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Abstract 

Native plants are very important in urban landscape systems, as they have been adopted to 

the environment and are resistant to different biotic or abiotic stresses in the area. Little-

leaf mockorange is a native plant in the western United States, and is a good choice for 

urban landscape use, while difficulties in its propagation through regular methods is a 

concern. In a series of studies, the potential of tissue culture to propagate this plant species 

was evaluated. During the completion of these studies, adjustment of tissue culture medium 

by changing different cytokinins and minerals was completed either as individual 

experiments or in the form of one experiment to run Response Surface Methods (RSM) to 

develop a statistical model. At the end of experiments, the feasibility of application of ASD 

spectroradiometer was also checked to estimate the foliar mineral status of tissue-cultured 

plants for studying a non-destructive method of foliar mineral prediction. Results showed 

that little-leaf mockorange grew best on ½ strength MS medium containing 32.5 to 35 mM 

N, 1.8 mM Ca, and 0.6 mM P, supplemented with 1.1 µM Zeatin. Also, using a 

spectroradiometer for hyperspectral imaging showed that N and Ca could be accurately 

estimated by developing models based on Random Forest regression models. 

Hyperspectral features such as, minimum external of the wavelength and asymmetric point 

of the wavelengths throughout the hyperspectral bands, as well as vegetation indices such 

as double peak index (DPI) or cellulose absorption index (CAI) were useful to provide 

informative data to predict foliar content of N and Ca in tissue-cultured little-leaf 

mockorange. this research resulted in an optimized tissue culture medium for efficient 

reproduction of little-leaf mockorange, so that commercial propagators can use these 

results to propagate this selected plant for the landscape industry. 
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Chapter 1: Literature Review 

1.1. Hydrangeaceae Family 

Mockorange (Philadelphus spp.) from the Hydrangeaceae family is widely distributed in 

Asia, North America, and southeastern Europe (Anonymous, Wikipedia, 2019). Plants in 

the Hydrangeaceae family are dicots (Anonymous, SFGate, 2019). The name of this plant 

family is derived from the Latin, hydro, meaning water, and aggeion, meaning vessel or 

cup. The name refers to the shape of the fruit. While individual species in the 

Hydrangeaceae family have some distinct characteristics, these plants share many 

characteristics that set them apart as a group from other plant families (Anonymous, 

SFGate, 2019). The Hydrangeaceae (hydrangea) is a family of flowering plants, in the 

Cornales order and is comprised of several genera (Anonymous, The Plant List, 2013, 

Anonymous, Britannica, 2017) and about 250 to 260 species (Anonymous, Britannica, 

2017, Anonymous, SFGate, 2019) of mostly herbaceous or woody ornamental trees, 

shrubs, vines, and herbs, which all are primarily native to tropical, subtropical, and north 

temperate regions (Anonymous, Britannica, 2017, Anonymous, SFGate, 2019). 

Hydrangea shrubs are low-growing, densely branched plants that typically reach no more 

than 3 to 4.5 m tall. Vining hydrangeas climb or trail with the help of their tendrils to clasp 

onto nearby structures or objects (Anonymous, SFGate, 2019). Most plants are deciduous 

having large, simple, green leaves with toothed margins, which grow in an opposite 

arrangement along the stem (Anonymous, Britannica, 2017, Anonymous, SFGate, 2019). 

Some Mediterranean species are evergreen, and the typically serrated-edged leaves with 

net-like veins keep their color year-round and are retained in winter. However, in cooler 
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climates some Hydrangeaceae plants are deciduous and drop their leaves every fall 

(Anonymous, SFGate, 2019). 

Flowers may grow as a single flower or as large clusters of branching inflorescences of 

star-shaped blooms (Anonymous, SFGate, 2019, Anonymous, Go Botany, 2021). The 

flowers are actinomorphic (radially symmetrical). Flowers have four or five sepals, fused 

at the base, and four or five individual petals. Some flowers are sterile, whereas fertile ones 

contain both pollen-bearing (antheridia, male reproductive organ) and ovule-bearing 

(ovary and pistils, female reproductive organ) parts. They have eight or more stamens and 

two to five styles (Anonymous, Britannica, 2017, Anonymous, SFGate, 2019). Colorful 

flowers with shades of blue, purple, pink, white or red can be seen among the 

Hydrangeaceae plants. Some bigleaf hydrangea species (Hydrangea macrophylla) change 

color depending on soil pH. Plants on soils with a pH higher than 5.5 typically produce 

pink flowers, whereas plants growing on acidic soils with a pH less than 5.5 produce blue 

flowers. 

Hydrangeaceae flowers may be clustered in three general shapes: mopheads, lacecaps or 

panicles. Mophead hydrangea flowers are rounded and resemble pom-poms. Each cluster 

contains mainly infertile flowers that are unable to produce seeds and have large, showy 

sepals. Lacecap clusters are only slightly rounded and flat. These flower clusters contain 

several small, fertile flowers. Infertile flowers with large, showy sepals are typically found 

around the cluster’s perimeter. Panicle hydrangea clusters are large conical or pyramidal 

shaped, with showy infertile blooms mixed with small fertile flowers (Anonymous, 

SFGate, 2019). 
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The fruit of hydrangea plants is typically shaped like a dry cup or capsule, but it may 

sometimes be berry-like, which when ripe, dehisces to release its many seeds. Seeds may 

be winged (Anonymous, Go Botany, 2021). 

In the landscape, Hydrangeaceae plants may be grown as individual plants or be grouped 

together forming hedges. They grow best in a nutrient-rich, moist but well-drained soil. 

Plant hardiness varies depending on the species, but many of them can grow in U.S. 

Department of Agriculture plant hardiness zones 3 through 9. They prefer sun in the 

morning, but partial sun to full shade during the hot afternoon hours (Anonymous, SFGate, 

2019). 

The hydrangea family includes the well-known garden ornamentals that are shrubs in the 

genera Deutzia, Hydrangea (hydrangea), and Philadelphus (mockorange or sweet syringa). 

Other ornamental genera include Cardiandra, Carpenteria, Decumaria, Dichroa, Jamesia, 

Kirengeshoma, Pileostegia, Platycrater, Schizophragma, and Whipplea (Anonymous, The 

Plant List, 2013, Anonymous, Britannica, 2017). 

1.1.1. Little-leaf Mockorange 

Mockorange are woody shrubs (Anonymous, USDA, 2015) in the genus Philadelphus, 

includes about 65 species and cultivars, and all are flowering deciduous shrubs (Dirr and 

Heuser, 2006). Some of the more popular species are P. argenteus (Silver mockorange), 

P. argyrocalyx (Silver-cup mockorange), P. coronarius (sweet mockorange), P. 

californicus (California mockorange), P. microphyllus (little-leaf mockorange), P. 

occidentalis (Western mockorange) and P. oreganus (Oregon mockorange) (Anonymous, 

USDA, 2015). 
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Philadelphus microphyllus A. Gray (little-leaf mockorange) is a small to medium sized 

multi-stemmed, deciduous shrub with long arching stems covered with tiny, medium-green 

leaves with silvered aspect similar to boxwood leaves (Figure 1). Little-leaf mockorange 

produces flowers on previous year’s wood for several weeks starting in late spring, so the 

plant needs to be pruned immediately after flowering (Anonymous, Gardenia, 2021). The 

shrub blooms with plenty of very fragrant flowers, which fill the air with their vanilla or 

orange-blossom like scent. Flowers, which are little-leaf mockorange most outstanding 

characteristic, have four white or yellowish petals and are almost 2.5 cm in diameter. 

Flowers may be born as single blooms or as pairs (Dirr and Heuser, 2006, Anonymous, 

Gardenia, 2021). The fruit is a four-valved dehiscent capsule full of seeds (Dirr and Heuser, 

2006). Its height can reach to 1.5 to 2 m, while the width can be around 1 to 1.2 m. The 

bark appears tan to reddish-gray and peeling.  

                                        

Figure 1. Flowers (left) and branches covered with tiny leaves (right) of little-leaf Mockorange (Wilson, 2012). 

An important characteristic of this species is its excellent tolerance to drought, easy to grow 

and low maintenance requirements. It can also grow in a wide range of light conditions 

from light shade to full sun. The shrub usually grows in different chalk, sand, or loamy 

soils with a pH of 7 to 7.80, and in average, dry to medium, well-drained soils. In spring 

and winter, plants grow best in dryer soil around the crown rather than wet soil. 

(Anonymous, Missouri Botanical Garden, 2008, Anonymous, Gardenia, 2021). After 
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planting, it needs watering once a week for the first growing season, and then in subsequent 

years it should be watered every two weeks during the hottest summer weather (Wilson, 

2012). 

Generally, this species is insect and disease free, but it may need to be observed for leaf-

spot, canker, powdery mildew and/or rust. Little-leaf mockorange is a great plant used for 

cut flowers, shrub beds and borders, foundation plantings, or informal flowering hedges as 

a screen. This species is a shrub native to United States found in California, Colorado, 

Utah, Nevada, Wyoming, Arizona, Texas, and New Mexico in areas, such as arid rocky 

slopes, cliffs, or pinyon-juniper to coniferous woods (Anonymous, Johnson Center, 2015, 

Anonymous, Gardenia, 2021). In general, mockorange species can be propagated by seed, 

summer soft-wood cuttings, hardwood cuttings and layering (Dirr and Heuser, 2006), but 

little-leaf mockorange is difficult to propagate through seeds or cuttings (Steve Love, 

University of Idaho, personal communication). 

1.2. Tissue Culture 

Plant tissue culture, also known as in vitro culture or micropropagation, is the science of 

growing isolated plant cells, organs, or tissues separated from a parent plant and placed on 

a culture medium. Tissue culture requires specific tools, a set of techniques, and sterile 

conditions as well as specific temperature and light conditions to be successful in the 

propagating plants. Plants are propagated and grown on a mineral medium in the presence 

of other substances, such as plant growth regulators, vitamins, and carbohydrates (Loyola-

Vargas and Vázquez-Flota, 2006, George et al., 2007). Tissue culture is a fast and highly 

reliable asexual plant propagation method for research and is commercially applied in the 

greenhouse and nursery industries. Tissue culture can help researchers and growers 
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increase the number of selected plants in a short period of time. On the other hand, some 

other scientists (Street as cited by Smith, 2012) would prefer to use a broader term for plant 

tissue. Street mentioned as aseptic culture of any cell, tissue or organ and their components 

under specific physical and chemical conditions in vitro are considered as 

micropropagation techniques (cited by Smith, 2012). 

The earliest steps toward plant tissue culture were first observed and introduced by Henri-

Louis Duhumel du Monceau in 1756, when he was doing research on the wound-healing 

process in plants and after watching plants produce callus after wounding (Gautheret, 1985, 

Smith, 2012). Smith (2012) later mentioned that microscopic studies by other scientists 

(Schleiden, 1838; Schwann, 1839) led to the understanding of the cell, which stated that 

cell is the functional and structural unit of an organism that has potential autonomy. Studies 

of callus formation on the plant segments by Vöchting (1878) proved the theory (cited by 

Smith, 2012). Vöchting reported that the upper zones of stem segments can produce buds 

and lower parts produce either callus or roots regardless of stem size as long as they contain 

enough buds or leaf primordia to produce new parts. (Vöchting 1878  as cited by Smith, 

2012). Many studies have been conducted by Skoog and his colleagues (Skoog and Tsui, 

1948, Miller et al., 1955, Skoog and Miller, 1957), improved understanding tissue culture 

and its different aspects, such as the effects of adenine and phosphate on the production of 

shoots and roots by non-meristematic pith tissues in the presence of vascular tissue (Skoog 

and Tsui, 1948). Skoog and his colleagues also discovered the first cytokinin, (kinetin: 

Miller et al., 1955) and then learned the effects of kinetin strongly increasing cell division 

of tobacco callus tissue. Skoog and co-workers also recognized the importance of 

balancing the ratio between exogenous auxin and kinetin in the medium as these hormones 
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affected the morphogenesis of tobacco callus (Skoog and Miller, 1957, Trigiano and Gray, 

2010, Smith, 2012). These studies and others led to the discovery that higher concentrations 

of auxin than kinetin leads to root formation, whereas the contrariwise ratio induces shoot 

formation, and the moderate levels of each in the medium produce callus (Smith, 2012). 

One tissue culture technique, often referred to as micropropagation, involves inducing 

axillary shoot proliferation and growth under aseptic conditions on a culture medium in 

small jars or containers. The plant selected for micropropagation needs to undergo different 

stages during the tissue culture process beginning with surface sterilization of the stem, 

shoot establishment followed by shoot multiplication, and then rooting. Finally, rooted 

shoots must adapt to the natural environment. These steps are listed (Trigiano and Gray, 

2010) as Stage 0: Stock plants care, Stage I: Establishment & stabilization, Stage II: Shoot 

multiplication/proliferation, Stage III: Rooting & transplant preparation, and Stage IV: 

Transplanting & acclimatization. 

1.2.1. Tissue Culture Medium Components 

Growth and development of an explant - the plant part put into culture- on a culture medium 

depends on its genetics, growth environment, and the components in the culture medium. 

The first two factors may be less easy than the third factor to manipulate to obtain optimum 

growth. The tissue culture medium is a combination of 95% water, macro- and micro-

nutrients, plant growth regulators (PGRs), vitamins, sugar (to substitute for photosynthetic 

products), and other simple to complex organic materials. All together about 20 different 

components interacting together create the optimum growth medium for explants. 



8 

 

The main components in this research that I specifically have focused on are selected 

inorganic minerals and cytokinins, a type of plant growth regulator (Trigiano and Gray, 

2010). 

1.2.1.1. Inorganic Mineral Elements 

Plants need 17 essential elements for optimum growth. Three of these elements can be 

obtained from air, water, and culture media, including oxygen (O2), hydrogen (H2), and 

carbon (C). Fourteen other essential elements (also called minerals or nutrients), that plants 

need to acquire to grow properly include nitrogen (N), phosphorous (P), potassium (K), 

calcium (Ca), magnesium (Mg), sulfur (S), as well as iron (Fe), manganese (Mn), boron 

(B), chlorine (Cl), copper (Cu), zinc (Zn), molybdenum (Mo), and nickel (Ni) (Mahler, 

2004). Macronutrients are those elements required in millimolar (mM) quantities (the first 

six minerals after C, H, and O) (Trigiano and Gray, 2010). They play important roles as 

part of the plant structures or organelles. In contrast, micronutrients are required in lower 

quantities than macronutrients, and plants need these elements in micromolar (µM) 

amounts (the second eight minerals). Their roles are as catalysts of biochemical 

interactions and physiological systems (Table 1: Trigiano and Gray, 2010). 

Among all these elements, I will review the importance and the role of the selected 

elements, used in my experiments. 

a) Nitrogen (N): plants need a large amount of nitrogen to obtain optimum growth. 

Nitrogen is taken up in the form of nitrate (NO3
-) or ammonium (NH4

+) and is an important 

component of amino acids, amides, nucleic acids, proteins, enzymes, vitamins, coenzymes, 

and plant hormones. Nitrogen is also a component of the protoplast and gives vigor and 

dark green color to the plant foliage. Nitrogen is a mobile element, so if deficient in a plant, 
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it moves from the older leaves and tissues and is transported to younger leaves, causing 

yellowish green to yellow old leaves. If nitrogen deficiency continues, the whole plant can 

turn yellow. 

Table 1. Function and mobility within plant tissue of the 14 soil-derived essential nutrients for plant growth. 

Essential nutrient Mobility in plant Function of plant 

Nitrogen good proteins, protoplasts, enzymes 

Phosphorus good ATP, ADP, basal metabolism 

Potassium good water relations, energy relations, cold hardiness 

Sulfur fair/good proteins, protoplasts, enzymes 

Calcium very poor cell structure, cell division, cell elongation 

Magnesium good chlorophyll, enzymes 

Boron very poor sugar translocation, cell development, growth regulators 

Chlorine good photosynthesis 

Copper poor enzyme activation 

Iron poor chlorophyll synthesis, metabolism, enzyme activation 

Manganese poor Hill reaction-photosystem II, enzyme activation 

Molybdenum poor nitrogen fixation, nitrogen use 

Nickel unknown iron metabolism 

Zinc poor protein breakdown, enzyme activation 

 

b) Phosphorus (P): this element is absorbed in the form of H2PO4
-, HPO4

2-, or PO4
3-, 

depending on soil pH. Phosphorus is necessary for producing ATP, ADP, and AMP and is 

necessary for basic metabolic processes, such as photosynthesis, carbohydrate catabolism, 

and transferring energy within the plants. Phosphorus is a mobile element, but its 

deficiency is difficult to diagnose visually. Its deficiency may result in stunted plants or 

sometimes purple-green older leaves. 
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c) Potassium (K): potassium can be taken up by plants in the form of K+. It is a mobile 

mineral within a plant, and its deficiency is seen in older leaves’ margins first. It has 

important roles in water and energy relationships. Potassium is also linked with plant cold 

hardiness and increases frost tolerance through decreasing cell sap osmosis. Potassium 

regulates the supply of CO2 by controlling the stomata openings. Potassium is involved in 

cell division. Potassium concentration can be highest in young tissues. Also, K improves 

fruit color, growth, and flavor. 

d) Calcium (Ca): calcium is another macronutrient, taken up as Ca2+ by plants roots, 

and is necessary for structural phenomena, such as cell division, cell elongation, and cell 

structure. Calcium also acts as a cofactor with some enzymes participating in ATP and 

phospholipids hydrolysis. It is also important for chromosome flexibility and helps cell 

division. Calcium concentration affects uptake of N, Fe, Zn, B, and Mn. Calcium is 

immobile, so its deficiency shows up in the younger growing leaves and tissues. Shoot tips 

may also dieback under severe Ca2+ deficiency. 

e) Magnesium (Mg): another mobile macronutrient taken up in the form of Mg2+ by 

plants. When deficient, older plant leaves have interveinal chlorosis, which is seen as the 

dark green veins, and light green to yellowish green interveinal areas. Magnesium has 

important roles as the main component of the chlorophyll molecule and is required by some 

enzymes involved in P transfer. Magnesium is also necessary for formation of 

carbohydrates, fats, and vitamins, while enhancing P uptake and transport within plants. 

f) Iron (Fe): one of the main micronutrients and an immobile element that can be taken 

up by plants roots in the form of Fe2+. The need for Fe depends on the plant species. Iron 

is necessary for photosynthesis, metabolic process, as well as enzyme activation.  Iron is a 
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very important component of cytochrome and non-heme iron proteins. Iron has a catalyst 

role in the formation of chlorophyll. Iron helps with various reactions, such as respiration, 

photosynthesis and reduction of nitrates and sulfates. Iron deficiency is seen as the 

interveinal chlorosis in younger leaves (Mahler, 2004, Anonymous, NCDACS, 2019). 

