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Abstract 

  

 Land Use and Land Change (LULC) and climate variability are significant elements of 

the integrated water resources management to deal with water quality and quantity at the rural 

and urban interface. Adaptive strategies to develop sustainable water resources, therefore, are 

necessary to evaluate the water resources system in a changing global environment. In this 

dissertation, a series of analytical processes are implemented. First, gap filling processes are 

conducted by identifying a threshold of missing levels using daily precipitation series. The 

result indicates that about 15 % missing level of data is plausible to construct daily 

precipitation series for further hydrological analysis when the Gamma Distribution Function 

(GDF) is used as an estimation method. It is expected that such a finding can contribute to gap 

filling guidelines in the field, especially for water managers and hydrologists to take 

advantage of skillful estimates for missing daily precipitation data. Specifically, a gamma 

distribution function with statistical correlation (GSC) coupled with cluster analysis (CA) is 

used to estimate daily precipitation records and the result shows that GSC/CA outperformed 

other gap filling methods when rain and no-rain conditions are applied in the study area. 

Additionally, the dissertation identifies how Hydrological Simulation Program-Fortran 

(HSPF) model can improve performance depending on different sizes of watershed 

discretization levels within rainfall-runoff modeling settings. All simulations at different 

discretization levels above approximately 23% of the basin size resulted in satisfactory 

performances. However, the modeling performances are limited when the catchment size 

reaches below 8.18% of the basin size, regardless of automatic calibration efforts. The result 

indicates that basin discretization at finer scales does not necessarily improve HSPF 

simulation results with Next-Generation Radar (NEXRAD) inputs.  

 Computer parallelism and spatio-temporal analysis is another avenue in this 

dissertation in the sense that the proposed method can advance hydrological simulations using 

HSPF along with different calibration scenarios. Thus, the result indicates that computer 

parallelism could save computation time up to 90%, while simulation improvement is 

achieved by 81%. This finding, therefore, will provide useful insights for hydrologists to 

design and set up their hydrological modeling exercises in a changing climate. As part of this 
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dissertation, the evaluation of potential changes in water quality and quantity associated 

hydrologic changes in response to climate and LULC changes is also investigated. For 

example, HSPF model based on future LULC changes associated with climate scenarios was 

applied to generate climate-induced streamflow and to evaluate water quality in the Boise 

River Watershed (BRW). The result shows that the combined impact of LULC changes and 

climate variability on the BRW is inevitable, but seasonal variations in streamflow and water 

quality are primarily noticeable. This finding may provide useful information to develop 

sustainable water resources management when both water quality and quantity is an issue at 

the snow dominated watershed in a changing climate.  

 Lastly, under the circumstance: increasing concerns on water quality associated with 

LULC changes and climate variability, identification of critical hot spots (CHSs) and the 

implementation of mitigation activities using low impact development (LID)/Best 

Management Practices (BMPs) is a critical exercise to improve water quality at the BRW. 

Based on preliminary environmental analysis using different methods, load per sub-area index 

(LPSAI) is selected as the most cost-effective method because it can reduce the average 

pollutant loads at the watershed outlet while minimizing cost.     
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CHAPTER 1. INTRODUCTION 

 

1.1. Overview  

An integrated water resources management (IWRM) associated with water quality and 

quantity is a critical exercise to promote environmental stewardship in the rural and urban 

interface. Water pollution induced by point source (PS) and nonpoint source (NPS) is a 

significant challenge for urban sustainability in the 21st century.  PS pollutants have been 

managed by sewage disposal facilities and drainage system, but NPS pollutions are not fully 

understood in the sense that the heterogeneous discharge distribution and embedded 

uncertainty can often limit the ability to monitor, predict, and manage such pollutants, 

especially during intermittent rainfall. NPS load is mainly responsible for the negative effects 

of waterways associated with water pollution and degradation of ecological functions by a 

concern with secondary environmental issues such as eutrophication on waterways.  

As US.EPA (2009) indicated that the approximately 60 percent of NPS load is 

contributed from agricultural areas, NPS resulted in significant water concerns across the 

States (US.EPA, 2005a). Additionally, urbanization and climate changes are other drivers 

contributing to regional water quality and quantity issues. Since Land Use and Land Cover 

(LULC) changes driven by urbanization and economic development are inevitable, hydrologic 

characteristics and NPS concerns are of great interest in water resources management in the 

rural-urban interface, such as the Boise River Watershed (BRW). Urbanization increases 

impervious land as opposed to pervious land segments, resulting in baseflow reduction and 

flow augmentation during peak flows, frequent flash flood, stream degradation, and soil 

erosion. Especially, soil erosion and NPS loads by abrupt surface runoff in the impervious 
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land can be the reason for degradation of watershed hydrology and water quality standard in 

many waterways in the United States (US). Several studies have been conducted to 

investigate the variation of water quality and quantity for urbanization effects (Ding et al., 

2015; Jarvie et al., 2002; Sliva and Williams, 2001; Tu and Xia, 2006). However, most studies 

using future LULC products are not clearly formulated to address regional water resources 

conditions because the existing information is too coarse to characterize land use attributes 

(Hurtt et al., 2011; Strengers et al., 2004) and the limited LULC classes (US.EPA, 2005b) 

within modeling settings. Sohl et al. (2014) developed annual future LULC data with high 

spatial resolution (250 m by 250 m) using the FOREcasting SCEnarios of Land-use change 

(FORE-SCE) model. The advantage of annual future LULC data is to provide the ability for 

analyzing carbon and greenhouse gas fluxes, and to improve the simulation of forestry 

activity as it classifies 12 land use categories.  Multiple emission scenarios for the variations 

of future LULC data, therefore, are critical to assessing uncertainties embedded in the future 

prediction of landscape changes.  Note that this LULC can also be utilized to simulate 

hydrologic change, ecological processes, biodiversity, and water variability in regional 

watersheds. 

Climate change is another challenge for the water resources management since it in 

hydrologic context drives various negative effects on the water quality and quantity. 

According to the Intergovernmental Panel on Climate Change (IPCC) report (2013), mean 

annual temperature of the United States (US) will increase within the range of 1.2 to 4.5 °C 

by 2100. The increase in mean air temperature is expected to impact of snow accumulation 

and snow melting timing as a result of change in seasonal streamflow and precipitation 

pattern in mountainous areas. For example, the increase in winter and spring air temperature 
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influences the precipitation falling like the rain versus snow. Also, this results in increasing 

snowmelt runoff in spring and early summer, and declining the streamflow of the remainder 

of the year.  Consequently, such changes will become more problematic of future water 

shortage and management in the watersheds. Numerous studies have been conducted to 

identify and analyze the variation of water quality impacts from climate change (Marshall and 

Randhir, 2008; Shamir et al., 2015; Tong et al., 2012; Wilson and Weng, 2011). However, 

few studies have been conducted for future climate change associated with potential LULC 

change induced by urbanization.  An appropriate adaptation strategy for sustainable water 

management will be needed to identify the system vulnerability across a range of future 

conditions using spatial-temporal analysis in the regional watershed. Thus, several Global 

Climate Models (GCMs) should be assessed along with various emission scenarios (RCP26, 

RCP45, and RCP85) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). It is 

necessary to define which GCMs can simulate best for the climate of a particular region, and 

hence hydroclimatic conditions. A further investigation will be made through this research 

activity to cross-validate the best hydroclimate scenarios representing local conditions in the 

study area.  

The assessment of long-term hydrologic impacts associated with climate and LULC 

changes will be useful information to manage and improve water quality as well. To improve 

hydrological simulations, therefore, we will consider several elements. The observed 

environmental data series (e.g. daily precipitation) are affected by the performance of 

hydrologic models, but incomplete precipitation data are prevalent and inevitable due to 

erroneous reality associated with the deformation of the wind field, clogging, and electronical 

malfunction at the weather station especially in complex terrain. Therefore, missing data 
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within the proper missing levels are often filled with adequate values through good estimation 

processes for further environmental modeling and applications. The threshold of basin 

discretization will be determined to improve overall modeling performances that represents a 

proper catchment delineation level for their own applications. For high-resolution data and the 

application of many model parameters, computer parallelism will be used to improve 

hydrological simulation, thereby minimizing simulation/calibration efforts and computational 

costs.  

Another addition to improving water resources management is to develop a decision 

support tool using system-based optimizing watershed management tool. It is important to 

identify ‘hotspots’ associated with problematic water quality and quantity, and to select 

workable Low Impact Development (LID) / Best Management Practices (BMPs) in the study 

area using multi-criteria approaches. Zhao et al. (2013) noted that there are challenges to 

identify, target, and alleviate NPS pollution loads due to their inherent randomness. For the 

decision makers and/or watershed manager, it is significant to identify vulnerable areas 

(hotspots) with concentrating management practices (Zhou and Gao, 2011).  Much previous 

research reported the decision support tool is critical to manage natural resources (McIntosh et 

al., 2011; Panagopoulos et al., 2012), policy support (Van Delden et al., 2011), and urban 

water management (Aulinas et al., 2011; Price, 2011). Throughout preliminary data analysis 

processes, including gap filling and rainfall estimation, hydrological simulations are made to 

be routed into a decision support tool to evaluate best management alternatives ultimately for 

water policy makers and local stakeholders.  
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1.2. Research objectives 

1.2.1. Climate data analysis 

• Develop the control guideline of missing levels in an analytical framework 

• Identify a proper level of missing values by enhancing the existing estimation method 

for gap filling 

• Develop a heuristic gap filling method for improving the existing interpolation 

methods.   

• Evaluate and the estimation accuracy for gap filling methods along with cluster 

analysis, and 

• Compare the estimation performance of gap filling methods based on statistical 

measure and skill scores.  

1.2.2. Hydrologic simulations  

• Incorporate high-performance computing and complex geophysical modeling 

framework. 

• Verity how the model responds to independent data periods using cross-validation 

techniques. 

• Determine the proper catchment size for optimal basin discretization for optimal 

basins scale modeling 

• Improve hydrologic model performance to better characterize impacts of climate 

change and urbanization on local hydrology, 

• Enhance model calibration processes using computer parallelism, thereby minimizing 

efforts and operational costs, and 

• Evaluate system performances based on parallelized parameter sets. 
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1.2.3. LULC and climate outlook 

• Select optimal GCMs and evaluate the better represent local hydroclimate 

consequences in the study area, 

• Compare and evaluate the existing downscaling methods and suggest guidelines to 

minimize uncertainties, 

• Evaluate the variation of future LULC and climate in the study area related on, 

• Determine the impacts of water quality and quantity by urbanization and climate 

change, and 

• Evaluate the effects of the water quality and quantity by considering future LULC 

condition coupled with climate change. 

1.2.4. Optimal selection for water management alternatives 

• Develop system-based Optimizing Watershed Management Tool (OWMT), 

• Determine and define the hotspots by urbanization and climate change based on water 

quality and geographic information, 

• Improve water quality and quantity by applying LID/BMPs at hotspots, and 

• Evaluate management alternatives to provide useful insights for the stakeholder group. 

 

1.3. Outline of the dissertation  

 This dissertation is organized as follows. Chapter 2 presents the proper missing level 

of precipitation data as a threshold for the existing gap filling process in daily precipitation. 

Autoregressive (AR) model is used to generate time series of daily precipitation for gap filling 

processes. Gamma distribution function (GDF) is explained and used along with statistical 

tests and analysis to determine a threshold of missing values. Chapter 3 addresses a heuristic 



7 
 

 
 

gap filling method termed “gamma distribution function with statistical correlation (GSC) 

coupled with cluster analysis (CA). The proposed method is discussed along with 

mathematical formula of the existing gap filling methods, such as Gauge Mean Estimator 

(GME), Inverse Distance Weight (IDW), and Ordinary Kriging (OK) followed by 

performance measures using skill scores. Chapter 4 includes threshold of basin discretization 

levels for Hydrological simulation FORTRAN-Program (HSPF). Hydrological model 

procedures such as basin delineation and calibration efforts are discussed along with 

fundamental statistics to evaluate model performance. A comparative analysis of model 

performance at different catchment sizes is discussed to determine the threshold of the basin 

discretization levels. Chapter 5 presents HSPF simulation in computer parallelism. In this 

chapter, the originality of calibration strategies with computer parallelism in a Linux cluster is 

highlighted. We also describe the construction of the cluster framework and compiling 

process in parallel computing platforms.  Parallelized calibration and different calibration 

scenarios are discussed to evaluate computer parallelism and HSPF model performance. 

Chapter 6 addresses the variations of water quality and quantity in a changing climate and 

land use. In particular, future LULC products provided by USGS model outputs are applied to 

evaluate the impacts of LULC change on the study area. Three GCMs are selected based on 

skill scores (two GCMs) and literature review (one GCM). The selected GCMs are then 

evaluated and downscaled using statistical downscaling and bias correction (SDBC) to create 

finer resolution datasets to be used as HSPF’s inputs. Outcomes from SDBC coupled with 

GCMs are then compared with the North American Land Data Assimilation System 

(NLDAS-2) to justify the utilization of hydrologic model application. A variation in water 

quality and quantity driven by the combined impact of climate and future LULC changes is 
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also evaluated using the calibrated HSPF model. Chapter 7 includes multi-criteria decision 

making processes based on streamflow and water quality simulations to find the critical 

hotspots for problematic locations. For the selected hotspots, optimal LDI/BMP methods are 

chosen to better manage water quality and quantity at the study area. Finally, Chapter 8 

summarizes the findings of the dissertation along with recommendations for future work.  
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CHAPTER 2. QUANTIFYING A THRESHOLD OF MISSING VALUES 

FOR GAP FILLING PROCESSES IN DAILY PRECIPITATION SERIES 

“Quantifying a threshold of missing values for gap filling processes in daily precipitation 

series.” Water Resources Management, vol.29 issue 11, 2015, pp 4173-4184. 

 

2.1. Introduction 

 A gap filling method is typically used to construct a complete dataset with no missing 

value for daily precipitation. The daily precipitation is retrieved from local weather stations 

managed by federal, state, and local agencies, but often those datasets are incomplete due to 

missing values associated with systematic errors and/or random errors. Systematic error is 

incurred by the deformation of the wind field at gage location, where systematic 

undercatching is prevalent because of wind effects (Calder, 1993; Sevruk, 1996), whereas 

random errors are created by other physical disturbances, such as the clogging of the gage 

outflow and/or other mechanical and electronical malfunctions (Sevruk, 1996). 

From hydrological perspectives, a complete set of valid precipitation data is critical to 

simulate streamflow in rainfall-runoff models for various water resources decision making 

(e.g., reservoir operations, drought mitigation, and flood control). Hydrologists often estimate 

missing values using mathematical and statistical methods, such as the arithmetic mean (Mn), 

Inverse Distance Weighting (IDW), Regression-based analysis (RA) methods, Kriging 

Estimation (KE) Method, and Gamma distribution function (GDF) to fill gaps in missing 

values (Hubbard et al., 2005; Linsley et al., 1982; Mair and Fares, 2011; Teegavarapu et al., 

2009 and 2011; Teegavarapu, 2014a and 2014b; Westerberg et al., 2010). The IDW method, 

in particular, has been commonly used to estimate missing values in geographical sciences 
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and hydrology because the result from IDW method shows good performances in filling 

missing values, especially for spatially dense networks (Ahrens, 2006; Dirks et al., 1998; 

Garcia et al., 2008). Recent studies, however, indicate that the IDW method has a limitation in 

the sense that it tends to overestimate the number of rainy days or the existence of negative 

autocorrelation between the nearest weather stations (Garcia et al., 2008; Simolo et al., 2010). 

Alternatively, GDF method is now applied widely to overcome the limitation of the existing 

estimation methods, including Mn, IDW, and RA (Hasan and Croke, 2013; Simolo et al., 

2010). Hasan and Croke (2013) showed that the Poisson-gamma method can better generate 

precipitation data and percentage of rainy, and no-rain days in comparison with observed 

precipitation data along with other estimation methods. Simolo et al. (2010) also observed that 

GDF method shows an accurate determination of rainfall occurrence and improves the 

reconstruction of intense precipitation events. One of key questions on gap filling methods 

mentioned above is what missing level of precipitation dataset would be critical for further 

hydrological processes and modeling efforts, yet little studies have been done to identify such 

a threshold of missing values during gap filling processes. Thus, knowing proper missing 

level of precipitation data as a threshold for the existing estimation method is valuable 

information for hydrologists to improve modeling performances as well as hydrological 

prediction. The main objective of the paper, therefore, is to identify a proper level of missing 

values (threshold) by enhancing the existing estimation method for gap filling in daily 

precipitation series based on the heuristic control guideline of missing levels in an analytical 

framework. The proposed method would be valuable assets in the field of hydrology and 

hydroclimatorogy in a changing climate.  
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2.2. Methodology 

2.2.1. Autoregressive (AR) Model 

Figure 2.1 illustrates a schematic of workflow for gap filling tasks and evaluation 

processes used in this study. 

 

Figure 2.1. Workflow to identify a threshold of gap filling for daily precipitation data. 

 

An autoregressive (AR) model with parameter n, AR (n), is first used to construct daily 

precipitation datasets. AR (n) model is a linear regression model and widely used for 

hydrological modeling and forecasting using weather forcing, such as precipitation and 

temperature (Chattopadhyay et al., 2011; Goswami and O’Connor, 2007; Hipel and McLeod, 

1994; Salas et al., 1980). The typical form of AR (n) model with lead time j is given by: 

𝑌𝑡 =  ∑ ∅𝑗(𝑌𝑡−𝑗) +  𝜀𝑡                                                            (2.1)𝑛
=1                                                                                               
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where, 𝑌𝑡is the time dependent series (variable) at time t, ∅𝑗is autoregressive parameter, and 

𝜀𝑡is the independent random variables that is normally distributed with mean zero and 

variance 𝜎2.  

The Akaike Information Criterion (AIC) is employed to estimate the optimal order 

number (n) of AR model based on the information criterion by employing the relationship 

between the average mean and Kullback-Leibler condition (Akaike, 1973). The AIC value is 

computed as:   

AIC (n, n ∗) =  𝑁(1 + log(2𝜋)) + 𝑁𝑙𝑜𝑔(𝑠2) + 2𝑛                                 (2.2) 

where, 𝑠2 is the estimated variance of the residuals resulted from the fitted model, n is order 

of AR model, and N is the number of data samples. The notation, n* is maximum number of 

order application to calculate AIC (Ing et al., 2010)  

  For diagnostic purposes, the Ljung-Box test is used to determine whether or not the 

data series can be considered independent and identically distributed sequences (iid) (Ljung 

and Box, 1978). Null hypothesis is defined as the sample data are iid. The Ljung-Box Q-

statistic is defined by equation. (2.3) and (2.4). 

Q = 𝑛(𝑛 + 2) ∑
𝑟𝑗

2

𝑛 − 𝑗

𝑚

𝑗=1

                                                               (2.3) 

𝑟𝑗 =  
∑ (𝑎𝑡 − �̅�)(𝑎𝑡−𝑗 −  �̅�)𝑡=𝑗+1

∑ (𝑎𝑡 −  �̅�)2𝑛
𝑡=1

                                                    (2.4) 

where, n is sample size, m is the number of autocorrelations included in the statistic, 𝑟𝑗is the 

squared sample autocorrelation of residual series of the model at time lag j, 𝑎𝑡is the residual 

series, and �̅� is the average of the residuals. Under the null hypothesis, since Q is a 
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approximately distributed as the sum of squares of the independent random variables from 

standard normal distribution, such values are chi-squared distributed with h degree of 

freedom. The iid hypothesis can be rejected at the level alpha if the value of Q exceeds the (1-

alpha) quantile of the chi-squared distribution with h degree of freedom.  

 

2.2.2. Sampling Techniques 

Once time series of daily precipitation data are generated from the AR model, the 

selected subsets of the data series are considered missing values. To assign such missing 

values (e.g. −999.9) for the selected subset of the data series, four sampling windows; 1) 

random samples from whole dataset, and 2) three different sampling windows, including 

front, middle, and rear section are selected at 5 10, 15, 16, 17, and 18 % missing levels. 

Sampling from different missing levels within the selected windows is then carried out using 

random number generators. Consequently, this approach results in equal probability of being 

selected for the sample dataset replicating iid. Random sampling with respect to each different 

missing level (5, 10, 15, 16, 17, and 18 %) runs 1,000 times so that 1,000 precipitation 

realizations can be generated by the AR model during the study periods (e.g., January 1982–

May 2013). Note that the selected missing levels are determined based on preliminary 

research findings indicating that the existence of the threshold is within 10–20 % missing 

levels. Thus, the preliminary research indicates that above 20 % missing level is too high to 

achieve performance targets on hydrological simulation based on Root Mean Square Error 

(RMSE) and Pearson Correlation Coefficient, whereas hydrological simulation with below the 

10 % missing value of daily precipitation outperforms against that with the 10 % above. 

Respectively, Figure 2.2 and 2.3 illustrate the process of random sampling from whole data 



14 
 

 
 

range and three different sampling windows at 5 % missing level. If sampling is taken from 

whole data range at 5 % missing level during the study periods, approximately 5 out of 100 

data points are replaced by missing values (−999.9). 

 

Figure 2.2. An example of random sampling at 5 % missing level. 
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Figure 2.3. Three different sampling windows (front, middle, and rear section) at 5 % missing 

level. 

 

2.2.3. Gamma Distribution Function (GDF) 

The GDF is known as a proper theoretical distribution function to represent 

precipitation in the sense that no negative value of precipitation can be plotted. The GDF can 

emulate actual rainfall distribution for extreme cases although the typical rainfall may not be 

large. It provides some degree of flexibility in the shape of the distribution function from data 

range (e.g., exponential-decay forms for shape value), so this flexibility allows fitting any 

number of rainfall regimes to GDF. The accuracy of the GDF performance can be measured 

by comparing the cumulative distribution function of the estimated Gamma and empirical 

distributions (Wilks, 1995). The GDF has three different types, including, one-, two-, and 

three-parameter GDFs. The one-parameter GDF, however, is limited to describe hydrologic 

phenomena due to inflexibility of fitting to frequency distribution of hydrologic variables 
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(Aksoy, 2000). The three-parameter GDFs would be good but no significant advantage of its 

property over the two-parameter GDF has been found (Markovic, 1965). Therefore, a two-

parameter GDF was used for gap filling in daily precipitation series. Figure 2.4 shows a 

diagram of the estimating procedure for daily precipitation using the GDF. First, the 

cumulative distribution function (CDF) was defined for both reference station (RS) and target 

station (TS) from Jan 1982 to May 2013, for example, and then inverse CDF of the gamma 

function was used to estimate missing values using equations in Appendix. For instance, 

suppose that TS has the missing value (−999.9) in January 15. 2002 and the value of RS 

corresponding to the same date was recorded as 15.2 mm having about 99.48 % probability in 

gamma domain. The missing value of TS is then replaced by an arbitrary value having the 

same probability of 99.48 % in its own gamma domain, which is 16.47 mm for this particular 

case (See Figure 2.4). This implies that the missing value at TS is statistically adjusted by 

8 % from RS through this estimation scheme also used in Ryu et al. (2009). 

 

 

Figure 2.4. Statistical correction procedure of precipitation data (mm) for missing values. 
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2.2.4. Performance measure 

Coefficient of determination (R2) (equation 2.5), which is one of typical performance 

measures, was utilized to evaluate how GDF well performs to estimate missing values against 

original precipitation data. R2 is the degree of colinearity between the filled datasets after 

sampling and the observed precipitation datasets. It ranges from 0.0 to 1.0. The closer to 1 

indicates better performance of filling the missing data. A statistical hypothesis test is 

conducted to determine if the selected threshold of the gap filling method is suitable for 

further data analysis. A statistical hypothesis test is a systematic approach to verify how well 

the sample can represent the population along with statistical properties, such as mean and 

standard deviation. The critical level of a hypothesis can determine whether or not the 

alternative hypothesis is rejected in favor of the null hypothesis. To implement this hypothesis 

test, we developed two scenarios; the first scenario defines that R2 value should be greater 

than 0.8, while the second scenario designates that R2 value of the lower missing levels should 

be greater than that of higher missing levels at TS. For example, R2 value of 10 % missing 

level should be greater than or equal to that of 15 % missing level. Likewise, R2 of 5 % should 

be greater than R2 of 10 % and above. Next, the R2 difference index (RDI) was calculated for 

the second scenarios. Basically, the RDI is a measure to verify if the second scenario (e.g. 

RDI=all R2 values of 10 % missing data minus all R2 values of 15 % missing data) is 

satisfactory. The RDI can have positive if R2 value of lower missing level is higher that R2 

value of higher missing level, or negative values in reverse condition, or zero for no 

difference. Therefore, if the RDI value between datasets with missing values at 15 and 16 % 

level has a negative value, we can imply that a threshold of missing level should be at 15 % 

missing level by knowing all RDI values below 15 % missing level are posit ive. Note that the 
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null hypothesis can be rejected with the 95 % of confident level if the calculated p-value is 

less than 0.05; otherwise there is no evidence to reject null hypothesis.  

For this study, null hypothesis represents that the selected missing level is inadequate 

to apply the gap filling technique if R2 values are less than 0.80 and the RDI is negative (Hn1 

< 0.80, Hn2 < 0.); alternative hypothesis states that the proposed missing level is suitable for 

the gap filling method used in this study (Ha1 ≥ 0.80, Ha2 ≥ 0). The next step is then to 

calculate the test statistic from R2 values and the RDI using z-test using equation (2.6) 

(Sprinthal, 2011). Finally, a proper threshold value is determined based on p-value from z-test 

statistic. 

𝑅2 =  (

1
𝑁 × ∑ (𝑃𝑄𝑖 − �̅�𝑄𝑖)×(𝑃𝑆𝑖 − �̅�𝑆𝑖)

𝑁
𝑖=1

√𝑁× ∑ 𝑃𝑄𝑖
2 −  (∑ 𝑃𝑄1

𝑁
𝑖=1 )

2𝑁
𝑖=1

𝑁×(𝑁 − 1)  ×√
𝑁× ∑ 𝑃𝑆𝑖

2 −  (∑ 𝑃𝑆1
𝑁
𝑖=1 )2𝑁

𝑖=1

𝑁×(𝑁 − 1)    

)2               (2.5) 

𝑧 =  
�̅� − 𝑢

𝑠 / √𝑁
                                                                                (2.6) 

where, PQi is the observed precipitation data at time step i, and PSi is the estimated 

precipitation data. �̅�𝑄𝑖   𝑎𝑛𝑑 �̅�𝑆𝑖 are the mean of the observed and estimated precipitation data, 

respectively. N is sample size. �̅� is sample mean, u is population mean, and s is standard 

deviation of population. 

 

2.3. Site Description and Implementation 

A weather station (COOP ID: 101022) near the Boise Airport in Ada county, Idaho 

was selected for the study area (See Figure 2.5). The climate characteristics of the study area 

indicate a semi-arid climate with four distinct seasons. Summer is hot and dry with high 

reaching 38 °C (100 °F). Winter is moderately cold with average temperature about −0.7 °C 
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(30.7 °F) in December. Sparing and fall is mild. The average annual precipitation is about 660 

mm (26.02 in). A decent amount of hydroclimate information and environmental variables, 

including precipitation, temperature, wind speed, soil moisture, and other energy flux is 

available at the station that can be used to characterize weather extreme and hydrological 

modeling. Reliable datasets less than 1 % missing are available and ready to use for further 

analysis. Daily precipitation data series at the station from January 1, 1981–May 30, 2013are 

well recorded relatively in comparison with other stations nearby, including Swan Falls Power 

House (COOP ID:108928) and Boise Lucky Peak Dam (COOP ID: 101018), which are both 

more than 1 % missing values of the study period. It appears that data missing levels of the 

weather stations at Swan Falls and Lucky Peak Dam are 1.39 and 15.15 %, respectively. As 

described above, four sampling windows (whole, front, middle, and rear) at multiple missing 

levels (5, 10, 15, 16, 17, and 18 %) are taken into account to generate daily precipitation 

realizations using an AR model. AR (23) model was selected because the sample value of Q 

are 23.78 with m=23 from the equeation (3) and (4), which is less than 35.17 with the 95 

percentile of chi-squared with 23° of freedom from the Chi-square table (Goldberg, 2000). 

This result suggests that the iid hypothesis is accepted at confidence level 0.05. 
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Figure 2.5. Location of the study area at Ada County in Idaho. 

 

2.4. Results 

Figure 2.6 shows box plots for R2 values from four sampling windows (whole, front, 

middle, and rear) at different missing levels (5, 10, 15, 16, 17, and 18 %). The average R2 

values above 0.85 are listed in Table 2.1. Overall, there is variation of R2 values but higher 

R2 values are observed for whole sampling window as opposed to the sectional sampling 

windows (front, middle, and rear). It appears that the sectional sampling windows provide 

similar results as shown in Figure 2.6. However, the R2 values decrease as the missing level 

increases. This implies that the proportion of missing datasets clearly affects the robustness of 

the interpolation method for the missing values. Nonetheless, all R2 values are higher than 
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0.80 and all Pvalues support the alternative hypothesis, regardless of the sampling windows 

(e.g., whole, front, middle, and rear) and missing value levels (e.g., 5, 10, 15, 16, 17, and 

18 %). Table 2.2 shows a total number of RDI values and the p-values from four sampling 

windows (whole, front, middle, and rear) at different missing levels (5, 10, 15, 16, 17, and 

18 %). As shown in Table 2.2, all RDIs are greater than and equal to zero from different 

sampling windows except for whole sampling windows at different missing levels. P-values 

less than and equal to 15 % missing level are lower than 0.05, while that of above missing 

level 15 % (e.g., 15–16 %) is greater than 0.05 based on samples from the whole data 

window. Note that numerous negative values (164 out of 1,000: 16.4 % of dataset) were 

calculated using samples taken from the whole data window, where sampling takes place at 

16 %. 

Consequently, the null hypnosis is rejected because p-values of RDIs within 5–15 % 

are less than 0.05 so that 15 % missing level can be a threshold of gap filling to construct 

daily precipitation series using the GDF method. Note that the number of zero RDIs is almost 

2–3 times more than the number of positive values at 15–16 % within rear sampling window. 

The similar study has been implemented in daily precipitation datasets (January 1, 1981- May 

30, 2013) at Lincoln, Nebraska to verify that the selected threshold is reliably situated at 15 % 

missing levels. As expected, the result shows that R2 values gradually decrease as the missing 

level increases until it reaches to 15 % missing level within different sampling windows 

(whole, front, middle, and rear). Although R2 values decrease as the missing level increases 

within multiple sampling windows, R2 values above 16 % missing level for whole sampling 

window fluctuate (Not shown in this paper) so that 15 % missing level can be a threshold for 

gap filling in daily precipitation series. A similar result was drawn from RDIs as well at 
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Lincoln airport weather station. Thus, no positive RDIs was obtained when the missing level 

becomes 16 %. Therefore, we conclude that the missing level of daily precipitation at less 

than and equal to 15 % is plausible for further hydrological processes regardless of sampling 

locations (e.g., whole, front, middle, and rear section of the data). 

 

 

Figure 2.6. The boxplot of R2 values from 1,000 realizations within four sampling windows 

(whole, front, middle, and rear) at different missing levels (5, 10, 15, 16, 17, and 18 %). 

 

Table 2.1. R2 values from four sampling windows (whole, front, middle, and rear) at different 

missing levels (5%, 10%, 15%, 16%, 17%, and 18%).     

 
Average R2 values of different missing levels 

5% 10% 15% 16% 17% 18% 

Whole 0.98 0.97 0.96 0.96 0.96 0.94 

Front 0.97 0.94 0.92 0.92 0.91 0.90 

Middle 0.97 0.95 0.94 0.94 0.93 0.91 

Rear 0.96 0.95 0.93 0.93 0.92 0.90 
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Table 2.2. Total number of RDI and p values from four sampling windows (whole, front, 

middle, and rear) at different missing levels (5%, 10%, 15%, 16%, 17%, and 18%). 

 

Number of RDI values (positive, zero, and negative) at different 

missing levels 

5-10 % 10-15% 15-16% 16-17% 17-18% 

Whole 

RDI > 0 651 662 332 308 984 

RDI = 0 341 320 504 528 16 

RDI < 0  8 18 164 164 - 

p value 0.002 0.002 0.241 0.293 - 

Front 

RDI > 0 1,000 998 457 440 999 

RDI = 0 - 2 543 560 1 

RDI < 0  - - - - - 

p value 0 0 0.020 0.024 0 

Middle 

RDI > 0 938 986 519 549 1,000 

RDI = 0 62 14 481 451 - 

RDI < 0  - - - - - 

p value 0 0 0.010 0.007 0 

Rear 

RDI > 0 924 995 186 323 1,000 

RDI = 0 76 5 814 677 - 

RDI < 0  - - - - - 

p value 0 0 0.173 0.067 0 
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CHAPTER 3. A HEURISTIC GAP FILLING METHOD FOR DAILY 

PRECIPITATION SERIES 

“A heuristic gap filling method for daily precipitation series.” Water Resources Management, 

vol.30, issue 7, 2016, pp 2275-2294. 

 

3.1. Introduction 

Precipitation is a critical environmental forcing element for hydrologic modeling, 

agricultural operation and management, and ecosystem modeling.  Generally speaking, the 

performance of hydrologic models relies on the observed environmental data series, such as 

daily precipitation, yet incomplete precipitation data are prevalent and inevitable due to 

erroneous reality associated with the systematic errors (e.g. the deformation of the wind field) 

or random errors (e.g. clogging, electronical malfunction) at the weather station especially in 

complex terrain.  Therefore, missing data are often filled with adequate values through good 

estimation processes for further environmental modeling and applications.  

Historically, many hydrologists have utilized statistical and interpolation methods to 

estimate the missing values in precipitation records.  For example, Gauge Mean Estimator 

(GME)(McCuen, 1998), Inverse Distance Weighting (IDW) (Lu and Wong, 2008; 

Teegavarapu and Chandramouli, 2005), and Ordinary Kriging (OK) (Adhikary et al., 2015; 

Mair and Fares, 2011) are commonly used for gap filling since they are simple and easy to 

apply.  However, these contemporary gap filling methods have a limitation in the sense that 

they tend to underestimate precipitation magnitudes and to overestimate the number of rainy 

days in general.  Also, the existence of negative autocorrelation between the nearest weather 

stations is reported at several applications (Garcia et al., 2006; Simolo et al., 2010).  Over the 
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several decades, various gap filling methods have been developed and modified to improve 

the estimation accuracy and to overcome the limitation of the existing gap filling techniques.  

For example, Xia et al. (1999) used thin-plate splines, closest station method and multiple 

linear regression techniques for climatological data estimation.  Later, a novel estimation 

method for missing precipitation, such as artificial neural networks (ANNs) (Teegavarapu and 

Chandramouli, 2005; Teegavarapu, 2007) and optimal function forms using genetic 

algorithms with mathematic operators (Teegavarapu et al., 2009) were introduced.  These 

studies indicate that the existing interpolation methods, including GME, IDW, and OK can be 

improved to develop a better estimation technic for gap filling.  For example, as Teegavarapu 

and Chandramouli (2005) pointed out, the coefficient of correlation weighting (CCWM) 

method can improve the performance of IDW method by employing gauge-to-gauge 

correlation relationship, thereby Westerberg et al (2010) utilized CCWM method to estimate 

the missing precipitation data.  Later, Teegavarapu (2012) has applied optimization methods 

to select rain gauges in the objective matter and delineated optimal clusters using quadrant-

based method.  Grid-based interpolation method of precipitation using geospatial information 

was also presented by Teegavaraput et al. (2012).  

More recently, by improving the existing interpolation methods, Teegavarapu (2014a) 

proposed the bias-correction method similar to quantile mapping, while a variant of equi-

distant quantile matching and a new optimal single nest estimator scheme are combined.  

Here, the bias correction method is promising in the sense that it can provide better serially 

complete precipitation time series than the uncorrected missing estimation method being used.  

Teegavarapu (2014b) also reported that optimal proximity-based imputation, K-nearest 
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neighbor classification and K-means cluster methods are plausible to execute gap filling tasks 

for daily precipitation records.  

Although several improvement or new gap filling methods have been developed and 

proposed, it is still inconclusive to determine the best suitable technique for the precipitation 

estimation in the field because the estimation performance is depending on geophysical 

characteristics of the weather station especially in complex terrain.  Thus, the geographical 

conditions, the density of weather stations, and the precipitation pattern from the nearest 

weather stations as Source Stations (SSs) often dominate the key parameter space during the 

estimation processes.  Additionally, the existing gap filling methods do not necessarily to 

eliminate the negative autocorrelation of seasonal precipitation patterns embedded in both 

Source Stations (SSs) and Target Stations (TSs).  Thus, a seasonal variability between SS and 

TS, especially during the summer and winter season is inevitable due to geophysical 

characteristics associated with distance and altitude between weather stations.  Therefore, the 

combined method proposed here would be a tangible practice in hydrology to identify 

effective gap filling techniques associated with geophysical characteristics for daily 

precipitation series.  

We propose a method termed “gamma distribution function with statistical 

correlation (GSC) coupled with cluster analysis (CA) (hereafter, GSCCA)” to improve the 

estimation of missing daily precipitation data.  Basically, the cluster analysis (CA) represents 

effectiveness of data summarization and compression, and it divides nearest neighbors 

efficiently from the large amount of data series encompassing precipitation patterns and 

geophysical characteristics, such as elevation, latitude, and longitude.  The CA first delineates 

respective clusters and GSC is then used as an estimation tool for the daily precipitation 
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within the designated clusters by minimizing errors possibly stemmed from the other clusters, 

which is a difficulty of the existing estimation methods (e.g., GME, IDW, OK).  

As Hasan and Croke (2013) showed, the Poisson-gamma method might be a feasible 

solution to generate the likelihood of rainy and no-rain days using the observed precipitation 

data.  Simolo et al. (2010) also advocated that the gamma-based method is relatively accurate 

to determine rainfall occurrence and to improve the reconstruction of intense precipitation 

events.  Even though, the estimation accuracy for GSC may be influenced geographical 

factors and weather station network density associated with TS. It may underestimate for the 

extremely large precipitation event when the neighboring stations are not close to TS.  We, 

therefore, utilized the gamma distribution function as a statistical framework and CA is 

employed to act as the screening process for grouping weather stations based on geophysical 

information (e.g., longitude and latitude).  The performance measures with and without CA 

are then reported and compared to verify how the CA can contribute to the gap filling 

processes for daily precipitation series in the study area. 

