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Abstract 
 

This thesis demonstrates the practical application of a generalized method to solve for beam 

deflection.  Castigliano’s theorem is augmented through the use of the method of Lagrange 

Multipliers to solve nearly any beam deflection problem.  This novel method, first developed 

by the late Dr. Ju of the University of New Mexico, is used as the foundation to develop a 

simple tool to solve a marine propulsion shaft alignment problem.  This method proved to be 

computationally inexpensive and the program can be run on nearly any computer.  An 

optimization code determines the optimal bearing offsets which allow the shaft alignment to 

satisfy predetermined alignment constraints.  Experimental validation of the computer 

model’s predicted deflection results were promising, with model deflection results within 

10% of experimental values.   
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Chapter 1. Introduction 

1.1 Overview 
This thesis investigates a novel method in solving for beam deflection, slope and reaction 

forces.  This novel method combines Castigliano’s second theorem and the method of 

Lagrange Multipliers and was first proposed by Dr. Ju of the University of New Mexico in 

his paper, “On the Constraints of Castigliano’s Theorem” in 1971 [1].  The effectiveness of 

this method will be demonstrated by using it to model the deflection an actual propulsion 

system on a ship.  The ultimate goal is to develop an accessible and easy to use shaft model 

and optimization tool which can be used to check shaft alignment and predict the best case 

bearing offsets for various vessel operating conditions. 

1.2 Thesis Objectives 

The objectives of this thesis are listed below: 

-Demonstrate the effectiveness Dr. Ju’s method 

-Validate this method experimentally 

-Develop an easy to use and computational friendly model to predict shaft deflections and 

bearing loads. 

-Determine the optimal bearing offsets for various loading conditions 

1.3 Thesis Organization 
This thesis is organized into six chapters. Chapter 1 introduces the thesis objectives and 

reviews current literature concerning shaft alignment. Chapter 2 introduces Dr. Ju’s method 

and the mathematic and mechanical theories supporting his method. Chapter 3 discusses 

optimization of bearing offsets to accommodate different operating conditions. Chapter 4 

includes and analysis of the experimental data and computer model predictions.  Chapter 5 

includes the conclusions and recommendations followed by a list of references used in the 

analysis.  
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1.4 Propulsion System Basics 

1.4.1 System Description and Configurations  
The most important and perhaps most complex mechanical system onboard a ship is the 

propulsion system.  After all, without it, the ship becomes merely a floating steel container.  

Reduced to its basic components, this system typically includes one or more prime movers 

(diesel engines, turbines, etc.) coupled to a reduction gear system, a propeller shaft, propeller 

and bearings.  Power and torque generated by the main propulsion engine is used to turn the 

propulsion shaft, which turns a propeller at its end.   

Propulsion systems take numerous forms depending on the size and purpose of a vessel.  

Figure 1 shows a typical single-shaft configuration from the output of the reduction gear to 

the propeller, including bearing locations.  This configuration represents a medium-sized 

container vessel, which usually requires its engine revolutions per minute (rpm) to be 

reduced to a usable speed via a reduction gear/gearbox.[2]   

 

Figure 1: Components of a multi-section shaft coupled to a reduction gear.  

Large Oil Tankers, sometimes referred to as Ultra Large Crude Carriers (ULCC) or Very 

Large Crude Carriers (VLCC) depending on their displacement, often directly couple their 

large slow speed marine diesel engine to the propulsion shaft. [2]  Proper shaft alignment is 

extremely critical for these vessels since unusual bending moments or shear forces are 

directly transferred to the aft engine bearings.[3]  Depending on hull deflection and engine 

bed-plate sagging these bearings can become unloaded and transfer their loads to the next 

forward most bearing.[3]  Edge loading and eventual bearing failure may soon follow.  Since 
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they usually only have one shaft, an equipment casualty to the shaft line or engine will leave 

the vessel dead in the water.   

 

Figure 2: A directly coupled shaft/engine arrangement.  

Smaller vessels will have multiple engines and shafts.  If multiple shafts are used, then the 

stern tube bearing is moved forward and struts are used to support the shaft so that the 

propeller can be moved to a usable location without creating a non-hydrodynamic hull shape.  

[4] 

 

Figure 3: A typical twin screw set up. 

Note the rudders positioned directly behind the propellers and also the amount of exposed shaft, 

supported by struts.  

http://www.n2nl.net/wordpress/wp-content/uploads/2009/03/p1011890.jpg
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1.4.2 System Design 
A critical component in maintaining a vessel’s propulsion system is proper shaft alignment.  

Numerous forces act on the propeller shaft while the ship is in motion.  Forces transmitted 

along the shaft axis, generated by the propeller, act on a thrust bearing on the forward end of 

the shaft and drive the ship forward through the water.  Hull motion due to sea state (wave 

height and wind speed) causes the hull to deform, which in turn, causes stress on the 

propeller shaft.  Side forces are generated by the propeller as it turns through the water 

causing a bending moment on the shaft. [5] 

All propulsion system designs fall into one of three categories: [3]  

(1) A stiff hull with a propulsion shaft design of similar stiffness (typical of smaller 

vessels). In this case, with both the system and shaft having similar stiffness, any 

deflection of the hull will be nearly identical to that of the shaft, resulting in 

almost no relative change in bearing offset or bearing loadings. This system is 

compliant with American Bureau of Shipping Standards. [2]  

(2) A stiff propulsion system with a significantly less stiff hull (not desirable). In the 

second case, a stiff propulsion shaft with an elastic hull will result in a system 

which is very susceptible to hull deflections.  Because the shaft will not deform 

with the structure of the ship, bearing offsets and load will change greatly, 

resulting in possible bearing failure.   

(3) A stiff hull with a less stiff propulsion system (desired design).  This case is 

similar to case one, only the shaft will maintain in contact with the bearings no 

matter how the hull flexes. 

Shaft alignments are done almost exclusively while the ship is in dry-dock.  This poses 

several problems.   

First, shaft alignment changes as soon as the ship is placed in the water.  The buoyant force 

of the water supports the hull differently from the dry-dock causing the hull to deflect under 

the changed load.  The ship is at ballast condition when first refloated.  Ballast condition is 

the lowest possible liquid load state where the ship can be safely moved to and from dry-

dock without stability being critical.  A vessel’s liquid load always includes propulsion fuel, 
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lubrication oil, hydraulic oil and potable water.  It also may include ballast water, aviation 

fuel, and cargo liquids depending on the vessel’s purpose.   

Next, by nature the ocean is a dynamic environment.  An ocean going vessel is never truly in 

calm waters.  Because the ship’s hull is usually stiffer than the shaft, any local hull 

deflections are carried into and reflected in the shaft.   

Also temperature variations within the system will affect alignment.  Individual bearing 

offsets both inside the engine and along the shaft line are particularly susceptible to 

temperature change. 

In order to account for these conditions naval architects seek an optimal alignment which 

gives the best possible set of bearing offset positions which meet alignment requirements in 

both ballast and laden conditions. 

1.4.3 Propulsion Shaft Alignment: 
Shaft alignment is defined by the American Bureau of Shipping as, “a static condition 

observed at the bearings supporting the propulsion shafts. In order for the propulsion shafting 

alignment to be properly defined, the following minimum set of parameters (whichever may 

be applicable) need to be confirmed as acceptable”:[2] 

Bearing vertical offset:   Bearing offset is vertical displacement of the contact face of the 

bearing from the established central line of the shafting. Usually the tail shaft bearing and #1 

Main engine bearing are designated as a 0” offset since they mark the ends of the shaft line. 

All of the bearings are positioned horizontally (fore and aft) and vertical to adjust bearing 

reactions so that they remain positive and within design constraints. 

Bearing reactions:  Calculations need to show that under maximum allowable alignment 

tolerances, bearing loads are within specified manufacturer limits and that all reactions are 

positive.  In general, it is very difficult to measure bearing reactions directly.  Methods to 

determine bearing reactions include the use of strain gauges, hydraulic jacks, or numerical 

methods to reverse-engineer the bearing reactions.  ABS loading criteria for metallic bearings 

is no more than 0.8      .  Loading criteria for lubricated synthetic bearings is no more 

than 0.6      .[2] 
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The tail-shaft bearing is used as the baseline for the bearing offset.  The tail-shaft bearing 

usually carries the most weight due to the suspended weight of the propeller.  Proper 

alignment and contact area is critical to system reliability.  If the calculated relative 

misalignment slope between the shaft and the tail shaft bearing is greater than 0.3 ×      

rad, then the relative misalignment slope should be reduced by means of slope boring or 

bearing inclination.[2]  Figure 3 shows the desired bearing contact area: 

 

Figure 4: Desired Tail Shaft Contact Area.  [2] 

Misalignment angles: A misalignment at the bearings, which are physically accessible for 

measurements, is easily evaluated by filler gauges.  Horizontal misalignment is measured at 

the port and starboard side of the bearing, and vertical misalignment is checked at the 

forward and aft edge of the bearing.  Usually the shaft is rotated and measured several times 

to determine if the misalignment is a result of shaft run-out or actual bearing misalignment.   

 

Figure 5: Locations to be checked by filler gauge to determine misalignment 
angles. 

 

Crankshaft’s web deflections:  Crankshaft web deflections are a method to measure bearing 

misalignment within the engine or an excessive bending moment imparted by the shaft.  A 
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dial indicator is placed between crank webs for a particular piston. The crank is slowly turned 

and any change is horizontal distance is recorded.   This is an indication of possible shaft 

misalignment. 

 

Figure 6: Dial Indicator position to check crank web deflection. 

Gear misalignment:  Another indication of shaft misalignment is lack of contact between 

gear faces between the bull gear and pinion drive gear in the reduction gear.  Gear contact is 

checked by use of a dying agent.  If the dye color on a gear face is not even this may indicate 

a large misalignment.  

                                           

 

Figure 7: Example of gear contact dye test, showing misalignment. 
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Shaft and bearings’ strength:  Also calculations need to show that all shear forces and 

bending moments are within design limits for the shaft and that all forces and moments 

imparted on propulsion equipment including both reduction gear and propulsion engines are 

within manufactures limits.   

Coupling bolts’ strength: Coupling bolt strength must be high enough to absorb all static and 

dynamic forces imparted on the shaft in shear, torsion or bending from numerous sources 

including engine torque, hull deflection, propeller side forces and possible misalignments. 

Engine Bedplate Sagging:  Since the midsection of an engine will expand more than its ends 

due to thermal expansion, the change in each bearing offset is a function of location.  

Common practice it to pre-sag the engine bedplate to ensure uniform offset at operating 

conditions.  Sagging is defined as opening of the crank throw at top-dead center (TDC).  The 

crankshaft is allowed to sag at cold iron condition so that at operating conditions the crank 

shaft is straight and the crank throw is uniform at all rotational positions. [3] 

 

Figure 8: Sagging is defined as opening of the crank throw at top-dead center 
(TDC) [6] 

Bearing offset and bearing reactions are usually the critical constraints in shaft alignment.  

Typically, bending moments and shear stresses are well within design tolerance for the shaft.   

1.4.4 Methods of Measuring Bearing Reactions: 

Two methods are used to measure bearing reactions.  Strain gauge measurement is an 

indirect method, while the Jack-up method directly measures bearing reactions.  Often a 

combination of these methods is used depending on the shaft configuration and space 

restrictions within the engine room.  Bearing locations may not be well suited to allow a 
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hydraulic jack to be positioned to lift the shaft or parts of the shaft may not be accessible to 

properly position strain gauges.  

The jack-up method directly measures the force required to lift the shaft free of the lower 

bearing surface.  In this method a jack is placed either directly forward or aft of the bearing.  

A load cell is placed between the shaft and the jack and a dial indicator is positioned to show 

when the shaft begins to lift. Because the jack is not positioned directly under the bearing a 

correction factor is used to obtain the actual load at the bearing.   

 

Figure 9: Positions for hydraulic jack and dial indicator during a jack-up 
procedure to determine bearing load. 

