of analysis and behaviors of composite materials is covered in Chapter 2 of 

this thesis. The formulation of the model used to approximate the stresses in the rotor is 

located in Chapter 3. This chapter will also give an overview of the modification made to the 

model used for the optimization schemes. Formulation of the optimization schemes used is 

given in Chapter 4; one for the kinetic energy and another for displacement. Summary, 

recommendations for future work, and conclusions is presented in Chapter 5. 

  



14 
 

Chapter 2.     Composite Overview 

2.1 Composites 
 

 Composite materials are a combination of two or more other materials. The 

application of composite materials is extremely vast and is found anywhere between sports 

equipment to turbine blades. Composite materials often offer higher strength to weight ratios 

while maintaining the ability to be customized for strength, weight, and stiffness [17]. The 

aerospace industry has been an extensive consumer of composite materials. These composite 

materials include fiber composites such as carbon fiber and metal composites such as hybrid 

titanium composite [18]. Two main types of composite materials exist: particulate and 

fibrous. Both fiber and particulate composites use a matrix material to suspend the 

particulates or fibers. High strengths associated with fiber composites results from a very 

high-strength fiber used with a low strength matrix. Fibrous composites are typically more 

effective than particulate composites when associated with the strength of the material [19]. 

This discussion on composites is weighted towards the use of fibrous materials because of 

their high strengths.  

 Fiber composites use very small fibers implanted in a matrix material. Typically, the 

fibers are high-strength, denser materials and the matrix has lower strength and density. A 

majority of the force in the composite is supported by the fiber while the matrix material is 

used to hold everything together. Typical matrix materials include polymers, metals, and 

ceramics. Polymers are the most widely used matrix material and operate typically at lower 

temperatures. Metal and ceramic matrix materials are generally used at higher temperatures 

or when increased stiffness is required. Compatibility between the fiber and matrix material 

is needed to ensure the bond strength, either physically or chemically, is susceptible [19]. 
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 It was shown by Griffith that as the diameter of a rod or fiber gets smaller the 

strength increases [20]. Extrapolating his test results shows that for large diameters the 

strength is that of the bulk properties but for smaller diameters the strength approaches the 

strength of the atomic bonds. This occurs because at a smaller diameter, the probability of 

microstructural discontinuities is smaller [20]. It is therefore desirable to have very small 

fibers in high strength applications. This is comparable to the size effect used in the stress-

life fatigue analysis for reducing the fatigue limit [21].  

 Four main types of fiber-reinforced composite exist; each with its own particular 

application. The four types, shown in Figure 2.1, are continuous fiber (Figure 2.1a), woven 

fiber (Figure 2.1b), chopped fiber (Figure 2.1c), and hybrid (Figure 2.1d) [19]. 

 
Figure 2.1: Types of fiber-reinforced composites [19] 

Continuous fiber composites use fibers aligned in similar directions to form lamina.   

Lamina is a sheet of a composite material that typically has similar properties throughout the 

sheet. Continuous fiber laminas generally have high stiffness and strengths aligned with the 
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fiber and much weaker properties in the other directions. Laminates are formed by adhering 

multiple lamina that are oriented differently and/or have different physical properties. This is 

analogues to gluing thin wood sheets together. Lamina orientations are determined by the 

loading of the laminate. Laminates offer high strength properties in the direction needed 

while decreasing weight. Delamination, which is typically characterized by the strength of 

the matrix material, is a major problem that exists with laminates [19]. Delamination is 

driven by the interlaminer shear stress. This shear stress results from one lamina deforming 

at different rates than the adjacent laminas [19]. Lamina stiffness and orientation are the 

main contributors to interlaminer shear stress. Woven fiber composites reduce the possibility 

of delamination. The trade-off for this, however, is a reduction in strength and stiffness from 

single directionally aligned fibers. The fiber direction in woven composites is no longer 

always aligned. This reduces the strength and stiffness in that direction but increases it in the 

other direction.  

Chopped fiber composites use relatively short fibers randomly located throughout 

the matrix material. This type of composite is cheap and more suited for high-quantity 

manufacturing. The effective strength and stiffness of chopped fiber composites are 

significantly reduced compared to continuous fiber composites. The fibers in chopped 

composites typically fail in shear rather than tensely like with continuous fibers. Shear 

loading of the fiber occurs from how the matrix material distributes the load to the fiber 

[19]. When these composites are loaded the Hybrid composites are a mixture the other three 

types or a combination of multiple fiber types.  

 Applications that require a component to be loaded predominately in bending often 

use foam or honeycomb cores sandwiched by fiber laminates [19]. Stress for a material in 
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bending is a function of the bending moment, area moment of inertia, and the distance from 

the neutral axis. The analysis of composite laminates in bending is more complicated yet is 

still a function of the perpendicular distance from the neutral axis of the beam to the location 

of interest. This means that the stress for a component in pure bending is much less towards 

the center of the beam and zero at the neutral axis. Low stresses near the center allows for 

lighter, cheaper, inferior materials to be used at the center of the beam or component. Using 

a foam or honeycomb core with lamina on either side is known as a sandwiched 

configuration. The sandwiched configuration results in structure with a high flexural 

stiffness-to-weight ratio. The multiple possible combinations of fiber and matrix materials 

and laminate/structural layup make fiber composite design flexible and customizable for 

numerous applications.   

2.2 Continuous Fiber Mechanics 

 The stress state for composite materials is determined by the strain at a point and the 

stiffness matrix. Unlike isotropic materials, composite materials have different material 

properties in different directions. Different material properties are influenced by fiber 

alignment. Fiber materials may also have anisotropic behavior from affects at the 

microscopic level. For a fully elastic anisotropic material the stress state is defined as 

Equation 2.1 [19]: 

 𝝈 = 𝑪 ∗ 𝜺, 2.1 

where σ is the stress state at a point, C is the stiffness matrix defined as [Cij] where i,j = 1, 

2,…,6, and ε is the strain vector at a point. Aligned fiber composites typically behave such 

that the material properties with respect to three mutually orthogonal planes or directions 

[19]. Typically these principal planes are labeled as (123). This behavior is known as 
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orthotropic. Specially orthotropic is when the non-principal directions (xyz) is oriented such 

that one of the principle and non-principal directions are aligned. The stiffness matrix for 

specially orthotropic materials is represented below [19]: 

 

𝑪 =

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶22 𝐶23
𝐶33

0 0 0
0 0 0
0 0 0

𝑆𝑌𝑀

𝐶44 0 0

𝐶55 0

𝐶66]
 
 
 
 
 
 

.

 2.2 

 Composite macroscopic lamina properties change with respect to which direction is 

being considered. For instance, the stiffness of the lamina along the direction of fiber is 

different than that perpendicular to the fiber orientation. For this reason the longitudinal and 

transverse modulus are not equivalent. Similarly, Poisson’s ratios are directionally 

dependent. The modulus of elasticity in the 1 and 2 direction are E1 and E2 respectively.   

The property ν12 is considered the major Poisson’s ratio while ν21 is called the minor 

Poisson’s ratio. The difference is a result of loading. For νij = -εj/εi, i is the load direction and 

j is the direction of the strain that is being affected. For isotropic materials, the direction of 

loading does not affect the property therefore ν12 = ν21. Although the major and minor 

Poisson’s ratios are different, they are related to each other by νij/Ei = νji/Ej [19].  

 In Equation 2.1, the stiffness matrix C is a function of the material properties and 

relates strain to stress. The compliance matrix S is used to correlate the stress to strain and is 

more easily correlated to the lamina properties. The relation between S, σ, and ε is given in 

Equation 2.3 [19]. 
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{
 
 
 
 
 

 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝛾23

𝛾31

𝛾12}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐸1

−𝜈21
𝐸2

−𝜈31
𝐸3

−𝜈12
𝐸1

1

𝐸2

−𝜈32
𝐸3

−𝜈13
𝐸1

−𝜈23
𝐸2

1

𝐸3

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1

𝐺23
0 0

0
1

𝐺31
0

0 0
1

𝐺12]
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏23

𝜏31

𝜏12}
 
 
 
 
 

 
 
 
 
 

 2.3 

where Gij is the shear modulus, γij is the shear strain resulting from the shear stress τij. 

