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Abstract

In this thesis, different methods for power grid vulnerability assessment under cyber
threats are developed and utilized. A new combined method is developed for better suscep-
tibility analysis. Critical lines are identified using several different methods and remedial
action schemes are examined on these critical lines to observe the reliability and resiliency
improvement of the system. Furthermore, a new method to detect and fix false measurements
on inputs to remedial action schemes is presented. With this false measurement detection
method, this type of attack is more difficult as the malicious party needs to compromise a
large number of meters in order to inject a manipulated measurement. As a result, actions
by remedial action schemes are taken based on more reliable data and at the same time the
true state of the local system is estimated. The required logic to correctly detect and fix the
measurements are tested using the 118 bus IEEE test system.

The thesis concludes by presenting a novel approach to detect and fix false measurements
developed in this project to ensure proper automatic action by remedial action schemes. It
can be further developed and extended to provide an alternative way to improve system

resiliency.
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Chapter 1: Introduction

A reliable power supply is one of the important requirements of our society. Disruptions
to electrical power grids paralyze the daily life in modern societies causing huge economic
and social costs for these societies. It is very difficult or even unfeasible to guarantee a
100% secure and reliable system, however, it is important to design a resilient system that
continues to operate with outages. Challenges to the power system include, but are not
limited to, increasing connection of renewable sources to the power grid, operating sensitive
loads on the system, continuous changes in online operations, relying more on vulnerable
communication components, and more possibility of intentional attacks. These challenges
lead to vulnerability and in some scenarios even instability in the system and eventually
may lead to a cascading outage and system failure. Therefore, power system vulnerability
assessment is crucial.

Therefore, as a primary task, identifying the vulnerable components in a power grid is
vital to the design and operation of a secure and stable system. One aspect of vulnerability
analysis is to identify transmission lines where the loss of that line or transformer leads to
major disruptions to the grid. Part of our work is to determine these crucial components of
the system.

Next step is to determine the fault chains and calculating vulnerability indices based on
fault chain theory. Cascading failures are the typical reasons for blackouts in power grids
[1]. The grid topology plays an important role in determining the dynamics of cascading
failures in power grids. Measures for vulnerability analysis are crucial to assure a higher level
of robustness of power grids. We use three different method to perform this analysis and
determine crucial lines. Hence, another task is to prioritize these critical lines in monitoring,
controlling, and implementing special protection schemes such as Remedial Action Schemes
(RAS).

RAS have been increasingly used by utilities to mitigate instability problems following

the loss of one or more transmission lines on a transmission corridor to prevent out-of-step



conditions that may result in cascading system-wide outages. Application of RAS mitigates
the system problems and as a result reduces the system vulnerability and decreases the
possibility of cascading failures.

These remediation techniques are based on the real-time measurements from Phasor
Measurement Units (PMUs) along with Supervisory Control And Data Acquisition (SCADA)
system. Because these systems rely on data communication that is vulnerable to cyber-
attack, another important task is to ensure the reliability of a power system and its protection
by detecting false measurements, identifying any related event, and try to fix the data.

In this thesis, each chapter discusses results and outcomes for each task as presented in
a paper.

Chapter 2 is a paper that was submitted to the 7Industrial Electronics Society Conference
(IECON). In the paper, we use a power flow-based method to assess the vulnerability of the
system before and after applying remedial action schemes. To demonstrate the system
resiliency improvement, we model and simulate a modified version of the IEEE 9 bus system
in the Powerworld simulator to examine our method and verify the assessments’ results.

Chapter 3 discusses assessing the vulnerability of a system using both fault chain theory
and a power flow-based method and calculate the probability of cascading outages. Further,
we consider a Remedial Action Scheme (RAS) to reduce the vulnerability of the system and
to harden the critical components against intentional attacks. To identify the most critical
lines more efficiently, a new vulnerability index is presented. The effectiveness of the new
index and the impact of the applied RAS is illustrated on the IEEE 14-bus test system.
This chapter was presented at the 2018 International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS).

In Chapter 4, the placement of PMUs using a method from the literature is discussed.
There are several methods to identify the false measurements, but each of them has its
own obstacles and disadvantages. In this chapter, we present a new method to detect the

false measurement with more immunity against attacks and measurement error and then we



propose a method to fix the false measurement and provide valid data to the remedial action
scheme.

The objectives in this thesis can be summarized as followings:

Recognize critical components and quantify vulnerability

Apply remedial action schemes

Detect and fix false measurements

Reduce vulnerability

Maintain or improve system reliability

Improve system resiliency

In each chapter, the results of our work demonstrate the level of achievement on these
goals. Furthermore, in the conclusions chapter, Section 5.2 is allocated to review the accom-

plishments on our objectives, followed by suggestions for future work.



Chapter 2: Power Grid Resiliency Improvement Through

Remedial Action Schemes

The results of this work have been submitted to the 44th annual IEEE Industrial Elec-
tronics Conference (IECON 2018) [2]. Here, the numbers for citations, equations, tables,
and sections have been updated for inclusion in this thesis and therefore differ from the

publications originally accepted form. The original paper is available upon request.

2.1 Introduction

Power grid resiliency is an important requirement for our community. The complexity
of the power system structure is constantly increasing as the power supply demand patterns
change every year and more renewable energy sources are connected to the network. While
they have many benefits, these intermittent renewable sources have potential to negatively
impact system resiliency and can cause instability in the system [3], which could result in
system problems. Thus, it is important to identify the critical lines in order to help prevent
cascading outages by applying corrective actions and protections such as remedial action
scheme (RAS). The analysis of critical parts of the system helps to explore the nature of
complex power grid. Therefore, power system vulnerability assessment is necessary to deter-
mine the most critical lines and provide proper RAS in these vulnerable areas. Furthermore,
vulnerability assessment of transmission lines is an important measure of the systems’ sus-
ceptibility [4].

The potential vulnerabilities in a power grid can be analyzed by identifying those areas
where a failure or an attack causes maximum disruption to the grid. We can quantify
disruptions in several different ways, including (a) sudden deviation of the voltage magnitudes
or phase angles at the buses from operating values, and (b) determining the minimal amount
of generation or load that must be shed in order to restore the grid to stable operation.

The rest of the chapter is organized as follows. First, in Section 2.2 fundamentals of RAS

are presented. Next, vulnerability assessment of the power grid is discussed in Section 2.3.



In Section 2.4, our approach for assessing system vulnerabilities using a power flow-based
method is presented. Section 2.5 includes results from simulations using the IEEE 9-bus
test system to examine the power flow-based analysis, the proposed vulnerability index
calculation, and the effectiveness of the RAS. The positive impacts of the RAS on improving
system resiliency and mitigating system vulnerabilities are demonstrated. The chapter is

concluded in Section 2.6.

2.2 Remedial Action Schemes

An effective resilient system can adapt to, presume, and quickly recover from a disturbing
event [5]. A RAS is one way to achieve these goals for a power transmission system. These
schemes have been increasingly used by utilities to mitigate instability problems following
the loss of one or more transmission lines or generators under certain loading conditions. By
applying predetermined corrective plans, a RAS prevents the power system from reaching
out of step conditions that may result in cascading system-wide outages [6]. Remedial ac-
tion schemes, also known as special protection systems (SPS) or system integrity protection
systems (SIPS) are automatic protection systems designed to detect abnormal or predeter-
mined system conditions and then take corrective actions other than and/or in addition to
the isolation of faulted components to maintain system security. Such actions may include
creating sudden changes in demand, generation, or system configuration to maintain system

stability, acceptable voltage, or power flows [7]. Some advantages of RAS are listed below

[8]:

e Avoiding widespread outages after a severe contingency or sequence of events in the
power system.

e Increasing operational transfer capability within the restrictions on the transmission
system allows increased path capacity without building more power lines.

e Quickly detecting abnormal predetermined system conditions and takes a predefined



action to prevent a system problem.

e Helping balance load and generation after a loss of a generator, major lines or major
loads.

e Increasing overall system reliability.

e Increasing power system resilience.
RAS do not include the following items [9]:

e Underfrequency or undervoltage load shedding.

Protection for fault conditions that can be covered with standard relaying schemes.

Out of Step Relaying that is not an integral part of a RAS.

Sub-Synchronous Resonance (SSR) protection schemes.

Auto-reclosing schemes.

A. Common RAS Classification

Depending on the method of detection, existing RAS can be classified as event-based
or response-based [10]. Event-based RAS are designed to operate on the recognition of a
combination of events (such as loss of several ties). Response-based RAS are based on real-
time measurement and initiate control actions when the responses hit the trigger level. Event-
based RAS can be fast. Therefore, there is no need to wait for the response development.
On the other hand, response-based RAS have mainly been applied for slower phenomena
and can operate for unknown events and varying operating scenarios. The next generation
of corrective controls requires fast detection of system instability based on both events and
responses from wide area monitoring. This has become possible with the deployment of real
time phasor measurement units (PMUs), as well as with modern communication systems.
In addition, PMUs may allow disturbances to be detected more quickly, requiring less severe
action. However, utilization of PMUs in RAS also opens new avenues for vulnerabilities for
RAS operation and to system stability. A cyberattack at the measurements used in the RAS
could lead to incorrect action, either in failing to act when it should, or acting when it should

not.



B. Typical RAS Features
Critical details of the RAS design and operating characteristics must be determined

through appropriate studies. The results can be used to do the following [11]:

e Identify the problem to mitigate: The issue that needs to be reduced or eliminated.

e Arming criteria: Determining critical system conditions for which a RAS should be
activated to take action when required.

e Initiating conditions: Determining critical contingencies to initiate action once the
scheme is armed. Parameter-based RAS detect changes in critical system conditions
rather than directly detecting specific conditions.

e Actions to take: The minimum remedial action required for each contingency (when
armed) and the maximum acceptable remedial action for each contingency (when
pertinent).

e Time requirements or allowable time: The maximum time allowable for the remedial

action to be accomplished.

It is important to identify the critical system conditions where the RAS should be armed.