  

3.2. Study area 

The state of Idaho is selected as the study area, where more than 150 weather stations 

administered by National Climate Data Center (NCDC) are situated.  For the gap filling 

process, the weather stations having less than 15% missing level are considered and selected 

suggested by chapter 2.  As a subset, 116 stations, therefore, are selected for this study 

(Figure 3.1).   

Idaho landscapes are very diverse.  The highest elevation is Borah Peak at 3,860 m in 

the Lost River Range north of Mackay and the lowest elevation is about 216 m in Lewiston.  
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The climate in Idaho is variable as well.  The western region of Idaho located about 420 km 

from the Pacific Ocean is affected by the maritime climate in humid and wet winter so that the 

temperature of the northern state is not too cold as much as expected.  In the eastern Idaho, by 

contrast, the seasonal temperature is more extreme along with higher precipitation variability 

dominated by semi-arid climate, which is reverse pattern.  In general, hot summer day is 

moderated by low relative humidity and cool evening across the state due to the significant 

diurnal temperature difference.  Four major rivers, including Snake, Clark Fork, Clearwater, 

and Salmon River provide water resources across the state.  Due to the distinct seasonal 

climatic difference and water resources concerns during the growing season, hydrological 

processes with complete data series without missing values are of great interest to advance 

water resources research activities, including but not limited to water quality modeling, 

agricultural water management, and water-energy-food nexus in the mountain west.  

 

Figure 3.1. Weather stations for daily precipitation with different missing levels in the study 

area. 
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3.3. Methodology 

Figure 3.2 shows a flowchart of the proposed study.  First, the estimation process 

begins with CA to sort out a regional outlay.  To do this, three key elements, such as 1) 

geographical information (latitude and longitude), 2) elevation (altitude), and 3) seasonal 

variability (precipitation patterns) are used to define clusters associated with them.  

Specifically, a total of 116 weather stations are divided into 3 cluster groups based on 

geographical information (Step 1).  Next, elevation information (altitude) is incorporated to 

delineate two more cluster groups within the pre-defined clusters (Step 2).  Once these two 

steps are completed, the CA further differentiates the clusters by seasonal precipitation 

patterns (Spring: March - May, Summer: June – August, Fall: September – November, 

Winter: December - February)(Step 3).  Therefore, total 12 cluster groups can be created 

using the systematic CA.  Thus, 3 clusters are created based on geographical information 

(latitude and longitude) and then each cluster is separated by elevation (altitude) followed by 

2 more clusters determined by precipitation patterns associated with four seasons; 12 clusters 

= (3 clusters from Step 1 x 2 clusters from Step 2) x 2 clusters from Step3.  The main reason 

to apply geophysical information first is not only because that precipitation patterns in the 

mountain west is very sensitive to geographical information (e.g., proximity between SSs and 

TSs) but also it is dominated by orographic effects (e.g., altitude difference between SSs and 

TSs)(Barry and Chorley, 1987).  These consequences are observed across the state in the 

sense that precipitation patterns in eastern Idaho and western Idaho are significantly different 

due to the influence of the maritime climate.  For example, the average amount of 

precipitation in eastern Idaho is greater than in the southern Idaho. Peaks on the average 

seasonal precipitation shows at all higher elevation. Seasonal precipitation distribution in 
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northern and western Idaho occur the maximum precipitation in winter and the minimum 

precipitation in summer. In the eastern Idaho, maximum precipitation indicates in summer 

and minimum precipitation shows in winter. In addition, for the correlation between 

precipitation and elevation, average amount of precipitation for four seasons is increased at 

higher elevation. Especially, the precipitation of winter and spring seasons represents distinct 

increasing from lower elevation to higher elevation. As such, the geophysical characteristic of 

the weather stations has been more weighted than precipitation patterns when the CA is 

executed for this particular study.  By doing so, the CA can further categorize homogenous 

regions induced by orographic effects and followed by seasonal precipitation patters to 

minimize negative autocorrelation between TSs and SSs.   

For example, once the date (02/02/2012) is selected to fill gaps at Target Station (TS) 

in Cluster Group 1 (CG1), the average monthly precipitation for February is calculated at TS 

using the information available at SSs in CG1.  Thus, the monthly precipitation by February at 

SSs is compared to that at TS to identify the best match SS and TS using positive correlation 

relationship (e.g. correlation coefficient values for February precipitation were calculated 

from the SSs and best match SS was selected to have higher correlation coefficient values).  

Next, the cumulative distribution function (CDF) value is computed for the selected day of the 

month (e.g. 02/02/2012) at the best matched SS.  The calculated CDF value is then applied 

with the inverse gamma function for the same day of the month (e.g. 02/02/2012) to estimate 

missing precipitation values at TS. These processes are repeated until to estimate all missing 

precipitation values at TSs in Cluster Groups. Finally, the estimated results are compared with 

the other existing gap filling methods (e.g. GME, IDW, OK) based on performance measure 

criteria and skill score described later.  Note that the other existing methods have been 
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evaluated with and without CA for gap filling processes.  The period, January 1, 1982 - May 

31, 2013 is used for this study and more detailed information for the selected TSs is 

summarized in Table 3.1.   

 

 

Figure 3.2. A flowchart of the proposed study. 

  



32 
 

 
 

Table 3.1. The selected weather stations with less than 15% missing level of daily 

precipitation series (January 1, 1982 - May 31 2013).  

Station 
number 

Station name Latitude Longitude Elevation (m) 
Missing 

level* (%) 

2 
LIFTON PUMPING 

STN 
42.1231 -111.3139 1,806 0.25 

13 BURLEY FAA AP 42.5417 -113.7661 1,262 0.09 

25 JEROME 42.7325 -114.5192 1,140 0.62 

30 ABERDEEN EXP STN 42.9536 -112.8253 1,342 0.93 

33 RICHFIELD 43.0528 -114.1582 1,305 0.38 

35 REYNOLDS 43.2064 -116.7494 1,198 0.56 

38 PICABO 43.3111 -114.0742 1,472 0.59 

43 BOISE WSFO AP 43.5667 -116.2406 857 0.10 

46 
NAMPA SUGAR 

FACTORY 
43.6039 -116.5753 753 0.49 

48 IDAHO FALLS 16SE 43.6176 -111.8840 1,487 0.41 

53 BOISE 7 N 43.7383 -116.2022 1,184 0.26 

67 
CHILLY BARTON 

FLAT 
43.912772 -113.8289 1,908 0.77 

73 
DUBOIS EXP 

STATION 
44.2436 -112.2006 1,661 0.27 

75 CASCASE 1 NW 44.5228 -116.0481 1,492 0.50 

77 CAMBRIDGE 44.5733 -116.6753 807 0.50 

83 MC CALL 44.8872 -116.1047 1,531 0.42 

88 SANDPOINT KSPT 45.1875 -113.9008 1,198 0.71 

97 WINCHESTER 1 ESE 46.2381 -116.6233 1,210 0.52 

98 LEWISTON W.B AP 46.3750 -116.9981 442 0.12 

99 
DWORSHAK FISH 

HATCHERY 
46.5022 -116.3217 303 0.21 

101 MOSCOW 46.7281 -116.9558 811 0.32 

114 
PRIEST RIVER EXP 

STN 
48.3511 -116.8353 723 0.43 

* Missing level indicates the actual missing percentage of daily precipitation from January 1, 

1982 to May 31, 2013.  
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3.3.1. Cluster Analysis (CA) method 

The cluster analysis (CA) is commonly used to assimilate raw data for further data 

analysis.  For example, it has been widely used in the field of social sciences (Breiger et al., 

1975), biology (Eisen et al., 1998; Pan et al., 2002), statistics (Hansen and Jaumard, 1997; 

Hruschka and Ebecken, 2003), climate investigation (Bunkers et al., 1996; Lund and Li, 2010; 

Turkes and Tatli, 2011), pattern recognition (Pedrycz, 1990; Gardner, 1991), information 

retrieval (Maarek et al., 1991; Faloutsos and Oard, 1998), machine learning (Chmielewski and 

Grzymala-Busse, 1996), and data mining (Chen et al., 1996; Kumar et al., 2012).  The CA is a 

technique to provide useful insights for the analyst to present an overall statistical structure 

with fewer critical clusters, which is a subset of all of the variable clusters contained in the 

original data.  Thus, a key process of CA is to classify multivariate classes into several cluster 

groups so that similarity between classes within a group should be large and similarity 

between groups should be small.  In this study, K-means cluster technique (MacQueen, 1967) 

is first applied to define cluster groups for the selected weather stations based on geographic 

information (latitude and longitude), elevation (altitude), and seasonal precipitation patterns.  

The K-means is a simple cluster method to calculate a user-specified number of clusters and 

to find the mean of a group point using equation (3.1).  The minimum sum of the squared 

error (SEE) defined by equation (3.2) is used to determine the cluster by seeking n-

dimensional space repeatedly.    

SSE =  ∑ ∑ | 𝑥𝑛 −  𝑢𝑖 |
2

𝑛∈ 𝑆𝑗

𝐾

𝑗=1

                                                            (3.1) 

𝑢𝑖 =  
1

𝑚
 ∑ 𝑥

𝑥∈ 𝑆𝑗

                                                                                (3.2) 
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where, K is disjoint subsets, xn is a vector representing the nth data point, ui is the geometric 

centroid of the data points in Sj, and m is the number of the data points in Sj. 

 

3.3.2. Gauge Mean Estimator (GME) 

The Gauge Mean Estimator (GME) is to use an arithmetic average of all SSs.  It is a 

special case of Inverse Distance Weighting (IDW) and it is a similar method being used for 

the average precipitation estimation method presented by McCuen (1998).  The estimation of 

missing precipitation is given by 

𝑋𝑚 =  
∑

𝑁𝑚

𝑁𝑖
 𝑋𝑖

𝑖=𝑛
𝑖=1

𝑛
                                                                      (3.3) 

where, Xm is estimated value at the TSm,  n is the number of stations, and Xi is the observed 

value at SSi.  Nm and Ni are the average monthly precipitation at TSm and SSi, respectively. 

 

3.3.3. Inverse Distance weighting (IDW) method 

As proposed by Simanton and Osborn (1980), the Inverse Distance Weighting (IDW) 

is used to estimate the missing precipitation values and it is implemented by Watson and 

Philip (1985).  IDW has been commonly used to fill the missing values.  It is also widely used 

many water resources applications (ASCE, 1996).  For the precipitation estimation at TSs, 

IDW provides weighting values inversely depending on the distance between TS and SS.  The 

missing values at TSs can be computed by equation (3.4).  

𝑋𝑚 =  
∑ 𝑋𝑖𝑑𝑚𝑖

−𝑘𝑛
𝑖=1

∑ 𝑑𝑚𝑖
−𝑘𝑛

𝑖=1

                                                                      (3.4) 
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where, m is the selected TS, Xm is the estimated value at the TSm, n is the number of stations, 

Xi is the observed value at SS I, dmi is the distance from the station i to station m, and k is 

referred to as friction distance (Vieux, 2001) that ranges from 1.0 to 6.0.  In this study, k = 2 

is used (Teegavarapu et al., 2009). 

 

3.3.4. Ordinary Kriging (OK) method 

The Ordinary Kriging (OK) is the standard approach for surface interpolation method 

based on scalar measurement at different locations (Journel and Huijbregts, 1978; Isaaks and 

Srivastava, 1989).  OK is spatially dependent variance (Vieux, 2001).  The degree of spatial 

dependence in OK method can be determined using a semivariogram.  The weights of OK are 

based on the distance between SS and TS as well as.  The equations for OK method to 

estimate missing values include equation (3.5) – equation (3.7).  

𝑋𝑚 =  ∑ 𝛿 𝑋𝑖

𝑛

𝑖=1

                                                                      (3.5) 

δ =  𝜏−1𝛾                                                                           (3.6) 

γ(d) =  
1

2 𝑛 (𝑑)
 ∑(𝑋𝑖 −  𝑋𝑗)

2

𝑑𝑖𝑗

                                         (3.7) 

where, 𝛿 is the weight obtained from the fitted simivariogram,  𝜏 is the gamm matrix, which  

is the model semivariance for all sampled pairs, γ(d) is the semivariance which is defined 

over observations 𝑋𝑖and 𝑋𝑗 lagged successively by distance d, and n(d) is the number of 

distinct pairs in n(d). 𝑋𝑖  and 𝑋𝑗 are data values at spatial location I and j, respectively. 
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3.3.5. Gamma distribution function with statistical correlation (GSC) 

The standard gamma distribution function (GDF) is known as a proper theoretical 

distribution function to represent precipitation series in the sense that no negative value of 

precipitation can be plotted.  GDF can emulate actual rainfall distribution for extreme cases 

although the typical rainfall may not be large.  It provides some degree of flexibility in the 

shape of the distribution function from data ranges (e.g., exponential-decay forms for shape 

value), so this flexibility allows fitting any number of rainfall regimes to GDF.  The accuracy 

of the estimated GDF can be measured by comparing the cumulative distribution function of 

the estimated gamma and empirical distributions (Wilks, 1995).  In this study, to estimate 

daily missing precipitation, every month precipitation for the selected day and month between 

TS and SSs are investigated to apply GDF and compared to select the best SS using the 

correlation coefficient (R).  This process is automatically processed to select the best SS for 

every month and to fill the missing precipitation from January to December in each cluster 

group.  The statistical correlation is finally applied to improve the estimation at TSs for the 

specific month.  Inverse GDF is then used to estimate missing values using equation (3.8) – 

equation (3.12).  

𝐹(𝑥𝑚 | 𝛼, 𝛽) =   ∫ 𝑓(𝑥𝑚| 𝛼, 𝛽)

𝑥𝑚

0

                                                          (3.8) 

𝑓(𝑥𝑚 | 𝛼, 𝛽) =  
1

𝛽𝛼𝛤(𝛼)
 𝑥𝑚

𝛼−1𝑒−𝑥𝑚/𝛽 ; 𝑥𝑚  ≥ 0                                            (3.9) 

𝛤(𝛼) =  ∫ 𝑥𝑚
𝛼−1

∞

0

𝑒−𝑥𝑚,𝑑𝑥                                                             (3.10) 

𝛼 =  (
𝑥𝑚̅̅ ̅̅

𝑠
 )2  , 𝛽 =  

𝑆𝑚
2

𝑥𝑚̅̅ ̅̅
                                                        (3.11) 
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𝑥𝑚 =  𝐹−1(𝑓(𝑥𝑚 | 𝛼, 𝛽) | 𝛼, 𝛽)×
𝑎𝑚,𝑡

𝑎𝑚,𝑠
                                                       (3.12) 

where, F(x) is CDF of gamma function, f(x) is the probability density function of the gamma 

distribution, m is the specific month (e.x 1-12), 𝑎𝑡 is mean precipitation of total m month at 

TS,  𝑎𝑠 is mean precipitation of total m month at SS.  x is daily precipitation at selected day 

and month, �̅� is the mean daily precipitation of m months, and s is the standard deviation of 

daily precipitation from m month. 𝛼 is the shape parameter, 𝛽 is the scale parameter, and 𝛤 is 

the gamma function. 

 

3.3.6. Performance measures criteria 

Error measures such as Squared Error (RMSE), Mean Absolute Error (MAE), and 

Correlation Coefficient (R) are widely used for the performance comparison of gap filling 

methods.  RMSE calculates a measure difference between simulated and observed values.  

Theses individual differences are residuals.  RMSE provides to aggregate them into a single 

measure of predictive power. MAE is a quantity measurement to see how close simulated 

values are to the eventual results.  Several studies (Ahrens, 2006; Chang, 2009; Davis, 2002; 

Kanevski and Maignan, 2004; Lloyd, 2005) have indicated that RMSE and MAE are the best 

indicators to compare interpolation methods for data estimation.  R represents the strength and 

direction of a linear relationship between the simulated and observed values.  R=1 indicates a 

perfect linear relationship between observed and simulated results, while R=0 represents that 

there is no linear relationship between the variables.  RMSE, MAE, and R are calculated 

using equation (3.13) – equation (3.15).  
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𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑆𝑖 − 𝑃𝑄𝑖)2𝑁

𝑖 = 1

𝑁
                                               (3.13) 

𝑀𝐴𝐸 =  
1

𝑁
 ∑ | 𝑃𝑆𝑖 −  𝑃𝑄𝑖 |

𝑁

𝑖 = 1

                                                 (3.14) 

𝑅 =  

1
𝑁 × ∑ (𝑃𝑄𝑖 − �̅�𝑄𝑖)×(𝑃𝑆𝑖 − �̅�𝑆𝑖)𝑁

𝑖=1

√𝑁× ∑ 𝑃𝑄𝑖
2 −  (∑ 𝑃𝑄1

𝑁
𝑖=1 )

2𝑁
𝑖=1

𝑁×(𝑁 − 1)  ×√
𝑁× ∑ 𝑃𝑆𝑖

2 −  (∑ 𝑃𝑆1
𝑁
𝑖=1 )2𝑁

𝑖=1

𝑁×(𝑁 − 1)    

            (3.15)  

where, PQi is the observed precipitation data at time step I, PSi is the estimated precipitation 

data, �̅�𝑄𝑖  𝑎𝑛𝑑 �̅�𝑆𝑖  are the mean of the observed and estimated precipitation data, respectively. 

N is the number of sample sizes.   

 

3.3.7. Performance measures 

Performance measures using Heidke Skill Score (HSS), Peirce Skill Score (PSS), and 

Critical Success Index (CSI) are conducted to verify how the estimated values represent 

precipitation realization in daily time step (Wilks, 1995).  HSS is calculated based on counts 

from contingency table representing rain and no rain conditions, while CSI evaluates how the 

estimated rain events represent the observed rain events.  PSS indicates the accuracy of the 

estimated data by a random process.  It assumes that both the estimated and observed rain 

events have the same marginal distribution during data normalization processes.  The 

equations of three skill scores are given by: 

𝐻𝑆𝑆 =  
2 ×(𝐶00 × 𝐶11 −  𝐶01 × 𝐶10)

(𝐶00 +  𝐶10)×(𝐶10 +  𝐶11) + (𝐶00 +  𝐶01) ×(𝐶01 +  𝐶11))
                (3.16) 

𝐶𝑆𝐼 =  
𝐶11

𝐶11 +  𝐶10 + 𝐶01
                                                            (3.17) 
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𝑃𝑆𝑆 =  
𝐶00 × 𝐶11 − 𝐶01 × 𝐶10

(𝐶00 +  𝐶01) ×(𝐶10 +  𝐶11)
                                          (3.18) 

where, C00 is the number of no rain events for same day of simulated and observed data, C01 is 

the number of no rain event of observed data, but rain event of simulated data for the same 

day, C10 is the number of rain event of observed data, but no rain event of simulated data for 

same day, and C11 is the number of rain event of simulated and observed data for same day. 

Positive skill score values mean that they are considered to indicate a minimal level of 

acceptable performance for the simulated results. 

 

3.4. Results 

The results of CA application is shown in Table 3.2 and Figure 3.3 as they show the 

classified 12 cluster groups associated with weather stations in tabular and map format, 

respectively.   The Cluster Group 1 (CG1) includes total 8 weather stations (See Table 3.2) 

and the average elevation is 535 m, while the Cluster Group 8 (CG8) includes 4 weather 

stations and the highest elevation is 2,378 m.  Based on seasonal precipitation patterns, the 

Cluster Group 4 (CG4) is identified and the highest average seasonal precipitation for each 

season within CG4 is 363.98 mm, 292.10 mm, 225.55, and 435.10 mm for spring, summer, 

fall, and winter, respectively.  The lowest seasonal precipitation is found at the Cluster Group 

6 (CG6)-78.99 mm for spring and 87.38 mm for winter and the Cluster Group 12 (CG12)-

65.28 mm for summer and 42.16 mm for fall. 
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Table 3.2. The result of CA in the study area. 

luster 
group 

Gauge station number 
Average precipitation (mm) Average 

Elevation 

(m) Spring Summer Fall Winter 

1 
95, 98, 99, 109, 110, 112, 

115, 116 
133.86 117.35 83.06 180.85 535 

2 
91, 92, 93, 96, 97, 101, 

104 
171.70 168.66 105.92 175.77 1,042 

3 
94, 100, 102, 103, 105, 

106, 108, 111, 113, 114 
243.08 184.91 145.29 355.09 766 

4 90, 107 363.98 292.10 225.55 435.10 1,617 

5 
2, 17, 22, 39, 40, 41, 49, 

52, 61, 63, 69, 73, 78 
90.68 109.47 84.84 96.01 1,748 

6 

1, 3, 6, 13, 20, 21, 23, 24, 

30, 32, 34, 48, 55, 57, 58, 
64, 66 

78.99 89.92 62.99 87.38 1,396 

7 7, 11, 16, 29, 36, 44, 74 198.88 167.64 129.54 250.70 2,058 

8 8, 10, 12, 68 289.81 190.75 142.24 325.88 2,378 

9 
4, 5, 31, 47, 51, 54, 62, 

70, 82, 89 
226.31 171.70 132.08 267.72 2,189 

10 
59, 65, 75, 77, 80, 83, 84, 

85, 86 
206.25 130.81 92.71 270.26 1,310 

11 
9, 33, 38, 50, 67, 72, 76, 

79 
81.53 80.77 55.37 96.77 1,584 

12 

14, 15, 18, 19, 25, 26, 27, 

28, 35, 37, 42, 43, 46, 53, 

56, 60, 71, 81, 87, 88 

85.60 65.28 42.16 98.04 951 

 

 

Figure 3.3. The result of step-by-step CA application. 
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Table 3.3 shows how the gap filling method performs to estimate missing values at 

TS based on the evaluation criteria, such as R, RMSE, and MAE.  The highest and lowest R 

value is 0.92 and 0.12 at the station number 88 and 75, respectively when GSC and OK 

method are used (See Table 3.3).  When CA is employed for gap filling processes, the R 

value is higher at most stations except few stations.  The R values of GSC, in particular, are 

higher than that of other methods (GME, IDW, OK) being used.  The results of RMSE also 

show the similar result in the sense that the lowest RMSE values are observed at most 

stations, when CA is employed, except the stations, 73 and 75.  The lowest and highest RMSE 

values are observed at Station 43 and Station 75 when GSC and IDW method are employed, 

respectively.  The result clearly shows that each gap filling method performs very well when 

CA method is integrated regardless of the gap filling method used.  As shown in Table 3.3, 

the typical ranges of RMSE for gap filling methods are 1.54 - 4.27 for GSC, 1.65 - 4.22 for 

GME, 1.69 - 4.96 for IDW, and 1.61 - 20.11 for OK.  The MAE results further justify that gap 

filling methods with CA can reduce MAE at most stations.  Note that the lowest and highest 

of MAE values are observed 0.52 and 4.63 at Station 67 and Station 114, respectively when 

GSC and OK are employed with CA.  
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Table 3.3. The performance measure of the gap filling methods with and without CA. 

Station 
number 

Gap 

filling 

method 

R RMSE MAE 

No CA CA No CA CA No CA CA 

2 

GSC 0.35 0.40 2.20 2.16 0.75 0.74 

GME 0.30 0.37 2.17 2.12 0.97 0.85 

IDW 0.23 0.33 2.72 2.37 1.51 1.09 

OK 0.09 0.36 9.37 5.34 2.99 2.12 

13 

GSC 0.40 0.55 2.16 1.85 0.71 0.64 

GME 0.55 0.57 1.78 1.74 0.72 0.67 

IDW 0.53 0.55 2.02 1.79 1.14 0.76 

OK 0.38 0.32 3.35 3.62 1.44 1.10 

25 

GSC 0.57 0.58 1.92 1.90 0.61 0.60 

GME 0.58 0.58 1.85 1.83 0.74 0.70 

IDW 0.48 0.55 2.18 1.87 1.19 0.81 

OK 0.23 0.45 11.37 2.49 4.42 0.93 

30 

GSC 0.65 0.68 1.70 1.64 0.54 0.54 

GME 0.50 0.59 1.94 1.81 0.78 0.66 

IDW 0.42 0.54 2.34 1.96 1.33 0.77 

OK 0.68 0.67 1.76 1.78 0.66 0.66 

33 

GSC 0.63 0.70 1.95 1.79 0.60 0.56 

GME 0.63 0.68 2.02 1.85 0.77 0.66 

IDW 0.53 0.55 2.23 2.09 1.20 0.77 

OK 0.20 0.46 7.41 2.55 2.58 0.88 

35 

GSC 0.36 0.60 1.98 1.64 0.68 0.61 

GME 0.53 0.59 1.73 1.65 0.70 0.61 

IDW 0.51 0.57 1.99 1.69 1.11 0.72 

OK 0.20 0.41 7.64 2.21 3.26 0.90 

38 

GSC 0.48 0.67 3.08 2.40 0.90 0.78 

GME 0.59 0.64 2.71 2.57 1.03 0.87 

IDW 0.50 0.61 2.83 2.63 1.38 0.88 

OK 0.11 0.37 21.22 3.07 5.62 1.14 

43 

GSC 0.50 0.83 2.16 1.54 0.77 0.52 

GME 0.56 0.59 1.94 1.89 0.84 0.77 

IDW 0.55 0.62 2.14 1.82 1.20 0.81 

OK 0.09 0.80 37.85 1.61 4.79 0.66 

46 

GSC 0.64 0.72 1.92 1.73 0.62 0.60 

GME 0.62 0.72 2.02 1.82 0.80 0.65 

IDW 0.56 0.56 2.18 2.18 1.22 1.22 

OK 0.39 0.65 6.66 2.00 2.63 0.79 

48 

GSC 0.44 0.47 3.92 4.27 1.33 1.57 

GME 0.57 0.60 2.98 2.87 1.18 1.07 

IDW 0.51 0.62 3.04 2.89 1.43 1.03 

OK 0.18 0.44 5.69 3.93 2.10 1.65 

53 

GSC 0.70 0.80 3.32 3.03 1.23 1.05 

GME 0.66 0.70 2.75 2.55 1.19 1.03 

IDW 0.63 0.70 2.77 2.74 1.32 1.06 

OK 0.32 0.80 7.56 2.22 3.28 0.86 
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Station 

number 

Gap 

filling 
method 

R RMSE MAE 

No CA CA No CA CA No CA CA 

67 

GSC 0.34 0.56 1.97 1.81 0.54 0.52 

GME 0.46 0.46 1.79 1.80 0.61 0.55 

IDW 0.32 0.36 2.33 2.07 1.27 0.75 

OK 0.11 0.37 34.31 2.31 15.33 0.83 

73 

GSC 0.58 0.60 2.66 2.20 0.88 0.79 

GME 0.61 0.54 2.20 2.26 0.91 0.87 

IDW 0.47 0.28 2.45 4.08 1.26 1.03 

OK 0.32 0.46 5.85 3.55 2.36 1.45 

75 

GSC 0.58 0.62 3.31 3.18 1.35 1.31 

GME 0.69 0.67 2.95 2.94 1.31 1.20 

IDW 0.66 0.46 3.04 4.46 1.38 1.29 

OK 0.17 0.12 27.24 20.11 5.79 2.47 

77 

GSC 0.58 0.60 3.85 3.56 1.42 1.33 

GME 0.63 0.69 3.46 3.21 1.47 1.22 

IDW 0.64 0.69 3.45 3.16 1.56 1.27 

OK 0.40 0.49 27.35 4.65 12.16 1.88 

83 

GSC 0.60 0.67 3.90 3.23 1.63 1.42 

GME 0.65 0.77 3.23 2.76 1.48 1.16 

IDW 0.68 0.77 3.24 2.73 1.49 1.15 

OK 0.56 0.55 5.39 4.13 2.74 1.88 

88 

GSC 0.60 0.92 8.97 2.71 1.21 0.75 

GME 0.78 0.79 5.37 4.22 0.87 0.92 

IDW 0.34 0.70 6.24 4.96 1.37 1.87 

OK 0.05 0.67 177.43 5.16 36.07 2.20 

97 

GSC 0.71 0.79 2.83 2.45 1.11 1.04 

GME 0.47 0.78 3.49 2.68 1.59 1.07 

IDW 0.54 0.78 3.36 2.48 1.52 1.10 

OK 0.75 0.76 2.64 2.59 1.07 1.09 

98 

GSC 0.43 0.49 2.18 2.11 0.82 0.82 

GME 0.40 0.41 2.14 2.15 0.99 0.93 

IDW 0.45 0.38 2.27 2.52 1.26 1.23 

OK 0.22 0.23 20.64 3.80 6.79 1.63 

99 

GSC 0.36 0.49 5.76 3.75 2.41 1.51 

GME 0.51 0.53 3.23 3.19 1.60 1.47 

IDW 0.54 0.57 3.20 3.10 1.42 1.51 

OK 0.39 0.34 20.32 10.29 8.97 4.21 

101 

GSC 0.60 0.70 3.68 3.29 1.53 1.40 

GME 0.51 0.70 3.77 3.18 1.78 1.39 

IDW 0.60 0.66 3.63 3.35 1.64 1.45 

OK 0.25 0.31 7.38 6.44 3.49 2.79 

114 

GSC 0.57 0.62 4.15 3.76 1.65 1.67 

GME 0.36 0.44 4.42 4.13 2.29 2.03 

IDW 0.45 0.47 4.08 4.00 1.96 1.97 

OK 0.42 0.42 6.06 8.91 2.98 4.63 

Note: Shaded areas indicate the performance decreases when CA is employed.  
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Figure 3.4 illustrates the variation of the performance improvement of each gap 

filling method at TSs based on R, RMASE, and MAE.  It clearly shows that CA can improve 

overall performance when the gap filling methods are implemented.  Table 3.4 summarizes 

the performance of four different gap filling methods with and without CA method.  It is 

noteworthy that R values increase significantly when CA is integrated in the gap filling 

methods, while GSC outperforms the rest of the methods.  The similar results are also 

observed when RMSE and MAE are used for evaluation.  The OK method, in particular, 

shows a significant difference between CA and non-CA integration into the gap filling 

process by showing highest improvement at 72% in MAE.  

In general, the performance of the existing methods (GME, IDW, OK) for gap filling 

processes is often dominated by the closed stations and the density of their positions.  In this 

study, CA is used to minimize collinearity between stations by segregating them by latitude, 

longitude, and the altitude.  By doing so, characteristics of microclimate and orographic effect 

can be incorporated into gap filling processes and consequently more reasonable estimation 

for daily precipitation can be achieved.  Thus, as weather patterns in eastern Idaho and 

western Idaho are significantly different due to maritime climate as discussed before, CA 

approach prior to gap filling process makes more sense to characterize daily precipitation 

based on 3 dimensional dominance (latitude, longitude, altitude) rather than 2 dimensional 

plane (distance between stations).   
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Figure 3.4. The boxplot of performance measures with and without CA for gap filling 

methods. 
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Table 3.4. The average performance variations for four gap filling methods with and without 

CA.  

Methods 

Mean performance variation 

R RMSE MAE 

No 

CA 
CA 

Increasing 

(%) 

No 

CA 
CA 

Decreasing 

(%) 

No 

CA 
CA 

Decreasing 

(%) 

GSC 0.53 0.64 17.19 3.16 2.55 19.30 1.06 0.94 11.32 

GME 0.55 0.61 9.84 2.72 2.51 7.72 1.12 0.97 13.39 

IDW 0.51 0.56 8.93 2.90 2.77 4.48 1.37 1.12 18.25 

OK 0.30 0.48 37.50 20.66 6.47 68.68 5.98 1.67 72.07 

 

 After evaluating effectiveness of CA for the gap filling methods, skill scores indices 

are also calculated to evaluate the estimation accuracy for rain and no rain conditions.  Table 

3.5 shows skill scores (HSS, CSI, and PSS) of the gap filling methods with CA and Figure 

3.5 illustrates skill scores in the boxplot.  As shown in Table 3.5, GSC outperforms the other 

methods at most stations, except few stations, such as Stations 33, 38, 67, 75, and 99.  

Interestingly, all these stations have less than 1% missing level (See Figure 3.1) so that 

overall skill scores are high, which mean that no additional benefit from gap filling processes 

are achieved.  Nonetheless, GSC outperforms the other methods. 

In general, the highest HSS and SCI are recorded when GSC is implemented at most 

stations except Station 99, where IDW outperforms the other method in terms of the highest 

HSS and SCI.  Additionally, although PSS results using OK method better performs slightly 

than the other methods based on PSS at few Stations 33, 38, 67, 75, and 77, GSC outperforms 

the other methods at most stations.  The GME method, by contrast, has the lowest average 

values, 0.32, 0.40, and 0.45 for HSS, CSI, and PSS, respectively in comparison with that of 

three other gap filling methods.  For IDW method, in particular, the skill scores are calculated 

secondly higher values, but the variation between skill scores is also very high; the average 

HSS and PSS are 0.28 and 0.43, but the lowest HSS and PSS are 0.02 and 0.04, respectively.  
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Thus, overall skill scores from GME, IDW, and OK method with CA are similar each other 

when HSS, CSI, and PSS are computed.  Based on the preliminary result along with skill 

scores, it appears that GSC is a promising method to fill missing values for daily precipitation 

series especially under rain and no rain conditions. Additionally, higher estimation accuracy is 

observed when GSC is employed to estimate the missing precipitation data at most stations.  

Similar results were also found by Hason and Croke (2013) and Simolo et al. (2010). These 

results confirmed by the analysis of the number of rain and no rain conditions. Gamma 

distribution method well performs to estimate non-zero rainfall amount than IDW, GME, and 

OK. However, more improved results were obtained using CA with GSC, IDW, GME, and 

OK method. 

 

 
Figure 3.5. The boxplot of skill scores for the gap filling methods. 
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Table 3.5. Skill scores for the gap filling methods with CA. 

Number 
Station 

HSS CSI PSS 

GSC GME IDW OK GSC GME IDW OK GSC GME IDW OK 

2 0.54 0.25 0.25 0.34 0.49 0.35 0.35 0.36 0.57 0.39 0.39 0.40 

13 0.58 0.23 0.27 0.30 0.51 0.33 0.35 0.32 0.57 0.38 0.44 0.33 

25 0.58 0.23 0.23 0.35 0.50 0.32 0.32 0.37 0.56 0.39 0.39 0.48 

30 0.63 0.20 0.25 0.42 0.56 0.29 0.32 0.42 0.67 0.37 0.44 0.61 

33 0.56 0.37 0.38 0.45 0.47 0.37 0.37 0.41 0.54 0.60 0.60 0.61 

35 0.42 0.23 0.23 0.21 0.37 0.32 0.33 0.29 0.40 0.39 0.39 0.29 

38 0.56 0.36 0.36 0.27 0.47 0.35 0.36 0.28 0.59 0.60 0.61 0.39 

43 0.73 0.24 0.25 0.47 0.66 0.34 0.34 0.46 0.80 0.41 0.42 0.63 

46 0.64 0.21 0.02 0.29 0.57 0.33 0.24 0.35 0.66 0.36 0.04 0.42 

48 0.47 0.28 0.35 0.33 0.43 0.39 0.43 0.39 0.44 0.40 0.48 0.39 

53 0.67 0.31 0.32 0.47 0.61 0.43 0.43 0.50 0.63 0.43 0.43 0.57 

67 0.53 0.36 0.37 0.46 0.46 0.37 0.37 0.42 0.55 0.56 0.57 0.58 

73 0.49 0.27 0.28 0.30 0.45 0.36 0.36 0.35 0.50 0.42 0.43 0.39 

75 0.56 0.48 0.55 0.47 0.55 0.54 0.58 0.51 0.56 0.56 0.62 0.50 

77 0.52 0.34 0.40 0.41 0.49 0.40 0.43 0.42 0.60 0.51 0.56 0.48 

83 0.60 0.48 0.53 0.47 0.59 0.55 0.58 0.50 0.61 0.57 0.62 0.49 

88 0.31 0.14 0.15 0.16 0.32 0.29 0.29 0.27 0.32 0.24 0.26 0.21 

97 0.68 0.55 0.55 0.67 0.66 0.61 0.61 0.68 0.67 0.61 0.61 0.70 

98 0.39 0.29 0.32 0.27 0.41 0.40 0.41 0.36 0.43 0.40 0.43 0.33 

99 0.42 0.43 0.46 0.42 0.44 0.52 0.54 0.48 0.40 0.50 0.53 0.44 

101 0.60 0.48 0.53 0.47 0.59 0.55 0.58 0.50 0.61 0.57 0.62 0.49 

114 0.55 0.28 0.28 0.27 0.56 0.46 0.46 0.40 0.55 0.34 0.35 0.29 

Mean 0.55 0.32 0.33 0.38 0.51 0.40 0.41 0.41 0.56 0.45 0.47 0.46 

Note: Shaded areas indicate that the existing methods outperform GSC. 
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CHAPTER 4. THRESHOLD OF BASIN DISCRETIZATION LEVELS 

FOR HSPF SIMULATIONS WITH NEXRAD INPUTS 

“Threshold of basin discretization levels for HSPF simulations with NEXRAD inputs.” 

Journal of Hydrologic Engineering, vol.19, issue 7, 2014, pp 1401-1411. 

 

4.1. Introduction 

A rainfall-runoff model is a typical tool to characterize the dynamics of air, soil, and 

water by means of hydrological simulations, such as streamflow. This type of model plays a 

critical role in predicting hydrological events (e.g., flood or drought) for effective water 

management and long-term planning. In terms of model structure, computational difficulty, 

and basin delineation processes, a hydrologic model can be characterized as a lumped or 

distributed model. A lumped model can be defined as a hydrologic model that considers the 

basin as one unit; therefore, the set of various hydrologic parameters is global. Thus, the 

lumped model is applied to simulate streamflow at the basin scale, in which physical 

representations of soil, land use, vegetation coverage, and climate forcing (e.g., precipitation 

and temperature) are averaged and uniformly applied to parameterize hydrological processes 

(Smith et al., 2004). Over the last few decades, the lumped model has been dominantly used 

for many water management exercises, such as flood risk analysis and streamflow forecasting 

(Bell and Moore, 1998; Michaud and Sorooshian, 1994), whereas the distributed model has 

gradually continued to draw attention over time, owing to improved computer technology and 

enriched environmental data sets at high spatial and temporal resolution (Koren et al., 1999; 

Ryu, 2009; Wood, 1995). In recent years, the distributed model has become a popular choice 

in the field of hydrology because it allows high-resolution data to be incorporated into high-
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performance computing and complex geophysical modeling framework (Ryu, 2009). The 

lumped model can be defined as a hydrologic model that divides the basin into a number of 

smaller units called catchments; each catchment has its own set of parameters, whereas the 

semidistributed model is between the lumped model and the distributed model. The ability to 

simulate the spatial hydrologic variability across the basin further encourages many 

hydrologists to apply the distributed model for their own applications (Carpenter and 

Georgakakos, 2004; Smith et al., 1995). Additionally, finer scale geospatial data (e.g., 2–3 m 

resolution), such as North America Land Data Assimilation System (LDAS) data (Mitchell et 

al., 2004), are still evolving to characterize the spatial and temporal variability of water and 

energy cycles, which is critical to improve understanding of the dynamics between land, 

surface, and atmosphere. Climate change and variability is another contributing factor that 

facilitates applications of hydrological models in a distributed fashion because local-specific 

spatial variability of hydrological consequences induced by uncertain future climates is of 

great interest in many basins around the world. In January 2000, the Hydrology Laboratory 

(HL) of the National Oceanic and Atmospheric Administration/National Weather Service 

(NOAA/NWS) initiated the Distributed Model Intercomparision Project (DMIP) to improve 

river and streamflow forecasts (Smith et al., 2004). A fundamental element in this effort is to 

incorporate next generation radar (NEXRAD) multisensory precipitation products into 

hydrological simulation and forecasting frameworks. Smith et al. (2004) and related 

publications provide additional discussions about a broader spectrum of model development 

and comparisons to improve streamflow forecasting (Lerat et al., 2012; Smith et al., 2012). 

