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Abstract 

Kokanee Oncorhynchus nerka provide valued recreational fisheries, and also serve as 

a prey resource for economically, socially, and ecologically important fishes.  As such, 

management of kokanee is a major focus of natural resource agencies.  Despite considerable 

research over the last 60 years, several questions remain regarding the management of 

kokanee in Idaho.  Specifically, uncertainty surrounding common sampling techniques for 

kokanee undermine confidence in population assessments for the species.  Additionally, 

observed growth differences between kokanee breeding groups (e.g., early-run, late-run) 

raise questions about the potential influence of genetics and hatchery practices on the 

population structure of the species.  Finally, the potential mechanisms underlying 

competitive interactions between kokanee and Opossum Shrimp Mysis diluviana (hereafter 

Mysis) are largely unresolved.  In an effort to improve the understanding of the ecology and 

management of kokanee, we sought to 1) evaluate the size selectivity of different sampling 

techniques for kokanee, 2) evaluate the potential causes of growth disparities among kokanee 

breeding groups (early-run, late-run) in Idaho, and 3) investigate how ontogenetic shifts in 

diet in kokanee potentially influence competitive interactions with Mysis. 
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Chapter 1: Introduction  

Oncorhynchus nerka is native to the northern Pacific Ocean and occurs as both 

anadromous Sockeye Salmon and non-anadromous kokanee (Burgner 1991).  Sockeye 

Salmon spend 1–2 years in freshwater and migrate to the ocean; whereas, kokanee live their 

entire lives in freshwater (Burgner 1991).  Kokanee are generally smaller and mature at an 

earlier age than Sockeye Salmon (Wood and Foote 1996).  Both forms are semelparous.  

Sockeye Salmon and kokanee bury their eggs in gravel depressions in lotic and lentic 

systems (Hassemer 1984), but may also broadcast spawn over large substrates (Hassemer and 

Rieman 1981).  After hatching, kokanee alevins remain in the gravel and absorb their yolk 

before emerging and migrating to pelagic habitats (Burgner 1991). 

Kokanee and Sockeye Salmon are sympatric throughout much of their distribution 

(Burgner 1991; Wood and Foote 1996).  Kokanee are thought to have derived from Sockeye 

Salmon populations on several independent occasions (Nelson 1968; Behnke 1972).  

Examination of the distribution of both forms and the fact that kokanee populations have 

appeared following the introduction of Sockeye Salmon supports this assertion (Nelson 1968; 

Foote et al. 1989).  Kokanee are now distributed in North America, South America, Asia, 

Russia, Australia, and Europe (Nelson 1968; Burgner 1991).  In North America, kokanee are 

common in lentic systems of the western United States and Canada (Nelson 1968). 

In Idaho, kokanee established in Lake Pend Oreille (LPO) in the 1930s after 

emigrating from Flathead Lake, Montana (Wydoski and Bennet 1981).  Kokanee flourished 

in LPO and supported a successful fishery while also serving as prey for sport fishes 

(Wydoski and Bennett 1981).  Following the success of kokanee in LPO, kokanee were 

stocked into Priest Lake, Idaho in the early 1940s.  Kokanee thrived and are largely believed 
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to have contributed to the substantial increase in size of Bull Trout Salvelinus confluentus 

and Lake Trout S. namaycush in Priest Lake (Wydoski and Bennett 1981).  Due to the 

success of kokanee in LPO and Priest Lake, kokanee were introduced throughout Idaho and 

are now considered one of the most important fish species in the state (Wydoski and Bennett 

1981; Rieman and Myers 1992; Rieman and Maiolie 1995).   

Despite considerable research over the last 60 years, several questions remain 

regarding the management of kokanee in Idaho.  For instance, kokanee experienced 

significant declines in the late 1960s in LPO.  Similar population declines have been 

described throughout the western United States and Canada (Rieman and Bowler 1980; 

Rieman and Falter 1981; Nesler and Bergersen 1991).  Factors such as water development, 

the introduction of Opossum Shrimp Mysis diluviana (hereafter Mysis), predation, and 

exploitation have been hypothesized as causing kokanee declines in Idaho and western North 

America (Rieman and Myers 1992; Rieman and Maiolie 1995).  However, the cause(s) of 

kokanee declines throughout western North America have not been identified.  In an effort to 

maintain kokanee populations in Idaho, the Idaho Department of Fish and Game has 

instituted large-scale hatchery supplementation of the species.  Unfortunately, the variable 

success of hatchery supplementation in Idaho necessitates a better understanding of the 

comparative success of different breeding groups (early-run, late-run) and stocking strategies 

(size at stocking, timing).  Underlying research questions associated with the management of 

kokanee in western North America is the ability to effectively sample kokanee populations.  