These conditions are often identified by one or more of the followings [12]:

e Generation patterns

e Transmission line loadings

e Load patterns

e Reactive power reserves

e System response as determined from the data provided by wide area measurement
systems (WAMS), or

e Other unsustainable conditions identified by studies of system characteristics

For example, during lightly loaded system conditions, a transmission line outage may
not cause any reliability criteria violations, but during heavier loading, the same outage may

result in generator instability or overloads on remaining facilities. Automatic single-phase or



three-phase reclosing following temporary faults during stressed operating conditions may
avoid the need to take remedial action. Appropriate RAS action may still be required if
reclosing is unsuccessful. The RAS is designed to mitigate specific critical contingencies that
initiate the actual system problems. There may be several critical single contingency outages
for which remedial action is needed. There may also be credible double or other multiple
contingencies for which remedial action is needed. Each critical contingency may require a
separate arming level and different remedial actions.

C. Actions in RAS

Various possible remedial actions are usually available to improve system performance.

These may include but are not limited to [11]:

e [slanding or other line tripping

e Generator shedding

e Load shedding (direct, underfrequency, undervoltage)

e Braking resistors

e Static VAr or other Flexible Alternating Current Transmission System (FACTS) con-
trol units

e Shunt capacitor/Reactor/Resistor insertion

e DC line runback or oscillation damping

e Series capacitor bypass

The minimum remedial action required is determined through studies that define the
boundary between acceptable and unacceptable system performance and resilience. Re-
medial actions beyond this minimum level often can result in further system performance
improvements. At some higher action level, system performance standards may again be vi-
olated if system response approaches another part of the boundary of the region of stability
(e.g. high voltage due to extra load shedding). However, some extra remedial action (safety
margin) should be applied to ensure that at least the minimum action will still occur even

for a worst-case credible scheme failure. While actions above the necessary safety margin do



not create new violations, they may make the scheme more costly and complex, as well as
result in a larger impact to customers (e.g. reduction of generating reserve, shed more load)
[13]. The maximum time acceptable to act will change with the type of problem for which
the RAS is a solution. Short-term angular and voltage stability problems typically require
the fastest response, as fast as a few cycles but usually less than one second. Actions to
mitigate steady-state stability and slow voltage collapse problems may allow several seconds.
Thermal overload problems allow several tens of minutes before action is required. Most of
the currently employed RAS are based on traditional, local measurements, but there has
been a movement toward using phasor measurement control units (PMCUs) in recent years.
The measurements from PMCU are easier to process and the local system state estimation
is faster. On the other hand, phasor measurement control units are introducing some vulner-
abilities to the system due to their communication schemes. In addition, there is an added
cost to provide many lines with PMCUs, RAS, Phasor Data Concentrators (PDC), and

communication systems (Figure 2.1) and structure them to meet NERC CIP requirements.

Station 1 Station 2

o
T

PMCU1 PMCU2
PDCA1 PDC2
X

\Q

Figure 2.1: A sample of a transmission line with PMU and required components

Therefore, sensitivity analysis is performed to identify the most vulnerable locations in
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the system and focus monitoring on those areas. The new susceptibilities that are introduced

to the system by PMUs must be analyzed, which is out the scope of this project.

2.3 Identifying Vulnerabilities in Power System

Remedial action schemes rely on the real-time measured data from the power system.
In cases where these schemes are armed by system operators, there is a need provide real-
time visibility to system operators in a clear manner. Providing such information for all
possible contingencies in real time is impossible and therefore, there is a need to reduce the
number of monitored contingencies [14]. These contingencies are identified through system
vulnerability analysis. The recent rapid rise in distributed generation and renewable energy
generation introduces more stress to the whole power system, potentially exacerbating the
system vulnerabilities, and increasing risk of cascading events [15]. Much work has been
done to improve the system security and reliability. However, significant outages take place
all over the world [16]. Therefore, it is very essential to further apply new tools and methods
to prevent potential cascade blackouts. The power grid has developed to be one of the most
complex human-made systems. As such, this highly clustered network in some research is
presented as a small-world network [3]. Even in a large-scale network, a node can interact
with others far across the system through a limited number of steps. Due to failures, the

capacity of the transmitted power decreases greatly.

2.4 Power Flow Based Method

Although, remedial action schemes are generally applied to large power systems, here,
we study the IEEE 9 bus system to demonstrate our analysis approach and demonstrate the
improvement in system resiliency (Figure 2.2). This model is based on a directed graph and
weighted by the power flow. Unlike an electrical efficiency model, the edge with a higher

weight transfers more power in this method. In the power flow-based method, the capacity
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of a line and the actual power transfer determine a lines vulnerability ranking. This method

deals with the weighted network and directed power flow. The following assumptions are

made [17]:

e Each bus is a node and each line us an edge. Nodes are reliable, and edges are in either

working or fail states.

e Direction of the power flow in each transmission line is the direction of the related

edge.

e The minimum degree of each node is 2, except for the source and sink nodes.

To evaluate the vulnerability of transmission lines and rank them, the vulnerability index

(V.I1.) is calculated using the following procedure [6], [18]:
e Build a connected network graph of the system.
e Estimate the steady-state power flow (Figure 2.2).

e Determine the weight and direction of the power flow on each edge of the network

(Figure 2.2).



12

Source nodes |:>

Transmission [:i;>
nodes

Sink nodes §>

Node1

72

Line1

Node?2

Line7

163

Node3

Line4

85

Node5

Node9

Nodeb

25

Line5

—

Node8

Figure 2.2: Steady-state power flow weights on the IEEE 14-bust test system.

e Evaluate the maximum flow for each source sink combination. Considering the network

as G = (V, E), for each edge (i, j), the capacity is denoted as C;;), and flow on the

edge is denoted as f(; ;). A source node is denoted as s, and a sink node by ¢. The

residual network of the system is presented by G;(V, Ef). The system capacity Gy is

defined by (2.1)

To obtain the maximum source-sink flow:

Criigj) = Clgy — fig)

(2.1)

Initially, for each edge (i, j), set the flow at f; ;) = 0. Given a path p from s to t in

Gy , for all edges (i,7) € p, find

Cry = min {Cyi (i, 7) € p}

(2.2)
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For each edge (i,7) € p, set

fa.) = fap + cw) (2.3)

T = Tun — cw) (2.4)

e To compute the vulnerability index V;;, sum the flow values. and get the flow on
each edge corresponding to the maximum flow in the network. Next, the vulnerability
index of edge (i, j) is defined as the amount of flow carried by edge (i, j) relative to the
maximum flow across the network between source and sink nodes.

20 2 i

Vii= =p—er—— 2.
TS i (25)

where f37,, is the maximum flow from the source u to the sink v, " is the portion of

the flow transferring through edge £;;.

e Label the lines based on the vulnerability index (Figure 2.3).
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Source nodes [ >

Node1 Node2 Node3

0.2256

Line1

0.5114 0.263

Line7
Lined

Transmission ——

Node9
nodes
0.0759
Sink nodes [ Node5 Node6 Node8

Figure 2.3: V.I. distribution for the lines in the IEEE 9 bus system.

e Rank the lines according to V.I. values. The line with a high value of index is considered

as more critical in this analysis. Table 2.1 shows the vulnerable line ranking identified

from the power flow model.

2.5 Simulation and Results

The power flow-based method was applied to the IEEE 9 bus system in the previous
section. Here contingency analysis in applied followed by adding a RAS applied to the
recognized vulnerable lines. To make this approach more understandable, the vulnerability

index (V.I.) is calculated for line 4 (the line from node 3 to 9) as below:
e Step 1, 2, and 3 are done by Powerworld and the results are shown in Figure 2.2.

e Step 4: From the Powerworld flow information and branch information: f(sg,,..) =

86.41, f(37,,,,) = 163.37, f(1a,,..) = 76.87

e Step 5:
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SIS pu 86,41 + 163.37 + 76.87 = 326.65
Vio = 85.8/326.65 so Vag = 0.26288

e Step 6: Distribute the V.I. values on the network model (Figure 2.3).

e Step 7: Rank the lines according to V.I. values (Table 2.1).

Table 2.1: Vulnerability Ranking Based on V.I.

V-Rank | V-Index | Line | from BUS | to BUS
1 0.5114 | 7 2 7
2 0.2722 | 8 5 7
An example of V.I. threshold: 0.24 | 3 0.263 4 3 9
4 0.2392 |6 8 7
5 0.2256 1 1 4
6 0.1871 3 6 9
7 0.1289 |9 5 4
8 0.0967 | 2 6 4
9 0.0759 |5 8 9

To provide more options for corrective actions, the IEEE 9 bus system was modified as
shown in Figure 2.4. The generator at Bus 2 was divided into three units with the same
total rating. Similarly, the loads at Buses 5 and 6 were divided into 2 loads with the ability
to shed less critical loads first. Next, we perform contingency analysis on a case where one
line (line 4) or one generator (bus 3) is lost (Figure 2.4). Power systems must be able to
handle one contingency, and the effort is to make a system resilient in cases with multiple
outages. Having this said, in this project we consider one major contingency since it is a
small system. Because, a major contingency such as losing generator or transmission line

can make the whole system unstable and cause a total blackout.
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Figure 2.4: The modified IEEE 9 bus system with power flow directions and a main contin-
gency.

As we discussed earlier, losing a transmission line or a generator is one of the major
contingencies and can have a huge impact on the system. This can be clearly seen in Figure
2.5. Except for line 3, line 7 and line 8, all other lines are experiencing a significant overload
(for line 5 the power flow is even reversed), and this will either lead to a failure of the
transmission lines or triggering the protection systems on the lines to disconnect the lines.
This process will include most of the lines and cause cascading outages.

Here, two important assumptions are made. First, the transmission lines can withstand
the extra power flow, and second, generators can feed the required extra generation in new
system configuration. Furthermore, the power flow on Line 7 is slightly less than the expected

power flow. This could be due to the loss in the new system configuration.
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Figure 2.5: The power flow-based model with one contingency

An updated vulnerability index distribution is calculated for this contingency, with the

results illustrated in Figure 2.6.

Transmission —>
nodes

0.242

Source nodes [ > Node 1 Node?2 Node3
I
° 'S 3
2| 0.4874 2 05126 g
— - -

Sink nodes

Node5

Tripped line

0.040

Figure 2.6: V.I. distribution of IEEE 9 bus system with one contingency
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Even if we assume that all transmission capacities are more than the new power flows, the
resultant V.I. listed in the Table 2.2 distinctly clarifies that the number of critical lines (by
considering same V.I. threshold) are now 67% larger than for the system with this loading

and no contingency.