Although many research studies discuss the comparisons between distributed models and 

lumped models during the course of DMIP, few have provided practical guidelines to 
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determine how basin discretization can improve the overall model performance. The term of 

discretization here is analogous to the level of basin delineation that can be made from basin 

to catchment scales with respect to spatial resolution and parameter sets. Identifying such 

information is challenging in the sense that a distributed model does not necessarily 

outperform a lumped model. For example, prior to DMIP, Refsgaard and Knudsen (1996) 

applied three different models, including a lumped conceptual modeling system [Nedbor-

Afstromings Model (NAM)], a distributed, physically based system [An integrated catchment 

modeling by DHI Software (MIKE SHE)], and an intermediate approach [An integrated 

Water Balance Model (WATBAL)], to three catchments in Zimbabwe ranging from 254 to 

1,090 km2. However, no noticeable performance among these models was observed, although 

the distributed model performed marginally better for some cases in which no calibration was 

allowed (Refsgaard and Knudsen, 1996). Boyle et al. (2001) reported performance 

improvements associated with the application of distributed models, moving from a lumped 

model to a semidistributed model, but they indicated that no additional gain could be achieved 

at the selected catchments in the Blue River basin (1,227 km2). It is possible that their 

experiment for a fairly similar catchment size, approximately 157 km2 on average, did not 

necessarily justify the benefits of spatial details on different catchment sizes. Later, Ajami et 

al. (2004) conducted an experiment with a slightly different focus to explore the spatial details 

and complexity that can improve the accuracy of streamflow forecasts during DMIP periods. 

Specifically, they explored how different combinations of the spatial complexity of input, 

model structure, and parameters can contribute to improving overall calibration results. They 

concluded that only marginal effects on the calibration results were attained, even when the 

spatial complexity was increased by distributing the parameters along with precipitation and 
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moving from a lumped to a distributed calibration strategy (Ajami et al., 2004). Although 

many previous studies indicate that the added complexity when transitioning from a lumped 

to a distributed representation of a basin results in performance improvement after calibration 

at the level of current operational standards, little research focuses on how spatially 

downsized catchment scales can contribute to improving overall modeling performances at a 

certain threshold of basic discretization. Thus, no operational guideline is available for 

hydrologists to determine the threshold of basin discretization that represents a proper 

catchment delineation level for their own applications. As such, the goal of chapter 4 is to 

provide useful insights for the hydrologic community to support better decisions by 

determining the proper catchment size for optimal basin scale modeling using HSPF. Having 

reasonable criteria for basin discretization is an important element of the modeling process, to 

reflect some aspect of the prediction accuracy of the calibrated model. A threshold suggested 

by this chapter will be also useful during basin delineation processes because the model 

performance is constrained by the catchment size, thereby resulting in cost and time savings.  

 

4.2. Study area 

Two river basins, the Illinois River basin and the Elk River basin, are selected for this 

study. As shown in Figure 4.1, the Illinois River basin lies to the south of the Elk River basin: 

the upstream end is located at the USGS gauge station at Savoy, Arkansas (AR) and the 

downstream end at the USGS gauge at Tahlequah, Oklahoma (OK). The area drained by the 

river reach between the two stations totals 2,025 km2 and the primary stem length of the 

Illinois River is approximately 95 km. The catchment sizes of the Illinois River used in this 

study vary from 37 km2 at Springtown to 2,484 km2, which is the total drainage area of the 
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Illinois River Basin at Tahlequah (Figure 4.1 and Table 4.1). The drainage areas of the Baron 

Fork and Siloam Springs catchments, part of the Illinois River basin, are 795 and 1,489 km2, 

respectively. The Elk River basin lies to the north of Illinois River and drains to the USGS 

gage at Tiff City, Missouri (MO). The drainage area and mainstream length of this basin are 

2,258 and 56.6 km, respectively. The largest and smallest catchment sizes used in this study 

are 2,258 km2 at Tahlequah and 37 km2 at Springtown. Both basins are selected for DMIP not 

only because high-quality NEXRAD precipitation data are available but also because there 

are no complicated water activities, such as upstream diversion, dam operation, or snow, that 

can compromise natural streamflow (Ryu, 2009). Data from 15 USGS stream gauge stations 

listed in Table 4.1 are compiled and used for hydrologic simulations. Both the Elk and 

Illinois River basins have several streamflow gauge stations, including outlets and interior 

points to be used for model calibration. 

 

Table 4.1.  USGS stream gauges in the DMIP 2.  

No 
USGS 

No 
Name 

DMIP-

2 ID 

Latitude 

(o) 

Longitude 

(o) 

Area 

(km2) 

1 7196500 Illinois River near Tahlequah OK talo2 35.923 -94.924 2,484 

2 7197000 Baron Fork at Eldon OK eldo2 35.921 -94.839 795 

3 7196973 Peacheater Creek at Christie OK peach 35.955 -94.696 65 

4 7196000 Flint Creek near Kansas OK knso2 36.186 -94.707 285 

5 7195500 Illinois River near Watts OK wtto2 36.130 -94.572 1,645 

6 7194800 Illinois River at Savoy AR savoy 36.103 -94.344 433 

7 7189000 Elk river near Tiff City Mo tifm7 36.631 -94.587 2,258 

8 7188653 Big Sugar Creek near Powell MO powel 36.616 -94.182 365 

9 7188885 Indian Creek near Lanagan MO lanag 36.599 -94.450 619 

10 7194880 
Osage Creek near Cave Springs 

AR 
caves 36.281 -94.228 90 

11 7195000 Osage Creek near Elm Springs AR elmsp 36.222 -94.289 337 

12 7195430 
Illinois river South of Siloam 

Springs AR 
sloa4 36.109 -94.534 1,489 

13 7195800 Flint Creek at Springtown AR sprin 36.256 -94.434 37 

14 7195865 
Sager Creek near West Siloam 

Springs Ok 
wsilo 36.202 -94.605 49 

15 7196900 Baron Fork at Dutch Mills AR dutch 35.880 -94.487 105 
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Figure 4.1. Stdy area of DMIP 2 and gage points. 

 

4.3. Methodology 

4.3.1. Input data 

The high-quality NEXRAD rainfall estimates provided by the National Weather 

Service (NWS) were used in this study. The NEXRAD precipitation data have a Hydrologic 

Rainfall Analysis Project (HRAP) grid of 4 by 4 km resolution and are stored in binary file 

format (e.g., xmrg format) at polar stereographic projection (Greene and Hudlow, 1982). The 

literature (Fulton et al., 1998; Reed and Maidment, 1999; Seo and Breidenbach, 2002; Wang 

et al., 2000; Zhang et al., 2011) provides additional information regarding NEXRAD 

implementation, application, product processing, and algorithms. Although the original cell 

size (4 by 4 km spatial resolution) of NEXRAD precipitation was considered for application 
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to this hydrologic modeling framework, 8 by 8 km spatial resolution was chosen because 

additional climate forcing data sets, including wind speed, temperature, and dew point 

available from North American Regional Reanalysis (NARR) data in 32 by 32 km grid cells, 

were needed to compute potential evapotranspiration (PET). The NEXRAD rainfall data in 8 

by 8 km resolution were averaged in each catchment by using mean area precipitation (MAP) 

and applied to HSPF as an input. The data extraction techniques for NEXRAD rainfall 

estimates and NARR data set assimilation are described in the work of Ryu (2009).  

It is hypothesized that a hydrologic model with finer spatial resolution may provide 

performance gains over such a model in lumped fashion at certain levels. The specific 

requirement for this experiment includes that the model should have reliable and objective 

procedures for parameterization, using all climate forcing (e.g., NEXRAD rainfall estimates, 

PET) and other hydrological data (e.g., basin slope, soil, land cover) in gridded format. To 

incorporate PET into hydrological simulations using HSPF, Jensen’s method (Jensen and 

Haise, 1963) is typically used, but the Penman-Monteith method (Monteith, 1965) was 

selected for the current application for the following reasons: the Penman-Monteith equation 

expresses the evaporating surface as a single “big leaf” (Raupach and Finnigan, 1988) with 

the atmospheric physics, influenced by the crop canopy architecture, and single-surface 

resistance. Furthermore, PET using the Penman-Monteith equation has shown better 

performance results than other PET methods (Chiew et al., 1995; Jensen et al., 1990) and is 

also recommended by the Food and Agricultural Organization of the United Nations (FAO) 

(Allen et al. 1998) as a standard method for modeling PET. The Penman-Monteith PET 

(mm=day) is defined as 

𝑃𝐸𝑇 =  
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
                              (4.1) 
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where Rn is net radiation at the crop surface (MJ=m2=day); G is soil heat flux density 

(MJ=m2=day); T is mean daily air temperature (°C); u2 is wind speed at 2 m height (m=s); es 

is saturation vapor pressure (kPa); ea is actual vapor pressure (kPa); Δ is slope vapor pressure 

curve (kPa=°C); γ is psychrometric constant (kPa=°C).  

For PET computation, climate forcing data, including wind speed, dew point, and 

temperature, were first retrieved from the NARR data depository, and then solar radiation data 

were derived from equations by using temperature differences provided by the literature 

(Allen et al., 1998). For spatial adjustment between NEXRAD and NARR grid sizes, a built-

in spatial interpolation scheme in the Grid Analysis and Display System (GrADS) software 

was used. Finally, all required data sets were compiled into watershed data management 

(WDM) to leverage the input and output processes of HSPF. For topographic relief mapping, 

basin delineation, and flow direction computation, a digital elevation model (DEM) provided 

by NWS was used. This DEM provides 15 arc-second (0.004166°, resolution approximately 

90 m) intervals, which are resampled from resolution of 1 arc-second DEM (7.5 min, 30 m 

resolution). The stream network for hydrologic simulations was generated by using National 

Hydrography Dataset (NHD) via a basin delineation process. For the land use data set, this 

study used the National Land Cover Dataset (NLCD), which has 76 land cover classifications, 

but were further reclassified to represent discernible land use characteristics within HSPF 

modeling blocks. Five land use classifications, including urban or built-up land, agricultural 

land, forest land, water, and barren land, were incorporated into the model to parameterize the 

hydrological processes associated with infiltration rate, interflow, and groundwater 

percolation. Soil classification map and land use information for the study area are shown in 

Figure 4.2 and Table 4.2, respectively. 
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Figure 4.2. Soil texture classification for the study area. 

 

Table 4.2. Land Use classification (km2) for DMIP2 basins.  

Land Use Elk River Baron Fork River 
Illinois River- 

Tahlequah 

Illinois 
river- 

Siloam 

spring 

Total area (km2) 
2,258 

(100 %) 
795 

(100 %) 
2,484 

(100 %) 
1,489 

(100 %) 

Urban or built-up Land 

(km2) 

43.13 

(1.91 %) 

10.89 

(1.37 %) 

114.26 

(4.60 %) 

90.08 

(6.05 %) 

Agricultural Land (km2) 
1,041.39 

(46.12 %) 
368.40 

(46.34 %) 
1,488.66 

(59.93 %) 
997.03 

(66.96 %) 

Forest (km2) 
1,161.29 

(51.43 %) 

415.71 

(52.29 %) 

896.97 

(36.11 %) 

396.67 

(26.64 %) 

Barren land (km2) 
10.16 

(0.45 %) 
- 

1.99 
(0.08 %) 

1.34 
(0.09 %) 

Water (km2) 
2.03 

(0.09 %) 
- 

6.96 

(0.28 %) 

3.87 

(0.26 %) 
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4.3.2. Hydrologic Simulation Program-Fortran (HSPF) 

HSPF is a process-based, river basin-scale, and semi-distributed model. This model is 

developed to forecast the impact of land management or climate change on streamflow and 

water quality in the large and complex watershed. HSPF is integrated model including 

climatology, hydrologic soil, land use, nutrients, bacteria, and pathogens. The main function 

of HSPF model is derived from following four process; (1) Hydrocomp Simulation 

Programming(HSP) (Hydrocomp, Inc., 1976), (2) Nonpoint Source(NPS) Model (Donigian 

and Crawford, 1976), (3) Agricultural Runoff Management (ARM) model (Donigian, 1977), 

(4) Sediment and Radionuclides Transport (SERATRA) (Onishi and Wise, 1982).  HSPF 

model is to simulate water quality and quantity efficiencies at various basin scales and 

locations (e.g. urban, agricultural, mountain area) which have been applied in many 

international research studies based on higher model performance. HSPF model consists of 

main three modules (PERLND, IMPLND, and RCHRES) and optional Utility module. Each 

of modules has different water quality, hydrologic parameters, and state variables (Bicknell et 

al., 2001). PERLND module simulates the water quality and quantity processes on a pervious 

land segment (Figure 4.3). The primary components of PERLND module simulate snow and 

ice (SNOW), water budget (PWATER), sediment (SEDMNT), water quality constituents 

(PQIAL and RQIAL). The auxiliary of PERNLD module modifies air temperature (ATEMP) 

and simulate soil temperature (PSTEMP). 
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Figure 4.3. Structure chart for PERLND module (Bicknell et al., 2001). 

  

IMPLND module indicates an impervious land segment processes. The impervious 

land occurs little or no infiltration and no subsurface flows. The structure and functions of 

IMPLND are given in Figure 4.4. Most sections of IMPLND module are similar to the 

corresponding in the PERLND module. For example, IWATER is similar to PWATER in 

PERLND module, SOLODS is similar to SEDMNT, IWTGAS is similar to PWTGAS, and 

IQUAL is similar PQUAL. Functions of SNOW and ATEMP sections are applied to pervious 

or impervious segment because both modules share their results. However, IMPLND module 

is less complex due to they do not consider infiltration and subsurface flows.  
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Figure 4.4. Structure chart for IMRLND module (Bicknell et al., 2001). 

  

RCHRES module simulates several processing in a single reach of open, closed 

channel, or a completely mixed lake. It assumes flow is unidirectional. Figure 4.5 shows the 

function and major subdivisions of RCHRES module. To simulate water quality, behavior of 

conservative constituents(CONS), heat exchange and water temperature (HTRCH), behavior 

of inorganic sediment (SEDTRN), behavior of a generalized quality constituents(GQUAL), 

and behavior of constituents involved in biochemical transformations (RQUAL) sections 

should be active, advection of entrained constituents (ADCALC) section must be active. The 

water temperature is simulated if RQUAL is active. Within a module section, simulation of 

physical processes (longitudinal advection, sinking, benthal release) is always performed 

before simulation of biochemical processes.  
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Figure 4.5. Structure chart for RCHRES module (Bicknell et al., 2001). 

  

 HSPF model provides optional Utility module for BMPRAC function. BMPRAC can 

simulate the impacts of Best Management Practices (BMP) by applying removal fraction to 

each constituent being modeled. A single instance of BMPRAC deals with the transfer of all 

mass loads from any pervious land in PERLND and impervious land in IMPLND to a single 

RCHRES. The same fractions are applied for each land use. Separate BMPRAC is required 

for each land segment to RCHRES connection due to the expected removal fractions are to 

vary by land use. The general equations for a removal are as follows:  

REMOVE = FRAC * INPUT                                               (4.2) 

      OUTPUT = INPUT - REMOVE                                           (4.3) 

where: REMOVE = mass removed; FRAC   = fraction to remove; INPUT = inflow mass; 

OUTPUT = outflow mass. 
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4.3.3. Hydrological modeling processes 

Stream network delineation was first conducted to determine the number of 

catchments and catchment sizes based on geographic information derived from DEM, land 

use, and channel profiles. As shown in Figure 4.6, a total of 15 calibration points was added 

to generate hydrographs. The study basins were delineated to have three, ten, and three 

catchments situated right above gauging stations for Elk, Illinois, and Baron Fork drainages, 

respectively. The drainage area for Baron Fork and Siloam Springs is part of the Illinois River 

basin. 

 

 

Figure 4.6. Basin delineation of the study basins, including Elk, Illinois, and Baron Fork 

Rivers 
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4.3.4. Model calibration 

A total of six hydrologic parameters were identified as the most important parameters, 

based on a literature review for rainfall-runoff simulations using HSPF. Brief descriptions and 

typical ranges of these parameters are listed in Table 4.3. The set of entire model calibration 

parameters is not included here because such a parameter set varies and changes as calibration 

points move along with the stream channel network. Thus, the procedures of the calibration 

were conducted in a progressively upstream fashion, whereas a set of interior points that are 

not hydrologically linked represented the outlet that was left uncalibrated. Necessary effort 

has been made for model calibration and validation over the study periods by using the 

Parameter Estimation (PEST) software. The calibration procedure used in this study from 

downstream to upstream can be termed “bottom-up calibration” or “out-to-in calibration,” 

which is a reverse calibration procedure, such as “top-down calibration” or “in-to-out 

calibration” (Ryu, 2009). Cross-validation techniques were adopted to verify how the model 

responds to independent data periods. Thus, instead of a split-sample calibration and 

validation experiment, several time segments (January 1, 1999–September 30, 1999, and 

October 1, 1999–September 30, 2000), which are subsets of simulation periods (October 1998 

to September 30, 2000) have been selected for model evaluation processes owing to the data 

availability of NEXRAD in the short time simulation period. Thus, when the first-time 

segment is calibrated, the second time segment is set to a target window for validation and 

vice versa. Some of the first months (e.g., October–December 1998), however, were not used 

for cross-validation because this was utilized as a warm-up period to stabilize the simulation 

runs for HSPF. PEST was used for automatic calibration. PEST is a model independent 

parameter estimation, so it can be applied to many other modeling environments (Doherty and 
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Skahill, 2006; Fienen et al., 2009; Goegebeur and Pauwels, 2007; Kim et al., 2007). PEST 

recognizes the position of the model input file and the parameter set for calibration from a 

template file (e.g., .tpl). The objective function build in PEST is intended to minimize the 

summed weighted squared differences between volumes calculated on the basis of simulated 

and observed flows (not shown in this paper) over the entirety of the simulation periods 

(Doherty and Johnston, 2003). PEST uses the Gauss-Marquardt-Levenberg (GML) method 

(Marquardt, 1963), which is a nonlinear estimation technique, to minimize systematic errors 

between observed and simulated flows. The strength of the GML is reducing calibration times 

because it has fewer running times than other calibration methods, such as manual calibration 

and the shuffled complex evolution method developed by the Univ. of Arizona (Doherty and 

Johnston, 2003). PEST can provide a linear-based approximation of the uncertainties 

associated with parameters, which can be represented by the degree of correlation between 

them. This approximation is a reflection of the inherent nonuniqueness of the inverse problem 

byproduct of GML simulation in minimizing the user-specified objective function (Kim et al., 

2007). TSPROC, the primary component of PEST, plays a key role in the calibrating 

processes because it can prepare the necessary files to formulate the objective functions for 

PEST (Doherty and Johnston, 2003). The multicomponent objective function entailed several 

observations that can easily be constructed by using TSPROC. TSPROC is also used for 

postprocessing, which is required to generate outputs from PEST calibration.  
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Table 4.3. Initial parameter values and ranges of HSPF. 

Parameter Definition Units 
Initial 

value 

Value used in 

literature 

Range of values 

Typical d Possible d 

AGWRC 
Base groundwater 

recession rate 
None 0.98 

0.95a, 0.98b, 

0.99c 
0.92-0.99 

0.82(0.001)-

0.999 

INFILT Infiltration rate mm/h 4.06 
2.03a, 1.78-

15.49b, 1.78c 
0.25-6.35 

0.025-

12.7(2540) 

IRC 
Interflow recession 
parameter 

1/day 0.5 0.4a, 0.6b 0.5-0.7 0.1-0.9 

NSUR 
Manning’s roughness 

for overland flow 
None 0.2 - 0.03-0.1 0.01-0.3(1.0) 

SLSUR 
Slope of overland flow 

plane 
None 0.001 - 0.30-1.52 

0.0001-

4.57(304.8) 

UZSN 
Upper zone nominal 
soil moisture storage 

mm 28.7 
12.7a, 17.53b, 

12.7c 
2.54-25.4 

1.27-
50.8(254.0) 

aDoherty and Johnston (2003). 
bKim et al. (2007). 
cIm et al. (2003). 
dNote that typical and possible values are from BASINS technical note 6, and values in parentheses are 

taken from the HSPF parameter section through WinHSPF graphical user interface (GUI). 

 

4.3.5. Calibration Statistics 

Three typical performance measures, including root-mean square error (RMSE), 

correlation coefficient (R), and Nash-Sutcliffe coefficient (NS) were used to evaluate how the 

HSPF model performs streamflow simulations against the observed flows in this study. 

RMSE is an absolute error measuring quantifying error with regard to the variable units. 

Thus, RMSE provides the SD of the model prediction error. R is the degree of colinearity 

between the simulated and observed flows. It ranges from 0.0 to 1.0; higher values indicate 

better agreement between the simulated and observed data. NS is the percentage of the 

observed variance and determines the efficiency criterion for model verification (Nash and 

Sutcliffe, 1970). It ranges from minus infinity to 1.0, with higher values indicating better 

agreement between observed and simulated data. If the NS value is greater than zero, the 
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model is deemed to be a better system simulation than the mean of observed data. R, NS, and 

RMSE are calculated by equation (4.4) - (4.6), respectively 

𝑅 =  

1
𝑁

× ∑ (𝑄𝑄𝑖 − �̅�𝑄𝑖)×(𝑄𝑆𝑖 − �̅�𝑆𝑖)𝑁
𝑖=1

√𝑁× ∑ 𝑄𝑄𝑖
2 − (∑ 𝑄𝑄1

𝑁
𝑖=1 )

2𝑁
𝑖=1

𝑁×(𝑁 − 1)  ×√𝑁× ∑ 𝑄𝑆𝑖
2 − (∑ 𝑄𝑆1

𝑁
𝑖=1 )

2𝑁
𝑖=1

𝑁×(𝑁 − 1)    

                          (4.4) 

𝑁𝑆 = 1.0 −  [
∑ (𝑄𝑠𝑖 − 𝑄𝑄𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑄𝑖 −  �̅�𝑄𝑖)
2𝑁

𝑖=1

]                                                             (4.5) 

𝑅𝑀𝑆𝐸 =  [
1

𝑁
∑(𝑄𝑄𝑖 − 𝑄𝑠𝑖)2

𝑁

𝑖=1

]

0.5

                                                          (4.6) 

where, QQi and QSi are observed and simulated streamflow at time step, respectively. 

�̅�𝑄𝑖   𝑎𝑛𝑑 �̅�𝑆𝑖  are mean observed and simulated streamflow for the simulation period. N is total 

number of values within the simulation period. 

 

4.4. Results 

Statistical analysis was first performed to evaluate the suitability of the model and the 

performance of calibrated and uncalibrated results for Baron Fork, Illinois, and Elk River 

drainage using PEST. Uncalibrated simulations were performed to observe the valuable gains 

against the level of calibration efforts (Smith et al., 2004). Table 4.4 shows the statistical 

results of the HSPF model in Baron Fork, Illinois, and Elk River over the study period. The 

results show that the calibrated simulation outperformed the uncalibrated simulation over the 

study periods. The simulated flow indicates how the model represents the observed flow. 

After the calibration process, HSPF accurately simulates average flows that are similar to the 

observed average flows at Siloam Springs, Tahlequah, Baron Fork, and Elk catchments 

(Figure 4.7). Based on statistics (e.g., RMSE, R, and NS), the performance of the model after 
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calibration shows a noticeable difference from uncalibrated flows at Siloam Springs, 

Tahlequah, and Elk catchments. As expected, the model performs better after calibration at 

Baron Fork and Tahlequah catchment. The Elk catchment, however, displays a lower NS 

value, which is 0.28 because it still has a distinct flow difference between observed and 

calibrated average flow, even if the calibrated HSPF model decreased the average flow 

volume. Figure 4.7 (a–d) show hydrograph comparisons for the calibrated and uncalibrated 

simulation results at Illinois River, Baron Fork, and Elk River over the study period. These 

figures show hydrograph comparisons between simulated streamflow with and without 

calibration against the observed streamflow. At Tahlequah [Figure 4.7(a)] and Baron Fork 

catchments [Figure 4.7(c)], for example, the timing and magnitude of the peaks of the 

calibrated flow accurately match the observed flow. 

 

Table 4.4. Calibrated and Uncalibrated Statistics during October 1, 1998–September 30, 2000. 

 
Baron Fork river 

Illinois river 
Elk river 

Siloam Tahlequah 

Uncal Cal Uncal Cal Uncal Cal Uncal Cal 

Observed 

average flow 
(m3/s) 

10.70 10.70 19.21 19.21 32.00 32.00 21.44 21.44 

Simulated 

average flow 
(m3/s) 

13.42 10.50 31.42 23.68 47.06 27.01 34.80 32.89 

R 0.90 0.94 0.77 0.83 0.79 0.85 0.64 0.79 

NS 0.82 0.85 0.44 0.53 0.55 0.72 0.17 0.28 

RMSE  11.75 10.43 31.00 28.47 43.04 33.91 37.02 34.57 

Note: Bold values indicate satisfactory calibration results, with R and NS greater than 0.8 and 

0.7, respectively. 
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Figure 4.7. Hydrologic simulations for the study basins (October 1, 1998–September 30, 

2000): (a) Illinois River at Tahlequah; (b) Illinois River at Siloam Springs; (c) Baron Fork 

River; (d) Elk River. 

 

4.4.1. Evaluating model performance at different catchment sizes 

R and NS were used to evaluate how HSPF performs as the catchment size changes. 

Figure 4.8 illustrates how the first four discretization levels associated with different 

catchment sizes can be determined by decreasing gradually from downstream to upstream. 

Tributaries are gradually changed as calibration target points by the order of decreasing 

catchment areas, but the overall calibration results are reported at the previously used 

calibration points (CPs). First, the Tahlequah drainage, the largest basin in the study area, was 

investigated to evaluate how the model performance can be improved as the catchment sizes 
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decrease. As indicated by the values of R listed in Table 4.5, all calibrated simulations 

outperformed uncalibrated simulations, regardless of catchment sizes. R values gradually 

increase at CPs until the catchment size becomes 285 km2, which is 11.47% of the Tahlequah 

drainage area. For example, the R value (0.87) at CP12 is higher than that (0.83) at CP5 

within 1,489 km2. However, when the catchment size decreases to 90 km2, R values start to 

decrease at CP10 (R = 0 .65) within 90 km2 (3.62% of the Tahlequah drainage area), although 

CP10 was selected as the calibration target point. Similar evidence was found at smaller 

catchment sizes (e.g., 49 and 37 km2). This implies that such small catchment sizes do not 

contribute to overall model performance, based on R values in Tahlequah. A similar result 

was observed for NS values. As shown in Table 4.5, NS values within parentheses for the 

catchment areas of 2,484, 1,645, and 1,489 km2 corresponding to CP1, CP5, and CP12, 

respectively, increased after model calibration (bold values in Table 4.5). However, for 

catchment sizes smaller than 1,489 km2, NS values before and after calibration of the model 

vary depending upon catchment sizes and CPs. When the model was calibrated for the 

catchment area of 433 km2 (17.43% of the Tahlequah drainage area), for example, the NS 

value increased at CP12 (NS = 0 .15), then decreased at Calibration Target Point 6 (NS = 

0 .10). This pattern was also observed in smaller catchment sizes (e.g., 90 and 49 km2). It may 

be claimed that the NS value is too low after calibration, but the primary focus of this study is 

to investigate the variability of model performances at different catchment scales, rather than 

calibration improvement. Low values of NS may be also the result of model bias produced by 

the calibration, with bias resulting either from differences in magnitude or time offset for the 

time-dependent model (McCuen et al., 2006), particularly in the smaller basins below 23% of 

the total drainage area. Thus, the smaller catchments (e.g., 37 and 49 km2) do not experience 
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significant improvements by applying the calibration procedure. The NS values also indicate 

some different aspects of the results because they can determine the relative magnitude of the 

residual variance in comparison with the observed data. Therefore, the smaller catchment 

areas that simulate lower flow volume than large catchment areas have lower NS values and 

may be less effective for calibration of the model using the observed streamflow at multiple 

outlets. In addition to Tahlequah, the Siloam Springs, Elk River, and Baron Fork drainage 

areas were investigated to evaluate how the performance of the model depends on different 

catchment sizes. As shown in Tables 4.6–8, all calibrated simulation outperformed 

uncalibrated simulation, regardless of the catchment sizes and CPs. NS values in Table 4.6 

indicate that HSPF performs quite well for the catchment areas of 1,489, 433, and 337 km2, 

which are 100, 29.08, and 22.63%, respectively, of the Siloam Springs drainage because NS 

values are greater after calibration. However, no calibration gain was observed at a catchment 

size of 90 km2, which is 6.04% of the Siloam Springs drainage. As a result, there is a 

calibration gain when the catchment size is greater than 23% of the Siloam Springs drainage, 

but no gain was reported when further discretization was made. 

The Elk River drainage areas were also examined to evaluate variations in the model 

performance depending upon the catchment size. As shown in Table 4.7, all calibrated 

simulations outperformed uncalibrated simulations, regardless of the catchment size and CPs. 

It appears that R and NS values increase gradually as the catchment size decreases at all CPs. 

The final examination was undergone for the Baron Fork drainage. Based on R values in 

Table 4.8, not surprisingly, the model performance after calibration outperformed 

uncalibrated results, regardless of the catchment size and CPs. Unlike R values, however, the 

NS results show different behavior. Thus, the highest NS values were observed at CP2 after 
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calibration, regardless of the catchment size from 65 to 795 km2, via 105 km2. However, NS 

values within the catchment areas of 105 and 65 km2 presented poorer results than 

uncalibrated results at CP3 and CP15, which are, 13.21 and 8.18%, respectively, of the Baron 

Fork drainage. This result implies that CP3 and CP15, which are small catchment areas of 

Baron Fork, have no effect on improving the model and indicates limitations in the model 

calibration, especially for interior locations. 

 

 

Figure 4.8. Examples of the first four discretization levels at different catchment sizes: (a) 

discretization level 1; (b) discretization level 2; (c) discretization 

level 3; (d) discretization level 4. 
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Table 4.5. R and NS before and after Calibration at Different Catchment Scales in the Tahlequah Drainage. 

Area 

(km2) 
Uncal 

CPs Area 

Ratio 

(%) 1 5 12 6 11 10 4 14 13 

2,484 
0.79 

(0.55) 

0.85 

(0.72) 
- - - - - - - - 100 

1,645 
0.78 

(0.60) 

0.86 

(0.65) 

0.87 

(0.75)a 
- - - - - - - 66.22 

1,489 
0.75 

(0.55) 

0.82 

(0.61) 

0.83 

(0.65) 

0.87 

(0.73)a 
- - - - - - 59.94 

433 
0.48 

(0.04) 

0.50 

(0.00) 

0.59 

(0.15) 

0.66 

(0.15) 

0.67 

(0.10)a 
- - - - - 17.43 

337 
0.49 

(-0.05) 

0.52 

(-0.07) 

0.58 

(0.01) 

0.66 

(0.01) 
- 

0.76 

(0.04)a 
- - - - 13.57 

285 
0.61 

(-0.02) 

0.67 

(-0.04) 
- - - - - 

0.81 

(0.05)a 
- - 11.47 

90 
0.36 

(-0.19) 

0.37 

(-0.20) 

0.45 

(-0.17) 

0.50 

(0.02) 
- 

0.70 

(-0.16) 

0.65 

(-0.15)a 
- - - 3.62 

49 
0.34 

(-0.22) 

0.34 

(-0.22) 
- - - - - 

0.63 

(-0.20) 

0.48 

(-0.21)a 
- 1.97 

37 
0.39 

(-0.22) 

0.41 

(-0.23) 
- - - - - 

0.74 

(-0.21) 
- 

0.71 

(0.20)a 
1.49 

Note: Dashes indicate no value because calibration was not applied to the catchment. The values within parentheses represent NS. The bold fonts 

indicate both R and NS increased after model calibration. 
aCalibration target points.  
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Table 4.6. R and NS before and after Calibration at Different Catchment Scales in the Tahlequah Drainage. 

Area 

(km2) 
Uncal 

CPs Area 

Rate (%) 12 6 11 10 

1,489 0.77 (0.41) 0.83 (0.53)a - - - 100 

433 0.52 (0.19) 0.59 (0.24) 0.65 (0.33)a - - 29.08 

337 0.56 (0.10) 0.60 (0.13) - 0.80 (0.24)a - 22.63 

90 0.45 (-0.12) 0.46 (-0.11) - 0.67 (-0.07) 0.74 (-0.07)a 6.04 
Note: Dashes indicate no value because calibration was not applied to the catchment. The values within parentheses represent NS. 
aCalibration target points.  

 

Table 4.7. R and NS before and after Calibration at Different Catchment Scales in the Elk River Drainage. 

Area 

(km2) 
Uncal 

CPs Area 

Rate (%) 7 9 8 

2,258 0.64 0.79 - - 100 

619 0.55 0.63 0.67 - 27.41 

365 0.42 0.53 - 0.77 16.16 
Note: Dashes indicate no value because calibration was not applied to the catchment. The values within parentheses represent NS. 
aCalibration target points.  

 

Table 4.8. R and NS before and after Calibration at Different Catchment Scales in the Baron Fork Drainage. 

Area 

(km2) 
Uncal 

CPs Area 

Rate (%) 2 3 15 

795 0.90 (0.82) 0.94 (0.85)a - - 100 

105 0.76 (0.07) 0.84 (0.12) 0.85 (0.03)a - 13.21 

65 0.56 (0.18) 0.70 (0.21) - 0.73 (0.09)a 8.18 
Note: Dashes indicate no value because calibration was not applied to the catchment. The values within parentheses represent NS. 
aCalibration target points.  
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4.4.2. Identification of basin discretization threshold 

Another reason for choosing 23% as the threshold was justified by evaluating the 

overall model performances. The study area was divided into two groups associated with the 

different catchment sizes constrained by R and NS values. The first group includes catchment 

sizes below 23% of the drainage area, such as drainage areas of 433 km2 (17.43%) in 

Tahlequah, 90 km2 (6.04%) in Siloam Springs, and 65 km2 (8.18%) in Baron Fork; the results 

are shown in Figure 4.9. The second group is the counterpart of the first group: the catchment 

size is above 23% of the drainage area [e.g., 1,489 km2 (59.94%) in Tahlequah, 433 km2 

(29.08%) in Siloam Springs, and 619 km2 (27.41%) in Elk River]; the results are shown in 

Figure 4.10. Several of the interior points are the same in both the Tahlequah and Siloam 

Springs drainages, but they are classified into different catchment ratios by each drainage 

area. Thus, the interior points for the Tahlequah and Siloam Springs drainage are labeled as 

“(1)” and “(2),” respectively, in both Figure 4.9 and 4.10. As shown in Figure 4.9, which 

illustrates model performances below 23% of the drainage area, NS and R values vary (e.g., 

decrease or increase) depending upon CPs at different catchment scales. For example, both 

NS and R values increased at knso2 (1) and elmsp (1), whereas those values fluctuate at wslio 

(1) and caves (1). All calibration target points in Figure 4.9 are included in the catchment 

size, which is below 23% of the drainage area. However, Figure 4.10 shows that NS and R 

values all increased with decreased catchment area, regardless of calibration target points, 

when the catchment size is above 23% of the drainage area. These results imply that after 

calibration, a noticeable gain can be achieved when the catchment size is above 23% of the 

drainage area. 
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Figure 4.9. R and NS values at different basin scales below 22.63% of the drainage area. 
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Figure 4.10. R and NS values at different basin scales above 22.63% of the drainage area. 
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CHAPTER 5. IMPROVING HYDROLOGICAL SIMULATIONS USING 

HSPF IN COMPUTER PARALLELISM 

 

5.1. Introduction 

A hydrologic model is commonly used to simulate real-world problems in many 

water-related fields, including hydrological, ecological, biological, and environmental studies 

(Borah and Bera, 2003; Howarth et al., 1996; Wang et al., 2007; Wu and Xu, 2006). Recent 

advances in data-intensive products, such as North American Land Data Assimilation system 

(NLDAS) and NEXt Generation RADar (NEXRAD) enable hydrologists to better 

characterize hydrological processes at higher spatial and temporal scales (Lerat et al., 2012; 

Nan et al., 2010; Smith et al., 2012). Yet, it is still challenging hydrologists to calibrate their 

models using these data- intensive inputs.  

Due to insufficient observed datasets, computer simulation is a typical exercise to 

characterize hydrological processes and to enhance hydrological realizations based on 

physical and conceptual definite parameters. In general, hydrologists utilize 7-9 key 

parameters to calibrate their models for efficient simulations associated with cost and time 

(Goncu and Albek, 2010; Gallagher and Doherty, 2007; Kim and Ryu, 2013; Seong et al., 

2015; Xu et al., 2007; Xie and Lian, 2013). Model performances, however, are constrained by 

the number of parameter set used, which doesn’t necessarily ensure that the selected model 

performs best to characterize hydrological processes in the study area. Therefore, computer 

parallelism is a way to improve simulation performances by incorporating as many 

parameters as possible into hydrological modeling settings.  With the development of the 

parallel computing technique, computational modeling has been rapidly advanced (Jordi and 
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Wang, 2012; Wang and Shen, 2012; Zhao et al., 2013). Although computer speed and 

capacity improves over time, the model calibration time is still challenging for many 

practitioners (Zhang et al., 2009).  