Like any plants growing in soil in the natural environment, explants growing in vitro, need 

different minerals obtained from salts in the culture medium to grow well. The need for 

different minerals and their concentrations depends on the plant species, the plant organ or 

tissue explant used for the tissue culture, and the age of the explant. 

Different basal salts are available in the market, among which the Murashige and Skoog 

(MS) medium is one commonly used for many plant species or for different in vitro goals 

(Murashige and Skoog, 1962). Commercial MS medium has different essential minerals at 

specific concentrations usually beneficial for most plant species. Among them are N at 60 

mM, K at 30 mM, Ca at 3 mM, Mg at 1.5 mM, P at 1.25 mM, and Fe at 100 µM. 

1.2.1.2. Plant Growth Regulators (PGRs) 

Plant growth regulators, also known as phytohormones, play important roles in plant 

growth and development. As with in vivo plants, tissue cultures (in vitro cultures) are 

dependent on phytohormones for growth and development. The success of a tissue cultured 

explant and its growth can be highly dependent on the concentration of specific 

phytohormones as well as their ratio and combinations with the other phytohormones. Two 

main categories of phytohormones have been found in plants and are very important for 

tissue culture, including i) classical plant hormones (auxins, cytokinins, gibberellins, 

abscisic acid, and ethylene), and ii) more recently discovered natural growth substances 

(polyamines, oligosaccharins, salicylates, jasmonates, sterols, brassinosteroids, and 
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strigolactones) that have hormonal and regulatory roles in the plants (Trigiano and Gray, 

2010). 

Two types of PGRs among the classical group are very important and regularly used in 

plant tissue culture. These two types are auxins and cytokinins, each having specific roles 

to help explants grow better and more efficiently. 

A) Auxins 

This group of plant growth regulators is responsible for many actions within plants, among 

them are cell division, cell elongation, cell wall acidification, somatic embryogenesis, 

organizing meristematic tissues to form in unorganized tissues (callus) or organized tissues 

and defined organs (mostly roots), as well as promoting vascular differentiation and 

patterning. Auxins also play key roles in apical dominance in stems and buds, delay 

abscission, promote root formation and branching, mediate tropic (phototropic and 

gravitropic) responses, delay leaf senescence, and enhance fruit ripening (George et al., 

2007, Trigiano and Gray, 2010, Anonymous, The Plant Cell, 2013b). Auxins are naturally 

occurring hormones in the plants, but auxins can also be produced synthetically. Well-

known natural auxins are indole-3-acetic acid (IAA) (Figure 2) and indole-3-butyric acid 

(IBA). Common synthetic auxins include 1-naphetaleneacetic acid (NAA) and 2,4-

dichlorophenoxyacetic acid (2,4-D). Auxins are found in high concentrations in young 

leaves, floral organs, developing fruits and seeds, and generally in fast-growing organs 

(George et al., 2007). Indole-3-acetic acid is the weakest auxin, so it is mostly used in 

concentrations of 0.01 to 10 µM in the tissue culture medium, whereas the more stable 

auxins such as IBA or NAA can be used in concentrations of 0.001 to 10 µM. In tissue 

culture, auxins promote initiation and enhancement of root formation by the explant or 
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callus. Auxin is transported basipetally in the plants, from the leaves and foliage where it 

is produced through stems to where it affects specific cells and enacts key physiological 

roles. Intensity of auxins’ effects in culture depends on concentration as well as explant 

type, plant species, and plant growth stage. 

                                                  
Figure 2. Molecular structure of the natural auxin IAA molecule (left) (Anonymous, Auxin, Wikipedia, 2021) and the 

cytokinin Zeatin (right) (Anonymous, Zeatin, Wikipedia, 2013). 

 

B) Cytokinins 

Cytokinins are included in another important group of phytohormones for managing plants 

in tissue culture. Cytokinins have many physiological roles including promoting cell 

division, shoot initiation, and shoot growth, (inducing axillary bud break), inducing 

adventitious shoot formation, delaying leaf senescence, regulating nutrient allocation, 

antagonizing auxin responses in plants, and helping induce environmental and pathogenic 

responses by plants. Cytokinins also inhibit root formation. Cytokinin action is light 

dependent. (George et al., 2007, Trigiano and Gray, 2010, Anonymous, The Plant Cell, 

2013a,). Natural forms of cytokinins used in research laboratories are trans-zeatin (Zea) 

(Figure 2), and 6-(γ.γ-Dimethylallylamino) purine also named N6-(2-Isopentenyl)adenine 

(2iP). Zeatin use in commercial labs is often limited due to its high cost. In contrast, 

synthetic forms of cytokinins are mass produced in larger amounts resulting in lower cost, 

including 6-benzylaminopurine (BA), kinetin (Kin), thidiazuron (TDZ), and meta-topolin 
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(MT). Effective concentrations of cytokinins in culture are different depending on the 

explant type, plant species, and growth stage, but are usually between 0.1 µM to 10 µM. 

a) Zeatin (Zea): is a phytohormone and an adenine-derived cytokinin, which has adenine-

purine bound into its molecular structure (Anonymous, Zeatin, Wikipedia, 2021). Zeatin 

exists in the form of a cis- and a trans-isomer and conjugates (Figure 2: right, Figure 3: 

top, left). Zeatin is the main natural form of cytokinin and was first discovered in immature 

seed kernels from the genus Zea (corn). Zeatin promotes the growth of lateral buds and if 

sprayed on meristems, can stimulate cell division, increase axillary bud breaks, and 

produce denser (more branched) plants (Mok and Mok, 1994). Zeatin and its derivative 

compounds are found in extracts from many different plant species (Anonymous, Zeatin, 

Wikipedia, 2021). These compounds are thought to be the active ingredient of coconut 

milk, which can enhance the cell growth, and is sometimes used in tissue culture medium 

as a complex natural ingredient (Robert Tripepi, University of Idaho, personal 

communication). Zeatin has important roles in plant culture protocols, such as inducing 

cell growth and promoting callus formation when combined with auxin. 

b) Kinetin (Kin): (Figure 3: top, middle) promotes cell division. Kin was first extracted and 

discovered by Miller et al. (1955) from autoclaved herring sperm and detected as a result 

of cell-division enhancement. Kinetin is used in tissue culture medium to help induce 

callus-formation and to promote shoot regeneration (Anonymous, Kinetin, Wikipedia, 

2021). 

c) Benzyladenine (BA): 6-Benzylaminopurine (Figure 3: top, right), also known as 

benzyladenine (BAP or BA) and the first lab generated synthetic cytokinin, developed and 

evaluated by Skoog et al. (Skoog and Tsui, 1948, Anonymous, 6- Benzylamino purine, 
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Wikipedia, 2021). Benzyladenine stimulates cell division and influences plant growth and 

development, including blossom set and fruit development. Benzyladenine also inhibits 

respiratory kinase in plants, thus increasing postharvest life of green vegetables. 

d) Meta-topolin (MT): meta-topolin [6-(3-hydroxybenzylamino)purine] is a newer class of 

cytokinin (Figure 3: bottom, left), first extracted from popular leaves (Werbrouck et al., 

1996). In early experiments, poplar seedlings transplanted into soil, showed enhanced 

shoot growth after treatment with MT, as opposed to treatment with BA (Werbrouck et al., 

1996). Application of MT to the culture medium, can reduce hyperhydricity in tissue 

cultured explants (Bairu et al., 2007). 

e) Dimethylallylamino purine (2iP): 6-(γ.γ-Dimethylallylamino) purine also known as N6-

(2-Isopentenyl) adenine (2iP) is a bacteria-derived riboside cytokinin (Figure 3: bottom, 

middle), which is used to grow plant tissues derived from callus. 2iP has been used in 

Schenk and Hildebrandt medium to support in vitro propagation of microshoot cultures 

from shoot tips of Genista plants (Anonymous, Sigma Aldrich, 2021). 

f) Thidiazuron (TDZ): 1-phenyl-3- (1,2,3-thiadiazol-5-yl) urea, also known as TDZ (Figure 

3: bottom, right) is a cytokinin-like PGR, which in crop production is mostly applied to 

and taken up by leaves. Thidiazuron was reported by Arndt et al. (1976) to be an effective 

cotton (Gossypium hirsutum) defoliant. Later TDZ became widely applied and was shown 

to have both auxin- and cytokinin-like effects (Guo et al., 2011, Chung and Ouyang, 2021). 

Thidiazuron uptake caused leaves to drop under controlled conditions prior to fruit harvest. 

This characteristic makes this cytokinin useful in mechanical harvest of processed fruits. 

A reduced tree canopy can also accelerate fruit maturation, with fewer leaves to block the 

sunlight. Under conditions of correct timing and dose, TDZ completely stops plant growth, 
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giving it herbicidal action. Thidiazuron was also reported to enhance shelf life of cut 

flowers when added to water (Anonymous, Wikipedia, 2020). Thidiazuron is often used as 

cytokinin-like hormone in tissue culture or defoliant in some countries, such as United 

States of America, Australia, and Mexico although agricultural use has been banned within 

the European Union (Anonymous, Wikipedia, 2020). 

 

Figure 3. From top, left to right: Molecular structure of the cytokinins zeatin (Zea) (Anonymous, Zeatin, 

Wikipedia, 2021), kinetin (Kin) (Anonymous, Kinetin, Wikipedia, 2021), benzyladenine (BA) (Anonymous, 6- 

Benzylamino purine, Wikipedia, 2021); Bottom: meta-topolin (MT) (Anonymous, Phytotech Lab, 2013), 

dimethylallylamino purine (2iP) (Anonymous, Sigma Aldrich, 2021), thidiazuron (TDZ) (Anonymous, 
Wikipedia, 2020). 

 

1.3. Hyperspectral Signatures 

When light strikes a leaf, a portion of the light reflects towards the observer, and this 

amount of energy reflected at each wavelength is called reflectance spectrum, abbreviated 

as spectrum or reflectance. Many factors affect the spectrum reflectance, including the leaf 

surface, the internal surfaces, such as chloroplast surface and other organelles, leaf color 

or discoloration, physiological disorders, and water content. The chemical content, such as 

mineral components and their concentrations, biochemical components and their 

distribution inside the foliage, and other parameters also affect reflectance from the leaf 

and plant canopy, and their effects on reflectance can be useful to diagnose a plant’s status 

(Martinez-Martinez et al., 2018). 
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Hyperspectral imaging involves capturing a large number of continuous spectral bands to 

determine specific reflectance characteristics of an object. Therefore, hyperspectral sensing 

provides a continuous and complete record of the spectral responses of a material over 

specific wavelengths (Robila, 2004). Hyperspectral sensing is the measurement of the 

spectral characteristics of materials by using remote sensing systems having more than 60 

spectral bands with spectral resolutions of less than 10 nm. These bands produce a 

continual portion of the light spectrum defining the chemical composition of an object 

through its spectral signatures (Gomez, 2020). Remote sensing and hyperspectral imaging 

can analyze the characteristics that multispectral sensing cannot. Hyperspectral imaging 

can capture reflectance or fluorescence spectroscopy on every single spatial pixel of the 

spectral image through which the specific characteristics (e.g., plant water content) unable 

to be seen by human eyes can be recognized (Robila, 2004, Gomez, 2020). 

The basic shape of the spectral curve is a characteristic of the parent material of the object 

examined by spectroscopy (Liang, 2004). In the visible (Vis) to near infrared (NIR) 

spectrum, water, soil, or plant canopy display characteristics that cause specific curvatures 

and peaks in the reflectance spectra and makes the material recognizable (Liang, 2004, 

Robila, 2004). The advantages of hyperspectral data compared to red-green-blue (RGB) 

imagery and multispectral data are that hyperspectral data can detect more accurate 

information of the object via more spectral bands (Figure 4). Hyperspectral acquisition 

devices provide information that is needed or used both for research and commercial 

purposes, including sensor types, acquisition modes and unmanned aerial vehicle (UAV)-

compatible sensors (Adão et al., 2017). Hyperspectral sensing and unmanned aircraft 

systems (UAS) have been applied in many fields including material identification, 
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homeland security, precision agriculture (vegetative coverage, nutrition deficiencies, foliar 

water content, physiological disorders, etc.), environmental aspects (wetlands, hydrology, 

etc.), medical and health care (medical diagnoses, food safety, etc.), landmine detection, 

and many more applied fields (Gomez, 2020). 

 

Figure 4. Spectra represent a) multispectral waves with 5 wide bands, and b) hyperspectral waves consisted of several 

narrow bands, sometimes even extended to hundreds and thousands of the narrow bands (Adão et al., 2017). 

1.3.1.  Vegetation Indices 

Vegetative index (VI) describes an algorithm that processes spectral data for the purpose 

of determining information about plant health. Several VIs have been introduced and are 

used in remote sensing in agricultural fields. Some of these indices are defined in Table 2. 

Vegetation indices (VIs) can provide an estimation of biophysical, physiological, or even 

biochemical parameters in crops (Adão et al., 2017). Vegetation indices are classified into 

two groups of broader and narrower bands. Narrow bands are more applicable for 

hyperspectral data and processes (Adão et al., 2017). Some examples of the narrow-band 

indices are chlorophyll absorption ratio index (CARI), greenness index (GI), greenness 

vegetation index (GVI), modified chlorophyll absorption ratio index (MCARI), modified 

normalized difference vegetation index (MNDVI), simple ratio (SR) including narrowband 

variants 1–4, transformed chlorophyll absorption ratio index (TCARI), triangular 
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vegetation index (TVI), modified vegetation stress ratio (MVSR), modified soil-adjusted 

vegetation index (MSAVI) and Photochemical Reflectance Index (PRI). 

Detectable indices and vegetation properties from remote sensing can be either a leaf 

biochemical or a canopy structural variable, including leaf chlorophyll content (LCC), leaf 

water content (LWC), leaf area index (LAI), fractional photosynthetically active radiation 

(FPAR) absorbed by canopy, surface roughness, and phenology, which are some of the 

most critical inputs to land surface process models (Liang, 2004, Morcillo-Pallarés et al., 

2019). 

The goal of improving these plant phenotyping technologies is to increase the ability to 

collect plant morphological and physiological traits in large scales, such as extensive fields 

or large forests, rapidly and non-destructively (Pandey et al., 2017). Accurate, objective, 

reliable, and timely crop yield predictions and estimations are necessary for farmers 

owning large areas of lands to make planning decisions for fertilization, irrigation, and 

chemical application. Yield predictions are very important for precision agriculture 

management to help farmers save time and obtain financial benefits (Liang, 2004). 

Reflectance of the visible wavelengths (VIS, between 400 and 700 nm) is dependent on 

the photosynthetic pigments, such as chlorophyll. In contrast, reflectance from the near 

infrared wavelengths (NIR, between 700 and 1300 nm), lacks strong absorption features 

caused by twisted or contorted surface of the leaf. The shortwave infrared region (SWIR, 

between 1300 nm and 3000 nm) presents variable reflectance values mainly linked to the 

absorption characteristics of water and other compounds (Martinez-Martinez et al., 2018). 
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Hyperspectral data evaluation and management involves several steps including calibration 

of the hyperspectral device, taking spectral images or hyperspectral signatures (reflectance, 

spectrum), spectral/spatial processing, dimensionality reduction, and computation related 

operations, such as feature detection, selection, analysis, etc. (Adão et al., 2017). 

Table 2. The most well-known vegetation indices determined by using hyperspectral imaging in agricultural research 

(Data obtained and calculated from Anonymous, Index Data Base, 2021). 