Table 2.2: Vulnerability Ranking Based on V.I. With One Contingency

V-Rank | V-Index | Line | from BUS | to BUS

1 0.5126 |7 2 7
S 2 0.4874 |1 1 4
E 0.3584 |6 8 7
g4 0.2452 |2 6 4
<15 0242 |9 5 4
G 0.154 |8 |5 7
ST 0.04 3 6 9
=8 0.04 5 8 9

The next step is to apply a simple RAS in the same system with the same contingency
and observe the vulnerability improvement (Figure 2.7). After losing either transmission
line 4 or generator 85 MW on bus 3, the new power flow in the system is calculated using
a power flow program, 120MW load is shed at Buses 5 and 6, and 60MW generator on Bus
2 is shed. The corresponding power flow-based model and V.I. distributions are shown in

Figure 2.8 and Figure 2.9, respectively.
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Figure 2.7: The modified IEEE 9 bus system, with one contingency and applied RAS.

After evaluating the network and estimating the new power flow, the graph is modified

as Figure 2.8.
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Figure 2.8: The power flow based model with one contingency and applied RAS.

With the assumed contingency and the applied RAS, the new vulnerability index distri-

bution is depicted in Figure 2.9.

After applying RAS, the vulnerability for the system is improved by reducing the number

of lines over the threshold from 5 to 3 (using same V.I. threshold) and shown Table 2.3.

Table 2.3: Vulnerability Ranking Based On V.I. With One Contingency and An Applied

RAS

V-Rank

V-Index

e
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@
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Figure 2.9: V.I. distribution of IEEE 9 bus system with one contingency and applied RAS.

Table 2.4 compares the vulnerability rankings from the three cases. A minimum RAS

was applied to the system with a major contingency and it enhanced the resiliency of the

system to the same level with the system that has no contingencies. In addition, lines 7

and 8 are identified the most critical lines in both original network and the network with

contingency and RAS. This is clearly emphasizing that these lines are of a high importance.

and can be used to identify the lines that need more extra monitoring and protection.
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Table 2.4: Comparison of Vulnerability Rankings Based on V.I.

Ranks without contingency Ranks in one component lost Ranks with RAS
V-Rank | V-Index | Line V-Rank | V-Index | Line V-Rank | V-Index | Line
§_ 1 0.5114 7 1 0.5126 7 1 0.7 7
C." 2 0.2722 8 2 0.4874 1 2 0.55 8
%‘ 3 0.263 4 3 0.3584 | 6 3 0.29 1
=14 0.2392 6 4 0.2452 2 4 0.16 9
é 5) 0.2256 1 5 0.242 9 ) 0.13 6
G 0.1871 |3 6 0.154 8 6 0.13 2
=7 0.1289 |9 7 0.04 3 7 0 3
8 0.0967 | 2 8 0.04 5 8 0 5
9 0.0759 |5 9 0 4 9 0 4

After the sensitive lines are determined by a V.I. threshold, they need to be prioritized in
protection, operation, and monitoring to improve the system resiliency and prevent blackouts

19].

2.6 Conclusion

This chapter briefly reviewed the RAS and system vulnerabilities and utilized a power
flow-based method to perform vulnerability assessment on a system with an integrated RAS.
The most vulnerable lines were identified, and a special protection scheme was implemented
for those lines. By protecting them, the system resiliency was noticeably increased. As
the simulation results demonstrate, a considerable vulnerability improvement was achieved
by applying even a simple remedial action scheme. The vulnerability indices and their
ranking can clearly verify the resiliency improvement of the power system and therefore

better immunity against failures.
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Chapter 3: Power Grid Security Improvement by Remedial

Action Schemes Using Vulnerability Assessment Based on Fault

Chains and Power Flow

The results of this work were published in the Proceeding of the International Conference
on Probabilistic Methods Applied to Power Systems (PMAPS 2018) [6]. Here, the numbers
for citations, equations, tables, and sections have been updated for inclusion in this thesis
and therefore differ from the publications originally accepted form. The original paper is

available upon request.

3.1 Introduction

A resilient power supply is an important requirement for our society. The power demand
increases every year and the structure of power systems becomes more complex as more
renewable energy sources are connected to transmission and distribution networks. These
new generation sources potentially have a negative impact on the resiliency of the power
grid and can possibly cause network instability [3]. Such instability could lead to blackouts
in some scenarios. Critical transmission lines must be recognized by assessing the systems
vulnerability and special protections and corrective actions such as Remedial Action Schemes
(RAS) must be applied on these lines to prevent cascading blackouts.

In this chapter, we aim to (1) identify the most critical lines that contribute to cascading
blackouts due to failures or intentional attacks, (2) analyze effects of applying RAS on
these lines, and (3) illustrate the resulting decline in the probability of cascading blackouts.
The domino effect of the failures demonstrates that each event of the cascading failure is
dependent on other failures [20]. Thus, a series of step by step failures results in a cascading
blackout. The vulnerable transmission lines of the power systems play a significant role and
constitute a measure of the systems susceptibility [4]. Therefore, recognizing those lines

or components and analyzing the network vulnerability degree are essential prerequisites to
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monitor and control these systems. The fault chain theory deals with the possible sequence
of faults in the network and its criticality ranking is based on the number of the segments
in each sequence. While in power flow-based method, the amount of power carried, and the
line capacity determine the vulnerability ranking. FEach approach has its drawbacks. To
overcome these, a new vulnerability index is presented, combining the best features of each.

By identifying critical components of the system and protecting them, its vulnerability
can be improved, and the system becomes more resilient. An effective resilient system is
able to prepare and plan for, anticipate, withstand, adapt to, and rapidly recover from a
disturbing event [5]. One way to accomplish these objectives is to utilize RAS. RAS have
been increasingly used by utilities to mitigate stability problems following the loss of one or
more transmission lines or generators. A RAS prevents the power system from experiencing
out of step conditions that may result in cascading system-wide outages. The remedial
strategies prevent potential cascading events by applying predetermined corrective plans to
the most critical lines.

The TEEE 14-bus test system is utilized to examine the fault chain-based analysis, the
power flow-based analysis, the proposed index calculation, and the effectiveness of RAS.
The proposed approach provides a better understanding of the operational characteristics of
the network and helps in determining where to focus RAS and other protection actions by
exploiting fault chains and power flows. Here, we use two different approaches to evaluate
the vulnerability of transmission networks. First, we use the fault chain theory to determine
the most probable sequences of failures and calculate the related vulnerability indices, which
is presented in Section 3.2. Next, we assess the system vulnerability using a power flow-
based method in Section 3.3. In Section 3.4, a new vulnerability index is presented to better
determine the critical lines. Section 3.5 demonstrates the impacts of RAS in improving
the system resiliency and mitigating the vulnerabilities to cascading outages by providing

predetermined corrective actions on the critical lines.
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3.2 Fault Chain Theory

In this section, four stages are discussed. First, the basic of cascading failure and fault
chain is presented. Next stage is about determination of the fault chains. Then, the criticality
ranking procedure is discussed. Lastly, this approach is applied on the IEEE 14 bus system.
A. Cascading Failures and Fault Chains

The primary reason for a widespread blackout is cascading failures. The possible causes
of these failures might be human factors, relay maloperation, mismanagement, weather,
overload, and intentional attacks [1]. In fault chain theory these are called the influencing
factors. Suppose that in a network, the protection system isolates one line due to a fault.
To supply the load, other lines must carry additional power and therefore would be loaded
more heavily and potentially results in an overload risk. This process propagates through the
network, overloading the lines one after another to eventually cause total system instability.
The contingency analysis process contains top and basic events [21]. Basic events are those
faults that create a fault chain, while a top event is a cascading outage.

In earlier literature, a fault-tree was a minimal cut-set that was achieved offline, and
which was obtained by experience or contingency evaluations [21]. This was not always
practical and accurate. The method in this chapter accomplishes the fault chain online by
using system stability measures and operational parameters [22].

B. Fault Chain Determination

Fault chains and their segments are defined as

L:{L_ﬁ 2 .. L_ﬁ} (3.1)

Y

L= {ﬂl) ﬂQu 7frlml} (32)
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where 1 is the number of fault chains; m; is the number of segments of the " fault
%
chain; L is a fault chain set of a network; T}, is the j* segment of the i fault chain L7, and

j=1,2,...;m;. The fault tree logic is shown in Figure 3.1.

» =

System Unstable

Large-Scale Blackout

L1 L2 “ua Ln! ... .Fault Chains

[ = —— = = | [ = — | Fault

T11||T12| - [Tim| |T21||T22| ---Tom,  |Tot||Tn2| -+ [Tnm|-S€gments

Influencing

H11 H12 . H‘]m1 H21 H22 e H2m2 Hn1 Hn2 b Hnmn Factors

Figure 3.1: Fault chain logic indicating influencing factors, fault segments, and fault chains
that can cause cascading outages.

All fault chains are included in the cascading outages vulnerability analysis by a single
OR gate. Each fault chain is a result of an AND gate that comprises all related basic events
and segments. Therefore, it can be understood from the tree that if all segments of a fault
chain occur in sequence, then the system will be unstable, and cascading outages happen
[23].