There are two typical approaches to parallelize hydrological simulations. First, a 

parallel algorithm with parallel threads (e.g., multiple cores) within a single computer is one 

approach (Glotic et al., 2014; Li et al., 2011; Li et al., 2014; Wu et al., 2013; Zhang et al., 

2013). The other approach is to implement a parallel algorithm in connection with multiple 

machines (Kalyanapu et al., 2011; Lecca et al., 2011). Although several studies have been 

conducted for parallelizing model calibrations to reduce computational time and effort with 

multiple threads in a single machine (Gorgan et al., 2012; Rouholahnejad et al., 2012; Yalew 

et al., 2013), few studies focus on implementing computer parallelism in multiple machines 

associated with cluster-based computing architecture to improve model performances. Thus, 

computer parallelism on cluster-based framework has not been fully implemented to find 

optimal parameters for hydrological simulations, especially Hydrological Simulation 

Program-Fortran (HSPF) modeling settings. Therefore, the research explores how computer 

parallelism can be implemented to measure the enhancement of hydrological simulations 

using HSPF so that hydrologists can apply it to their own simulation studies.  

Figure 5.1 shows a flowchart of computer parallelism to calibrate HSPF model in a 

Linux cluster framework. A small Linux cluster system (sLCS) using Message Passing 

Interface (MPI) was first developed and then computer parallelism associated with four 

different calibration scenarios were implemented to improve model performances. The 

BEOPEST, a special version of PEST (a model-independent parameter optimization program) 

(Doherty and Skahill, 2006) was used to calibrate HSPF coupled with multiple cores in sLCS. 
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Computer parallelism was then evaluated by comparing model results based on calibration 

time and efficiency. Lastly, we conclude that hydrologic simulations using BEOPEST and 

HSPF in sLCS environment are a way to improve model performances, especially when many 

parameters are used for model calibration exercises.  In this study, parallelizing calibration 

was only applied for streamflow parameters because the observed water quality data (e.g. TN, 

sediment, TP, water temperature, DO) was insufficient to determine optimal parameters using 

automatic model calibration. Manual calibration was used for the sediment and water quality 

parameters. 

 

 
Figure 5.1. The flowchart for hydrologic model calibration and application. 

 

5.2. Study area 

In this research, the Boise River Watershed (BRW) was selected as the study area 

(Figure 5.2). As a tributary of the Snake River Watershed (SRW), the BRW plays a key role 

of providing water supply and lifeblood of Treasure Valley, but it contributes a significant 
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water quality problem to the lower Snake River. Major cities including Boise, Nampa, 

Meridian, and Caldwell are situated within the lower Boise River watershed (LBRW). The 

BRW is 10,619 km2 with a mainstream length of 164 km stretch and flows into the Snake 

River near Parma. More than 40 percent of Idaho’s population live in this watershed. Water 

quality issues driven by urbanization are also important within the LBRW. Reservoir 

operation related to climate change is one of the main concerns in the upper Boise River 

watershed (UBRW). The main physiographic characteristic of the BRW is a greater 

proportion of precipitation falling as snow at higher elevations. It becomes the cause of 

predictably high flows during the snow melting in spring and early summer. Also, localized 

flooding can arise in winter or spring by warm rains on snow and intense rainfall from 

convective storms during the warmer months. Therefore, climate change will highly affect 

streamflow variability in the UBRW.  

The LBRW has many challenges to control and manage water supply, quality, and 

quantity by urbanization. The indication of water quality degradation has increased around in 

the major urban area. Urbanization rate has increased from 2.06 % in 1995 to 5.40% of the 

BRW in 2011 based on the information proved by USGS/National Land Cover Database 

(NLCD). This trend will continue over time due to ongoing and future urbanization in a 

changing climate.    
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Figure 5.2. The Boise River Watershed (BRW) as the study area. 

 

5.3. Material and methods   

5.3.1. Linux Cluster System (LCS) 

Parallel computing or processing is the ability to deal with multiple operations or tasks 

simultaneously. In parallel processing, more than one CPU or core is used to execute a 

program or multiple computational threads. Parallel processing makes the program run faster 

due to more CPUs or cores are running it. Cluster frames have greater computing power than 

a single large machine at a minimum cost. In this study, a small Linux cluster system (sLCS) 

is designed and built using a multimode Beowulf, which is a portable computer cluster in 

various computer architectures (Brown, 2004). Beowulf-style is a local memory machine by 

message via a network of master and slave clusters. It is designed relatively lower cost with 

high bandwidths and low latencies using fast Ethernet network.  

Beowulf cluster can be utilized to develop the additional tools and parallelization of 

procedures because it is well supported, available, reliable, scalable, and distributed with open 
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source code. sLCS consists of inter-connected computers used as unified computer resources 

as a type of distributed computer system. It is widely used research coding test and central 

computational resources. sLCS can support Open Multi-Processing (OpenMP), Message 

Passing Interface (MPI), and Compute Unified Device Architecture (CUDA) parallelism. A 

main advantage of sLCS is easy to use and the cost-effective to build high-performance 

computing in small research groups in the sense that it costs less than $3,000 (e.g., 6 x VIA 

CN10000 with 2 GHZ CPU, 1GB of RAM, 500GB of the hard disk, 1Gbps Ethernet card). A 

typical sLCS is composed of 1 master and 5 slave nodes that are controlled by the master 

node and linked each other via local network protocols (e.g., TCP/IP). For this study, 14 cores 

(4 cores in the master node, 2 cores each × 5 slave nodes = total 14 cores) were used to 

implement computer parallelism for hydrological simulations. However, typical sLCS has 

several disadvantages to utilize parallelizing calibration in this study. For example, it is 

challenging to evaluate parallel performance efficiently for 14 cores because some cores of 

the master node should be used to run the operational system (OS) and necessary software 

programs. Another problem is the provided OS, which is Bootable Cluster CD (BCCD), is 

required an amount of computational knowledge and expertise. Also, it is not user-friendly 

interface and has lower compatibility with other software. In this study, we modified sLCS to 

apply parallelism for hydrologic model calibration (Figure 5.3). A laptop was used as the 

master node, while the typical sLCS was connected as slave nodes via an Ethernet cable. 

Primary roles of the master node include: 1) to use resources for running software, 2) to 

exchange model parameters with slave nodes, and 3) save and display simulation results. Note 

that Ubuntu 64-bit version was used to evaluate hydrological simulations using HSPF in 

computer parallelism. 
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Figure 5.3. The configuration of the small Linux cluster system (sLCS). 

 

5.3.2. System setup in sLCS 

 A diskless sLCS in Beowulf system was developed in Ubuntu Operating System (OS). 

Slave nodes with no hard disk were connected via an ethernet network hub to the master node 

that can control, supervise, and monitor other slave nodes. The MPI library was used to 

coordinate multiple processes in distributed memory environment. For communication 

protocols, Secure Shell (SSH) method was used along with Ubuntu-based Diskless Remote 

Boot system (UDRB) to manage cluster nodes. Thus, UDRB installed in master node 

provides diskless environmental for slave nodes, accessing local hardware. A wireless 

network (wifi) was used for the master node to access the internet, while all other connections 

between the master and slave nodes are linked by network cards. The download and 

installation methods of DRBL are shown in Appendix A based on Ubuntu 16.04 version. 
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5.3.3. Time Series PROCessor (TSPROC) 

 A tool known as a general Time-Series Processor (TSPROC) is an interface to assist 

seamless data exchanges between input and output for optimal parameterization in hydrologic 

simulations.  Basically, TSPROC generates the key input file for Parameter ESTimation 

(PEST) program (which minimizes model biases formulated in user-specified objective 

function). To fully implement TSPROC in sLCS, a compilation of TSPROC is also required 

because the current version of TSPROC is compiled for Windows only. 

 

5.3.4. BEO-Parameter ESTimation (BEOPEST) 

PEST, the model-independent nonlinear parameter estimation and optimization tool 

developed by Doherty and Skahill (2006) was used to assist data interpretation, model 

calibration, and predictive analysis. PEST uses a recursive gradient-based optimization 

technique, linearizing the nonlinear problem by iteratively computing the Jacobian matrix of 

sensitivities of model observations to parameters. The parameter estimation in PEST is 

accomplished using the Gauss-Marquardt-Levenberg algorithm (GML) to minimize the user-

defined objective function (e.g., minimization of root mean squares between simulated and 

observed values). Thus, the BEOPEST is a tool to mitigate the computation burden and 

implement parallelism in PEST (Schreüder, 2009). Two communication protocols, such as 

Transmission Control Protocol/ Internet Protocol (TCP/IP) and MPI are commonly used, but 

BEOPEST-MPI method was utilized to run HSPF through data exchange between the master 

and the associated slave nodes because MPI is more suitable for diskless Linux cluster 

environment. As library sources, OPENMPI library was installed to compile parallel code 

fully workable in sLCS. Since BEOPEST in sLCS is a cost-effective approach, but powerful, 
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it is highly recommended to execute model calibration in computer parallelism with 

affordable costs at small research groups.  

Figure 5.4 illustrates how computer parallelism is implemented in HSPF calibration 

processes. First, BEOPEST communicates between the master and slave nodes on sLCS using 

MPI protocol and then the master node reads the essential information required for running 

and optimization from the BEOPEST by simply sending model parameters to the slave nodes 

for simulations. Next, each slave node can create HSFP simulation files such as a template, 

instruction, and TSPROC control files from the model parameter sets as instructed by the 

master node based on the cores of each slave node and sends the simulation results back to the 

master node. These updated model parameters are then routed into the next BEOPEST 

iteration. BEOPEST iterations continue until the objective function difference is no longer 

improved as opposed to the previous value (optimal minimization is achieved). A 

computation speed during model calibration is then demonstrated and recorded depending 

upon the number of cores as well as calibration scenarios.   
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Figure 5.4. Schematic of computer parallelism with BEOPEST in HSPF model. 

 

5.3.5. HSPF model input datasets 

5.3.5.1. Climate datasets 

 HSPF model requires climate datasets (e.g. precipitation, temperature, potential 

evapotranspiration (PET), wind speed, dew point, solar radiation, and cloud cover) to simulate 

streamflow and water quality. Phase 2 of the North American Land Data Assimilation System 

(NLDAS-2) data was used as model input because it provides precipitation, temperature, 

downward solar radiation, downward longwave radiation, wind speed, specific humidity, 

surface pressure, and PET. NLDAS-2 is in 1/8th-degree grid spacing and generates real time 

from 01 Jan 1979 to present. The temporal resolution is provided from hourly to monthly. 

NLDAS-2 is initially developed to provide reliable initial land surface states and improve 

weather prediction by a multi-institution partnership, which are National Oceanic and 

Atmospheric Administration (NOAA), National Centers for Environmental Prediction 
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Environmental Modeling Center (NCEP/EMC), National Aeronautics and Space 

Administration Goddard Space Flight Center (NASA GSFC), NOAA National Weather 

Service Office of Hydrologic Development (NWS/OHD), NOAA National Environmental 

Satellite Data and Information Service Office of Research and Allocations (NESDIS/ORA), 

Princeton University, Rutgers University, the University of Washington, and the University of 

Maryland (Cosgrove et al., 2003). NLDAS-2 is derived from the North American Regional 

Reanalysis (NARR) expect precipitation. NARR data is 32 km by 32 km spatial resolution 

and 3-hourly temporal intervals. These climate variables are bilinearly interpolated to the 12 

km by 12 km spatial resolution and disaggregated to 1 hourly temporal frequency by required 

NLDAS 2 using linear temporal interpolation algorithms. The vertical different between 

NARR and NLDAS-2 of terrain elevation vertically adjust surface pressure, surface 

downward longwave radiation, air temperature, and specific humidity data. For the NLDAS-2 

precipitation, it is derived from the Climate Prediction Center (CPC) unified gauge-based 

precipitation analysis with monthly Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) (Daly et al., 1994) adjustments for orographic impacts on precipitation. In 

areas where these data are unavailable, NARR precipitation is used instead. NLDAS has been 

evaluated for the improvement of hydrologic model and indicates well agreement results for 

observation for meteorological variables by several studies (Consgrove et al., 2003; Pinker et 

al., 2003; Luo et al., 2003; Xia et al., 2012a and 2012b; Xia et al., 2014). NLDAS-2 does not 

provide dew point and cloud cover. Therefore, an empirical equation was used to calculate the 

dew point (Oyj, 2013) and cloud cover data was derived from Climate Data Online (CDO) 

provided by National Climatic Data Center (NCDC) in the BRW.  
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𝑇𝑑𝑒𝑤 =  
𝑇

[
𝑚

𝑙𝑜𝑔10(
𝑃𝑤𝑠

𝐴 )
− 1]

                                                           (5.1) 

𝑃𝑤𝑠 = 𝐴 × 10
[

𝑚×𝑇
𝑇+ 𝑇𝑛

]
                                                                  (5.2) 

where, Tdew is calculated dew point (℃), T is air temperature (℃), A, m, and Tn are constants 

see Table 5.1. Pws is water vapor saturation pressure over water (hPa). 

 

Table 5.1. Constant values for dew point calculation. 

Temperature range (℃) A m Tn Max error (%) 

- 20 – 50 6.116441 7.591386 240.7263 0.083 

50 – 100 6.004918 7.337936 229.3975 0.017 

100 – 150 5.856548 7.277310 225.1033 0.003 

150 – 200 6.002859 7.290361 227.1704 0.007 

200 – 350 9.980622 7.388931 263.1239 0.395 

  

The derived data from NLDAS-2 were then converted to Watershed Data 

Management (WDM) format to be used for HSPF as inputs. However, there are few issues to 

convert data from NLDAS-2 to WDM using conventional tools, which requires significant 

time and effort for all 112 grid points in the BRW. Since the existing WDM Utility tool 

cannot import a large volume of forcing data (roughly about 30 MB for a single file), we 

developed an R script to extract forcing data from NLDAS-2 to WDM file. The SARA Time 

Series Utility was then used to create a complete set of WDM file (Figure 5.5).    
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Figure 5.5. Scheme of creating WDM file from NLDAS-2 using R-Parallel and SARA Time 

series Utility. 

 

5.3.5.2. Observed streamflow and water quality data 

In the procedures of streamflow calibration and validation of HSPF model, we utilized 

observed streamflow from USGS gages 1320000 (calibration target point 1), 13186000 

(calibration target point 2), 13185000 (calibration target point 3), 13190500 (calibration target 

point 4), 13202000 (calibration target point 5), and 1321995 (calibration target point 6). 

Water quality calibration of HSPF model employed observed water quality data at the 

watershed outlet. However, due to the insufficient observed water quality data on a daily 

interval (sediment, TN, TP, water temperature, and DO), a manual calibration procedure was 

applied to determine optimal model parameters for daily sediment, water temperature, DO, 

TN, and TP simulations.  
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5.3.5.3. Geological dataset 

 30 m resolution interval of digital elevation model (DEM) provided by US Geological 

Survey (USGS) was used for topographic relief mapping, watershed delineations, and flow 

direction computing using automatic watershed delineation in BASIN 4.1 program (Figure 

5.6 (a)). The stream network was derived depending on DEM or USEPA stream reach file. 

Sub-basins outputs were easily defined via stream definition processes by assigning a 

minimum and maximum threshold of the sub-watershed area. National Hydrography Dataset 

(NHD) was used to develop stream routing for HSPF model since it was applied to integrated 

a detailed stream network in high resolution scale (1:100,000) which is required by various 

hydrology models (Figure 5.6 (b)). It is important to determine the details of stream network 

and the number of delineated sub-basins when observed streamflow data are available at 

interior location for “blind” simulation to determine the model performance of interior 

simulation when calibration is made at the mouth of the watershed. Total six observed 

streamflow points were selected to calibrate inlet locations in the BRW: 3 points are above the 

reservoirs, 2 points are below the reservoirs, and 1 point is at the watershed outlet (Figure 

5.2).  As environmental background data, LULC data was assigned to perform a more detailed 

assessment of LULC conditions and hydrologic cycles in the study area. LULC coverage, 

which is a polygon shape in vector format, indicates boundaries associated with LULC 

classification including urban, agricultural land, forest land, water/wetland, shrubland, 

grassland, and barren/mining land (Figure 5.6 (c)).  
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(a) DEM (30 m by 30 m) 

 
(b) Stream reach and observed streamflow points 

Figure 5.6. Geospatial datasets. 
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(c) 2011 LULC 

Figure 5.6. Geospatial datasets (Cont.). 

 

5.3.6. Streamflow calibration scenarios  

Table 5.2 lists parameter name, unit, initial value, and ranges for HSPF calibrations.  

Four different calibration scenarios were considered and applied during the simulation period, 

January 1, 1999 to December 29, 2015. First two years (January 1, 1999 – December 31, 

2000) were used for a spin-up period to stabilize HSPF. Specifically, Scenarios (SCOs) 1 and 

2 are designed to calibrate the whole basin with different parameter sets. Thus, SCO 1 used 7 

model parameters provided from chapter 4 and SCO 2 used 16 model parameters. SCO 3 and 

SCO 4, however, were designed to calibrate the model with different parameter sets for 6 

different sub-basins as shown in Figure 5.7. Thus, SCO 3 used 7 model parameters for 6 sub-

basins (total 42 model parameters = standard 7 model parameters × 6 sub-basins) and SCO 4 

used 16 model parameters for 6 sub-basins (total 96 model parameters = 16 model parameters 
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× 6 sub-basins). For each calibration scenario, computer parallelism was applied to evaluate 

its performances using BEOPEST in sLCS. 

 

 

Figure 5.7. Model calibration scenarios by calibration locations and model parameter sets. 
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Table 5.2. Initial values and parameters range for HSPF model. 

Parameter Definition Units 
Initial 

value 

Range of values 

Typical Possible 

AGWETP 
Fraction of remaining potential 

evapotranspiration from active 

groundwater 
None 0 0.0 – 0.05 0 – 1.0 

GWRC* Base groundwater recession rate None 0.98 0.92 - 0.99 
0.82 - 

0.999 

BASETP* 
Fraction of potential 

evapotranspiration from baseflow 
None 0.02 0.0 - 0.05 0 - 1.0 

CEPSC Interception storage capacity Inch 0.10 0.03 – 0.20 
0.01 – 

0.40 

DEEPFR 
Fraction of groundwater inflow to 

deep recharge 
None 0.1 0.0 - 0.2 0.0 - 1.0 

INFILT* Infiltration rate in/hr 0.16 0.01 – 0.25 
0.001 – 

0.50 

INTFW Interflow inflow parameter None 2.0 1.0 - 3.0 
1.0 – 

10.0 

IRC* Interflow recession parameter 1/day 0.5 0.5 - 0.7 0.1 - 0.9 

KVARY Variable groundwater recession flow 1/inch 0 0.0 – 3.0 
0.0 – 

5.0 

LZETP 
Lower zone evapotranspiration 

parameter 
None 0 0.0 - 0.7 0.1 - 0.9 

LSUR Length of the assumed overland flow Feet 500 200 - 500 
100 – 

1,000 

LZSN* 
Lower zone nominal soil moisture 

storage 
Inch 6, 6.5 3.0 – 8.0 

2.0 – 

15.0 

NSUR 
Manning’s roughness for overland 

flow 
None 0.2 0.03 - 0.1 

0.01 - 

1.0 

SLSUR* Slope of overland flow plane None 0.001 0.30 - 1.52 
0.0001 - 

304.8 

UZSN* 
Upper zone nominal soil moisture 

storage 
Inch 1.128 0.10 – 1.0 

0.05 – 

2.0 

INFEXP Exponent in infiltration equation none 2.0 2.0 – 2.0 
1.0 – 

3.0 

* indicates the model parameters that were used chapter 4. 
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5.3.7. Water quality calibration  

For water quality, manual calibration was applied due to insufficient observed daily 

data in the BRW. The calibration parameters for water quality were selected based on 

BASINS Technical Note (US.EPA, 2000). Table 5.3 shows the model parameters of sediment 

erosion and solids wash-off to calibrate sediment simulation using the HSPF model. Table 

5.4 indicates the model parameters of water quality constituents for TN, TP, DO, and water 

temperature.  

 

Table 5.3. Calibration model parameters of sediment erosion and solids wash-off. 

 

  

Parameter Definition Units 
Initial 

value 

Range of values 

Typical Possible 

SMPF 
Management Practice (P) 

factor from USLE 
none 1.0 0.0 – 1.0 0.0 – 1.0 

KRER 
Coefficient in the soil 

detachment equation 
complex 0.0 0.15 – 0.45 0.05 – 0.75 

KSER 

Coefficient in the 

sediment washoff 
equation 

complex 0.0 0.5 – 5.0 0.1 – 10.0 

KGER 
Coefficient in soil matrix 

scour equation 
complex 0.0 0.0 – 0.5 0.0 – 10.0 

KEIM 
Coefficient in the solids 

washoff equation 
complex 0.0 0.5 – 5.0 0.1 – 10.0 

ACCSDP 
Solid accumulation rate 

on the land surface 
ton/ha/day 0.0 0.0 – 0.0023 0.0 – 0.035 
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Table 5.4. Calibration model parameters of nutrients, DO, and water temperature. 

 

5.3.8. Parallel performance 

To evaluate model performances in computer parallelism, performance criteria, 

including parallel program runtime, the size of parallel task, run time, time reduction, 

speedup, efficiency, scalability, and more can be considered. However, only program run time 

(PT), time reduction rate (PP), speedup (PS) and efficiency (PE) were used for this study at 

our convenience. Note that speedup (PS) is defined as the degree of true time reduction 

between a serial computation and parallel computation and this measure indicates the relative 

improvement of model performance during executions. A notation of PS is proposed by 

Amdahl’s law to compute the theoretical maximum speedup when multiple nodes are used. It 

is denoted as:  

Parameter Definition Units Initial value 
Typical Range of 

values 

KNO320 
The nitrate denitrification rate 

at 20 degrees C 
hr-1 0.05 0.001 – 0.4 

REAK 

The empirical constant in the 

equation used to calculate the 

reaeration coefficient 

hr-1 1.0 0.2 – 2.0  

KBOD20 
The unit BOD decay rate at 20 

degrees C 
hr-1 0.02 0.00004 – 0.04 

KODSET The rate of BOD setting m/hr 0.0 0.00012 – 0.015 

MALGR 
The maximum unit algal 

growth rate for phytoplankton 
hr-1 0.3 0.008 – 0.3 

PHYSET 
The rate of phytoplankton 

setting 
m/hr 0.0 0.00031 – 0.17 

CFSAEX 
The correction factor for solar 

radiation 
none 0.5 0.001 – 2.0 

KATRAD 
The long-wave radiation 

coefficient 
none 6.5 1.0 – 20.0 
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PS =  
𝑇𝑠

𝑇𝑃
                                                               (5.3) 

where, PS is speedup. Ts is execution time of a serial application on a processor. Tp is 

execution time of parallel application on p processors.  

The parallel efficiency (PE) is another way to measure the effectiveness of processor 

computation.  Under an ideal condition in computer parallelism, PS should be equal to all the 

cores used with maximum efficiency, which is 1. Although PS varies depending upon the 

number of cores used, PE should be in between 0 and 1 in real-world applications due to the 

interference of physical components associated with load balancing, lack of hardware 

capacity, network connection, and other physical constraints, if any. The parallel efficiency 

(PE) is denoted as:  

PE =  
𝑆

𝑃
                                                              (5.4) 

where, s = a processor, p = multiple processors 

 

5.3.9. HSPF performance 

Five typical performance measures, including Correlation coefficient (R), Nach-

Sutcliffe coefficient (NS), Root mean square error (RMSE), Mean Square Error (MAE), and 

Percentage of Bias (PBIAS) were used to evaluate how HSPF model simulate streamflow 

against observed streamflow in the BRW. The definition of R, NS, and RMSE indicate in 

4.3.5 section from chapter 4. MAE is a quantity measurement how close simulated values are 

to the eventual results. Lower values of RMSE and MAE show better model performance and 

zero value indicates a perfect fit. PBIAS calculates the average tendency of the simulated 

values to be larger or smaller than observed counterparts (Gupta et al., 1999). Zero is the 
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optimal model performance. A positive value shows underestimation bias and a negative 

value indicates overestimated bias for simulated results. R, NS, RMSE, MAE, and PBIAS are 

calculated by equation (4.4) - (4.6) and equation (5.5) - (5.6), respectively. 

𝑀𝐴𝐸 =  
1

𝑁
 ∑| 𝑄𝑂𝑖 −  𝑄𝑆𝑖|

𝑁

𝑖 = 1

                                                            (5.5) 

𝑃𝐵𝐼𝐴𝑆 =   
∑ (𝑄𝑂𝑖 − 𝑄𝑆𝑖)𝑁

𝑖=1

∑ 𝑄𝑌𝑂𝑖
𝑁
𝑖=1

 ×100                                                    (5.6) 

 

where, QQi and QSi are observed and simulated streamflow at a time step, respectively. 

�̅�𝑄𝑖   𝑎𝑛𝑑 �̅�𝑆𝑖  are mean observed and simulated streamflow for the simulation period. N is total 

number of values within the simulation period. 

 

5.4. Results 

5.4.1. Parallel Performance 

Parallel performances in sLCS were evaluated based on four different HSPF 

calibration scenarios using BEOPEST. Figure 5.8 and Table 5.5 show the results of total 

calibration time (PT), the percentage of time reduction (PP), speedup (PS), and efficiency 

(PE) by the number of core processes with four different calibration scenarios. Obviously, PT 

decreased as the number of cores increases. Note that PT of SCO 4 was about 10 times longer 

than that of SCO 1 when a single core is used with 7 parameters. However, when model 

calibrations were conducted using 2 to 8 cores, PT gradually decreased until no distinct 

improvement was observed at 9 cores above (See Figure 5.8 (a)). PP also shows the similar 
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pattern in the sense that calibration with multiple cores can have time-saving advantages as 

seen in Figure 5.8 (b). Thus, the reduction rate of the total calibration time (PP) was achieved 

for 76%, 89%, 89%, and 90% from SCO 1, SCO 2, SCO 3, and SCO 4, respectively.   

For PS of parallelizing calibration, SCO 1 didn’t gain many benefits as opposed to 

other scenario cases, while PS values of SCO 2 and SCO 3 gradually increased as the number 

of cores increases. SCO 4 resulted in the highest speedup value in this analysis. It implies that 

the loss of speedup is due to the limitation of network connection and hard disk capacity. 

Theoretically, if the number of parallel jobs is set, each core files simultaneously read and are 

written to the hard disk via a network. For this reason, the speedup would not reach up to 14 

even if 14 cores are fully used due to network constraints. Similarly, PE is most likely less 

than ideal value, which is one because of the system overhead issues associated with physical 

constraints (e.g., network bandwidth and/or throughput between cores). The results showed 

that SCO 1 was the lowest efficiency and SCO 4 was the highest PE. Overall, SCO 4 was the 

best parallel performance as opposed to other calibration scenarios regardless of the number 

of cores. The result implies that BEOPEST in sLCS works well especially when many 

hydrological parameters need to be calibrated at multiple sub-basins.  
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(a) Total calibration time (PT) 

 

 

(b) The percentage of time reduction (PP) 

Figure 5.8. Performance measures, including total calibration time (PT), the percentage of 

time reduction (PP), Speedup (PS), and Efficiency (PE) in computer parallelism. 
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(c) Parallel speedup (PS) 

 

 

(d) Parallel efficiency (PE) 

Figure 5.8. Performance measures, including total calibration time (PT), the percentage of 

time reduction (PP), Speedup (PS), and Efficiency (PE) in computer parallelism (Cont.). 
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Table 5.5. Total calibration time, speedup, and efficiency in using the different numbers of 

core computing processes in parallel calibration. 

Calibration 

Scenarios 
Core 

Total hours of 

calibration time (PT) 

% Reduction 

(PP) 

Speedup 

(PS) 

Efficiency 

(PE) 

SCO 1 

1 

19.98 - 1.00 1.00 

SCO 2 37.62 - 1.00 1.00 

SCO 3 122.88 - 1.00 1.00 

SCO 4 196.27 - 1.00 1.00 

SCO 1 

2 

12.11 39.37 1.77 0.88 

SCO 2 19.62 47.84 1.92 0.96 

SCO 3 67.49 45.08 1.92 0.96 

SCO 4 105.06 46.47 1.97 0.99 

SCO 1 

3 

9.30 53.43 2.23 0.74 

SCO 2 13.49 64.14 2.74 0.91 

SCO 3 46.77 61.94 2.74 0.91 

SCO 4 70.37 64.15 2.90 0.97 

SCO 1 

4 

7.56 62.13 2.90 0.72 

SCO 2 11.17 70.32 3.42 0.85 

SCO 3 36.65 70.18 3.58 0.89 

SCO 4 54.57 72.20 3.82 0.96 

SCO 1 

5 

7.33 63.28 3.01 0.60 

SCO 2 9.02 76.03 4.17 0.83 

SCO 3 30.28 75.36 4.29 0.86 

SCO 4 44.09 77.54 4.70 0.94 

SCO 1 

6 

6.92 65.36 3.33 0.55 

SCO 2 7.90 78.99 4.84 0.81 

SCO 3 26.33 78.57 5.01 0.84 

SCO 4 37.76 80.76 5.57 0.93 

SCO 1 

7 

6.74 66.26 3.46 0.49 

SCO 2 6.94 81.57 5.49 0.78 

SCO 3 23.67 80.74 5.56 0.79 

SCO 4 33.27 83.05 6.30 0.90 
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Calibration 

Scenarios 
Core 

Total hours of 

calibration time (PT) 

% Reduction 

(PP) 

Speedup 

(PS) 

Efficiency 

(PE) 

SCO 1 

8 

5.32 73.37 4.42 0.55 

SCO 2 6.86 81.75 5.62 0.70 

SCO 3 21.28 82.68 6.28 0.78 

SCO 4 29.48 84.98 7.21 0.90 

SCO 1 

9 

5.22 73.89 4.50 0.50 

SCO 2 5.79 84.61 6.64 0.74 

SCO 3 20.06 83.68 6.72 0.75 

SCO 4 26.81 86.34 8.00 0.89 

SCO 1 

10 

5.00 74.98 4.68 0.47 

SCO 2 5.69 84.87 6.76 0.68 

SCO 3 18.59 84.87 7.25 0.72 

SCO 4 24.93 87.30 8.58 0.86 

SCO 1 

11 

5.04 74.78 4.63 0.42 

SCO 2 5.08 86.51 7.41 0.67 

SCO 3 17.18 86.02 8.00 0.73 

SCO 4 22.97 88.30 9.34 0.85 

SCO 1 

12 

5.16 74.18 4.57 0.38 

SCO 2 4.63 87.70 8.23 0.69 

SCO 3 16.25 86.77 8.57 0.71 

SCO 4 21.02 89.29 10.33 0.86 

SCO 1 

13 

4.98 75.06 4.71 0.36 

SCO 2 4.48 88.10 8.56 0.66 

SCO 3 14.82 87.94 9.40 0.72 

SCO 4 19.50 90.06 11.00 0.85 

SCO 1 

14 

4.78 76.09 4.90 0.35 

SCO 2 4.28 88.63 8.96 0.64 

SCO 3 13.14 89.30 10.60 0.76 

SCO 4 18.82 90.41 11.40 0.81 
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5.4.2. Model performance by calibration scenarios 

In addition to computer parallelism aspect, HSPF performances were reported to 

evaluate how streamflow realization was well made associated with historical data at the 

mouth of the study area (Calibration target point 6). Figure 5.9 and Table 5.6 show the 

comparison of the model performance criteria for four calibration scenarios. As expected, 

HSPF performances after calibration improved against no calibration option. SCO 1 and SCO 

2 were first compared to see how the different number of parameters affected the model 

performance. The result showed that NS of SCO 2 was higher than that of SCO 1, but RMSE 

and PBIAS of SCO 2 were lower than SCO 1, while R of SCO 1 and SCO 2 remained the 

same. It seems that SCO 2 was more affected by the volume variation of streamflow driven by 

more parameters used.  

Overall, SCO 4 was the best with higher NS and R, and lower RMSE and PBIAS than 

any other scenarios. Even though MAE indicated higher value than other calibration 

scenarios, SCO 4 was selected for further calibration analysis because R, NS, and PBIAS are 

the most important performance measures to calibrate interior calibration target points (1-5) 

within the BRW.  
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Table 5.6. The model performance comparisons of calibrated streamflow by calibration 

scenarios. 

Statistics No Cal SCO 1 SCO 2 SCO 3 SCO 4 

Mean streamflow 

(m3/sec) 
27.09 24.89 36.36 26.82 36.36 

R 0.50 0.60 0.60 0.55 0.62 

NS 0.08 0.20 0.27 0.23 0.31 

RMSE 32.79 32.53 31.07 31.80 30.03 

MAE 21.31 14.13 15.22 13.96 20.94 

PBIAS (%) -4.17 23.04 24.25 18.38 -10.65 

 

 

Figure 5.9. Performance measures, including Correlation coefficient (R), Nash-Sutcliffe 

coefficient (NS), Root mean square error (RMSE), Mean Square Error (MAE), and 

Percentage of Bias (PBIAS) from HSPF simulations. 
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5.4.3. Results of calibrated and validated streamflow using SCO 4 

Table 5.8 indicates the statistical results of calibration and validation for all 

calibration target points (CTPs) using HSPF model. Figure 5.10 - 5.12 show hydrograph and 

scatter plots comparisons for the calibrated and validated streamflow results based on SCO 4. 

The results indicate adequate calibration and validation performance over the simulation 

period. The timing of peak flows and the magnitude of peaks well matched between the 

simulated and observed flows at CTPs 1, 2, 3 and 4 during the calibration period. However, 

the magnitude of peaks at CTPs 5 and 6 showed somewhat different results due to reservoir 

diversion nearby. NS values between the simulated and observed streamflow at daily time 

step during calibration and validation are reported 0.36 to 0.78 and 0.33 to 0.71, respectively, 

while R values are 0.68 to 0.89 and 0.69 to 0.85.  

Based on Table 5.7 and 5.8, PBIAS of TPs 3, 4, and 6 indicated very good model 

performances with ranges from 5.49 % to 8.64 %, and that of CTPs 1 and 2 were good model 

performance with 11.11% to 14.94% during calibration. During the validation period, PBIAS 

of CTPs 1, 3, and 4 were very good performance with a range from -2.75% to 9.00% and CTP 

2 was fair performance with 17.09%. PBIAS of calibration CTPs 5 and 6, however, were poor 

performance because CTP 5 was located below the large reservoir. Note that no reservoir rule 

curve and irrigation return flows is incorporated into HSPF model because the main objective 

of this research focuses on computer parallelism.  
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Table 5.7. General calibration targets of HSPF application (Donigian, 2000). 

Component 
PBIAS (%) 

Very Good Good Fair Poor 

Hydrology/Flow < ±10 ±10 - ±15 ±15 - ±25 > ±25 

Sediment < ±20 ±20 - ±30 ±30 - ±45 > ±45 

Water Temperature < ±7 ±8 - ±12 ±13 - ±18 > ±18 

Water Quality/Nutrients < ±15 ±15 - ±25 ±25 - ±35 > ±35 

 

Table 5.8. The results of model performance for the calibrated and validated streamflow at 

calibration target points in the BRW. 

Calibration 

target points 

(CTPs) 

Mean streamflow 

(m3/s) 

Evaluation statistic 

R NS RMSE MAE PBIAS (%) 

1 

Cal 
5.01 

(5.89) 
0.87 0.74 4.28 2.17 14.94 

Val 
7.29 

(7.99) 
0.84 0.55 7.63 3.68 8.76 

2 

Cal 
15.17 

(17.06) 
0.88 0.76 11.27 6.67 11.11 

Val 
17.46 

(21.06) 
0.85 0.71 16.00 8.86 17.09 

3 

Cal 
28.86 

(30.98) 
0.89 0.78 17.16 9.63 6.86 

Val 
34.98 

(34.05) 
0.87 0.69 22.36 12.14 -2.75 

4 

Cal 
20.45 

(21.64) 
0.73 0.46 15.57 8.61 5.49 

Val 
24.94 

(27.41) 
0.69 0.33 22.01 13.24 9.00 

5 

Cal 
44.46 

(61.94) 
0.74 0.45 43.61 31.67 28.21 

Val 
54.59 

(78.27) 
0.75 0.45 53.19 40.07 30.25 

6 

Cal 
28.25 

(30.92) 
0.62 0.36 27.29 17.28 8.64 

Val 
35.39 

(49.17) 
0.70 0.43 41.44 26.44 28.03 
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Figure 5.10. Hydrological simulations from HSPF at calibration target points (1-6) in the BRW. 
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Figure 5.10. Hydrological simulations from HSPF at calibration target points (1-6) in the BRW (Cont.). 
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Figure 5.10. Hydrological simulations from HSPF at calibration target points (1-6) in the BRW (Cont.). 
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Figure 5.11. Scatter plots of calibration results for calibration target points (1-6) in the BRW. 
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Figure 5.12. Scatter plots of validation results for calibration target points (1-6) in the BRW. 
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5.4.4. Results of calibrated sediment and water quality using SCO 4  

For water quality, no validation was applied due to the insufficient observed datasets. 

Model parameters of water quality were calibrated depending on available observed daily 

data. Table 5.9 and Figure 2.13 show the model performances for sediment, TN, TP, DO, 

and water temperature. Based on the model evaluation target by Table 5.7, water temperature 

was very good performance by 6.24%. Sediment, TN, TP, and DO were good performance 

with a range from 30.05%, 15.10%, 12.19%, and -9.88%, respectively. Therefore, HSPF 

model simulated the reliable model outputs for water quality (sediment, TN, TP, DO, and 

water temperature) and well represented hydrologic conditions in the BRW based on model 

performance statistics.  

  

Table 5.9. Model performance of calibrated water quality. 