Index Name Abbreviation Formula 

Cellulose Absorption Index CAI CAI= 0.5 (ρ2000 + ρ2200) - ρ2100 

Chlorophyll Absorption Ratio Index CARI CARI= (700nm/670nm) √(a⋅670+670nm+b)2 /(a2+1)0.5 

Disease water stress index DWSI DWSI= 802𝑛𝑚 +  547𝑛𝑚 1657𝑛𝑚 +  682𝑛𝑚⁄  

Anthocyanin Reflectance Index ARI ARI2= ρ800 [
1

𝜌550
−  

1

𝜌700
] 

Normalized difference vegetation index NDVI NDVI = (Bnear_IR - Bred) / (Bnear_IR + Bred) 

Leaf Area Index LAI  LAI = leaf area / ground area 

Double Peak Index DPI DPI= 688nm+710nm / 697nm2 

Normalized Difference Water Index 

NDWI 

NDWI = (Bnear_IR - Bmiddle_IR) / (Bnear_IR + Bmiddle_IR) 

Normalized Difference Nitrogen Index 
NDNI NDNI= 

log(
1

𝜌1510
)−log(

1

𝜌1680
)

log(
1

𝜌1510
)+log(

1

𝜌1680
)
 

Normalized Difference Lignin Index 
NDLI NDLI= 

log(
1

𝜌1754
)−log(

1

𝜌1600
)

log(
1

𝜌1754
)+log(

1

𝜌1600
)
 

Red-Edge Stress Vegetation Index RVSI RVSI= (718nm+748nm/2)−733nm 

 

Agriculture has been using hyperspectral technology to address the needs for improved 

crop production. Hyperspectral images have been applied to diagnose pathogens and 

disease problems, physiological disorders caused by biotic or abiotic stresses, and last but 

not least to detect nutrient deficiencies or toxicities in plants tissues. 
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1.3.2. Pathogen and insect diagnosis 

Hyperspectral signatures can be highly effective in detecting pathogen infections during 

very early stages (Maes and Steppe, 2019). Sadeghi et al. (2021) applied hyperspectral 

signatures to determine if leaf reflectance from different host plant species affected the 

preference level of the Hessian fly to choose its host. Beck (2019) applied the hyperspectral 

remote sensing and narrowband spectral vegetation indices to diagnose the pink root 

disease at the leaf and canopy level of onions in Parma, ID, USA. Hruška et al. (2018) 

applied the narrow bands spectral indices to detect anomalies in grape leaves as a method 

to take appropriate  preventative action to stop the infection and guarantee crops yield and 

health. Martinez-Martinez et al. (2018) applied leaf canopy spectroscopy to estimate and 

detect the severity of angular leaf spot in beans. Tian et al. (2021) applied hyperspectral 

remote sensing to detect leaf blast infection of rice from asymptomatic stages through the 

mild stage. 

1.3.3. Plant stress detection 

Hyperspectral techniques have been used to detect the effects of environmental stresses, 

such as drought. Many studies have applied hyperspectral indices to study the effects of 

field water status and water blockage due to Verticillium affecting stomatal conductance 

of olive trees (Calderón et al., 2013), water stress effects on water content of citrus trees 

(Delaliuex et al., 2014), water stress effects on the stomatal conductance and leaf water 

potential of citrus trees (Zarco-Tejada et al., 2012), and plant status and biomass of wheat 

(Golzarian et al., 2011). 
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1.3.4. Nutrient status and deficiency prediction  

Due to the importance of nitrogen increasing yield efficiency and crop health, modern 

application of remote sensing and hyperspectral signatures in preventing nitrogen 

deficiencies in field crops has become widespread. Hence, much research has been 

conducted to determine using remote sensing and applying hyperspectral signatures to 

define nitrogen deficiency of field crops (Liu et al., 2016, De Oliveira et al., 2017). Using 

hyperspectral imaging to study required rates of fertilizers to increase crop production or 

the amount of nitrogen uptake by plants can improve agricultural production and yield 

efficiency (Maes and Steppe, 2019) (Figure 5). 

 

Figure 5. Assessment of Nutrient Status. (A) Reflectance pattern of a typical crop as a function of the chlorophyll AB 

content; (B) plotting different vegetation indices as a function of chlorophyll AB (Cab) content illustrates that some 

classical vegetation indices [normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)] 

saturate and are less sensitive to subtle differences in chlorophyll AB (Cab) levels when Cab is relatively high, in 

contrast to green NDVI (GNDVI) and normalized difference red edge (NDRE) index. Created from simulations using 

Fluspect-B model in SCOPE v1.70. Constant parameters were as follows: canopy height = 0.7 m, leaf area index (LAI) 

of 2.5 m2 m_2, N = 2.5; Cdm = 0.01; Cw = 0.05; Cs = 0; spherical leaf distribution assumed. EVI = 2.5 (NIR _ R)/(NIR + 

6R _ 7.5B + 1); GNDVI = (NIR _ G)/(NIR + G); GRVI = (G _ R)/(G + R); NDRE = (NIR _ RE)/(NIR + RE). NIR, 

near-infrared spectrum; RE, red edge reflectance (Maes and Steppe, 2019). 

 

De Oliveira et al. (2017) applied vegetation indices to estimate foliar N concentration in 

three Eucalyptus tree clones. Liu et al. (2016) applied multiple linear regression and neural 
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network analysis to find a relationship between the leaf nitrogen content of winter wheat 

and vegetative indices in narrow bands of the spectrum (Figure 6). 

 

Figure 6. Correlation coefficients (r) between the spectral bands and the measured leaf nitrogen content 

(Liu et al., 2016). 

 

Other studies have used hyperspectral indices to check the nutrition status in plants, 

including sodium and potassium content in grass (Capolupo et al., 2015), potassium 

deficiency level in canola (Severtson et al., 2016), nitrogen concentration in oat (Van Der 

Meij et al., 2017), corn (Gabriel et al., 2017), rice (Wen et al., 2018), and wheat (Zhu et 

al., 2018), and different macro- and micro-nutrients as well as water content in corn 

(Pandey et al., 2017). 

1.3.5. Hyperspectral related terms 

• Reflectance: is the ratio of the amount of light leaving a target to the amount of 

light striking the target. 

• Hyperspectral Vegetation Indices: vegetative index (VI) describes an algorithm that 

processes spectral data for the purpose of determining information about plant health. 

Several VIs have been used in remote sensing in agricultural fields. Some of these indices 

are presented in Table 2. 
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• Continuum Removal: for quantification of absorption features in spectra, the 

overall concave shape of a spectrum should be removed. To normalize reflectance spectra 

and compare individual absorption features from a common baseline, one uses continuum 

removal (Harris Geospatial Solutions, Inc., 2021). This normalization procedure is referred 

to as ‘continuum removal’ or ’convex-hull’ transformation and allows comparison of 

spectra that are acquired by different instruments or under different light conditions. 

Continuum removal or convex hull fit over the top of a spectrum using straight-line 

segments which connect local spectra maxima. The first and last bands in the output 

continuum-removed spectrum file are equal to 1.0. 

Continuum Removal is completed by dividing it into the actual spectrum for each pixel in 

the image: 

Scr = (S / C), Where: 

Scr = Continuum-removed spectra 

S = Original spectrum 

C = Continuum curve 

Continuum removal provides features that can help obtaining information necessary to 

detect plant status from the hyperspectral images. These features are shown in Figure 7. 

D= The absorption depth (the lowest point in the continuum region) 

Area= Area left + Area right 

Asymmetry= 
Area left

Area right
 

• Feature generation: In regression problems, obtaining successful regressions is 

dependent on the number of features (such as absorption depth, area of absorption 

curvature, etc.) assigned within the feature space, which becomes even more critical when 
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hyperspectral data sets are used. As a result of the large number of spectral bands in 

hyperspectral datasets, researchers try to determine which features, either spectral bands or 

spectral vegetation indices generated from spectral bands, are more associated with foliar 

mineral or physiological status. To answer this question and define plant status, the use of 

feature selection approaches has been suggested to develop the regression model with less 

but the most informative features. 

 

Figure 7. Features taken from continuum removal (right: absorption area left and right, left: absorption 

depth). 

 

• Feature selection method: the main goal of applying feature selection is to ignore 

features with negative or low impacts on model development and to select those 

informative features with positive effects on model development. Effective and 

informative variables must be included in the model being developed. Importing many 

features may increase complexity in developing the model, and in some cases, cause 

unacceptable results in the developed regression model. Hence, the potential of the model 

to predict the plant status may become lost due to too many low impact features included 

in the model. In the feature selection process, in addition to removing features, we can also 

apply statistical criteria to identify informative features for the model. The lower the 
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number of the features, the more acceptable the model can be considered for computation 

and development. Therefore, using dimension reduction has the advantages of removing 

extra features, identifying informative features, and reducing computational complexity. 

• Model training (development): to train (in machine learning model development is 

called model training) a model, different regression methods can be tested. Some of these 

methods includes: 

- Linear Regression: is a linear model, that assumes a linear relationship between the 

input variables (x) and the single output variable (y). 

- Random Forest Regression: RFR is a learning algorithm that uses ensemble learning 

method for regression. 

- Support-Vector Machines: SVM are learning models with associated learning 

algorithms that analyze data for classification and regression analysis. 

1.4. Statistical Analysis and Statistical Modeling 

For a plant scientist, the goal of any scientific experiment is to introduce a better or the best 

method or treatment to improve some aspect of plant growth. To choose among the 

experimental treatments, one needs to conduct an experiment, collect data from the trials, 

and analyze the data collected via statistics (Aydar, 2018). Depending on the experiment, 

number of the treatments and their combinations, the goal of the experiment, and other 

desired factors, different experimental designs and methods of data analysis can be used. 

One statistical analysis method used to reduce the number of treatments in a large factorial 

experiment is the response surface method. Response surface methodology (RSM) is a set 

of tools or statistical procedures that first was mentioned in the journal of “the Royal 

Statistical Society, series B” from a work done by Box and Wilson (1951). They started to 
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develop a statistical model to determine efficient and optimum treatments or application 

conditions on a set of controllable variables that provides the optimum response in 

chemical and/or biological experiments (Khuri, 2006). This methodology is an approach 

that combines both mathematical and statistical tools and techniques and helps developing, 

improving, and optimizing the experiment procedures. Response surface methodology 

helps to evaluate the relative significance of the variables and helps to reduce the number 

of less influential variables (Naghipour et al., 2016). Response surface methodology in 

statistics examines the relationship between different explanatory variables and those 

response variables of interest to researchers (Anonymous, Wikipedia, 2020).  

The experimental design to fit and develop a response surface model includes choosing 

treatments among several selected designs. Many criteria, such as environmental or 

nutritional conditions for plants must be considered to select the suitable design to 

accomplish the goal of an experiment and obtain the most favorable results. Some of these 

special designs are known as robust parameter designs, split-plot designs, mixture 

experiment designs, and designs for generalized linear models (Anderson-Cook et al., 

2009). The final goal of RSM is to use a sequence of designed experiments to get an 

optimal response from one experiment (Anonymous, Wikipedia, 2020). 

The best way to obtain an appropriate estimation of a first-degree polynomial model is 

using either a factorial design experiment or a fractional factorial design experiment. Using 

either of these designs helps to determine which of the explanatory variables affect the 

response variable(s) of interest. Later more complicated designs like central composite 

design can be used to estimate the second-degree polynomial model to optimize 

(maximize, minimize) the target response variable(s) (Anonymous, Wikipedia, 2020). For 
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RSM, experiments need to focus on statistical designs suitable for fitting quadratic models. 

These designs can provide the lack of fit detection to help determine if a higher-order model 

is needed (NIST, 2012). 

1.5.  Research objectives for my dissertation: 

Experimentation reported in my dissertation research was directed by two major objectives. 

1. Optimize concentrations and ratios of selected minerals and plant growth regulators 

as components within a specific culture medium to produce optimal growth of little-leaf 

mockorange shoot cultures. 

2. Determine the feasibility of using of hyperspectral signatures to measure the 

nutrient status of plants in tissue culture and to model the spectrum to allow prediction of 

optimal foliar mineral contents of shoot explants. 
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Chapter 2: Optimization of tissue culture medium for little-leaf 

mockorange (Philadelphus microphyllus A. Gray) by adjusting cytokinin 

and selected mineral components 

Abstract 

Little-leaf mockorange is a native plant species with desirable characteristics for landscape 

use. Conservation of phenotype and recalcitrant responses to seed and ex vitro vegetative 

propagation techniques makes micropropagation a good option for this species. A series of 

experiments were completed individually with the goal to improve in vitro propagation 

protocols by evaluating different types of cytokinins (benzylaminopurine (BA), kinetin 

(Kin), zeatin (Zea), meta-topolin (MT), and thidiazuron (TDZ))  at 0, 1.1, 2.2, 4.4, or 8.8 

µM and selected minerals (N, Fe, Ca, Mg, P) as supplements in tissue culture medium. The 

base medium was ½ strength MS. At the end of each experiment, plant growth 

characteristics including number of axillary shoots, shoot height, and dry weight were 

measured. Of the six cytokinins tested, zeatin produced the largest increase in shoot 

growth. Supplementation of zeatin 1.1 µM resulted in higher shoot numbers, while shoots 

on 1.65 µM Zeatin produced the most dry weight. Shoots grown on medium with mineral 

concentrations of 60 mM N, 50 to 100 µM Fe, 3 mM Ca, 1.5 mM Mg, and 0.625 to 1.875 

mM (preferably 1.25 mM) P promoted in vitro shoot growth of little-leaf mockorange. 
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2.1. Introduction 

Native plants have traits that improve both sustainability and adaptability of urban 

landscapes when produced in geographical regions representative of their natural habitat.  

(Khajehyar and Tripepi, 2020). Little-leaf mockorange (Philadelphus microphyllus A. 

Gray) is a species from the Hydrangeaceae family (Anonymous, Wikipedia, 2019). This 

species is a shrub native to the western United States and found in California, Colorado, 

Utah, Nevada, Wyoming, Arizona, Texas, and New Mexico and grows in arid rocky slopes, 

cliffs, or pinyon-juniper to coniferous woods (Anonymous, Johnson Center, 2015, 

Anonymous, Gardenia, 2021). Species within the mockorange genus have historically been 

propagated by seeds, summer soft-wood cuttings, hardwood cuttings and layering (Dirr 

and Heuser, 2006), but little-leaf mockorange can be difficult to propagate as ex vitro 

cuttings and fails to breed true from seed (Steve Love, University of Idaho, personal 

communication), meaning a more efficacious systems, such as micropropagation, would 

be advantageous. 

Plant tissue culture, also known as in vitro culture or micropropagation, is the science of 

growing cells, organs, or tissues on a culture medium within a container after being isolated 

or separated from a parent plant. Plants are propagated and grown on a mineral medium in 

the presence of other substances, such as plant growth regulators (PGRs), vitamins, and 

carbohydrates (Loyola-Vargas and Vázquez-Flota, 2006, George et al., 2007). About 20 

different components interacting together create the optimum growth medium for most 

plant tissue-derived explants (Trigiano and Gray, 2010). 

Tissue culture is a fast and highly reliable method for asexual plant propagation for 

research and is commercially used by the greenhouse and nursery industries for routine 
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product development. Finding the best culture medium and effective treatments to establish 

shoots followed by increasing the number of axillary shoots is important if tissue culture 

is to be feasible. In addition, finding the best treatments to induce shoots to form roots is 

quite important to complete the micropropagation process (Khajehyar and Tripepi, 2020). 

For efficient propagation of cultured species at each propagation stage, testing different 

basal salt formulations, different plant growth regulators or changing mineral 

concentrations in the medium are often needed. The medium ingredients may differ from 

species to species due to their different nutritional or hormonal requirements. 

Skoog and his colleagues discovered the first cytokinin (kinetin: Miller et al., 1955) and 

then studied the effects of kinetin on increasing the number of cell divisions of tobacco 

callus. Skoog and co-workers also recognized the importance of balancing the ratio 

between exogenous auxin and kinetin in the medium as these hormones affected the 

morphogenesis of callus of cultured tobacco (Skoog and Miller, 1957, Trigiano and Gray, 

2010, Smith, 2012). Scientists and propagators routinely look for combination of PGRs 

that can enhance shoot proliferation of different plant species, as the mineral and hormonal 

requirements of plants can differ from each other not only family by family, but even 

species by species within a genus. 

In this chapter I focused on adjusting concentrations of several components including 

inorganic minerals (such as N, P, Ca, Mg, and Fe) and cytokinins (benzylaminopurine 

(BA), kinetin (Kin), zeatin (Zea), meta-topolin (MT), thidiazuron (TDZ), and 

dimethylallylamino purine (2iP)). 
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2.2. Objectives 

The objectives of this study were to, 1) determine optimal type and concentration of 

cytokinin , and 2) determine  the optimal concentrations of selected minerals (N, Fe, Ca, 

Mg, or P) within a culture medium, to enhance the optimal growth of little-leaf mockorange 

shoot cultures. 

2.3. Materials and Methods 

2.3.1. Plant materials 

In 2019, stems from little-leaf mockorange (Philadelphus microphyllus) derived from a 

selection held at the University of Idaho Aberdeen Research and Extension Center, 

Aberdeen, Idaho, USA were acquired by the Plant Tissue Culture Lab in the Plant Sciences 

Department at University of Idaho, Moscow, Idaho, USA. The original plant of this 

accession was collected from the Goshutes Mountains, south of Wendover in Elko County, 

Nevada in 2012 by Dr. Stephen Love. This selected little-leaf mockorange plant was 

chosen based on several key landscape traits. First, this plant had a very compact and dense 

habit, not necessarily dwarf but showing a shortened height and density in comparison with 

typical representatives of this species. Second, the plant had leaves that expressed an 

attractive silvery color. Most plants of the species have indistinct medium green leaves. 

Last, the plant lacked a species-common tendency to produce random, long, leggy sprouts. 

Taken altogether, traits expressed by this selection provided an aesthetically pleasing plant 

that would complement any landscape. Another important characteristic of this plant is that 

Dr. Love found the plant failed to produce true-to-type from seeds, meaning that to 
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maintain these exceptional traits, vegetative propagation was essential (Stephen Love, 

University of Idaho, personal communication). 