All fault chains are included in the cascading outages vulnerability analysis by a single
OR gate. Each fault chain is a result of an AND gate that comprises all related basic events
and segments. Therefore, it can be understood from the tree that if all segments of a fault
chain occur in sequence, then the system will be unstable, and cascading outages happen

[23].
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The segment faults are due to the influencing factors. These factors and the related

influencing function are defined as

Vi= {Uil, Vi2, Uzk} (3'3)
_ ko ki
o(Li) = ZWHUU@']' + Z WH;; Vij (3.4)
j=1 j=ka+1

where v;; is the j™ factor, wr,; 1s the sensitivity coefficient of the gt factor for i** fault
chain, k, is the number of certain factors, and k; is the number of all factors. The probability

of the i*" fault chain occurring is defined as

a7, = q(TuTo-. Tim,) = q([ ) Ty) (3.5)
j=1

where j is the sequential number of basic events, and gpis the i fault chain probability.
From Figure 3.1, the probability of cascading outages can be obtained from the fault chain
probabilities by:

Qs=1—(1—q3)1—qz)--(1—q5) (3.6)

With each line outage, a new path is taken as the most efficient one to redistribute the
power flow. Using the former segments, the new segment T(;;11)) is predicted with highest
probability. Let’s assume T(;(j_2)) is the fault segment on line k-2, T(;(;_1)) is the fault segment
on line k-1, 1,41y is the fault segment on line k, and T{;(j41)) is the fault segment on line k-1.
To identify the fault chains, the following should be taken into consideration to determine

lines [24, 25]:
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e Power flow change;

k+1 ;Sk+1 5%+1 ‘9k+1

k+1 ij i(j—2) i(j—1) —-2)
aj; = ] |+ | T | (3.7)
S i(j—2) S i(j—-2)
e Overload capability;
k+1 ;Sk+1
o5 =l e |+ g (58)
e Power flow change due to the previous fault segments;
QR+l _ g1 Sk+1 k+1
ij i(j—1) ) Yi(-2)
%kJ—H = Gk ’ |+ | L k-1 : | (3.9)
i(j—1) i(j—2)

where S&5Y is the maximum power capacity of line k+1; S¢i(j — 2))(k+1); S((zk(;rl))) and
S(Hl)are complex power flows of line k+1 after the fault on segments T\;(;_2)), T(;(j-1)), and
Tij; Si(j — 1))" is the complex power of line k after the fault on segment Tii-1)); S((Zk(] 1)2)) is

complex power of line k-1 after the fault on segment 7{;(;_2)). The edge-weight can normalize

the three indices [26]:

RE+1 | SkH (3.10)
“ z:u71| |
Chas <S’“rl N Skt <kt
w’f'H i(j—2) (G-1) (1—2) (311)

Rfj“ otherwise
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St > Sifas
whtl = ’ " (3.12)

RZ’LI otherwise

1 ASEHL > gt
wht! = Y “ (3.13)

R,Z‘Ll otherwise

(k1) (k+1)

k+1
where w; "/, W, and wé 1)

are the weight normalizers [22]. The next segment to

(k+1)

fault on the " fault chain is presumed by the value of F (541" The next occurrence will be

on the line with maximum F.

k+1  __  k+1 k+1 k+1 pk+1 k+1 _ k+1
Fi(jﬂ)fwl i wy BET A wsT (3.14)

The sequence of occurrences is presumed by calculating F repeatedly until the system is
unstable. This sequence is the 7*" fault chain. By applying the same process for all lines, a
set of fault chains are obtained.

C. Vulnerability Assessment

In vulnerability assessment by fault chains, if a transmission line is involved in a larger
number of fault chains, it will be more vulnerable. Each line has different vulnerability in
each fault chain. As a starting point, suppose that the impacts of influencing factors on all
segments stay the same.

If the failure event M7 occurs on a specific transmission line, then all fault chains which

comprise this event are expressed as

L'={Ly, L}, .., Ly} (3.15)
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L*={L}, L3, .., L},} (3.16)

L*={L;, L, ..., L; } (3.17)

The occurrence probability of the fault chain increases with a decrease in the number
of segments in the chain. Therefore, the number of the segments of a chain determines its

relative occurrence probability. The vulnerability index of an event is defined as

o(Mi) = %}}i) (3.18)

where i=1,2, ..., s, j=1,2, ..., q, and k=1,2, ...;s;. Here, s; is the number of the fault
chains including the j** transmission section, q is the number of all the transmission sections
in network, s is the number of all chains. And a,,; is the number of transmission lines related
to the event Mi [22].

D. Case Study IEEFE 14-Bust Test System

The IEEE 14-bus test system is simulated using Powerworld software to verify the per-

formance of vulnerability assessment methods (Figure 3.2).
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Figure 3.2: IEEE 14-bus test system implemented in Powerworld software.

This system contains 20 transmission lines, 5 generators, and 11 loads. Table 3.1 shows

the fault chains and Table 3.2 ranks the lines by vulnerability index (V.I.) [22].



Table 3.1: Fault Chains of The IEEE 14 Bus System

No | Fault Chains No | Fault Chains

L1 b1, b4 L11 | bll, b12, b8

L2 | b2, b6, b3, b7, b8 | L12 | b2, b8, bll

L3 | b3, b7, b2 L13 | b13, bS, bi7

L4 | b4, bl L14 | b1l4, b13, b1, b4

L5 | bb, bl, b4 L15 | bl5, bl6, bl7, bl, b4
L6 | b6, b2, bl, b4 L16 | b16, b19, b17, bl, b4
L7 | b7, b3, b2 L17 | b17, b8, b13

L8 | b8, bl3, bi7 L18 | bi8, bl, b4

L9 | b9, b8, bll 119 | b19, bl, b4

L10 | bl0, b1, bd .20 | b20, b1, bd
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As previously explained, the lines in fault chains with fewer segments are more probable

to cause cascading outages, such as L1 or L.4. On the other hand, L.L15 and .16 have smaller

possibilities to lead to cascading outages. For these longer chains, the probability of failing

several lines is smaller, especially in that exact sequence which would lead to cascading out-

ages. Even if these less likely events do occur, due to the high number of segments, the fault

propagation time is long enough to let the protection systems kick in and prevent further

failures.

Table 3.2: Vulnerability Indices and Ranking By Fault Chain

Rank | Failure event | V.I. Rank | Failure event | V.I.

1 bl 0.18379 | 10 b7 0.02748
1 b4 0.18379 | 10 b19 0.02748
2 b8 0.11336 | 11 b16 0.02061
3 b13 0.06441 | 12 b5 0.01718
4 b2 0.05702 | 12 b9 0.01718
5 b17 0.05496 | 12 b10 0.01718
6 b1l 0.05153 | 12 b18 0.01718
7 b6 0.04784 | 12 b20 0.01718
8 b3 0.04466 | 13 b14 0.01288
9 b12 0.03435 | 14 b15 0.01031
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3.3 Power Flow Based Method

Another approach to assess the vulnerability index is use of a power flow-based method.

This approach is based on a weighted directed network with the following assumptions [17]:

e Buses and lines in a power grid are classified as nodes and edges, respectively. Each

node is perfectly reliable, and each edge has two states: working or failed.

e Each edge has its own direction, which is the same as the direction of the power flow

on the transmission line.

e The degree of all nodes is at least 2, except for the source nodes and sink nodes.
The procedure of calculating and ranking the V.I. follows [18]:

e Build a connection network model of the power system.
e Calculate the steady-state power flow of the grid and collect data (Figure 3.3).

e Weight the edges in the network model with the power flow and determine the flow

directions (for e.g. Figure 3.3).

e (Calculate the maximum flow of the network for each source — sink combination. Given
a network G = (V, E), the capacity and flow on the edge (i, j) are denoted by c(;;) and
f(j), respectively. A source node and a sink node are denoted by s and t. The residual

network of G is shown by G (V,Ey ). The capacity of Gy is defined by (2.1).

The maximum flow is calculated as follows: Initially, for each edge (i, j), set the flow
at fuj)—o. Given a path p from s to t in Gy , for all edges (4,7) € p, find ¢ from

(2.2) For each edge (i, j) € p calculate f;; and fj; from (2.3) and (2.4), respectively.

e Using the equation (2.5), sum up the flow values and compute a vulnerability index V;.

We can get the flow on each edge corresponding to the maximum flow in the network.
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Then the vulnerability index of edge (i, j) can be defined as the level of flow carried

by edge (i, j) compared to the maximum flow of the network.

e Rank the lines according to values of vulnerability index (Figure 3.3). The line with

a high value of index is considered as more critical in this analysis.
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Figure 3.3: Steady-state power flow (blue text) and vulnerability index weights ( black text
in green box) on the IEEE 14-bust test system.

In Figure 3.3, line numbers are denoted with bl through b20, the branch power flow,
which is the Powerworld simulations result, is shown on each line, and the related vulnera-
bility index is highlighted in a green box. The immediate lines that connect the generators

to the network are not in the Table 3.3 ranking.
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The ranking results are presented in Table 3.3.

Table 3.3: Vulnerability Indices and Ranking By Power Flow

Rank | Failure event | V.I. Rank | Failure event | V.I.

1 bl 0.4785 | 11 b10 0.0516
2 b2 0.3326 | 12 b6 0.0482
3 b4 0.1938 | 13 b1l 0.0467
4 b8 0.1277 | 14 b17 0.0294
5 b7 0.1254 | 15 b13 0.0234
6 b3 0.1131 | 16 b14 0.0228
7 b9 0.0863 | 17 b13 0.0194
8 b5 0.0844 | 18 b20 0.0162
9 b12 0.0838 | 19 b18 0.0114
10 b16 0.0541 | 20 b19 0.0051

3.4 The New Vulnerability Index

The fault chain theory determines the possible sequence of faults in the network and
the criticality ranking is based on the number of the segments in each sequence, while, the
maximum power flow of the network and of each source-sink combination is overlooked. On
the other hand, in the power flow-based method, the amount of transfer power and the
maximum capacity of the network are important factors, but this method doesn’t provide
any information regarding the sequence of events in fault chains and their occurrences. Each
approach has its drawbacks. To overcome these drawbacks, a new vulnerability index V2!
is presented that comprises both approaches.

The best way to combine these two indices is to find the product of indices for each line
and use it in criticality ranking. Thus, the impacts of both indices are effectively applied.
Other forms of combination are not suitable. For example, if they combine to form a®, due to
the fraction numbers for b, the result is actually the root of number a, which is diminishing
the impact of a therefore it is not desirable. If they form a + b, due to the range differences

between two indices, the impact of the smaller one will be overlooked. Therefore it is not is
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not a proper combination too. From (3.18) and (2.5);

XFE) ey
225 (5 200 220 fie

Vit = o(Mi) Vi = (3.19)

where M7 is the event occurs on line ¢, which is between buses s and t. Here, to avoid
confusion, the node labels are changed to s and ¢. The new ranking based on V2 index is

shown in Table 3.4.

Table 3.4: Vulnerability Indices and Ranking By New V.I.

Rank | Failure event | V.I. Rank | Failure event | V.I.