 

Strain gauge measurements are extremely useful for sections of the shaft which can’t be 

reached using the jack-up method.  Additional advantages include the ability to measure 

multiple shaft sections at one time, the ability to repeat measurements quickly, and the ability 

to measure both vertical and horizontal bearing loads.  However, accuracy of the strain gauge 

calculations depends on the system model.[3] 

As the shaft deforms when rotated, the strain gauges deform, changing the gauge’s 

resistance. Strain is calculated as follows: 

  
  

 
 

 

 
 

(1-1) 

 

       and      
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(1-2) 

 

Where ε is the strain, R is the resistance in ohms, V is voltage in millivolts and K is the 

bridge factor (usually 2).  Strain gauges are usually mounted in a Wheatstone bridge 

configuration where two pairs of gauges are mounted 180º apart.   [7] 

 

Figure 10: Strain gauge diagram set up in a Wheatstone bridge configuration 

The shaft’s bending moment is calculated using the following equation, where M is the 

bending moment, E is young’s modulus for the shaft material, W is the section modulus and 

ε is the strain calculated above: 

         (1-3) 

The section modulus for a shaft is: 

  
   

  
 

(1-4) 

 

Combining equations 1-1 through 1-4, the moment is: 

    
   

  
 

    

   
 

 

 
 

(1-5) 
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Chapter 2. Dr. Ju’s Method for Solving Beam Deflections 

2.1 Introduction  
This section will cover the theory behind Dr. Ju’s method for solving beam deflection.  Dr. 

Ju’s method combines Castigliano’s 2
nd

 Theorem with the Method of Lagrange Multipliers to 

solve any beam deflection problem.  First, the mathematic and mechanical theory behind 

Castigliano’s 2
nd

 Theorem and the Method Lagrange Multipliers will be discussed, then Dr. 

Ju’s method will be examined followed by an example problem using his method. 

2.2 Analytical Approach   

2.2.1 Beam Deflection Analysis  

There are numerous well used and proven methods for determining beam deflection. [8] 

Some of the most popular include double integration, moment-area theorems, superposition, 

conjugant beam method and Castigliano’s theorem.  New methods are constantly being 

developed.  Jong and Rencis developed a Model Formula Method which derived 4 model 

equations using singularity functions. [8]  This method improved on the Method of Segments 

which Rencis published the year before. [9]  An approach described by Prof. Ju of the 

University of New Mexico, in his paper, “On the Constraints for Castigliano’s Theorem.”[1], 

[10]  Dr Ju’s method improved upon Castigliano’s second theorem through the use of the 

method of Lagrange Multipliers to solve any beam deflection problem.  Before Dr. Ju’s 

method is discussed further, a discussion of theories behind both Castigliano’s 2
nd

 Theorem 

and the Method of Lagrange Multipliers is required. 
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2.2.2  Castigliano’s 2nd Theorem 
Castigliano’s theorem on deflections states that, “If an elastic system is supported so that 

rigid body displacements of the system are prevented, and if certain concentrated forces of 

  ,     …   act on the system, in addition to distributed loads and thermal strains, the  

displacement component qi of the point of application of the force     is determined by the 

equation: [11] 

   
   

   
 

(2-1) 

Where U* is the complementary energy of the system and    is each force acting in the 

system.  Because this equation applies to small displacements for linearly elastic materials, 

U* is approximately equal to U.  U is the strain energy for the system or the area under the 

stress strain curve as shown below.[11] 

 

  

Figure 11: A linear-elastic Stress-Strain Curve. 

Strain energy generated by a bending moment can be written as: 

   ∫    ∫
 

 
     

(2-2) 

Where 
 

 
     is simply the area under the stress strain curve (a triangle) for an element in 

the system.  By making several substitutions based on the geometry of the deformed element: 

   
   

 
 

(2-3) 
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dϕ is the angle of deformation along the surface of the element.     is the deformation in the 

z direction.  In this case, z is along the axis of the beam. y is the distance from the center of 

the centroid of the element. 

          (2-4) 

    is the strain in the z direction and dz is the length of the element in the z direction. 

    
   

 
 

(2-5) 

    is the stress in the z direction. E is Young’s Modulus and I is the moment of inertia. 

 
We arrive at the strain energy in bending equation in its final form: 

   ∫
  

   
   

(2-7) 

By taking the partial derivatives with respect to Force (  ) and Moments (  ) we have terms 

for both displacement and slope for the given system. 

   
   

   
 ∫

 

  
 
  

   
  

 

 

 
(2-8) 

 

   
   

   
  ∫

 

  
 

  

   
  

 

 

 
(2-9) 

The above equations will only supply information for deflection at any point where a 

concentrated load acts on the system.   

In order to determine the deflection at any point in the system a dummy load in used to create 

a virtual force or moment at the desired location.  The partial derivative of the moment 

equation is taken at that point and then the dummy Moment or Force is set to zero. 

 

    
   

 
 

(2-6) 
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2.2.3 Method of Lagrange Multipliers 
In his book Analytical Mechanics, Lagrange describes to use of undermined multipliers to 

change a constrained physical system into an unconstrained system.  Lagrange’s original 

purpose was to derive a method which made it easier to solve the equations of equilibrium 

for a system.  His Generalized Equation of Equilibrium:  

                              (2-10) 

 

Describes a system where P, Q and R, are defined as the forces acting in a system and    , 

    and     are their associated moments. Each force is a function of (x, y, z, etc). When 

the equations of conditions (L, M, N) or “constraints” are added to the system, each 

multiplied by an undetermined multiplier (λ, μ, ν), the result is equilibrium.  Each variable 

may now be treated as independent.[12]   

This method is frequently used to find minima or maxima of a function and is usually 

expressed as: 

 (            )   (  )      (  ) (2-11) 

 

The Lagrangian function L, equals the objective function to be minimize/maximized plus the 

sum of its k associated constraint functions, each multiplied by its own undetermined 

multiplier.  If the differential is taken with respect to the    variables and    multipliers, a 

system of n + p equations is obtained which can be used to solve for the n + p unknowns.   

A simple example follows: 

min  ( )     
     

                  (2-12) 

subject to:           

 

(2-13) 

1. First form the Lagrangian Equation: 

 (       )     
     

                   (       ) (2-14) 
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2.  Next take the partial derivative with respect to x1, x2 and λ. 

  

   
              

(2-15) 

  

   
               

(2-16) 

  

  
         

(2-17) 

3. Solving for our three unknowns:    = -3,    = 2 and λ = 7.  Our function’s minimum 

value is -7. 

Lagrange multipliers have found use in several areas of modern engineering including 

optimization (discussed in section 2.4) [13] and Finite Element Analysis [14][15].  Lagrange 

multipliers can be used to augment Castigliano’s theorem in order to streamline finding the 

solution for  beam deflection problems[10].  In this application, the constraint equations are 

the force and moment equilibrium equations.   

2.3 Dr. Ju’s Method 

2.3.1 Theory 
Dr Ju’s method requires detailed analysis of the reaction forces at the right side of a beam, as 

well as, the beam’s force and moment equilibrium equations, to determine whether or not the 

equilibrium equations can used and included as constraint equations to solve for beam 

reactions.  The procedure works on nearly any beam deflection problem.  The procedure is as 

follows:[10][1] 

1. Derive the moment and equilibrium equations for the beam under analysis, solving 

from left to right.  Moments will be summed around the right side of the beam.   

 

2. Determine if the reaction force and moment at the right side of the beam are implicit 

or explicit in the moment equation. Do they have a volume on which their energy can 

act?  They are explicit if they act through a volume (the location is not at the end of 

the beam). They are implicit if they act at the end of the beam. 
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3. Determine if the reaction force and moment are working or non-working.  A force is 

non-working if the deflection is zero. A moment is non-working if the slope is zero at 

the reaction.  Otherwise the force or moment is working. 

 

4. If the reaction is explicit (i.e. present) in the moment equation, its associated 

equilibrium equation must be included as a constraint for the problem. 

 

5. If the reaction is implicit, then determine if it is working or non-working.   

 

6. Equilibrium equations containing working reactions, regardless of whether or not the 

reaction is implicit or explicit, must be included as a constraint. 

2.3.2 Example Problem 
The initial problem posed as the analytical model for this thesis consisted of a 42” long shaft 

supported at four points along its length, with each bearing modeled as a point load.  The 

propeller on the left end of the shaft is modeled as a point load, P.  The weight of the shaft is 

modeled as a constant distributed load, Fs, since the shaft is constant diameter and 

homogeneous in material composition.  The right end reactions are modeled as springs, one 

for the moment and one for the reaction force.  The spring model allows different 

configurations to be modeled; from a free end using a soft spring constant to a cantilever type 

reaction using a very large spring constant.  The free body diagram is below: 

 

Figure 12: Free Body Diagram for the Shaft 

 

Step 1:  Using Castigliano’s theorem, the moment equation at any point on the shaft is as 

follows: 
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 ( )       
    

 
   (    )     

   (    )     
   (    )     

   (    )     
 

(2-18) 

P = force of the propeller, lbf 

Fs = distributed weight of the shaft lbf/in. 

     = position of each bearing from the left end of the shaft (in) 

    = reaction force at each bearing (lbf) 

   
 is the heavy side step function for    where: 

   
 {

      

      
 

(2-19) 

For convenience the following substitution was made: 

(    )     
    (2-20) 

The moment equation then becomes: 

 ( )       
    

 
                     

(2-21) 

The equilibrium equations are: 

∑                           

 

(2-22) 

∑   
      

    

 
   (    )    (    )    (    )    (    )  

   = 0 

 

(2-23) 

Step 2:  Both    and    are implicit in the equation for M(x) since neither one acts through a 

volume of the shaft if the sum of moments is taken about the right side of the shaft. Now we must 

check to see if they are working or non-working reactions. 

Step 3:  Both    and    are working since these reactions are modeled as springs and allow the end 

of the shaft to move under load.  Therefore, deflection and slope will not be zero.   
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Steps 4-6: As a result of our analysis,    and    are implicit –working reactions.  According to our 

decision tree, the since they are both working, both equilibrium equations will be used as to solve for 

the reactions at each bearing.  Now we use the method of Lagrange multipliers to develop our 

deflection formula.  

The deflection formula combines Castigliano’s 2
nd

 theorem equation with two separate 

constraint equations.  For the deflection at an arbitrary force F, the deflection equation 

becomes: 

   ∫
 ( )

  
 

  

  
      

   ( )

  
    

   ( )

  

 

 

 

 

(2-24) 

The constraints equations,    and     are listed below (equilibrium equations) 

                           (2-25) 

 

         
    

 
   (    )    (    )    (    )  

    (    )       

 

(2-26) 

Variation of the moment equation with respect to the five reaction forces, the reaction 

moment and the two Lagrange multipliers results in a system of 8 equations.  These 

equations can be rearranged into matrix form.  This results in a symmetric 8x8 compliance 

matrix, an 8x1 reaction force vector and an 8x1 deflection vector.  These equations were 

entered into TKSolver and solved using Simpson’s rule for numerical integration over 200 

steps.  The matrices used for calculation purposes in the TKSolver model are shown in 

Appendix 1. 

2.3.3 Modeling of the End Reaction/Engine Connection 
In the computer model, the engine/shaft connection was modeled as two separate springs.  

Resistance to vertical movement was modeled as a stiff coil spring while resistance to 

bending was modeled as a spiral torsional spring. 
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Derivation of an equation for   began with the use of Hooke’s law.   

         (2-27) 

Therefore 

          (2-28) 

Where    is the deflection in inches at the reaction and    is the spring constant for the coil 

spring (lbf/in).  Substitution into the internal energy equation and taking the partial with 

respect to    yields:  

 
  

  
 

 (       ( )       ( ))

   

 
(2-29) 

 

Results of the variation for each the internal energy term, sum of forces and 

sum of moments yields: 

  

   
   

 

 

(2-30) 

   

   
   

(2-31) 

   

   
   

(2-32) 

Substituting 2-30, 2-31 and 2-32 in to 2-29 and rearranging results in: 

    
  

  
 

(2-33) 

Dimensional analysis results in units of inches, therefore    is the deflection    at the right 

reaction   .  If the deflection was held to zero at the end (non-working), this term could be 

ignored.   

The same derivation can be made to find   , starting with the equation: 

         (2-34) 

Where    is the slope at the right reaction in lb*in and    is the spring constant for the spiral 

torsional spring in  
   

     
.  Substitution in to the internal energy equation and taking the partial 

with respect to    yields: 
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 (       ( )       ( ))

   

 
(2-35) 

Results of the variation for each the internal energy term, sum of forces and 

sum of moments yields: 

  

   
   

 

 

 

(2-36) 

   

   
   

(2-37) 

   

   
   

(2-38) 

Substituting 2-36, 2-37 and 2-38 in to 2-35 and rearranging results in: 

    
  

  
 

 

(2-39) 

Dimensional analysis results in units of radians, therefore    is the slope at the right 

reaction   .  If the slope was held to zero at the end (non-working), this term could be 

ignored.  If both    and    are constrained to zero then we have the case of a cantilever 

beam. 
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Chapter 3. Optimization of Bearing Offsets 

3.1 Introduction to Optimization Theory 

3.1.1 Optimization Methods  

Two common optimization methods are gradient-based and evolutionary-based methods.  