Therefore, the goals of the proposed research are to 1) evaluate the size selectivity of 

different sampling techniques for kokanee, 2) evaluate the potential causes of growth 

disparities among kokanee breeding groups (early-run, late-run) in Idaho, and 3) investigate 
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how ontogenetic shifts in diet and behavior in kokanee influence competitive interactions 

with Mysis. 

Dissertation Organization 

This dissertation is composed of four chapters.  Chapter 2 focuses on evaluating the 

size selectivity of mid-water trawls and has been accepted for publication in the North 

American Journal of Fisheries Management.  Chapter 3 tests the hypotheses that growth 

differences between early- and late-run fish are influenced by 1) genetic differences between 

groups or 2) the hatchery practice of retarding growth of early-run fish.  Chapter 3 has been 

accepted for publication in the North American Journal of Aquaculture.  Chapter 4 evaluates 

how ontogenetic changes in diet potentially influence competition between kokanee and 

Mysis.  The fourth chapter will be submitted to the Canadian Journal of Fisheries and 

Aquatic Sciences.  The final chapter provides general conclusions and future directions.  
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Abstract 

Kokanee Oncorhynchus nerka provide valued recreational fisheries, and also serve as 

a prey resource for economically, socially, and ecologically important fishes.  As such, 

management of kokanee is a major focus of natural resource agencies.  Kokanee are typically 

monitored using mid-water trawls, but the interpretation of data collected using mid-water 

trawls is difficult due to the unknown size selectivity of the gear.  We sought to assess the 

length selectivity of mid-water trawls by comparing estimates obtained from mid-water 

trawls to estimates obtained from gill nets adjusted for size selectivity.  Experimental curtain 

gill nets and mid-water trawls were used in conjunction to sample kokanee in seven lentic 

systems in Idaho.  The size selectivity of gill nets was estimated by accounting for the 

probability of encounter and the probability of retention.  Estimates of size selectivity were 

then used to adjust the length distribution of fish sampled in gill nets.  The adjusted length 

distribution of fish sampled in gill nets was compared to estimates obtained from mid-water 

trawls to identify potential size selectivity of mid-water trawls.  A pattern of size selectivity 

was apparent for both sampling techniques.  The average length of kokanee sampled with 

mid-water trawls was 111 mm; whereas, kokanee sampled with gill nets had a mean length of 

235 mm.  Our results suggest experimental gill nets are useful for common kokanee sampling 

(e.g., trend monitoring) because the gear is less size selective than mid-water trawls and is 

adjustable for size selectivity.  However, mid-water trawls are likely the best gear for 

addressing questions associated with early-life history.  Overall, our results provide a better 

understanding of gill net and mid-water trawl selectivity and ultimately improve the ability to 

sample and manage the species.  
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Introduction 

Kokanee Oncorhynchus nerka are culturally, ecologically, and economically 

important throughout their distribution and serve as a vital prey resource for various fishes 

including Bull Trout Salvelinus confluentus and Rainbow Trout O. mykiss (Wydoski and 

Bennett 1981; Paragamian and Bowles 1995).  For instance, Lake Pend Oreille, Idaho, 

produced the previous world-record Rainbow Trout and the current world-record Bull Trout 

following the introduction of kokanee in the 1930s (Wydoski and Bennett 1981).  Kokanee 

also support valued recreational fisheries.  In 1998, kokanee were the fourth most harvested 

species in the Lake Roosevelt, Washington fishery valued at approximately US$8 million 

(Spotts et al. 2000).  Due to their recreational and ecological importance, kokanee have been 

widely distributed and can now be found in North America, South America, Asia, Australia, 

and Europe (Nelson 1968; Burgner 1991).  In North America, kokanee are common in lentic 

systems of the western United States and Canada (Nelson 1968) and are a major focus of 

natural resource management agencies.  

Kokanee populations are typically monitored using escapement estimates, 

hydroacoustic surveys, and mid-water trawl surveys (Parkinson 1988; Rieman 1992; Askey 

2016).  In Idaho, the density of kokanee is monitored using hydroacoustic surveys and mid-

water trawl surveys (Rieman 1992).  Unlike hydroacoustic surveys, mid-water trawls can 

also be used to directly estimate the composition (e.g., age, maturity) of kokanee populations 

(Rieman 1992).  However, inferences based on mid-water trawl data (e.g., length structure) 

rely on the assumption that the composition of fish caught by the trawl is representative of 

the population (Hayes et al. 2012).  The composition of fish caught in mid-water trawls can 

vary depending on a number of factors, including trawl construction and fish density.  For 

instance, trawls with cod ends constructed of 35 mm diamond mesh caught higher 



8 

 

proportions of small (24–30 cm) Haddock Melanogrammus aeglefinus relative to trawls with 

87 mm mesh cod ends (Pope et al. 1975).  Even when mid-water trawling methods are 

standardized, questions remain regarding the size selectivity of the gear (Hayes et al. 2012).  