1 bl 0.08794 | 11 b9 0.00148
2 b4 0.03562 | 12 b5 0.00145
3 b2 0.01896 | 13 b13 0.00125
4 b8 0.01448 | 14 bl6 0.00112
5 b3 0.00505 | 15 b10 0.00089
6 b7 0.00345 | 16 b14 0.00029
7 b12 0.00288 | 17 b20 0.00028
8 b1l 0.00241 | 18 b15 0.00024
9 b6 0.00231 | 19 b18 0.00020
10 b17 0.00162 | 20 b19 0.00014

In the new ranking, the critical lines are those which carry the higher power flow in the
network and contribute in a larger number of fault chains. Figure 3.4 shows the most critical
lines relative to a sample V.I. threshold. By choosing 0.01 for V.I., lines b1, b4, b2, and b8

are recognized as the most critical lines.
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Figure 3.4: Determining the most critical lines when 0.01 is the V.I. threshold.
Some inferences from these three vulnerability rankings are:
e The critical lines vary by selecting a different V.I. threshold.
e The smaller the V.I. threshold the higher the number of lines recognized as critical.
e The highlighted lines b1, b2, b4, and b8 are recognized as the top 25

e The results from the proposed V.I. are more useful in recognizing the critical lines than

using fault chains or the power flow method alone.

After setting a sample vulnerability index threshold and obtaining the sensitive lines,
these lines must be prioritized in monitoring, operation, and special protection of power

system to prevent the cascade failures [19)].

3.5 Critical Line Protection and Vulnerability Improvement
The most critical lines and components can be protected by:

e Remedial Action Schemes,



38

e Improving cybersecurity associated with relays, SCADA, and PMUS related to these

lines and components, and

e Improving physical security of substations.

Since the most critical lines are involved in the largest number of fault chains, preventing
their failure, dramatically decreases the probability of cascading outages and the whole
system vulnerability improves [14, 19].

Assume the influencing factors for simplicity are the same for all segments in fault chains
and therefore the probability of an event for all segments ¢(7{;;)) will be the same as well.
For example, let the probability of each segment be 0.5. From (3.5), the probability of the
ith fault, qp; , occurring is obtained and from (6), the cascading outages probability Qg is
calculated as 0.92 (Figure 3.5).

This probability is obtained by considering all the possible fault chains (Table 3.1).
However, by applying proper protection and preventing a specific fault chain from occurring,
in the cascading outages probability calculation that fault chain will not be involved and
consequently, the ()¢ probability will be reduced. By providing protection for lines that have
higher gz; and more criticality, the outcome ()5 will be less likely and the system is more
hardened.

If line b4 or bl is protected, for instance via RAS, the vulnerability is improved and the
cascading outages probability Qg is decreased by 27.5% (see Figure 3.5). It is noteworthy
that the smallest fault chain that contains b4 has 2 lines. There are 3 lines in the smallest
fault chain associated with b7 or b2 lines and by protecting these lines the improvement
is 11.2%. By protecting lines that are in a fault chain with 4 lines the improvement will
be 5%. Therefore, the longer the chain that includes the protected line is, the smaller the

vulnerability index improvement will be.
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Figure 3.5: Probability of cascading outages and removal of vulnerable transmission line in
probability calculations

It is obvious that the system security would be greatly improved if a special protection
(e.g. a RAS) is applied to the lines with higher vulnerability indices to better control
the system and prevent cascading failures. The procedure for determining critical lines to

protect with remedial actions schemes to reduce the system vulnerability can be scaled to
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larger systems and will be tested on larger IEEE test cases.

3.6 Conclusion

In this chapter, a new vulnerability indexing approach is proposed to better analyze
and determine the critical transmission lines. Vulnerability assessment of the IEEE 14-bus
test system is performed by using three different approaches and the results are compared
and analyzed. The most critical lines are recognized, and special protection schemes are
considered for these lines. The resultant improvement of the system vulnerability is verified
by studying the cascading outage probability. By protecting the most critical line with the

highest vulnerability, the cascading outage probability is noticeably reduced.
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Chapter 4: A New Method of Securing RAS by Detecting False

Measurement Using Cause and Effect Analysis and Measurement

Consistency

4.1 Introduction

For any power grid, the threat of physical events and cybersecurity events need to be
analyzed. In physical security, the goal is to secure the electric grid against physical attacks.
Similarly, cybersecurity tries to secure the grid against cyber-attacks. Both security events
could lead to disturbances to the electric services and subsequently impact on the public
safety and health, economy, and national security.

Up to now, most physical incidents in the United States and Canada have had relatively
minor consequences. While, cybersecurity events have been increasing [27]. Physical and
cyber threats tend to be different, and demand different approaches to improve, protect and
mitigate. In this project, cyber threats are under focus, and the following are of a high
importance: system monitoring, state estimation, and defense against bad data injection
and false measurement.

Monitoring power grids is necessary to provide system observability. By application of a
proper monitoring system, there is sufficient information to reliably operate the system, and
take proper corrective actions. These actions are based on the estimated state of the system,
which are determined through analyzing measurements and system models. Measurements
might be compromised or falsified by failures or by malicious parties. Therefore, false data
detection techniques must be utilized to detect and replace the false data and provide reliable

information for the RAS and thereby assure a reliable action based upon this data.

A. System Monitoring
System monitoring uses the measurements from Phasor Measurement Units (PMUs) and

the Supervisory Control And Data Acquisitions (SCADA) system in the power grid to collect
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and transfer the required data about the system conditions and thereby assures the reliable
operation of the system. The measurements are normally real and reactive power, and bus
voltages, which are generally provided and preserved by SCADA, and phase angles, which
are estimated or provided by PMUs. This data is used for system analysis and monitoring.

B. State Estimation

In state estimation (SE), by analyzing the data and the power system models, the state
of the system is estimated, and the unknown variables are evaluated. Contingency analysis
uses the SE results and evaluated the possible causes of the operational issues. In order to
prevent these issues, some actions may be taken, and the aftereffect of these actions will
be analyzed. As an example, when a fault happens (such as isolating a system component
or path), the power generation may be increased to maintain the reliable operation of the
system [28]. Power flow modeling is the basis of the SE, which is a set of equations that
illustrate power flow on each line of a grid. Alternating Current (AC) modeling studies
both real and reactive power and formulates them by nonlinear equations. In SE, it is more
common to use an approximated Direct Current (DC) power flow model instead of its AC
model, since it uses linear equations. Thus, the computational expenses are reduced and a
convergence to a solution is guaranteed [28, 29].

C. False or Compromised Measurement Detection

To achieve their goals, attackers may directly manipulate the measurements at the substa-
tion meters or indirectly at the data collectors or computers that store meter measurements.
These bad measurements affect the SE results and reduce the situational awareness. There-
fore, the corrective actions based on this information are not reliable and may result in the
system instability.

We need to develop techniques to first detect them and then fix them or filter them out.

If the attackers know the exact current configuration of the system at the time of attack,
they can bypass almost all existing defense algorithms. Most of these algorithms detect

bad measurements when there is a significant difference between estimated and observed
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data. To consider the worst case with the most sophisticated attackers, by knowing the
system configuration, the attackers can generate bad measurements in a way that the injected
difference is not significant enough to be detected and is not an abrupt change to trigger the
detection techniques [30][31][32].

However, for the following reasons, it is not easy for attackers to practically launch these
attacks. First, because of the regular maintenance and irregular events in power grids,
configurations of these systems alter frequently. Moreover, accessing the control center of
power companies to access such data is nearly impossible to attackers.

Second, to manipulate a specific value, the attackers need to compromise about 10 meters
in most cases in the IEEE 300-bus system [32]. In our work, we use a measurement con-
sistency method on the IEEE 118 bus system. For the area under focus, which only has 10
buses, malicious parties need to compromise at least 50 measurements to inject a single false
data, which is a signal of the effectiveness of our approach. The reason for this is explained
in Section 4.4.

For a successful attack, a malicious party needs to corrupt the following information and

perform the following activities:
e Knowledge of the current system configuration
e Hardware failure or physical attack
e Measurements manipulation
e Communication and data collection interference
e Knowledge of maintenance and operation schedule and procedure

e Knowledge of the most effective parameters to compromise and therefore impose the

most negative impacts

In our method of defense, attackers need to accomplish a higher degree of information

and compromise more meters, therefore it is more reliable. In this chapter, we assess the
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system vulnerability and optimally situate the PMU location using the Unified Approach
and a sufficient set of RAS measurements. Further, we detect and fix the false measurement
based on the proposed method called False Data Detection and Fixing (FDDF). After fixing
measurements, we consider a remedial action scheme (RAS) to reduce the vulnerability of
the system and harden the critical components against intentional attacks.

The rest of this chapter is organized as follows. In Section 4.2, as the primary step,
we consider optimizing PMU locations based on Unified Approach [33] and sufficient RAS
measurements (the idea of locating PMUs in those areas that makes the RAS hardening
possible). In Section 4.3, a new structure for RAS is proposed. The proposed false data de-
tection method is presented in Section 4.4. This section examines and validates the method
through simulation using IEEE 118 test systems. Simulation results are provided to demon-
strate the success of new securing method in filtering out the compromised data. In Section

4.5, we conclude our work.

4.2 Optimized PMU Location

For better system observability, protection and control in the power grid, PMUs are
a promising equipment. PMUSs provide important measurements for the system and are
beginning to play an important role in system monitoring. Due to the high price of PMUs
and their related support systems [34], only specific nodes can be equipped with PMUs.
Therefore, it is very important to maximize the system observability with the minimum
possible number of PMUs. In this project, the results of the approach used in article [33] are
utilized to optimize number and location of PMUs for power system state estimation. This
approach considers the impacts of both existing conventional measurements and PMU loss
possibility into the decision strategy. The PMU location optimization results come directly
from [33].

This approach is called Unified Approach, where the location of PMUs is defined using

binary integer linear programming (BILP). Here, the variable is binary and determines the
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installation requirement for PMUs at each bus. These placements comply with the goal of
maintaining the system observability and minimizing the metering cost.

Using the referred approach, 24 PMUs are required for the IEEE 118 bus system (without
considering PMU loss), with two of them in the area under our focus that will be discussed
in Section in Section 4.4. The added PMUs are on buses 113 and 22. This number of
PMUs make the network observable. A system is observable if the state estimate is able
to determine a specific solution for a set of measurements and specify the network topology
and measurement locations [33].

Reliable data is a significant requirement for a secured RAS. Therefore, we added two
other PMUs to give redundancy for RAS (see Section 4.4). Furthermore, these extra two

PMUs provide additional data for the process of false data detecting and fixing.