Compliance matrix, S, and stiffness matrix, C, are related by S
-1

 = C. The relationship 

between the shear modulus, elastic modulus, and Poisson’s ratio is given as: 

 𝐺𝑖𝑗 =
𝐸𝑖

2(1+𝜈𝑗𝑖)
. 2.4 

  

Many specially orthotropic lamina are represented in a 2D stress state otherwise known as 

plane stress. Plane stress assumption results in σ3 = τ23 = τ31 = 0 from Equation 2.3. Most 

uses of orthotropic lamina result in the load directions not being aligned with the principle 

axis which is referred to as generally orthotropic. This alignment is shown in Figure 2.2. A 

coordinate transformation matrix is required to rotate the stresses and strains from one 

coordinate system to another. The transformation matrix in for rotating from the x-y 

coordinate system to the 1-2 coordinate system is defined below [19]: 

 

𝑻 = [

cos2(𝜃) sin2(𝜃) 2 cos(𝜃) sin(𝜃)

sin2(𝜃) cos2(𝜃) −2 cos(𝜃) sin(𝜃)

− cos(𝜃) sin(𝜃) cos(𝜃) sin(𝜃) cos2(𝜃) − sin2(𝜃)

]
,

 2.5 

where θ is the angle between the x-axis and the 1-axis.  
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Figure 2.2: Generally orthotropic lamina principle and load alignment 

 Material choices, alignment, and volume factions give a large range of flexibility in 

the design composite materials. A large range of flexibility makes it desirable to characterize 

the macroscopic properties of a composite without extensive testing for individual 

properties. Calculating elastic and shear moduli and Poisson’s ratios of aligned continuous 

fiber composites requires the similar properties of the fiber, matrix material, and the fiber 

volume fraction. The following analysis is based on the following qualifications [19]:  

 Fibers are continuous and aligned 

 Fiber volume fraction is constant throughout the composite  

 Fiber and matrix materials are assumed to be linear elastic 

 Perfect bonding between the fibers and matrix is assumed 

 Fiber and matrix are assumed to be homogeneous 

 Lamina is assumed to be macroscopically assumed to be homogeneous, linearly 

elastic and orthotropic 

 Stresses, strains, displacements, and dimensions are assumed constant for a small 

Representative Volume Element (RVE) 

 The matrix material is assumed to be isotropic 
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 The elastic modulus in the fiber direction and the major Poisson’s ratio is shown to 

be 𝐸1 = 𝛴𝐸𝑖𝑣𝑖 and 𝜈12 = 𝛴𝜈12𝑣𝑖 where vi is the volume fraction of the individual 

components [19]. The transverse and shear modulus equation (Equation 2.6) was derived by 

Tsai and Hahn and correlated to experimental data for verification [19]. 

 1

𝐸2,𝐺12
=

1

𝑣𝑓+𝜂2𝑣𝑚
[

𝑣𝑓

𝐸𝑓2,𝐺𝑓12
+

𝜂2𝑣𝑚

𝐸𝑚,𝐺𝑚
]     with     𝜂2 = 0.5, 2.6 

where E2 is the effective transverse modulus for the composite, Ef2 is the is the transverse 

modulus of the fibers, Em is the modulus for the matrix material, and vf and vm are the 

volume fractions for the fiber and matrix respectively.  The overall composite shear 

modulus, G12, is calculated using Gf12 and Gm which are the shear modulus for the fiber and 

matrix material respectively. While it is important to know how a composite will deform for 

an applied stress, it is also to know the extent of the stress that will result in failure. 

 Approximating the physical strength of a composite can be a more difficult process 

than the stiffness. For the longitudinal strength, the method used to calculate the strength is 

dependent upon which material has a lower maximum strain. Most engineering fiber 

composites have a failure strain that is less than the matrix material. Once a fiber failure 

occurs, the load supported by the fiber transfers to the matrix material. In most cases, the 

matrix has a lower strength therefore fiber failure means failure for the composite.  

 A composite with a fiber failure strain that is less than the critical matrix strain 

results in the matrix supporting a portion of the stress. This stress is equivalent to the 

product of the strain of the fiber and the stiffness of the matrix. The strength addition from 

the matrix at fiber failure and is denoted as 𝑠𝑚𝑓1
+ = 𝐸𝑚𝑒𝑓1

+  where 𝑒𝑓1
+  is the maximum 

longitudinal tensile strain for the fiber. The equation for the overall longitudinal tensile 

strength for a lamina as a function of the volume fraction becomes [19]: 
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 𝑠𝐿
+ = 𝑠𝑓1

+ 𝑣𝑓 + 𝑠𝑚𝑓1
+ (1 − 𝑣𝑓), 2.7 

where 𝑠𝐿
+is the longitudinal strength of the lamina and 𝑠𝑓1

+  is the strength of the fiber. Some 

composites have matrix materials that have a lower allowable strain than the fiber. For these 

materials, the longitudinal strength of the lamina is found using Equation 2.8 [19]: 

 𝑠𝐿
+ = 𝑠𝑓𝑚1

+ 𝑣𝑓 + 𝑠𝑚1
+ (1 − 𝑣𝑓)     where     𝑠𝑓𝑚1

+ = 𝐸𝑓1𝑒𝑚1
+ . 2.8 

 Transverse and shear strength of a continuous fiber lamina is largely dependent on 

the matrix material used. Analysis for the two strengths is very similar. These strengths are 

much lower and often a limitation in laminate composites. The transverse strength can be 

found using Equations 2.9 and 2.10 and the shear strength is found using Equations 2.11 and 

2.12 [19]: 

 𝑠𝑇
+ =

𝐸2𝑠𝑚
+

𝐸𝑚𝐹
, 2.9 

 𝐹 =
1

𝑑

𝑠
[
𝐸𝑚
𝐸𝑓2

−1]+1

, 
2.10 

 𝑆𝐿𝑇 =
𝐺12𝑠𝑚

+

𝐺𝑚𝐹𝑠
, 2.11 

 𝐹𝑠 =
1

𝑑

𝑠
[
𝐺𝑚12
𝐺𝑓12

−1]+1

. 
2.12 

The effective transverse modulus E2 is found using Equation 2.6. F is the strain 

concentration factor with d representing the fiber diameter and s representing the distance 

between the fibers. G12 is the effective shear modulus found in Equation 2.6. Fs is the in-

plain shear strain concentration factor and Gm12 is the average matrix in-plain shear modulus.  
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2.3 Randomly Oriented Chopped Fiber Mechanics 

 Stiffness properties for randomly oriented chopped fibers composites are estimated 

based on the analysis of aligned short fibers. Aligned short fiber composites have better 

strength and stiffness properties than randomly oriented fiber composites. Alignment of 

short fibers is a difficult manufacturing process. The macroscopic longitudinal modulus is 

affected by the use of discontinuous short fibers; however, Halpin concluded E2, G12, and ν12 

were marginally affected by the fiber length [19]. The resulting equation for  the 

longitudinal modulus is given in Equation 2.13: 

 
𝐸1

𝐸𝑚
=

1+𝜉𝜂𝑣𝑓

1−𝜂𝑣𝑓
,     𝜂 =

(
𝐸𝑓1

𝐸𝑚
)−1

(
𝐸𝑓1

𝐸𝑚
)+𝜉

,     and    𝜉 =
2𝐿

𝑑
, 2.13 

where L is the length of the fiber, d is the diameter of the fiber, and Ef1 is the longitudinal 

modulus of the fiber. Marginal effect on the transverse modulus allows for the use of the 

improved inverse rule of mixtures as given in Equation 2.14 [19]. Given the results of 

Equations 2.13 and 2.14, the averaged isotropic properties can be found using the Tsai and 

Pagano equation (Equation 2.15). 

 

𝐸2 = [(1 − √𝑣𝑓) +
√𝑣𝑓

1 − √𝑣𝑓(1 −
𝐸𝑚
𝐸𝑓2

)
] 2.14 

 �̃� =
3

8
𝐸1 +

5

8
𝐸2     and     �̃� =

1

8
𝐸1 +

1

4
𝐸2. 2.15 

Poisson’s ratio for the randomly oriented, short fiber composite can be found by inputting Ẽ 

and �̃� from Equation 2.15 into Equation 2.4. The relationship between fiber volume fraction, 

the ratio between Ẽ and E1, and the ratio between Ef and Em is shown in Figure 2.3 [19]. This 

gives a visual image for the effect of the fiber modulus on the effective modulus for the 

randomly oriented, short fiber composite. 
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Figure 2.3: Effect of short fiber modulus on the effective modulus [19] 

 Strength analysis for short, randomly oriented fibers is based on continuous the 

continuous fiber analysis yet is much than continuous fiber analysis. A representative 

volume element, like the one shown in Figure 2.4, of a single short fiber in an off-axis 

orientation is analyzed. Integrating the RVE over all possible orientations results in an 

average strength for randomly oriented, short fiber composites [19]. Chen (Equation 2.16) 

and Lees (Equation 2.17) both developed approximations for the strength of the composite 

as a function of the strengths for a continuous fiber composite [22] [23]: 

 
�̃�𝑥 =

2𝑠𝐿𝑇

𝜋
[2 + ln

𝜓𝑠𝐿
+𝑠𝑇

+

𝑠𝐿𝑇
2 ]  2.16 

 
�̃�𝑥 ≅

2𝑠𝐿𝑇

𝜋
[1 +

𝑠𝑇
+

𝑠𝑚𝑓1
+ ln

𝑠𝑚𝑓1𝑠𝑇
+

𝑠𝐿𝑇
2 ], 2.17 

where sLT is the shear strength from the continuous fiber analysis (Equation 2.11), ψ is an 

efficiency factor which is assumed to be one when unknown or estimated as a percent of the 

effective randomness. The variables 𝑠𝐿
+ (Equation 2.7) and 𝑠𝑇

+ (Equation 2.9) are for a 

continuous fiber composite. Equations 2.16 and 2.17 are significantly influenced by the 

shear strength as a result of matrix supporting much of the load. Well-defined fiber strengths 

and stiffness properties are needed to compute the lamina stiffness and strengths using 

equations introduced in sections 2.2 and 2.3 of this thesis. 
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Figure 2.4: RVE for off-axis short fiber [19] 

2.4 Failure Criterion 

 Three main types of failure criterion exist for composite laminas. These are the 

maximum stress, maximum strain, and Tsai-Hill criterions [19]. The Maximum Stress 

Criterion states that if a stress in the lamina reaches the maximum stress of the component, 

whether tensile, compressive, or shear then failure will occur. Maximum Strain Criterion 

states that if the strain in the lamina reaches the maximum strain of the component then 

failure will occur. The Tsai-Hill failure surface for plain stress is a function of the biaxial 

stresses and the shear stress. Tsai-Hill Criterion was developed as a modification to the 

commonly used maximum distortional energy criterion; otherwise known as the von Mises 