Gradient-based search methods use the gradient of an objective function and its constraints to 

search for an optimum point through an iterative process.  In general, this process involves 

determining a search direction and step size, calculating a new point and checking to 

determine if this new point is an optimum.  If not an optimum, the new point is used as a new 

starting point and the process is repeated.  This method only determines a local optimum, and 

therefore the final design is heavily dependent on the selection of the initial point.  Different 

starting points may lead to different results[16].  Most gradient based methods require that 

the objective function be a least twice differentiable. The first derivative is used to determine 

a gradient for a search direction and the second derivative is used to determine whether or not 

a local optimum has been found.  Also the design variable must be continuous. This means 

that the design variables must be continuous with-in the allowable design constraints. 

Evolutionary based methods do not rely on gradients to determine an optimum point.  One of 

the only requirements is the condition that  evaluation of the objective function is possible at 

any point within the allowable range of the design variables [16].  Evolutionary methods tend 

to converge at a global optimum; however there is no way to prove mathematically that a 

global optimum was found.  

Evolutionary methods also tend to be computationally expensive.  For example, depending 

on the nature of the problem, the number of design variables, and the degree of convergence, 

an evolutionary algorithm may require anywhere from five to 200 times as many function 

evaluations as a gradient-based algorithm. [17]  This translates to additional cost in terms of 

time or number of experiments. 

The American Bureau of Shipping (ABS) uses a genetic algorithm, a type of evolutionary 

method, to determine optimum bearing offsets. [18] A genetic algorithm roughly mimics 

biological evolution, where the best design is selected after numerous design generations.  

An initial population is randomly selected consisting of potential designs (design variable 
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sets) which conform to acceptable design parameters.  Each design is assigned a fitness value 

based on a fitness function.  A subset of these designs is randomly selected with a bias 

toward the most “fit” designs.  A new random set of designs is generated based on the 

previous subset.  Since this new set of designs was generated from a subset with higher 

overall initial fitness, the probably is high that each new generation will have better overall 

fitness values than the previous generation.[16] 

The ABS’s genetic algorithm uses this process to select the 100 best solutions for shaft 

alignment.  Fitness is determined by calculating the smallest standard deviation between 

bearing loads during different operational conditions. The best or most fit designs have a 

smaller standard deviation.  However, given the detailed nature of the design, a moderate 

number of design variables and a high degree of convergence, the number of function 

evaluations might be closer to 200 times more than the number of function evaluations 

needed for a gradient based solution. While it would be desirable for the purposes of this 

thesis to achieve such a robust solution, the computational requirements would be beyond 

most ship based computer systems.  A less computationally expensive method is required. 

The optimization code written for this thesis used a combination of two gradient based 

methods; exterior penalty method and steepest descent.   These methods will be discussed in 

detail in Section 3.1.5.  

3.1.2 Optimization of Bearing Offsets 
Accurately predicting shaft deflection and bearing loads is critical to achieving satisfactory 

shaft alignment, however this is only the first step.  Typically, propulsion shaft alignments 

are conducted during a dry-dock availability.  While this is the easiest time and place to 

conduct the shaft alignment, the alignment becomes invalid as soon as the ship is placed in 

the water. While in dry-dock, the weight of the ship is supported by a finite set of blocks 

along a horizontal plane, but once in the water, the shape of the keel is no longer constrained 

and the hull sags or hogs depending on the vessels current liquid load. 

In order to properly align the shaft, data on hull deflections during ballast (no liquid load) 

and laden (full liquid load) conditions is used to predict an bearing offset arrangement which 

will maximize the amount of time the ship maintains a satisfactory shaft alignment under any 



23 
 

given operating condition.  The tail shaft bearing (aft most bearing) is the baseline 0.0” 

offset.  All other bearings in the system are offset relative to the tail shaft bearing.  The goal 

is to achieve a positive bearing load at each bearing under several normal operating/loading 

conditions.  Each loading condition is weighted based on the operations of the vessel.  Crude 

oil carriers, for example, typically operate at a 50/50 split because they are fully loaded while 

carrying their cargo to their destination and unloaded during their return trips.  

Potentially, an infinite number of solutions exist which may satisfy the above conditions but 

which is the best solution?  The optimum solution depends on the design requirements. For 

the purposes of this thesis, it was assumed that minimizing the change in the bearing offsets 

would be the design objective.  By minimizing the change in the offsets, cost in terms of 

redesign or modification of the existing support structure and bearing system can be 

minimized.  The objection function (3-1 below) would therefore minimize the change in the 

bearing offsets by summing the squares of each offset.  The offsets are squared because they 

can be either positive or negative.  The first and often most difficult step in optimization is 

defining the problem.   

3.1.3 Standard Optimum Form: 
Defining the problem in Standard Optimum Form helps ensure that all needed information is 

known and that it is in a format that when solved will minimize the value of the objective 

function.  Standard Optimum Form involves listing all design variables used in the objective 

function and constraints, listing the objective function and listing all constraints functions.  

The constraint functions must be rearranged in the form g(x) <=0 for inequality constraints 

and h(x) = 0 for equality constraints.  The Standard Optimum Form for the proposed shaft 

alignment problem is listed below: 

Design Variables:          (inches)  

Vertical Bearing Offsets for the 3 middle bearings. 

Objective Function:   ( )    
    

      
  (3-1) 

Since the offsets can be either positive or negative, the sum of the squares of the 

offsets was minimized. 
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Subject to:  (These are the constraints) 

  ( )   
      

  
   

(3-2) 

  ( )   
      

  
   

(3-3) 

  ( )   
      

  
   

(3-4) 

  ( )   
      

  
   

(3-5) 

  ( )   
      

  
   

(3-6) 

  ( )   
     

  
   

(3-7) 

  ( )   
     

  
   

(3-8) 

  ( )   
     

  
   

(3-9) 

  ( )   
     

  
   

(3-10) 

   ( )   
     

  
   

(3-11) 

   ( )  
       

     
   

(3-12) 

  ( )                        = 0 (3-13) 

  ( )                (    )    (    )    (    )  

  (    )      = 0 

 

(3-14) 

 

--               are the reactions at each bearing (lbs).  These are solved for in TKSolver.  

The initial bearing offsets are passed from MATLAB to TKSolver and the reactions are 

passed back to MATLAB.  
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--         are the vertical offsets.  These design variables are technically discrete variables 

since typical shim machining tolerance is .0005”.  These variables were treated as continuous 

variables and then rounded to the nearest .0005” and checked to ensure the offsets still 

satisfied all constraints. 

--P is the Propeller Weight (lbs) 

--Fs is the distributed shaft weight (lbs/in) 

--L is the length of the shaft (in) 

--            are the horizontal bearing positions relative to the propeller. (in) 

--ϴ is the shaft/bearing misalignment at the tail shaft bearing (rad).   

3.1.4 Description of Design Variables, Constraints and Objective Functions  
Since the TKSolver model allows bearing horizontal locations and vertical offsets, as well as 

shaft material and size, to be changed in order to test different configurations, it lends itself 

readily to optimization by providing a wide variety of design variable choices.  It returns 

reactions as well as moments, deflections and slopes at any point on the shaft.   

The optimization algorithm needed to move the bearings up and down to achieve positive 

loading for each bearing.  The TKSolver system model only allows the first 4 bearings to be 

moved.  The tail shaft bearing (  ) height remained fixed since it is considered the baseline 

and the three middle bearings heights were moved to achieve the desired alignment.  The 

engine connection (  ) height dependent upon the modeled spring reaction and is not 

controlled as the model is currently written.  Therefore the design variable set consisted of 

the 3 middle bearings.  The value of the offsets could be either positive or negative.  The 

desired end configuration was a set of bearing offsets which would achieve the below 

conditions while minimizing the total offsets resulting in the objective function 3-1: 

1. All bearing loads must be positive. In other words, the shaft must rest on the bottom 

of the bearing since this is where strength of the bearing and support structure lie. 

2. All bearing loads must be less than 87 lbs/in^2.  This is a requirement set by ABS for 

composite journal bearing material. 
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3. The shaft/bearing misalignment angle at the tail shaft bearing must be less than .0003 

radians. This requirement is also set by ABS. 

4. The sum of forces and moments on the shaft must equal zero. 

Constraints:  The above conditions result in 11 inequality and 2 equality constraints.  Initially 

the allowable range for the bearing reactions was                . This load was 

derived from condition 2 above, assuming a bearing contact area of 5%.  However, since this 

would result in an offset arrangement where a slight change in hull deflection could result in 

an unloaded bearing, the minimum bearing load was increased in order to achieve a more 

stable design.  100 lbs was selected as a realistic minimum bearing load.  Increasing the load 

beyond this point greatly increased the time required for the algorithm to achieve a solution.   

The new constraint became: 

                (3-15) 

In order change this into a usable form for the optimization code, the above side-bounded 

condition on R had to be divided in to 2 separate constraints converted into a standard form.  

Rearranging the above constrain for the lower bound yielded: 

           (3-16) 

 

Normalizing by the maximum load,   : 

        

  
   

(3-17) 

 

Similarly for the upper bound: 

            (3-18) 

 

Became: 
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The equality constraints are simply the force and moment equilibrium 

equations.  Now that the problem was fully formed it could be applied to 

an optimization algorithm. 

(3-19) 

3.1.5 Exterior Penalty Method with Steepest Descent Method 
The exterior penalty method is a gradient based algorithm which searches through an 

infeasible design region using a modified Lagrange function.  This function penalizes each 

violated constraint using a constant multiplier which increases in magnitude with each loop.  

The modified Lagrange function has the following form: [16] 

 (    )   (  )     ∑[  
 ( )]

 
 ∑   ( )] ]

 

   

 

   

 

(3-20) 

Φ is the descent function 

f(y) is the objective function 

g(y)  are any violated inequality constraints (i.e. g>0) 

h(y) are any violated equality constraints 

y is the vector of design variables 

r is the scalar penalty parameter, r>0  

In order to find a search direction, the partial derivative of the descent function ϕ is taken 

with respect to each design variable.  This becomes the vector c.  Note that since r is a scalar 

value (usually r = 1 on the first iteration), the partial derivative of the descent function with 

respect to r, is zero. This results in an i x 1 vector. 

  
  (    )

   
 

(3-21) 
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Now that the gradient vector c has been calculated, several different methods can be used to 

determine search direction and distance.  In the steepest descent method, the search direction 

d is the negative of the gradient vector c. 

     (3-22) 

The search distance is calculated by first evaluating the following expression: 

  
    

      (3-23) 

 

  
  is the new point,  

  
  is the previous point  

α is the step size.   

Since the previous point and the search direction are known, this forms an i x 1 vector for 

each design variable in terms of α.  These expressions are substituted in to the objective 

function.  Next, the partial derivative of the function is taken with respect to α and all values 

of α are solved for.  The smallest positive, real value of α is used for the next search distance.  

Now that all values needed to calculate the next search point,   
  have been found, the next 

search point is calculated.  This process is repeated a convergence condition is achieved.   

Usually when the search distance equals zero we can say that the solution has converged, 

however α is a calculated quantity from the search direction, so the search direction is used to 

determine convergence.  The norm of the search direction vector is found at the end of each 

iteration of the steepest-descent method.  Once the norm has reach zero, the algorithm has 

reached convergence. Usually, a relatively small value close to zero is chosen as a 

convergence criterion to save time, since the level of accuracy needed in the design can be 

achieved before the algorithm, reaches zero.    

Now that the steepest descent method has converged, the new point is used to check to see if 

all constraints are satisfied.  If so, the search has ended, the exterior penalty method has 

converged and a solution has been found.  If, at the new point, one or more of the constraints 
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are still violated, r is increased by a predetermined factor, a new descent function is built and 

the process is repeated. 