4.3 Improved RAS

By knowing the vulnerability of a system, proper actions can be created to improve system
resilience. An effective resilient system is able to presume, adapt to, and rapidly recover from
a disturbing event [5]. One way to accomplish these objectives for a power system is to utilize
a RAS. These schemes have been increasingly used by utilities to mitigate stability problems.
A RAS prevents the power system from experiencing out-of-step conditions that may result
in cascading system-wide outages. The remedial strategies prevent potential cascading events
by applying predetermined corrective plans to the most critical lines.

These corrective and remediation actions are taken based on the received measurements.
False or compromised data can fake or hide an abnormality in the system and mislead the
RAS to take a wrong action and exacerbate a situation with vital failures. Generally, the
important components of RAS structure are measurements, arming conditions, RAS logic,

and the triggering actions (Figure 4.1).
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. Trigger Actions

Figure 4.1: RAS structure without detection logic

To insure proper corrective action from RAS, Bad Data Detection (BDD) techniques can

be used. These techniques verify the output of RAS prior to trigger the actions. (Figure

42).

Arming Conditions

RAS Logic

BDD Logic

Measurements

i
v

Trigger Actions

Figure 4.2: RAS structure with bad data detection (BDD) logic

In our approach, the RAS will not be armed unless the FDDF approves the data and

validates its accuracy. Therefore, actions taken based on this reliable data are reliable as

well. The modified RAS structure is shown in Figure 4.3.

Arming Conditions

FDDF Logic

Measurements — =

RAS Logic

- Trigger Actions

Figure 4.3: The new approach by applying false data and detection logic.
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4.4 Proposed False Data Detecting and Fixing Method

This section includes three subjects. First, measurement consistency is discussed, which
is fundamental to our method of fixing and detecting false data. Then, a case study with the
highlighted zone of focus is presented. The analysis results and extracted logic are included
at the end of this section.

A. Measurement Consistency

A malicious party might manipulate measurements to bypass the state estimator bad
data detection logic or deceive the operators. Here, the measurement consistency check is
used to detect and fix the data at the RAS level. To ensure a reliable action taken by RAS,
providing reliable data is significantly advantageous. In this method, by using Kirchhoff laws,
the measurement from neighborhood buses and lines are used to form a set of logic to verify
if the measured value is false or valid. Here, we have simulated our network using Dynamic
Security Assessment (DSA) tools [35]. Then, we extracted the logic from our measurements
to use it in the process of verifying and fixing false measurements.

B. Case Study on IEEE 118 Bus Test System

In this work, the simulation and case study are done on the 118 IEEE bus test system
(Figure 4.4). Our focus is on the highlighted part of the network which is expanded in

Figure 4.5.



Figure 4.4: Case study IEEE 118 Bus system with the area under focus highlighted.
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C. Analysis Results

The DSA tools (including Powerflow and Short circuit Assessment Tool (PSAT') and Volt-
age Security Assessment Tool (VSAT) packages) are used to apply 43 contingency scenarios
on the system and observe the responses and changes on neighborhood buses and lines. The
analysis results consist 78 parameters for each of the scenarios. The resultant table includes
3354 (43 x 78) measurements (see Appendix A). Table 4.1 shows a small portion of the
analysis results just for explaining purpose. The full results are shown in Appendix A.

As an example, in scenario number 14, Linel (L1) is assumed to have a failure (originally
144.3 MW, changed to 0 MW) and observe the changes in other measurements on other
buses and lines.

D. FDDF Logic

FDDF logic is applied to the measurements (in the area under focus) from the simulation
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Table 4.1: A Small Part of The Result Matrix Related to 10 scenarios for 20 lines in the

Area Under Focus
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results. To make decision based on the measurements, it is crucial to consider the data
reliability. Based on the hardware attack or failure possibilities, two different sets of logic
are applied.

Without considering hardware attack or failure, the logic is shown in Figure 4.6. Here,
we are assuming the measurements as reliable and every single of them can be used to verify
the event. Therefore, the malicious party needs to compromised more measurements to
inject a false event.

For example, suppose that a false measurement is received showing an abnormal voltage
decline on Bus 27. Assume that the malicious purpose is to hide a failure on Generator 1 by
compromising the data to show a voltage decline on Bus 27. As it is shown in Figure 4.6,
to inject this false data, malicious party must compromise 4 different measurements. In this
example, voltage on Bus 27, power of Line 12 and Line 15, and the voltage on Generator 1
bus must be compromised.

By compromising only 3 of these 4 measurements, the attackers will fail. Here, the
injected data (B27-Vdrop) is detected and the real failure (Gel-Vdrop) is extracted. Fur-
thermore, an alarm will be sent to operators to inform them of the compromised data and

as well as the real event.
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If there is a hardware failure or attack on measurements, the measurements are less
reliable. Thus, a false event can be injected by compromising fewer measurements. In this
case, instead of allowing a single measurement to change the decision results, only a set of
measurements can impact the decision. Thus, a voting strategy can be used to decrease
the impact of the false data. In our example, two out of three measurements must verify
the event to allow any decision. Therefore, compromising a single measurement cannot
change the decision. In addition, to inject a specific false input, 3 measurements have to be
compromised.

The voting strategies for two out of three, three out of four, and four out of five are
shown in Figure 4.7, respectively in Part b, Part ¢, and Part d. Part a is the logic gates
related to a simple voting scheme for two of three. Part b, ¢, and d, show a representative

symbol for voting logic for simplicity.

A —
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a. Voting 2 out of 3 logic b. Voting 2 out of 3 ¢. Voting 3 out of 4 ¢. Voting 4 out of 5

Figure 4.7: Voting logic for two of three, three of four, and four out of five measurements.
Part a is the logic gates and Part b, ¢, and d are representative symbols.

For the same example, suppose that a false measurement is received indicating a decline in
voltage on Bus 27. Assume that the malicious purpose is to hide a failure on Generator 1 by
compromising the measurements to show a voltage decline on Bus 27. As shown in Figure 4.6,
to inject this false data, malicious party must compromise three different measurements. In
this example, three of the following must be compromised to inject a false measurement;
voltage on Bus 27, power of Line 12 and Line 15, and the voltage on Generatorl.

By compromising only two of these four measurements, the attackers will fail. Here,
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the injected data (B27-Vdrop) is detected and the real failure (Gel-Vdrop) is extracted.
Furthermore, an alarm will be sent to operators to inform them of the compromised data as

well as the real event.

4.5 Conclusion

In this chapter, state estimation and bad data detection are briefly reviewed, and two
types of remedial action scheme structures are listed and a new structure is presented. A
false data detection and correction method is proposed, and it is tested on the IEEE 118 bus
system. The system is simulated using DSA tools and the results are used to extract the
required logic for new detection method. The false data is detected and fixed. Furthermore,
in case of detecting a false measurement, the operators are informed about the injected data

and the real event.
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Chapter 5: Summary, Conclusions, and Future work

5.1 Summary

The risk of cascading outages and cascading failures in power grids can arise due to
vulnerable transmission lines and lack of proper remediation techniques after recognizing
the failures. Therefore, under fault conditions, other disturbances, and cyber or physical
attacks, the resiliency of the power grid could be severely jeopardized.

A commonly used solution to improve operational security is to recognize the critical
lines or generators and use remedial action schemes to reduce vulnerability and maintain the
system operational security.

The RAS takes corrective actions based on the input data. As a result, these data need
to be very reliable. One way to insure the data is not false or compromised is to detect bad
data and fix it.

In our work, we used power flow—based method and fault chain theory to determine
the critical lines. Furthermore, a new vulnerability index is presented to identify the most
critical lines more efficiently. We consider applying RAS on these critical lines and measure
the improvement in vulnerability after applying the RAS. The effectiveness of the new index
and the impact of the applied RAS is illustrated on the IEEE 14 bus and IEEE 9 bus
systems. Moreover, the probability of large—scale blackout before and after applying RAS is
calculated and the improvement is showed. To verify the measurement to RAS and insure
its right corrective action, a new false data detection and fixing (FDDF') method is proposed.

The method is examined by IEEE 118 bus system and the results are demonstrated.

5.2 Conclusions

In this thesis, the accomplishments can be outlined as the followings:

e Assessed the system vulnerability before and after applying RAS

e Demonstrated resiliency improvement (40%) by considering a simple RAS
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Proposed a way to assess vulnerability indices to better recognition of critical lines

Analyzed effects of applying RAS on these lines

[lustrated resulting decline (27.5%) in the probability of a failure cascading to a black-

out

Analyzed the IEEE 118 bus system for 43 contingency scenarios and for 87 parameters

Offered FDDF, which is a new method of detecting and fixing false data

5.3 Future work

Some topics meriting further study are listed below, and a short description is provided
for each suggestion.

A. Compare additional vulnerability analysis methods and try to rank and categorize the
methods.

There are several assessment methods available to assess the power system vulnerability.
For a given power system, each approach has its own criticality ranking and determines a
specific set of components as critical. This is confusing and causes researchers or power
system planners to mistake the criticality ranking of system components. Therefore, study
of all available common vulnerability assessment approaches and comparing them would be
useful in determining the best assessment method for each application. Having a list of
methods with their limits and merits can a valuable guidance to select the proper method
of analysis.

B. Integrate the fault chain theory with the false data detection.

The fault chain theory determines the next line with the highest probability to fail. Thus,
the measurement of the next line to fail can be used to verify if the previous line is actually

failed or the data was compromised. This is another level of detection logic that can be
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integrated with the bad data detection logic to further validate the results of the detection
methods.

C. Define Proper RAS schemes related to the extracted fived data from FDDF.

A new detecting and fixing method was proposed to provide more reliable data as RAS
input. The RAS related to each scenario can be defined and the number of RAS schemes
can be optimized by finding the common action requirements in each scenario.

D. Fvaluate the FDDF by applying random contingencies and observe the results.

To evaluate the False Data Detecting and Fixing (FDDF) method, random contingencies
can be applied to the logic and observe the final output of the FDDF. Then, compare the
result and the applied contingency to verify if they are the same. If they are not, the FDDF
is not properly built and the logic must be modified.