Criterion [19]. The three failure criterions are shown in σ1, σ2 space in Figure 2.5. The load 

direction is distinguished using (+) for tensile loading and (-) for compressive loading and 

the strength is signified by s with T and L signifying the fiber direction.  
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Figure 2.5: Maximum stress, maximum strain, and Tsai-Hill failure criterions [19] 

 Maximum Stress Criterion creates the rectangle shape shown in Figure 2.5. The 

interaction between stress components is not incorporated in this failure criterion. It has 

been shown to be accurate for uniaxial loadings as shown in Figure 2.6 [19]. Maximum 

Strain Criterion creates a parallelogram shape. This incorporates added strain in biaxial 

loading scenarios. Most physical evidence does not support this criterion at the intercepts of 

the parallelogram which can be seen in Figure 2.6 [19]. The Tsai-Hill Criterion is a 

continuous function which accounts for loading in the 1 and 2 directions and the shear stress 

as shown in Equation 2.18)[19]:  

 𝜎1
2

𝑠𝐿
2 −

𝜎1𝜎2

𝑠𝐿
2 +

𝜎2
2

𝑠𝑇
2 +

𝜏12
2

𝑠𝐿𝑇
2 = 1

.
 2.18 

The directions are not specified in the Tsai-Hill equation because the loading can be either 

positive or negative. If the left-hand portion of Equation 2.18 is greater than one, then failure 

has occurred according to this criterion. This failure criterion is a reasonable fit for many 

composite materials [19] and more conservative as shown in Figure 2.6. The fourth failure 

surface in Figure 2.6 is the Tsai-Wu Criterion. This is shown to be more accurate but 

requires strength tensors that are experimentally determined [19].  
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Figure 2.6: Comparison of the maximum stress, maximum strain, and Tsai-Hill failure criterions [19]   
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Chapter 3.     Model 

3.1  Model Development     

 This chapter introduces the development of a model that calculates the stresses and 

displacements in the high-speed flywheel energy storage system. These outputs are 

necessary for their use in understanding and defining the feasible design region. The optimal 

configuration and size of the flywheel is located in this region. Stress outputs determines 

approximately when the iron laminates will experience yielding. The displacement 

determines if the 1 mm airgap can be maintained within the reasonable range required for 

the FRRM to operate [14].   

 The stress state of rotating isotropic materials is well understood [24]. The stress 

equations are functions of the Poison’s ratio, density, and the angular velocity. These 

equations are used to describe an isotropic, homogeneous material undergoing elastic 

deformation. These equations cannot be used to calculate the stress state of an anisotropic, 

nonhomogeneous material.  

 The study of composite flywheels has become more abundant with newfound 

applications. This includes the study of solid rotating composite disks. Rajeev Jain, et al, 

derived an analytical result of a solid, constant thickness, uniform strength, anisotropic disc 

[25]. Their analysis also examined a radially varying modulus disc. Both cases were 

compared with a Finite Element Analysis (FEA) for validity. Similarly, Xu-Long Peng and 

Xian-Fang Li studied the stress distribution of a functionally graded solid disk [26]. A 

functionally graded composite disk is one where the properties vary radially. An example of 

this would be a disc that the fiber volume fraction increases radially. The benefit of a 

functionally graded material is the reduction large stress discontinuities that occur when 
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rings with different physical properties are present. Multiple physical rings is an example of 

a nonhomogeneous rotor that excludes the use of the isotropic stress state equations.  

 The design and testing of a FESS with dome-type hub matched with reasonable 

precision of a FEA model [27]. A cross-sectional view of the rotor is shown in Figure 3.1. 

Their rotor design was able to match radial growth to prevent separation. The 325 kg 

flywheel was tested to a maximum speed of 17,000 rpm at which the stored energy was 50 

kWh.  

 
Figure 3.1: Cross-sectional design 50 kWh FESS with a dome-type hub [27] 

 When helically wrapping a disc with a ply orientation of ±θ in the r-z plane, the 

resulting structure has a mosaic pattern as shown in Figure 3.2 [28]. Uddin, et al, modeled 

the flywheel as being hollow and the orientations as being orthotropic. Fiber-reinforced 

composites often behave in an orthotropic manner which is a special case of anisotropy. 

Orthotropic materials have properties that differ with respect to the three orthogonal axes.  
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Their results compared the stress distribution in the mosaic pattern to the typical analysis 

which is that of a laminated shell. The analysis conducted used a finite element model with 

different mosaic patterns. 

 
Figure 3.2: Mosaic pattern resulting from ±θ continuous fiber helical wrapping [28] 

 A non-axisymmetric layered composite disc analysis was developed by Tahani, et al 

[29]. Their model includes the shear stress present when the flywheel is no longer 

axisymmetric. Out-of-plane and shear composite properties are often times not readily 

available from composite manufactures. The use of the non-axisymmetric model would 

require many estimated or physically tested properties for the model to operate.  

 Analysis of a single composite material would not incorporate the use multiple 

materials, such as iron laminations, that are needed for the flywheel to operate. The 

functionally gradient analysis also excludes the iron laminations therefore excluding that 

analysis. Design and testing of a design incorporating a dome shape hub gave good results 

as compared to a FEA model. Use of a dome-shaped hub removes this as possible design 

method. Implementing a mosaic type pattern using an FEA model could be a possible option 
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for the final design. Because a FEA was used in the mosaic analysis, the multiple materials 

and orientations could potentially be incorporated into the FEA. The ability to iteratively 

solve for a rotor design is extremely computationally expensive. The final flywheel design 

will require a full finite element analysis to ensure localized yielding will not occur. These 

limitations resulted in the use of an axisymmetric model developed by Sung K. Ha, et al. 

 This axisymmetric model chosen is developed using a plain strain assumption for an 

axisymmetric flywheel [30]. The flywheel is assumed to be thick enough for this assumption 

to be valid. This model has the capability of having multiple physical rings. Physical rings 

are defined as different material. A schematic of a similar FESS with multiple physical rings 

is shown Figure 3.3. However, instead of utilizing permanent magnets a material capable of 

transferring magnetic flux will be used for the FRRM. Laminations for the UIFESS will be 

considered one physical ring. The addition of other materials would add to the total number 

of physical rings. Multiple rings may be needed to increase the strength of the rotor and/or 

for construction of the final design in a high-speed application.  
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Figure 3.3: Composite flywheel diagram for FESS with multiple rings [30] 

 The stress state the model developed by Sung K. Ha, et al can then be described by the 

following relationship: 

 

(

𝜎𝜃
𝜎𝑧
𝜎𝑟
) = [

𝑄11 𝑄12 𝑄13
𝑄12 𝑄22 𝑄23
𝑄13 𝑄23 𝑄33

] (

𝜀𝜃
𝜀𝑧
𝜀𝑟
)     with     𝑸 =

[
 
 
 
 
1

𝐸𝜃

−𝜈𝜃𝑧

𝐸𝑧

𝜈𝜃𝑟

𝐸𝑟
𝜈𝜃𝑧

𝐸𝜃

1

𝐸𝑧

𝜈𝑟𝑧

𝐸𝑟
𝜈𝜃𝑟

𝐸𝜃

𝜈𝑟𝑧

𝐸𝑧

1

𝐸𝑟 ]
 
 
 
 
−1

,

 3.1 

 

where σ and ε are the stress and strain vectors and Q is the stiffness matrix for the 

axisymmetric material. These axes are defined as θ-z-r. Directions 1, 2, and 3 from Equation 

3.1 correspond to θ, z, and r respectively. Stiffness matrix Q from Equation 3.1 is a 

simplification from Equation 2.3 resulting from normal stresses only inducing normal strains 

therefore neglecting shear strains and stresses [19]. The axisymmetric strains are defined as: 
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 𝜀𝜃 =
𝑢𝑟

𝑟
     and 𝜀𝑟 =

𝑑𝑢𝑟

𝑑𝑟
, 3.2 

 

where εθ and εr are the circumferential and radial strains respectively and ur is the radial 

displacement at a given r.  

 To solve for σ numerically, the flywheel with multiple physical rings is divided into 

numerical rings. Numerical rings are implemented to increase the accuracy of numerical 

model. As the thickness of the numerical rings approaches zero the more precise the 

numerical solution. The stress and strain vectors are then used to develop the equations for 

radial displacement ur and normal stress σr: 

 𝑢𝑟 =−𝜌𝜔
2𝜑0𝑟

3 + 𝐶1𝜑1𝑟
𝜅 + 𝐶2𝜑2𝑟

−𝜅  

𝜎𝑟 =−𝜌𝜔
2𝜑3𝑟

2 + 𝐶1𝑟
𝜅−1 + 𝐶2𝑟

−𝜅−1,  

3.3 

3.4 

 

where ρ is the density of the physical ring, C1 and C2 are unknown constants which are 

solved for using boundary conditions. The values κ and ϕi are defined with respect to the 

material properties:  

 𝜑0 =
1

(9−𝜅2)𝑄33
,     𝜑1 =

1

𝑄13+𝜅𝑄33
,     𝜑2 =

1

𝑄13−𝜅𝑄33
, 

𝜑3 =
3𝑄33+𝑄13

(9−𝜅2)𝑄33
,     and 𝜅 = √

𝑄11

𝑄33
.  