Mid-water trawls targeting Sprat Sprattus sprattus and Herring Clupea harengus in the Baltic 

Sea exhibited size selectivity unexplained by cod end selectivity (Bethke et al. 1999).  The 

authors suggested that the apparent size selectivity was due to escape out of the front of the 

trawls which, in turn, was related to fish size and swimming speed.  Considering the 

importance of mid-water trawls for drawing inference on the composition of fish populations, 

understanding the potential size selectivity of the gear is essential.  Size selectivity is 

typically evaluated using techniques such as mark-recapture studies (Millar and Fryer 1999).  

Unfortunately, high mortality rates (e.g., ~100%) associated with mid-water trawl sampling 

negates the use of direct measures of efficiency measures.  Because the efficiency of mid-

water trawling cannot be directly evaluated, an indirect measure of efficiency is needed.  

   Gill nets provide a useful tool for understanding the potential size selectivity of mid-

water trawls.  Gill nets are size selective, but their selectivity can be easily quantified relative 

to other sampling gears (Hamley 1975).  Gill-net selectivity is most often estimated as 

retention selectivity, or the relative probability that a fish of a given length is captured 

assuming it contacts the net (Millar and Holst 1997; Millar and Fryer 1999).  The retention 

selectivity of each mesh size can then be used to adjust the estimated length composition of 

the target fish population.  For the adjusted length distribution of kokanee to represent the 

true length distribution of kokanee, all fish in a population must have an equal probability of 

contacting the net (Millar 2000).  In practice, the probability of contacting a net is influenced 

by length-dependent factors (e.g., gear avoidance, behavior) that must be known to obtain an 
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accurate estimate of population structure.  Rudstam et al. (1984) argued that length-related 

encounter probability was the primary factor influencing capture of Cisco Coregonus artedii 

in gill nets and used estimates of encounter and retention probabilities to obtain a more 

accurate description of Cisco length frequency.  Assuming that adjusted gill net counts are a 

more accurate representation of kokanee length structure than unadjusted counts, we sought 

to compare the adjusted length distribution of kokanee sampled in gill nets to that of mid-

water trawls to identify potential size selectivity of mid-water trawls.  In addition, we 

consider the strengths and limitations of each sampling gear for sampling a pelagic species.    

 

Methods 

Three lakes (Coeur d’Alene Lake, Hayden Lake, Lake Pend Oreille) and four 

reservoirs (Anderson Ranch Reservoir, Arrowrock Reservoir, Dworshak Reservoir, Lucky 

Peak Reservoir) throughout Idaho were selected for sampling.  The systems varied in area 

and depth (Table 2.1), and were selected based on the presence of routinely monitored 

kokanee populations.  Systems were also selected to represent a wide distribution of kokanee 

lengths and densities (Rieman and Myers 1992; Butts et al. 2013; Wahl et al. 2015).   

Kokanee sampling was conducted from June to August in 2015–2017.  Each system 

was sampled with mid-water trawls and experimental gill nets.  In an effort to maximize 

catch of juvenile and adult kokanee, all sampling was conducted at night during thermal 

stratification within five days of the dark phase of the moon (Bowler et al. 1979; Rieman 

1992; Rieman and Myers 1992).  Prior to sampling, the vertical distribution of kokanee 

(hereafter “kokanee layer”) was determined using a Furuno Model FCV-585 depth sounder 

with a 10º hull-mounted transducer (Furuno USA, Camas, Washington).  Areas with high 
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kokanee densities were targeted for sampling to maximize catch using gill nets and mid-

water trawls.    

Each system was sampled using two standard trawls that were representative of those 

used for routine kokanee monitoring throughout western North America.  The “large trawl” 

was towed by a 8.5 m boat and measured 10.5 m in length.  The large trawl had a 3.0 m × 2.2 

m fixed-frame mouth and was constructed of graduated nylon mesh starting at 32.0 mm at 

the mouth decreasing to 25.0, 19.0, and 13.0 mm mesh in the body of the net.  The cod end of 

the net was 6.0 mm mesh.  The “small trawl” was towed by a 7.3 m boat and measured 11.9 

m in length.  The small trawl had a 2.4 m × 1.8 m fixed-frame mouth and was constructed of 

graduated mesh in the same configuration as the large trawl.    Both trawls were towed at 

approximately 1.5 m/s and sampled in a stepwise-oblique pattern (Rieman 1992).  A step 

measured 3.0 m in height for the large trawl and 2.4 m in height for the small trawl.  Trawl 

nets were towed for three minutes at each step.  Following a three-minute tow at one step, the 

trawl was raised a single step and trawling continued for another three minutes.  This process 

was repeated until the entire kokanee layer was sampled.  A single trawl through the entire 

kokanee layer constituted a transect and each trawler completed a total of six transects on 

each waterbody.  All fish caught during a mid-water trawl survey were measured for total 

length (nearest 1.0 mm).  