E. Extract the FDDEF logic for the whole IEEE 118 bus system.

The case study in Chapter 4 was on the IEEE 118 bus system. We focused on an area
with 10 buses and recorded the results for this area. The extracted logic is also related to
the focus area. The same method can be applied to the whole 118 bus system and try to
optimize the detecting and fixing logic and minimize the RAS actions needed to secure the

system and reduce the cost and complexity.
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Appendix A: The full results from DSA tools for IEEE 118 bus

system

The results are specific to the area under the focus of this project. It includes 43 scenarios

for 78 parameters.
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BT 51
397 B
10.45 1267
-104 24
532 9z
i] 251
=347 i
1655 10.74
2493 159
146 0.m

20

220
-9
7
1]
14
-B
50.55
558
2996
-2
1316
234
143m
-154.02
2391
14.11
-5
-47.43
2337
-213
-33.26
-7.7h
14.66
285
124
4975
3225
7.96
1]
15.43
7.39

20.83
30.04
-29.m
547
-20.5
-h.67
-0.56
-8.14
1308
E.54
7.64
B3
7.55
513
-3.41
-10.66
-13.61
1]
0.49
-117

21

220
-9
7
i
1
3
B0L.1
826
3104
-14
12.34
75
E.09
156,51
5613
7.04
5613
-45 56
22743
-39
-3145
-0.64
3018
12.43
£.25
32.05
14.64
422
-3288
0
8

8651
3013
-27.84
213
-17.75
-6.04
-112
-313
14.23
5.86
551
873
1194
118
-0.44
-B.36
-8.41
158
1]
-3

22

220
-9
7
i
M
3
5041
4.24
3278
-14
12.41
773
456
-157.43
57.06
&51
5612
45 55
228005
-3.41
-3144
-0.32
2209
12.39
1158
33.41
.18
7.4
-3158
am

25.85
3009
-27 87
278
-136
-5.98
-108
-3.04
13.67
5.92
5.36
5B
.96
116
-0.69
-B.7
-8.78
12.34
153
0

23

220
-3

I
-6
7208
-2.95
3279
-14
8.38
8.65
ME?
-106.36
7353
-15.54
-1.07
-30.85
31399
-21.83
-6.4
2213
14.04
I

2261
5.51
-85
-18.13
16.05
2.0

30.03
-41.02
7.54
-6
-9
-53
8.38
2223
087
-2.34
5.7
5.21
412
146
-3.33
-h.82
74
106
-0




Parameters Scenarios

Parameters Orienal
Mo, Frem To Label g 14 15 16 7 18 19 20 21 22 23
tranzformer 52 L1
reactive 2145 20,31 2141 2142 2129 2137 2149 2131 2147 2145 ]
53 21 049578 | 09543 09577 09577 049573 09576 09578 09573 059573 09573 09676
54 22 049637 | 09643 09686 09636 09633 09635 09633 09633 0969 09683 0.973
[21] 23 09934 | 09943 093392 09992 09992 099393 09934 (09934 09997 099394 1.001
513 25 105 105 105 105 105 105 105 105 105 105 105
i) 26 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015
voltage Lot 27 0958 | 0968 0988 0968 0968 0968 05968 05968 0968 0968 0.968
Mmagnitude o] 28 096 | 09611 0961 09675 0949 09591 09514 09613 09616 09676 096575
E0 29 049632 | 09625 09633 09633 049593 0963 09421 09633 09632 09632 0.963
B1 il 0967 | 0567 0967 05967 0967 0967 0567 05967 0967 0567 0.967
B2 32 049634 | 05963 0963 0563 09631 09633 09634 0563 09643 09637 0.9641
B3 13 0933 | 0593 0933 05933 05933 0933 0533 05933 0993 0553 0.993
B4 14 089603 | 09557 05528 05601 05601 059E03 09603 05601 09552 0961 09607
ES 15 09602 | 0985397 09515 0.96 096 09602 09603 095 059857 095394 0.9606
ER 21 1056247 | 96241 10E0  D5E 104875 10525 105122 105734 105255 105253 93604
E7 22 132609 | 1258952 132361 132513 133019 132998 1323 134298 132605 132612 111401
Ed 23 1B.4BE5 | 181854 184338 18456 18.6301 185658 184068 188225 184628 18.4BE2 14.8406
E9 25 257642 | 286969 25254E 252553 264283 253139 2508 253541 2B 2557 19.1707
Kl 26 Z268RV1| 292338 2E.9218 265283 27003 269504 ZEB00T 269473 2E.8175 268513 33,3933
71 27 125154 | 28355 12975 129299 135283 130385 122504 128266 122957 124843 95775
voltage angle 72 28 Iov481| 27064 110134 100939 BF3 122126 10619 100782 106153 107296 84766
73 29 97081 | 34948 97696 97766 VFEROS 86968 8.YR95 B1BE1 96722 97038 8.0528
74 il 9808 | 424458 87345 98TE B4322 9161 100346 FAH0E3  9.8067 9,807 8.3934
7a 32 T1.9BE5 | BaRd7 117443 173 121223 120674 18022 1285635 120353 119762 96483
Th 113 W0E018 | 83594 105531 105715 103344 1052  0E271 104695 10617 106046 11.2514
77 114 TE346 | 40373 1EFIE 17075 121813 19131 14858 122793 109806 11692 9,056

78 M5 ME267 | 3FFM 10533 NN 122043 MA355 0 M4635 0 1223 10037 115403 3.0037




Parameters Scenarios
Parameters Orienal
Mo, From To Label g 24 25 26 27 28 29 30 k] 32
1 Gel 220 220 220 220 220 220 220 220 220 220
2 Ge? -9 -9 -9 -9 -9 -9 -9 -9 -9 -9
Generator 3 Gel 7 7 7 7 7 7 7 7 7 7
active 4 Ged I i 0 i 0 I i 0 i 0
A Geb KL 4 4 4 4 34 34 4 4 4
E Geb -B -E -E -B -E -E -6 -B -B -B
7 Gel B04E 16.859 B0.45 A05 45,49 46,21 a4 4218 4917 A0 45
a Ge2 8.29 23.07 14.64 197 356 345 29,54 078 392 336
Generator | 9 Gel 3323 | 3273 3303 3288 32H3 32439 4185 3 327 31592
reactive 10 Ged -4 -3.07 16.56 077 -14 -4 £.23 -14 -14 -14
1 Geh  B2E1 28,35 15.75 1275 1.2 15.47 A 12.26 4.4 12.07
12 Geb 702 9.37 7B -4 26 932 893 388 76 873 13.87
1328 27 11 4431 | 22005 19283 4279 14FEE WESE 23358 14383 MWEZ22 14422
14 23 25 L1 -157.58 a 9173 -BEFT 13231 -13683  -287.E7 -B02S -14302 15751
B 23 32 L2 9722 177 0 9421 T3 151 147.29 965 0947 9712
B 32 13 L3 E.42 -fB3 -20.07 i 17.85 1581 BR.75 5.85 1287 E.13
722 23 L@ -Be12 | 275 -85 -BEEY 0 -10 94 43 -BBEE 2403 BET3
1B 2 22 Lk -4564 | 1743 -B0939 4638 1002 I 8272 4522 14039 -4RER
19 26 30 L% 2280 | 313595 24786 23051 2513 2472 i 22597 24145 22813
200 23 24 L% -39 | -3F9E 0 T0B -31 E.31 483 3506 Il 238 -3.89
franzmizzion 21 20 21 L1 44 | 342 4654 -32B 248 14.05 EV.EY  -3102 i -31.44
line active 22 17 113 L1 -0.22 13.685 26,46 3 -4 941 -BR04 0.35 -6.E 0
pioEr 23 27 18 L2 2072 | 4203 3623 20.M 2048 20R2 3812 2068  20R9 2069
24 17 3 L20 12.38 2265 a7 967 0.76 283 -49.42 0 1299 578 1235
28027 32 L3 12.43 5224 4143 2 12.02 12.09 44 94 12.3 12.25 12.44
260 27 28 L4 3364 4017 3292 322 373 3BEF 0 B294 3339 3B¥4 3364
27028 29 LA 1641 2285 w7 16.98 20.05 19.4 4513 1616 18.47 16.41
28 29 3 LR AT -13 -8.37 -7 -4.06 -4 2056 =792 A B3 -7 E7
29 3N 32 L7 N47 | -14.98 -8 -3362  -3945 -3803 -BEYI O -3 -ZREE -3E2
n 32 14 Le 937 -1.68 -85 10,08 961 957 -7.e4 942 95 94
A 14 15 LA 136 -18.71 -14 207 16 166 -15.85 14 149 139
transforrmer 3 L1
active 85,85 0.06 EE.14 8343  B2R9 BG.5 3416 8808 F2EE  A5E9
3328 27 1 3008 | 3IwBHT 3 2004 30,718 A6 3977 30,068 013 30.08
323 2\ LN -27.9 1] -3786 0 2823 -2843 -2909  WhHE -8R -3029 0 -27.92
/23 32 L2 394 784 I 4 E1 4493 481 -9.45 i 3E8 396
I/ 3F32 NI L3 1826 | <1429 1022 i 2112 -20E1 A0ER  -17E2 0 -20001 -18.2
22 23 L4 597 -742 5.2 -5.84 0 -5 075 -8 -85 -5A7
| A 2 LB -1.05 -4.33 147 0.84 306 1] 1.28 -2.44 -8.01 -1.058
3\ 26 30 Lk -9.02 817 519 -8.63 -4 B4 -5.48 i -9.28 -6.61 -9.35
a0 23 24 L©7 1354 | 1682 2496 13719 2144 2014 -1B.33 0 15.51 13.54
transmizzion 41 20 21 L18 33 172 951 E.18 989 B.34 2225 448 i R.493
linereactive 42 17 113 L1 B33 -0.3 -1.87 162 76 T2 525 523 B.EE 0
power 43 27 1B L2 473 12 217 b 4 61 462 185 394 483 479
44 17 3 L20 .96 8.82 BA7 1278 16.22 14.63 3007 1.8 13.79 12.48
45 27 32 L3 126 -9.12 -6.31 2715 0.96 097 -7.23 -0.33 135 127
46 27 28 L4 -0.73 -119 0.6 -0.84 -141 -129 512 -0.63 -112 -0.73
47 28 23 LA -B.7E -8.36 -6.58 -6.9 -7E7 L] -13.74 -BE9 B -6.76
48 29 31 LR -886 | -0V4 -BER -9.02 -9.92 = A I P R = A -3.46 -8.86
49 N 32 L7 12,55 745 b6 13.69 1] 14.52 2592 116 14.13 12.56
A0 32 114 LA 2.04 £.79 535 162 222 221 h82 2.88 2 204
51 14 1B L9 043 7 38 Q.08 0.66 065 425 132 045 048