3.5 

 

To eliminate the constants, the displacement vector is written as: 

 𝒖 = 𝒖𝝎 +𝜱𝒖𝑪. 3.6 

 

The vectors u, uω, Φu, and C from Equation 3.6 are defined as: 

 
𝒖 = (

𝑢𝒓𝒊
𝑢𝒓𝟎

),     𝒖𝝎 =−𝜌𝜔
2𝜑0 (

𝑟𝑖
3

𝑟𝑜
3),     𝜱𝒖 = [

𝑟𝑖
𝜅𝜑1 𝑟𝑖

−𝜅𝜑2
𝑟𝑜
𝜅𝜑1 𝑟𝑜

−𝜅𝜑2
],     and 

𝑪 =(
𝐶1
𝐶2
), 

3.7 

 

where ri represents the inner radius of the numerical ring and ro represents the outer radius 

of the same numerical ring. Similarly, the stress vector from Equation 3.4 is written as a 

force vector: 
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  𝒇𝒃 =𝒇𝝎 +𝜱𝒇𝑪, 3.8 

 

where the fb, fω, and Φf from Equation 3.8 are defined as: 

 

 
𝒇𝒃 =(

−𝑟𝑖𝜎𝑟𝑖
𝑟𝑜𝜎𝑟𝑜

),     𝒇𝝎 =(
𝜌𝜔2𝜑3𝑟𝑖

3

−𝜌𝜔2𝜑3𝑟𝑜
3),     and 𝜱𝒇 = [

−𝑟𝑖
𝜅 −𝑟𝑖

−𝜅

𝑟𝑜
𝜅 𝑟𝑜

−𝜅 ]. 3.9 

Stress-displacement relation for both the inner and outer surfaces of each numerical ring 

while also eliminating C is formulated using Equations 3.6 and 3.8. Stress-displacement  

relation is given as: 

 𝒌𝒖 =𝒇𝒃 + 𝒌𝒖𝝎 − 𝒇𝝎, 3.10 

 

where k is the stiffness matrix for the numerical ring is defined as: 

 𝒌 = 𝜱𝒇𝜱𝒖
−1.  3.11 

 

Continuity conditions must be satisfied for adjacent rings which are given as: 

 𝜎𝑟0
(𝑗−1)

=𝜎𝑟𝑖
(𝑗)

     and 𝑢𝑟0
(𝑗−1)

=𝜎𝑟𝑖
(𝑗)

, 3.12 

 

where j is used to denote the j
th

 numerical ring. Equation 3.10 satisfying Equation 3.12 is 

thus written globally as: 

 𝑲𝑼 =𝑭𝒃 + 𝑭𝝎, 3.13 

 

where K is the global stiffness matrix and U is the global displacement vector which 

represents the displacement of each interface. The global force vectors, Fb and Fω, is given 

as: 

 

𝑭𝒃 =∑ 𝒇𝒃
(𝑗)𝑁

𝑗=1      and 𝑭𝝎 =∑ (𝒌(𝑗)𝒖𝜔
(𝑗)
−𝑁

𝑗=1 𝒇𝝎
(𝑗)
), 3.13 

 

where N is the total number of numerical layers in the flywheel. The evaluation of Fb results 

in a vector with mostly zeros as a result of the internal stresses. Sung K. Ha, et al, modeled 

an internal permanent magnet as an isotropic material which applies a pressure on the inner 
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surface. This resulted in a single non-zero term from this pressure in Fb. The current low-

speed flywheel built using iron laminations which in this thesis are modeled by inserting the 

isotropic properties into Q from Equation 3.1. This results in Fb being completely zero by 

removing the pressure applied to the inner surface.  

 The For each j
th

 ring, k is a (2 x 2) matrix. A global stiffness matrix, K, results in a 

symmetric (N+1 x N+1) tridiagonal matrix found by: 

 K = 



[
 
 
 
 
 
 
 
 
 𝑘11

(1)
𝑘12
(1)

0

𝑘21
(1)

𝑘22
(1)
+ 𝑘11

(2)
𝑘12
(2)

𝑘21
(2)

𝑘22
(2)
+ 𝑘11

(3)

⋯

0 0 0

0 0 0

0 0 0
⋮ ⋱ ⋮

0 0 0

0 0 0

0 0 0

⋯

𝑘22
(𝑛−2)

+ 𝑘11
(𝑛−1)

𝑘12
(𝑛−1)

0

𝑘21
(𝑛−1)

𝑘22
(𝑛−1)

+ 𝑘11
(𝑛)

𝑘12
(𝑛)

𝑘21
(𝑛)

𝑘22
(𝑛)
]
 
 
 
 
 
 
 
 
 

.
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Similarly, the operation for Fω on each numerical ring (𝒌(𝑗)𝒖𝜔
(𝑗)
− 𝒇𝝎

(𝑗)
) results in a (N x 2) 

matrix and is summed together in the following manner to create a (N+1 x 1) vector: 

 

𝑭𝝎 =

(

 
 
 
 
 

(𝒌(1)𝒖𝜔
(1)
− 𝒇𝝎

(1)
)11

(𝒌(1)𝒖𝜔
(1)
− 𝒇𝝎

(1)
)12 + (𝒌

(2)𝒖𝜔
(2)
− 𝒇𝝎

(2)
)21

⋮
⋮

(𝒌(𝑛−1)𝒖𝜔
(𝑛−1)

− 𝒇𝝎
(𝑛−1)

)(𝑛−1)2 + (𝒌
(𝑛)𝒖𝜔

(𝑛)
− 𝒇𝝎

(𝑛)
)𝑛1

(𝒌(𝑛)𝒖𝜔
(𝑛)
− 𝒇𝝎

(𝑛)
)𝑛2 )

 
 
 
 
 

.
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Solving the system of linear equations for U in Equation 3.13 in conjunction with Equation 

3.2 allows for the ε vector be solved. Substituting ε into Equation 3.1 allows for the solving 

of σ.  
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3.2  Model Validation 

 The model is first developed to have two physical rings. Multiple other physical 

rings can be added with the addition of the other properties. The top and bottom stainless 

caps are being excluded from this preliminary model because the machined geometry will 

require a finite element model. Once a rotor size and design is selected, the addition of caps 

can be added to the model or will give a sensible starting point for the finalization of the cap 

material and geometry. In order to validate the model, an initial study is conducted where 

the two physical rings are made to be the same isotropic material which is chosen to be the 

M-36 silicon-iron currently being in use. The model sees that setting the physical rings to be 

the same material is the equivalent to one physical isotropic ring. Comparison of between 

the model and the isotropic equations can now take place. Physical properties for M-36 steel 

are given in Table 3.1 [31].  

Properties Value 

Young’s Modulus (E) 200 (GPa) 

Poisson’s Ratio (ν) 0.29 

Density (ρ) 7700 (kg/m^3) 

Yield Stress (Sy) 290 (MPa) 
Table 3.1: Physical properties for M-36 laminations [31] 

The analytical stress and displacement equations for an isotropic stress state of a hollow 

flywheel with a constant thickness at a specific rotational velocity are given below [24]: 
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𝜎𝑟 =

3 + 𝜈

8
𝜌𝜔2 [𝑎2 + 𝑏2 − 𝑟2 −

𝑎2𝑏2

𝑟2
] 

𝜎𝜃 =
3 + 𝜈

8
𝜌𝜔2 [𝑎2 + 𝑏2 −

1 + 3𝜈

3 + 𝜈
𝑟2 +

𝑎2𝑏2

𝑟2
] 

3.16 

 
𝑢𝑟 = 

3 + 𝜈

8
𝜌𝜔2

1 − 𝜈

𝐸
𝑟 [𝑎2 + 𝑏2 −

1 + 𝜈

3 + 𝜈
𝑟2 +

1 + 𝜈

1 − 𝜈

𝑎2𝑏2

𝑟2
] 3.17 

 

where a and b are the inner and outer radii respectively, r is a continuous variable for the 

radial distance from a to b, and the other properties are given in Table 3.1. Equations 3.16 

and 3.17 are developed under the plain stress assumption thus σz = 0 and is not considered in 

this comparison. An angular velocity ω = 10,000 rpm will be used for initial validation. Any 

angular velocity can be used as a result of the yield stress of the material not affecting the 

stresses and displacement outputs from the models. An inner radius of r = 0.0762 meters (3 

inches) and an outer radius of r = 0.1778 meters (7 inches). The inner radius is an 

approximately the current radius of the UIFESS. The outer radius was arbitrarily selected 

such that the composite can be inputted for comparison. Comparison of the radial stress is 

done by plotting σr from Equation 3.1 and Equation 3.16 as shown in Figure 3.4. Likewise, 

the hoop stress is compared by plotting σθ from Equation 3.1 and Equation 3.16 as shown in 

Figure 3.5. The plain strain assumption for the model and plain stress for the isotropic 

equaitons do not allow for comparrison of the stress in the z-directon. 
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Figure 3.4: Comparison of radial stress (MPa) vs radial distance (m) for the numerical equation and the 

analytical model at ω = 10,000 rpm 

 

 
Figure 3.5 Comparison of hoop stress (MPa) vs radial distance (m) for the numerical equation and the 

analytical model at ω = 10,000 rpm 
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 For the radial stress in Figure 3.4, the model predicts a stress that is about 5% greater 

than the radial stress from Equation 3.16 along the entire radius. A 5% error at a larger stress 

near the middle results in a greater magnitude of a stress difference. When using fewer 

numerical rings (<50), the model predicts the radial stress with an error that is approximately 

5% greater than Equation 3.16. Using many number numerical rings (>1500) marginally 

decreases this error to about 4%. The hoop stress, which is the highest stress, shows an error 

that is approximately 3% high at the inner radius and approximately 8.7% low at the outer 

surface. The number of numerical rings had a no influence on the changing of these values. 