Evaluation statistic Sediment Water Temp TN TP DO 

R 0.75 0.96 0.82 0.79 0.94 

NS 0.42 0.63 0.22 0.86 0.61 

RMSE 445.37 107.79 5.45 0.30 44.98 

MAE 23.88 5.22 2.94 0.02 1.01 

PBAIS (%) 30.05 6.24 15.10 12.19 -9.88 
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(a) Sediment 

 

 
(b) TN 

Figure 5.13. Hydrographic of calibrated daily sediment (a), TN (b), TP (c), DO (d), and water 

temperature (f). 
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(c) TP 

 

 
(d) DO 

Figure 5.13.  Hydrographic of calibrated daily sediment (a), TN (b), TP (c), DO (d), and water 

temperature (f) (Cont.). 
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(e) Water temperature 

Figure 5.13.  Hydrographic of calibrated daily sediment (a), TN (b), TP (c), DO (d), and water 

temperature (f) (Cont.). 
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CHAPTER 6. IMPACTS OF CLIMATE AND LAND USE CHANGES ON 

STREAMFLOW AND WATER QUALITY 

 

6.1. Introduction 

Changes in climate and LULC may affect water quality and quantity at the urban-rural 

interface around the world. Urbanization with land use changes is one of the most significant 

environmental factors. It can has negative impacts on ecological and hydrologic condition in 

many waterways due to the increased impervious land segments (e.g. industrial, commercial, 

and residential land use). The impervious surfaces can accelerate the increase in Nonpoint 

source (NPS) load, runoff, and sedimentation and the infiltration reduction (Childers et al., 

2014; US.EPA, 2000; Wei et al., 2015). Global warming and climate change alter general 

patterns of air temperature and precipitation. The elevated air temperature in spring and 

winter results in early snowmelt. It can also affect water quality degradation along with 

surface water depletion in late spring and summer so that water managers may face the water 

resources management problems through the year. The variation in future water quality and 

quantity induced by climate change requires proactive management strategies to mitigate their 

impacts. Several studies have been conducted to investigate hydrological processes driven by 

LULC change (Brath et al., 2006; Guo et al., 2008; Lee and Chung, 2007) or climate change 

(Chen et al., 2011; Prowse et al., 2006; Sellami et al., 2016). Although the combined impacts 

of climate and LULC change will accelerate the negative hydrologic and ecological effects, 

few studies have been conducted to investigate how urbanization and climate change can 

affect water quality and quantity in the urban-rural interface, such as the BRW. Therefore, the 

evaluation of LULC change coupled with climate variability is a major research topic to 
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advance water resources planning and management in this chapter.  

To understand the effects of LULC change on hydrology, it is imperative to have 

explicit LULC information (Strayer et al., 2003) in modest spatial resolution. For example, 

land developments (e.g. barren, housing, and commercial development) will change flow 

patterns such as timing and peak flows within the watershed. LULC change projections gives 

useful information for decision makers to visualize future LULC variation, optimize 

management practices, and improve LULC planning by mitigating the negative consequences 

of land development (Heistermann et al., 2006). Hydrologic models that incorporate spatial 

information data can be used to predict the variations of hydrologic dynamics driven by 

LULC change. Several LULC modeling frameworks have been developed to investigate 

potential LULC change for the United States (US), but data on LULC scenarios have few 

constraints. Thus, these data mostly have a small number of land use classification (e.g. urban, 

forest) and limit our ability to characterize uncertainties associated with future land 

development scenarios in coarse spatial resolution. Therefore, we use thematically detailed 

future LULC change products provided by USGS to improve modeling accuracy based on 

four qualitative and quantitative emission scenarios listed in the Intergovernmental Panel on 

Climate Change (IPCC) Special Report (Sohl et al., 2014). Note that these LULC products 

have an appropriate spatial resolution (e.g. 250 m) and various LULC classes.  

Climate change is traditionally assessed using climate model simulations, such as 

those from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5). There are many 

GCMs available from CMIP5, but several studies have discussed the uncertainty in the 

selection of climate models which cannot be avoided (Eisner et al., 2012; Jung et al., 2011; 

Kay et al., 2009; Kingston et al., 2010,). It is necessary to evaluate GCMs that better represent 
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local or regional climatology because GCMs itself cannot illustrate hydro stats at a particular 

watershed due to coarse spatial resolution (e.g. 100-500 km). Therefore, statistical or 

dynamical downscaling methods are typically used to transfer coarse resolution outputs from 

GCMs to the hydro model-friendly outputs in terms of adequate spatial and temporal scales 

(e.g, 12 km x 12 km and hourly time step or finer).  Xu et al. (2005) proposed three steps to 

perform the impact of climate change at catchment scales. The first step is to select the 

different climate projections from GCMs using different emission scenarios. The second step 

is to apply appropriate downscaling methods to better represent local climatology from the 

GCMs outcomes. Lastly, the downscaled GCMs is applied to the hydrologic models for water 

availability in the study area over next few decades. Burger et al. (2012) reported that the 

downscaling methods show different performances in reproducing climate extremes. 

Therefore, it may need to find an appropriate downscaling method to better address local 

water issues on both quality and quantity simulations using GCM’s inputs.  

In this chapter, therefore, we investigate the impacts of changes in LULC and climate 

in the BRW. Figure 6.1 shows a flowchart for the application of model input data associated 

with urbanization, climate change, and the combined impact of LULC and climate changes. 

Future climate series and LULC change projections were applied to examine the separate and 

combined impacts of climate and LULC changes on water quality and quantity using the 

optimized HSPF model.  
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Figure 6.1. The flowchart for application of future LULC, climate change, and the combined 

impact of climate and LULC changes using HSPF model. 

 

6.2. Materials and methods 

6.2.1. Future Land use and land cover (LULC) 

Future LULC projections were developed by USGS using the forecast scenarios of 

land use change (FORE-SCE) model based on IPCC SERS scenarios across the United States 

for the years 1992-2100 (Sohl et al., 2014). They have 250 meter by 250 meter high spatial 

resolution and consist of 12 LULC categories as 2011 LULC product. IPCC SRES scenarios 

have storylines (e.g. A1B, A2, and B1) based on global/regional economic, technological, and 

environmental cooperation, and economic growth. Table 6.1 shows the detail information 

about IPCC SRES scenarios applied future LULC products. Figure 6.2 indicates a schematic 

of the LULC project structure with the major data components. LULC modeling was 

individually simulated for each of the 84 level III ecoregions as mapped based on ecoregion 

publication (US.EPA, 1995). FORE-SCE model was applied for the spatial LULC modeling 
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(Sohl et al., 2012a and 2012b). FORE-SEC utilized a modular approach as originally 

developed by the Conversion of Land Use and its Effects (CLUE) series of LULC modeling 

to explain the both bottom-up and top-down drivers of change (Verburg et al., 1999; Verburg 

et al., 2008). It produced spatially explicit LULC using the spatial allocation component. For 

a non-spatial demand component, it creates future proportions of LULC variations at an 

aggregated regional level.  

 In this chapter, 2011 LULC provided by USGS NLCD database was used to simulate 

current hydrologic condition for water quality and streamflow. The 2080 and 2010 LULC 

products with IPCC-SRES storylines (A1B, A2, and B1) were used to analyze future 

hydrologic conditions. Future LULC products were reclassified by seven land use 

classification such as “Urban”, “Barren / Mining”, “Cropland”, “Forest”, “Grassland”, 

“Shrubland”, and “Water / Wetland” to apply into HSPF model.  

 

 

Figure 6.2. Schematic of general future LULC modeling based on IPCC SRES from 1992 to 

2100 (Sohl et al., 2014). 
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Table 6.1. Information of IPCC SRES scenarios (Sohl et al., 2012a). 

Scenarios Description 

A1B 

- Very rapid economic growth. 

- Peak global population in mid-century and then declining. 

- The rapid introduction of new and more efficient technologies. 

- Substantial reduction in regional differences in per capital income for 

convergence among regions, capacity building, and increased cultural and 

social interactions.  

A2 

- Very heterogeneous world. 

- Self-reliance and preservation of local identities. 

- Fertility patterns across regions cover slowly. 

- Continuously increasing the global population. 

- Primarily regionally oriented economic development. 

- More fragmented technological change. 

- Slower technological change than other storylines. 

B1 

- A convergent world with the same global population. 

- Peak global population in mid-century and then declining. 

- Rapid changes in economic structures and information economy with 

reduction in material intensity 

- The introduction of clean and resource-efficient technologies 

- Improved equity without additional climate initiatives for global solutions 

(e.g. economic, social, and environmental sustainability) 
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6.2.2. Global Climate Models (GCMs) from the fifth phase of the Climate Model 

Intercomparison Project (CMIP5) 

 GCMs produce the Earth’s climate using mathematic equations associated with 

atmospheric, oceanic, biotic processes, interactions, and feedback. It is the primary tools to 

provide reasonably reliable global-, hemispheric, and continental-scale climate information. 

GCMs are used to understand future climate scenarios based on the increased greenhouse gas 

concentrations. In general, GCMs typically include datasets in coarse spatial resolution (e.g. 

100-500 km).  

 GCM simulations of the 20th and 21st centuries have been conducted with several 

models through the CMIP5 which was used in the IPCC Fifth Assessment Report (IPCC, 

2013). Future scenarios that consider future rates of technological development, social 

responses, and population growth, and collective mitigation efforts are summarized through 

representative concentration pathways (RCPs), including high emission scenarios (RCP8.5), 

midrange mitigation emission scenarios (RCP4.5), and low emission scenarios (RCP2.6). The 

RCP labels such as RCP8.5 represent the estimation of the radiative forcing in 2100. For 

example, RCP8.5 shows the increasing of the radiative forcing throughout 21century before it 

reaches a level about 8.5 W/m2 at the end of the century.  

Figure 6.3 shows the flowchart of creating future climate data for HSPF input using 

GCMs. Total 27 GCMs were applied to select the best GCMs which better represents 

historical climate condition at the study area (Table 6.2). Seasonal distribution of 

precipitation and temperature were utilized to analyze the performance of raw GCMs in the 

BRW from Jan 1981 to Dec 2005. Three GCMs were selected to apply Statistical 

Downscaling and Bias Correction (SDBC) and temporal downscaling; Two GCMs were 
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selected from higher ranked models using skill scores and RMSE. One GCM was selected 

from Rupp et al (2013) study which reported the highest model performance for Pacific 

Northwest area. After that, SDBC GCMs were imported to create WDM file as model input 

using method shown in Figure 5.5. Lastly, the performance of SDBC GCMs was evaluated 

comparing with NLDAS-2. More detail information about the GCM selections and 

downscaling methods indicates as below section.   

 

 

Figure 6.3. The flowchart of creating HSPF model weather data for future climate using 

optimal GCMs.  
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Table 6.2. The information of total GCMs. 

Numb GCM name Institution 

Spatial resolution 

(degree) Ensemble 

Longitude Latitude 

1 bcc-csm1-1 Beijing Climate Center, China 

Meteorological Administration 

2.8125 2.7906 1 

2 bcc-csm1-1-m 1.1250 1.1215 1 

3 canesm2 
Canadian Centre for Climate 

Modeling and Analysis 
2.8125 2.7906 4 

4 ccsm4 
National Center for Atmospheric 

Research 
1.2500 0.9424 1 

5 cesm1-bgc National Science Foundation, 

Department of Energy, National 

Center for Atmospheric Research 

1.2500 0.9424 1 

6 cesm1-cam5 1.2500 0.9424 1 

7 cesm1-fastchem 1.2500 0.9424 1 

8 cmcc-cm 
Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 
1.8750 1.8653 1 

9 cnrm-cm5 

Centre National de Recherché 

Meteorologiques / Centre European 

de Recherché et Formation 

Avancees en Calcul Scientifique 

1.4063 1.4008 5 

10 gfdl-cm3 
Geophysical Fluid Dynamics 

Laboratory 

2.5000 2.0000 1 

11 gfdl-esm2g 2.5000 2.0225 1 

12 gfdl-esm2m 2.5000 2.0225 1 

13 giss-e2-h-cc 
NASA Goddard Institute for Space 

Studies 

2.5000 2.0000 1 

14 giss-e2-r 2.5000 2.0000 5 

15 giss-e2-r-cc 2.5000 2.0000 1 

16 hadgem2-ao 

National Institute of Meteorological 

Research/Korea Meteorological 

Administration 

1.8750 1.2500 1 

17 inmcm4 Institute for Numerical Mathematics 2.0000 1.5000 1 

18 ipsl-cm5a-lr 

Institute Pierre-Simon Laplace 

3.7500 1.8974 1 

19 ipsl-cm5a-mr 2.5000 1.2676 1 

20 ipsl-cm5b-lr 3.7500 1.8974 1 

21 miroc4h Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

0.5625 0.5616 1 

22 miroc5 1.4063 1.4008 1 

23 miroc-esm 2.8125 2.7906 1 

24 miroc-esm-chem 2.8125 2.7906 1 

25 mpi-esm-mr 
Max Planck Institute for 

Meteorology (MPI-M) 
1.8750 1.8653 1 

26 mri-cgcm3 
Meteorological Research Institute 

1.1250 1.1215 1 

27 mri-esm1 1.1250 1.1215 1 
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6.2.2.1. Optimal GCM selections 

 Several GCMs are available to represent future climate condition, but all GCMs do not 

necessarily reflect historical climate conditions (1981-2005) for the study area. Therefore, the 

best GCMs, which agree with the historical climate conditions, were selected to analyze 

future climate change in the BRW. RMSE and two skill score methods (Heidke Skill Score 

(HSS), Peirce Skill score (PSS)) were used to compute the accuracy of historical GCMs 

(retrospective forecast) based on the observed seasonal precipitation and temperature. The 

detail desecration and equation of RMSE are shown in equation (3.12) of Chapter 3. Positive 

skill score values for HSS and PSS indicate a minimal level of acceptable performance for 

GCMs results. Contingency tables consist of four part of seasonal precipitation (P) or 

temperature (T) (less than 20th percentiles, between 20th and 50th percentiles, between 50th and 

80th percentiles, higher than 80th percentiles corresponding percentiles of seasonal precipitation 

or temperature distribution). HSS and PSS were calculated based on a count from contingency 

table. The HSS and PSS equation are given by: 

𝑃𝑆𝑆 =  
 ∑ 𝑃(𝑦𝑖 , 𝑜𝑖) − ∑ 𝑃(𝑦𝑖)𝑃(𝑜𝑖) 𝐼

𝑖=1  𝐼
𝑖=1

1 − ∑ 𝑃(𝑦𝑖)𝑃(𝑜𝑖) 𝐼
𝑖=1

                                               (6.1) 

𝐻𝑆𝑆 =  
 ∑ 𝑃(𝑦𝑖 , 𝑜𝑖) − ∑ 𝑃(𝑦𝑖)𝑃(𝑜𝑖) 𝐼

𝑖=1  𝐼
𝑖=1

1 − ∑ 𝑃(𝑦𝑖)𝑃(𝑜𝑖) 𝐼
𝑖=1

                                              (6.2) 

where, 𝑃(𝑦𝑖 , 𝑜𝑖) is the number of forecasts in category i that had observations in category i; 

𝑃(𝑦𝑖) is the number of forecasts in category i; 𝑃(𝑜𝑖) is the number of observation in category 

i; I is the number of contingency tables.  

 The calculated skill scores and RMSE were normalized to examine optimal GCMs 

using as below equitation.  
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Z =  
𝑋𝑖 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
                                                                      (6.3) 

where, Z is a normalized value between 0 and 1; Xi is each data point I; Xmin is the minimal 

value for all the data points; Xmax is the maximum value for all the data points.  

For hydrologic modeling, precipitation is more important variable than temperature. 

Therefore, we applied a weight factor to precipitation (0.7) and temperature (0.3) for the final 

GCM selections. Two GCMs with three different future climate sceneries (RCP2.5, RCP4.5, 

and RCP8.5) were selected by the higher normalized value calculated from seasonal 

precipitation and temperature in the BRW. Furthermore, we considered one more GCM from 

Rupp et al (2014) study. They evaluated CMIP5 20th century climate simulation for the 

Pacific Northwest US using observed data for the 20th century. The performance and 

credibility were assessed using correlation and variance of mean seasonal spatial patterns, 

amplitude of seasonal cycle, diurnal temperature range, annual- to decadal-scale variance, 

long-term persistence, and regional teleconnections to El Niño Southern Oscillation (ENSO). 

Cnrm-cm5 model indicated the highest model performance using the simple method. So, total 

three GCM models (two models from GCM selection method, one model from a reference 

paper) were selected to investigate the variations of water quality and quantity by climate 

change in the BRW.  

 

6.2.2.2. Statistical downscaling 

Raw GCMs cannot examine fine scale heterogeneity of climate change conditions and 

the impact assessment and planning of hydrologic conditions at local scales due to the coarse 

spatial resolution. They include the uncertainty of future climate change at local climate 

condition. Therefore, it is necessary downscaling process to simulate potential impacts on 
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crop production, hydrology, and species distribution and to establish a relationship between 

present day local climate and atmospheric condition at fine scales (e.g. 10 – 50 km).  Spatial 

and temporal aspects of climate projections are performed in the downscaling process. Spatial 

downscaling is to derive finer resolution from raw GCM at a specific location. Temporal 

downscaling is to generate fine scale temporal information from coarse temporal GCM output 

(e.g. from monthly to daily time step). Several methods have been developed to apply 

downscaling associated with creating of fine spatial resolution and reduction of local climate 

uncertainties, but there is no official guidance to meet researchers and decision maker's 

requirements best. Therefore, downscaling methods have been developed to improve local 

climate uncertainties and perceive the impact of climate change studies using the improved 

technical and specialized explanations. Dynamical and statistical downscaling are the 

common methods to combine the information on local conditions with large-scale climate 

projections.  Dynamical downscaling uses a regional climate model (RCM) to generate 

realistic climate information at a spatial resolution of approximately 20-50 km. Statistical 

downscaling utilizes the empirical relationship between historical or current large atmospheric 

and local variables. Statistical downscaling is commonly applied method using a relatively 

simple bias correction (Johnson and Sharma., 2011; Piani et al., 2010; Wood et al., 2004). 

Statistical downscaling assumes the statistical relationship between the predictor and predict 

and remains stable into the future. The advantages of the statistical downscaling method are 

computationally inexpensive and straightforward enough to adapt for a specific purpose than 

dynamical downscaling.  
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6.2.2.2.1. Statistical Downscaling and Bias correction (SDBC) method  

The selected three GCMs are not appropriate to apply hydrologic model by themselves 

since they have coarse spatial resolution (e.g. 100km by 100 km) and climate uncertainties.  

Indeed, downscaled GCMs are mostly available for precipitation and temperature. Although 

the downscaled GCM data have the GCM climatology, additional efforts are required to 

derive climate patterns retrieved from NLDAS at finer scales. Wind speed and humidity data 

are not usually bias corrected using NLDAS-2.  

In this study, for the selected three GCMs, SDBC method developed by Ahmed et al 

(2013) was applied to create finer spatial resolution (e.g. 12 km by 12 km spatial resolution) 

and to reduce local climate uncertainties for precipitation, temperature, wind speed, solar 

radiation, and humidity. SDBC can be appropriately utilized to apply spatial downscaling and 

bias correction for the amount of GCM data and is computationally efficient. This method is 

the mixed methods to be used sequentially and a modified method of the bias correction and 

spatial downscaling (BCSD) proposed by Wood et al (2004) and Maurer and Hidalgo (2007). 

BCSD has one limitation for the sensitivity of the finally downscaled results to the initial 

spatial resolution at which bias correction is applied. Ahmed et al (2013) analyzed that the 

resulting finer scale GCM data using SDBC provided more credible future facing for impact 

assessment which takes the future climate itself. 

For the first step, the spatial downscaling was applied using a factor value [Equation 

(6.4) and (6.5)]. For example, precipitation and wind speed factors are the ratio of GCM and 

NLDAS-2 climate variables aggregated to the raw GCM resolution. Temperature, solar 

radiation, and humidity factors are the difference between GCM and NLDAS-2 climate 

variables aggregated to the raw GCM resolution.  
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Fv = Gv / Nv (for precipitation, wind speed)                                          (6.4) 

Fv = Gv - Nv (for temperature, solar radiation, humidity)                         (6.5) 

where, Fv is factor value, Gv is the GCM output value, and Nv is the NLDAS value.  

The downscaling of the factor values was then used synergraphic mapping system 

(SYMAP) algorithm developed by Shepard (1968). Combining the downscaled factor values 

with NLDAS-2 (e.g. multiplication for precipitation and wind speed, and addition for 

temperature, solar radiation, and humidity) created a downscaled GCM datasets. The 

downscaled GCM derives finer scale pattern from NLDAS-2. After the spatial downscaling, 

bias correction was applied using a quantile-based mapping of the probability density 

functions (synthetic gamma distribution) as the last step to correct uncertainties of GCMs. 

The bias correction assumes the biases represents the same pattern in both present and future 

climate simulations. It was based on the comparison between Cumulative Distribution 

Function (CDF) for NLDAS-2 and GCM data within the same time periods. For future 

climate condition, it assumed that the difference between the GCM and NLDAS-2 during the 

reference period also applied to the future period that means the adjustment function is the 

same time. However, the difference between CDFs for the historical and future period was 

taken into account. CDF was calculated based on the month-specific probability distribution 

for monthly GCM and NLDAS-2 data of precipitation, temperature, solar radiation, humidity, 

and wind speed. Bias correction was applied using Equation (6.6) for historical GCMs and 

Equation (6.7) developed by Li et al. (2010) for future GCMs. The inverse CDF of the gamma 

function was used to apply bias correction for GCMs from NLDAS-2.  For example, suppose 

that historical GCM has the 230 mm precipitation in January 2005 and the CDF value is 

recorded about 99.45% probability in gamma domain. Precipitation of NLDAS-2 
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corresponding to the same CDF indicates as 210 mm having about 99.45% probability in 

gamma domain. The precipitation value of GCM is then replaced by 210 mm having the same 

probability of 99.45% in its own gamma domain for the historical condition. Also, future 

GCM data has the 130 mm precipitation in January 2090 and the CDF value is recorded about 

98.45% probability in gamma domain. Precipitation of NLDAS-2 and historical GCM 

corresponding to the 98.45% CDF indicates as 180 mm and 140 mm, respectively. The 

difference between NLDAS-2 and GCM under the current climate (180mm – 140mm) is 

summed from the future GCM (130 mm) to get the bias corrected value. So, the precipitation 

value of future GCM is replaced by 170 mm.  

�̅�𝑔−𝑐 =  𝐹𝑜−𝑐
−1  (𝐹𝑔−𝑐  (𝑥𝑔−𝑐))                                                          (6.6) 

�̅�𝑔−𝑓 =  𝑥𝑔−𝑓 +  𝐹𝑜−𝑐
−1  (𝐹𝑔−𝑓 (𝑥𝑔−𝑓)) −  𝐹𝑔−𝑐

−1 (𝐹𝑔−𝑓  (𝑥𝑔−𝑓))                         (6.7) 

where, F is the CDF of either the observation (o) or GCM (g) for a historical period or current 

climate (c) or future period (f), F-1 is the inverse CDF, x is the climate variation of 

precipitation and temperature, and �̅� is the bias corrected climate variation.  

 

6.2.2.2.2. Temporal downscaling  

 Temporal downscaling is required to disaggregate SDBC GCMs from monthly to 

daily data, which is used as model input. Therefore, simple disaggregation method developed 

by Acharya and Ryu (2014) was applied for three SDBC GCMs. As shown in Figure 6.4, the 

first step in disaggregation process is the selection of target grid (TG), which is SDBC GCM, 

and source grid (SG), which is NLDAS-2. The SG has both daily and monthly historical 

climate data, whereas the TG has only monthly climate data. Basically, the daily climate 
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variables at TG is calculated based on monthly climate variables at TG and daily and monthly 

climate variables at SG. Once a month and year are for climate variable disaggregation at TG 

(e.g. 3-month window centering the selected month at TG is chosen from historical NLDAS-2 

monthly climate variables at SG). For example, climate variable disaggregation in February at 

TG requires information for 3-month windows including January, February, and March over 

historical NLDAS-2 monthly climate variables at SG. Therefore, total monthly precipitation 

for the selected window at TG is compared with the same window for every year in NLDAS-

2 at SG. After that, RMSE is calculated to identify the best match year and months 

representing monthly total precipitation between TG and SG during the predefined three 

monthly. Daily precipitation index (DPI) is then calculated as follow.  DPI is defined as the 

ratio of daily precipitation to monthly total precipitation for the selected month at SG. Using 

DPI at SG and monthly total SDBC GCMs at TG, the disaggregation was simulated for 

precipitation, temperature, wind speed, solar radiation, and humidity from 1979 to 2100 for 

SDBC GCMs. 
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Figure 6.4. Simple temporal disaggregation method. 

. 

6.2.2.3. Potential Evapotranspiration (PET) of SDBC GCMs 

PET is one of the critical elements for hydrological simulation. GCMs do not provide 

PET data, but we can calculate PET from datasets of SDBC GCMs using Penman-Monteith 

method (Allen et al, 1998). The Penman-Monteith PET is caluclated using Equation (4.1) in 

Chpater 4. For PET computation, climate forcing data including wind speed, temperature, 

and the solar radiation data retrieved from SDBC GCMs. Finally, all required datasets were 

compiled into WDM to facilitate HSPF’s input and output processes using Figure 5.5 method 

in Chapter 5.   
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6.3. Results 

6.3.1. Future LULC variation 

 Figure 6.5 shows the spatial distribution of the spatially modeled LULC data from 

2011 to 2080 and 2100 under three different scenarios (A1B, A2, and B1) in the BRW. Table 

6.3 and Future 6.6 provide a summary of the projected change for 2080 and 2100 LULC 

under three scenarios. Urban land increased under three scenarios in 2080 and 2100 LULC 

relative to 2011 LULC condition. 2100 LULC A2 scenario indicated the greatest increase in 

urban land (46.79 %) since it assumes high economic growth and very high population growth 

globally. 2100 LULC A1B and B1 scenarios showed to increase urban land by 13.18 % and 

7.51 % due to the similar global population assumption. Also, A1B scenario represented the 

increase in agricultural land by 3.12 % in 2100 LULC. A2 and B1 scenarios showed the 

decrease in agricultural land by 7.35% and 1.78% in 2100 LULC due to the conversion of 

agricultural land to urban land. Barren/mining land was sharply increased by 2,618% (542 

km2) under A1B scenario, 2,260% (470 km2) under A2 scenario, and 2,180% (455 km2) under 

B1 scenario in 2100 LULC comparing with 2011 barren/mining land (20 km2), respectively. 

The modeled LULC products indicate the conversion of grassland to barren/mining land by 

grassland degradation. Forest land was converted to barrel/mining land by deforestation. 

There was a modest increase in the wetland by 4.56 % under A1B scenario, 3.48 % in under 

A2 scenario, and 8.64 % under B1 scenario in 2100 LULC. 
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Figure 6.5. Spatial distribution of future LULC changes. 
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Table 6.3. LULC classification and variation for 2011, 2080, and 2100 LULC. 

Classification 
2011 LULC 

(km2) 

2080 LULC (km2) 2100 LULC (km2) 

A1B scenario  A2 scenario B1 scenario A1B scenario A2 scenario B1 scenario 

Barren / Mining 
20 

(0.19 %) 

532 

(5.09%) 

483 

(4.62%) 

459 

(4.40%) 

542 

(5.19%) 

470 

(4.51%) 

455 

(4.35%) 

Cropland 
1,276 

(12.22%) 
1,312 

(12.57 %) 
1,156 

(11.10%) 
1,274 

(12.20%) 
1,316 

(12.60%) 
1,182 

(11.32%) 
1,253 

(12.01%) 

Forest 
2,992 

(28.66%) 

2,902 

(27.80%) 

2,959 

(28.34%) 

2,981 

(28.55%) 

2,887 

(27.66%) 

2,964 

(28.40%) 

2,980 

(28.55%) 

Grassland 
2,450 

(23.47%) 
2,030 

(19.45%) 
2,028 

(19.43%) 
2,051 

(19.65%) 
2,023 

(19.38%) 
2,002 

(19.18%) 
2,053 

(19.66%) 

Shrubland 
3,023 

(28.96%) 

2,950 

(28.26%) 

2,971 

(28.46%) 

2,984 

(28.58%) 

2,914 

(27.91%) 

2,874 

(27.53%) 

2,967 

(28.43%) 

Urban 
564 

(5.40%) 

593 

(5.68%) 

718 

(6.88%) 

567 

(5.43%) 

638 

(6.11%) 

827 

(7.92%) 

606 

(5.80%) 

Water / Wetland 
115 

(1.10%) 
121 

(1.16%) 
121 

(1.16%) 
125 

(1.19%) 
120 

(1.15%) 
119 

(1.14%) 
125 

(1.20%) 

Total 10,439 (100%) 
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(a) A1B scenario 

 

 
(b) A2. scenario 

 

 
(c) B1 scenario 

Figure 6.6. 2080 and 2100 LULC variations under A1B, A2, and B1 scenarios relative to 

2011 LULC.   
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6.3.2. Impacts of future LULC changes.  

6.3.2.1. Streamflow variation 

 Monthly maximum, mean, and minimum streamflow were used to evaluate the 

impacts of LULC changes over the entire simulation period (Jan. 1981 – Dec. 2015). Table 

6.4 – 6 and Figure 6.7 (a, b, and c) show the simulation results of monthly maximum, mean 

and minimum streamflow under three scenarios in 2080 and 2100 LULC. 2080 and 2100 

LULC changes under three scenarios (A1B, A2, B1) led to an increase in monthly maximum 

and mean streamflow in average, but they were decreased monthly minimum streamflow. For 

seasonal variation, monthly mean streamflow was decreased up to 14.22% in summer and 

increased up to 4.11% in winter under A1B, A2, and B1 scenarios in 2100 LULC. 2080 

LULC B1 scenario was slightly increased in mean streamflow than other LULC change 

scenarios due to the evapotranspiration reduction by the decreased vegetation coverage 

relative to 2011 LULC condition. 2100 LULC A2 scenario indicated the biggest increases in 

maximum (41.17%) and mean streamflow (3.68%) relative to 2011 LULC condition because 

the largely urbanized land contributed to increasing of the impervious surface area in the 

BRW. These results confirm that urbanization was usually associated with an increase in 

maximum and mean streamflow due to the impervious land increasing. Also, the increased 

impervious land and decreased vegetation coverage (grassland to barren/mining land) 

eventually affected the increase in streamflow caused by the reduction of evapotranspiration 

and rainfall infiltration. 

 

6.3.2.2 Sediment load variation 

 Table 6.7 and Figure 6.7 (d) show monthly sediment load variations under three 
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scenarios in 2080 and 2100 LULC. 2080 and 2100 LULC led to notably higher monthly 

sediment load except August. The main contribution of monthly sediment load reduction was 

a decrease in monthly mean streamflow in August. Monthly sediment load in winter was 

generally higher than non-winter loads under three scenarios in 2100 LULC. The average 

monthly sediment load was increased by 12.09% under A1B scenario, 24.02% under A2 

scenario, and 9.05% under B1 scenario in 2080 LULC. From 2100 LULC condition, the 

average monthly sediment load was increased by 16.80% under A1B scenario, 34.16% under 

A2 scenario, 13.21% under B1 scenario, respectively. 2100 LULC A2 scenario represented 

the biggest increase in monthly sediment load due to a large of urbanized land.  

 

6.3.2.3. TN load variation 

 Table 6.8 and Figure 6.7 (e) indicate monthly TN load variations under three 

scenarios in 2080 and 2100 LULC. 2080 and 2100 LULC yielded the higher monthly TN 

loads throughout the year relative to 2011 LULC condition. Monthly TN load change 

followed monthly mean streamflow variation because TN discharge during the surface runoff 

was strongly related to LULC change. For 2080 LULC condition, the average monthly TN 

load was increased by 134.62 % under A1B scenario, 134.08% under A2 scenario, and 

111.25% under B1 scenario. For 2100 LULC condition, the average monthly TN load was 

increased by 131.55% under A1B scenario, 134.83% under A2 scenario, 112.10% under B1 

scenario, respectively. 2100 LULC A2 scenario was the biggest increase of monthly TN load 

due to a higher rate of urban and barren/mining land. Especially, barren/mining land was 

mostly converted from forest or grassland, so monthly TN load was about twice bigger than 

2011 LULC condition. 
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6.3.2.4. TP load variation 

 Table 6.9 and Figure 6.7 (f) indicate monthly TP load variations under three scenarios 

in 2080 and 2100 LULC. 2080 and 2100 LULC led to the increase in monthly TP load 

throughout the year relative to 2011 LULC. Spring and winter TP loads were highly increased 

under three scenarios in 2080 and 2100 LULC because TN load was associated with 

streamflow variation along the land use change. For 2080 LULC condition, the average 

monthly TP load was increased by 14.74 % under A1B scenario, 19.35% under A2 scenario, 

and 10.39% under B1 scenario. For 2100 LULC condition, the average monthly TP load was 

increased by 14.26% under A1B scenario, 22.92% under A2 scenario, and 11.97% under B1 

scenario, respectively. 2100 LULC A2 scenario was the biggest increase in monthly TP load 

due to the growth in higher urbanization. As a result of this study, it is clear that urbanization 

affects the increases in monthly streamflow, sediment, TN, and TP loads.  
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Table 6.4. Changes in monthly maximum streamflow for 2080 and 2100 LULC under three 

scenarios relative to the 2011 LULC condition. 

Month 

2011 

LULC 

(m3/s) 

LULC 

scenarios 

2080 LUCL 

(m3/s) 

2100 LUCL 

(m3/s) 

Variation (%) 

2080 LUCL 2100 LUCL 

1 124.88 

A1B 133.56 138.32 6.95 10.76 

A2 147.28 159.32 17.94 27.58 

B1 131.32 135.52 5.16 8.52 

2 196.00 

A1B 208.04 212.52 6.14 8.43 

A2 219.52 229.88 12.00 17.29 

B1 205.80 209.72 5.00 7.00 

3 234.92 

A1B 251.16 257.04 6.91 9.42 

A2 264.60 276.64 12.63 17.76 

B1 249.20 253.96 6.08 8.10 

4 185.92 

A1B 209.72 220.36 12.80 18.52 

A2 229.60 250.04 23.49 34.49 

B1 208.32 215.04 12.05 15.66 

5 219.80 

A1B 224.00 224.56 1.91 2.17 

A2 225.68 227.36 2.68 3.44 

B1 223.16 223.72 1.53 1.78 

6 218.40 

A1B 241.64 237.72 10.64 8.85 

A2 248.92 246.12 13.97 12.69 

B1 232.12 232.40 6.28 6.41 

7 130.48 

A1B 145.04 147.28 11.16 12.88 

A2 154.84 161.28 18.67 23.61 

B1 141.68 144.48 8.58 10.73 

8 60.48 

A1B 71.40 72.80 18.06 20.37 

A2 76.44 80.64 26.39 33.33 

B1 70.00 71.40 15.74 18.06 

9 59.92 

A1B 66.64 68.04 11.21 13.55 

A2 72.24 86.52 20.56 44.39 

B1 65.24 66.64 8.88 11.21 

10 50.12 

A1B 62.44 66.08 24.58 31.84 

A2 73.64 85.40 46.93 70.39 

B1 60.76 63.84 21.23 27.37 

11 54.60 

A1B 81.76 89.60 49.74 64.10 

A2 103.60 121.80 89.74 123.08 

B1 78.96 85.96 44.62 57.44 

12 89.88 

A1B 117.32 126.84 30.53 41.12 

A2 144.76 167.16 61.06 85.98 

B1 113.68 122.36 26.48 36.14 

Mean 135.45 

A1B 151.06 155.10 15.89 20.17 

A2 163.43 174.35 28.84 41.17 

B1 148.35 152.09 13.47 17.37 
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Table 6.5. Changes in monthly mean streamflow for 2080 and 2100 LULC under three 

scenarios relative to the 2011 LULC condition. 

Month 

2011 

LULC 

(m3/s) 

LULC 

scenarios 

2080 LUCL 

(m3/s) 

2100 LUCL 

(m3/s) 

Variation (%) 

2080 LUCL 2100 LUCL 

1 23.42 

A1B 24.02 24.23 2.56 3.46 

A2 24.62 25.14 5.10 7.34 

B1 23.92 24.12 2.11 2.99 

2 29.42 

A1B 29.77 30.01 1.19 2.01 

A2 30.22 30.71 2.70 4.37 

B1 29.76 29.92 1.15 1.68 

3 38.54 

A1B 39.31 39.66 2.00 2.91 

A2 39.73 40.35 3.09 4.69 

B1 39.37 39.54 2.14 2.59 

4 50.14 

A1B 51.27 51.71 2.25 3.14 

A2 51.45 52.10 2.61 3.91 

B1 51.42 51.52 2.56 2.76 

5 67.32 

A1B 69.32 68.68 2.97 2.02 

A2 69.50 69.07 3.25 2.61 

B1 68.38 68.41 1.57 1.62 

6 63.68 

A1B 65.25 62.09 2.46 -2.49 

A2 65.23 62.14 2.43 -2.42 

B1 61.96 61.90 -2.70 -2.80 

7 34.63 

A1B 35.08 33.46 1.30 -3.39 

A2 35.09 33.48 1.34 -3.31 

B1 33.40 33.40 -3.54 -3.55 

8 20.71 

A1B 20.84 19.87 0.65 -4.02 

A2 20.83 19.87 0.61 -4.05 

B1 19.85 19.86 -4.13 -4.11 

9 14.07 

A1B 14.23 13.72 1.14 -2.52 

A2 14.38 13.94 2.19 -0.94 

B1 13.62 13.68 -3.22 -2.81 

10 9.98 

A1B 10.26 10.08 2.79 0.96 

A2 10.51 10.46 5.36 4.84 

B1 9.92 10.02 -0.55 0.41 

11 10.45 

A1B 10.99 11.08 5.21 6.08 

A2 11.46 11.79 9.74 12.87 

B1 10.82 10.99 3.62 5.18 

12 16.26 

A1B 17.16 17.39 5.52 6.94 

A2 17.94 18.57 10.34 14.22 

B1 16.99 17.25 4.50 6.08 

Mean 31.55 

A1B 32.29 31.83 2.50 1.26 

A2 32.58 32.30 4.06 3.68 

B1 31.62 31.72 0.29 0.84 
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Table 6.6. Changes in monthly minimum streamflow for 2080 and 2100 LULC under three 

scenarios relative to the 2011 LULC condition. 