3.2 Optimization Code Description 
The optimization code consisted of a script written in MATLAB.  The MATLAB code used 

nested-while loops, running a steepest descent algorithm within an exterior penalty 

algorithm.  The TKSolver Shaft model was used as a “Black Box” from which to pull data on 

bearing reactions. 

Communication between programs was accomplished by writing a simple visual basic code.  

This code halted the MATLAB code while it opened TKSolver, ran the deflection program 

and closed TKSolver.  A 3 second pause was inserted after the visual basic code to give 

TKSolver enough time to close completely, otherwise MATLAB would loop and attempted 

to open TKSolver again before it had completely closed.  This avoided errors generated by 

empty data sets being returned to MATLAB.   

The program begins by developing function approximations from experimental data, in order 

to reduce the time needed to run the optimization program.  This process is discussed in 

detail in section 3.3. The program then sends the initial point to TKsolver, solves for the 

bearing reactions and exports the data back to MATLAB.   

Once values were obtained using the initial point, the exterior penalty method loop was 

initiated, and the descent function was built.  The gradient of the descent function, c, and the 

descent direction vector, d, were calculated.  The step size, a, was solved for using a 

symbolic equation solving sub routine.  The norm of search direction vector, d, was checked 

to see if it was less than the convergence criteria for the loop.  If convergence was achieved 

the program exited to the exterior penalty method loop otherwise the steepest descent loop 

continued. 

The new point was evaluated in TKSolver to determine which constraints were violated.  If 

while building the descent function, all equality and inequality constraints were satisfied so 

that the norm of the   and    vectors were equal to zero, the problem was considered to have 
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achieved convergence.  If not a new descent function was built from the latest search point 

data and the exterior penalty loop repeated. 

3.3 Development of Function Approximations 
Developing function approximations was necessary in order to find an approximate relation 

between the bearing loads and the offsets, so that the optimization program did not have to 

communicate with the TKSolver model while in the steepest descent loop.  The time needed 

(almost 6 seconds) to run through this subroutine became very expensive after even a few 

iterations.  The steepest descent loop could take 100s or even 1000’s of iterations to reach 

convergence. 

Prior to the initial optimization run, linear, quadratic and cubic function approximations were 

generated using 25 randomly selected design vectors with offset values between -.2” and .2” 

from the baseline. The design set size was selected so that it would be large enough to 

accommodate higher level approximation functions if lower level approximations proved to 

be inaccurate[17].  The initial offset range was selected from the author’s previous work 

experience in checking shaft alignments. A sample function approximation is listed below.  

This is a cubic form.   

 ( )                        
      

      
      

      
 

     
  

(3-24) 

A linear form would truncate the equation after the fourth term.  A quadratic approximation 

would truncate after the 7
th

 term.  Interaction terms were neglected for two reasons. First, the 

level of accuracy provided by these terms isn’t usually needed until the optimization 

algorithm is very close to the final optimum point.  Second given the discrete nature of the 

design variables (rounded to the nearest 0.0005”), the level of accuracy gained by using a 

higher level approximation with interaction terms near the optimum point was needed to 

obtain a feasible solution. 

The B terms were solved for using: 

        (3-25) 
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The errors for the linear and cubic approximation functions were nearly equal.  The quadratic 

approximation error was approximately 30% larger at each bearing.  The cubic 

approximation was chosen, since its error was slightly less than the linear approximation 

error.  

The approximation functions were updated each time the optimization program achieved a 

solution in order the ensure convergence.  A new set of 25 experiments were run at random 

point clustered around the new potential optimum.  The optimization program was run again 

and the new point was compared to the previous optimum.  If within the .0005” machining 

tolerance, convergence had occurred. 

Table 1: Function Approximation Errors 

Bearing Linear 
% Linear 

diff 
Quadratic % Quad diff Cubic 

R_1 0.231516738 1.82% 0.294788059 29.65% 0.227376 

R_2 1.615673234 2.15% 2.055456154 29.96% 1.581645 

R_3 3.583713158 2.20% 4.558936279 30.01% 3.506708 

R_4 4.012792045 2.21% 5.104713508 30.02% 3.926003 

R_R 1.813063705 2.22% 2.306382449 30.03% 1.773697 

 

3.4 Results 
The initial design variable vector was [0 0 0].  This point was selected since it violated the 

design requirements.  This resulted in bearing reactions of: 

Table 2: Initial Bearing Reactions 

Bearing Load Unit Comment 

R_1 515.0938547 lbs   

R_2 448.9524798 lbs   

R_3 414.5085502 lbs   

R_4 -61.64931395 lbs   

R_R 105.3883373 lbs reaction at engine coupling (lbs) 

 

Constraint 4 was violated since the bearing reaction was negative.   



32 
 

The final design variable vector was [0.0026”, -0.0123”, -0.0019”].  These offsets were 

checked in TKSolver and resulted in bearing reactions of: 

Table 3: Final Bearing Reactions (non-discrete offsets) 

Bearing Load Unit Comment 

R_1 502.4115313 lbs   

R_2 500.6624283 lbs   

R_3 220.1501782 lbs   

R_4 95.73257297 lbs   

R_R 103.3371973 lbs reaction at engine coupling (lbs) 

 

The results indicated that constraint 4 was violated and constraint 5 was active. The violated 

constraint is a result of a slight relaxation of the < = 0 requirement in the MATLAB exterior 

penalty code and error in the function approximation.  

Since shim machining tolerance is only accurate to within 0.0005”, the following vectors 

were investigated to check for the most desirable solution:  

[0.0025”, -0.012”, -0.002”]  

[0.0025”, -0.0125”, -0.002”]  

 [0.0025”, -0.013”, -0.002”]   

The third option resulted in the best results with all constraints satisfied and only constraints 

4 and 5 active. 

Table 4: Final Bearing Reactions (Discrete Offsets) 

Bearing Load Unit Comment 

R_1 501.8880811 lbs   

R_2 503.0612704 lbs   

R_3 209.7187262 lbs   

R_4 105.9442426 lbs   

R_R 101.6815878 lbs reaction at engine coupling (lbs) 
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The final objection function value was 0.0001617    .  Using discrete values the objective 

function value increased to 0.0001792    . 

The results of the first function approximation yielded a final point of [0.0027”, -0.0129”, -

0.0020”].  To refine this point and verify convergence, experiments were run on 25 new 

points near this result and the code was run again using the new function approximations. 

The second iteration resulted in a new point [0.0026”, -0.0123”, -0.0019”].   The change 

vector [-0.0001”, 0.0006”, 0.0001”] was relatively small; however the change in the middle 

offset was less than feasible the machining tolerances.  At this point, discrete design vectors 

were investigated in order to select the most desirable results.  It was more efficient to run 3 

more experiments rather than selecting 25 additional points in order to improve the function 

approximation. The first and third offsets were rounded to the closest 0.0005” and 

experiments were run at -0.012, -0.0125 and -0.013” for the R3 bearing offset.   

3.5 Conclusions 
The optimization program found a valid set of offsets which met all of the design 

requirements and ABS standards within two function approximation iterations.   

The offsets were within the expected range of the initial experimental points used to develop 

the function approximation.  At full scale, the weight of the shaft dominates the deflections 

seen in the shaft, which explains why the 3
rd

 bearing had to be lowered significantly in order 

to remove the negative reaction in the 4
th

 bearing.    

Optimization of the system may prove difficult for the Laden and Ballast conditions.  The 

shaft system model is very unstable, with the 3
rd

 and 4
th

 bearing loads varying greatly with 

extremely minor changes in bearing heights. This is reflexed in the function approximation 

error since the magnitude of the errors is much higher at the 3
rd

 and 4
th

 bearing. The current 

TK model uses springs to approximate the engine to shaft interface at bearing 5.  The spring 

constants are set high to create a near cantilever condition.  A load representing the bull gear 

at this connection may make the loads more stable.   
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Chapter 4. Methodology and Data Collection 

4.1 Overview 
This chapter documents the methodology, data collection, and initial data analysis.  

4.2 Methodology 

4.2.1 Model System 
The system built for experimental verification of the analytical model is modeled after a 110’ 

Island Class Patrol boat which is currently used by the U. S. Coast Guard.  This propulsion 

system consists of two propulsion diesel engines each independently coupled to its own 

reduction gear, shaft and propeller.  Each shaft is 28’ long by 4” in diameter and is made of 

K500 Monel.  Each end of the shaft is tapered to fit to the propeller and bull gear.  The shaft 

is one piece.     

K500 Monel is commonly used in marine environments because of its superb anticorrosive 

properties and high strength.  K500 is a nickel-copper (63%/33%) alloy which is 

precipitation hardened with aluminum (3.15%) and titanium (0.85%).  Its modulus of 

elasticity is 179,000 kPa.  Due to Monel’s high price and no available funding for research, 

several substitute materials were used including a C110 copper rectangular bar, a 1018 steel 

rod and a 4130 steel tube.    

4.2.2 Scaling of the Propulsion System 
The original intent was to make a 1/8 scale model of the actual system and test it 

experimentally against the computer model.  After the computer model was validated a full 

sized system would be tested.  However, several scaling issues made this impractical.  The 

moment of inertia for the 1/8 scale shaft was 4096 (  ) times smaller than the moment of 

inertia of the actual system. Also the shaft’s distributed weight for the scale model was 64 

(  ) times smaller than the actual distributed weight of the shaft.  These differences naturally 

resulted in completely different deflection results (shown below).   
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Figure 13: Full Scale Deflection Results 

 

Figure 14: Scaled (1/8) Deflection Results 
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Since scaling proved to be impractical and gathering experimental data from an actual ship 

was infeasible due to lack of funding and travel time (the closest ships were home ported in 

Port Angeles, WA or Coos Bay, OR),  numerous departures from the actual ship 

configuration were made to facilitate experimental validation of the model.  Since the intent 

of the experimental rig was to test the accuracy of the model, the only critical test 

configuration criteria was that experimental model could be accurately reproduced in the 

computer model.   

4.2.3 Experimental Model Fabrication 
An old Bridgeport Mill base was used as a stable test platform on which to mount the shaft.  

It was rigid enough not to measurably deflect when the shaft was loaded during testing. This 

approximates the desired design condition for large vessels where the hull structure is stiffer 

than the propulsion shaft.  Prior to testing, the mill base was leveled using the four leveling 

screws on the rolling base.   

               

Figure 15: An Old Bridgeport Mill Base was used as the Experiment Test Bed 

The first experiment used a 0.5” OD 4130 mild steel tube (0.399” ID).  The small moment of 

inertia for the tube allowed for relatively large deflections and more easily measureable and 

verifiable results.  The bearings were reduced in scale length from 2” to 1” both for ease of 

machining and to allow the shaft to deflect more under load.  The shaft length was scaled to 

1”:8” to match the length of the test platform.  The overall scaled shaft length was 42”.  The 

bearings were machined from solid blocks of 6061-T6 aluminum.  They were bolted to the 
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test bed using 3/8” bolts designed for mounting fixtures to the mill.  Each bearing was 

reamed to 0.505” ID. 

 

Figure 16: Initial Modeled Engine End Connection 

Initially the engine connection was modeled using a simple clamp shown in Figure 16.  This 

proved impractical since in order to prevent longitudinal movement of the shaft, the clamp 

had to be tightened down significantly.  This imparted a large load the end of the shaft which 

in turn caused significant deflection.   

 

Figure 17: Final Engine End Connection Model 
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To correct this deficiency, a fifth bearing was machined to model the end connection.  A hole 

for a 1/4-20 set-screw was machined into the top center of the bearing to hold the shaft in 

place without imparting a significant deflection on the shaft.   

 

 

Figure 18: First Experimental Set up (steel tube) 

4.2.4 Test Configurations 
The first test configuration used 2 bearings and the engine end connection.  The front of the 

first bearing was positioned at 16” from the weighted end of the shaft.  The front of the 

second bearing was positioned 36” from weighted end of the shaft.  These bearing positions 

allowed for a relatively large deflection at any point on the shaft once weight was applied.   

Deflection was measured at 6 locations along the shaft and compared to the computer model 

predictions.  In the computer model, bearings were placed at 16”, 17”, 36” and 37” to model 

the contact points at either end of the actual bearings.  The effective offset of each bearing 

face was measured by recording the distance to the bottom of the shaft from the test bed, both 

at the front and back of the bearing.  The offset reflected the allowable movement of the shaft 

due to the difference between the OD of the shaft and the ID of the bearing.  The offsets at 
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17” and 36’ were 0.0035”.  The offset at 37” was 0.001”.  Because the computer-modeled 

bearing at 16” is considered the baseline, its offset was set to 0”. 