 While the model does not match the isotropic equations exactly, the errors are 

relatively small. Both the model and the isotropic equations are not exact as they were 

derived from a linear-elastic, mechanics of materials approach rather than a continuum 

approach. The mechanics of materials approach results in approximate values and not exact 

values. Some assumptions include small-displacements, line-elastic behavior, homogenous 

and uniform properties throughout. It is shown in the comparison that the model is more 

conservative by predicting higher stresses at the inner surface will allows for the continued 

use of the model. Lower yield strength for the iron laminations makes it the critical 

component with highest stress being at the inner-most surface. 

 The stress output is important from a stance of mechanical failure; however, the 

displacement is critical for electrical control. The strength of the forces applied from the 

stator are greater the smaller the airgap between the stator and the rotor [14]. The model will 

confirm whether or not previously determined 1 mm airgap can be maintained given the 

design and rotational velocity. In Figure 3.6 the differences between the displacements of 

the model and Equation 3.17 is shown.  
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Figure 3.6: Comparison of radial displacement vs radial distance for the numerical equation and the 

analytical model at ω = 10,000 rpm 

 The model outputs a displacement that is approximately 6.2% low on the critical 

inner surface and approximately 16.2% low on the outer surface. The number of numerical 

rings and the change in angular velocity had negligible effects to these differences. A lower 

displacement from the model than the isotropic equations is therefore under-conservative. 

The large error is a result of the numerical model being derived in plane strain and Equation 

3.17 being derived in plane stress. A vertical stress results in a subtraction of radial strain 

due to Poisson’s effects. Including the displacement from Poisson’s strain, that is previously 

subtracted, results in a more accurate prediction of the displacement. When this extra strain 

is added, the error range is similar to that of the hoop stress. This concludes that the effect of 

the strain induced by Poisson’s ratio from the stress in the vertical direction from the plane 

strain assumption is the reason for the high error. This may be a way to adjust the model for 

a multi material design. 
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3.3  Model Adjustments 

 Two physical rings where originally introduced into the model for simplicity of 

verification. Additional rings can and will be added later. Adjusting the stiffness matrix Q 

allows for an axisymmetric composite ring to be incorporated into the model. Carbon fiber 

was chosen as the initial input for the ring for its ability to withstand high stresses. 

HexTow® HM63 with HexPly® 8552 Resin System, with properties found in Table 3.2, has 

a reasonably high yield stress while still having a modulus of elasticity greater than the iron 

laminations [32]. It is beneficial that the material stiffness’s increase for each physical ring 

as radial distance increases. This gives additional insurance that separation of subsequent 

rings will not occur and additional support of the stresses from the inner ring. Other methods 

of reducing the chance of separation include pre-stressing during manufacturing and press-

fitting the inner rings into subsequent rings. High modulus carbon fiber has a specific 

strength that is approximately 32 times greater than the M-36 iron laminates. The low 

density reduces the centrifugal forces by decreasing the mass while the higher modulus 

carries some of stress from the iron laminations. The three stresses for the solid iron 

flywheel as described previously are shown in Figure 3.7. The stress results of having an 

iron-carbon fiber rotor design are shown in Figure 3.8.  

Lamina Properties Value 

Tensile Modulus (Eθ) 246 (GPa) 

Transverse Modulus (Er/Ez) 7.5 (GPa) 

In-plane Poisson’s Ratio* (νθz/ νθr) 0.25 

(r-z plane) Poisson’s Ratio* (νθz/ νθr) 0.2 

Density (ρ) 1618 (kg/m^3) 
Table 3.2: Physical properties for HM63 carbon fiber at 60% volume fraction. *Approximate value [32] 
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Figure 3.7: Radial, vertical, and circumferential stresses for iron-iron arrangement at ω = 10K rpm  

 
Figure 3.8: Radial, vertical, and circumferential stresses for iron-carbon fiber flywheel at ω = 10K rpm 

 The stresses in Figure 3.8 are reduced when the composite ring is added. Lower 

stresses indicate the possibility of adjusting dimensional parameters and rotational velocity 

in exchange for the deduction of stress to prevent failure while still maintaining high energy 
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storage. While the circumferential and vertical stresses are discontinuous, the radial stress is 

continuous which is required for the displacement, as shown in Figure 3.9, to be continuous 

throughout the flywheel. The confidence in the accuracy of the displacement is low; 

however, it does give an order of magnitude estimate for what the displacement will be. 

High displacement towards the outside surface in Figure 3.9 is a result of the low transverse 

modulus for the carbon fiber. Displacement of the outer surface does not affect the FRRM 

but may induce limitations for position sensors. 

 
Figure 3.9: Radial displacement for iron-carbon fiber arrangement at ω = 10K rpm 

 A large displacement at the inner radius is detrimental for the control of the flywheel. 

Increasing the strength of the lamination and composite material will reduce the 

displacement. The extent that the stiffness would need to increase is beyond a feasible bound 

for materials. An increase in stiffness will likewise increase the stress in the flywheel which 

is already experiencing failure at speeds greater than 20,000 rpm. A reduction in the size of 
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the rotor will also decrease the stresses and displacements. A flywheel size required to not 

experience excessive displacements is much smaller than the stator can be built.  

 Large displacements will therefore require a much lower angular velocity or a way to 

“capture” the flywheel to maintain the 1 mm airgap necessary for control. One proposed 

method is to taper the inside surface and stator. When radial expansion occurs the 

superconducting plate can be actuated vertically. Actuation of the plate will result in an 

actuation of the flywheel itself therefore maintaining the required airgap. Currently for the 

UIFESS, the iron laminations are held in place using bolts that extend vertically through the 

flywheel. Theses laminations will still need to be held together for the high-speed FESS. 

Laminations of different diameters may not allow bolts to pass through the laminations. 

Bolts will likewise induce stress concentrations and shearing. A proposed method is a 

stainless steel sleeve implemented between the iron and composite such that the caps can 

then be attached to this sleeve. To achieve the inside taper, the iron laminations will need to 

be separate discrete diameters. These discrete diameters will create a surface that is no 

longer smooth but step-like. Typical properties of 304 Stainless Steel are given in Table 3.3.  

Properties Value 

Young’s Modulus (E) 193 (GPa) 

Poisson’s Ratio (ν) 0.29 

Density (ρ) 8000 (kg/m^3) 

Yield Stress (Sy) 290 (MPa) 
Table 3.3: Physical properties for 304 Stainless Steel 

 A geometrically non-uniform rotor induces the complication of non-uniform 

deformation. This results in the inner tapered surface no longer being linear but arced. If the 

extent of this arc is too great, the shape of the flywheel will no longer match the taper of 

stator. Non-uniformity between the rotor and stator will result in unequal applied forces to 

the rotor from the airgap no longer being uniform. To decrease the uniformity, an angle can 
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be added between iron-stainless steel interface and another between the stainless steel-

carbon fiber interface as shown in Figure 3.10 below.  

 

 
Figure 3.10: Schematic of the rotor’s cross-sectional view 

 The taper angle α, iron-stainless steel angle ϕ, and the stainless steel-carbon fiber 

interface β are shown in Figure 3.10. The variables α, ϕ, and β, as shown in Figure 3.10, are 

defined as the positive direction. Given a value of α, ϕ and β can be adjusted such that the 

variation in radial displacement of the internal surface is minimized. Description of a 

heuristic approach to minimizing the deflections is described in Chapter 4. Similarly, a 

heuristic method of maximizing the rotational kinetic energy such that the maximum stress 

in the iron laminations does not exceed the yield stress is described in Chapter 4. For the 

maximizing optimization, it is assumed that α = ϕ = β = 0 as defined in Figure 3.10. 
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Chapter 4.     Optimization 

4.1  Introduction 

 Often times in design, the best set of design variables is not a trivial solution. To 

resolve this issue, a rigorous method of locating the optimum set of design variables is 

needed. Optimization methods are a systematic way of finding the optimal design. Using the 

parameters, an optimization can be formed into Standard Optimum Form. This form is the 

basis of all optimization algorithms. 

 The Standard Optimum Form is the minimization of a cost function, also known as 

the objective function, subject to constraints [33]. The cost function, f(x), is the value that is 

trying to be minimized. Constraints on the cost function can be equality, h(x), or inequality, 

g(x), constraints. Optimization functions are formulated to minimize a value, therefore, to 

maximize a value the cost function becomes –f(x). An example of the cost function and 

constraints are given below: 

 Cost function: “Minimize the cost of a wing given a set of design parameters.” 

 Equality constraint: “A wing must be 10 feet long.” 

 Inequality constraint: “The wing must weigh less than 100 lbs.”  

Given an arbitrary set of design variables x = [x1, x2,…, xn], the Standard Optimum Form for 

a function and constraints is shown in Equation 4.1. For any given design problem there may 

be both, either or neither equality and inequality constraints [33].  
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 Minimize: 
 

𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 
 

subject to the equality constraints: 

 
ℎ(𝒙) = ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) 

 

subject to the inequality constraints: 
 

𝑔(𝒙) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛). 

4.1 

 Design variables in an optimization can be either continuous or discrete. Continuous 

variables are ones that can vary by any value within the bounds prescribed. An example of a 

continuous variable is the length of a member used in the construction of a table. Discrete 

variables are ones that are limited by specific set of standard values. Examples of these are 

standard pipe sizes or board thicknesses. 