2.3.2. Surface sterilization of stem explants 

Leaves were removed from stems, then stems soaked in dilute soap solution (2 drops per 

100 ml) for 5 minutes and washed with tap water. Stems, cut into pieces containing two to 

three nodes each, dipped into 70% ethanol (v/v) for 30 seconds, followed by placement 

into a 10% bleach solution (v/v) for 20 minutes. Finally, stem pieces were rinsed in sterile 

distilled water three times. Each stem piece was cut at both ends to remove damaged tissue 

and put into individual culture tubes (2*15 cm) containing half strength Murashige and 

Skoog (½ MS, 0.5 mg thiamine-HCl, 0.25 mg nicotinic acid, 0.25 mg pyridoxine-HCl, 1 

mg glycine, and 0.05 g myo-inositol, pH = 5.6) medium (Murashige and Skoog, 1962) 

supplemented with 0.5 µM BA. 

2.3.3. Micropropagation and maintenance of the shoot cultures 

Shoot cultures were maintained on culture medium for at least 6 months and were 

subcultured monthly to stabilize the shoot cultures. Every subculture cycle was completed 

by cutting the stems into several pieces of about 1.5 cm and placing six stem explants into 

each of the baby food jars (195 ml) used for culture maintenance. Explants were incubated 

in a SG-30S germinator (Hoffman Manufacturing Inc., Albany, OR) at 25 ± 1°C under a 

16-h photoperiod (cool-white fluorescent lamps), with 38 μmol·m−2·s−1 photosynthetic 

photon flux (PPF). This process was completed every month to maintain and increase the 

number of shoot cultures to use for producing stem explants for later experiments. Stable 

shoot cultures were used in all subsequent experiments. 
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2.3.4. Plant growth regulator cytokinin experiments 

2.3.4.1. Evaluation of cytokinin type and concentration 

In an experiment designed to optimize conditions for axillary shoot proliferation and 

growth of little-leaf mockorange shoot cultures, different concentrations of six cytokinins 

were tested individually. Stem explants (1.5 to 2 cm) were placed on ½ strength MS 

medium supplemented with different cytokinin compounds including benzyladenine (BA), 

kinetin (Kin), zeatin (Zea), meta-topolin (MT), dimethylallylamino purine (2iP), or 

thidiazuron (TDZ), each at concentrations of 0, 1.1, 2.2, 4.4, or 8.8 µM. Other components 

in the media were at their standard amounts in ½ MS medium, also 3 g sucrose, 0.05 mg 

thiamine-HCl, 0.025 mg nicotinic acid, 0.025 mg pyridoxine-HCl, 0.1 mg glycine, and 

0.005 g myo-inositol were added into each 100 ml medium treatments. The pH of the media 

were 5.6. Shoot explants were transferred onto the culture medium in baby food jars, and 

six explants were placed in each jar. 

2.3.4.2. Zeatin experiment 

During cytokinin evaluation, explants grown on culture medium supplemented with zeatin 

at concentrations between 1.1 to 2.2 µM were visibly growing better than other shoot 

cultures on media supplemented with other cytokinins. Hence, another experiment with 

only zeatin in a narrower concentration range was completed to determine the best 

concentration suitable for increasing shoot proliferation of little-leaf mockorange. Explants 

were put onto ½ MS medium supplemented with zeatin at concentrations of 0, 0.55, 1.1, 

1.65 or 2.2 µM and kept on the medium for 4 weeks, subcultured and placed on the same 

treatment for 4 more weeks. 
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2.3.5. Minerals experiments 

The standard basal MS salt consisted of 60 mM N, 3 mM Ca, 1.5 mM Mg, 1.25 mM P, and 

100 µM Fe. The custom medium tested in these series of experiments were all provided by 

BioWorld Molecular Life Sciences, Dublin, OH, USA. Each custom medium lacked one 

of the minerals (N, Fe, Ca, Mg, or P). A separate stock solution of each of these minerals 

were then made to later combine with the custom ½ strength MS to obtain the 

concentrations needed to test in each mineral experiment. 

2.3.5.1. Nitrogen (N) experiment 

As the most important inorganic element, nitrogen was the first mineral evaluated at 

different concentrations for its effects on shoot proliferation and explant growth. Nitrogen 

at concentrations of 0, 7.5, 15, 30, or 60 mM were added into a ½ MS salts that lacked N. 

Shoots placed on regular ½ MS basal salts, described above,  were used as a positive 

control. By the end of this experiment, the highest N concentration, had negative effects 

on the shoot cultures, severely inhibiting their growth. A second experiment was completed 

to help refine a recommendation - with N at concentrations of 0, 22.5, 30, 37.5, or 45 mM 

to avoid this effect. 

2.3.5.2. Iron (Fe) experiment 

Iron was second mineral that was tested in the culture medium since it is an important 

essential micronutrient. Five concentrations of Fe (0, 0.5, 5, 50, or 500 µM) were used to 

find the best Fe concentration in the culture medium to increase shoot multiplication and 

growth of little-leaf mockorange. Half-strength MS (½ MS) custom medium lacking Fe 

was prepared, and the media were supplemented with the selected Fe concentrations. At 
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the end of the experiment, all plants on the highest concentration of Fe died. Another 

experiment with a reduced range of Fe concentrations was therefore completed with 0, 25, 

50, 75, or 100 µM Fe in ½ MS custom medium without iron. 

2.3.5.3. Calcium (Ca) experiment 

Another experiment was conducted testing different concentrations of Ca at 0, 0.75, 1.5, 

2.25, or 3 mM into ½ MS tissue culture medium that lacked Ca and one regular commercial 

½ MS culture medium (as positive control), to determine the best concentration of Ca 

promoting growth of little-leaf mockorange shoot cultures. 

2.3.5.4. Magnesium (Mg) experiment 

The next experiment tested  Mg at concentrations of 0, 0.375, 0.75, 1.125, or 1.5 mM in ½ 

MS tissue culture medium that lacked Mg and one commercial ½ MS culture medium (as 

positive control), to determine the best Mg concentration to improve shoot growth of little-

leaf mockorange. 

2.3.5.5. Phosphorous (P) experiment 

Phosphorous at concentrations of 0, 0.312, 0.625, 0.937, or 1.25 mM into ½ MS tissue 

culture medium that lacked P (custom medium) and one standard ½ MS culture medium 

(as positive control) were tested on shoot cultures of little-leaf mockorange. 

2.3.6. Shoot harvest and data collection 

After three months on culture medium (2 monthly subcultures) for the cytokinins 

experiment or two months on the culture medium (1 subculture) for the Zeatin, N, Fe, Ca, 

Mg, or P experiments, shoots were harvested, and data were collected. The growth 
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parameters evaluated were percentage of survival based on the proportion of dead shoots, 

number of axillary shoots formed, length of the longest shoot on each explant, the number 

of roots (if any) on each explant and their length, and shoot dry weight (biomass) for each 

individual explant. To determine the biomass, samples were dried at 70ᵒC for 72 hours and 

then weighed. After weighing shoots, samples were ground in a mortar to a fine powder 

and sent to a tissue analysis lab (Brookside Laboratories, Inc., New Bremen, OH) to 

determine tissue mineral concentrations. They applied a combustion method using a Carlo 

Erba 1500 C/N analyzer to estimate total N content (method B2.20, Miller et al., 2013). 

For the rest of the minerals, they used nitric acid and hydrogen peroxide in a closed Teflon 

vessel and digested in a CEM  Mars Microwave and analyzed on a Thermo 6500 Duo ICP 

(method B4.30, Miller et al., 2013). 

2.3.7. Statistical analysis 

The cytokinins experiment was completed as a complete randomized block design in the 

form of factorial design with two factors, including the type of the cytokinin with six levels 

and the concentration of the cytokinin with five levels. All the data were analyzed with 

SAS software version 9.4 (SAS, 2016). A generalized linear mixed model (Proc 

GLIMMIX) was completed with cytokinin type and concentrations (in the cytokinin 

experiment), and zeatin or mineral concentrations (in zeatin and minerals experiments) 

were fixed effects and blocks were random effects. These models assumed a normal 

distribution for dry weight and shoot length, and a Poisson distribution for shoot number 

with a log link (Stroup, 2014). For significant effects, pair-wise comparisons of marginal 

means were used to assess treatment differences. Roots were rarely observed for any of the 
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treatments, consequently for these variables, treatments did not show significant results, 

hence, root data were excluded from statistical analysis. 

2.4. Results 

2.4.1. Cytokinin experiment 

Different concentrations of the various cytokinins had significant effects on shoot growth, 

such as number of axillary shoots, shoot length (Figure 1), and dry weight (Figure 2) of 

little-leaf mockorange shoots in culture (Table 1). Only shoot dry weight was affected by 

an interaction between cytokinins and their concentrations (Table 1, Figure 2). Due to this 

interaction the effects of concentration on shoots dry weight were analyzed only for each 

separate cytokinin (Table 1). 

Table 1. Main effects and the interactions between cytokinins and their concentrations on the number of axillary shoots, 

shoot length, and dry weight of little-leaf mockorange shoot cultures. P-values indicate statistical significance. 

Treatment 
Shoot growth 

Axillary shoot number Shoot length Dry weight 

Cytokinin p < 0.0001 * p < 0.0001 * p < 0.0001 * 

Concentrations p = 0.0085 * p = 0.0075 * p = 0.0001 * 

Cytokinin*Concentrations p = 0.7225 p = 0.0905 p = 0.0187 * 

 

Meta-topolin concentration had an increasing effect (p = 0.02) on the mean number of 

axillary shoots (Table 2 ). Meta-topolin at concentration of 8.8 µM produced the highest 

level of bud break (number of axillary shoots) (4.3 fold), whereas MT at 1.1, 2.2 and 4.4 

µM increased shoot number less than MT 8.8 µM, but still more than the control (Figure 

3). 
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Figure 1. Effects of different cytokinins (benzyl aminopurine (BA), kinetin (Kin), zeatin (Zea), meta-topolin (MT), 

dimethylamino purine (2iP), and thidiazuron (TDZ)) in vitro growth of little-leaf mockorange shoots averaged over 

their concentrations. Number of axillary shoots (top) and shoot length (bottom). Data are means (n = 4) and bars 

indicate ± 95% confidence limits. 

 

Figure 2. The interaction between cytokinins (benzyl aminopurine (BA), zeatin (Zea), and thidiazuron (TDZ))  selected  

for their strong, positive, and negative effects and their concentrations on dry weight of little-leaf mockorange shoot 

cultures. Bars indicate ± 95% confidence limits (n = 4). 

 

A 

B 
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Table 2. The effects of cytokinins type (benzyl aminopurine (BA), kinetin (Kin), zeatin (Zea), meta-topolin (MT), 

dimethylamino purine (2iP), and thidiazuron (TDZ))  on the number of axillary shoots, shoot length, and dry weight of 

little-leaf mockorange shoot cultures. P-values with an asterisk indicate statistical significance. 

Treatment 
Shoot growth 

Axillary shoot number Shoot length Dry weight 

BA p = 0.1407 p = 0.0031* p = 0.0475 * 

Kin p = 0.5691 p = 0.8727 p = 0.0312 * 

Zea p = 0.3205 p = 0.5246 p = 0.0007* 

MT p = 0.0213 * p = 0.0063 * p = 0.0949 

2iP p = 0.7596 p = 0.9972 p = 0.0380 * 

TDZ p = 0.9544 p = 0.1003 p = 0.0880 

 

Meta-topolin also, affected shoot length, with shoots on 1.1 and 2.2 µM MT growing two 

times taller than control shoots (Figure 4A). Shoots grew the tallest on BA at 1.1 µM, 

followed by BA at 2.2 µM, but concentrations of BA at 4.4 or 8.8 µM decreased shoot 

length to even shorter than the control explants (Figure 4B). 

Benzyladenine affected shoot length and dry weight (Table 2). Benzyladenine changed 

shoot dry weight, in that increasing the concentration of BA from 1.1 to 4.4 µM decreased 

shoot dry weight by 28% as determined by pair-wise comparisons, although this average 

weight was heavier than the control (p = 0.0475). In contrast, shoots on the medium without 

BA weighed 52% more than shoots on 8.8 µM BA (Table 3).  

Kinetin also affected shoot dry weight (Table 2). Shoots on medium supplemented with 

2.2 µM Kin or higher weighed at least 1.5-fold more than control shoots as determined by 

pair-wise comparisons. Shoots on 4.4 or 8.8 µM Kin also weighed at least 49% or 59% 

more, respectively, than shoots grown on 1.1 µM Kin. 
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Table 3. The effects of cytokinins (benzyl aminopurine (BA), kinetin (Kin), zeatin (Zea), meta-topolin (MT), 

dimethylamino purine (2iP), and thidiazuron (TDZ)) and their concentrations on mean shoots dry weights of little-leaf 

mockorange cultures. Six different cytokinins were tested at five concentrations on shoot explants. Data are means ± 

95% confidence limits (n = 4). An interaction was observed that indicated the pattern of change over concentration 

differed by cytokinin type. 

 

Shoot dry weight (mg) 

Cytokinin concentration (µM) 

0 1.1 2.2 4.4 8.8 

BA 14.4 ± 7.7 30.0 ± 7.7 27.5 ± 7.7 21.6 ± 7.7 7.6 ± 7.7 

Kin 
12.4 ± 4.2 15.5 ± 4.2 19.3 ± 4.2 23.1 ± 4.2 24.6 ± 4.2 

Zea 
17.8 ± 9.3 44.2 ± 9.3 47.5 ± 9.3 40.4 ± 9.3 39.2 ± 9.3 

MT 
12.0 ± 9.8 34.5 ± 9.8 31.7 ± 9.8 24.2 ± 9.8 38.4 ± 9.8 

2iP 10.9 ± 2.7 17.0 ± 2.7 18.6 ± 2.7 17.1 ± 2.7 18.2 ± 2.7 

TDZ 
11.0 ± 2.1 10.8 ± 2.1 6.2 ± 2.1 10.6 ± 2.1 3.6 ± 2.1 

 

 

Figure 3. The effects of different concentrations of MT on the number of axillary shoots formed by little-leaf 

mockorange shoot cultures. Data are means (n = 4) and bars indicate ± 95% confidence limits. 

  

Figure 4. Comparison between different concentrations of MT (left) and BA (right) on shoot length of little-leaf 

mockorange cultures. Data are means (n = 4) and bars indicate ± 95% confidence limits. 

Meta-Topolin Concentration (µM) 

Meta-Topolin Concentration (µM) BA Concentration (µM) 
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2iP concentrations influenced shoot dry weight (Table 2). Mean shoot dry weights among 

all 2iP concentrations were similar to each other, yet they produced at least 70% more dry 

weight than control shoots. 

zeatin significantly increased shoot dry weight of little-leaf mockorange. Similar to 2iP, 

any zeatin concentration resulted in shoots producing at least 2.2 fold more dry weight than 

control shoots. Mean shoot dry weights among the four zeatin concentrations tested were 

similar (Table 2). Regardless of concentration, zeatin increased shoot number and shoot 

height (Figure 1). 

TDZ failed to affect any of the growth parameters (Table2). All explants placed on culture 

medium supplemented with any concentration of TDZ died. Plants growing on TDZ first 

showed very low growth, and eventually died, especially at high concentrations (Figure 5). 

 

Figure 5. The effects of different concentrations of TDZ on shoot length of little-leaf mockorange shoot cultures. Data 

are means (n = 4) and bars indicate ± 95% confidence limits. 

2.4.2. Zeatin experiment 

In the zeatin experiment, shoots on medium with 1.65 µM zeatin produced the most 

biomass (dry weight), and those on 0.55 µM zeatin or higher concentrations grew taller 

than control explants (Figure 6). Shoots on 0.55, 1.1, or 2.2 µM zeatin were at least 64% 

taller than control shoots. 

TDZ Concentration (µM) 
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Figure 6. The effect of 0, 0.55, 1.1, 1.65, or 2.2 µM zeatin on shoot length (left) and dry weight (right) of little-leaf 

mockorange. Data are means (n = 4) and bars indicate ± 95% confidence limits. 

2.4.3. Minerals experiments 

In the first experiment testing different N concentrations in the culture medium, increasing 

N from 0 to 30 mM increased the number of axillary shoots by 6-fold. Increasing N from 

30 (mean value 1.8) to 60 mM (1.0 mean value) caused a severe decrease in the shoot 

number. The number of axillary shoots formed on explants grown on 30 mM N or the 

positive control (½ MS medium), were similar (Figure 7A). 

Regarding shoot length and dry weight, the same trend was seen if applying N from 0 to 

60 mM with shoots on 30 mM N being 66% taller and producing 8 fold more dry weight 

than shoots on medium without N. In contrast,  shoots on the positive control medium grew 

38% taller and produced 84% more dry weight compared to shoots on 30 mM N (Figure 

7B and 7C). 

In the second N experiment, only shoot dry weight differed among the treatments. Dry 

weights of shoots on 22.5 or 30 mM N were almost 12 fold higher than dry weights of 

control shoots. Although statistically, dry weights of shoots on 37.5 or 45 mM N were 

lower than weights of shoots on 22.5 or 30 mM N (Figure 8). 

Only shoot length and dry weight were affected by Fe concentrations. Increasing Fe from 

0 to 50 µM, increased shoot length 43% and doubled the dry weight (Figure 9). The 

Zeatin Concentration (µM) Zeatin Concentration (µM) 

A B 
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percentage of survival on Fe 500 µM was zero, as this concentration killed all the explants. 

Figure 9B shows decreased dry weight on Fe 500 µM compared to the other concentrations. 

In the second Fe concentration experiment, shoot length (p = 0.02) and dry weight (p = 

0.005) were also significant. Shoots on 25 µM Fe or higher grew at least 75% taller and 

produced 70% more dry weight (Figure 10). 