Month 

2011 

LULC 

(m3/s) 

LULC 

scenarios 

2080 LUCL 

(m3/s) 

2100 LUCL 

(m3/s) 

Variation (%) 

2080 LUCL 2100 LUCL 

1 6.30 

A1B 6.33 6.33 0.44 0.44 

A2 6.38 6.47 1.33 2.67 

B1 6.30 6.33 0.00 0.44 

2 9.52 

A1B 9.46 9.44 -0.59 -0.88 

A2 9.41 9.38 -1.18 -1.47 

B1 9.46 9.46 -0.59 -0.59 

3 10.02 

A1B 10.02 10.02 0.00 0.00 

A2 10.02 10.02 0.00 0.00 

B1 10.02 10.02 0.00 0.00 

4 11.20 

A1B 11.23 11.20 0.25 0.00 

A2 11.23 11.20 0.25 0.00 

B1 11.23 11.20 0.25 0.00 

5 13.13 

A1B 13.19 13.22 0.43 0.64 

A2 13.19 13.19 0.43 0.43 

B1 13.19 13.22 0.43 0.64 

6 9.55 

A1B 9.55 9.55 0.00 0.00 

A2 9.55 9.55 0.00 0.00 

B1 9.55 9.55 0.00 0.00 

7 9.10 

A1B 8.32 8.12 -8.62 -10.77 

A2 8.29 8.18 -8.92 -10.15 

B1 8.04 8.46 -11.69 -7.08 

8 5.21 

A1B 5.18 5.18 -0.54 -0.54 

A2 5.18 5.18 -0.54 -0.54 

B1 5.18 5.21 -0.54 0.00 

9 4.87 

A1B 4.84 4.84 -0.57 -0.57 

A2 4.84 4.84 -0.57 -0.57 

B1 4.84 4.84 -0.57 -0.57 

10 4.87 

A1B 4.84 4.84 -0.57 -0.57 

A2 4.84 4.84 -0.57 -0.57 

B1 4.84 4.84 -0.57 -0.57 

11 4.98 

A1B 4.87 4.87 -2.25 -2.25 

A2 4.87 4.87 -2.25 -2.25 

B1 4.87 4.90 -2.25 -1.69 

12 5.57 

A1B 5.46 5.49 -2.01 -1.51 

A2 5.52 5.52 -1.01 -1.01 

B1 5.46 5.52 -2.01 -1.01 

Mean 7.86 

A1B 7.77 7.76 -1.17 -1.33 

A2 7.78 7.77 -1.09 -1.12 

B1 7.75 7.80 -1.46 -0.82 
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Table 6.7. Changes in monthly sediment load for 2080 and 2100 LULC under three scenarios 

relative to the 2011 LULC condition. 

Month 

2011 

LULC 

(100×ton/

month) 

LULC 

scenarios 

2080 

LUCL 

(100×ton/

month) 

2100 

LUCL 

(100×ton/

month) 

Variation (%) 

2080 LULC 2100 LULC 

1 20.64 

A1B 23.15 24.66 12.15 19.46 

A2 26.94 30.27 30.52 46.67 

B1 22.61 23.86 9.53 15.59 

2 21.98 

A1B 24.19 25.65 10.03 16.67 

A2 27.57 30.66 25.42 39.47 

B1 23.72 24.85 7.90 13.07 

3 26.46 

A1B 29.43 30.97 11.20 17.01 

A2 32.38 35.31 22.35 33.44 

B1 28.98 30.06 9.51 13.60 

4 27.95 

A1B 31.43 32.83 12.43 17.46 

A2 33.17 35.32 18.64 26.34 

B1 31.22 31.92 11.68 14.20 

5 38.25 

A1B 43.40 44.93 13.45 17.46 

A2 46.04 48.61 20.37 27.08 

B1 42.52 43.56 11.17 13.87 

6 30.91 

A1B 32.75 32.39 5.97 4.82 

A2 33.56 33.36 8.58 7.95 

B1 31.18 31.53 0.90 2.02 

7 17.44 

A1B 19.47 19.57 11.70 12.22 

A2 20.38 20.70 16.91 18.70 

B1 18.76 19.10 7.61 9.54 

8 10.19 

A1B 9.57 9.55 -6.11 -6.28 

A2 9.75 9.69 -4.40 -4.90 

B1 9.27 9.36 -9.07 -8.16 

9 15.76 

A1B 17.13 17.84 8.65 13.17 

A2 19.15 20.83 21.46 32.16 

B1 16.60 17.28 5.31 9.61 

10 15.40 

A1B 18.72 19.80 21.51 28.54 

A2 21.57 24.02 40.05 55.91 

B1 18.12 19.11 17.65 24.03 

11 19.44 

A1B 23.84 25.35 22.66 30.40 

A2 27.66 31.03 42.33 59.65 

B1 23.04 24.34 18.56 25.22 

12 20.09 

A1B 24.39 26.25 21.42 30.69 

A2 29.34 33.62 46.06 67.39 

B1 23.67 25.29 17.85 25.93 

Mean 22.04 

A1B 24.79 25.82 12.09 16.80 

A2 27.29 29.45 24.02 34.16 

B1 24.14 25.02 9.05 13.21 
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Table 6.8. Changes in monthly TN load for 2080 and 2100 LULC under three scenarios 

relative to the 2011 LULC condition. 

Month 

2011 

LULC 

(ton/month) 

LULC 

scenarios 

2080 LUCL 

(ton/month) 

2100 LUCL 

(ton/month) 

Variation (%) 

2080 LULC 2100 LULC 

1 105.34 

A1B 174.98 182.43 66.11 73.18 

A2 167.10 171.67 81.08 91.40 

B1 190.75 201.62 58.62 62.96 

2 119.92 

A1B 188.95 192.90 57.56 60.86 

A2 178.17 181.16 64.07 72.76 

B1 196.75 207.18 48.57 51.07 

3 136.63 

A1B 232.01 233.73 69.81 71.07 

A2 215.12 216.72 69.29 77.32 

B1 231.29 242.26 57.45 58.62 

4 132.28 

A1B 280.98 282.71 112.41 113.72 

A2 253.74 254.18 104.38 109.64 

B1 270.35 277.31 91.82 92.15 

5 157.21 

A1B 420.36 416.62 167.39 165.01 

A2 373.85 372.52 156.28 155.76 

B1 402.89 402.08 137.81 136.96 

6 129.24 

A1B 430.48 410.02 233.17 217.33 

A2 375.03 370.28 218.51 202.19 

B1 411.54 390.46 190.25 186.58 

7 67.29 

A1B 231.56 220.41 244.13 227.56 

A2 201.91 199.36 228.53 210.28 

B1 221.06 208.78 200.08 196.28 

8 38.57 

A1B 133.45 126.47 245.97 227.87 

A2 115.97 114.34 228.97 208.96 

B1 126.89 119.17 200.65 196.42 

9 39.51 

A1B 102.97 99.37 160.61 151.49 

A2 90.84 90.86 157.43 154.33 

B1 101.72 100.49 129.90 129.95 

10 42.10 

A1B 87.40 86.42 107.59 105.27 

A2 78.92 80.34 113.83 122.35 

B1 90.03 93.61 87.45 90.82 

11 62.37 

A1B 111.06 114.38 78.06 83.39 

A2 104.11 107.43 93.95 108.11 

B1 120.97 129.80 66.91 72.24 

12 82.73 

A1B 142.84 150.41 72.65 81.80 

A2 136.86 141.62 92.62 104.91 

B1 159.36 169.52 65.43 71.18 

Mean 92.76 

A1B 211.42 209.66 134.62 131.55 

A2 190.97 191.71 134.08 134.83 

B1 210.30 211.86 111.25 112.10 
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Table 6.9. Changes in monthly TP load for 2080 and 2100 LULC under three scenarios 

relative to the 2011 LULC condition. 

Month 

2011 

LULC 

(ton/month) 

LULC 

scenarios 

2080 LUCL 

(ton/month) 

2100 LUCL 

(ton/month) 

Variation (%) 

2080 LULC 2100 LULC 

1 10.80 

A1B 12.55 12.99 16.26 20.31 

A2 13.66 14.40 26.56 33.41 

B1 12.39 12.72 14.78 17.78 

2 12.63 

A1B 14.07 14.29 11.42 13.14 

A2 14.75 15.51 16.81 22.83 

B1 13.79 14.03 9.21 11.08 

3 14.69 

A1B 16.31 16.39 11.03 11.56 

A2 16.71 17.55 13.74 19.47 

B1 15.89 16.09 8.20 9.52 

4 16.74 

A1B 18.61 18.70 11.18 11.67 

A2 18.79 19.46 12.21 16.21 

B1 18.22 18.33 8.82 9.48 

5 19.89 

A1B 22.84 22.72 14.84 14.24 

A2 23.03 23.48 15.79 18.06 

B1 22.13 22.22 11.25 11.74 

6 16.94 

A1B 19.86 19.08 17.22 12.64 

A2 19.83 19.37 17.03 14.35 

B1 18.70 18.69 10.39 10.28 

7 10.53 

A1B 12.02 11.52 14.15 9.40 

A2 12.01 11.74 14.07 11.49 

B1 11.34 11.33 7.64 7.55 

8 7.22 

A1B 8.02 7.61 11.08 5.43 

A2 7.97 7.74 10.42 7.26 

B1 7.51 7.50 4.10 3.95 

9 6.27 

A1B 7.04 6.80 12.23 8.49 

A2 7.21 7.33 15.03 16.90 

B1 6.61 6.69 5.41 6.67 

10 5.41 

A1B 6.24 6.14 15.30 13.49 

A2 6.59 6.91 21.72 27.64 

B1 5.88 6.02 8.62 11.23 

11 6.23 

A1B 7.53 7.71 20.83 23.83 

A2 8.29 8.92 33.11 43.15 

B1 7.26 7.51 16.52 20.62 

12 8.02 

A1B 9.73 10.17 21.35 26.87 

A2 10.88 11.57 35.70 44.27 

B1 9.60 9.92 19.75 23.79 

Mean 11.28 

A1B 12.90 12.84 14.74 14.26 

A2 13.31 13.66 19.35 22.92 

B1 12.44 12.59 10.39 11.97 
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(a) Maximum streamflow 

 

 
(b) Mean streamflow 

Figure 6.7. Changes in monthly maximum streamflow (a), mean streamflow (b), minimum 

streamflow (c), sediment load (d), TN load (e), and TP load (f) in the 2080 LULC and 2100 

LULC under three scenarios three scenarios. 
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(c)  Minimum streamflow  

 

 
(d) Sediment load 

Figure 6.7. Changes in monthly maximum streamflow (a), mean streamflow (b), minimum 

streamflow (c), sediment load (d), TN load (e), and TP load (f) in the 2080 LULC and 2100 

LULC under three scenarios (Cont.).  



149 
 

 
 

 
(e) TN load 

 

 
(f) TP load 

Figure 6.7. Changes in monthly maximum streamflow (a), mean streamflow (b), minimum 

streamflow (c), sediment load (d), TN load (e), and TP load (f) in the 2080 LULC and 2100 

LULC under three scenarios (Cont.). 
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6.3.3. The selection of optimal GCMs    

 Total 27 GCMs were applied to select optimal GCMs which better represent the 

historical climate condition based on seasonal precipitation and temperature in the BRW. 

Table 6.10 shows normalized values for skill scores and RMSE and ranked results of GCMs. 

The highest ranked model was Canesm2 based on weighting results. Bcc-csm1-1m model was 

the second ranked model. The lowest normalized score showed giss-e2-r model by 0.11. 

Canesm2 and bcc-csm1-1m models were selected the best GCMs which well represented 

historical climate condition for the BRW. Cnrm-cm5 model, which was analyzed the highest-

ranked model for the Pacific Northwest by Rupp et al. (2014), was also considered for the 

reliable climate change study. Three GCMs (canesm2, bcc-csm1-1m, and cnrm-cm4) were 

finally selected to apply SDBC and analyze the impacts of climate change using HSPF model.   
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Table 6.10. The GCMs ranked according to weighting values between seasonal precipitation 

and temperature using normalized HSS, FSS, and RMSE scores. 

GCM 

number 

Precipitation (P) Temperature (T) Weight 

(P *0.7 + 

T *0.3) 

Ranking 
HSS FSS RMSE Mean HSS FSS RMSE Mean 

1 0.70 0.70 0.78 0.73 0.15 0.14 0.23 0.17 0.56 11 

2 1.00 1.00 0.49 0.83 0.78 0.77 0.79 0.78 0.81 2 

3 0.82 0.81 1.00 0.88 0.98 0.99 0.86 0.94 0.90 1 

4 0.41 0.41 0.56 0.46 1.00 1.00 1.00 1.00 0.62 9 

5 0.55 0.54 0.54 0.54 0.92 0.92 0.96 0.93 0.66 8 

6 0.54 0.53 0.83 0.63 0.91 0.91 0.88 0.90 0.71 4 

7 0.56 0.56 0.64 0.59 0.95 0.95 0.91 0.94 0.69 6 

8 0.55 0.55 0.67 0.59 0.90 0.90 0.98 0.93 0.69 5 

9 0.33 0.32 0.69 0.45 0.05 0.05 0.20 0.10 0.34 17 

10 0.40 0.40 0.66 0.49 0.10 0.10 0.12 0.11 0.37 16 

11 0.49 0.48 0.87 0.61 0.00 0.00 0.03 0.01 0.43 14 

12 0.34 0.33 0.73 0.47 0.19 0.19 0.31 0.23 0.40 15 

13 0.17 0.16 0.39 0.24 0.35 0.34 0.33 0.34 0.27 20 

14 0.16 0.16 0.34 0.22 0.16 0.15 0.00 0.10 0.19 26 

15 0.00 0.00 0.33 0.11 0.15 0.14 0.03 0.11 0.11 27 

16 0.44 0.43 0.94 0.61 1.00 1.00 0.63 0.87 0.69 7 

17 0.17 0.17 0.17 0.17 0.34 0.33 0.54 0.40 0.24 24 

18 0.30 0.30 0.89 0.50 0.35 0.33 0.24 0.31 0.44 13 

19 0.66 0.65 0.82 0.71 0.30 0.29 0.52 0.37 0.61 10 

20 0.17 0.17 0.47 0.27 0.46 0.44 0.40 0.43 0.32 18 

21 0.19 0.18 0.59 0.32 0.90 0.91 0.78 0.86 0.48 12 

22 0.68 0.67 0.82 0.72 0.58 0.58 0.97 0.71 0.72 3 

23 0.16 0.16 0.01 0.11 0.53 0.51 0.86 0.63 0.27 21 

24 0.26 0.26 0.00 0.18 0.47 0.45 0.74 0.55 0.29 19 

25 0.18 0.25 0.02 0.15 0.38 0.38 0.80 0.52 0.26 22 

26 0.17 0.17 0.13 0.16 0.29 0.28 0.43 0.34 0.21 25 

27 0.21 0.21 0.09 0.17 0.35 0.34 0.53 0.41 0.24 23 
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6.3.4. The performance evaluation of SDBC GCMs  

 SDBC method was applied to create fine spatial resolution and reduce climate 

uncertainties for three GCMs (bcc-csm1-1m, canesm2, and cnrm-cm5 models). The 

performance of SDBC GCMs was evaluated using monthly NLDAS-2 data (1981-2005). 

Table 6.11 and Figure 6.8 show the comparisons results of performance measures for SDBC 

GCMs. Overall, SDBC GCMs agreed well with the historical monthly precipitation, 

temperature, solar radiation, specific humidity, and wind speed variations (Figure 6.8). 

Temperature, solar radiation, and specific humidity were calculated higher performance 

statistics for HSS, FSS, RMSE, MAE, and R2, respectively. Also, PBIAS was computed 

below ± 5% for monthly precipitation, temperature, solar radiation, specific humidity, and 

wind speed of three SDBC GCMs. 
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Table 6.11. The performance comparisons for monthly SDBC GCMs. 

Climate 

variable 
GCMs HSS FSS RMSE MAE R2 PBIAS 

Precipitation 

bcc_csm1_1m 0.17 0.17 46.53 33.38 0.41 3.47 

canesm2 0.16 0.16 48.07 33.80 0.35 -3.12 

cnrm-cm5 0.16 0.16 48.17 33.33 0.36 -0.65 

Temperature 

bcc_csm1_1m 0.65 0.65 2.56 2.05 0.96 1.68 

canesm2 0.64 0.64 2.67 2.11 0.95 2.43 

cnrm-cm5 0.66 0.66 2.60 2.07 0.96 4.12 

Solar 
radiation 

bcc_csm1_1m 0.80 0.80 12.99 10.10 0.99 -0.09 

canesm2 0.79 0.79 13.43 10.18 0.99 -0.06 

cnrm-cm5 0.81 0.81 13.02 9.97 0.99 -0.21 

Specific 
Humidity 

bcc_csm1_1m 0.40 0.40 0.00 0.00 0.83 0.81 

canesm2 0.43 0.43 0.00 0.00 0.84 1.73 

cnrm-cm5 0.41 0.41 0.00 0.00 0.82 1.57 

Wind speed 

bcc_csm1_1m 0.09 0.09 0.93 0.72 0.19 -0.75 

canesm2 0.08 0.08 0.93 0.73 0.18 -2.73 

cnrm-cm5 0.11 0.11 0.87 0.69 0.30 -2.56 
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(a) Precipitation 

 

 
(b) Temperature 

Figure 6.8. Comparison of historical 25-year monthly climate data (1981- 2005) for NLDAS-

2 and SDBC GCMs. 
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(b) Solar radiation 

 

 
(d) Humidity 

Figure 6.8. Comparison of historical 25-year monthly climate data (1981- 2005) for NLDAS-

2 and SDBC GCMs (Cont.). 
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(e) Wind Speed 

Figure 6.8. Comparison of historical 25-year monthly climate data (1981- 2005) for NLDAS-

2, MACA, and SDBC GCMs (Cont.). 
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6.3.5. Future precipitation and temperature generated by three SDBC GCMs 

Three SDBC GCMs were used to analyze the changes in future precipitation (%) and 

temperature (℃) under each emission scenario. Table 6.12 shows the changes in annual and 

season precipitation for three SDBC GCMs in the future periods (F1: 2021-2045, F2: 2046-

2070, F3: 2071-2095) according to three RCPs comparing with the baseline period. Future 

precipitation did not indicate a significant trend from three SDBC GCMs under RCP2.6, 

RCP4.5, and RCP8.5. Precipitation was considerably increased in winter and decreased in 

summer under RCP8.5 throughout the future periods. The comparisons of precipitation 

variations before and after SDBC indicated that mean annual precipitation of raw bcc-csm1-

1m model was increased up to 31.26% under all RCPs in the future periods. However, SDBC 

bcc-csm1-1m model showed the decreases in mean annual precipitation by 0.16% under 

RCP2.6 in the F1 and 5.38% under RCP4.5 in the F2 relative to the baseline period. Mean 

annual precipitation of raw canesm2 model was increased up to 21.87% under RCP8.5 in the 

future periods relative to the baseline period, but SDBC canesm2 model indicated the increase 

in precipitation by 2.22-2.93 % under RCP4.5 and RCP8.5 in the F1 and F2. The raw cnrm-

cm5 model was increased mean annual precipitation by 3.58% under RCP4.5 and RCP8.5 in 

the F3 relative to the baseline period. SDBC cnrm-cm5 model showed the increases in mean 

annual precipitation under all RCPs in the future periods relative the baseline period. Three 

SDBC GCMs represented a substantial increase trend of precipitation under RCP8.5 in 

winter. According to the average variation of three SDBC GCMs, future precipitation was 

significantly increased under RCP8.5 except for cnrm-cm5 model, but it was slightly 

increased or decreased under RCP2.6 relative to the baseline period.  

Table 6.13 indicates the changes in annual and season temperature for three SDBC 
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GCMs in the future periods according to three RCPs comparing with baseline period. 

Canesm2 model showed a large increase in temperature from all season than those of 

baseline. Bcc-csm1-1m and cnrm-cm5 models indicated a consistent increase in temperature 

under all RCPs.  Summer and winter temperature of SDBC GCMs were highly increased 

under RCP4.5 and RCP8.5 in the future periods than spring and fall temperature. Mean annual 

temperature increased from 1.29 ℃ to 4.26 ℃ by bcc-csm1-1m model, 2.63℃ to 6.47℃ by 

canesm2 model, and 0.85℃ to 5.18℃ by cnrm-cm5 model under all RCPs in the future 

periods, respectively.  
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Table 6.12. Future precipitation variations under RCP2.6, RCP4.5, and RPC8.5 climate change in three future periods relative to the 

baseline period (1981-2005). 

SDBC GCMs Seasonal 
Baseline 

(mm/month) 

Variation (%) 

F1 (2021-2045) F2 (2046-2070) F3 (2071-2095) 

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Bcc-csm1-1m 

Winter 77.60 -0.21 7.14 20.89 6.34 12.21 24.75 4.61 -3.01 36.18 

Spring 56.91 3.05 8.42 1.30 -3.43 0.04 -2.04 2.63 -13.54 -2.27 

Summer 19.87 1.33 -20.76 -15.88 -12.26 -24.70 -10.88 -9.87 -15.41 -27.26 

Autumn 46.87 -4.62 -9.47 24.72 12.81 -5.97 -6.27 5.94 4.84 -3.39 

Mean 50.31 -0.16 0.88 12.61 3.24 0.89 6.43 2.93 -5.38 9.83 

Canesm2 

Winter 77.60 7.62 -1.34 -9.78 -6.89 -2.38 1.65 2.08 0.26 34.31 

Spring 56.91 -2.91 -5.87 -1.18 -7.00 1.84 -0.10 2.01 14.44 17.19 

Summer 19.87 -9.59 18.97 11.20 6.46 17.61 48.79 31.26 47.83 69.16 

Autumn 46.87 2.64 -8.23 2.10 4.59 6.83 12.32 -8.13 -2.55 12.58 

Mean 50.31 1.78 -2.22 -2.51 -2.93 2.93 8.30 2.56 8.31 27.85 

Cnrm-cm5 

Winter 77.60 -0.62 16.32 15.26 -1.89 21.58 24.03 1.28 27.52 25.71 

Spring 56.91 26.32 3.07 13.92 12.42 15.15 27.02 20.60 19.43 22.29 

Summer 19.87 30.55 7.34 -7.11 13.23 0.47 -18.63 33.40 0.18 -10.39 

Autumn 46.87 23.25 6.69 -7.56 34.53 -2.49 5.11 13.81 5.52 27.44 

Mean 50.31 15.64 9.44 7.36 12.13 12.07 16.26 12.83 17.41 21.58 
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Table 6.13. Future temperature variations under RCP2.6, RCP4.5, and RPC8.5 climate change in three future periods relative to the 

baseline period (1979-2005). 

SDBC GCMs Seasonal 
Baseline 

 (℃) 

Variation (℃) 

F1 (2021-2045) F2 (2046-2070) F3 (2071-2095) 

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Bcc-csm1-1m 

Winter -1.73 1.13 0.91 1.90 1.37 1.64 2.98 1.86 2.06 4.01 

Spring 7.36 0.95 0.99 1.24 1.37 1.31 2.09 1.16 2.37 3.65 

Summer 19.43 2.04 2.26 2.53 2.03 2.95 3.99 2.06 3.01 5.69 

Autumn 9.02 1.03 1.38 1.63 1.49 1.88 2.91 1.54 2.64 3.70 

Mean 8.52 1.29 1.39 1.83 1.56 1.95 2.99 1.65 2.52 4.26 

Canesm2 

Winter -1.73 2.45 1.87 3.03 2.19 3.15 4.61 2.43 3.45 6.44 

Spring 7.36 2.66 2.46 2.81 2.53 3.62 4.55 3.10 3.37 5.42 

Summer 19.43 3.33 2.97 3.63 3.77 4.32 5.74 2.90 4.10 8.01 

Autumn 9.02 2.07 2.18 2.64 2.31 2.67 4.44 2.28 3.52 6.02 

Mean 8.52 2.63 2.37 3.03 2.70 3.44 4.83 2.68 3.61 6.47 

Cnrm-cm5 

Winter -1.73 1.71 1.87 2.27 2.08 3.05 3.72 2.08 3.57 5.27 

Spring 7.36 0.39 1.28 1.45 0.82 2.18 2.58 1.22 2.56 4.32 

Summer 19.43 0.61 1.91 2.31 1.53 2.94 4.07 1.46 3.83 6.26 

Autumn 9.02 0.70 1.26 1.57 0.86 2.02 3.30 1.26 2.78 4.87 

Mean 8.52 0.85 1.58 1.90 1.32 2.55 3.42 1.50 3.19 5.18 
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6.3.6. Simulated streamflow evaluation for three SDBC GCMs 

 25-year monthly streamflow patterns for three SDBC GCMs and NLDAS-2 were 

compared during the baseline period (1981-2005) at calibration target points (CTPs). Three 

SDBC GCMs exhibited a homogenous trend during the historical streamflow simulation for 

CTP 1, 2, 3, 4, and 5 as represents in Figure 6.9. The difference of such simulation for three 

SDBC GCMs ranged from -7.92% to -2.53% at CTP 1, 0.47% to 8.61% at CTP 2, -2.16% to 

2.98% at CTP 3, 3.53% to 8.20% at CTP 4, -0.18% to 4.30% at CTP 5, and -12.04% to -

6.22% at CTP 6 (Table 6.14). The simulated streamflow difference between NLDAS-2 and 

SDBC GCMs was not exceeded ±12% for all calibration target points. Therefore, three SDBC 

GCMs well simulated the historical streamflow condition in the BWR based on the model 

performance evaluation using the difference results. Acceding to the results of streamflow 

simulation at the mouth of the watershed, canesm2 model was the most similar streamflow 

pattern for NLDAS-2 streamflow during the baseline period.  

 

Table 6.14. Comparison of mean streamflow for three SDBC GCMs at all calibration target 

points.   

Calibration target 

points (CTP) 
Mean streamflow (m3/s) Difference (%) 

No Lat Lon NLDAS Canesm2 
Bcc-

scm1-1m 

Cnrm-

cm5 
Canesm2 

Bcc-

scm1-1m 

Cnrm-

cm5 

1 43.65 -115.99 6.70 6.53 6.17 6.36 -2.53 -7.92 -5.09 

2 43.50 -115.31 17.49 18.99 18.52 17.57 8.61 5.88 0.47 

3 43.67 -115.73 32.94 33.58 33.94 32.20 1.96 2.98 -2.16 

4 43.34 -115.48 23.36 25.27 24.66 24.18 8.20 5.58 3.53 

5 43.53 -116.06 50.83 53.02 52.25 50.74 4.30 2.78 -0.18 

6 43.78 -116.97 35.09 32.90 32.61 30.86 -6.22 -7.06 -12.04 
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(a) Calibration target point 1 

 

 
(b) Calibration target point 2 

Figure 6.9. Comparison of monthly mean streamflow between NLDAS and SDBC GCMs at 

all calibration target points for the baseline period (1981-2005). 
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(c) Calibration target point 3 

 

 
(d) Calibration target point 4 

Figure 6.9. Comparison of monthly mean streamflow between NLDAS and SDBC GCMs at 

all calibration target points for the baseline period (1981-2005) (Cont.). 
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(e) Calibration target point 5 

 

 
(f) Calibration target point 6 

Figure 6.9. Comparison of monthly mean streamflow between NLDAS and SDBC GCMs at 

all calibration target points for the baseline period (1981-2005) (Cont.). 
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6.3.7. Impacts of changes in climate and LULC. 

6.3.7.1. Maximum streamflow variation 

 To examine the potential combined impacts of climate and 2100 LULC changes on 

watershed streamflow, Table 6.15 and Figure 6.10-12 show 25-year monthly maximum 

streamflow for the baseline (1981-2005) and future periods (F1, F2, and F3). Bcc-csm1-1m 

model indicated the reduction of monthly maximum streamflow in spring and summer 

because of the decrease in spring and summer precipitation.  Monthly maximum streamflow 

was mostly increased under all RCPs in the winter over the F1, F2, and F3 (Figure 6.10). In 

the BRW, due to monthly maximum streamflow was spring and summer-dominate and 

precipitation decreased, monthly maximum streamflow was reduced up to -27.18% under 

RCP2.6 and -16.44% under RCP8.5. However, RCP4.5 in the F1 increased monthly 

maximum streamflow by 16.17% relative to the baseline period. The combined impact of 

climate and 2100 LULC changes showed that monthly maximum streamflow was increased 

by urbanization coupled with climate change in summer and fall even though it was lower 

than the baseline period. The distinct increase in monthly maximum streamflow in spring and 

winter were observed comparing with climate change alone.  2100 LULC A2 under RCP4.5 

simulated the greatest increase in the average monthly maximum streamflow by 33.33% in 

the F1 period relative to the baseline period.    

 Canesm2 model showed the similar monthly maximum streamflow pattern as bcc-

csm1-1m model, but it was stimulated a significant increase in monthly maximum streamflow 

in winter during the F2 relative to the baseline period (Figure 6.11). Although monthly 

maximum streamflow was decreased under RCP2.6 in the F1, F2, and F3, it was increased by 

1.01% in the F2 and 1.99% in the F3 under RCP8.5. RCP8.5 represented the biggest increase 
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of monthly maximum streamflow by 21.41% in F3 due to the increases in spring and winter 

precipitation. For the combined impact of climate and 2100 LULC changes, the increases in 

precipitation and the urban land were highly affected increasing of monthly maximum 

streamflow comparing with climate change alone. 2100 LULC A2 under RCP8.5 showed the 

greatest increase in monthly maximum streamflow by 46.66% in the F3 relative to the 

baseline period.      

Cnrm-cm5 model also indicated similar variation pattern of monthly maximum 

streamflow as two SDBC GCMs (Figure 6.12). In future periods, cnrm-cm5 model indicated 

the increasing pattern of winter and spring precipitation under RCP4.5 and RCP8.5. Monthly 

maximum streamflow was increased by 19.04% under RCP4.5 and 13.04% under RCP8.5 

relative to the baseline period. For the combined impact of climate and 2100 LILC changes, 

monthly maximum streamflow was increased under all RCPs in the future periods comparing 

with climate change condition. 2100 LULC A2 under RCP4.5 showed the greatest increase in 

monthly maximum streamflow by 39.24% in the F3 relative to the baseline period due to a 

large urban development and winter precipitation increasing.      

 

3.3.7.2. Mean streamflow variation 

 Table 6.16 and Figure 6.13 - 15 show 25-year monthly mean streamflow for the 

baseline and the future periods. Bcc-csm1-1m model indicated the reduction of monthly mean 

streamflow under all RCPs in winter and early spring over the future periods (Figure 6.13). 

Due to the increases in spring and winter temperature of bcc-csm1-1m model, monthly mean 

streamflow in early spring and winter was also increased. However, monthly mean 

streamflow was decreased in summer due to the reduction of summer precipitation and the 
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impact of early snow melting in the mountain area. Under RCP8.5, monthly mean streamflow 

was increased by 10.55 % in the F1 by the increase in mean annual precipitation. The 

combined impact of climate and 2100 LULC changes showed that monthly mean streamflow 

was increased by urbanization coupled with climate change comparing with climate change 

alone. 2100 LULC A2 under RCP8.5 indicated the greatest increase in monthly mean 

streamflow by 15.64% in the F1 relative to the baseline period.   

 Canesm2 model showed a large increase of monthly mean streamflow in spring, but 

monthly mean streamflow in summer and fall was decreased under all RCPs in F1, F2, and F3 

due to the reduction of summer and fall precipitation and early snow melting in the mountain 

area relative to baseline period (Figure 6.14). Under all RCPs, monthly mean streamflow was 

decreased in the future periods. RCP8.5 in the F1 was the highest decrease in monthly mean 

streamflow by 24.08%. For the combined impact of climate and 2100 LULC changes, 

monthly mean streamflow was all decreased under all RCPs in the future periods except for 

2100 LULC A2 under RCP8.5 in the F3 because monthly mean streamflow in summer and 

winter was highly decreased than the baseline period. 

Cnrm-cm5 model indicated monthly mean streamflow was increased in winter and 

spring and decreased in summer and fall relative to the baseline period (Figure 6.15). 

Monthly mean streamflow was increased by 12.34-4.11% under RCP2.6, 1.91-3.19% under 

RCP45, and 1.66-2.14% under RCP8.5 in the future periods. The combined impact of climate 

and 2100 LULC changes indicated that monthly mean streamflow was varied by different 

LULC and climate change scenarios. 2100 LULC A2 under RCP2.6 showed the greatest 

increase in monthly mean streamflow by 17.42% in the F1 relative to baseline period because 

of the large increase in urbanization and spring and summer rainfall.  
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6.3.7.3. Minimum streamflow variation 

Table 6.17 and Figure 6.16 - 18 show 25-year monthly minimum streamflow for the 

baseline and the three future periods. Bcc-csm1-1m model indicated the increases in spring 

and summer minimum streamflow under RCP2.6 and RCP4.5 in the F1 and F2 (Figure 6.16). 

The largest increase of monthly minimum streamflow was about 13.93% under RCP8.5 in the 

F1. Canesm2 model showed similar monthly minimum streamflow variation as bcc-csm1-1m 

model. Higher minimum streamflow in spring and summer resulted in the increasing of the 

monthly minimum streamflow by 10.08% under RCP2.5 in the F2, and 13.93% and 10.30% 

under RCP4.5 and RCP8.5 in the F3 relative to baseline period, respectively (Figure 6.17). 

Cnrm-cm5 model indicated the increase in monthly minimum streamflow under all RCPs in 

the future periods relative to the baseline period (Figure 6.18). The combined impact of 

climate and 2100 LULC changes represented the slightly declining of monthly minimum 

streamflow comparing with climate change alone. However, LULC change rarely affected the 

variation of monthly minimum streamflow for three SDBC GCMs under all RCPs in the 

future periods. 

 

6.3.7.4. Sediment load variation 

Table 6.18 and Figure 6.19 - 21 show 25-year monthly sediment loads for the 

baseline and the future periods. For Bcc-csm1-1m model, monthly sediment load was 

decreased under RCP2.6 and RCP4.5 in summer and fall and slightly increased under RCP8.5 

in winter due to the increasing of winter streamflow (Figure 6.19). The average monthly 

sediment load in the future periods tended to decrease up to 30.73% under RCP2.6, 37.23% 

under RCP4.5, and 27.58% under RCP8.5. The combined impact of climate and 2100 LULC 



169 
 

 
 

change resulted in the large increase in monthly sediment load under all RCPs in winter and 

spring over the future periods like as monthly mean streamflow variation. 2100 LULC A2 

under RCP8.5 in the F1 showed the greatest increase in the average monthly sediment load by 

32.23% due to the higher urban area and monthly mean streamflow.  

Canesm2 model showed similar results like as monthly sediment load variations of 

bcc-csm1-1m model (Figure 6.20). The average monthly sediment load was decreased up to 

34.53% under RCP2.6, 35.40% under RCP4.5, and 35.83% under RCP8.5 in the future 

periods. The combined impact of climate and 2100 LULC changes resulted in the large 

increase of sediment loads under all RCPs in winter and spring over the future periods as well. 

2100 LULC A2 under RCP85 indicated the biggest increase in the average monthly sediment 

load by 54.71% relative to the baseline period.  

Cnrm-cm5 model indicated similar pattern of monthly sediment load variation as other 

SDBC GCMs (Figure 6.21). The average monthly sediment load was decreased up to 30.32% 

under RCP2.6, 24.97% under RCP4.5, and 25.13% under RCP8.5 in the future periods. The 

combined impact of climate and LULC changes resulted in the large increase of monthly 

sediment loads under all RCPs in winter and spring over the future periods. 2100 LULC A2 

under RCP85 represented the biggest increase in the average monthly sediment load by 

34.99% in the F3 relative to the baseline period. Urbanization offsets the decrease in sediment 

load that was associated with climate change scenarios. The sediment load increasing was 

more affected by urbanization than climate change relative to the baseline period.  

 

6.3.7.5. TP load variation 

Table 6.19 and Figure 6.22 - 24 show 25-year monthly TP loads for the baseline and 
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the future periods. Bcc-csm1-1m model indicated that TP load was generally decreased in 

summer and spring and slightly increased in winter such as monthly mean streamflow 

variation under all RCPs over the future periods (Figure 6.22). The average monthly TP load 

tended to decrease by 1.72% under RCP2.6 in the F1, 9.95% under RCP4.5 in the F3, and 

3.02 % under RCP8.5 in the F3, respectively. It was increased by 0.95-2.96% under RCP2.5 

in the F2 and F3, 0.50-10.10% under RCP4.5 and RCP8.5 in the F1 relative to the baseline 

period. The combined impact of climate and LULC changes resulted in the large increase of 

TP loads under all RCPs in winter and spring over the future periods. Therefore, in four 

seasons, monthly TP load was all increased under three RCPs and LULC change scenarios. 

2100 LULC A2 under RCP8.5 indicated the biggest increase in the average monthly TP load 

by 33.56% in the F1 due to the increases in urbanization and monthly mean streamflow.  

Canesm2 model indicated similar monthly TP load variations like bcc-csm1-1m model 

(Figure 6.23), but the average monthly TP load was decreased under all RCPs in the future 

periods rather than Bcc-csm1-1m model. The combined impact of climate and LULC changes 

resulted in the large increase in monthly TP loads under all RCPs in winter and spring over 

the future periods. 2100 LULC A2 under RCP8.5 indicated the largest increase in the average 

monthly TP load by 21.16% in the F3 relative to the baseline period. 

Overall, cnrm-cm5 model indicated that monthly TP load was increased in the spring 

and summer and was similar in the fall and winter under all RCPs over the future periods 

relative to the baseline period (Figure 6.24). The average monthly TP load tended to increase 

by 1.92-9.86% under RCP2.6, 1.50-6.26% under RCP4.5, and 1.33-4.75% under RCP8.5 in 

the future periods due to the increase in mean streamflow. The combined impact of climate 

and LULC changes represented the large increase in monthly TP loads under all RCPs in 
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winter and spring over the future periods. The average monthly TP load was increased under 

three RCPs and LULC change scenarios in the future periods. 2100 LULC A2 under RCP2.6 

indicated the biggest increase in the average monthly TP load by 33.58% in the F1 because 

mean streamflow and urbanization were higher than other LULC change scenarios under 

RCP4.5 and RCP8.5. Consequently, monthly TP load profoundly affects by streamflow 

variation and urbanization.  

 

6.3.7.6. TN load variation 

Table 6.20 and Figure 6.25 - 27 show 25-year monthly TN loads for the baseline and 

the future periods. Bcc-csm1-1m model indicated monthly TN load was decreased in spring, 

summer and fall but increased in winter under all RCPs over the future periods (Figure 6.25). 

The average monthly TN load tended to decrease up to 8.37% under RCP2.6, 20.99% under 

RCP4.5 and 5.01% under RCP8.5 in the future periods except for RCP8.5 in the F1 relative to 

the baseline period. The combined impact of climate and 2100 LULC changes indicated the 

significant increases in monthly TN loads under all RCPs in the future periods throughout the 

year, but the variation pattern of monthly TN loads was as similar the baseline period. 2100 

LULC A2 under RCP8.5 indicated the biggest increase in average monthly TN load by 

131.79% in the F1 period.  