 Constraints are introduced the through the use of the Lagrange Multiplier Theorem 

as given in Equation 4.2 [33].  

 𝑳 = 𝑓(𝒙) + ∑ 𝑣𝑖ℎ𝑖(𝒙)
𝑝
𝑖=1 +∑ 𝑢𝑗𝑔𝑗(𝒙)

𝑚
𝑗=1 ,  4.2 

where L is the Lagrangian Function and vi and uj are the Lagrange multipliers for the 

equality and inequality constraints respectively. The number of equality and inequality 

constraints are defined by p and m respectively. Lagrange multipliers are implemented for 

the use of minimizing the error added from the constraints. Using the Lagrange multipliers 

in the Largrangian Function allows the function to be solved as an unconstrained function. 

At a feasible, optimal point 
𝜕𝑳

𝜕𝒗
=

𝜕𝑳

𝜕𝒖
= 𝟎 [33].  

 Much like in calculus, a design function can have multiple minima and maxima as 

shown in Figure 4.1 [33]. In most cases, there is no way to know for certain if the optimum 

found is the global optimum. One way to find the global optimum is the use of graphical 
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optimization. This is done by plotting the function or function contour plains and constraints 

to find the optimum value. For instance, a global minimum at point E and a global 

maximum at F are shown in Figure 4.1. Points B and D are local minima while A and C are 

local maxima. This type of optimization is limited to the number of design variables that can 

be plotted. This requires the use of algorithms to find the optimal solution. 

 

Figure 4.1: Representation of local and global minima and maxima [33] 

 Two divisions of optimization algorithms exist; gradient and heuristic. Incorporating 

the model into an optimization method must be done by the use of heuristic optimization 

methods. Gradient based optimizations incorporate the use of derivatives to search for an 

optimum location. These require having a continuous function or enough information for 

numerical differentiation. Heuristic optimizations initiate several starting points and use 

search algorithms to locate the optimum. Gradient based and heuristic optimizations have 

potential to be significantly influenced by the starting location. This can be influenced by the 

optimization method or how the design variables affect the objective function. For heuristic 

optimizations, it is best to have widespread coverage of the design space. Widespread 

coverage helps to insure locations of the design aren’t misrepresented. This will be done 

through the use of Latin Hypercube Sampling (LHS). 
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4.2 Latin Hypercube Sampling 

 One method of population initiation is complete, random sampling. Selecting 

randomly risks the chance of points clustering in certain regions resulting in a poor 

distribution of the design space. Clustering is likely for when low population sizes are 

prevalent. This can be remedied with the use of LHS. Sampling LHS is used to guarantee 

widespread initiation in the design space [34]. 

 To select a population, the design space is evenly gridded into bins such that the 

number of bins is the same as the pre-selected population. The size of the population needed 

is problem to problem dependent but often correlates roughly to the number of design 

variables. The more design variables, the larger the population size will need to be. Once the 

design space is gridded points within that grid need to be selected. This is done by randomly 

selecting a permutation of the variables which represents a grid location. For a simple 2D 

case, if a grid location of an (x,y) location is selected, no other data points can be selected in 

column of x nor the rows y occupied by that point. Figure 4.2 demonstrates the use of LHS 

to select five points in 5X5 grid. LHS results in each row and column containing a data 

point. This point is typically located at the midpoint of the grid however some extra 

randomness is built into LHS routine by adding a random number to the midpoint to shift it 

throughout the grid region. Using the same process, this can be applied to multiple 

dimensions to form a hypercube. 

 
Figure 4.2: LHS example for two variables and 5x5 grid [34] 
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4.3 Particle Swarm Optimization 

 The model developed in Chapter 3 analyzes the stress state and radial displacement 

of the flywheel. Model outputs are needed for the optimization therefore each point in the 

optimization function will need to be inserted into the model. Unless enough points are input 

into the model to form a surrogate model, gradient based optimization methods cannot be 

used. This consequently introduces the need for a heuristic approach which does not require 

a continuous function. Heuristic methods use searching algorithms rather than gradient 

based searching methods. Searching algorithms use the objective function evaluations to 

determine the searching direction. Gradient based methods, however, use both the objective 

function evaluations and the derivatives to determine the search direction [33]. An example 

of a heuristic optimization approach is Particle Swarm Optimization (PSO). Particle Swarm 

Optimization was selected for its wide range of applicability and implementation simplicity. 

The described optimizations in Sections 4.4 and 4.5 incorporate the use of continuous design 

variables which PSO’s are well suited for.  

PSO was developed in 1995 by James Kennedy and Russell Eberhart with 

methodologies comprised from bird flocking to food and evolutionary computing [35]. Each 

particle that is initiated represents a bird in a flock trying to find a food source. Each bird 

communicates to determine which of its surrounding neighbors is nearest a food source. The 

bird then moves in that direction. This is analogous to particles moving toward other 

particles that have the lowest value. If the bird realizes that the best location is on a previous 

iteration, it tends to move towards the best location. In PSO, the best point for each particle 

is stored. At each iteration, a comparison is done between a particle’s best location and its 
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current location. This is referred to as the fitness function because it determines how the 

quality of its location with that in its stored history.  

While a particle moves it compares the neighbors and its own fitness function to 

determine the final direction of movement. The number of neighbors being considered is 

~25% of the population number. Having a reasonably small number of neighbors will help 

insure that large jumps aren’t made through the design space. As a bird is flying to a source, 

it may realize that the better location is behind it. Already traveling in that direction, the bird 

will want to continue in that approximate direction and resist going in the opposite direction. 

This is similar to momentum of an object and is accounted for in the PSO by what is 

referred to as a velocity term. This is not a true velocity but a measure of how quickly the 

particle is moving through the design space. Kennedy’s and Eberhart’s PSO algorithm is 

given in Equation 4.3: 

 𝑣𝑥(𝑘 + 1) = 𝑣𝑥(𝑘) + 𝑟𝑎𝑛𝑑 ∗ 𝑝𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 ∗ (𝑝𝑏𝑒𝑠𝑡𝑥(𝑘) − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑥(𝑘)), 4.3 

where vx is the velocity for the particle and k is the iteration number.  Rand is a random 

number between zero and one and used to induce randomness in the system such that more 

coverage of the design space occurs. A modifying factor pincrement is used to weight the 

fitness function determining how far it will move in the direction of the particle’s history 

best . The group’s best point, pbestx, is the global best point. This includes each particle and 

all iterations. Variable presentx is particle’s current position. Since the development of 

Equation 4.3, it has been modified to incorporate added flexibility and efficiency as given in 

Equation 4.4 [36]: 
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 𝑣𝑖𝑑 = 𝑤 ∗ 𝑣𝑖𝑑 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑), 4.4 

where vid is the velocity term and w is the inertial weight similar to inertia. Constants c1 and 

c2 are greater than one and used to weigh a particle’s best position and its best neighbor. 

Rand and rand are random numbers between zero and one used to improve widespread, 

sporadic search of the design space. A particle’s best point, pid, used as part of the fitness 

function while pgd is the best neighbor’s location. The current location of the particle is 

represented by xid. Equation 4.4 was shown by Eberhart and Shi to be more efficient 

compared to Equation 4.3. The inertial weight w is a number that is either less than one or 

initially one and updated at each iteration by a factor less than one. It can be adjusted on 

subsequent iterations such that the particles essentially slow down at a desired rate. This 

increases the rate at which the points converge. Having an inertial weight w too small 

increases convergence but decreases the ability of the particles to search the design space. 

Each particle’s location is then updated using Equation 4.3 in conjunction with Equation 4.2: 

 𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑. 4.5 

 The objective function is what the PSO function is trying to minimize. This objective 

function value is the evaluation of the particle locations and can be written as shown in 

Equation 4.3 [33]. A lack of a continuous function requires that Lagrange multipliers be 

introduced as an incrementally increasing penalty value. 

 𝑓(𝒙) = 𝑓(𝒙) + 𝑃𝑒𝑛𝑣𝑎𝑙 ∗ 𝑔, 4.6 

where f(x) is the function evaluation, Penval is a scaling factor, and g is the constraint of the 

penalty function. The penalty function is the evaluation of constraints that are added to 

function that keep the particles from moving into an infeasible region or completely out of 

the design space.  
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 Frequently, the optimum set of design variables is located near a boundary of one or 

multiple constraints. If a particle is violating a constraint near a boundary, the magnitude of 

the violation error is comparatively small. This may result in the optimization function 

giving less precedence to the boundary condition. Incrementally increasing Penval as the 

point converges gives appropriate significance to the constraint.  

4.4 Displacement Optimization 

 As previously stated and shown in Figure 3.10, a way of maintaining a 1 mm airgap 

is to taper the rotor and flywheel then actuate the rotor vertically. The forces from the 

bearing are inversely proportional to the gap distance [14]. A small increase in the airgap 

distance significantly reduces the applied force to the flywheel. In an effort to control for 

uniform displacement for a given value of α, a PSO was tailored to minimize the variance in 

displacement in the vertical direction for the inner surface. Incorporation of the angles α, ϕ, 

and β is done by separating rotor’s thickness into multiple discrete layers. These discrete 

layers are given separate radii then the adjacent layers. Using discrete radii allows the values 

of the tapers to be included into the model. The current radial lamination thickness is set to 

be the minimum thickness of the iron which is 0.02776 meters. If stainless steel or a similar 

material is used to hold the laminations and caps together, the probable assembly will 

require bolts to connect the sleeve and caps together. For this reason, the minimum thickness 

of the stainless steel is set at 13 mm to allow for the connection. The smallest inner radius, at 

the top, is set to 0.0762 meters which is the approximate inner radius for the UIFESS. The 

outer radius is set at 0.1778 meters which is estimated based on the size UIFESS. The total 

height in the model is h = 0.2286 meters. 
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 The design variables for the displacement PSO are x1 = ϕ and x2 = β where                

x = [x1 x2]. The side bounds for this PSO are [-5° 10°] and ±5° for ϕ and β respectively. 