Shoot length and dry weight of explants grown on media with varied Ca concentrations 

were significantly different. Plants grown on 1.5 mM Ca were 2.5 fold taller than the shoots 

on control, but shoots heights between different Ca concentrations were statistically 

similar. Shoot length resulting from culture on ½ MS control explants were taller than 

shoots grown on other Ca concentrations. Shoots grown on 0.75 mM Ca or higher, as well 

as positive control (½ MS) explants produced the most shoot biomass compared to the zero 

control (Figure 11). 

Only shoot length was significantly affected by changes in Mg concentration (p < 0.0001). 

Shoots grown on 0.75 mM Mg were tallest, although were shorter than shoots grown on 

½ MS (Figure 12). From Mg at 0 to 0.75 mM shoot height tended to increase, whereas 

from 0.75 to 1.5 mM heights tended to decrease, although shoot heights of explants on 

medium with any level of Mg were similar. 

Shoot length and dry weight were significantly affected by P concentration. Shoots on 

medium supplemented with 0.31 mM or higher grew at least 2.8 fold taller (Figure 13A) 

and produced 3.6 fold more shoot dry weight compared to shoots on the negative control 

medium  (Figure 13B). 
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Figure 7. Effects of different N concentrations on number of axillary shoots (A), shoot length (B), and dry weight (C) 

of little-leaf mockorange shoots in tissue culture. Data are means (n = 4) and bars indicate ± 95% confidence limits. 

 

Figure 8. Effects of different N concentrations on dry weight of little-leaf mockorange shoots in tissue culture. Data are 

means (n = 4) and bars indicate ± 95% confidence limits. 
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Figure 9. Effects of different Fe concentrations on shoot length (left), and dry weight (right) of little-leaf mockorange 

shoots in tissue culture. Data are means (n = 4) and bars indicate ± 95% confidence limits. 

  

Figure 10. Effects of 0, 25, 50, 75, or 100 µM Fe on shoot length (left) and dry weight (right) of little-leaf mockorange 

shoots in tissue culture. Data are means (n = 4) and error bars indicate ± 95% confidence limits. 

 

 

Figure 11. Effects of different Ca concentrations on shoot length (left) and dry weight (right) of little-leaf mockorange 

shoots in tissue culture. Data are means (n = 4) and error bars indicate ± 95% confidence limits. 
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Figure 12. Effects of different Mg concentrations on shoot length of little-leaf mockorange shoots in tissue culture. 

Data are means (n = 4) and error bars indicate ± 95% confidence limits. 

   

Figure 13. Effects of different P concentrations on shoot length (left) and dry weight (right) of little-leaf mockorange 

shoots in tissue culture. Data are means (n = 4) and error bars indicate ± 95% confidence limits. 

2.5. Discussion 

In this study, overall shoot growth, as indicated by increasing shoot length and dry weight 

of little-leaf mockorange was promoted best by a medium supplemented with zeatin, 

followed closely by medium supplemented with MT. Shoots treated with 1.1 µM MT 

produced 28% less dry weight and were 11% shorter than those on medium supplemented 

with 1.1 µM zeatin. Similar results were reported from other studies showing zeatin either 

by itself or in combination with another cytokinin promoted shoot proliferation of various 

plant species, such as the combination of zeatin and BA in micropropagation of olive (Ali 

et al., 2009). Zeatin promoted more shoot proliferation in dwarf raspberry shoot cultures 

as compared to BA (Debnath, 2005). Zeatin combined with TDZ increased shoot 

multiplication of lingonberry (Ostrolucká et al., 2004). In contrast, zeatin failed to increase 
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Phosphorous Concentration (mM) Phosphorous Concentration (mM) 
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shoot growth of tissue cultured phlox shoots (Khajehyar, unpublished data). Overall, using 

zeatin within a range of 1.65 to 2.2 µM promoted shoot growth (more biomass production 

and taller shoots), which should help growers to obtain more healthy propagules within a 

shorter period of time. 

Zeatin is the natural form of the cytokinin, and the positive responses of little-leaf 

mockorange to this cytokinin were probably due to this fact. Plant species and their genetics 

should also be considered when examining the effects of zeatin or other phytohormones on 

the growth of in vitro shoot cultures. The concentration used for each plant species at 

different ages can be an important factor to consider while applying any phytohormone in 

the culture medium. Debnath (2004) stated that increasing the concentration of zeatin 

enhanced shoot proliferation yet caused high mortality of explants of red raspberry. 

Combining zeatin with other cytokinins for each plant species may enhance the effects of 

zeatin on axillary shoot proliferation or shoot elongation. 

The results obtained from this study were in agreement with that of other researchers 

studying and reporting the positive effect of MT on shoot proliferation, such as the positive 

effect of MT on improving axillary shoot number of firechalice (Alosaimi and Tripepi, 

2018), the positive effect of 2 µM MT on shoot number, dry weight, and rooting percentage 

of sea oats (Valero-Aracama et al., 2010), and induction effect of MT at 5 µM on the best 

rate of shoot multiplication of Aloe polyphylla an endangered medicinal and ornamental 

aloe species (Bairu et al., 2007). 

Thidiazuron failed to promote shoot proliferation of little-leaf mockorange grown in vitro. 

Thidiazuron in this experiment showed an inhibitory or toxic effects on explants growth. 

Increasing TDZ concentration, increased its negative effect on shoot length and dry weight. 
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Thidiazuron is a synthetic cytokinin-like PGR, first introduced in Germany as a cotton 

defoliant (Arndt et al., 1976, Dewir et al., 2018). This PGR is resistant to cytokinin oxidase, 

hence is very stable in culture medium (Mok et al., 1982, Dewir et al., 2018). Unlike zeatin, 

TDZ exhibits very slow metabolism within plant tissues (Mok and Mok, 1985). 

Thidiazuron resistance to cytokinin oxidase may cause accumulation of purine cytokinins 

in plant tissues (Horgan et al., 1988, Hare et al., 1994, Dewir et al., 2018). Zhang et al. 

(2006) stated that treatment of plants with TDZ induced accumulation of ethylene in plant 

tissues due to the expression of stress-related genes. Signaling of stress related genes, such 

as proline or abscisic acid, also resulted from treatment with TDZ (Murch et al., 1999, 

Jones et al., 2007, Dewir et al., 2018). The inhibitory effects of TDZ on plant tissue culture, 

is possibly also species dependent, and these effects may be more prominent in some plant 

species, such as little-leaf mockorange. 

Cytokinins play key roles in long-distance signaling, a control mechanism for N 

assimilation in plants (Sakakibara et al. 2006, Rubio et al., 2009). These qualities may 

explain the promotive effects of cytokinins on shoot proliferation of explants in vitro as N 

is critical for vegetative growth. Increasing nitrate supply in the soil and through plants’ 

roots, induces the expression of genes related to regulating nitrate and carbon metabolism 

in plants, which can be mimicked by applying cytokinin in the culture medium (Scheible 

et al., 2004, Brenner et al., 2005, Rubio et al., 2009). Applying or increasing the 

concentration of cytokinins can enhance N utilization, resulting in more bud breaks and 

shoot proliferation. 

Selecting the best PGR for the micropropagation can be critical especially for growers 

considering the price of different PGRs and the purpose for using them. Growers need to 
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consider all aspects of their micropropagation goals and chose the best PGR beneficial for 

them economically and to meet proliferation goals. For little-leaf mockorange, the best 

cytokinin to use for in vitro growth of shoot cultures was zeatin. However, the high cost of 

zeatin may be prohibitive for some propagators, a situation in which a compound like MT 

may prove to be more efficacious. 

Presence of N in tissue culture medium is very important and plays a key role in promoting 

growth as N will affect cytokinin signaling (induction of producing cytokinins) and 

enhance effects on shoot proliferation. Synergistically, applying or increasing cytokinins 

can accelerate signaling of genes responsible for N assimilation in plants (Sakakibara et 

al., 2006, Rubio et al., 2009). 

Application of N in tissue culture medium improved shoot multiplication and growth of 

micropropagated Indian gooseberry (Sen and Batra, 2011). Sen and Batra (2011) also 

stated that the best responses were found on media including commercially standard 

concentrations of N, which my results with little-leaf mockorange confirmed. 

Experiments demonstrated that Ca, Fe, Mg, or P were all essential for shoot growth of 

little-leaf mockorange, yet some of them had stronger effects, when applied in ½ MS 

medium. 

Calcium supplementation at any level within my experimental parameters increased shoot 

dry weight clearly compared to negative control plants. Shoots on supplemented media 

grew at least 1.9 times taller than those on the control treatment. Also, addition of Ca 

resulted in at least 1.5 fold more shoot dry weight compared to the negative control. 

Supplementation resulted in similar results to the positive control, showing that using 
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regular ½ strength MS medium can be sufficient for little-leaf mockorange optimum 

growth. 

Addition of magnesium provided significant improvements only to shoot length, resulting 

in plantlets at least 1.2 times taller than those grown without Mg in the medium. 

Lee and Fossard (1977)  and Ramage (1999) stated that phosphorus is an important mineral 

both for explant growth and morphogenesis (Ramage and Williams, 2002). Shoot lengths 

and dry weights were significantly improved by P supplementation to culture media. 

Shoots on medium supplemented with 0.31 to 1.25 mM P were similar in length and dry 

weight but at least 2.6 times taller and produced 3.6 times more dry weight than shoots on 

medium that lacked P. 

2.6. Conclusion 

In this study, little-leaf mockorange grew best on ½ MS medium supplemented with  

1.65 to 2.2 µM Zeatin. If the price of the cytokinin is a key factor in choosing the cytokinin 

source, then MT at 2.2 µM is suggested for use instead, because of the economic issues. 

Regarding the adjustment and optimization of the minerals in the tissue culture medium, I 

suggest that N at 22.5 to 30 mM (standard amount of N in regular ½ strength MS) be used 

in the culture medium. For Fe, amounts between 25 to 50 µM (regular concentration of Fe 

in ½ strength MS) can improve shoot growth of little-leaf mockorange. Calcium, 

magnesium, and phosphorous each promoted shoot growth at standard concentrations in ½ 

strength Murashige and Skoog medium. 

Considering all these points, I suggest utilization of 1.65 to 2.2 µM Zea in the regular half-

strength MS medium for efficient micropropagation of little-leaf mockorange. 
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Chapter 3: Optimization of selected minerals and a cytokinin for in vitro 

propagation of little-leaf mockorange (Philadelphus microphyllus A. 

Gray) using Response Surface Method (RSM) 

Abstract 

Maximizing proliferation of a new plant species upon introduction into tissue culture may 

require optimizing concentrations of minerals and growth regulators included in a culture 

medium. The objective of this study was to use Response Surface Methods to evaluate 

combinations of selected minerals (N, Ca, K, and P) along with zeatin to obtain optimum 

shoot growth of little-leaf mockorange produced in tissue culture. Forty six treatments 

(combinations) were designed. The concentrations of zeatin tested were 0.82, 1.095, or 

1.37 µM, and the minerals were 22.5, 30, or 37.5 mM N, 1.125, 1.5, or 1.88 mM Ca, 0.31, 

0.625, or 0.94 mM P, and 5, 10, or 15 mM K. Treatment concentrations were tested for 

their effects on the number of axillary shoots formed, shoot length, and shoot dry weight. 

The response surface analyses showed that the optimum concentrations of N, Ca, and P 

were 32.5 to 35 mM, 1.5 mM, and 0.625 mM, respectively. Potassium in the regression 

models resulted in nonsignificant change in responses, hence, K concentrations were 

limited to linear trends in the analysis. Medium supplemented with 1.1 µM zeatin affected 

shoot growth positively. The RSM model demonstrated that optimum concentrations of 

zeatin, N, Ca, and P could be determined in one experiment and could promote in vitro 

growth of little-leaf mockorange shoots. 
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3.1. Introduction 

Plant response to propagation by tissue culture is highly dependent on the presence and 

amount of some minerals and nutrients supplied in the culture medium, including nitrogen 

(N) (Wada et al., 2015), potassium (K), calcium (Ca), phosphorous (P), magnesium (Mg), 

and iron (Fe). Such nutrients play key roles in plant growth and development, due to 

involvement in structural or metabolic actions. Hence, the mineral concentration and ratios 

within a culture medium impact aspects of plant morphogenesis, such as shoot 

multiplication and elongation, and conversely may contribute to abnormal growth, or 

physiological disorders (Reed et al., 2013b, Wada and Reed, 2017). Similarly, plant growth 

regulators (PGRs) may affect different physiological disorders (Reed et al., 2013b). 

Explants grown on culture media without or containing very low concentrations of auxins 

or cytokinins may grow poorly on and even start to die after a while. Changes in mineral 

concentrations in culture media are interrelated and may affect the amount of uptake of 

other minerals as well, thus, affecting plant growth and development (Poothong and Reed, 

2014). 

Although Murashige and Skoog (MS: Murashige and Skoog, 1962) salts have been used 

to support many kinds of plant species grown in vitro, this commercially available salt 

formulation may be suboptimal for some species causing them to grow slowly. Some plants 

growing on MS medium have been reported to lack vigorous growth (Poothong and Reed, 

2015). Red raspberries grew poorly in vitro on MS medium (Poothong and Reed, 2014). 

Optimizing the mineral and phytohormone contents of a culture medium can enable plants 

to grow better if a few changes are made to the medium (Poothong and Reed, 2015). Even 

individual cultivars within a species may differ in their response to different mineral 
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combinations, meaning genotype-specific formulations of a culture medium can be highly 

useful for developing in vitro propagation procedures for many plant species (Reed et al., 

2013a). Altering and developing formulations of growth media compatible for a specific 

cultivar can be very complicated and time consuming (Reed et al., 2013a). Developing 

various formulations includes changing the concentration and combination of different 

organic compounds or minerals, as well as different phytohormones needed by plants 

during each of the progressive phases of tissue culture. Completing experiments to find the 

best concentration of each individual mineral can take months, but combining all individual 

experiments into one by applying factorial combinations of nutrients and PGRs can reduce 

the time needed for choosing the best combination for each specific cultivar. The traditional 

method of optimizing the tissue culture medium was to conduct a series of trials on a single 

species wherein individual ingredients were tested at a range of concentrations to find the 

best concentration of that specific component (Poothong and Reed, 2014). Once the test 

ingredient was optimized, trials would begin -one at a time- on subsequent medium 

components. Murashige and Skoog medium was developed in this way specifically for 

tobacco callus cells and has been used for many plant species. Besides this systematic 

process being inefficient, it also fails to fully account for interactions among ingredients as 

concentrations of each are adjusted upward or downward. 

An alternative method of designing of experiments to define optimum combinations of 

different treatments can be used. While consideration of all possible combinations or a 

large number of components can be logistically challenging or impossible, statistical 

methods can generate experimental designs capable of estimating optimal component 

settings without the need for conducting numerous serially arranged experiments on 
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individual minerals or PGRs (Niedz and Evens, 2007, Poothong and Reed, 2015). These 

experimental designs provide more flexibility and efficiency to improve tissue culture 

media for specific plant species (Niedz and Evens, 2007, Reed et al., 2013a). Once a design 

is generated, and data collected from it, optimal component levels for various responses 

can be estimated through response surface methodology (RSM). In RSM, linear and 

quadratic surface models are fit to the data. Given adequate model fit, mineral and PGR 

values associated with optimal conditions of the response, either minima or maxima, can 

then be algebraically derived from the estimated model. Wada et al. (2013, 2015) 

conducted a series of studies using different mineral compounds in pear tissue culture 

medium across five different genotypes. They reported  the use of response surface 

methodology (RSM) (Niedz and Evens, 2007) to develop tissue culture medium for pear 

and found that the mesos compound (CaCl2, MgSO4, and KH2PO4) as supplements in MS 

medium, were important growth factors for pear. Among other things, these researchers 

demonstrated that varying several minerals in the culture medium at the same time is more 

efficient than examining only one mineral at a time (Wada et al., 2015). 

Response Surface Methods (RSM) recently have also been used to model and optimize in 

vitro propagation medium by interpreting each medium component or important minerals 

or PGRs as a geometric dimension, which ultimately results in a geometric volume having 

n dimensions (Niedz and Evens, 2007, Reed et al., 2013a, Poothong and Reed, 2014, 2015). 

The geometric volume provided by the statistical analysis software is considered as the 

samples space for experimental design that contains the samples (treatments combinations) 

based on the objectives of the experiment and the results obtained from data collection of 

the dependent variables, such as shoot growth characteristics (Reed et al., 2013a). With the 
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help of the computer-aided, statistical design software, different formulations of culture 

media are assigned to the design. These points (treatments) are then applied and evaluated 

based on the plant responses of interest (dependent variables) to the treatments in order to 

create a multi-dimensional response surface. This information is then applied to a response 

surface model which is used to determine the optimal plant response and corresponding 

treatments (Reed et al., 2013a). 

Little-leaf mockorange (Philadelphus microphyllus A. Gray) is native to the western US 

and has potential for use in managed urban landscapes. This species is very tolerant to 

drought, easy to grow, and has low maintenance requirements. It can also grow in a wide 

range of light conditions from light shade to full sun. Altogether, characteristics of this 

plant species makes it ideal for use in western landscapes. Although many of the worldwide 

mockorange species can be propagated by seed, summer soft-wood cuttings, hardwood 

cuttings and layering (Dirr and Heuser, 2006), little-leaf mockorange is difficult to 

propagate through seeds or cuttings (Steve Love, University of Idaho, personal 

communication). 