For canesm2 model, monthly TN load was increased in winter but decreased in spring, 

summer, and fall under all RCPs over the future periods (Figure 6.26). The average monthly 

TN load was decreased up to 18.42% under RCP2.6, 16.58% under RCP4.5, and 20.78% 

under RCP8.5 in the future periods. However, the combined impact of climate and 2100 

LULC changes was simulated the large increasing of TN loads under all RCPs in the future 
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periods. 2100 LULC A2 under RCP2.6 indicated the largest increase in the average monthly 

TP load by 93.44% in the F1 relative to the baseline period.  

Cnrm-cm5 model showed same increasing or decreasing patterns such as bcc-csm1-

1m and canesm2 models under all RCPs in the future periods (Figure 6.27). The average 

monthly TN load in the future periods tended to increase up to 10.80% under RCP2.6, 3.84% 

under RCP4.5, and 1.34% under RCP8.5. The average monthly TN load was decreased by 

4.20% under RCP2.6 and 2.04% under RCP4.5 in the F2 due to the reduction of monthly 

mean streamflow. The combined impact of climate and 2100 LULC changes showed the large 

increases in monthly TN loads under all RCPs in spring and winter over the future periods. 

2100 LULC A2 under RCP2.5 indicated the highest increase in the average monthly TN load 

by 132.42% in the F1. Monthly TP load highly affects by monthly streamflow variations and 

urbanization as well as the increase in barren/mining land.  

 

6.3.7.7. Water temperature variation 

Table 6.21 and Figure 6.28-30 show 25-year monthly water temperature for the 

baseline and the three future periods. Three SDBC GCMs indicated the increase in monthly 

water temperature under all RCPs in the future periods. In spring and winter, the increase in 

monthly water temperature was dominated due to monthly air temperature rise under RCP8.5. 

Canesm2 model indicated the largest increase in the average monthly water temperature by 

4.49 ℃ under RCP85 in the F2 than other SDBC GCMs. The combined impact of climate and 

2100 LULC changes was negligible because LULC change was rarely affected monthly water 

temperature variation.  
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Table 6.15. Variations of monthly maximum streamflow by climate change and the combined 

impact of climate and 2100 LULC changes relative to the baseline period (1981-2005).  

Base a 
(m3/s) 

LULC 
condition 

Emission 
pathway 

Future period (m3/s) Variation (%) 

F1* F2* F3* F1 F2 F3 

234.92 

bcc-csm1-1m 

2011 

RCP2.6 

191.64 181.57 171.06 -18.42 -22.71 -27.18 

2100 (a1b) 203.91 182.83 181.58 -13.20 -22.17 -22.71 

2100 (a2) 219.93 189.78 193.82 -6.38 -19.21 -17.49 

2100 (b1) 201.00 182.42 179.65 -14.44 -22.35 -23.53 

2011 

RCP4.5 

272.90 170.54 145.41 16.17 -27.41 -38.10 

2100 (a1b) 313.21 229.72 163.70 24.11 -15.50 -33.02 

2100 (a2) 291.56 198.50 157.36 33.33 -2.22 -30.32 

2100 (b1) 288.71 193.44 155.10 22.90 -17.66 -33.98 

2011 

RCP8.5 

215.93 219.24 196.29 -8.08 -6.67 -16.44 

2100 (a1b) 221.19 226.20 213.22 -5.84 -3.71 -9.24 

2100 (a2) 246.38 250.07 235.40 4.88 6.45 0.21 

2100 (b1) 216.66 225.46 209.80 -7.77 -4.03 -10.69 

canesm2 

2011 

RCP2.6 

208.13 214.58 171.95 -11.40 -8.66 -26.81 

2100 (a1b) 208.80 217.78 201.63 -11.12 -7.30 -14.17 

2100 (a2) 228.03 219.55 230.62 -2.93 -6.54 -1.83 

2100 (b1) 208.42 216.67 197.13 -11.28 -7.77 -16.09 

2011 

RCP4.5 

156.06 237.30 239.59 -33.57 1.01 1.99 

2100 (a1b) 168.93 253.98 245.63 -28.09 8.11 4.56 

2100 (a2) 177.10 276.47 250.27 -24.61 17.69 6.54 

2100 (b1) 166.26 250.99 244.46 -29.23 6.84 4.06 

2011 

RCP8.5 

277.23 192.82 190.34 -17.92 -18.98 21.41 

2100 (a1b) 196.96 203.35 313.19 -16.16 -13.44 33.32 

2100 (a2) 204.26 212.53 344.54 -13.05 -9.53 46.66 

2100 (b1) 196.00 200.75 308.45 -16.57 -14.55 31.30 

cnrm-cm5 

2011 

RCP2.6 

247.75 196.22 200.70 5.46 -16.47 -14.57 

2100 (a1b) 261.97 207.96 247.18 11.51 -11.48 5.22 

2100 (a2) 306.16 217.32 301.42 30.32 -7.49 28.31 

2100 (b1) 260.17 205.24 240.50 10.75 -12.63 2.37 

2011 

RCP4.5 

185.76 217.00 279.66 -20.93 -7.63 19.04 

2100 (a1b) 211.95 242.53 301.11 -9.78 3.24 28.18 

2100 (a2) 237.78 273.67 327.10 1.22 16.49 39.24 

2100 (b1) 207.54 237.76 298.24 -11.65 1.21 26.95 

2011 

RCP8.5 

161.29 238.32 265.54 -31.34 1.45 13.04 

2100 (a1b) 173.66 245.14 279.64 -26.08 4.35 19.04 

2100 (a2) 196.76 270.49 293.67 -16.24 15.14 25.01 

2100 (b1) 170.94 243.49 277.44 -27.23 3.65 18.10 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 
* F2: 2046-2070 period. 
* F3: 2071-2095 period.  
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Table 6.16. Variations of monthly mean streamflow by climate change and the combined 

impact of climate and 2100 LULC changes relative to the baseline period (1981-2005). 

Base a 
(m3/s) 

LULC 
condition 

Emission 
pathway 

Future period (m3/s) Variation (%) 

F1* F2* F3* F1 F2 F3 

31.77 

bcc-csm1-1m 

2011 

RCP2.6 

28.04 30.92 29.39 -11.74 -2.69 -7.52 

2100 (a1b) 28.82 31.70 30.19 -9.31 -0.24 -5.00 

2100 (a2) 29.41 32.31 30.81 -7.43 1.69 -3.04 

2100 (b1) 28.70 31.58 30.07 -9.67 -0.61 -5.37 

2011 

RCP4.5 

30.47 29.60 23.98 -4.10 -6.83 -24.54 

2100 (a1b) 31.29 30.36 24.62 -1.51 -4.47 -22.51 

2100 (a2) 31.29 30.36 24.62 0.44 -2.58 -20.77 

2100 (b1) 31.91 30.95 25.17 -1.91 -4.83 -22.82 

2011 

RCP8.5 

35.13 30.53 29.85 10.55 -3.93 -6.04 

2100 (a1b) 36.02 31.28 30.56 13.37 -1.55 -3.81 

2100 (a2) 36.74 31.95 31.29 15.64 0.57 -1.52 

2100 (b1) 35.88 31.17 30.46 12.94 -1.91 -4.15 

canesm2 

2011 

RCP2.6 

27.94 24.67 26.78 -12.07 -22.36 -15.71 

2100 (a1b) 28.61 25.32 27.44 -9.95 -20.30 -13.64 

2100 (a2) 29.20 25.88 28.02 -8.11 -18.56 -11.80 

2100 (b1) 28.51 25.22 27.34 -10.27 -20.62 -13.96 

2011 

RCP4.5 

25.66 25.94 26.21 -19.23 -18.37 -17.50 

2100 (a1b) 26.31 26.57 26.88 -17.19 -16.38 -15.41 

2100 (a2) 26.83 27.13 27.49 -15.56 -14.61 -13.49 

2100 (b1) 26.21 26.47 26.78 -17.51 -16.69 -15.73 

2011 

RCP8.5 

24.12 25.08 30.63 -24.08 -21.08 -3.61 

2100 (a1b) 24.72 25.67 31.32 -22.21 -19.20 -1.44 

2100 (a2) 25.24 26.29 32.09 -20.56 -17.26 0.98 

2100 (b1) 24.63 25.58 31.21 -22.50 -19.48 -1.77 

cnrm-cm5 

2011 

RCP2.6 

35.69 29.19 33.08 12.34 -8.15 4.11 

2100 (a1b) 36.57 30.03 33.90 15.11 -5.48 6.70 

2100 (a2) 37.31 30.71 34.60 17.42 -3.35 8.91 

2100 (b1) 36.44 29.91 33.78 14.68 -5.88 6.31 

2011 

RCP4.5 

30.77 32.79 30.68 3.19 -3.43 1.91 

2100 (a1b) 33.63 31.51 33.21 5.84 -0.84 4.51 

2100 (a2) 34.29 32.20 33.94 7.91 1.33 6.82 

2100 (b1) 33.50 31.39 33.08 5.44 -1.22 4.12 

2011 

RCP8.5 

30.77 32.30 32.45 1.66 2.14 -1.44 

2100 (a1b) 32.01 32.48 31.56 0.74 2.23 -0.67 

2100 (a2) 32.66 33.24 32.34 2.79 4.60 1.79 

2100 (b1) 31.88 32.36 31.45 0.34 1.85 -1.03 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 
* F2: 2046-2070 period. 
* F3: 2071-2095 period. 
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Table 6.17. Variations of monthly minimum streamflow by climate change and the combined 

impact of climate and 2100 LULC changes relative to the baseline period (1981-2005). 

Base a 
(m3/s) 

LULC 
condition 

Emission 
pathway 

Future period (m3/s) Variation (%) 

F1 F2 F3 F1 F2 F3 

4.87 

bcc-csm1-1-m 

2011 

RCP2.6 

5.54 4.96 4.99 13.71 1.86 2.42 

2100 (a1b) 5.42 4.87 4.92 11.29 -0.06 0.90 

2100 (a2) 5.42 4.87 4.91 11.25 -0.13 0.78 

2100 (b1) 5.44 4.89 4.94 11.74 0.38 1.31 

2011 

RCP4.5 

5.50 5.53 5.36 12.93 13.48 10.02 

2100 (a1b) 5.38 5.41 5.24 10.40 10.98 7.62 

2100 (a2) 5.38 5.41 5.24 10.40 10.98 7.62 

2100 (b1) 5.38 5.41 5.24 10.35 11.01 7.50 

2011 

RCP8.5 

5.55 5.26 5.01 13.93 7.90 2.88 

2100 (a1b) 5.43 5.14 4.90 11.39 5.49 0.63 

2100 (a2) 5.42 5.14 4.90 11.28 5.41 0.48 

2100 (b1) 5.45 5.16 4.93 11.83 5.95 1.12 

canesm2 

2011 

RCP2.6 

4.99 5.36 4.89 2.51 10.08 0.46 

2100 (a1b) 4.90 5.24 4.81 0.57 7.61 -1.23 

2100 (a2) 4.89 5.24 4.81 0.44 7.57 -1.36 

2100 (b1) 4.92 5.27 4.83 1.01 8.07 -0.78 

2011 

RCP4.5 

5.35 4.86 5.55 9.74 -0.31 13.93 

2100 (a1b) 5.23 4.77 5.42 7.33 -2.19 11.15 

2100 (a2) 5.23 4.76 5.43 7.28 -2.31 11.41 

2100 (b1) 5.25 4.79 5.44 7.78 -1.73 11.62 

2011 

RCP8.5 

4.62 4.83 5.37 -5.25 -0.90 10.30 

2100 (a1b) 4.56 4.73 5.27 -6.37 -2.89 8.17 

2100 (a2) 4.56 4.73 5.28 -6.41 -2.90 8.28 

2100 (b1) 4.57 4.75 5.29 -6.11 -2.43 8.62 

cnrm-cm5 

2011 

RCP2.6 

5.01 6.59 5.03 2.87 35.32 3.20 

2100 (a1b) 4.92 6.40 4.94 0.91 31.31 1.47 

2100 (a2) 4.91 6.40 4.92 0.80 31.44 1.03 

2100 (b1) 4.94 6.42 4.97 1.36 31.76 1.93 

2011 

RCP4.5 

5.36 5.97 5.70 10.12 22.55 17.04 

2100 (a1b) 5.25 5.81 5.56 7.70 19.34 14.19 

2100 (a2) 5.25 5.82 5.56 7.67 19.36 14.11 

2100 (b1) 5.27 5.84 5.59 8.15 19.81 14.66 

2011 

RCP8.5 

5.26 5.44 5.64 8.06 11.73 15.74 

2100 (a1b) 5.18 5.29 5.51 6.27 8.57 13.04 

2100 (a2) 5.18 5.29 5.51 6.26 8.51 13.03 

2100 (b1) 5.20 5.31 5.53 6.73 9.02 13.51 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 

* F2: 2046-2070 period. 
* F3: 2071-2095 period. 
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Table 6.18. Variations of monthly sediment load by climate change and the combined impact 

of climate and 2100 LULC changes relative to the baseline period (1981-2005). 

Base a 
(100×ton/ 

month) 

LULC 

condition 

Emission 

pathway 

Future period 
(100×ton/month) 

Variation (%) 

F1* F2* F3* F1 F2 F3 

23.04 

bcc-csm1-1-m 

2011 

RCP2.6 

16.18 16.44 15.96 -29.76 -28.63 -30.73 

2100 (a1b) 22.50 22.17 22.47 -2.35 -3.76 -2.49 

2100 (a2) 26.99 26.58 27.12 17.15 15.39 17.71 

2100 (b1) 26.40 25.62 26.17 14.58 11.18 13.60 

2011 

RCP4.5 

16.43 15.52 14.46 -28.68 -32.66 -37.23 

2100 (a1b) 22.45 20.97 20.48 -2.58 -8.99 -11.11 

2100 (a2) 26.88 25.25 24.76 16.67 9.58 7.49 

2100 (b1) 22.45 20.97 20.48 -2.58 -8.99 -11.11 

2011 

RCP8.5 

19.02 16.69 16.93 -17.46 -27.58 -26.54 

2100 (a1b) 21.59 21.22 21.48 -6.28 -7.90 -6.75 

2100 (a2) 30.47 27.42 28.30 32.23 19.03 22.85 

2100 (b1) 25.72 22.97 23.98 11.62 -0.29 4.09 

canesm2 

2011 

RCP2.6 

15.81 15.08 15.56 -31.36 -34.53 -32.45 

2100 (a1b) 22.04 21.04 20.65 -4.33 -8.69 -10.38 

2100 (a2) 26.40 25.62 26.17 14.58 11.18 13.60 

2100 (b1) 21.15 20.15 20.83 -8.22 -12.52 -9.59 

2011 

RCP4.5 

14.88 16.24 16.59 -35.40 -29.51 -28.00 

2100 (a1b) 21.12 22.51 23.59 -8.31 -2.29 2.41 

2100 (a2) 25.42 26.80 28.43 10.34 16.30 23.41 

2100 (b1) 20.28 21.55 22.58 -11.96 -6.45 -2.00 

2011 

RCP8.5 

14.79 16.78 20.94 -35.83 -27.17 -9.12 

2100 (a1b) 21.19 24.10 31.01 -8.02 4.58 34.61 

2100 (a2) 25.47 28.66 35.64 10.56 24.40 54.71 

2100 (b1) 20.34 23.05 29.51 -11.71 0.03 28.08 

cnrm-cm5 

2011 

RCP2.6 

18.57 16.05 16.80 -19.41 -30.32 -27.10 

2100 (a1b) 24.87 22.05 22.20 7.92 -4.29 -3.65 

2100 (a2) 29.53 27.08 27.79 28.16 17.52 20.64 

2100 (b1) 23.85 21.10 22.32 3.53 -8.41 -3.13 

2011 

RCP4.5 

17.48 17.29 17.90 -24.15 -24.97 -22.30 

2100 (a1b) 23.83 23.60 25.36 3.43 2.42 10.09 

2100 (a2) 28.43 28.32 30.19 23.41 22.94 31.06 

2100 (b1) 22.88 22.57 24.19 -0.70 -2.06 5.00 

2011 

RCP8.5 

17.25 17.86 18.25 -25.13 -22.48 -20.79 

2100 (a1b) 23.47 24.95 26.29 1.85 8.29 14.13 

2100 (a2) 28.13 29.78 31.10 22.08 29.24 34.99 

2100 (b1) 22.52 23.84 25.12 -2.27 3.46 9.04 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 

* F2: 2046-2070 period. 
* F3: 2071-2095 period. 
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Table 6.19. Variations of monthly TP load by climate change and the combined impact of 

climate and 2100 LULC changes relative to the baseline period (1981-2005). 

Base a 
(ton/month) 

LULC 
condition 

Emission 
pathway 

Future period (ton/month) Variation (%) 

F1* F2* F3* F1 F2 F3 

11.25 

bcc-csm1-1-m 

2011 

RCP2.6 

11.06 11.58 11.36 -1.72 2.96 0.95 

2100 (a1b) 12.55 13.18 12.90 11.56 17.10 14.64 

2100 (a2) 13.41 14.06 13.77 19.20 24.95 22.40 

2100 (b1) 13.10 12.62 12.81 16.44 12.19 13.82 

2011 

RCP4.5 

11.46 11.34 10.13 1.84 0.77 -9.95 

2100 (a1b) 13.05 12.89 11.43 15.96 14.56 1.54 

2100 (a2) 13.91 13.77 12.22 23.64 22.37 8.60 

2100 (b1) 12.80 12.65 11.23 13.75 12.40 -0.21 

2011 

RCP8.5 

12.39 11.31 10.91 10.10 0.50 -3.02 

2100 (a1b) 14.11 12.86 12.38 25.38 14.27 10.02 

2100 (a2) 15.03 13.74 13.30 33.56 22.12 18.16 

2100 (b1) 13.84 12.62 12.15 22.97 12.14 8.01 

canesm2 

2011 

RCP2.6 

10.78 10.40 10.58 -4.20 -7.59 -5.97 

2100 (a1b) 12.25 11.77 11.99 8.88 4.62 6.52 

2100 (a2) 13.10 12.62 12.81 16.44 12.19 13.82 

2100 (b1) 12.03 11.56 11.77 6.88 2.76 4.60 

2011 

RCP4.5 

10.43 10.35 10.49 -7.34 -7.97 -6.75 

2100 (a1b) 11.83 11.75 11.98 5.10 4.44 6.44 

2100 (a2) 12.66 12.67 12.68 12.49 12.56 12.69 

2100 (b1) 11.61 11.54 11.71 3.20 2.57 4.05 

2011 

RCP8.5 

10.06 10.25 11.13 -10.61 -8.87 -1.05 

2100 (a1b) 11.39 11.66 12.70 1.19 3.63 12.88 

2100 (a2) 12.21 12.53 13.63 8.50 11.37 21.16 

2100 (b1) 11.18 11.44 12.15 -0.60 1.66 8.01 

cnrm-cm5 

2011 

RCP2.6 

12.36 11.47 11.77 9.86 1.92 4.58 

2100 (a1b) 14.10 13.06 13.32 25.30 16.08 18.39 

2100 (a2) 15.03 13.91 14.15 33.58 23.61 25.79 

2100 (b1) 13.83 12.81 13.13 22.88 13.89 16.71 

2011 

RCP4.5 

11.96 11.42 11.67 6.26 1.50 3.71 

2100 (a1b) 13.61 13.04 13.31 20.95 15.87 18.31 

2100 (a2) 14.52 13.95 14.21 29.04 24.02 26.31 

2100 (b1) 13.35 12.79 13.06 18.65 13.68 16.09 

2011 

RCP8.5 

11.79 11.56 11.40 4.75 2.70 1.33 

2100 (a1b) 13.25 13.08 12.90 17.78 16.29 14.66 

2100 (a2) 14.16 14.01 13.84 25.85 24.51 22.98 

2100 (b1) 13.00 12.84 12.67 15.52 14.08 12.56 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 
* F2: 2046-2070 period. 
* F3: 2071-2095 period. 
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Table 6.20. Variations of monthly TN load by climate change and the combined impact of 

climate and 2100 LULC changes relative to the baseline period (1981-2005). 

Base a 
(ton/month) 

LULC 
condition 

Emission 
pathway 

Future period (ton/month) Variation (%) 

F1* F2* F3* F1 F2 F3 

94.54 

bcc-csm1-1-m 

2011 

RCP2.6 

86.63 93.53 89.15 -8.37 -1.07 -5.70 

2100 (a1b) 181.89 195.83 188.33 92.39 107.13 99.20 

2100 (a2) 186.91 200.89 193.37 97.69 112.49 104.53 

2100 (b1) 182.88 168.59 173.22 93.44 78.32 83.21 

2011 

RCP4.5 

93.56 90.97 74.69 -1.04 -3.78 -20.99 

2100 (a1b) 93.56 90.97 74.69 110.68 101.13 62.52 

2100 (a2) 203.31 195.41 159.23 115.05 106.69 68.42 

2100 (b1) 183.50 175.61 142.72 94.09 85.74 50.96 

2011 

RCP8.5 

104.13 92.31 89.81 10.14 -2.36 -5.01 

2100 (a1b) 214.10 187.56 168.12 126.46 98.39 77.82 

2100 (a2) 219.14 193.29 177.64 131.79 104.45 87.89 

2100 (b1) 197.98 173.78 157.15 109.40 83.81 66.22 

canesm2 

2011 

RCP2.6 

84.27 77.13 81.24 -10.87 -18.42 -14.07 

2100 (a1b) 177.53 163.01 168.06 87.78 72.42 77.76 

2100 (a2) 182.88 168.59 173.22 93.44 78.32 83.21 

2100 (b1) 164.52 150.81 155.89 74.01 59.51 64.88 

2011 

RCP4.5 

78.97 78.87 80.33 -16.47 -16.58 -15.03 

2100 (a1b) 168.61 162.37 170.80 78.34 71.74 80.66 

2100 (a2) 173.73 173.70 172.16 83.75 83.73 82.10 

2100 (b1) 155.91 150.98 152.94 64.91 59.69 61.77 

2011 

RCP8.5 

74.90 78.83 92.57 -20.78 -16.62 -2.09 

2100 (a1b) 153.37 160.98 166.40 62.22 70.27 76.01 

2100 (a2) 159.26 158.59 174.69 68.45 67.74 84.77 

2100 (b1) 142.48 141.11 157.15 50.71 49.25 66.22 

cnrm-cm5 

2011 

RCP2.6 

104.76 90.58 96.67 10.80 -4.20 2.25 

2100 (a1b) 214.09 192.38 191.64 126.45 103.48 102.70 

2100 (a2) 219.74 192.20 218.52 132.42 103.29 131.13 

2100 (b1) 198.42 177.89 184.73 109.87 88.16 95.39 

2011 

RCP4.5 

98.17 92.62 95.59 3.84 -2.04 1.11 

2100 (a1b) 203.34 191.61 194.77 115.08 102.67 106.01 

2100 (a2) 208.74 198.03 200.88 120.78 109.46 112.47 

2100 (b1) 188.04 178.09 181.23 98.89 88.37 91.69 

2011 

RCP8.5 

95.81 95.59 95.39 1.34 1.11 0.89 

2100 (a1b) 200.19 191.53 175.51 111.74 102.58 85.64 

2100 (a2) 205.39 198.13 183.81 117.24 109.56 94.41 

2100 (b1) 185.00 178.11 164.25 95.67 88.39 73.73 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 

* F2: 2046-2070 period. 
* F3: 2071-2095 period. 
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Table 6.21. Variations of monthly mean water temperature by climate change and the 

combined impact of climate and 2100 LULC changes relative to the baseline period (1981-

2005). 

Base a 

(℃) 
LULC 

condition 

Emission 

pathway 

Future period (℃) Variation (℃) 

F1* F2* F3* F1 F2 F3 

9.90 

bcc-csm1-1m 

2011 

RCP2.6 

10.82 10.93 10.97 0.91 1.03 1.06 

2100 (a1b) 9.78 10.95 11.35 0.90 1.02 1.06 

2100 (a2) 10.82 10.94 10.98 0.92 1.04 1.08 

2100 (b1) 9.78 10.96 11.36 0.90 1.02 1.06 

2011 

RCP4.5 

10.79 11.13 11.62 0.89 1.22 1.71 

2100 (a1b) 10.78 11.12 11.62 0.87 1.22 1.72 

2100 (a2) 10.79 11.14 11.63 0.88 1.23 1.73 

2100 (b1) 10.78 11.12 11.62 0.87 1.22 1.72 

2011 

RCP8.5 

11.00 11.74 12.66 1.09 1.83 2.76 

2100 (a1b) 10.99 11.74 12.68 1.09 1.84 2.77 

2100 (a2) 11.01 11.75 12.66 1.11 1.85 2.76 

2100 (b1) 10.99 11.74 12.68 1.09 1.84 2.77 

canesm2 

2011 

RCP2.6 

11.60 11.83 11.77 1.69 1.93 1.87 

2100 (a1b) 11.60 11.83 11.78 1.70 1.93 1.87 

2100 (a2) 11.61 11.84 11.79 1.71 1.94 1.89 

2100 (b1) 11.60 11.84 11.78 1.70 1.93 1.87 

2011 

RCP4.5 

11.45 12.24 12.42 1.55 2.33 2.52 

2100 (a1b) 11.45 12.25 12.43 1.55 2.34 2.53 

2100 (a2) 11.47 12.23 12.41 1.56 2.33 2.51 

2100 (b1) 11.45 12.25 12.44 1.55 2.34 2.54 

2011 

RCP8.5 

11.75 13.10 14.40 1.85 3.19 4.49 

2100 (a1b) 11.76 13.10 14.43 1.85 3.20 4.53 

2100 (a2) 11.77 13.13 14.44 1.87 3.22 4.54 

2100 (b1) 11.76 13.12 12.68 1.85 3.22 2.77 

cnrm-cm5 

2011 

RCP2.6 

11.00 11.11 11.24 1.09 1.20 1.34 

2100 (a1b) 10.99 11.11 11.25 1.09 1.20 1.34 

2100 (a2) 11.01 11.14 11.53 1.11 1.24 1.63 

2100 (b1) 10.99 11.11 11.24 1.09 1.20 1.34 

2011 

RCP4.5 

10.86 11.49 11.86 0.95 1.58 1.96 

2100 (a1b) 10.85 11.49 11.87 0.95 1.59 1.97 

2100 (a2) 10.87 11.51 11.89 0.97 1.61 1.99 

2100 (b1) 10.85 11.49 11.87 0.95 1.59 1.97 

2011 

RCP8.5 

10.93 11.97 13.15 1.02 2.06 3.24 

2100 (a1b) 10.95 12.00 13.18 1.05 2.09 3.28 

2100 (a2) 10.97 12.02 13.20 1.06 2.11 3.29 

2100 (b1) 10.95 12.00 13.18 1.05 2.09 3.28 
a
 Base: Baseline period: 1981-2005. 

* F1: 2021-2045 period. 
* F2: 2046-2070 period. 
* F3: 2071-2095 period.  
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Figure 6.10. Comparison of monthly maximum streamflow for bcc-csm1-1m model under three RCPs and 2100 LULC change 

scenarios from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.11. Comparison of monthly maximum streamflow for canesm2 model under three RCPs and 2100 LULC change scenarios 

from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.12. Comparison of monthly maximum streamflow for cnrm-cm5 model under three RCPs and 2100 LULC change scenarios 

from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.13. Comparison of monthly mean streamflow for bcc-csm1-1m model under three RCPs and 2100 LULC change scenarios 

from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.14. Comparison of monthly mean streamflow for canesm2 model under three RCPs and 2100 LULC change scenarios from 

the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.15. Comparison of monthly mean streamflow for cnrm-cm5 model under three RCPs and 2100 LULC change scenarios from 

the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.16. Comparison of monthly minimum streamflow for bcc-csm1-1m model under three RCPs and 2100 LULC change 

scenarios from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.17. Comparison of monthly minimum streamflow for canesm2 model under three RCPs and 2100 LULC change scenarios 

from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.18. Comparison of monthly minimum streamflow for cnrm-cm5 model under three RCPs and 2100 LULC change scenarios 

from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.19. Comparison of monthly sediment load for bcc-csm1-1m model under three RCPs and 2100 LULC change scenarios from 

the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.20. Comparison of monthly sediment load for canesm2 model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.21. Comparison of monthly sediment load for cnrm-cm5 model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.22. Comparison of monthly TP load for bcc-csm1-1m model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.23. Comparison of monthly TP load for canesm2 model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.24. Comparison of monthly TP load for cnrm-cm5 model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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(a) RCP2.6 

 
(b) RCP4.5 

 
(c) RCP8.5 

Figure 6.25. Comparison of monthly TN load for bcc-scm1-1m model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.26. Comparison of monthly TN load for canesm2 model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.27. Comparison of monthly TN load for cnrm-cm5 model under three RCPs and 2100 LULC change scenarios from the 

baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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(a) RCP2.6 
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Figure 6.28. Comparison of monthly mean water temperature for bcc-csm1-1m model under three RCPs and 2100 LULC change 

scenarios from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.29. Comparison of monthly mean water temperature for canesm2 model under three RCPs and 2100 LULC change scenarios 

from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 
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Figure 6.30. Comparison of monthly mean water temperature for cnrm-cm5 model under three RCPs and 2100 LULC change 

scenarios from the baseline period (1981-2005) and the future periods (F1, F2, and F3). 



201 
 

 
 

CHAPTER 7. DEVELOPMENT OF AN OPTIMIZATION WATERSHED 

MANAGEMENT TOOL 

 

7.1. Introduction 

 Water quality degradation is a significant concern to the local communities over the 

last decades. The problem is compounded by land development, climate change, and 

intensified agricultural practices.  US.EPA (2009) presented 44% out of 3.5 million miles of 

nation’s river and stream were impaired. Urban development, improper application of 

fertilizer, animal wastes, irrigation water, and forestry are the critical components to result in 

the eutrophication by excessive nutrient loading into waterbodies (Commission, 1998). The 

eutrophication decreases property value, disrupts recreation, and creates taste and odor 

problems (Dodds et al., 2008). Increased demographic and economic pressure continually 

subject to overexploitation of surface and ground water (IPCC, 2007; IPCC, 2013). Notable 

management strategy and planning of water resources will be developed and applied by 

reversing the trend of water quality and quantity degradation in the specific sub-watersheds. 

Low Impact Development (LID)/Best Management Practice (BMP) implementations on 

development lands are currently a growing interest so as to improve water quality and 

quantity affected by climate and LULC changes. LID/BMPs are commonly applied to control 

water quality and quantity from urban or agricultural land within the specific watersheds. 

However, LID/BMP effectiveness is related to their types and implementation locations (Giri 

et al., 2012). The selection of Critical Hotspot (CHS) is a significant task to reduce water 

pollutant loads by considering the more efficient method for LID/BMPs implementation. 

Therefore, the identification of CHS is an essential element for water quality improvement 
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from optimization water resources management. Panagopoulos et al. (2012) developed a 

decision support system for BMP placement to maximize pollutant reduction while limiting 

cost. Ghebremichael et al. (2010) applied SWAT model to identify and quantify phosphorus 

CHSs in the Rock River watershed, which is the primary phosphorus contributor to Lake 

Champlain.  

It is a complicated decision-making process to identify CHSs and determine the 

management plans for water quality improvement owing to the multiple objective and 

considerations. The watershed is an appropriate unit to analyze water resources planning and 

management problems (Mckinney et al., 1999). However, there are several challenges to 

implementing water resources management plans for mitigating water quality problems in the 

vast catchments due to the lack of information and resource constraints.  It is difficult to 

aggregate the multiple objectives into a single criterion for performance evaluation in the 

alternative ranking and selection (Makowski et al., 1996). Multi-criteria decision analysis 

(MCDA) methods have been developed to provide the decision makers or stakeholders for 

their unique and personal process. MCDA provides a rich collection of techniques and 

procedures for structuring decision problems, designing, evaluating, and prioritizing 

alternatives decisions. MCDA can integrate with geographical data to identify and visualize 

the CHS for the problematic water pollution area. There is no consensus for optimal MCDA 

method to address all the criteria. Therefore, the researcher should determine the best 

selection using their decision-making process. Roy (1981) represented the four main types of 

decision process using the MCDA method. The first category is the choice problem. It is to 

select the single optimal option or decrease the group of choices to a subset of equivalent. The 

second type is the sorting problem. Several alternatives are sorted into ordered and predefined 
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categories. It is then to regroup the alternatives with similar behaviors or features for clear, 

organizational, or predictive reasons. The third type is the ranking problem. The alternatives 

are ordered from best to worst by mean of scores or pairwise comparisons. The final form is 

the description problem. It is to explain alternatives and consequence. Usually, this step 

finishes in the first step to understand the characteristics of the decision problem. Several 

studies have been conducted for the optimization approach using MCDA method. Bryan and 

Crossman (2008) developed an optimization managements based on regional planning 

approach to identify geographic priorities for ground natural resource management to assess 

the most cost-effective strategy. Sadeghi et al. (2009) applied on optimization method to 

maximize profits from land use while minimizing erosion risk. Cho et al. (2004) coupled 

Qual2k with a multi-objective evolutionary algorithm (MOEA) to select the adequate 

treatment type for each wastewater treatment plant to improve water quality at river basin 

scale.  

In chapter 7, therefore, the study objectives are to (1) identify CHSs of water 

pollutants in the watershed before LID/BMPs implementation using three spatial targeting 

methods, (2) determine the most efficient LID/BMPs at the selected CHSs while minimizing 

area devoted to LID/BMP implementations, and (3) evaluate water quality improvement and 

cost-effective for the LID/BMP implementations (Figure 7.1). The BRW is selelcted as the 

study area (Figure 5.1). 
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Figure 7.1. Flowchart of LID/BMPs application at CHS using OWMT. 

 

7.2. Model input data 

 Future climate and LULC data were used bcc-csm1-1 model under RCP8.5 and 2100 

LULC A2 scenario to evaluate the watershed management plans by the severe hydrological 

conditions. Calibrated HSPF model from chapter 2 was used to simulate monthly streamflow, 

sediment, and water quality from 2071 to 2095. 

 

7.3. Optimization Watershed Management Tool (OWMT) 

7.3.1. Spatial targeting methods 

 Area placement at LID/BMP implementation is highly affected the water quality 

improvement. Therefore, the CHS identification for pollutant area should be conducted before 

LID/BMP implementation. Three targeting methods (Concentration Impact Index, Load 

Impact Index, and Load per sub-basin area Index) were applied to identify CHSs that need the 

most improvement for the water pollutants (sediment, TN, and TP). Sediment, TN, and TP 
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outputs estimated from the spatial targeting methods were normalized, and then categorized 

the high, medium, and low priority areas using quantile method, respectively. For the high 

priority areas, LID/BMPs were implemented to analyze their effectiveness and water quality 

improvement. 

  

7.3.1.1. Concentration Impact Index (CII) 

 CII method is based on the pollutant concentration level in the sub-watershed reaches 

(Tuppad and Srinivasan, 2008). This method considers pollutants from the sub- watershed as 

well as the entire upstream conditions. It is effective in addressing localized pollution in 

tributaries for low and high streamflow condition.  

 

7.3.1.2. Load Impact Index (LII) 

 LII method is based on the pollutant load in the sub- watershed from the sub- 

watershed reaches and the entire upstream conditions (Tuppad and Srinivasan, 2008). This 

method represents useful information of BMPs implementation in high streamflow and 

contribution of upstream drainage areas.  

 

7.3.1.3. Load per Sub-basin area index (LPSAI) 

 LPSAI is based on the pollution load from individual sub- watersheds. This method 

does not include the impact of upstream watersheds (Tuppad and Srinivasan, 2008). This 

method applies to identify the localized concerns at the sub-watershed scales. Since this 

approach is highly affected watershed delineation process, it can be considered subjective 

results. 
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7.3.2. LID/BMP implementation plans 

 Five LID/BMPs options, including 1) Bioretention, 2) filter strip, 3) grassed swale, 4) 

wetland, and 5) detention pond were implemented at CHSs. The reduction rate of sediment, 

TN, and TP loads was calculated using HSPF model outputs before and after LID/BMP 

implementations. For the implementation plans, three priority scenarios (equal distribution, 

economic aspect, and environmental aspect) were applied as shown in Table 7.1. For the 

equal distribution scenario, the weight vector was equally assigned 0.33 for environmental 

components (sediment, TN, TP), total cost, and area condition, respectively. The economic 

aspect scenario was given the weight vector to total cost by 0.70, the environmental 

component by 0.15, and area condition by 0.15. For the environmental aspect scenario, the 

environmental component was assigned the weight vector by 0.72, and total cost and area 

condition were assigned the weight vector by 0.14, respectively.   

 

Table 7.1. Weight vectors of criteria properties by application scenarios.  

Element Equal distribution Economic aspect Environmental aspect 

Sediment 0.11 0.05 0.24 

TN 0.11 0.05 0.24 

TP 0.11 0.05 0.24 

Total cost 0.33 0.70 0.14 

Area condition 0.33 0.15 0.14 

 

 

7.3.3. MCDA development for optimal LID/BMP selection 

 Five LID/BMPs were implemented to determine the optimal solution for the water 

quality and quantity improvement at the selected CHSs in the BRW. MCDA method was 
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performed to evaluate the most effective LID/BMP at each sub-watershed. The data layers 

were assessed with one another by means of a pairwise comparison matrix with regard to their 

significance to locating by applying APH technique.  

 

7.3.3.1. Analytical Hierarchy Process (AHP) 

AHP uses multiple variables for the decision making. It can be employed to formulate 

the problem and solve the problems hierarchically (Nagaraju et al., 2012). APH is a widely 

used method based on the additive weighting (Banai, 1993; Zhu and Dale, 2001). This method 

has two distinctive ways to apply. The first way can be used to derive the weights associated 

with alternatives. This approach performs the problems involving numerous alternatives when 

a pairwise comparison of the alternatives is not possible (Eastman et al., 1993). Another way 

can be used to aggregate the priority for all level of the hierarchy structure based on the level 

representing alternatives. AHP method is modeled as a hierarchical structure with the goal, 

alternative, and criteria by evaluating the alternatives. Criteria can be divided sub-criteria for 

detailed analysis. Priorities are constituted with the criteria of the hierarchy. The pairwise 

comparisons of each criterion are applied to assign the importance of criteria using the scale 

as shown in Table 7.2.  A comparison matrix summarizes all information by the pairwise 

comparisons to determine preference or the overall priorities for the hierarchy. The final 

ranking is determined based on the normalized principal priority vector (Eigenvector) 

calculated by the comparison matrix. From this matrix, a consistency check will be 

performed. The computed consistency ratio should be less than 10 %.  