From Equation 4.4, f is the maxim variation in displacement and g is the squared sum of the 

violation of the side bound constraints. Population initiation is done by the use of LHS. A 

depiction of a population initiation is shown in Figure 4.3. 

 
Figure 4.3: Population initiation using LHS for the displacement PSO 

 The use of LHS resulted in a reasonable coverage of the design space. The 

population size for the two design variables is selected as 21 particles. Using six neighbors, 

the particles have the ability to converge to different optimum values. Twenty-one particles 

are used because the low number of design variables and the significant length of time to 

evaluate the model. Values used in the PSO such as those for Equations 4.2 and 4.4 are 

given in Table 4.1. The variables containing initial are set for the first iteration value and are 

updated by a factor using those containing update. The exception to this is vid_initial which is 

updated using Equation 4.2.  
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Variable Value 

Population 21 

# Neighbors 6 

c1 1.2 

c2  1.2 

winitial 1 

wupdate 0.75 

Penvalinitial 0.1 

Penvalupdate 2.0 

vid_initial 0.4 

ω (rpm) 50K 
Table 4.1: Variable values needed for displacement PSO 

 An exit criterion, also known as convergence criterion, is needed to determine if the 

PSO has located an optimum location. Many options for convergence exist; however, in the 

case of the displacement optimization the convergence criterion is defined as the all the 

particles stop moving. Essentially, the distance between the particles’ location of the current 

iteration and the previous iteration must below a critical value ε. The range of the design 

variables are small thus ε = 0.1 is a sufficiently tight tolerance for convergence.  

 This PSO converges to the given criterion in 90 iterations and approximately 1.75 

hours. The large length of time is a result of multiple discrete layers in the model. Given the 

size and parameters, the optimal values are ϕ = 6.03° and β = 2.65°. These angles result in 

an overall difference in displacement of 0.11 mm. Given dramatically different values for β 

resulted in similar results. This concludes that the displacement is much more sensitive to α 

than β.  More shallow angles for β is more beneficial for manufacturing. The PSO model 

converges to same general location every time. The first, middle, and last iterations are 

shown in Figure 4.4. The relative shape of the flywheel with the optimized angles is shown 

in Figure 4.5, not to scale. Without the use of the optimization, using ϕ = β = 0 and α = 5, the 

difference of the inner displacement would be approximately twice as large. Similar values 

of ϕ and β where found at ω = 20,000 rpm. 
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Figure 4.4: Particle convergence locations at different iterations 

 
Figure 4.5: Geometrical comparison after deformation at 50k rpm (not to scale) 
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4.5 Energy Optimization 

 The goal of the high-speed UIFESS is to safely store large quantities of energy while 

structural integrity. The weakest portion of the rotor is the iron laminations with a yield 

stress of Sy = 290MPa. The same material layup as Figure 3.10 is used however                 

α = ϕ = β = 0. Two separate energy PSO functions are used to maximize the stored energy. 

One uses four independent variables which are the radiuses to the surfaces as shown in 

Figure 4.6 given an angular velocity. The second uses the same variables as the first with the 

inclusion of the angular velocity as a design variable. A fixed angular velocity will show the 

relation between angular velocity and the maximum kinetic energy. Optimization algorithms 

are formulated for the minimization of a value. In order to maximize a value, the 

minimization of the negative is used therefore Equation 4.4 becomes [33]: 

 𝑓 = −𝑓 + 𝑃𝑒𝑛𝑣𝑎𝑙 ∗ 𝑔. 4.5 

The function value of –f is the negative of the kinetic energy of the rotor. The constraint 

values are still positive making f larger and therefore a worse location according to the PSO 

algorithm.  

 
Figure 4.6: Independent design variable inputs for energy optimization 
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 Each material ring is given a minimum and maximum value for the radial thickness. 

Initiation for both the four and five variable PSO functions is done using LHS. Multiple 

dimensions eliminate the possibility of giving a physical representation of the population 

scatter. For the 2D PSO with a well-defined design space, only 21 particles are needed. The 

design space for the four and five variable is a function of the thickness of the material 

layers making it less defined. Adding a constraint that hoop stress in the iron must be less 

than the yield stress creates a feasible region of the design space that is immensely 

uncharacterized. For this reason, 125 particles are used for the 4D PSO and 151 particles for 

the 5D PSO. At higher velocities, the feasible region is much smaller and more difficult to 

find. To remedy this, 201 particles are used to increase the likelihood of a point starting in a 

feasible region at velocities greater than 30,000 rpm. Other parameters used in the 

optimization are given in Table 4.2. Subjecting the PSO to the yield constraint forces the 

PSO from making the flywheel very large and very fast. To increase the rate of convergence, 

the best, feasible particle is seeded at each iteration. 

Variable Value 

Population 125/151 

# Neighbors 50 

c1 1.2 

c2  1.2 

winitial 1 

wupdate 0.95 

Penvalinitial 10 

Penvalupdate 1.5 

vid_initial 1.0 
Table 4.2: Variable values needed for energy PSO 

  Implementing the design variables into the model requires that they be in meters for 

x1, x2, x3, and x4 and for the 5D case x5 is in rpm. The model outputs the stress in MPa. Large 

orders of magnitude between the dimensional inputs, stress, and rpm require scaling the 
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values. Without scaling, variables will be misrepresented. The dimensional values are scaled 

such that x1, x2, x3, and x4 range from zero to one. The stress is scaled by the yield stress, and 

the angular velocity, ω, is scaled to range from one to ten with actual values ranging from 

10,000 rpm to 100,000 rpm. Scaling the kinetic energy by 10
-4

 allows for proper 

representation of the penalty and constraints on the objective function value. Having too 

large a penalty at the first several iterations will force the particles in the PSO to move too 

far imposing the possibility of moving past the feasible design region. 

 At a higher angular velocity, the flywheel will need to be smaller to satisfy the stress 

constraint. Thus there is a tradeoff in the Equation 1.1 between a large moment of inertia, I, 

and the angular velocity ω. Evaluating the 4D PSO in 5K rpm increments results in the 

comparison of the stored energy and the angular velocity. This is shown in Figure 4.7. 

 
Figure 4.7: Comparison of the maximum energy and RPM  
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Energy storage at 35K rpm is much smaller as a result the decrease in the rotor’s 

size. Beyond this point the optimization function is not able to locate a feasible point. The 

optimum radial values for the maximum energy storage is x = [0.0394 0.0544 0.0608 

0.2631] meters at an angular velocity of approximately 32,200 rpm. The stored kinetic 

energy for this size and angular velocity is ≈16 MJ. This is equivalent to ≈3.8 kg of TNT. 

Given the size and density of the materials, the mass is found to be 88 kg. Lower speeds, 

such as 10,000 rpm, resulted in even large flywheel with a mass 239 kg and dimensions of   

x = [0.0991, 0.1476, 0.1726, 0.3731] meters. At large thicknesses of carbon fiber, some of 

the load is carried from the laminations. Beyond this point, added material increases the 

energy greatly while slowly increasing the stress.  

 At ω = 25,000 rpm the optimization converged to x = [0.050, 0.071, 0.079, 0.282] 

meters with a resulting energy of 12.76 MJ and a mass of 105 kg. This flywheel is still very 

large compared to the optimal value at 32,200 rpm. The inner radius is still smaller than the 

current UIFESS however it is larger than the optimal values found at and above 30,000 rpm. 

Having a larger inside radius allows for more room for the wires when the new stator will be 

wound. For 25,000 rpm design, the radial displacement of the inner surface is 0.11 mm. This 

displacement isn’t enough to require a tapering of the flywheel which would increase the 

complexity of the system. If a lower modulus material were to be used, it could be possible 

that the surface displacement be large enough to require a taper.  
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Chapter 5.     Summary, Future Work, and Conclusions 

5.1 Summary 

 The University of Idaho is developing a flywheel energy storage system. The low-

speed UIFESS has been designed and a built but not fully completed. The completion and 

testing of the UIFESS will produce a foundation for which the high-speed FESS can be built 

upon as part of the Steckler Phase III portion of the project. This thesis presents the 

development of a numerical model that aids in design of the high-speed flywheel. 

 At high rotational speeds, the induced stresses from the centrifugal forces become a 

limiting factor in the design of the flywheel. This model calculates the stress while 

incorporating the use of both isotropic and anisotropic materials. Isotropic iron laminations 

are needed for the FRRM. This machine is responsible for both the power input and power 

output of the FESS. Use of composite materials increases the specific energy of the system 

by linearly increasing the mass but exponentially increasing the energy through an increase 

in size and rotational velocity. The composite materials are assumed to be orthotropic 

continuous fiber composite. The addition of multiple rings into the model is possible if 

needed for further construction or a deduction in stress discontinuities. Comparison of the 

model with analytical equations revealed that the stress is calculated within reasonable 

bounds while the displacement varies as a result of the differences in developmental 

assumptions. 