Gillnetting was conducted within one day of mid-water trawl sampling.  Depending 

on the vertical distribution of kokanee, one to four gill nets were used to sample the entire 

kokanee layer.  Each gill net measured 48.8 m in length and 6.0 m in depth.  Gill nets had 16 

panels each measuring 3.0 m in length.  Nets consisted of eight different mesh sizes (i.e., 

12.7, 19.0, 25.4, 38.1, 50.8, 63.5, 76.2, 101.6 mm; stretch measure) with two panels of each 
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mesh size randomly positioned throughout the net.  Gill nets were set in the approximate 

midpoint of each trawl transect and were suspended horizontally within the kokanee layer.  

The deepest net was set at the bottom of the kokanee layer with subsequent nets placed in 6.0 

m steps until the entire kokanee layer was sampled.  Typically, three gill nets were set at each 

sampling site for a total of 18 nets set in each system.  Gill nets were soaked overnight 

(approximately 12 hours) and retrieved at dawn.  Upon retrieval of each gill net, fish were 

enumerated by mesh size and information on the mode of capture (i.e., gilling, wedging, 

entangling) was recorded.  A “gilled” kokanee was any fish that was caught in the mesh 

immediately posterior to the operculum (Millar and Fryer 1999).  Fish that were caught on 

the body behind the operculum were considered “wedged”.  Fish that were wrapped in the 

netting or tangled by maxilla, preopercula, teeth, fins, and other projections were considered 

captured via “entanglement”.  In addition to capture information, fish were measured for total 

length and maximum girth (nearest 1.0 mm).  Girth was measured directly anterior to the 

insertion of the dorsal fin.   

Gill-net selectivity was modelled assuming two independent probabilities: the 

probability that a fish of length l encountered the net (encounter probability) and the 

probability that a fish of length l was retained in mesh m after encountering the net (retention 

probability; Hamley 1975; Rudstam et al. 1984).  The encounter probability was considered 

proportional to the routine swimming speed of a fish.  Swimming speed is related to fish 

length and can be approximated by a power function (Yates 1983).  Therefore, encounter 

probability can be related to fish length as:  

𝑃(𝐸𝑙) = 𝐴 ∙  𝑙
𝑧  
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where A is a constant and z is the exponent expression for sustained swimming speed.  

Previous research suggests sustained swimming speed of Sockeye Salmon Oncorhynchus 

nerka (anadromous form of kokanee) is proportional to body length raised to a power 

between 0.42–0.50 (Brett and Glass 1973; Ware 1978).  Therefore, the encounter probability 

of kokanee was estimated as fish length raised to the 0.50 power.  A was unknown, but was 

scaled by assuming that the largest fish in a population had the highest probability of 

encountering a passive gear (e.g., P(El) = 1.0; Rudstam et al. 1984; Spangler and Collins 

1992).   

Retention selectivity was estimated using the SELECT (Share Each Length’s Catch 

Total) method (Millar and Holst 1997; Millar and Fryer 1999).  The length-girth relationship 

was consistent among lakes; therefore, length and girth data were pooled across systems 

(Carol et al. 2007; Shoup and Ryswyk 2016) and summarized by 10-mm length groups for 

each mesh size.  Five log-linear models (normal-skewed, normal, lognormal, gamma, 

binormal; Table 2.2) were fit to summarized length and girth data using maximum likelihood 

techniques (Millar and Holst 1997).  Models were fit under the assumptions that the observed 

catch were Poisson random variables and effort was equal among mesh sizes (Millar and 

Holst 1997).  Additionally, models were only fit to kokanee that were captured by gilling or 

wedging because entanglement is unrelated to fish girth and mesh size (Hamley 1975).  The 

best model was selected based on the lowest model deviance (likelihood ratio goodness of fit 

statistic) and randomly distributed residuals (Millar and Holst 1997).   

Selectivity was estimated as the retention probability and a combination of encounter 

and retention probabilities to understand the relative influence of both probabilities on the 

selectivity of kokanee in gill nets.  The selectivity curves of the best-fit model were used to 
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estimate the relative retention selectivity for gill nets.  Relative retention selectivity was 

calculated as: 

𝑆𝑙 = ∑(
𝑠𝑗(𝑙)

𝑚𝑎𝑥𝑙
)

𝑗

 

where sj(l) is the retention probability of length class l in mesh size j and maxl is the 

maximum retention probability observed among all length classes (Hansen et al. 1997; Shoup 

and Ryswyk 2016).  The estimated relative retention selectivity was then adjusted for 

encounter probability to estimate the overall relative selectivity of gill nets.  The overall 

relative selectivity was estimated as: 

𝑆𝑙 =  𝑃(𝐸𝑙)∑(
𝑠𝑗(𝑙)

𝑚𝑎𝑥𝑙
)

𝑗

 

 where P(El) is the encounter probability of length class l (Rudstam et al 1984).  Overall 

relative selectivity estimates were then used to adjust the observed count of each length bin 

by dividing the observed count for each 10-mm length bin by the estimated overall relative 

selectivity for that length bin.  The adjusted length structure of kokanee sampled in gill nets 

was compared to the length structure of kokanee sampled in mid-water trawls and observed 

gill net counts using a Kolmogorov-Smirnov test (Higgins 2004).  All analysis was 

conducted using R statistical software (R Core Development Team 2017) and was considered 

significant at α = 0.05. 