The second test configuration was identical to the first except a 0.5” OD solid 4130 steel rod 

was tested.  The weights were suspended from the end of the shaft by small gauge wire. A 

solid shaft was selected to attempt to resolve the relatively large difference in predicted and 

actual results seen at the 5
th

 and 6
th

 measurement location.  Run-out readings on the 1018 

steel tube showed a slight bend in the shaft so a straighter shaft was used to see if the bend 

affected the results. 

The final test configuration was constructed to better represent the point load bearings in the 

computer model. The boundary conditions at each bearing could be more closely 

approximated at each bearing.  A 1” by 3/8” C110 copper bar was used as a shaft.  A 

rectangular shaft was selected to eliminate possible pre-stressing during machining.  The 

bearings were positioned at 17.25”, 21.75”, 38.75” and 42.75” from the weighted end of the 

shaft.  The large gap in the middle of the shaft allowed for a measurable deflection.  Weights 

were hung from the end of the shaft by a small gauge wire.  

 

Figure 19: Configuration for Rectangular Bar Test 
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Figure 20: Point Load Bearing 

4.3 Deflection Measurement 

4.3.1 Experimental Procedure 
The actual shaft deflection was measured using a dial indicator.  The maximum resolution of 

the dial indicator gage was 0.001”.  The 0.0001” digit in the data was estimated by eye.  

Deflection measurements for the first 2 configurations were taken at 6 locations from the 

weighted end of the shaft: 7” (the farthest point the dial indicator could reach from the test 

bed), 9”, 12”, 21”, 24” and 27”.  The deflection readings for the final configuration, shown in 

Figures 20 & 21, were measured at 7”, 9”, 12”, 24”, 27” and 30”.  Deflection readings were 

taken at no load, 2.205 lbs and 4.41 lbs.  The spring force applied by the dial indicator was 

neglected.   

4.3.2 Computer Model Data Preparation 
The computer calculations needed to be adjusted before results could be compared.  Since the 

shaft deflects under its own weight, this deflection had to be subtracted from the computer 

results before it could be compared to the experimental data.   Also, since the measurement 

locations on the shaft did not coincide directly with the calculated data points in the computer 

model, results had to be interpolated between data points.  The shaft was divided into 200 
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equal sections of 0.21375”.  Since shaft deflection was small and the distance between points 

was small, linear interpolation was used to solve for deflection at each of the six 

measurement points.  

4.4 Data Collection 

4.4.1 Experimental Error 
Overall, experimental results were consistent between experimental models and matched 

closely with the computer model predictions.  The percent error listed in the following tables 

references the percent error in the model deflection (      ) when compared to the 

experimental results (           ).  

      
(                  )

           
 

(4-1) 

Error in the model’s results can be attributed to several factors.  In the pipe and tube 

configurations, there was uncertainty in the boundary conditions at each bearing.  Accurately 

measuring the vertical offset for each bearing proved difficult.    

Two limitations in the design of the computer model made it difficult to compensate for the 

uncertainty in the boundary conditions at the bearings.  First, the number of bearings in the 

model was fixed at four.  This could be partially overcome by pairing and spacing bearings 

extremely close together to create essentially one bearing. This would model the boundary 

conditions at the entrance and exit of a single bearing. However, spacing the model bearings 

less than 1” apart made it impossible to measure the actual offset of the shaft from the 

bearing.  This leads into the second limitation.  The shafts deflection is constrained to the 

offset entered at each bearing.  This creates an unrealistic constraint where the shaft must 

remain in contact with the bottom of bearing surface.  The deflection results were extremely 

sensitive to the bearing offsets so that a small error would lead to large differences in the 

predicted deflection curve for the shaft.  In the experiment, the shaft was free to pivot inside 

the bearing within the 0.005” difference between the OD of the tube and the ID of the 

bearing.   

Some simplifying assumptions lead to error in the final prediction of the deflection curves. 

The bearings and the shaft contact points were considered rigid. The model doesn’t take into 
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account either bending of the bearings or local deformation of the shaft at the point of contact 

with the bearing.  Finally, the actual modulus of elasticity for the shaft isn’t known. 

4.4.2 Experimental Results 

4.4.2.1 4130 Steel Tube 

The initial experimental measurements were taken on a 4130 steel tube.  Results for the 

2.205 lbs weight were consistent with the error between the 2 models ranged from 9 to 18%.  

Although the range in error between readings appears much larger for the interior readings, 

these deflections are much smaller and are much more susceptible to measurement errors.    

 

 

Figure 21: Plot of 4130 Steel Tube Experimental and Model Deflections 
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Table 5: Results for the 4130 Steel Tube (2.205 lbs) 

Position (in) Model (in) Experiment (in) % Difference Calculated Difference (in) 

7 -0.0418 -0.046 -9.24% -0.0042 

9 -0.0294 -0.0338 -12.95% -0.0044 

12 -0.0138 -0.016 -13.85% -0.0022 

21 0.0076 0.0085 -10.79% 0.0009 

24 0.0097 0.0082 17.73% -0.0015 

27 0.01 0.0085 17.95% -0.0015 

 

For the 4.41 lbs weight results, the first three measurement locations (7”, 9” and 12”) were 

with-in approximately 2% of the actual measurements.  However, the error dramatically 

increased when measurements were taken between bearings. Several more experiments were 

run to verify the accuracy of the initial results and refine experimental techniques.  Table 6 

summarizes the final results 4.41 lbs weight. 

Table 6: Results for the 4130 Steel Tube (4.41 lbs) 

Position (in) Model (in) Experiment (in) % Difference Calculated Difference (in) 

7 -0.0789 -0.079 -0.09% -0.0001 

9 -0.0553 -0.0565 -2.12% -0.0012 

12 -0.0256 -0.026 -1.68% -0.0004 

21 0.0131 0.0113 16.07% -0.0018 

24 0.0166 0.0115 44.37% -0.0051 

27 0.0172 0.0103 66.54% -0.0069 

 

This error can be attributed to uncertainty in the bearing offsets present at the previous 

bearing exit and next bearing entrance as well as the relatively small deflection exposing the 

limitation in the dial indicator’s precision.  A run out was conducted on the shaft and a 

perceptible bend was found in the shaft.  At 90 degrees rotation counter clockwise, the shaft 

deflected 0.0257” downward, at 180 degrees; the shaft deflected 0.0127” downward.  At 270 

degrees it deflected only 0.0035” downward.  Figure 22 summarizes these results.  Given the 

results of the run and the fact that there was a high probability that the modulus of elasticity 

could have been affected by working of the steel into a tube, a solid steel rod was tested. 
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Figure 22: Shaft Run-out for 4130 Steel Tube 

 

4.4.2.2 1018 Steel Rod 
The second test configuration used a 1018 steel rod.  The outside diameter of the rod was 

0.5”.  The rest of the configuration remained unchanged.  A run out of the shaft was 

conducted to check for straightness.  Deflection in the 0-180 direction changed by only 

0.0008” while deflection in the 90-270 direction changed by only 0.008”.   
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Figure 23: Plot of 1018 Steel Rod Model and Experimental Deflections 

Results for the 2.205 lbs weight were extremely good until the 27” measurement.  This may 

indicate an error in the offset at the entrance of the 2
nd

 bearing. 

Table 7: Results for the 1018 Steel Rod (2.205 lbs) 

Position (in) Model (in) Experiment (in) % Difference Calculated Difference (in) 

7 -0.0298 -0.0315 -5.54% -0.0017 

9 -0.0212 -0.0228 -7.21% -0.0016 

12 -0.0103 -0.0113 -8.86% -0.001 

21 0.0065 0.0063 2.52% -0.0002 

24 0.0082 0.0077 5.85% -0.0005 

27 0.0084 0.006 39.73% -0.0024 

 

Results for the 4.41 lbs weight were very good through the first four measurements.  Again, 

an error in the measurement of the offset at the entrance of the second bearing may account 

for the error in the second 2 readings. 
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Table 8: Results for the 1018 Steel Rod (4.41 lbs) 

Position (in) Model (in) Experiment (in) % Difference Calculated Difference (in) 

7 -0.0604 -0.063 -4.08% -0.0026 

9 -0.043 -0.0454 -5.24% -0.0024 

12 -0.021 -0.0223 -5.81% -0.0013 

21 0.0133 0.0121 10.16% -0.0012 

24 0.0168 0.014 20.31% -0.0028 

27 0.0173 0.0122 42.20% -0.0051 

 

4.4.2.3 Copper Bar 
In order to remove the uncertainty in the boundary conditions at the bearings, a new 

experimental set up was designed to approximate point loads.  This configuration was 

discussed in detail in section 4.2.4 and shown in figures 19 and 20.  The measurement 

locations for the first three bearings remained the same as the other two configurations (7”, 

9”, and 12”).  However, due to the location and size of the new bearings the last three 

locations were shifted by 3” to 24”, 27” and 30”.  The bearings were spaced as far apart as 

possible in order to maximize defection at the interior measurements.  There were no 

measurable differences in bearing offsets so the model offsets were set to zero.   
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Figure 24: Plot of C110 Copper Bar Model and Experimental Deflections 

Results for the copper bar were consistent between the two weights.  The large error in the 

interior measurements is due to the small deflection and the limitation in accuracy of the dial 

indicator.  Predicted and actual deflections at the interior readings were three times smaller 

than the deflections predicted for the first two configurations. 

Table 9: Results for the Copper Bar (2.205 lbs) 

Position (in) Model (in) Experiment (in) % Difference Calculated Difference (in) 

7 -0.0288 -0.0266 8.23% 0.0022 

9 -0.0205 -0.018 13.72% 0.0025 

12 -0.0101 -0.0092 9.38% 0.0009 

24 -0.0005 -0.0003 63.84% 0.0002 

27 -0.0007 -0.0006 24.63% 0.0001 

30 -0.0007 -0.0005 36.26% 0.0002 
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Table 10: Results for the Copper Bar (4.41 lbs) 

Position (in) Model (in) Experiment (in) % Difference Calculated Difference (in) 

7 -0.0576 -0.053 8.64% 0.0046 

9 -0.0409 -0.0365 12.16% 0.0044 

12 -0.0201 -0.0181 11.20% 0.002 

24 -0.001 -0.0008 22.88% 0.0002 

27 -0.0015 -0.0013 15.05% 0.0002 

30 -0.0014 -0.001 36.26% 0.0004 
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Chapter 5. Conclusions and Recommendations 
 

5.1 Conclusions 
Dr. Ju’s method proved a sound basis for a simple computer model for beam deflection.  The 

experimental data validated the model results in all three configurations.  Results were very 

accurate when the influence of the boundary conditions at the bearings could be minimized.  

This was especially clear in measurements taken prior to the first bearing where the offset 

was zero in all cases where the offset was not influenced by the loading at the end of the 

shaft or the spacing of the bearings.   

5.2 Future Work and Recommendations 
By trial and error a nearly exact solution could be found for the measured deflections, Since 

the deflection curve was highly influenced by the bearing offsets.  In future work, the 

optimization program discussed in chapter 3 could be modified to search for the offsets 

which would match the measured results, to achieve a very accurate picture of the shaft’s 

alignment.  This would be especially useful in situations where the offsets could not be 

measured directly. 

Use of the original end connection model shown in Figure 16 could be used to model 

different working reactions to further investigate Dr. Ju’s methods.  The end of the shaft can 

be deflected easily and the displacement measured to create a sizable working reaction.  The 

TKSolver model would need to be modified to accept a constrained end deflection.  In its 

current state as it solves for both the moment and reaction forces. 

Other future work could include adding the influence of the hull’s deflection under different 

conditions.  Also the bearings can be changed to represent a distributed load and the offset 

restrictions could become condition based on whether or not the shaft deflection is restricted 

by the bearing’s dimensions.  
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Appendix A: TKSolver Shaft Deflection Code 
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This Appendix Shows the TKSolver used to solve the beam deflection problem.  The Rule 

Sheet is shown first followed by each function in the order they are called out in the rule 

sheet. 