  



208 
 

 
 

Table 7.2. Scale of relative important (adapted from Saaty, 1980) 

Intensity of 

Importance 
Description 

1 The alternatives being compared contribute equally to the defined object 

3 
One alternative is favored slightly over the other in terms of achieving the 

defined objectives.  

5 
One alternative is favored strongly over the other in terms of achieving the 

defined objective.  

7 
One alternative is favored very strongly over the other in terms of achieving 

the defined objectives.  

9 
The evidence favoring one alternative over the other is absolute in terms of 

achieving the defined objectives.  

2, 4, 6, 8 Intermediate values available express user-defined comparison.  

   

7.3.3.1.1. Consistency Index (CI) 

CI, which is related to the eigenvalue method which developed by Saaty (1980).  

CI =  
𝛾𝑚𝑎𝑥 − 𝑛

𝑛 −  1
                                                                     (7.1) 

CR =  
𝐶𝐼

𝑅𝐼
                                                                                (7.2) 

where, rmax is the maximal eigenvalue, n is the number of rows or columns in the pairwise 

matrix, CR is the consistency ratio (CR), RI is the random index (Table 7.3). If CR is less 

than 10%, then the matrix is of an acceptable consistency.  

 

Table 7.3. Random indices from Saaty (1980). 

n 3 4 5 6 7 8 9 10 

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 
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7.3.3.1.2. Priorities derivation using approximate method 

Priorities derivation using approximate method is based on two simple steps. First is 

the summation of the elements of the row as below question.  

𝑟𝑖 =  ∑ 𝑎𝑖𝑗

𝑖

                                                                     (7.3) 

Next step is the normalization of the sums using equation (6.3) in chapter 6.  

pi =  
𝑟𝑖

∑ 𝑟𝑖𝑖
                                                                       (7.4) 

 

Finally, given a decision matrix the final priorities, denoted by Ai
AHP of the 

alternatives in terms of all criteria combined are determined according to the following 

equation.  

𝐴𝐴𝐻𝑃
𝑖 =  ∑ 𝑎𝑖𝑗𝑤𝑗                                                                     (7.5)

𝑁

𝑗=1

 

 

7.3.4. Total cost of LID/BMP installation  

 Total cost for LID/BMP implementations and cost per unit pollutant load reduction 

(sediment, TN, TP loads) were calculated using Table 7.4. Total cost was the sum of 

construction and maintenance cost for LID/BMP implementations. All costs were used US 

dollars. Cost per unit pollutant load reduction was utilized to calculate cost per kg pollutant 

reduction for sediment, TN, and TP on average.   
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Table 7.4. Construction costs and annual maintenance costs of LID/BMPs (Brown and 

Schueler, 1997; County, 2014; Dhalla and Zimmer, 2010; NCDENR, 2007; USEPA, 1999) 

LID / BMP 
Construction Cost 

($/ha) 

Annual maintenance cost 

(% of construction cos) 

Bioretention 151,200 6 

Detention Pond 12,200 4 

Wetland 15,500 4 

Grassed Swale 9,000 6 

Filter strip 3,400 3 

 

7.4. Results 

7.4.1. The location prioritization for spatial targeting methods 

7.4.1.1. CII method 

 CII method was based on pollution concentration for sediment, TN, and TP in each 

sub- watershed reach of the BRW (Figure 7.2). The watershed was divided into the high, 

medium and low priority areas for sediment, TN, and TP concentration. The results were then 

normalized to determine the final location prioritization. Table 7.5 shows the selected sub-

basins by the high, medium, and low priority areas in the BRW. Total 16 sub- watersheds 

were selected for CHSs (the high priority areas). CHSs were mostly located in the LBRW. Th 

main contribution of water pollutants was mainly caused from urban, agricultural, and 

barren/mining land. For the high priority areas (CHSs), sediment concentration ranged from 

17.76 mg/L to 21.97 mg/L. TN concentration ranged from 21.9 mg/L to 176.85 mg/L and TP 

concentration ranged 0.16 mg/L to 1.01 mg/L. The normalized results ranged from 0.13 to1 at 

CHSs. The available drainage area of LID/BMP implementation was 112,918.70 ha (Table 

7.6).  
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7.4.1.2. LII method 

 LII method was applied to determine CHSs based on the pollutant loads for each sub- 

watershed reach (Figure 7.3). Total 15 sub- watersheds were selected for CHSs as shown in 

Table 7.5. CHSs were mostly located near the watershed outlet or in the middle of the BRW, 

which is below the large reservoir (Luck Peak Dam), because pollutant loads from the sub-

basins and the entire upstream were accumulated within the large reservoir and near the 

watershed outlet. For the high priority area, the ranges of sediment load were from 10.240 

ton/month to 27,420 ton/month. The ranges of TN load were from 138 ton/month to 310 

ton/month. The ranges of TP load were 8.69 ton/month to 14.47 ton/month. The normalized 

result ranges were from 0.44 to1 at CHSs. The available drainage area of LID/BMP 

implementation was 73,650.87 ha. 

 

7.4.1.3. LPSAI method 

 LASAI method was used to determine CHSs using the pollutant loads at each sub-

watershed which identified the pollutant from location source. This method classified the high 

priority area for sub-watersheds that release a relatively large amount of pollutant in a small 

area due to the inherent area dependence. Total 17 sub-watersheds were selected for CHSs 

(Table 7.5). For the high priority area, sediment load ranged from 0.25 ton/ha to 2.07 ton/ha. 

TN load ranged from 24.77 kg/ha to 155.02 kg/ha, and TP load ranged 1.17 kg/ha to 10.06 

kg/ha. The normalized result ranged from 0.13 to1 at CHSs. The available drainage area of 

LID/BMP implementation was 43,740.08 ha. 
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Table 7.5. The classification ranges for the priority areas and the selected sub-watersheds by 

spatial targeting methods. 

Method Components 
Classification range Selected sub-watersheds 

for CHSs 
High Medium Low 

CII 

Sediment (mg/l) 21.97 > 21.97 – 7.99 7.99 < 

14, 21, 28, 42, 44, 49, 50, 

52, 71, 72, 73, 74, 75, 76, 

77, 78 

TN (mg/l) 2.28 > 2.28 – 1.64 1.64 < 

TP (mg/l) 0.16 > 0.16 – 0.09 0.09 < 

Normalized 

Result  
0.13 > 0.13 – 0.07 0.07 < 

LII 

Sediment 

(100×ton/month) 
10.24 > 10.24 – 2.21 2.21 < 

47, 48, 61, 63, 64, 68, 69, 

70, 71, 72, 73, 74, 75, 76, 

77, 78 

TN (ton/month) 138.00 > 138.00 – 29.20 29.20 < 

TP (ton/month) 8.69 > 8.69 – 0.78 0.75 < 

Normalized 

Result  
0.44 > 0.44 – 0.06 0.06 < 

LPSAI 

Sediment (ton/ha) 0.25 > 0.25 – 0.03  0.03 < 

44, 45, 47, 55, 59, 60, 61, 

62, 64, 67, 68, 71, 72, 73, 

76, 77, 78 

TN (kg/ha) 24.77 > 24.77 – 1.92 1.92 < 

TP (kg/ha) 1.17 > 1.17 – 0.07 0.07 < 

Normalized 

Result  
0.13 > 0.13 – 0.01 0.01 < 

 

 

Table 7.6. LID/BMPs implementation area based on spatial target methods. 

Targeting method Implementation area (ha) 

CII 112,918.70 

LII 73,650.87 

LPSAI 43,740.08 
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Figure 7.2. Normalized priority areas for CII method using sediment, TN, and TP concentration. 
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Figure 7.3. Normalized priority areas for LII method using sediment, TN, and TP loads. 



 

 
 

2
1
5
 

 
Figure 7.4. Normalized priority areas for LPSAI method using sediment, TN, and TP loads per each sub-watershed.
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7.4.2. The best LID/BMP selections at CHSs using AHP method 

 Optimal LID/BMPs were identified by the implementation plan scenarios using AHP 

method. The pairwise comparison matrices for CII method were developed for sediment 

(Table 7.7), TP (Table 7.8), and TN (Table 7.9) on the basis of the reduction rate at each 

sub-watershed level. Similar tables for LII and LPSAI methods were also developed based on 

the pollution load reduction at each sub-watershed. The developed pairwise comparison 

matrices were calculated 0.091% CR by sediment, 0.001% CR by TP, and 0.01% CR by TN. 

Therefore, these matrixes were an acceptable consistency as they were all less than 10% CR. 

Table 7.10 shows the weight vector for sediment, TN, and TP calculated from the pairwise 

comparison matrices. Table 7.11 indicates the weight vector for total LID/BMP 

implementation cost and area condition of sub-watershed 78. The weight vector of area 

condition was varied by slope, drainage area, and land use at each CHS. The weight vectors 

for each criterion associated with LID/BMPs were assigned into a single matrix at sub-

watershed 78 as shown in Table 7.12. Table 7.13-15 represent the selected individual 

LID/BMPs at the CHSs using three priority scenarios for three spatial targeting methods. In 

the equal distribution scenario, grassed swale was installed at 5 sub-watersheds by CII and 

LPSAU methods and 3 sub-watersheds by LII method. Detention pond was implemented at 

one sub-watershed by CII and LPSAI methods, and 2 sub-watersheds by LII method. Filter 

strip was placed at 10 sub-watersheds by CII method and 11 sub-watersheds by LII and 

LPSAI methods. In the economic aspect scenario, filter strip was implemented for all sub-

watersheds by three spatial targeting methods due to the lowest construction cost (Table 7.4). 

In the environmental aspect scenario, detention pond was placed at 5 sub-watersheds by three 

spatial targeting methods. Bioretention was selected at 11 sub-watersheds by CII method and 



217 
 

 
 

12 sub-watersheds by LII method. Filter strip was placed at 13 sub-watersheds by LPSAI 

method.  

 

Table 7.7. Pairwise comparison matrix created for sub-watershed 78 based on sediment 

reduction for CII method at sub-watershed level. 

LID/BMPs Bioretention Detention pond Filter strip Grassed swale Wetland 

Bioretention 1.00 1.23 2.01 2.28 1.50 

Detention pond 0.81 1.00 1.78 2.06 1.27 

Filter strip 0.50 0.56 1.00 1.27 0.66 

Grassed swale 0.44 0.49 0.79 1.00 0.56 

Wetland 0.67 0.79 1.51 1.78 1.00 

λmax = 5.004, CI = 0.001, CR = 0.091 % 

 

 

Table 7.8. Pairwise comparison matrix created for sub-watershed 78 based on TP reduction 

for CII method for CII method at sub-watershed level. 

LID/BMPs Bioretention Detention pond Filter strip Grassed swale Wetland 

Bioretention 1.00 0.91 1.17 0.91 1.17 

Detention pond 1.10 1.00 1.27 1.00 1.27 

Filter strip 0.86 0.79 1.00 0.79 1.00 

Grassed swale 1.10 1.00 1.27 1.00 1.27 

Wetland 0.86 0.79 1.00 0.79 1.00 

λmax = 5.000, CI = 0.000, CR = 0.001 % 

 

 

Table 7.9. Pairwise comparison matrix created for sub-watershed 78 based on TN reduction 

for CII method at sub-watershed level. 

LID/BMPs Bioretention Detention pond Filter strip Grassed swale Wetland 

Bioretention 1.00 1.46 1.63 1.28 1.46 

Detention pond 0.68 1.00 1.16 0.85 1.00 

Filter strip 0.62 0.86 1.00 0.75 0.86 

Grassed swale 0.78 1.18 1.34 1.00 1.18 

Wetland 0.68 1.00 1.16 0.85 1.00 

λmax = 5.000, CI = 0.000, CR = 0.01% 
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Table 7.10. Weight vector calculation of LID/BMPs for sediment, TN, and TP reduction for 

CII method at sub-watershed 78. 

LID/BMPs Sediment TN TP 

Bioretention 0.26 0.20 0.23 

Detention pond 0.23 0.21 0.19 

Filter strip 0.16 0.19 0.18 

Grassed swale 0.14 0.21 0.21 

Wetland 0.21 0.19 0.19 

 

 

Table 7.11. Weight vector calculation of LID/BMPs for total cost and area condition. 

LID/BMPs Cost Area condition* 

Bioretention 0.10 0.125 

Detention pond 0.21 0.250 

Filter strip 0.35 0.125 

Grassed swale 0.25 0.250 

Wetland 0.19 0.250 

*this weight vector is based on sub-watershed 78. This value is varied by each sub-watershed.  

 

 

Table 7.12. Decision matrix of LID/BMPs for all criteria developed for sub-watershed 78.  

LID/BMPs Sediment TN TP Total cost Area condition 

Bioretention 0.26 0.20 0.23 0.10 0.13 

Detention pond 0.23 0.21 0.19 0.21 0.25 

Filter strip 0.16 0.19 0.18 0.35 0.13 

Grassed swale 0.14 0.21 0.21 0.25 0.25 

Wetland 0.21 0.19 0.19 0.19 0.25 
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Table 7.13. The selected individual LID/BMPs based on each application scenario at CHSs 

using CII method. 

Sub-watershed Equal condition Economic condition Environmental condition 

14 Grassed swale Filter strip Detention pond  

21 Grassed swale Filter strip Detention pond 

28 Filter strip Filter strip Bioretention 

42 Grassed swale Filter strip Detention pond 

44 Grassed swale Filter strip Detention pond 

49 Filter strip Filter strip Bioretention 

50 Filter strip Filter strip Bioretention 

52 Filter strip Filter strip Bioretention 

71 Filter strip Filter strip Bioretention 

72 Detention pond Filter strip Detention pond 

73 Filter strip Filter strip Bioretention 

74 Filter strip Filter strip Bioretention 

75 Filter strip Filter strip Bioretention 

76 Grassed swale Filter strip Bioretention 

77 Filter strip Filter strip Bioretention 

78 Filter strip Filter strip Bioretention 

 

Table 7.14. The selected individual LID/BMPs based on each application scenario at CHSs 

using LII method. 

Sub-basin Equal condition Economic condition Environmental condition 

47 Filter strip Filter strip Bioretention 

48 Filter strip Filter strip Bioretention 

61 Filter strip Filter strip Bioretention 

62 Filter strip Filter strip Bioretention 

63 Filter strip Filter strip Bioretention 

64 Filter strip Filter strip Bioretention 

68 Detention pond Filter strip Detention pond 

69 Filter strip Filter strip Bioretention 

70 Grassed swale Filter strip Detention pond 

71 Detention pond Filter strip Bioretention 

72 Grassed swale Filter strip Detention pond 

73 Filter strip Filter strip Bioretention 

74 Filter strip Filter strip Bioretention 

75 Grassed swale Filter strip Detention pond 

76 Filter strip Filter strip Bioretention 

77 Grassed swale Filter strip Detention pond 

78 Filter strip Filter strip Bioretention 
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Table 7.15. The selected individual LID/BMPs based on each application scenario at CHSs 

using LPSAI method. 

Sub-basin Equal condition Economic condition Environmental condition 

44 Grassed swale Filter strip Detention pond 

45 Grassed swale Filter strip Detention pond 

47 Grassed swale Filter strip Detention pond 

55 Filter strip Filter strip Filter strip 

59 Grassed swale Filter strip Detention pond 

60 Grassed swale Filter strip Filter strip 

61 Filter strip Filter strip Filter strip 

62 Filter strip Filter strip Filter strip 

64 Filter strip Filter strip Filter strip 

67 Detention pond Filter strip Detention pond 

68 Filter strip Filter strip Filter strip 

71 Filter strip Filter strip Filter strip 

72 Filter strip Filter strip Filter strip 

73 Filter strip Filter strip Filter strip 

76 Filter strip Filter strip Filter strip 

77 Filter strip Filter strip Filter strip 

78 Filter strip Filter strip Filter strip 

 

7.4.3. Evaluation of LID/BMP effectiveness  

 The pollutant load reduction and efficiency of LID/BMPs implementation vary among 

the LID/BMPs types, placement, and spatial targeting methods. Table 7.16 and Figure 7.5 

show the pollutant load reduction per unit area (kg/ha) and total cost per unit pollutant load 

reduction (1,000 $/kg) associated with the priority scenarios and spatial targeting methods. 

Overall, filter strip was the most economical LID/BMP for all targeting methods at the sub-

watershed levels compared with other LID/BMPs. An intermediate effectiveness of 

LID/BMPs was detention pond and bioretention due to higher construction cost and pollutant 

load reduction rate.  

 The effectiveness of spatial targeting methods using the priority scenarios was 

analyzed that LPSAI method was the greatest reduction of the average pollutant load by 4.213 

kg/ha in economic aspect scenario. CII method was the most cost-effective by 195,728 
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dollars/kg due to the lower total cost per unit pollutant load reduction for TN and TP in 

economic aspect scenario. In the environment aspect scenario, LPSAI method showed the 

greatest reduction of the average pollutant load by 4.007 kg/ha. It was also the most cost-

effective by 371,453 dollars/kg owing to a higher pollutant load reduction within the small 

area of ID/BMP implementation. In the equal distribution scenario, LPSAI method indicated 

the most efficient for the average pollutant load reduction by 3.762 kg/ha and cost-effective 

and by 234,736 dollars/kg, respectively.  

 The reduction efficiency of each pollutant load indicated CII method was the most 

efficiency to reduce TN and TP loads by 0.147 kg/ha and 0.012 kg/ha in the environmental 

aspect scenario, respectively. LPSAI method was the most efficiency to decrease sediment 

loads by 12.565 kg/ha in the economic aspect scenario.  

The cost-effective for the priority scenarios application indicates that CII method was 

the most cost-effective by TN and TP load reductions in the economic aspect scenario, while 

LPSAI method was the most cost-effectiveness for sediment load reduction. In the 

environment aspect and equal distribution scenarios, LPSAI method was observed the most 

cost-effective for sediment, TN, and TP load reductions.  

Water resources management plans for water quality improvement should be 

considered various LID/BMP implementation strategies related to the target pollutant 

elements, reduction rate, and budget. Therefore, the study results will provide useful insights 

for the broader view of the water resources management plans to stakeholders and decision 

makers.  



 

 
 

2
2
2
 

Table 7.16. Total pollutant load reduction per unit area and total cost per unit pollutant load reduction for LID/BMPs implementations. 

Priority 

Scenario 

Targeting 

method 

Load reduction per unit area (kg/ha) Total cost per unit load reduction (1,000 $/kg) 

Sediment TN TP Average Sediment TN TP Average 

Economic 

aspect 

CII 7.996 0.101 0.006 2.701 0.425 33.818 552.941 195.728 

LII 8.199 0.063 0.004 2.755 0.415 53.681 916.651 323.582 

LPSAI 12.565 0.070 0.004 4.213 0.271 48.374 813.474 287.373 

Environment 

aspect 

CII 10.661 0.147 0.012 3.607 6.843 496.152 6,000.311 2,167.769 

LII 10.774 0.093 0.009 3.626 13.310 1537.079 1,521.6591 5,588.993 

LPSAI 11.928 0.087 0.005 4.007 0.442 60.418 1,053.500 371.453 

Equal 

distribution 

CII 7.416 0.137 0.010 2.521 0.950 51.570 740.291 264.270 

LII 8.444 0.071 0.004 2.839 0.503 60.160 1027.458 326.707 

LPSAI 11.164 0.115 0.008 3.762 0.464 44.991 658.755 234.736 
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(a) Sediment load 

 

 
(b) TN load 

Figure 7.5. Pollutant load reduction per unit area and total cost per unit pollutant load 

reduction for different targeting methods with priority consideration scenarios. 
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(c) TP load 

 

 
(d)  Average pollutant load (sediment, TN, and TP) 

Figure 7.5. Pollutant load reduction per unit area and total cost per unit pollutant load 

reduction for different targeting methods with priority consideration scenarios (Cont.). 
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CHAPTER 8. SUMMARY AND CONCLUSIONS 

 

8.1. Quantifying a threshold of missing values for gap filling processes in daily 

precipitation 

Chapter 2 was to identify a proper level of missing values (threshold) by enhancing 

the existing estimation method (GDF) for gap filling in daily precipitation series for 

hydroclimate research and hydrological fields. The GDF method was used to examine what 

level of missing values can be plausible for further hydrological processes, such as 

streamflow simulations. Four different sampling windows, including whole, front, middle, 

and rear section of datasets at different missing levels (5, 10, 15, 16, 17, and 18 %), are 

considered to mimic real world setting. And, 1,000 samples are generated using an AR model 

to conduct statistical tests and analysis. AR (23) model was selected and utilized to generate 

1,000 realizations of precipitation datasets at two different locations, including Boise airport, 

Idaho and Lincoln airport, Nebraska to cross-validate the proposed threshold.  

The R2 values and RDIs were computed and used to determine what missing levels 

can be considered as a threshold within statistical analysis framework along with hypotheses 

tests and p-value analysis. Based on evaluation criteria, which are R2 >0.8 and RDIs>0, it 

appears that the missing level at 15 % is plausible to construct daily precipitation series during 

gap filling processes. Although we conclude that 15 % missing level is plausible for the GDF 

method, it doesn’t necessarily that 15 % missing level is an absolute value for other 

interpolation techniques, such as Mn, IDW, RA, KE, and others. Additional research is 

needed to verify if the proposed 15 % missing level is also acceptable for such cases.  
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Another insight from chapter 2 is related to temporal scale up. Thus, chapter 2 

focused on gap filling for daily precipitation series so that the missing level at 15 % can be 

conservative for monthly gap filling. So, we may conclude that the advantage gained by 

temporal time scale at daily will be tangible unless significant systematic and random errors 

are embedded in precipitation records. 

 

8.2. A heuristic gap filling method for daily precipitation series 

Chapter 3 was conducted to evaluate how CA can improve the gap filing processes as 

a preliminary task for daily precipitation series.  A total of 116 stations, which are less than 

15% missing level of daily precipitation are used across the state of Idaho.  All stations are 

evaluated first using CA and divided into 12 clusters based on geophysical conditions, 

including latitude, longitude, and altitude.  Since the study area are dominated by maritime 

climate, it is necessary to minimize errors (e.g., the overestimated and/or underestimated 

precipitation) affected by the distance between stations nearby.  We proposed a new method 

termed “gamma distribution function with statistical correction coupled with cluster analysis 

(GSCCA)” to improve the estimation of missing daily precipitation data.  The existing 

methods, including GME, IDW, OK are also examined by employing CA to compare their 

performance with GSCCA.  Using skill scores, performance measures are evaluated to see 

how individual method can represent the precipitation realization in the mountain west, such 

as the state of Idaho. The results of chapter 3 are as follows: 

1. GSCCA is a promising method to estimate daily precipitation at TSs, where the 

data missing level is less than 15% in the sense that all statistic and skill scores are 

higher than its counterparts of other methods (e.g., GME, IDW, OK).   
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2. The CA employment for gap filling methods can improve the overall performance 

as opposed to non-CA implementation.  Note that the average R values of GSC, 

GME, IDW, and OK method increases by 17.19%, 9.84%, 8.93%, and 37.50 %, 

respectively, when CA is employed as opposed to non-CA implementation.  The 

average RMSE and MAE also advocate the overall performance improvement as 

shown in Table 3.4.  Additional condition, such as rain and no rain was also 

elevated to see how the proposed method can represent such a condition 

reasonably.   

3. Based on skill scores as shown in Figure 3.5, the result clearly show GSC well 

presents rain or no rain condition with the highest HSS, CSI, and PSS values, 0.55, 

0.51, and 0.56 on average, respectively.  

Chapter 3 delivers few critical observations and findings. First, CA is a good 

approach to improve the existing gap filling methods.  Second, GSC is a better estimation 

method as opposed to other methods when CA is employed for daily precipitation series.  

Although the proposed method is a heuristic and feasible solution, additional studies will be 

required to promote broad applications.  Thus, since characteristics of various geophysical 

and environmental variables, including topography, climate, and other environmental forcing 

are critical to interact dynamically, more experiments in different climate and landscape 

regions may be needed for future work.  

 

8.3. Threshold of basin discretization levels for HSPF simulations with NEXRAD inputs 

High-quality hydrologic data and automatic calibration methods were used to evaluate 

how basin discretization affects HSPF simulations with NEXRAD inputs. For the study area, 
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four drainage areas, including Tahlequah, Siloam Springs, Elk, and Baron Fork, were selected 

for performance evaluation, model parameterization, and calibration. PEST, an automatic 

calibration package, was utilized to calibrate interior points of each drainage area, rather than 

using the observed streamflow at outlet points. RMSE, R, and NS were computed to evaluate 

the model performance at different catchment scales. The results of chapter 4 are as follows: 

1. Overall performances of HSPF are reasonably good at the Baron Fork, Tahlequah, 

Siloam Springs drainages. However, the Elk River basin shows a rather poor 

performance compared with other results; thus, the model performance should be 

enhanced through additional calibration efforts, such as minor adjustment 

characterizing local parameter sets (e.g., soil porosity) when necessary. 

2. Two groups constrained by R and NS values were identified to evaluate how the 

performance of the model responds to the derived threshold of basin discretization 

from this study, which is approximately 23% of the drainage area.  

3. The results showed that the model performance at all CPs above the threshold 

clearly improve as basin size decreases, whereas the performance below this 

threshold is inconclusive. For example, the R values at CP10, CP11, and CP14, 

which are 3.62, 1.97, and 1.49%, respectively, of the Tahlequah drainage area, 

decrease as the R values increase at Siloam Springs, Elk, and Baron Fork River, 

regardless of catchment sizes within the drainage area below the threshold (23%). 

4. A similar result was also observed in NS values that fluctuate (e.g., decrease or 

increase) for the catchment size of 433 km2 (17.43% of the Tahlequah drainage). 

This pattern continues at Siloam Springs drainage and Baron Fork basin.  
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Consequently, the results in chapter 4 indicate that HSPF performs well when the 

catchment size is above 23% of the drainage area. Although this study provides useful 

insights for hydrologists to determine appropriate catchment sizes during basin delineation 

processes, additional studies may be required for reliable applications. Thus, future 

experiments focusing on the basin size threshold of HSPF using different basin characteristics 

and different data sets may be helpful to leverage broad applications of the proposed 

approach. These more diverse regional applications will support the conclusion provided in 

chapter 4. 

 

8.4. Improving hydrological simulation using HSPF in computer parallelism 

Computer parallelism is a useful tool to reduce the amount of computation time and 

cost. Hydrologic model calibration coupled with computer parallelism gives various 

opportunities to improve the model performance. In this study, four different calibration 

scenarios were tested to evaluate computer parallelism. BEOPEST was utilized to parallelize 

HSPF model calibration in sLCS. Performance measures (e.g., PT, PP, PS, PE) for computer 

parallelism were used and other hydrological stats (R, NS, RMSE, MAE, and PABIS) were 

calculated to evaluate the model performance. The optimal calibration scenario was selected 

for further analysis to improve model performance for interior calibration target points in the 

BRW. The results of chapter 5 are as follows: 

1. Parallel time (PT) during HSPF calibration was tremendously reduced 76.09%, 

88.63%, 89.30%, and 90.41% from SCO 1, SCO 2, SCO 3, and SCO 4, 

respectively when 14 core were used rather than single core. From all other 

parallel performance measures (PT, PP, PS, PE), SOC 4 outperforms others. 
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Therefore, the application of many model parameters is more effective when 

applying the parallelized calibration technique.  

2. SCO 4 was selected the optimal calibration scenario based on NS (0.31), R (0.62), 

RMSE (30.03), and PBIAS (-10.65%) at the mouth of the watershed. The model 

performance measures of SCO 4 indicated greater model performance than other 

calibration scenarios.  

3. SCO 4 was applied for further analysis to improve model performance for interior 

Calibration Target Points (CTPs) in the BRW. The calibrated streamflow results 

showed that CTP 3, 4, and 6 were very good performance by calibration and CTP 

1 and 2 were good performance. The validated streamflow results indicated that 

CTP 1, 3, and 4 were very good performance and CTP 2 is fair performance. 

However, CTP 5 was poor performance by calibration and validation.  

4. Finally, the calibrated sediment and water quality results showed that water 

temperature was very good performance. Sediment, TN, TP, and DO were good 

performance according to model performance evaluation based on PBAIS.  

In chapter 5, we can conclude that computer parallelism with many parameters at 

multiple sub-basins benefits hydrologists to improve hydrological simulation. This study 

would be a good case by comparing parallel performance at multiple calibration target points 

using multiple core processes. The method used in this study would be useful for hydrologists 

to apply computer parallelism to their own applications. In the future, further studies need to 

be completed to evaluate parallel performance and model improvement using different model 

parameters from other hydrologic models.  
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8.5. Impacts of climate and land use changes on streamflow and water quality 

From chapter 6, we investigated the response of hydrological processes for the 

separate and combined impacts of future changes in climate and LULC using three SDBC 

GCMs in the BRW. HSPF model simulated streamflow and water quality under each scenario 

during the future peirods. Study results indicate as follows: 

1. The impacts of LULC change were especially clear in the monthly variations of 

streamflow, sediment, TN, and TP loads. Urbanization had a much greater effect 

on an increase in magnitude and seasonal variability of monthly streamflow, 

sediment, TN, and TP loads. Barren/mining land highly affected the increase of 

TN load comparing with 2011 LULC condition.  

2. SDBC GCMs (bcc-cm1-1m, cancesm2, and cnrm-cm5 models) showed good 

performance for historical monthly precipitation, temperature, wind speed, 

humidity, and solar radiation. They well simulated historical monthly streamflow 

compared with NLDAS simulation results at calibration target point 6.  

3. For The hydrologic responses by climate change indicated monthly mean 

streamflow, sediment, TN, and TP loads were decreased in late spring, summer, 

and fall while they were increased in early spring and winter relative to 2011 

LULC condition due to the future changes in precipitation and temperature under 

three RCPs. Water temperature was increased along with the increased air 

temperature under three RCPs over the future periods relative to 2011 LULC.  

4. The combined impact of climate and LULC changes indicated similar to the 

climate change alone, but with increased streamflow, sediment, and TN, and TP 

load throughout the year. Also, it was predicted to significantly increases in 
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monthly mean streamflow, sediment, TP, and TN loads in spring and winter 

comparing with climate change alone. Therefore, the combined impact of future 

climate and LULC changes represented the problems of water shortage in summer 

and severe water pollution in spring and winter.   

In chapter 6, we can conclude that urbanization affects the increases in monthly 

streamflow, sediment, TN, and TP loads by the increased impervious surface area. For climate 

change, monthly streamflow, sediment, TN, and TP loads were increased in early spring and 

winter due to the early snow melting and increase in winter precipitation, while they were 

decreased in summer owing to the decrease in summer precipitation. The combined impact of 

climate and LULC changes accelerated the increase in water pollution in the spring and 

winter. Understanding the changes in water quality and quantity caused by the separate and 

combined impacts of LULC and climate changes is significant elements for sustainable water 

resources management. The seasonal variations of streamflow and water quality in the BRW 

is expected to become more severe in the future. Also, a steadily increase in urbanization of 

the BRW will be believed to increase the intensity of drought or flooding. Long-term water 

resources management plans should be flexible and adaptable to diverse perspectives on these 

impacts. The results of chapter 6 can contribute to effective management planning for land 

use development and mitigation of negative effects by LULC and climate changes.  

 

8.6. Development of an optimization watershed management tool 

 LID/BMPs are one of the primary options in improving surface water quality. Optimal 

placement of LID/BMPs plays a critical role in an accomplishment of maximum pollutant 

load reduction while minimizing costs at CHSs. So, cheater 7 was carried out with the goals 
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of investigating the CHSs using three targeting methods and selecting optimal LID/BMPs at 

the selected CHSs using AHP method. The study results are as follows. 

1. CHSs were determined for the high priority areas using normalized pollutant 

results (sediment, TN, and TP) based on three spatial targeting methods. 16 sub-

watersheds were selected as CHSs using CII method. They were mostly located in 

the LBRW. LII method identified 15 sub-watersheds for CHSs. They were located 

near the watershed outlet or in the middle area of the BRW. LPSAI method 

identified 17 sub-watersheds for CHSs.  

2. AHP method was applied to identify optimal LID/BMPs for the priority scenarios 

(equal, economic, and environmental aspect) at CHSs from three spatial targeting 

methods. In the economic aspect scenario, filter strip was placed at all CHSs 

regardless of spatial targeting methods due to the lowest construction cost. In the 

environmental aspect scenario, 5 detention ponds and 11 biorententions were 

implemented by CII method, 5 detention ponds and 12 bioretentions were placed 

by LII method, and 5 detention ponds and 13 filter strips were selected by LPSAI 

method.  

3. Varying effectiveness results were analyzed when LID/BMP was implemented for 

the priority scenarios at CHSs based on the three spatial targeting methods. LPSAI 

method was the most efficiency to reduce average pollutant load by 4.213 kg/ha in 

economic aspect scenario, 4.007 kg/ha in the environment aspect scenario, and 

3.762 kg/ha in the equal distribution scenario. CII method was the most cost-

effective by 195,728 dollars/kg in the economic aspect scenario. LPSAI method 

was most cost-effective by 371,453 dollars/kg in the environmental aspect scenario 
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and 234,736 dollars/kg in the equal distribution scenario, respectively. 

LID/BMPs were a proven to control water quality in the watershed. The effectiveness 

of LID/BMP implementation were subject to change with the placement locations and 

consideration objectives like economic or environmental aspects. Spatial targeting methods 

can be utilized based on the goals stated in LID/BMP implementation plans. Therefore, the 

results of chapter 7 would provide a platform in with diverse aspects (equal distribution, 

economic, and environmental) of LID/BMP implementation. The results of chapter 7 can 

strengthen science-based decision making and provide useful perspectives to policy makers in 

cost-effective water resources management. However, in the future, it will be necessary to 

improve OWMT by expanding the number of scenarios through conducting a survey of 

farmers or policy makers in the watershed to apply their preference and criteria for LID/BMPs 

implementation.   
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Appendix A: Installation and configuration of DRBL 
 

1. Before the DRBL downloading, list file is modified by adding the repositories. 

  - editing the file from terminal: “sudo nano /etc/apt/sources.list”  

  - adding the below two lines to the end of the file from the file edition program and save the file: 

      “deb http://free.nchc.org.tw/ubuntu maverick main restricted universe multiverse”, 

      “deb http://free.nchc.org.tw/drbl-core drbl stable” 

 

2. Download DRBL key  

    - “sudo wget http://drb1.nchc.org.tw/GPG-KEY-DRBL” 

    - “sudo apt-key add GPG-KEY-DRBL” 

 

3. Update Advanced Packing Tool (APT) for existing software packages and install DRBL 

packages. 

    - “sudo apt-get update” 

    - “sudo apt-get install drbl” 

 

4. After DRBL installing, we need to set it up to suit the SSC kernel 

    - setup the DRBL setting: “sudo /usr/sbin/drblsrv –i”   

 

5. From first screen of the DRBL installing (Figure A.1), Select “No” for the network installation 

boot images. 

http://drb1.nchc.org.tw/GPG-KEY-DRBL
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Figure A.1. The first step of DRBL installation. 

 

6. From the Figure A.2, select “NO” for the displaying option. 

 

Figure A.2. Displaying option for slave nodes. 

 

7. For the option of upgrading operating system (Figure A.3), select “Yes” if you need to upgrade. 

Updating data will be automatically downloaded via the internet. Otherwise, select “NO” 
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Figure A.3. Upgrading the operating system. 

 

8. Select 1 for the generic kernel from DRBL server from Figure A.4 (setup completion). 

 

Figure A.4. Two options of the kernel selection. 
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9. Do configuration of network setting to a manual IP of 192.168.1.1 from Network Connections 

    - From IPv4 settings in LAN edition icon, change the method to Manual option and then adding 

the address (192.168.1.1) and subnet (255.255.255.0). 

 

10. Do configuration the master node for the slave node connected.  

    -  “sudo /usr/sbin /drblpush –i” 

 

11. Assign DNS, NIS/YP, and prefix domain name (Figure A.5). 

    - DNS is the domain name system. DNS enables the master server to use their assigned name 

instead of internet protocol network addresses. In this study, we set DNS as jungjin.org.  

    - NIS/YP is network information service or yellow pages. It indicates the master node name. In 

this study, we set the master name as “jungjinlinux”. 

 

Figure A.5. Assigning the names of DMS domain, NIS, and slave nodes. 
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12.  Select the LAN card which is connected to the slave nodes. In this study, wlan0 was the 

internet connection and eth0 was the network connection between master and slave nodes. For the 

collection of the MAC of nodes, entering the “q”. And then, give the initial number of the slave 

node address should be started associated with the number of slave node we have. In this study, we 

gave the initial value as 1. Slave nodes had IP’s from 192.168.1.1. Finally, Figure A.6 shows the 

number of slave nodes based on we have. In this study, we had 6 slave nodes and their IPs were 

from 192.168.1.1 to 19.1.16.1.6.  

 

Figure A.6. The results of internet connection (eth0) and network connection (wlan0) 

between master and slave nodes. 

 

13. Next step, select “1” as DRBL Single System Image”, and select “2” for “not use clonezilla” in 

the following steps because we wanted to build as Beowulf cluster framework (Figure A.7).  
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Figure A.7. Selecting the DRBL single system image and not clonezilla mode for the 

setting up the Beowulf cluster. 

 

14. For the slave nodes mode after boot, select Text mode since the graphical mode is a waste of 

resources to use.  For the boot prompts and passwords of slave nodes, select “NO” because they do 

not have keyboards (Figure A.8). 
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Figure A.8. Boot mode selection and root password setting. 

 

15. The last settings follow the default selection. This is the final setting for DRBL custom to the 

node environment.  

16. Controlling DRBL from DRBL Control Server.   

    - from the terminal, execute the DRBL program “/opt/drbl/sbin/dcs”. 

    - Select “All select all the clients” for setting the model for all slave nodes as Figure A.9. 

    - Select “remote-linux-txt Client remote Linux, textmode, powerful client” for the final step as 

Figure A.10. From this mode, we can switch the slave node setting anytime. 
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Figure A.9. The mode setting for all slave nodes. 

 

 

Figure A.10. Final setting for the mode.  

 

17. After the setting, diskless Linux Cluster is completed. 

 