 

Results 

Bimodal models had the best fit regardless of the data type (i.e., total length, girth; 

Table 2.3), and the bimodal model using total length data had the lowest model deviance, 

indicating it was the best fit model.  Retention by individual meshes increased with 
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increasing kokanee length (Figure 2.1).  For instance, 12.7-mm mesh primarily sampled fish 

varying in length from 50–80 mm; whereas, 50.8-mm mesh sampled kokanee varying in 

length from about 150–330 mm.  Relative retention selectivity increased with increasing 

length and peaked for kokanee varying in length from 320–329 mm (Figure 2.1).  However, 

relative retention selectivity was fairly high for most length classes (Table 2.4).  Only six 

length classes had a retention probability less than 60%.  Incorporation of encounter 

probability reduced the overall relative selectivity of small fish (≤ 330 mm).  For instance, all 

fish less than 230 mm had an overall relative selectivity less than 60% following adjustment 

for encounter probability.   

A pattern of size selectivity was apparent across gears (Figure 2.2).  Mid-water trawls 

tended to sample small-length fish; whereas, gill nets sampled the larger fish in a population. 

Kokanee sampled with gill nets varied in length from 54–537 mm and had an average length 

of 235 mm (SD = 76.3).  Kokanee sampled with the small trawl had an average length of 111 

mm (64.6) and varied in length from 33–405 mm.  The large trawl sampled kokanee with an 

average length of 111 mm (80.8) and varied in length from 25–299 mm.  Mid-water trawl 

catches were centered around 40 mm and 110 mm; whereas, gill nets exhibited distinct 

modes around 90 mm, 180 mm, and 260 mm.    

Accounting for overall relative selectivity in gill nets altered both the distribution and 

length-specific counts of kokanee sampled (Figure 2.2).  The total number of fish increased 

from 3,159 to an estimated 5,378 fish.  In addition, accounting for overall selectivity 

increased estimates of smaller length fish (≤ 200 mm) and decreased estimates of kokanee 

greater than 200 mm.  The adjusted length distributions of fish sampled in gill nets was not 

significantly different (P = 0.42) than the length distribution of the observed counts of fish 
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sampled in gill nets.  When gill net catch was adjusted for overall selectivity, gill nets and 

mid-water trawls exhibited similar catches for fishes around 90 mm.  However, gill nets and 

mid-water trawls showed increasing discordance in catch as fish length increased.  The 

adjusted length structure of fish sampled in gill nets was significantly different from that of 

fish sampled in both mid-water trawls (P < 0.01).  

 

Discussion 

Mid-water trawl data are commonly used to infer the length and (or) age structure of 

a target fish population.  For instance, the Idaho Department of Fish and Game commonly 

uses mid-water trawl data to apportion length and age distributions to data collected using 

hydroacoustic surveys.  However, our results suggest that mid-water trawls are size selective 

for small fish and may underestimate the larger or older components of a population.  For 

instance, fish greater than 300 mm were rarely (one occasion) sampled using mid-water 

trawls even though they comprised about 7% of the fish sampled using gill nets.  Similar 

patterns of size selectivity for mid-water trawls have been reported in the literature.  Beam 

trawls underestimated density of kokanee by 46%–79% when compared to otter trawls in 

Coeur d’Alene Lake, Idaho (Parkinson et al. 1994).  The authors noted a discordance 

between density estimates derived from beam and otter trawls with increasing fish age, 

suggesting a pattern of size selectivity for one or both gear types.  Mid-water trawls failed to 

sample fishes greater than 215 mm in Stechlin and Breiter lakes, Germany, although they 

represented 2.3% of all single echo detections in concurrent hydroacoustic surveys (Emmrich 

et al. 2010).  The smallest and largest fishes in lakes Huron and Michigan were consistently 

underrepresented in the catch of mid-water trawls (Warner et al. 2012).  The authors 
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suggested that the apparent size selectivity of mid-water trawls was most likely attributable 

to net avoidance.   