Rule 

I=pi()*(do^4-di^4)/64;                    moment of inertia 

EI=E*I;                                          flexural modulus 

Fs=ρ*pi()*((do/2)^2-(di/2)^2)/(12^3) 

k2=Scale2*EI 

k1=Scale1*EI;                                spring constant for engine coupler 

call precalc();                                 calculates the matrix "a" and the column vector "b" 

call $LINSOLVE('a,'b,'sol);            solves for the reaction column vector 

call reactions(;R_1,R_2,R_3,R_4,λ2,M_R,λ1,R_R);      retrieves the reactions from 
the "sol" column vector 

call displayresults();                      calculates the moment and deflection along the                  
beam for plotting 

∆P=P+Fs*L-R_1-R_2-R_3-R_4-R_R 

∆M=P*L+.5*Fs*L^2-R_1*(L-x_1)-R_2*(L-x_2)-R_3*(L-x_3)-R_4*(L-x_4)-M_R 

 

Precalc Function:  

The Simpson function is a built in TKSolver Function found in the Application/TKSolver 5 

Library/Mathematics/Differentiation and Integration folder. 

Statement 

'a1[1]=Simpson('Int11,0,L,n) 

'a1[2]=Simpson('Int12,0,L,n) 

'a1[3]=Simpson('Int13,0,L,n) 

'a1[4]=Simpson('Int14,0,L,n) 

'a1[5]=L-x_1 

'a1[6]=0 

'a1[7]=1 

'a1[8]=0 

  

'a2[1]='a1[2] 

'a2[2]=Simpson('Int22,0,L,n) 

'a2[3]=Simpson('Int23,0,L,n) 

'a2[4]=Simpson('Int24,0,L,n) 

'a2[5]=L-x_2 
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'a2[6]=0 

'a2[7]=1 

'a2[8]=0 

  

'a3[1]='a1[3] 

'a3[2]='a2[3] 

'a3[3]=Simpson('Int33,0,L,n) 

'a3[4]=Simpson('Int34,0,L,n) 

'a3[5]=L-x_3 

'a3[6]=0 

'a3[7]=1 

'a3[8]=0 

  

'a4[1]='a1[4] 

'a4[2]='a2[4] 

'a4[3]='a3[4] 

'a4[4]=Simpson('Int44,0,L,n) 

'a4[5]=L-x_4 

'a4[6]=0 

'a4[7]=1 

'a4[8]=0 

  

'a5[1]='a1[5] 

'a5[2]='a2[5] 

'a5[3]='a3[5] 

'a5[4]='a4[5] 

'a5[5]=0 

'a5[6]=1 

'a5[7]=0 

'a5[8]=0 

  

'a6[1]='a1[6] 

'a6[2]='a2[6] 

'a6[3]='a3[6] 

'a6[4]='a4[6] 

'a6[5]='a5[6] 

'a6[6]=-1/k2 
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'a6[7]=0 

'a6[8]=0 

  

'a7[1]='a1[7] 

'a7[2]='a2[7] 

'a7[3]='a3[7] 

'a7[4]='a4[7] 

'a7[5]='a5[7] 

'a7[6]='a6[7] 

'a7[7]=0 

'a7[8]=1 

  

'a8[1]='a1[8] 

'a8[2]='a2[8] 

'a8[3]='a3[8] 

'a8[4]='a4[8] 

'a8[5]='a5[8] 

'a8[6]='a6[8] 

'a8[7]='a7[8] 

'a8[8]=-1/k1 

  

'b[1]=δ_1+Simpson('b1Int,0,L,n) 

'b[2]=δ_2+Simpson('b2Int,0,L,n) 

'b[3]=δ_3+Simpson('b3Int,0,L,n) 

'b[4]=δ_4+Simpson('b4Int,0,L,n) 

'b[5]=P*L+.5*Fs*L^2 

'b[6]=0 

'b[7]=P+Fs*L 

'b[8]=0 
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Reactions Function 

Statement 

R_1='sol[1];                                                                                 Reaction at bearing 1 

R_2='sol[2];                                                                                 Reaction at bearing 2 

R_3='sol[3];                                                                                 Reaction at bearing 3 

R_4='sol[4];                                                                                 Reaction at bearing 4 

λ2='sol[5];                                                                                    LaGrange Multiplier 

M_R='sol[6];                                                              Moment from weight of bull gear 

λ1='sol[7];                                                                                   deflection at right end 

R_R='sol[8];                                                                                 Reaction at right end 

 

Display Results Function 

Statement 

for i=1 to n+1 

ξ=(i-1)*(L)/n;                                                                           beam into n increments 

'ξ[i]=ξ;                                                                                     list of ξ for the x-axis 

'ξ1]=ξ;           creates a parameter than can be passes into the numerical integration 

'Mx[i]=Mx(ξ) 

'δnum[i]=-(Simpson('Defl,0,L,n)- λ2 (L-ξ)- λ1 

'Mnum[i]=-(Simpson('Moment,0,L,n)-λ2 

next i 

Mx Function 

z=-P*x-.5*Fs*x^2+R_1*X_1(x)+R_2*X_2(x)+R_3*X_3(x)+R_4*X_4(x); This is the 
moment equation for the shaft. 
 

DEFL Function 

Statement 

ξ= 'ξi[1] 

z=Mx(x)/EI*(-(x-ξ)*H(x,ξ)) 
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Appendix B: MATLAB Optimization Code 
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First Iteration Code 
clear all 
clc 
tic 

  
%Parameters 
x1=19; 
x2=133; 
x3=253; 
x4=294; 
P=220;                      %Propellor Load (lbs) 
Fs=3.82896; 
L=314;                      %Length of beam 2 (inches) 
E=26000000;                 %Modulus of Elasticity (psi) 
sigma=87; 
percent_contact=5; 
contact_area=pi()*5*18*percent_contact/100; 
Py=sigma*contact_area;      %Yield Strength (psi) 
safety_factor=1.5;           
num_var=3;                  % # of design variables 
bearing_var=5; 
g_eq=10;                    % # of inequality constraints 
h_eq=0;                     % # of equality constraints 
eps_h=.01;                  % Tolerance for Equality Constraints 
eps_g=.001;                 % Tolerance for Inequality Constraints 
eps_SD=.001;                 % Convergence Criteria 
r_val(1)=1;                 % Initial Penalty Value 
r_mult=10;                  % Penalty Multiplier 

  
x=[1    1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

1   1   1   1   1   1   1 
   0    0.1 -0.1    0   0   0   0   0.1 -0.1    0.2 0   0   -0.2    0   0   

0.1 0   0.1 -0.1    0   -0.1    0.2 0.2 0.2 -0.2 
   0    0   0   0.1 -0.1    0   0   0.1 -0.1    0   0.2 0   0   -0.2    0   

0.1 0.1 0   -0.1    -0.1    0   0   -0.2    0.2 -0.2 
   0    0   0   0   0   0.1 -0.1    0.1 -0.1    0   0   0.2 0   0   -0.2    

0   0.1 0.1 0   -0.1    -0.1    -0.2    0   0.2 -0.2 
   0    0.01    0.01    0   0   0   0   0.01    0.01    0.04    0   0   

0.04    0   0   0.01    0   0.01    0.01    0   0.01    0.04    0.04    

0.04    0.04 
   0    0   0   0.01    0.01    0   0   0.01    0.01    0   0.04    0   0   

0.04    0   0.01    0.01    0   0.01    0.01    0   0   0.04    0.04    

0.04 
   0    0   0   0   0   0.01    0.01    0.01    0.01    0   0   0.04    0   

0   0.04    0   0.01    0.01    0   0.01    0.01    0.04    0   0.04    

0.04 
   0    0.001   -0.001  0   0   0   0   0.001   -0.001  0.008   0   0   -

0.008  0   0   0.001   0   0.001   -0.001  0   -0.001  0.008   0.008   

0.008   -0.008 
   0    0   0   0.001   -0.001  0   0   0.001   -0.001  0   0.008   0   0   

-0.008  0   0.001   0.001   0   -0.001  -0.001  0   0   -0.008  0.008   -

0.008 
   0    0   0   0   0   0.001   -0.001  0.001   -0.001  0   0   0.008   0   

0   -0.008  0   0.001   0.001   0   -0.001  -0.001  -0.008  0   0.008   -

0.008]'; 
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y1=[515.0938547 431.9395619 598.2481475 615.6112589 414.5764506 

418.0765437 625.4725059 435.4396551 594.7480544 348.7852691 716.128663  

321.0592327 681.4024403 314.0590464 709.1284768 532.4569661 518.5939478 

334.9222509 497.7307434 511.5937616 695.2654585 542.8198912 147.7504608 

355.7854554 674.402254 
]'; 
y2=[448.9524798 686.3242122 211.5807475 -6.02551545 903.9304751 

997.5845856 -192.7615431    779.9783227 117.9266369 923.6959446 -

461.0035107    1546.216691 -25.79098492    1358.90847  -648.3117318    

231.3462169 542.6065904 1234.956318 666.5587427 355.2983693 -337.0513584    

-173.5682671    1833.651935 1111.004166 -213.099206 
]'; 
y3=[414.5085502 -40.46944509    869.4865455 2845.831136 -2016.814036    -

5718.319554    6753.756212 -3741.974963    4570.992063 -495.4474404    

5277.153722 -11851.14766    1324.464541 -4448.136622    12680.16476 

2390.853141 -3286.996968    -6173.297549    -1561.836041    4116.014068 

7002.314649 11770.20877 -5358.092613    -7898.458476    8727.475576 
]'; 
y4=[-61.64931395    486.9827919 -610.2814198    -6194.477418    6071.17879  

32107.84566 -32462.26213    26523.64967 -26646.94829    1035.614898 -

12327.30552    64277.34064 -1158.913526    12204.00689 -64400.63927    -

5645.845312    25975.01756 32656.47777 5522.546684 -26098.31619    -

32779.7764 -63303.37506    13301.27111 53108.94865 -53232.24728 
]'; 
y5=[105.3883373 -142.4832128    353.2598874 4161.354446 -3950.577772    -

26382.89333    26698.08886 -22574.79877    22785.57545 -390.354763 

8217.320555 -52871.175  601.1314376 -8006.54388 53081.95168 3913.482896 -

22326.92722    -26630.76488    -3702.706221    22537.7039  26841.54156 

52586.20858 -8502.286981    -45254.98588    45465.76256 
]'; 

  
B1=((x'*x)^-1)*x'*y1; 
B2=((x'*x)^-1)*x'*y2; 
B3=((x'*x)^-1)*x'*y3; 
B4=((x'*x)^-1)*x'*y4; 
B5=((x'*x)^-1)*x'*y5; 

  

  
%Objective Functions and Constraints: 
syms r R y 
y=sym('y',[num_var 1]); 
R=sym('R',[bearing_var 1]); 
f=(y(1)^2+y(2)^2+y(3)^2);    %initial point, est from graph 
y0(1,:)=[0;0;0]; 
% R(1)=B1(1)+B1(2)*y(1)+B1(3)*y(2)+B1(4)*y(3); 
% R(2)=B2(1)+B2(2)*y(1)+B2(3)*y(2)+B2(4)*y(3); 
% R(3)=B3(1)+B3(2)*y(1)+B3(3)*y(2)+B3(4)*y(3); 
% R(4)=B4(1)+B4(2)*y(1)+B4(3)*y(2)+B4(4)*y(3); 
% R(5)=B5(1)+B5(2)*y(1)+B5(3)*y(2)+B5(4)*y(3); 
% 

R(1)=B1(1)+B1(2)*y(1)+B1(3)*y(2)+B1(4)*y(3)+B1(5)*y(1)^2+B1(6)*y(2)^2+B1(7

)*y(3)^2; 



60 
 
% 

R(2)=B2(1)+B2(2)*y(1)+B2(3)*y(2)+B2(4)*y(3)+B2(5)*y(1)^2+B2(6)*y(2)^2+B2(7

)*y(3)^2; 
% 

R(3)=B3(1)+B3(2)*y(1)+B3(3)*y(2)+B3(4)*y(3)+B3(5)*y(1)^2+B3(6)*y(2)^2+B3(7

)*y(3)^2; 
% 

R(4)=B4(1)+B4(2)*y(1)+B4(3)*y(2)+B4(4)*y(3)+B4(5)*y(1)^2+B4(6)*y(2)^2+B4(7

)*y(3)^2; 
% 

R(5)=B5(1)+B5(2)*y(1)+B5(3)*y(2)+B5(4)*y(3)+B5(5)*y(1)^2+B5(6)*y(2)^2+B5(7

)*y(3)^2; 
R(1)=B1(1)+B1(2)*y(1)+B1(3)*y(2)+B1(4)*y(3)+B1(5)*y(1)^2+B1(6)*y(2)^2+B1(7