 In addition to the development of the numerical model, two separate optimization 

functions were developed. One is to minimize the variation in displacement for a tapered 

inner surface and the other is to maximize the kinetic energy of the rotor. Using outputs 

from the model requires that the optimization method be a heuristic method. Particle Swarm 
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Optimization is the selected method. Heuristic methods are used in the absence of the 

possibility for taking the derivative of a function either symbolically or numerically. 

Heuristic optimization methods use a searching algorithm to find minimum locations. Wide 

range of applicability exists with these methods. With application, there is however a 

sacrifice in computation time. Gradient based methods typically produce results in seconds 

to a few minutes where PSO can take up several minutes to hours to converge to a set of 

design variables.  

 Minimization of the change in displacement is significant if a taper is required for 

the flywheel. A tapered surface will be needed if airgap cannot be maintained within 

reasonable bounds at high rotational speeds. The introduction of such a surface will produce 

non-uniform displacement. Minimal change in displacement will insure that more uniform 

forces can be applied to the rotor. Maximizing the kinetic energy in the rotor is a goal of the 

project. This optimization will bound the both the rotor size and the maximum angular 

velocity. Optimizing for the maximum kinetic energy will contribute to a finalization of 

material selection and parameters. The finalized rotor design will be used in the 

development of a dynamic model that is required for the control of the rotor. If it is 

discovered that a constraint is needed for the weight of the flywheel, this will be an easy 

addition to the optimization codes. The weight limit will depend on the levitation forces that 

can be produced with the magnetic Halbach array and superconductors.  

5.2 Future Work 

 Further validation of model’s accuracy is needed. The easiest way is to compare this 

model to that of an FEA model. Using the same material properties for each physical ring 

will allow for the comparison of the model with that of the isotropic equations. The stress is 
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shown to be similar to that of the plain stress model for an isotropic material. The 

discrepancy of the displacement will need to be compared to the FEA model. This may 

result in a need to adjust the displacement output of the model. The target speed for the low-

speed UIFESS is 1,800 rpm. If the speed can safely be increased up to 4-5,000 rpm, there 

may be enough radial displacement for the position sensors to read. Balancing issues 

removes the possibility of placing strain gauges and data acquisition devices on the 

flywheel.  

 The iron laminations and stainless steel caps are the weakest components of the rotor 

itself. Further research is needed for possible solutions to resolve these issues. Complex 

geometry of the iron laminations need for the FRRM results stress concentrations. The ideal 

shape is a simple ring. Similar problems arise for the magnets and stainless steel caps. 

Stainless steel and the iron laminations have a density that is approximately four times great 

than the composite material that would be used. This increased density decreases the energy 

density and increases the stress in the rotor. If the density of the iron laminations is half of 

the actual value, the hoop stress in the laminations would decrease by approximately         

100 MPa according to the model.  

 This large decrease in stress and density has steered focus to possible replacements. 

One possible solution is use of chopped fiber composites. To achieve the magnetic 

properties need to create a flux path, iron particles could be doped into the composite. An 

advantage for this, other than reducing weight, is the possibility of having iron deposits in 

locations needed for the FRRM such as that shown Figure 1.4. Where there is currently an 

airgap, a composite material with similar properties as the doped area can fill the void. This 

will result in the ideal ring shape therefore reducing the stress concentrations while 



64 
 

maintaining magnetic properties. Using iron particles decrease the effects of eddy current 

losses; however, it will reduce the amount of torque that can be induced.  

 Chopped fiber composites are typically used for cheaper, large quantity production. 

Applications of chopped fibers are focused towards lower stress applications due to low 

strengths. The strengths are largely dependent upon the shear strength of the lamina as 

shown in Equations 2.15 and 2.16. Bulk production for lower stress applications of chopped 

fibers has resulted in a lack of well-defined material properties. To determine if this method 

is feasible from the point of view of the FRRM, a permittivity test is required. This 

determines the volume fraction of the iron particles that would be needed. Mechanically, test 

specimens will need to be created and tested to determine strength, repeatability, and 

physical properties such the modulus. If the strength of this three material composite can 

come close to matching that of the iron laminations, it would be largely beneficial in 

decreasing stresses and increasing energy density. A reasonable strength chopped fiber 

composite could replace the stainless steel magnetic ring as well. This would allow for the 

magnets to be molded into the composite rather than pressed fitted which is currently the 

case.  

 The mass will likely be a limitation. If it is determined that the Halbach array will 

not support the optimized flywheel at 25,000 rpm then it will need to be added into the 

constraints for the optimization. Decreasing the outside radius, while maintaining the other 

dimensions, results in a drastic change in the stress at the outer portion and a marginal 

change at the iron laminations. If the stress is reduced enough, a more cost effective 

composite could be used in place of the carbon fiber. A stiff material is still needed to insure 
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ply separation does not occur. Stiff materials will also carry a greater load from the 

laminations but will also result in larger stress discontinuities.  

 Testing is required to validate the Poisson’s ratios and shear modulus for the Hexcel 

carbon fiber composite as it is not currently given. Poisson’s ratio can be a significant 

contributor to the overall displacement of the flywheel. With this, the overall flywheel, 

including the magnets, will require a full FEA analysis. This will insure geometries needed 

for the FRRM and the magnets won’t experience failure. A finite element analysis will also 

determine if a ply will be needed that is oriented in a manner that is non-axisymmetric to 

increase strength and stiffness in the vertical direction.  

5.3 Conclusion 

The list below highlights the results of the work covered in this thesis.  

 The development of a model to analyze the stress state of a multi-ring Flywheel 

Energy Storage System (FESS) is the primary objective for this thesis. A multi-ring 

flywheel incorporating fiber composites will be used for the design of the high-speed 

UIFESS. Fiber composites behavior is much different than that of isotropic 

materials. This consideration is included in the model. The increased strength in the 

hoop direction allows for higher rotational velocities. This model is and will be used 

to evaluate different materials for their use in the rotor design.  

 Maintaining a one millimeter airgap is needed for control of the FRRM and the 

active magnetic bearing for stabilization. Adaptation of the model was done as a 

possible solution to maintain the airgap. High rotational speeds can induce large 

displacements which will reduce the forces that can be applied to the rotor from the 

stator. To maintain the required airgap the flywheel can be tapered such that when 
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expansion occurs, actuation of the plate will allow the gap to be maintained. This 

non-uniform shape will cause non-uniform expansion. The addition of angles 

between the iron-stainless steel and stainless steel-composite interface as shown in 

Figure 3.10 will reduce the extent of non-uniform displacement.    

 A heuristic optimization method known as Particle Swarm Optimization (PSO) was 

formulated to interact with the model. The first optimization performed is one to 

minimize the change in displacement for the inner, tapered surface. The addition of 

slope between the interface surfaces can reduce the change in displacement. The 

optimum values depend on the taper of the inner surface. Results that the influence 

of the slope stainless steel-composite interface little effect on the displace values. At 

α = 5° and 50,000 rpm, the optimal values ϕ = 6.03° and β = 2.65°. Similar results 

were found at 20,000 rpm which concludes that interface slopes wouldn’t be 

influenced by rotational velocity. The slopes are sensitive to the inner radius and the 

minimum thickness of iron laminations but less susceptible to influence from the 

outside radius of the carbon fiber. This is an effect of the large density of the iron 

laminations and the change in stress state as the inside radius is changed.  

 Particle Swarm Optimization can also be tailored to maximize a value which is done 

by using Equation 4.5.  The value that is of interest in this work is the kinetic energy. 

Bounds for the inner radius and ring thicknesses give many combinations flywheel 

designs. Many of these; however, would be incapable safely reaching high speeds. If 

no constraints are given, PSO would converge to a large, heavy, and fast set of 

design variables as a result of Equation 1.1. The limitation for yielding in the iron 

laminations based on the high hoop stress constrians the optimization function from 
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converging to that extreme location. This optimization gives a feasibility estimate for 

what is possible for the size and speed of the flywheel. The optimal size for the three 

ring design, with α = ϕ = β = 0 as defined in Figure 3.10 and radiuses defined in 

Figure 4.6, is x = [0.0394, 0.0544, 0.0608, 0.2631] meters at ω = 32,200 rpm. The 

stored kinetic energy 16 MJ with a mass of approximately 88 kg. Using the optimum 

size found at ω = 25,000 rpm, x = [0.0502, 0.0705, 0.0785, 0.2817] meters with a 

mass of 105 kg, has larger inner radius. This is preferred from an electrical aspect. 

Reducing the outside radius will result in a reduction of mass and energy but also 

stress. This is one way that a safety factor could be applied. 

 Iron laminations are the weakest component of the flywheel even though they are 

closest to the axis of rotation. Substituting theses laminations with higher strength 

steel would allow for slightly higher velocities. Replacing the laminations with a 

material that is approximately half the density will result in reduction of the hoop 

stress by nearly 100 MPa. This would allow for larger velocity and therefore an 

increase in energy and energy density. Chopped fiber composite doped with iron 

particles is a possible solution. Much research and testing would be required to 

determine the feasibility of such a material. Equations used to approximate the 

strength of chopped fibers are discussed in Chapter 2. The derivation of those 

equations is done using well defined material properties. Chopped fibers are 

produced in bulk and have varying properties and have not been well tested. Strength 

testing is required for this composite. If the strengths shown by testing are 

comparable to the laminations, it would serve as an ample substitute.  
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