3.2. Objectives 

The objectives of this study were to optimize a tissue culture media for little-leaf 

mockorange shoots by using RSM on selected medium components. I proposed to evaluate 

important minerals, such as nitrogen (N), phosphorus (P), calcium (Ca), and potassium (K), 

as well as zeatin (a cytokinin growth regulator), across a range of concentrations. The 

responses obtained from the experiment determined best combination of the selected 

components to produce the optimum growth of in vitro shoots of little-leaf mockorange as 

defined by shoot number, shoot length, and dry weight. 
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3.3. Materials and Methods 

3.3.1. Plant materials 

In 2019, stems from little-leaf mockorange (Philadelphus microphyllus) from Aberdeen 

Research and Extension Center at University of Idaho, Aberdeen, Idaho, USA were 

collected and sent to Plant Tissue Culture Lab in the Plant Sciences Department at 

University of Idaho, Moscow, Idaho, USA. The original plant was collected from the 

Goshutes Mountains, south of Wendover in Elko County, Nevada in 2012 by Dr. Stephen 

Love. This specific accession was selected because of its aesthetic qualities for landscape 

use. 

3.3.2. Micropropagation and maintenance of the shoot cultures 

Shoot cultures were maintained and stabilized on culture medium for at least 26 months 

and were subcultured monthly. Every subculture cycle was completed by cutting the stems 

into several pieces of about 1.5 cm, with each explant consisting of two to three nodes. Six 

stem explants were placed into each baby food jar (195 ml) containing half strength 

Murashige and Skoog (½ MS, 0.5 mg thiamine-HCl, 0.25 mg nicotinic acid, 0.25 mg 

pyridoxine-HCl, 1 mg glycine, and 0.05 g myo-inositol, pH = 5.6) medium (Murashige and 

Skoog, 1962) supplemented with 0.5 µM BA. Explants were incubated in a SG-30S 

germinator (Hoffman Manufacturing Inc., Albany, OR) at 25 ± 1°C under a 16-h 

photoperiod (cool-white fluorescent lamps), with 38 μmol·m−2·s−1 photosynthetic photon 

flux (PPF). Stable shoot cultures were used in all the following experiments. 
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3.3.3. Response Surface Methods experiment 

3.3.3.1. Experimental design 

The RSM experiment was designed via the Proc Optex procedure (SAS software version 

9.4, 2016). This procedure created an orthogonal balanced incomplete block design (Table 

1). The algorithm used predetermined high and low values for each nutrient and then set 

the middle level as an average based on these values (Table 2). High and low values for 

each mineral were determined from previous observation and experiments. 

The overall experimental design was a five-factor Response Surface design with the design 

points  (combinations of all five factors) selected using modified D-optimal criteria suitable 

for fitting a quadratic polynomial equation. 

Table 1. The design created by SAS software to complete RSM for optimizing in vitro growth of little-leaf mockorange 

shoots. 

Treatment Zeatin (µM) Nitrogen (mM) Calcium (mM) Phosphorus (mM) Potassium (mM) 

1 0.82 22.5 1.5 0.625 10 

2 0.82 37.5 1.5 0.625 10 

3 1.37 22.5 1.5 0.625 10 

4 1.37 37.5 1.5 0.625 10 

5 1.095 30 1.12 0.31 10 

6 1.095 30 1.12 0.937 10 

7 1.095 30 1.875 0.31 10 

8 1.095 30 1.875 0.937 10 

9 1.095 22.5 1.5 0.625 5 

10 1.095 22.5 1.5 0.625 15 

11 1.095 37.5 1.5 0.625 5 

12 1.095 37.5 1.5 0.625 15 
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13 0.82 30 1.12 0.625 10 

14 0.82 30 1.875 0.625 10 

15 1.37 30 1.12 0.625 10 

16 1.37 30 1.875 0.625 10 

17 1.095 30 1.5 0.31 5 

18 1.095 30 1.5 0.31 15 

19 1.095 30 1.5 0.937 5 

20 1.095 30 1.5 0.937 15 

21 0.82 30 1.5 0.31 10 

22 0.82 30 1.5 0.937 10 

23 1.37 30 1.5 0.31 10 

24 1.37 30 1.5 0.937 10 

25 1.095 22.5 1.12 0.625 10 

26 1.095 22.5 1.875 0.625 10 

27 1.095 37.5 1.12 0.625 10 

28 1.095 37.5 1.875 0.625 10 

29 1.095 30 1.12 0.625 5 

30 1.095 30 1.12 0.625 15 

31 1.095 30 1.875 0.625 5 

32 1.095 30 1.875 0.625 15 

33 0.82 30 1.5 0.625 5 

34 0.82 30 1.5 0.625 15 

35 1.37 30 1.5 0.625 5 

36 1.37 30 1.5 0.625 15 

37 1.095 22.5 1.5 0.31 10 

38 1.095 22.5 1.5 0.937 10 

39 1.095 37.5 1.5 0.31 10 

40 1.095 37.5 1.5 0.937 10 
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41 1.095 30 1.5 0.625 10 

42 1.095 30 1.5 0.625 10 

43 1.095 30 1.5 0.625 10 

44 1.095 30 1.5 0.625 10 

45 1.095 30 1.5 0.625 10 

46 1.095 30 1.5 0.625 10 

 

3.3.4. Media preparation and micropropagation 

All media contained the standard amounts of ½ MS medium including 9 mg MgSO4, 1.4 

mg FeSO4.7H2O, 1.86 mg Na2EDTA.2H2O, 0.85 mg MnSO4.H2O, 0.43 mg ZnSO4.7H2O, 

0.31 mg H3BO3, 0.012 mg Na2MoO4.2H2O, 0.001 mg CuSO4.5H2O, 0.001 mg CoCl.6H2O, 

3 g sucrose, 0.05 mg thiamine-HCl, 0.025 mg nicotinic acid, 0.025 mg pyridoxine-HCl, 

0.1 mg glycine, and 0.005 g myo-inositol, as well as 0.7 g agar in 100 ml. Each medium 

pH was adjusted to 5.6 before autoclaving. Culture media were placed in baby food jars 

(25 ml per jar) and six shoot explants were transferred onto the culture medium in each jar. 

The experiment was conducted with four replications (jars) per treatment combinations. 

Shoot explants were maintained for 8 weeks with one subculture after 4 weeks. 

Table 2. The high, low, and average concentrations of selected minerals N, Ca, and P, as well as zeatin, used in 

different treatments combinations of culture media for in vitro propagation of little-leaf mockorange shoots. 

Components Concentrations 

Zea (µM) 0.82 1.095 1.37 

N (mM) 22.5 30 37.5 

Ca (mM) 1.125 1.5 1.875 

P (mM) 
0.31 0.625 0.937 

K (mM) 
5 10 15 
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3.3.5. Data collection 

Following a two month growth period, explants were harvested, and data collected. Growth 

parameters evaluated were number of axillary shoots formed, length of the longest shoot 

on each explant, and shoot dry weight (biomass) for each individual explant. To determine 

shoot biomass, individual shoots were dried at 70ᵒC for 72 hours and then weighed. 

3.3.6. Statistical analysis 

Analysis was completed by using a Response Surface regression (SAS, 2016; Proc 

RSREG) with responses as a function of linear, quadratic, and two-way crossproducts of 

the factors N, Ca, Zeatin, and P. Due to limited response across its concentration range, K 

entered the model only as a linear covariate. All factor levels were standardized as (Value 

– mean)/(½*range) prior to estimation. Standardization, referred to as "coding” in RSM, 

helps alleviate differences due to changes in component units and magnitude. Separate 

response surface models were estimated for each response (dependent variables including 

number of axillary shoots, shoot length, and dry weight). Standard residual diagnostics 

were used on each model to assess potential outlying values and assure adequate model fit. 

Following model estimation and assessment, the factor values corresponding to the surface 

optima (in most cases maximum response) were computed as the critical values necessary 

to give the highest response value and optimum shoot growth. 

3.4. Results 

Little-leaf mockorange shoots grew well and produced the most dry weight within the 

range of minerals and zeatin included within the design of this experiment. Results were 

presented as predicted multiple design treatment points (based on the Response Surface 
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Method (RSM) model), hence, interpretation is often carried out through graphical 

representations presented as the estimated responses over the continuum of component 

concentrations as defined by the points tested in the design (Reed et al., 2013a). 

Considering components two at a time, the response surfaces can be displayed two 

dimensionally as a series of contour plots for each response variable. If the design points 

encompass an optima, the optimum value of each factor can be determined to be 

somewhere in the center of contour surface, represented by a circular or elliptical zone. 

Any value outside this zone, indicates the dependent variable, e.g., shoot growth, failed to 

grow well due to the imposed treatments. 

Although K was tested in this study, this element in the regression models resulted in 

nonsignificant change in responses. Hence, K concentrations were limited to linear trends 

in the analyses. 

3.4.1. Number of axillary shoots 

The regression analysis of the Response Surface for the number of axillary shoot on little-

leaf mockorange explants, showed that both linear and quadratic regressions were highly 

significant with p values of 0.0081 and 0.0005, respectively, whereas the crossproduct 

terms were nonsignificant. Response surfaces were created for pairs of mineral and PGR 

components as Ca vs. N (Figure 1, top, left), zeatin vs. N (Figure 1, bottom, left), P vs. N 

(Figure 2, top, left), zeatin vs. Ca (Figure 2, bottom, left), P vs. Ca (Figure 3, top, left), and 

P vs. zeatin (Figure 3, bottom, left). Both Ca and N show open contour lines for shoot 

numbers, with maximum responses occurring at the upper limits of the concentrations 

tested (Figure 1, top, left). This result indicated the optimal shoot growth for these minerals 

may be at the highest tested levels or higher. The relationship between zeatin and P, 
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however, was stronger and more definitive, as indicated by Figure 3, bottom, left. The 

complete circle surface revealed that shoot growth was optimum toward the center of the 

enclosed zone. Overall, the optimum number of axillary shoots were formed when shoots 

grew on the combination of 0.6 mM P and 1.1 µM zeatin in the culture medium. 

The critical values for each medium component N, Ca, P, and zeatin were 39.28 mM, 2.95 

mM, 0.25 mM, and 1.09 µM, respectively. Potassium was assumed to be constant at 10 

mM. The predicted response value at this point (optimum point) was estimated as 2.2 

axillary shoots. 

3.4.2. Shoot length 

Response surfaces were generated for Ca vs. N (Figure 1, top, right), zeatin vs. N (Figure 

1, bottom, right), P vs. N (Figure 2, top, right), zeatin vs. Ca (Figure 2, bottom, right), P 

vs. Ca (Figure 3, top, right), and P vs. zeatin (Figure 3, bottom, right). Almost all factors 

exhibited a strong relationship as indicated by the enclosed contours of the figures. 

Response Surface analysis showed that among the regression models only a quadratic 

regression was significant for shoot length of in vitro little-leaf mockorange, (p < 0.0001). 

The critical values for N, Ca, P, and zeatin were estimated as 36.66 mM, 1.89 mM, 0.5 

mM, and 1.04 µM, respectively, and the predicted shoot length at the stationary point 

(optimum) of shoot length was 1.3 cm. 

3.4.3. Dry weight 

For explant dry weight, only the quadratic regression was significant (p = 0.0001). The 

critical values for N, Ca, P, and zeatin were calculated as 34.08 mM, 2.0 mM, 0.41 mM, 
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and 1.1 µM, respectively, whereas the predicted dry weight at the stationary point 

(optimum) was 0.021 g. 

Response surfaces are given as Ca vs. N (Figure 4, top, left), zeatin vs. N (Figure 4, top, 

right), P vs. N (Figure 4, bottom, left), zeatin vs. Ca (Figure 4, bottom, right), P vs. Ca 

(Figure 5, left), and P vs. zeatin (Figure 5, right). A strong relationship was seen between 

almost all factors as indicated by the complete contours in the graphical representations. 

The center of each zone represented the optimum concentration for each selected variable 

(minerals or zeatin). 

 

Figure 1. Response surface of N versus Ca (top) or N versus zeatin (bottom) on the number of axillary shoots (left) or 

shoot length (right) for little-leaf mockorange shoots produced in vitro. Blue color indicated poor growth and red 

demonstrated the optimum growth. Values on contour lines indicate the level of response (shoot number or length 

(cm)). Values of other tested components when fixed, were zeatin 1.095 µM, P 0.625 mM, K 10 mM, and Ca 1.5 mM. 
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Figure 2. Response surface of N versus P (top) or zeatin versus Ca (bottom) on shoot number (left) and shoot length 

(right) for little-leaf mockorange shoots produced in vitro. Blue color indicated poor growth and red demonstrated the 

optimum growth. Values on contour lines indicate the level of response (shoot number or length (cm)). Values of other 

tested components when fixed, were zeatin 1.095 µM, Ca 1.5 mM, P 0.625 mM, K 10 mM, and N 29.95 mM. 
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Figure 3. Response surface of P versus Ca effects (top) or P versus zeatin effects (bottom) on shoot number (left) and 

shoot length (right) for little-leaf mockorange shoots produced in vitro. Blue color indicated poor growth and red 

demonstrated the optimum growth. Values on contour lines indicate the level of response (shoot number or length 

(cm)). Values of other tested components when fixed, were zeatin 1.095 µM, Ca 1.5 mM, K 10 mM, and N 29.95 mM. 
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Figure 4. Response surface of N versus Ca effects (top, left), zeatin (top, right), or P (bottom, left), and Zea versus Ca 

effects (bottom, right) on dry weight for little-leaf mockorange shoots produced in vitro. Blue color indicated poor 

growth and red demonstrated the optimum growth. Values on contour lines indicate the level of response (shoot dry 

weight (g)). Values of other tested components when fixed, were zeatin 1.095 µM, Ca 1.5 mM, P 0.625 mM, K 10 mM, 

and N 30 mM. 

 

Figure 5. Response surface of P versus Ca effects (left) or zeatin effects (right) on dry weight for little-leaf mockorange 

shoots produced in vitro. Blue color indicated poor growth and red demonstrated the optimum growth. Values on 

contour lines indicate the level of response (shoot dry weight (g)). Values of other tested components when fixed, were 

zeatin 1.095 µM, Ca 1.5 mM, K 10 mM, and N 30 mM. 
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3.5. Discussion 

Optimal concentrations of minerals and plant growth regulators in the tissue culture 

medium are critical for efficacious shoot multiplication. Murashige and Skoog (MS) 

medium contains all minerals necessary for most plant species. However, some species 

require modifications to MS basal salts for ideal response. Finding the optimum amount of 

each mineral or PGR to include in tissue culture media can be time-consuming and 

expensive, even without considering failed experiments. Response Surface Methods 

(RSM) is one of the fastest methods of coincidentally testing independent variables in 

biological experiments (Naghipour et al., 2016). A number of studies have been completed 

using RSM to modify culture media formulations for different plant species, such as 

determination of mineral concentrations for efficient propagation of red raspberry 

(Poothong and Reed, 2014, Poothong and Reed, 2015), to modify the mesos components 

concentrations in culture medium for pear (Wada et al., 2013), improving the culture 

medium for micropropagation of pear germplasm (Reed et al., 2013a), and to optimize 

nitrate and ammonium requirements as well as nitrogen concentrations needed in pear 

shoot cultures (Wada et al., 2015, Wada and Reed, 2017). 

In this study unlike other studies, the response surfaces created by the RSM regression 

resulted in closed contours with a clear optimum point for most surfaces. This shape in the 

response surface allowed clear identification of optimum concentration for each 

component applied in the experiment. A complete circle on the surface response confirmed 

that the ranges of the applied components in the experiment were selected appropriately 

with optimum growth falling within the experimental parameters. Based on the results, 

optimum concentrations of zeatin, N, Ca, or P for maximizing shoot proliferation of little-
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leaf mockorange were successfully identified (Table 3). Results of the axillary shoot 

numbers formed showed that to obtain more axillary shoots and obtaining a more complete 

circle on the response surface, the concentrations of N and Ca probably needed to be 

increased. 

Results in this experiment are all from this specific little-leaf mockorange species. More 

experiments are needed to complete for other mockorange species to see if they will grow 

on the similar tissue culture medium or their requirements are different from little-leaf 

mockorange. 

Table 3. The optimum concentrations of zeatin, N, Ca, or P resulting in the optimal axillary shoot number, shoot length, 

and dry weight of little-leaf mockorange shoots produced in tissue culture as determined by RSM models. 

 zeatin (µM) N (mM) Ca (mM) P (mM) 

Axillary shoot number 1 ~ 1.1 ≥ 37.5 1.75 ~ 1.875 0.56 ~ 0.625 

Shoot length 1.1 32.5 1.75 ~ 1.875 0.625 

Dry weight 1.1 30 ~ 32.5 1.75 0.625 

 

3.6. Conclusion 

This study determined the optimum concentration of selected minerals (N, Ca, and P) and 

zeatin in the culture medium used for shoot production of little-leaf mockorange. Based on 

response surfaces created by RSM quadratic regression models, the optimum 

concentrations of zeatin, N, Ca, and P were 1.1 µM, 32.5 to 35 mM, 1.875 mM, and 0.625 

mM, respectively. Considering these concentrations and comparing them with standard 

MS medium, little-leaf mockorange shoots should grow well on ½ strength MS medium 

supplemented with 1.1 µM zeatin for in vitro propagation, saving time and money involved 

in creating a custom medium formulation. 
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Chapter 4: Using hyperspectral signatures for predicting foliar nitrogen 

and calcium content of tissue cultured little-leaf mockorange 

(Philadelphus microphyllus A. Gray) 

Abstract 

Determining foliar mineral status of tissue cultured shoots can be costly and time 

consuming, yet hyperspectral signatures might be useful for determining mineral contents 

of these shoots. In this study, hyperspectral signatures were acquired from tissue cultured 

little-leaf mockorange foliage to determine the feasibility of using this technology to 

predict foliar nitrogen and calcium contents. After taking hyperspectral images and 

determining foliar N and Ca contents, the correlation between the hyperspectral bands, 

vegetation indices, and hyperspectral features were calculated from the spectra. Features 

with higher correlations were selected to develop the models via different regression 

methods. The results showed that non-linear regression models developed through machine 

learning techniques, including random forest methods and support vector machines 

provided satisfactory prediction models with high R2 values (%N by RF with R2= 0.72, 

and %Ca by RF with R2= 0.99), that can estimate nitrogen and calcium content of little-

leaf mockorange. Overall, Random Forest regression method provided the most accurate 

and satisfactory models for both foliar N and Ca estimation of little-leaf mockorange shoots 

grown in tissue culture. 