)*y(3)^2+B1(8)*y(1)^3+B1(9)*y(2)^3+B1(10)*y(3)^3; 
R(2)=B2(1)+B2(2)*y(1)+B2(3)*y(2)+B2(4)*y(3)+B2(5)*y(1)^2+B2(6)*y(2)^2+B2(7

)*y(3)^2+B2(8)*y(1)^3+B2(9)*y(2)^3+B2(10)*y(3)^3; 
R(3)=B3(1)+B3(2)*y(1)+B3(3)*y(2)+B3(4)*y(3)+B3(5)*y(1)^2+B3(6)*y(2)^2+B3(7

)*y(3)^2+B3(8)*y(1)^3+B3(9)*y(2)^3+B3(10)*y(3)^3; 
R(4)=B4(1)+B4(2)*y(1)+B4(3)*y(2)+B4(4)*y(3)+B4(5)*y(1)^2+B4(6)*y(2)^2+B4(7

)*y(3)^2+B4(8)*y(1)^3+B4(9)*y(2)^3+B4(10)*y(3)^3; 
R(5)=B5(1)+B5(2)*y(1)+B5(3)*y(2)+B5(4)*y(3)+B5(5)*y(1)^2+B5(6)*y(2)^2+B5(7

)*y(3)^2+B5(8)*y(1)^3+B5(9)*y(2)^3+B5(10)*y(3)^3; 

  

  
Mr=0; theta=1; %initial values, reset after receiving output from TK. 
g(1)=(100-R(1))/Py; 
g(2)=(100-R(2))/Py; 
g(3)=(100-R(3))/Py;  %bearing loads must be positive 
g(4)=(100-R(4))/Py; 
g(5)=(100-R(5))/Py; 
g(6)=(R(1)-Py)/Py;               
g(7)=(R(2)-Py)/Py;  %Bearing Loads can not exceed yield load 
g(8)=(R(3)-Py)/Py;               
g(9)=(R(4)-Py)/Py; 
g(10)=(R(5)-Py)/Py;               
%g(11)=(theta-.0003)/.0003;  %maximum allowable misalignment at stern 

bearing 
% h(1)=-P-Fs*L+R(1)+R(2)+R(3)+R(4)+R(5);  %sum of forces and moments = 0. 
% h(2)=-P*L-Fs*L^2/2+R(1)*(L-x1)+R(2)*(L-x2)+R(3)*(L-x3)+R(4)*(L-x4)+Mr; 

  
stop_SD=0; 
stop_ep=0; 
ii=1; 
% Exterior Penalty Loop  
while stop_ep==0 
    i=1; 
    y_hist(i,:) = y0(ii,:);%sets y_hist to last y value from prev. DM 

loop. 

     
    %read and write to "black box" (TK Solver) 
    dlmwrite('bearing_offsets.asc', 'd:', ' ');  
    dlmwrite('bearing_offsets.asc',y0(ii,:),'-append'); %writes initial 

point to an ascii file 
    !ShaftModel.vbs &                        
    % system('e:\Optimization\Shaft_Deflection_keane.tkw'); 
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    pause(3);                                           %Pauses while TK 

solver for new reactions 
    system('taskkill /F /IM cmd.exe');                  %closes DOS 

command window 
    BR=dlmread('TKOutputs.asc', ',', 1, 0);              %reads reaction 

list from TK Solver 
    T=dlmread('Theta.asc',',',1,0);                     %reads entire 

theta list 
    theta=T(1,1);       %Mapping TK solver output to Matlab from ascii 

file 
    Reactions(1,:)=[BR(1,1) BR(1,2) BR(1,3) BR(1,4) BR(2,3)];   
    Mr=BR(2,1); 

     
    %Direct Method Counter, resets to 1 when new DM loop is initiated. 
    syms g_c h_c 
    %Direct Method Loop, Build Lagrangian function 
    while stop_SD==0     
        %test to see if inequality constraints are met at current point 
        for j = 1:g_eq 
            test=double(subs(g(j),{y},{y_hist(i,:)})); 
            if test > 0  
                g_c(j,:) = g(j); 
            else 
                g_c(j,:) = 0; 
            end 
        end 
        %test to see if equality constraints are met at current point 
        for k = 1:h_eq 
            test=double(subs(h(k),{y},{y_hist(i,:)})); 
            if abs(test) > 0.1*eps_h 
                h_c(k,:) = h(k); 
            else 
                h_c(k,:) = 0; 
            end 
        end 
      %add non-zero constraints to the objective function   
      phi_sym = f; 
      for j=1:g_eq 
          phi_sym=phi_sym+r*g_c(j,:).^2; 
      end 
      for k=1:h_eq 
          phi_sym=phi_sym+r*h_c(k,:).^2; 
      end 
      %solve for phi at current point 
      phi_hist(i,1) = double(subs(phi_sym,[y;r],[y_hist(i,:) r_val(ii)])); 
      %Find new gradient 
      for p=1:num_var 
          c(p,1)=diff(phi_sym,y(p)); 
          c_hist(i,p)=double(subs(c(p,1),[y;r],[y_hist(i,:) r_val(ii)])); 
      end 
      d_hist(i,:)=-c_hist(i,:);     %Find new descent direction. 
      d_norm=norm(d_hist(i,:));     %Find norm of d. 
      if d_norm < eps_SD            %Test for convergence 
            break 
      else 
            stop=0; 
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      end 
    %calculates next search point as a function of alpha which is unknown   
    syms alpha 
    phi_alpha=subs(phi_sym,[y;r],[(y_hist(i,:)+alpha*d_hist(i,:)) 

r_val(ii)]); 
     %find the gradient of phi(a) 
    dphidalpha=diff(phi_alpha,alpha); 
     %solve for alpha by setting the gradient equal to zero 
    alpha_solve=double(solve(dphidalpha)); 
    %eliminate negative and imaginary roots     
       for n=1:size(alpha_solve,1); 
            if alpha_solve(n,1) <= 0 
            alpha_solve(n,1) = 1e6; 
            elseif abs(imag(alpha_solve(n,1))) > 1e-6 
            alpha_solve(n,1) = 1e6; 
            end 
       end 
     %pick the smallest real root 
        alpha_hist(i,1)=min(real(alpha_solve));     
      %calculates optimum point/new x values 
        y_hist(i+1,:)=y_hist(i,:) + alpha_hist(i,1)*d_hist(i,:); 

        
    i=i+1;   
    end   %end of Direct Method Loop 
    %check to see if constraints are satisfied.  
    for j=1:g_eq 
        test=double(subs(g(j),{y},{y_hist(i,:)})); 
        if test > eps_g 
            g_test(ii,j) = 1; 
        else 
            g_test(ii,j) = 0; 
        end 
    end 
    if h_eq == 0 
        h_test(ii,:) = 0; 
    end 
    for k=1:h_eq 
        test=double(subs(h(k),{y},{y_hist(i,:)})); 
        if abs(test) > eps_h 
            h_test(ii,k) = 1; 
        else 
            h_test(ii,k) = 0; 
        end 
    end 
    if norm(h_test(ii,:))==0 && norm(g_test(ii,:)) == 0 
        break 
    end 
    y0(ii+1,:)=y_hist(i,:); 
    Reaction_values=double(subs(R,{y},{y_hist(i,:)})); 
    r_val(ii+1,1)=r_mult*r_val(ii,1); 
    ii=ii+1; 
    %clear y_hist d_hist alpha_hist c_hist phi_hist phi g_c h_c 

     
end 
    dlmwrite('bearing_offsets.asc', 'd:', ' ');  
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    dlmwrite('bearing_offsets.asc',y_hist(i,:),'-append'); %writes initial 

point to an ascii file 
    !ShaftModel.vbs &                        
    % system('e:\Optimization\Shaft_Deflection_keane.tkw'); 
    pause(3);                                           %Pauses while TK 

solver for new reactions 
    system('taskkill /F /IM cmd.exe');                  %closes DOS 

command window 
    BR=dlmread('TKOutputs.asc', ',', 1, 0);              %reads reaction 

list from TK Solver 
    T=dlmread('Theta.asc',',',1,0);                     %reads entire 

theta list 
    theta=T(1,1);       %Mapping TK solver output to Matlab from ascii 

file 
    Reactions(1,:)=[BR(1,1) BR(1,2) BR(1,3) BR(1,4) BR(2,3)];   
y0 
y_hist 
d_hist 
r_val 
y_opt=y_hist(i,:) 
Reactions 
iterations=ii    
toc 

 

Second Iterations with Revised Function Approximations 
clear all 
clc 
tic 

  
%Parameters 
x1=19;                      %Horizontal Location for each bearing 
x2=133; 
x3=253; 
x4=294; 
P=220;                      %Propellor Load (lbs) 
Fs=3.82896;                 %distributed load (shaft weight lbs/in) 
L=314;                      %Length of beam 2 (inches) 
E=26000000;                 %Modulus of Elasticity (psi) 
sigma=87; 
percent_contact=5;          %percent contact with journal surface area 
contact_area=pi()*5*18*percent_contact/100; 
safety_factor=1.5; 
Py=sigma*contact_area/safety_factor;      %Yield Strength (psi)          
num_var=3;                  % # of design variables 
bearing_var=5; 
g_eq=10;                    % # of inequality constraints 
h_eq=0;                     % # of equality constraints 
eps_h=.01;                  % Tolerance for Equality Constraints 
eps_g=.001;                 % Tolerance for Inequality Constraints 
eps_SD=.001;                % Convergence Criteria 
r_val(1)=1;                 % Initial Penalty Value 
r_mult=10;                  % Penalty Multiplier 

  
%2nd iteration experimental data.  25 Random points selected 
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%(.0027,-.013,-.002) 
x=[1    1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

1   1   1   1   1   1   1 
-0.0425 -0.04   -0.045  -0.04   -0.044625   -0.04675    -0.0425 0   -

0.0425 -0.0425 0   0   -0.0212 -0.085  -0.06375    -0.028333333    -0.045  

-0.04   -0.03   0   -0.05   -0.0451 -0.0425 -0.05   -0.0048 
-0.0351 -0.03   -0.0375 -0.04   -0.036855   -0.03861    -0.0351 -0.0351 0   

0   -0.0351 0   -0.0175 -0.0702 -0.05265    -0.0234 -0.0235 -0.03   -0.02   

0   -0.04   -0.0351 -0.02   -0.03   -0.0351 
-0.0048 -0.005  -0.0025 -0.0075 -0.00504    -0.00528    0   -0.0048 -

0.0048 0   0   -0.0048 -0.0024 -0.0096 -0.0072 -0.0032 -0.001  -0.01   -

0.01   0   0   -0.01   0   -0.0048 -0.0425 
0.00180625  0.0016  0.002025    0.0016  0.001991391 0.002185563 0.00180625  

0   0.00180625  0.00180625  0   0   0.00044944  0.007225    0.004064063 

0.000802778 0.002025    0.0016  0.0009  0   0.0025  0.00203401  0.00180625  

0.0025  0.00002304 
0.00123201  0.0009  0.00140625  0.0016  0.001358291 0.001490732 0.00123201  