In addition to net avoidance, catch of mid-water trawls can be influenced by myriad 

factors including trawl construction (Pearcy 1980; Hayes et al. 2012), towing speed 

(Parkinson et al. 1994), escape (McClatchie et al. 2000; Emmich et al. 2010), availability of 

the target species to the gear (Beauchamp et al. 1997), and environmental factors (Robinson 

and Barraclough 1978; Thorne and Thomas 1984).  Each of the aforementioned factors likely 

influenced catch of kokanee in mid-water trawls in the current study, but unpublished 

observations suggest escape is an important factor influencing catch of large fish.  Using 

underwater cameras, we witnessed large kokanee swimming in and out of actively towed 

mid-water trawls.  Although anecdotal, these observations suggest that kokanee reach a 

length threshold at which point swimming speed exceeds towing speed and escape is 

possible.  Yanase et al. (2007) reported that Sand Flathead Platycephalus bassensis exhibited 

swimming speeds faster than typical trawl-towing speeds (1.5 m/s), but were captured due to 

the herding aspect of the trawl design.  Regardless of the exact mechanism underlying size 

selectivity of mid-water trawls, the fact remains that mid-water trawls are selective for 

smaller fishes and compositional data from mid-water trawls should be used with caution.  

Gill nets are also size selective, but select for larger kokanee than mid-water trawls.  

For instance, observed gill net catch peaked at 260 mm in our study; whereas, the mode of 

mid-water trawl catch was around 30 mm.  Fishes less than 50 mm comprised 51% of the 

total trawl catch in Lake Hiidenvesi, Finland; whereas, only 1% of fish caught in gill nets 

were less than 50 mm (Olin and Malinen 2003).  Gill net catch of Arctic Char Salvelinus 

umbla in Lake Vӓttern, Sweden underrepresented small fish (< 350 mm) and overrepresented 
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large fish (> 350 mm; Jonson et al. 2013).  Catch of gill nets considerably overestimated the 

number of large Roach Rutilus rutilus relative to small Roach (Borgström 1989).  Much like 

mid-water trawls, gill nets catch can be influenced by myriad factors including net 

construction, fish behavior, and environmental characteristics (Hamley 1975; McClatchie et 

al. 2000; Hayes et al. 2012).  However, the disparity in encounter probability between small 

and large fish likely accounts for much of the selectivity pattern exhibited by gill nets 

(Rudstam et al. 1984; McClatchie et al. 2000).  Small fish are less likely to encounter a 

passive gear (slow swimming speed), and once they encounter a gear, may lack the 

momentum needed to penetrate the mesh (McClatchie et al. 2000; Hayes et al. 2012).  

Overall, the tendency of gill nets to select large fish may also lead to questionable length-

structure data and uncertain inferences if left unadjusted.   

Accounting for gill net selectivity is valuable for improving estimates of incidental 

mortality and length or age distributions (Millar and Fryer 1999).  In freshwater fisheries, the 

primary objective of selectivity modeling focuses on adjusting length or age distributions 

derived from gill nets.  For instance, Shoup and Ryswyk (2016) estimated gill net selectivity 

for six recreationally important species and provided selectivity adjustments for the North 

American standard gill net.  The authors reported estimates of proportional size distribution 

between adjusted and unadjusted gill net data changed by as much as 15 units.  Length data 

unadjusted for gill net selectivity would have underestimated the peak length of Channel 

Catfish Ictalurus punctatus by 80 mm (Smith et al. 2017).  Survival estimates derived from 

unadjusted gill net data likely underestimated survival of age–9 to age–11 Lake Trout 

Salvelinus namaycush in Lake Superior by about 20% (Hansen et al. 1997).  The estimated 

number of 90–99 mm kokanee more than doubled following adjustment for gill net 
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selectivity in our study.  The estimated increase in 90–99 mm fish shifted the modal length 

from 260–269 mm (observed data) to 90–99 mm (adjusted data) and provided a more 

realistic representation of the true population structure of kokanee (assuming a type-3 

survivorship curve).  However, the adjusted length structure of fish sampled in gill nets may 

still not accurately reflect the true population structure.  The encounter probability estimates 

were based on the sustained swimming speed of Sockeye Salmon and may not reflect the 

swimming speed of kokanee.  Taylor and Foote (1991) compared critical swimming 

velocities of juvenile Sockeye Salmon and kokanee and found that Sockeye Salmon had a 

greater mean critical swimming speed (8.3 body lengths/s) than kokanee (7.3 body lengths/s).  

However, the authors noted that the difference in critical swimming speed between Sockeye 

Salmon and kokanee decreased following one month of growth.  The encounter probabilities 

used in our study also only account for the relationship between swimming speed and fish 

length, and do not address other length-specific factors that may influence catch such as gear 

avoidance, availability, and(or) the mechanism of capture (e.g., low momentum of small fish; 

Hamley 1975).  Even if retention and encounter probability are the primary factors 

influencing selectivity of gill nets, estimates of relative retention selectivity are sensitive to 

initial sample size.  For instance, kokanee varying in length from about 140–160 mm were 

rarely sampled among systems by both gill nets and mid-water trawls.  The low catch of 

140–160 mm fish resulted in declines in estimated retention probabilities of 17%–20% when 

compared to adjacent length classes (e.g., 130–139 mm,170–179 mm).  However, the 

relatively low estimated retention probability of 140–160 mm kokanee is a reflection of their 

low occurrence in the sample rather than a length-related reduction in retention probability.  