4.1. Introduction 

Hyperspectral sensing is the measurement of the spectral characteristics of materials by the 

using sensing systems with more than 60 spectral bands and with spectral resolutions less 
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than 10 nm. This resolution can produce a continuous portion of the light spectrum defining 

the chemical composition of an object through its spectral signatures (Gomez, 2020). With 

substantial developments in recording spectral bands of electromagnetic waves, 

hyperspectral sensors can provide data with a large number of spectral bands due to their 

high resolution in the range of 350 to 2500 nm, which are acquired by passive optical 

sensors. Spectral data are detected from any surface that can reflect, absorb, and transmit 

electromagnetic radiation (Hruška et al., 2018). 

Hyperspectral imaging can be used to analyze characteristics that multispectral imaging 

cannot. Hyperspectral imaging provides the ability to complete reflectance or fluorescence 

spectroscopy on all single spatial pixels of a spectral image thereby discerning 

characteristics that cannot be seen by human eyes (Robila, 2004, Gomez, 2020). The basic 

shape of a curve over the spectral range is characteristic of the parent material of the object 

being analyzed by spectroscopy (Liang, 2004). In the visible to near infrared (NIR) 

spectrum (approximately between 400 and 1100 nm), characteristics of water, soil, or plant 

canopy give rise to specific curvatures in the reflectance spectrum, which makes them 

recognizable (Liang, 2004, Robila, 2004). 

Perhaps the biggest advantage of hyperspectral data over simpler red-green-blue (RGB) 

imagery and multispectral data is that hyperspectral data can detect more accurate 

information of the object due to more spectral bands being recorded. Hyperspectral 

acquisition devices including sensor types, acquisition modes and unmanned aerial vehicle 

(UAV)-compatible sensors provide information that is needed or used both for research 

and commercial purposes, (Adão et al., 2017). Hyperspectral sensors and UAV have been 

useful in many areas of study including material identification, security, precision 
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agriculture (vegetative coverage, nutrition deficiencies, foliar water content, physiological 

disorders, etc.), environmental aspects (wetlands, hydrology, etc.), medical and health care 

(medical diagnoses, food safety, food quality assessment, etc.), landmine detection, and 

many more applied fields (Adão et al., 2017, Gomez, 2020). 

A vegetative index (VI) describes an equation that processes spectral data for the purpose 

of determining information about plant health. Detectable vegetation indices (VIs) from 

hyperspectral signatures can provide an estimation and analysis of several plant 

characteristics, such as biophysical, physiological, or even biochemical parameters in 

crops, including leaf chlorophyll content (LCC), leaf water content (LWC), leaf area index 

(LAI), fractional photosynthetically active radiation (FPAR) absorbed by a canopy, surface 

roughness, and phenology, which are some of the most important inputs to land surface 

process models (Liang, 2004, Adão et al., 2017, Morcillo-Pallarés et al., 2019). These VIs 

can be applied in the regression models to help estimating plant status, such as foliar 

mineral contents. 

4.1.1. Nutrient status and deficiency prediction  

With the importance of nitrogen increasing yield efficiency and crop health, modern 

application of hyperspectral signatures in preventing nitrogen deficiencies in field have 

become widespread. Hence, much research has been conducted using remote sensing and 

applying hyperspectral signatures to determine crop nitrogen deficiency, required rates of 

fertilizers to increase crop production, or even the amount of nitrogen uptake by plants to 

improve agricultural production and yield efficacy (Maes and Steppe, 2019). De Oliveira 

et al. (2017) applied selected vegetation indices to estimate foliar N concentration in three 

Eucalyptus tree clones. Liu et al. (2016) applied multiple linear regression and neural 
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network analysis to find a relationship between the leaf nitrogen content of winter wheat 

and vegetative indices in narrow bands. Other studies have used hyperspectral indices to 

check the nutrition status of sodium and potassium content in grass (Capolupo et al., 2015), 

potassium deficiency level in canola (Severtson et al., 2016), the nitrogen concentration in 

oat (Van Der Meij et al., 2017), corn (Gabriel et al., 2017), rice (Wen et al., 2018), and 

wheat (Zhu et al., 2018), and leaf N, P, K, Ca, Mg, and few micronutrients of corn and 

soybean (Pandey et al., 2017). 

Putting a new plant species into tissue culture medium may require adjusting the medium 

components to optimize desirable shoot growth from the new species. Finding the optimum 

concentration of each component is critical and requires time and money. Estimating an 

explant’s foliar mineral status to check their health status is important to attain optimal in 

vitro growth. Usually, destructive methods are applied to estimate foliar mineral contents, 

especially for tissue cultured plants. Finding nondestructive methods, such as applying 

hyperspectral signatures can help growers to reduce their cost and save time. 

To date, reports on using hyperspectral devices and hyperspectral vegetation indices in 

tissue culture environments are lacking. To check the feasibility of using of this technology 

to evaluate the mineral content of tissue cultured little-leaf mockorange shoots, I decided 

to use the ASD spectroradiometer during the shoot proliferation stage of micropropagation, 

to determine if this technique could help in estimating nutrition status of the explants during 

stage 2 of micropropagation. If hyperspectral imaging showed success, it can help tissue 

culture producers saving time and money by avoiding destructive methods of foliar nutrient 

analysis. 
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4.2. Materials and Methods 

4.2.1. Plant materials and tissue culture 

Little-leaf mockorange explants were grown on half strength Murashige and Skoog (½ MS) 

medium supplemented with different plant growth regulators (cytokinins such as zeatin, 

kinetin (Kin), benzylamino purine (BA), meta-Topolin (MT), thidiazuron (TDZ), or 

dimethylallylamino purine (2iP)) or different concentrations of minerals such as N (0, 15, 

22.5, 30, 37.5, 45, or 60 mM), Fe (0, 0.5, 5, 25, 50, 75, 100, or 500 µM). Six stem explants 

(per jar) were placed on the culture media in baby food jars (195 ml) containing 0.5 mg 

thiamine-HCl, 0.25 mg nicotinic acid, 0.25 mg pyridoxine-HCl, 1 mg glycine, and 0.05 g 

myo-inositol, with pH = 5.6. Explants were incubated in a SG-30S germinator (Hoffman 

Manufacturing Inc., Albany, OR) at 25 ± 1°C under a 16-h photoperiod (cool-white 

fluorescent lamps), with 38 μmol·m−2·s−1 photosynthetic photon flux (PPF), for 8 weeks 

with one subculture onto the fresh media after the 4th week. At the end of the week eight, 

explants were harvested for collection of growth data and measurement of hyperspectral 

signatures. 

4.2.2. Preparing the spectroradiometer and taking readings 

For this research I used either an Analytical Spectrum Devices FieldSpec 4 High-

Resolution spectroradiometer (Malvern Panalytical Ltd., Westborough, MA, USA) or an 

Analytical Spectrum Devices FieldSpec HandHeld-2 spectroradiometer (Analytical 

Spectral Devices Company, Boulder, CO, USA). After 30 minutes of spectroradiometer 

warm up, the device was optimized and calibrated with Spectralon white panel. During 

calibration, an average of 100 dark current measurements were calibrated together and an 

average of 50 scans of a Spectralon 99% white reference were measured every two minutes 
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(Labsphere Inc., North Sutton, NH, USA) (Beck, 2019). Target reference recordings 

displayed an average of 20 scans at an optimized integration time of approximately 1 

second. 

Reflectance readings of explant leaves were made immediately (within 2 minutes) after 

they were taken out of the jar and prior to completion of the reflectance spectra procedure. 

Measurements were completed in a dark-room and conducted on a black-colored bench to 

exclude external light and reduce outside errors. The probe was held about 5 to 10 cm over 

the explants to take the reflectance. Measurements were taken on all six plantlets that were 

grown within each culture jar. Three duplicate readings were recorded for each shoot to 

reduce error effects. After every 10 to 12 readings, a new calibration was completed to 

reduce the error from external white light. All measurements were acquired using RS3 

software version 6.4 (Malvern Panalytical Ltd., Westborough, MA, USA). 

Reflectance spectral data represented the full range of visible (Vis), near infrared (NIR), 

and short wave infrared (SWIR) light between 350 and 2500 nm, with a resolution of 1 

nm. The spectral sampling interval was automatically interpolated from 1.4 nm to 1 nm at 

the time of each individual measurement by RS3 software, so a single value for each 

wavelength from 350 to 2500 nm was recorded (Beck, 2019). Data were exported by the 

ViewSpec Pro software version 6.2. The average of three readings of the reflectance from 

the group of six explants per container was used to create a single treatment reflectance 

spectrum. 
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4.2.3. Tissue analysis for mineral content 

After taking the hyperspectral reflectance, the shoots were separated from the agar 

medium, placed in an envelope and dried in an oven at 70ᵒC for 72 hours. Dried shoots 

were ground using a pestle and mortar. Dried tissues were sent to the tissue analysis lab 

(Brookside Laboratories, Inc., New Bremen, OH) for foliar nutrient analysis. There, tissue 

analysis was completed by using a combustion method employing a Carlo Erba 1500 C/N 

analyzer to estimate total N content (method B2.20, Miller et al., 2013). For Ca, lab 

procedures entailed use of nitric acid and hydrogen peroxide in a closed Teflon vessel and 

digested in a CEM  Mars Microwave and analyzed on a Thermo 6500 Duo ICP (method 

B4.30, Miller et al., 2013). Results from foliar analyses were used for correlation model 

training with the hyperspectral signatures. 

4.2.4. Feature generation 

When developing regression models, the success is dependent on the number of features 

assigned within the feature space. The number of features used becomes more critical when 

hyperspectral datasets are used due to their large number of spectral bands, making it 

difficult to determine if spectral bands or spectral vegetation indices generated from 

spectral bands or both, are associated with foliar chemical or physiological status, or in this 

case, leaf mineral content. To answer this question, feature selection approaches have been 

suggested to train the model with fewer but more informative features. 

4.2.4.1. Continuum removal and feature selection 

To normalize reflectance spectra and compare individual absorption features from a 

common baseline, I used continuum removal. To use continuum removal, spectral features 
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were acquired and selected by using MATLAB software. Different SVIs were calculated 

from the spectral wavelengths and accumulated in a spread sheet. Applying RStudio 

version 2021.09.0. and R version 4.1.2, statistical tests were completed for correlation and 

p-values, for each hyperspectral band feature and the corresponding mineral contents 

received from tissue analysis. 

4.2.5. Correlation tests 

Pearson's correlation coefficient is the covariance of the two variables divided by the 

product of their standard deviations (Freedman et al., 2007). Pearson correlation coefficient 

was used so that features with high correlation values were first recognized and selected 

from the list of defined features. Numerically, Pearson correlation coefficient should be 

between +1 and -1. If Pearson correlation coefficient of two variables is zero or close to 

zero, a correlation is lacking between the two variables. If two variables have a positive 

coefficient close to one, the variables are directly related to each other and only one of 

them should be imported for regression or classifier (an algorithm that implements 

classification, especially in a concrete implementation). A negative coefficient close to one 

indicates the inverse relationship between the two variables. 

4.2.6. Model development 

Informative features for spectral signatures were identified for tissue cultured shoots. The 

next step was to 1) train the model by using machine learning methods and 2) validate their 

significance using test data. 
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4.2.6.1. Applied machine learning (ML) methods 

• Linear Regression Method: is a linear model, that assumes a linear relationship 

between the input variable (x) and the single output variable (y). 

• Random Forest Regression: RF is a supervised learning algorithm that uses 

ensemble learning method for regression. 

• Support-Vector Machines: SVM are supervised learning models with associated 

learning algorithms that analyze data for classification and regression analysis. 

To manage the results, the following procedures involved separately adding variables into 

the model and then calculating the coefficient of determination (R2), root mean square error 

(RMSE) and correlation coefficient (Corr); next, a combination of variables were added to 

the model (multiple-inputs) and then new calculations for R2, RMSE and Correlation were 

made. The best model was chosen by comparing the results and using the best R2 and 

correlation values and by using error plots and scattering plots. These plots showed the 

error between observed and estimated values and a scatter plot of observed vs estimated 

values, respectively. 

4.2.6.2. Data partitioning 

Data sets were divided into model training and model test groups for generating the 

optimum regression model. Data partitioning or splitting data sets (hyperspectral recorded 

samples) into training and sample (test) group was one of the crucial steps in regression. 

To do this, the “createDataPartition” function in R software (packages “randomForest”, 

“neuralnet”, “rsample”, “ipred”, “readxl”, “hutils”, “xgboost”, “readr”, “stringr”, “gbm”, 

“class”, “FNN”, “e1071”, “caret”, and “caTools”) was used to randomly choose sample 
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indices based on a determined percentage. In our case 39 samples out of 56 samples (70%) 

were used for model training and the rest of samples were used for model testing (17 

samples out of 56 samples). The training data set was then used to develop a model with 

wavelengths in the spectral signature and vegetation indices calculated from those spectral 

signatures, as well as generated features obtained from those spectral signatures correlated 

to the foliar nutrient content from lab analysis. The developed model was validated and 

evaluated by using test datasets. 

4.2.7. Model evaluation criteria 

To validate the performance of the model, three criteria were used; the correlation between 

observation values and estimated values, the RMSE (root mean square error), and 

correlation coefficient (R2). 

A schematic diagram of the methods used for developing a regression model from the 

hyperspectral bands and the mineral content in little-leaf mockorange shoots, is shown in 

Figure 1. All the evaluation criteria were calculated separately for foliar N or Ca contents. 

 

Figure 1. Schematic diagram of model development from hyperspectral bands and foliar mineral analysis for little-leaf 

mockorange shoots grown in tissue culture. 
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4.3. Results 

4.3.1. Vegetation indices calculation and feature generation 

Applicable vegetation indices (VI) were calculated using MATLAB (Table 1). Using 

MATLAB, different features were generated and calculated selecting 15 individual 

wavelength ranges from the hyperspectral bands. Range selection was completed based on 

the peaks and curvatures of the spectra. Then, dividing the spectra into 15 ranges (Table 

2), specific features within these ranges, such as area under the peaks (Area), asymmetric 

point (asymmetry of absorption shape, a geometric feature generated from continuum 

removal) (Asy), minimum external peak (Min), and maximum external peak (Max) were 

calculated throughout the spectra. 

Both VIs and features were saved in an Excel file for later mineral content predictions by 

the developed model. 

Table 1. The highest correlated vegetation indices determined by using hyperspectral imaging in this study (Data 

obtained and calculated from Anonymous, Index Data Base, 2021). 

Index Name Abbreviation Formula 

Cellulose Absorption Index CAI CAI= 0.5 (ρ2000 + ρ2200) - ρ2100 

Normalized difference vegetation index NDVI NDVI = (Bnear_IR - Bred) / (Bnear_IR + Bred) 

Leaf Area Index LAI LAI = leaf area / ground area 

Double Peak Index DPI DPI= 688nm+710nm / 697nm2 

Normalized Difference Water Index NDWI NDWI = (Bnear_IR - Bmiddle_IR) / (Bnear_IR + Bmiddle_IR) 

Normalized Difference Lignin Index NDLI NDLI= 
log(

1

𝜌1754
)−log(

1

𝜌1600
)

log(
1

𝜌1754
)+log(

1

𝜌1600
)
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Table 2. Fifteen wavelength ranges taken from spectra extracted from little-leaf mockorange shoot cultures by using a 

ASD spectroradiometer. 

Range number From (Lower wavelength (nm)) To (Higher wavelength (nm)) 

1 364 369 

2 378 559 

3 559 772 

4 838 843 

5 898 903 

6 928 1057 

7 1121 1258 

8 1287 1670 

9 1670 1714 

10 1714 1819 

11 1819 2150 

12 2253 2332 

13 2341 2389 

14 2389 2419 

15 2428 2490 

 

4.3.2. Foliar nitrogen content 

4.3.2.1. Extraction of spectral bands with higher correlation with N content 

After calculating the correlation between the hyperspectral signatures and the %N in shoot 

tissues, the wavelengths at 648 to 651 nm were shown to have a moderately high 

correlation with %N with  correlation value of 0.30 (Figure 2). 

4.3.2.2. Model development 

Results showed that the reflectance values at the wavelength of 648 nm, asymmetric point 

from 1819 to 2150 nm (Asy 11) and the area from 559 to 772 nm (Area 3) had correlation 

values of 0.30, 0.31 and 0.37 with %N content, and these spectral features provided 

information needed for predicting the %N to generate a linear model for N content 

measurement. 

%Nitrogen = 4.47*(Asy 11) – 3.45 
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Figure 2. Correlation between leaf N% and the hyperspectral signatures acquired by ASD spectroradiometer from 

tissue cultured little-leaf mockorange shoots. The boxes show the correlation value and the wavelength of the peak in 

the spectrum. 