0.00123201  0   0   0.00123201  0   0.00030625  0.00492804  0.002772023 

0.00054756  0.00055225  0.0009  0.0004  0   0.0016  0.00123201  0.0004  

0.0009  0.00123201 
0.00002304  0.000025    0.00000625  0.00005625  2.54016E-05 2.78784E-05 0   

0.00002304  0.00002304  0   0   0.00002304  0.00000576  0.00009216  

0.00005184  0.00001024  0.000001    0.0001  0.0001  0   0   0.0001  0   

0.00002304  0.00180625 
-7.67656E-05    -0.000064   -0.000091125    -0.000064   -8.88658E-05    -

0.000102175    -7.67656E-05    0   -7.67656E-05    -7.67656E-05    0   0   

-9.52813E-06    -0.000614125    -0.000259084    -2.27454E-05    -

0.000091125    -0.000064   -0.000027   0   -0.000125   -9.17339E-05    -

7.67656E-05    -0.000125   -1.10592E-07 
-4.32436E-05    -0.000027   -5.27344E-05    -0.000064   -5.00598E-05    -

5.75572E-05    -4.32436E-05    -4.32436E-05    0   0   -4.32436E-05    0   

-5.35938E-06    -0.000345948    -0.000145947    -1.28129E-05    -1.29779E-

05    -0.000027   -0.000008   0   -0.000064   -4.32436E-05    -0.000008   

-0.000027   -4.32436E-05 
-1.10592E-07    -0.000000125    -1.5625E-08 -4.21875E-07    -1.28024E-07    

-1.47198E-07    0   -1.10592E-07    -1.10592E-07    0   0   -1.10592E-07    

-1.3824E-08 -8.84736E-07    -3.73248E-07    -3.2768E-08 -0.000000001    -

0.000001   -0.000001   0   0   -0.000001   0   -1.10592E-07    -7.67656E-

05 
]'; 

  
y1=[519.8096512 523.0512161 517.2446927 515.4249085 520.045441  

520.2812309 515.1528203 484.4690768 555.0912601 550.4344292 479.8122459 

519.7506856 517.4604345 524.5254477 522.1675495 518.2377188 529.8618696 

527.9020817 529.6383928 515.0938547 516.4640394 527.016563  530.3309483 

531.1726108 525.0360091 
]'; 
y2=[481.4324288 463.0655802 499.0361458 494.847577  483.0564263 

484.6804237 507.7667699 582.3154151 321.7351525 348.0694936 608.6497562 

422.6181387 465.0836512 513.9123778 497.6724033 470.60578   443.5687081 

435.6339749 413.8733486 448.9524798 512.2578117 446.7318943 439.0650926 

440.4256711 364.087268 
]'; 
y3=[48.85571944 173.7443777 -139.1766191    83.93282164 30.5730779  

12.29043637 -245.5200295    -144.5099285    902.2499472 607.8741982 -

438.8856775    708.8842992 232.6703071 -316.7971113    -133.9706959    
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170.7399948 109.2161214 480.3857828 678.0202419 414.5085502 -330.5314866    

379.5922087 121.609681  206.976521  2189.40521 
]'; 
y4=[313.6689465 -49.72847407    1187.039403 -240.6830382    332.4348596 

351.2007726 1857.804706 546.8375915 -1838.953718    -294.8179589    

2090.97335  -1605.785073    123.2177183 688.987207  501.3280768 

188.5628615 810.985893  -1658.203223    -2216.622823    -61.64931395    

2117.165875 -1373.409227    931.7476618 -40.2526947 -11607.39636 
]'; 
y5=[58.52716204 312.1612082 -641.8497142    568.771639  56.18410328 

53.84104452 -1212.910358    -46.81824676    1482.171266 210.7337461 -

1318.255767    1376.825857 83.86179695 11.66598678 35.09657441 74.14755297 

-471.338684 1636.575292 2017.384748 105.3883373 -1393.062331    

1442.362469 -600.4594757    283.9717999 9951.161777 
]'; 

  
B1=((x'*x)^-1)*x'*y1; 
B2=((x'*x)^-1)*x'*y2; 
B3=((x'*x)^-1)*x'*y3; 
B4=((x'*x)^-1)*x'*y4; 
B5=((x'*x)^-1)*x'*y5; 

  
%Objective Functions and Constraints: 
syms r R y 
y=sym('y',[num_var 1]); 
R=sym('R',[bearing_var 1]); 
f=(y(1)^2+y(2)^2+y(3)^2);    %initial point, est from graph 
y0(1,:)=[.0026;-.0129;-.0020]; 
R(1)=B1(1)+B1(2)*y(1)+B1(3)*y(2)+B1(4)*y(3)+B1(5)*y(1)^2+B1(6)*y(2)^2+B1(7

)*y(3)^2+B1(8)*y(1)^3+B1(9)*y(2)^3+B1(10)*y(3)^3; 
R(2)=B2(1)+B2(2)*y(1)+B2(3)*y(2)+B2(4)*y(3)+B2(5)*y(1)^2+B2(6)*y(2)^2+B2(7

)*y(3)^2+B2(8)*y(1)^3+B2(9)*y(2)^3+B2(10)*y(3)^3; 
R(3)=B3(1)+B3(2)*y(1)+B3(3)*y(2)+B3(4)*y(3)+B3(5)*y(1)^2+B3(6)*y(2)^2+B3(7

)*y(3)^2+B3(8)*y(1)^3+B3(9)*y(2)^3+B3(10)*y(3)^3; 
R(4)=B4(1)+B4(2)*y(1)+B4(3)*y(2)+B4(4)*y(3)+B4(5)*y(1)^2+B4(6)*y(2)^2+B4(7

)*y(3)^2+B4(8)*y(1)^3+B4(9)*y(2)^3+B4(10)*y(3)^3; 
R(5)=B5(1)+B5(2)*y(1)+B5(3)*y(2)+B5(4)*y(3)+B5(5)*y(1)^2+B5(6)*y(2)^2+B5(7

)*y(3)^2+B5(8)*y(1)^3+B5(9)*y(2)^3+B5(10)*y(3)^3; 

  
Mr=0; theta=1; %initial values, reset after receiving output from TK. 
g(1)=(100-R(1))/Py; 
g(2)=(100-R(2))/Py; 
g(3)=(100-R(3))/Py;  %bearing loads must be positive 
g(4)=(100-R(4))/Py; 
g(5)=(100-R(5))/Py; 
g(6)=(R(1)-Py)/Py;               
g(7)=(R(2)-Py)/Py;  %Bearing Loads can not exceed yield load 
g(8)=(R(3)-Py)/Py;               
g(9)=(R(4)-Py)/Py; 
g(10)=(R(5)-Py)/Py;               
g(11)=(theta-.0003)/.0003;%maximum allowable misalignment at stern bearing 
% h(1)=-P-Fs*L+R(1)+R(2)+R(3)+R(4)+R(5);  %sum of forces and moments = 0. 
% h(2)=-P*L-Fs*L^2/2+R(1)*(L-x1)+R(2)*(L-x2)+R(3)*(L-x3)+R(4)*(L-x4)+Mr; 

  
stop_SD=0; 
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stop_ep=0; 
ii=1; 
% Exterior Penalty Loop  
while stop_ep==0 
    i=1; 
    y_hist(i,:) = y0(ii,:);%sets y_hist to last y value from prev. DM 

loop. 

     
    %read and write to "black box" (TK Solver) 
    dlmwrite('bearing_offsets.asc', 'd:', ' ');  
    dlmwrite('bearing_offsets.asc',y0(ii,:),'-append');  
    !ShaftModel.vbs &                        
    % system('e:\Optimization\Shaft_Deflection_keane.tkw'); 
    pause(3);                     %Pauses while TK solver for new 

reactions 
    system('taskkill /F /IM cmd.exe');           %closes DOS command 

window 
    BR=dlmread('TKOutputs.asc', ',', 1, 0);%reads reaction list from TK 

Solver 
    T=dlmread('Theta.asc',',',1,0);                %reads entire theta 

list 
    theta=T(1,1);       %Mapping TK solver output to Matlab from ascii 

file 
    Reactions(1,:)=[BR(1,1) BR(1,2) BR(1,3) BR(1,4) BR(2,3)];   
    Mr=BR(2,1); 

     
    %Direct Method Counter, resets to 1 when new DM loop is initiated. 
    syms g_c h_c 
    %Direct Method Loop, Build Lagrangian function 
    while stop_SD==0     

         
        for j = 1:g_eq 
            test=double(subs(g(j),{y},{y_hist(i,:)})); 
            if test > 0  
                g_c(j,:) = g(j); 
            else 
                g_c(j,:) = 0; 
            end 
        end 
        %test to see if equality constraints are met at current point 
        for k = 1:h_eq 
            test=double(subs(h(k),{y},{y_hist(i,:)})); 
            if abs(test) > 0.1*eps_h 
                h_c(k,:) = h(k); 
            else 
                h_c(k,:) = 0; 
            end 
        end 
      %add non-zero constraints to the objective function   
      phi_sym = f; 
      for j=1:g_eq 
          phi_sym=phi_sym+r*g_c(j,:).^2; 
      end 
      for k=1:h_eq 
          phi_sym=phi_sym+r*h_c(k,:).^2; 
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      end 
      %solve for phi at current point 
      phi_hist(i,1) = double(subs(phi_sym,[y;r],[y_hist(i,:) r_val(ii)])); 
      %Find new gradient 
      for p=1:num_var 
          c(p,1)=diff(phi_sym,y(p)); 
          c_hist(i,p)=double(subs(c(p,1),[y;r],[y_hist(i,:) r_val(ii)])); 
      end 
      d_hist(i,:)=-c_hist(i,:);     %Find new descent direction. 
      d_norm=norm(d_hist(i,:));     %Find norm of d. 
      if d_norm < eps_SD            %Test for convergence 
            break 
      else 
            stop=0; 
      end 
    %calculates next search point as a function of alpha which is unknown   
    syms alpha 
    phi_alpha=subs(phi_sym,[y;r],[(y_hist(i,:)+alpha*d_hist(i,:)) 

r_val(ii)]); 
     %find the gradient of phi(a) 
    dphidalpha=diff(phi_alpha,alpha); 
     %solve for alpha by setting the gradient equal to zero 
    alpha_solve=double(solve(dphidalpha)); 
    %eliminate negative and imaginary roots     
       for n=1:size(alpha_solve,1); 
            if alpha_solve(n,1) <= 0 
            alpha_solve(n,1) = 1e6; 
            elseif abs(imag(alpha_solve(n,1))) > 1e-6 
            alpha_solve(n,1) = 1e6; 
            end 
       end 
     %pick the smallest real root 
        alpha_hist(i,1)=min(real(alpha_solve));     
      %calculates optimum point/new x values 
        y_hist(i+1,:)=y_hist(i,:) + alpha_hist(i,1)*d_hist(i,:); 

        
    i=i+1;   
    end   %end of Direct Method Loop 
    %check to see if constraints are satisfied.  
    for j=1:g_eq 
        test=double(subs(g(j),{y},{y_hist(i,:)})); 
        if test > eps_g 
            g_test(ii,j) = 1; 
        else 
            g_test(ii,j) = 0; 
        end 
    end 
    if h_eq == 0 
        h_test(ii,:) = 0; 
    end 
    for k=1:h_eq 
        test=double(subs(h(k),{y},{y_hist(i,:)})); 
        if abs(test) > eps_h 
            h_test(ii,k) = 1; 
        else 
            h_test(ii,k) = 0; 
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        end 
    end 
    if norm(h_test(ii,:))==0 && norm(g_test(ii,:)) == 0 
        break 
    end 
    y0(ii+1,:)=y_hist(i,:); 
    Reaction_values=double(subs(R,{y},{y_hist(i,:)})); 
    r_val(ii+1,1)=r_mult*r_val(ii,1); 
    ii=ii+1; 
    %clear y_hist d_hist alpha_hist c_hist phi_hist phi g_c h_c 

     
end 
%read final point into TK for final reactions 
    dlmwrite('bearing_offsets.asc', 'd:', ' ');  
    dlmwrite('bearing_offsets.asc',y_hist(i,:),'-append');  
    !ShaftModel.vbs &                        
    % system('e:\Optimization\Shaft_Deflection_keane.tkw'); 
    pause(3);                                            
    system('taskkill /F /IM cmd.exe');                   
    BR=dlmread('TKOutputs.asc', ',', 1, 0);               
    T=dlmread('Theta.asc',',',1,0);                      
    theta=T(1,1);        
    Reactions(1,:)=[BR(1,1) BR(1,2) BR(1,3) BR(1,4) BR(2,3)];   
y0 
y_hist 
d_hist 
r_val 
y_opt=y_hist(i,:) 
Reactions 
DM_interations=i 
EPM_iterations=ii    
toc 
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Appendix C: Matrix used for Calculation in TKSolver Shaft Model 
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This Appendix describes the Chapter 2 calculations in more detail.  Specifically it shows the 

vectors and matrix used in the TKSolver program shown in Appendix A. 

The following page shows the system of equations used to solve for the shaft’s deflection, 

moment and slope at any point, arranged in the following format 

                  ]               ]                     ] 

   (8 x 8)   (8 x 1)   (8 x 1) 

Nomenclature: 

Expansion of the row 1, column 1 entry in the compliance matrix: 

∫
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And    
 is a heavy-side step function: 
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The expanded form of the row 1, column 1 compliance matrix entry becomes: 
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