Although estimates of encounter and retention probabilities do not account for all the factors 
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that influence fish capture in gill nets, they likely provide a more accurate representation of 

population structure than unadjusted estimates.  

Identifying appropriate sampling gears remains a challenge in fisheries (Bonar and 

Hubert 2002).  In fact, the difficulty with selecting gears is one of the reasons standardized 

sampling techniques were developed (Bonar et al. 2009).  Our results suggest mid-water 

trawls and gill nets would provide disparate representation of kokanee populations due to the 

size selectivity of each gear.  Ideally, data collected from both gears could be combined to 

account for the limitations of each gear.  However, the ability to combine data collected 

using different gears is limited for many routine population assessments due to feasibility and 

analytical techniques (e.g., catch-curve analysis; Quist et al. 2012).  As such, biologists will 

most likely attempt to identify a single sampling technique that is most effective for their 

given study objectives.  One of the most common objectives associated with kokanee 

management is the ability to monitor trends in abundance and forecast the fishery.  Gill nets 

are likely the most effective gear for general trend monitoring as the gear samples kokanee 

that are in or entering the fishery.  Additionally, the adjustments provided herein should 

provide more accurate estimates of catch rate and population structure than mid-water trawl 

data.  Biologists using gill nets with the same configuration as described above need only 

divide their observed catch by the relative selectivity estimates (Table 2.4) to achieve an 

adjusted count (Shoup and Ryswyk 2016).  Mid-water trawls are size selective for small fish 

and likely provide poor estimates of kokanee length and(or) age structure.  As such, mid-

water trawl data should be used with caution when making inferences on older and larger 

fish.  However, mid-water trawls may be effective at addressing specific questions associated 

with kokanee management.  For instance, understanding recruitment dynamics of kokanee in 
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Lake Pend Oreille is of interest to managers of the region.  Mid-water trawls are likely the 

best gear to use in this instance because of their selectivity for small fish.  No single gear will 

be able to address all of the questions associated with kokanee management, but an improved 

understanding of gill net and mid-water trawl selectivity should simplify identifying an 

appropriate gear and ultimately improve management of kokanee.   
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Table 2.1. Surface area and maximum depth at full pool of seven lakes and 

reservoirs located throughout Idaho.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water body  Surface area  Maximum depth 

Lake Pend Oreille  380.0 km2  351.0 m 

Hayden Lake  15.4 km2  58.0 m 

Dworshak Reservoir  69.2 km2  192.0 m 

Lake Coeur d’Alene  129.0 km2  67.0 m 

Anderson Ranch Reservoir  20.3 km2  97.5 m 

Arrowrock Reservoir  31.5 km2  54.9 m 

Lucky Peak Reservoir  11.4 km2  60.0 m 
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Table 2.2. Model equations and parameters for five selectivity models used to 

estimate the retention probability of kokanee sampled using experimental gill 

nets.  Fish length is denoted as l, mesh of size j is mj, and all other symbols are 

constants.   

 

 

 

 

 

  

 

  

Model (parameters) Selection curve equation [sj (l)] 
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Table 2.3. Model parameters, residual deviance, and degrees of freedom (df) 

for five selectivity models estimated using maximum girth and total length of 

kokanee sampled using experimental gill nets.  Top models are indicated in 

bold text.  Model-specific parameters are defined in table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 Parameters   

Model 1 2 3 4 5 Deviance df 

Girth 

Normal scale 3.34 1.09    2,327.64 166 

Normal location 2.89 2.44    1,359.62 166 

Log-normal 1.11 0.25    1,278.98 166 

Gamma 14.69 0.17    1,453.59 166 

Bimodal 2.89 0.43 20.07 11.48 3.48 680.10 163 

 

Total length 

Normal scale 6.88 1.92    2,385.97 264 

Normal location 5.85 4.40    1,469.05 264 

Log-normal 1.85 0.21    1,232.66 264 

Gamma 20.07 0.26    1,433.58 264 

Bimodal 6.05 0.69 13.42 10.20 4.04 452.24 261 
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Table 2.4. The relative retention selectivity and overall relative selectivity by 

10-mm length bin for kokanee sampled using experimental gill nets (defined 

above).  The relative retention selectivity accounts for the retention 

probability; whereas, the overall relative selectivity accounts for the retention 

probability and the encounter probability. 