 

       

Figure 3. Error bar plot and scatter plot of the correlation between observed and estimated %N of little-leaf 

mockorange shoots by a linear regression model. 

Based on these spectral data, N content acquired by a linear model was estimated by R2 = 

0.21, root mean square error (RMSE) = 0.54 and correlation = -0.45 (Figure 3). 

Results from Random Forest (RF) algorithm model showed that the reflectance values at 

the wavelength of 2480 nm, asymmetric point from 1819 to 2150 nm (Asy 11) and the area 

from 559 to 772 nm (Area 3) had correlation values of 0.32, 0.31 and 0.37 with N% content. 

Based on these results, the RF regression model revealed that asymmetric point from 1819 
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to 2150 nm (Asy 11), asymmetric point from 559 to 772 nm (Asy 3), the reflectance values 

at the wavelength of 2480 nm, reflectance at wavelength of 525 nm, and Double Peak Index 

(DPI) were the most effective features to generate a nonparametric (non-linear) model 

(Figure 4). 

By testing various models with different combinations of the mentioned features and/or 

indices, eventually the most accurate model was selected (Table 3). The fitted model with 

DPI index and reflectance at wavelength of 525 nm and the tree number of 5 was a more 

accurate model fitted by RF regression, with R2 = 0.72 and RMSE = 0.30, and correlation 

= 0.84 (Figure 5). 

 

Figure 4. Correlation value between features or vegetation indices (VIs) and leaf nitrogen content of tissue cultured 

little-leaf mockorange. 

Results also showed that the model generated by support vector machine (SVM) regression 

provided an acceptable estimation of foliar %N content in comparison with a linear model 

and the fitted SVM model including Double Peak Index (DPI) with asymmetric point from 
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1819 to 2150 nm (Asy 11) (Table 4), followed by a model including DPI with asymmetric 

point from 559 to 772 nm (Asy 3), provided an approximate accurate method to estimate 

foliar N content, respectively at R2 = 0.58 and RMSE = 0.32 (Figure 6), or R2 = 0.61 and 

RMSE = 0.33 for little-leaf mockorange shoots. 

Table 3. Various models developed for %N estimation in little-leaf mockorange shoots with different feature 

combinations and different number of trees via Random Forest algorithm. 

Features (N) 
ntree = 5 ntree = 50 ntree = 100 

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation 

2 features 

(DPI + Reflectance 525) 
0.72 0.30 0.84 0.37 0.61 0.43 0.22 0.59 . 

2 features 

(DPI + Asy11) 
0.78 0.72 . 0.60 0.64 . 0.58 0.64 . 

2 features 

(DPI + Asy3) 
0.73 0.86 . 0.49 0.72 . 0.39 0.74 . 

 

          

Figure 5. Error bar plot and scatter plot of leaf %N estimated and measured test samples for little-leaf mockorange 

shoots via Random Forest regression. 

 

Table 4. Various models developed for %N estimation of little-leaf mockorange shoots with different feature 

combinations and different penalty terms via SVM algorithm. 

Features (N) 
cost = 10 cost = 50 cost = 100 

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation 

2 features 

(DPI+ Asy11) 
0.58 0.32 0.76 0.58 0.32 0.76 0.58 0.32 0.76 

2 features 

(DPI+ Asy3) 
0.61 0.33 0.78 0.61 0.33 0.78 0.61 0.33 0.78 

2 features 

(DPI+ Area4) 
0.56 0.34 0.75 0.56 0.34 0.75 0.56 0.34 0.75 
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Figure 6. Error bar plot and scatter plot of leaf %N estimated and measured test samples for little-leaf mockorange 

shoots via Support Vector Machines regression. 

4.3.3. Foliar calcium content 

4.3.3.1. Extraction of spectral bands with higher correlation with Ca content 

After analysis of the hyperspectral bands and checking for their correlation with the Ca 

content of the shoots received from the tissue analysis, I selected the bands with higher 

correlations, and those were 721 nm, 541 nm, 1293 nm, 1805 nm, and 2209 nm, 

respectively with correlation values of 0.35, 0.33, 0.30, 0.28, and 0.26 (Figure 7). 

Examining the correlation values between %Ca with different features and VIs, spectra 

showed that the minimum external of the wavelength between 1819 to 2150 nm (Min 11), 

and minimum external wavelength between 1287 to 1670 nm (Min 8) had the highest 

correlation values with Ca, respectively 0.59 and 0.45 (Figure 8). 

4.3.3.2. Model development 

Results from model development showed that Ca content determined by a linear model 

consisted of parameters of minimum external wavelengths between 1819 to 2150 nm (Min 

11) and the area from 559 to 772 nm (Area 3) could be estimated by R2 = 0.83 and RMSE 

= 0.09. Nevertheless, the coefficient of Area 3 was low enough to ignore it to draw the 

error bar graph (Figure 9). 
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%Calcium = 1.13*(Min11) + 0.08 

 

Figure 7. Correlation between leaf %Ca and the hyperspectral signatures acquired by the ASD spectroradiometer from 

tissue cultured little-leaf mockorange shoots. 

 

Figure 8. Correlation value between features and VIs with leaf calcium content of little-leaf mockorange shoots. 
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Figure 9. Error bar plot and scatter plot of the correlation between observed and estimated %Ca of little-leaf 

mockorange shoots by linear regression model. 

The Random Forest algorithm provided a successful model to estimate the %Ca of little-

leaf mockorange shoots. After examining several models with different feature 

combinations and tree number, results showed that the model including four features of 

minimum reflectance from 838 to 843 nm (Min 4), area from 2428 to 2490 nm (Area 15), 

asymmetric point from  1670 to 1714 nm (Asy 9), and Cellulose Absorption Index (CAI), 

with the tree number of 5 were the most effective features to generate a nonparametric 

(non-linear) model (Figure 10, Table 5), giving R2 = 0.99 and RMSE = 0.03 and correlation 

value = 0.99 (Figure 11, right). 

The results showed that using the specific spectral features and a selected index (CAI) 

acquired from the random forest algorithm as best to use in model development. These 

features were also used to develop a fitted model for SVM regression. After developing 

and running several models with different penalty terms (costs = 10, 50, or 100) and 

different kernels (linear, polynomial, or radial) (Table 6), eventually a model via linear 

kernel, including all four features of minimum reflectance from 838 to 843 nm (Min 4), 

area from 2428 to 2490 nm (Area 15), asymmetric point from  1670 to 1714 nm (Asy 9), 
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and Cellulose Absorption Index (CAI) with R2 = 0.59 and RMSE = 0.16 were determined 

to be the better model, regardless of the penalty term (cost value) (Figure 12). 

 

Figure 10. The importance value of generated features and selected VIs regarding leaf %Ca in little-leaf mockorange 

shoots via Random Forest algorithm. 

 

Table 5. Various models developed for %Ca estimation in little-leaf mockorange shoots with different features 

combinations and different number of trees via Random Forest algorithm. 

Features 
ntree = 5 ntree = 50 ntree = 100 

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation 

2 features 

(Min4+Area15) 
0.99 0.06 0.96 0.95 0.09 0.95 0.95 0.1 0.96 

3 features 

(Min4+Area15+CAI) 
0.98 0.04 0.93 0.89 0.09 0.93 0.87 0.09 0.98 

4 features 

(Min4+Area15+Asy9+CAI) 
0.99 0.03 0.99 0.92 0.08 0.96 0.85 0.1 0.92 
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Figure 11. Error bar plot (left) and scatter plot (right) of leaf %Ca estimated and measured test samples in little-leaf 

mockorange shoots via Random Forest algorithm. 

Table 6. Various models developed for %Ca estimation of little-leaf mockorange shoots with different feature 

combinations and different penalty terms via SVM algorithm. 

Features 
cost = 10 cost = 50 cost = 100 

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation 

2 features 

(Min4+CAI) 
0.57 0.17 0.75 0.57 0.17 0.75 0.57 0.17 0.75 

3 features 

(Min4+Area15+Asy9) 
0.18 0.22 0.42 0.18 0.22 0.42 0.18 0.22 0.42 

3 features 

(Min4+Area15+CAI) 
0.51 0.18 0.71 0.51 0.18 0.71 0.51 0.18 0.71 

4 features 

(Min4+Area15+Asy9+CAI) 
0.59 0.16 0.76 0.58 0.16 0.76 0.58 0.16 0.76 

 

      

Figure 12. Error bar plot and scatter plot of leaf %Ca estimated and measured test samples for little-leaf mockorange 

shoots via Support Vector Machines regression. 

 

4.4. Discussion 

This research demonstrated that hyperspectral imaging can be used to predict the 

percentages of N and Ca in little-leaf mockorange shoots produced in tissue culture. 

Among the three developed regression models used to estimate and predict the foliar 
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nitrogen content, random forest regressions and SVM, could estimate %N more accurately 

than the linear regression model. Nevertheless, the models developed to predict %N were 

a little less accurate than those developed for predicting %Ca in the tissue cultured shoots. 

In this study, the linear, Random Forest (RF) and support vector machines (SVM) 

regression procedures were used to obtain an accurate model to estimate the %N and %Ca 

in little-leaf mockorange shoots produced in tissue culture. For N, both RF and SVM gave 

better models than linear model, whereas RF (tree number = 5) could estimate %N better 

than SVM (no matter what the cost was for this regression model). For %Ca, RF model 

had a higher R2 (0.99) and lower RMSE (0.03) was more successful for providing a 

satisfactory model than SVM with R2 (0.59) and RMSE (0.16). Finding the best regression 

model and the best features or indices as well as the best wavelengths throughout the 

hyperspectral bands is highly important for predicting a specific mineral content or other 

plant characteristics, such as water content. 

Although the linear regression model provided an acceptable R2 value, the model failed to 

predict %Ca. Hence, random forest and SVM regression models were alternately 

considered. Based on the results obtained from this research, I concluded that foliar %Ca 

content could best be estimated using a non-linear regression model rather than a linear 

model. Optimal prediction features included minimum reflectance from 838 to 843 nm 

(Min 4), area from 2428 to 2490 nm (Area 15), asymmetric point from  1670 to 1714 nm 

(Asy 9), and Cellulose Absorption Index (CAI). Although these features worked for both 

RF regression model and SVM regression model, the RF regression had stronger R2 and 

correlation, and therefore was a better model to estimate the %Ca of tissue cultured shoots 

of little-leaf mockorange. 
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Cellulose is an important component in the structure of primary cell wall of green plants 

(Anonymous, Wikipedia, 2021). Calcium interacts with cellulose as a cellular structural 

component. A high correlation between %Ca and cellulose absorbance index (CAI) is 

likely due to this relationship, and in the future more detailed experiments can be conducted 

to determine any possible relationship between %Ca and CAI index. 

To date, no report has been issued using hyperspectral images to estimate shoot mineral 

contents of plants produced in tissue culture (in vitro). Some studies, however, have been 

conducted to estimate N content of agronomic crops in the field, such as estimating N in 

winter wheat at different growth stages, based on near infrared (NIR) wavelengths, via 

multivariate linear regression and Back Propagation (BP) neural network using vegetation 

indices (Liu et al., 2016); estimation of leaf N content of winter wheat via selected spectral 

indices and around NIR wavelengths (Zhu et al., 2018); estimating N content in field 

potatoes in NIR (Clevers and Kooistra, 2012); N estimation in maize via VIs such as NDVI, 

Renormalized difference vegetation index (RDVI) or Optimized soil-adjusted vegetation 

index (OSAVI) (Gabriel et al., 2017); N estimation in rice with Gaussian process 

regression (GPR) model (Wen et al., 2018); N estimation of eucalyptus using NDVI in red-

edge and modified red-edge NDVI (De Oliveira et al., 2017); and estimation of macro- and 

micro nutrients such as N and Ca in soybean and maize via partial least squares regression 

(PLSR) models (Pandey et al., 2017). 

Although some reports, describe use of NIR or lower SWIR wavelengths to provide 

effective estimates of N, almost all of these studies have used only vegetation indices such 

as NDVI or other VIs. The difference between my study and other studies was application 

of different geometric features, such as maximum reflectance, minimum reflectance, area 
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under the spectrum, and asymmetric point of the spectrum alongside the reflectance 

spectrum acquired from little-leaf mockorange shoots. Applying these geometric features 

for plants grown in an in vitro environment, nevertheless, resulted in satisfactory R2 and 

RMSE values obtained from the regression models used to predict N and Ca contents in 

the shoots. 

The interesting aspect of %N and %Ca estimation was that both were predictable in 

spectrum ranges from 1819 to 2150 nm (Range 11) and from 559 to 772 nm (Range 3). 

Using different features of these ranges provided information for each of these two 

minerals in little-leaf mockorange shoots. In addition, correlation plots of estimated and 

measured values for N and Ca concentrations, revealed a small gap between higher 

concentrations and lower concentrations of these two minerals, probably due to the limited 

number (less than 100) of samples used for predicting their concentrations. The other 

possibility for the gap was that hyperspectral images could estimate N or Ca only at higher 

concentrations, due to the tiny size of the leaves and stems on the shoot cultures, meaning 

less information was acquired from their reflectance. 

A deeper look at the scatter plot of %Ca obtained from the RF algorithm (Figure 11, error 

bar plot), showed that samples with values higher than 0.15 of CAI features, had much 

lower differences between the measured and estimated values compared to the differences 

between measured and estimated values of CAI less than 0.15. This result indicated that 

for a more accurate prediction, features with higher correlation values must be selected. 

On the other hand, except for two samples (error bars shown in Figure 11, left), the 

developed model either accurately estimated or slightly over-estimated %Ca. 
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Most of the earlier foliar nutrient content studies have used mostly the vegetation indices 

to estimate canopy minerals especially N. Unfamiliarity with hyperspectral features 

relative to prediction of foliar mineral status may be a limitation on employment of this 

technique in comparison with vegetation indices. Recruitment of a team of plant scientists, 

plant nutritionists, and hyperspectral  scientists, may provide opportunity to apply these 

features more effectively. This study illustrates the potential for success of such a team of 

a plant scientists and hyperspectral scientists. 

This study showed that hyperspectral imaging could help to predict foliar nutrient contents 

(N and Ca particularly) of little-leaf mockorange shoots produced in tissue culture, and 

help to avoid destructive methods of foliar mineral analysis. This nondestructive method, 

can save tissue culture producers time necessary for drying, grinding, sending the samples 

off to a tissue analysis lab, and waiting for the analysis, and save money by avoiding to 

pay for shipping and foliar tissue analyses. 

All these results were obtained from a specific selected mockorange plant. Application of 

hyperspectral imaging was successfully completed for this little-leaf mockorange grown in 

vitro, but the success of this method for other mockorange species as well as other plant 

species still needs to be tested. 

4.5. Conclusion 

This study demonstrated that strong regression models could be developed to predict N 

and Ca contents of tissue cultured little-leaf mockorange shoots. The best features to 

estimate %N were reflectance values at the wavelength of 648 nm, asymmetric point from 

1819 to 2150 nm (Asy 11) and the area from 559 to 772 nm (Area 3), and reflectance at 
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wavelength of 1919 nm. These features were employed in a nonparametric (non-linear) 

model, with RF regression to provide the best model for estimation of foliar %N content. 

Best features to estimate %Ca in the shoots were minimum reflectance from 838 to 843 

nm (Min 4), area from 2428 to 2490 nm (Area 15), asymmetric point from  1670 to 1714 

nm (Asy 9), and Cellulose Absorption Index (CAI). Random forest regression provided a 

more accurate model to estimate %Ca than the other regression models. The best RF 

regression model for %N in little-leaf mockorange shoots resulted in an R2 = 0.72 and 

correlation  = 0.84. Likewise, the best RF model for %Ca estimation resulted in an R2 = 

0.99 and correlation = 0.99. These strong statistical values clearly demonstrated that 

hyperspectral imaging can be used to predict accurately %N and %Ca in tissue cultured 

shoots from one selected little-leaf mockorange plant. Other mockorange species as well 

as other plant species produced in tissue culture would need to be tested to validate using 

hyperspectral imaging to predict N and Ca contents of shoots produced in tissue culture. 
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Conclusion to the Dissertation 

Little-leaf mockorange (Philadelphus microphyllus A. Gray) was successfully propagated 

in vitro on ½ strength MS medium containing 32.5 to 35 mM N, 1.8 mM Ca, and 0.6 mM 

P, supplemented with 1.1 µM Zeatin. Results from testing minerals individually, as well 

as the experiment applying response surface methods were completely in agreement with 

each other and proved this statement. Stem explants growing on such medium grew more 

and taller axillary shoots with the most biomass. Adjustment of Zeatin concentration in the 

culture medium increased shoot biomass to about 100% and shoot height to about 64%. 

Optimizing the culture medium components including N, Ca, P, and Zeatin, using response 

surface methods (RSM) was successfully done, which can be help growers by saving their 

time and money. 

Also, in this study, the feasibility of applying hyperspectral imaging to estimate tissue-

cultured shoots was proved. Application of hyperspectral imaging followed by machine 

learning methods provided successful models to predict foliar N and Ca concentrations 

without the need to destructive methods, which is also another time and money saving 

opportunity. 

Little-leaf mockorange, a plant species native to mid-west, with its beautiful flowers and 

adopted to the environment climate is a perfect choice for urban landscaping. Tissue culture 

propagation was proved to be a great method for this species. Providing nurseries and tissue 

culture labs growing little-leaf mockorange with the information I got in this set of 

experiments, can help them to improve their culture numbers. 

 