Parameters Scenarios
Parameters

Ho. From To Label CREBALl og 25 26 27 28 29 30 7 32 332
transforrer 52 L10

reactive 2145 | 2018 2083 2138 2086 2095 3721 2152 2109 2144 2159
53 21 09578 | 09527 09867 09576 09208 (9335 (9377 09809 09674 09572 0.9501

54 27 00687 | 09599 00694 09685 09139 09954 09475 0973 09774 096557 (09691
55 73 09994 | 09799 10069 09932 10046 10037 085302 10054 10002 09934 0.9993

5 25 105 | 108 108 105 105 105 105 108 108 108 108

57 25 101 | 1018 106 1018 1015 1015 1068 106 101 10s | 101

voltage B 27 0968 | 0968 0958 098 093 0968 0958 (0958 (5958 0958 0968
moontde 59 25 09616 | 09515 0956 0956 0951 095 09508 0969 0966 005K 09515
E0 29 09632 | 09533 096532 09637 09637 09633 09633 009532 09533 09632 09633

Bl 31 0867 | D957 0967 0967 0967 0957 0957 0957 0957 0967 0967
E2 37 009634 | 0853 0953 0963 09677 006% 0953 00647 09534 09534 09632

g2 13 0993 | 0993 0992 (993 0593 0992 0993 0937 0992 0993 0593
B4 114 09602 | 09599 095 09601 09805 09605 09593 0857 09602 09602 0.9602

E5 15 09602 | 09598 09599 055 09504 09604 09593 00603 09502 09502 09601
B5 1 105247 | BIME 09566 15EE4 10355 27873 TIE443 10.0726 BE722 105293 104675
&7 27 132600 | 973295 ME4E2 133506 0478 192483 160993 27445 TFE1E 132670 131092
E2 23 18.4BES | 118773 213026 186312 204048 201013 262558 17.8258 196705 184721 181554
= 25 251642 | 342295 250005 252903 259505 258521 391565 246698 256969 2516E5  24.9071
70 25 Z65.8571| 3427906 263046 260371 271866 27.06T 453623 264068 271276 250561 266925

71 o7 125154 | 14456 7793 127842 129952 129535 181 12066 128694 125758 119101

voltage angle 72 20 07481 | 123306 B.O0E52 10985 TI0249 TIOM9E 147344 0325 09869 10.7583  9.9291
73 29 07081 | 0894 50592 99095 97585 0794 TI9133 92878 98187 a7l BESI3
74 71 9808 | 108491 51847 09957 9778 9E2FE 113791 9383 9873 9818 D.EEET
75 32 TI96ER | 119151 E.7942 123074 124642 124132 50249 115043 23327 fLOF9R 13002
75 13 008 | 124125 70475 103955 96042 98768 BA491 02377 01184 106445 107041
77 14 TLEME | 124214 EBO0723 11945 21243 20813 E2773 TLWE5 119956 TIG4E5 110402




Parameters Scenarios
Parameters Orienal
Mo From To Label — © 3 3% 3% 37 38 39
1 Gel 220 220 220 220 220 220 220
2 Ged -3 -9 -9 -9 -9 -9 -3
Gererator 3 Ge3 7 7 7 7 7 7 7
active 4 Ged I] 0 I] 0 I] 1] 0
5 Ge5 4 4 k) 4 4 4 4
B GeR -B -E -k -b -& -b -&
7 Gel 5046 | 48899 4993 4987 4949 4672 BO.04
8 Ge? 829 | -283 -4 -0.22 077 Se43 083
Generator 9 Ged 3323 | 3239 274 2259 -am 2282 3BT
reactive 10 Ged -11.9 -14 -14 -4 -14 -4 -14
1 Geh 52Kl 1357 1259 125 125 131 1262
12 Geh 702 a1 .12 a.22 859 445 7.B2
1328 27 L1 4431 | 12289 12947 0 1284 13615 13191 M2
14 23 25 L1 -1B758 | -1B433 -1B915  -1/9.34 -BO43 -1B82 -1BE08
w23 032 L1200 9722 | 794 9237 9038 BeO04 TR 9453
B 32 N3 Li3 E.42 17.52 91 965 .82 2014 an
7 22 23 L@ -BE12 | B8 -BEB3 -BE45 -BERS -BB13 -BEM
7 M 22 Lk -4564 | -47EE 4605 4557 460 47 AR 4552
19 26 30 L6 22875 | 24285 23135 2348 23334 23889 22979
20 23 24 L1 -391 1314 208 4,36 10,69 17.29 -1
tranzrmiszion 21 20 21 L8 3144 | -3344 3183 -3175 0 3185 3344 A
lime active 22 17 113 L1 -0.22 -1.21 -29 -345 0 -BBZ 137 -19
power 23 27 1B L2 2072 | 396 2257 2145 2084 B3R 17 61
24 17 3 L2000 1238 -129 71 27 -B.25 -0E3 1089
25 27 32 L3 1243 | 3339 1|82 1383 1268 a3 12.92
26 27 28 L4 F364 | 4333 2384 ZBEVS A8 3RE3 0 3432
2728 29 LA 1641 25493 2376 965 a7 w27 1708
28 29 H Lk -7 BV 172 -0.39 964 -1h28  -BE2 B
29 3 32 L7 -347 | -3BE4 22983 24060 1825 42630 -3289
30032 14 Le 937 -177 A3 a.64 925 1373 4.45
AN 114 15 LA 136 -9.77 043 063 124 5B 4.44
transforrmer I3 L1
active gh85 | 7145 B2ER 8252 BOBE  7EM a4
33028 27 L 008 | 2985 2996 2995 2949 2986 3002
M o232 L 279 | A e 27T -2RRE 2450 -2V 4R
/23 32 L2 3194 B2 4.68 5 508 043 282
3B 32 M3 L1 1826 | -2103  -1853 0 -1903 1854 1R 6 -8
aF 22 23 L -B.97 -h.E8 5.92 -BAR R9E -B.12 -B97
| AN 2 Lk -1.05 -0.55 -0.95 -1 -1 -1 -1.02
326 30 Lk -9.02 -7.45 BT -8.85 88 -A05 888
A0 23 24 LT7 13.54 8.0v 1212 1165 10.22 12.64 1218
transmiszion 41 20 21 L12 a3 E.5G B.04 B E.01 E.09 Ra7
line reactive 42 17 113 L19 533 757 585 585 £.05 8,35 5.71
poweer 43 27 15 L2 479 243 432 448 45 -l22 281
4 17 H L2 M96 1587 1345 147 1749 1BEE 1245
45 27 32 L3 126 51 006 0.55 0&e -9.32 ooz
46 27 28 L4 073 -2 42 555 125 07 -108 -0.86
47 28 29 LA -B. 7B -912 -4.08 689 482 Er e s
48 29 3 LA -8.86 167 -B4d2 -4.8 -B.7 -9.4 -9.05
49 3 32 L7 12.55 1365 173 979 673 616 12.08
B0 32 14 LA\ 204 4.83 255 236 234 793 086
514 15 LA 043 il | 102 naz 0re B34 236




Parameters Scenarios
Parameters

No. From To Label OERal g4 15 36 37 18 39 40 41 42 43
tram=farmmer o L1
reactive 2145 | 2108 213 2135 213 2B 24 232 242 241 214
53 21 09578 | 09574 09577 095/8 09578 09584 09578 09578 05723 09638 09581
54 20 09657 | 09684 09687 (9688 09689 09599 09688 09683 09732 09777 (L9693
55 73 09994 | 09995 09995 09995 09997 10098 09995 03999 1000 10005 10005
55 5 108 | 105 105 | 105 105 108 105 105 108 105 10&
57 5 106 | 10® 10 10| 10 10m 1015 1ms 1016 101 107
voltage 58 27 098 | 0988 098 098 092 098 098 098 098 0968 0969
megritde 53 25 095 | 09615 09675 09632 O095% 0956 0956 0966 09566 09656 0956
ED 29 09637 | 09633 09643 09FEE 09631 09R37 09R37 09633 09637 09632 09632
Bl 1 097 | 0957 097 097 097 0957 097 0957 097 0967 0967
B2 52 09634 | 09638 09636 0953 09638 08737 09643 009653 09637 009637 09636
&3 13 0993 | 0993 0993 0993 0993 0933 0993 0992 0993 0992 0993
B4 T4 00503 | 09605 00604 09505 09605 09564 09626 09653 (9605 09605 0.9604
E5 15 D9E02 | 09603 09603 09504 09604 09655 09672 09658 (9604 09604 (196032
BE 21 105247 | 4399 TLET4S 121492 134129 144941 1071 120131 123959 116324 11.0002
E7 o5 132609 | 75065 14.4363 149052 51743 173472 138235 M7I45 47E0D 145435 137759
E9 73 184665 | 229758 196912 204T 214185 227264 190539 200E9 194195 19207 19044
E3 o5 251647 (209293 264527 26922 202508 295085 5776 JGEIEZ JE0A7 250437 25 G628
70 9F  ZEORFI| II\F 2808924 28543 290413 309894 27 4364 ZRAMT 27759 275075 27 319
71 57 12504 [19.2066 142966 147572 63658 8021 133305 47628 134604 132015 130085
voltage angle | 72 25 07481 | 16983 129564 133463 GOZE3 BMIE 115258 128306 116923 114279 1123
73 29 97081 (153586 115384 127026 144627 14954 104442 1172 NESZE 1038 101774
74 31 9808 | 52485 L5053 24778 MFMS 50527 05292 72 107524 104784 102728
75 T TI9EES | WE7Y 125318 W41IE1 BAODT R4 T27ME M08 129139 126547 124617
75 113 NEDS | 148623 TLAG4 123504 137323 WPE 1973 121563 115351 112348 110066
77 fi4  TIE34E | 777927 13274 138347 B47ER 73022 125303 42005 2EAN 12322 12179
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