Length class (mm) Relative retention selectivity Overall relative selectivity 

50 – 59 0.243 0.095 

60 – 69 0.679 0.291 

70 – 79 0.384 0.178 

80 – 89 0.435 0.216 

90 – 99 0.727 0.382 

100 – 109 0.678 0.375 

110 – 119 0.628 0.365 

120 – 129 0.702 0.426 

130 – 139 0.600 0.379 

140 – 149 0.396 0.259 

150 – 159 0.421 0.286 

160 – 169 0.447 0.313 

170 – 179 0.621 0.448 

180 – 189 0.740 0.550 

190 – 199 0.753 0.575 

200 – 209 0.695 0.545 

210 – 219 0.651 0.523 

220 – 229 0.673 0.553 

230 – 239 0.748 0.629 

240 – 249 0.830 0.713 

250 – 259 0.882 0.772 

260 – 269 0.897 0.801 

270 – 279 0.896 0.815 

280 – 289 0.902 0.836 

290 – 299 0.925 0.872 

300 – 309 0.958 0.919 

310 – 319 0.987 0.962 

320 – 329 1.000 0.991 

330 – 339 0.994 1.000 

340 – 349 0.971 0.992 

350 – 359 0.938 0.972 

360 – 369 0.897 0.943 

370 – 379 0.850 0.905 

380 – 389 0.798 0.862 

390 – 399 0.745 0.814 

400 – 409 0.694 0.769 

410 – 419 0.654 0.734 

420 – 429 0.629 0.714 

430 – 439 0.620 0.712 
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Figure 2.1. Relative retention selectivity (solid line) and overall relative 

selectivity (dashed line) by 10-mm length bin for kokanee sampled using 

experimental gill nets.  The eight dotted lines represent selectivity curves 

for individual meshes (1.27-, 1.90-, 2.54-, 3.81-, 5.08-, 6.35-, 7.62-, and 

10.16-cm stretch measure mesh from left to right). 
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Figure 2.2. Relative length frequency of kokanee sampled from 2015–2017 

using trawls (top panel) and gill nets (bottom panel).  Mid-water trawling data 

are shown for the large trawl (white bars) and small trawl (hashed bars).  Gill 

netting data are separated into observed (black bars) and adjusted (gray bars) 

counts.  Sample sizes are provided for all gear types.  
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Abstract 

Growth is arguably the most important dynamic rate function due to its interaction 

with survival and recruitment.  As such, understanding the mechanisms underlying growth is 

a primary focus of fisheries research.  Kokanee Oncorhynchus nerka in Lake Pend Oreille, 

Idaho provide an interesting case study for investigating the factors that influence growth.  

Early-run and late-run kokanee occur in Lake Pend Oreille, but early-run fish generally grow 

faster than late-run fish. The observed growth disparity between early- and late-run fish could 

be due to genetic differences between each group.  Conversely, a common hatchery practice 

of slowing growth by reducing feed has been hypothesized to elicit a compensatory growth 

response in early-run fish and explain the size difference between breeding groups.  Using 

two different experiments, we tested the hypotheses that 1) early-run kokanee are genetically 

disposed to grow faster than late-run kokanee at identical water temperatures or 2) feed 

restriction elicits a compensatory growth response in early-run kokanee that explains the 

observed size difference between breeding groups.  Estimates of mean lengths, weights, 

Fulton’s condition factor, and specific growth rate were not statistically different (P ≥ 0.05) 

between early-run and late-run fish in the first experiment.  However, water temperature was 

positively related to mean lengths, weights, Fulton’s condition factor, and specific growth 

rate for both breeding groups.  Fish subjected to food deprivation exhibited an increased 

growth rate and obtained weights similar to control fish.  Overall, our results suggest early- 

and late-run fish have similar growth potential, but certain hatchery practices likely provide 

early-run fish with an initial growth and(or) size advantage.    
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Introduction 

Growth is arguably the most important dynamic rate function governing fish 

population dynamics.  Growth is related to survival and recruitment through its effects on 

myriad factors including size at maturity, size-mediated predator-prey interactions, and size-

related mortality.  For instance, the length and age of adult female Black Rockfish Sebastes 

melanops were positively related to growth of their progeny (Berkely et al. 2004).  Large 

larval Colorado Pikeminnow Ptychocheilus lucius (44 mm) exhibited a higher survival rate 

(100%) than small (30 mm; 3.3% survival) and intermediate length (36 mm; 6.7%) fish 

subjected to starvation over a 210-d laboratory experiment (Thompson et al. 1991).  The 

authors concluded that smaller individuals lacked the lipid reserves necessary to survive 

periods of low prey abundance.  In addition, growth provides insight on the abiotic (e.g., 

water temperature) and biotic (e.g., habitat, prey resources) conditions of a fish’s 

environment (Quist et al. 2012).  For instance, growth of Creek Chubs Semotilus 

atromaculatus, Red Shiners Cyprinella lutrensis, and Green Sunfish Lepomis cyanellus was 

positively related to habitat quality (i.e., wood) in prairie streams in Fort Riley Military 

Reservation, Kansas (Quist and Guy 2001).  Given the extent of the indirect and direct 

effects of growth on the ecology and life history of fishes, understanding the mechanisms 

underlying growth is critical. 

Kokanee Oncorhynchus nerka provide an interesting subject for understanding the 

mechanisms influencing growth in fish.  Kokanee is a widely distributed species and is often 

the focus of management agencies due to its ecological and recreational importance.  

Throughout its distribution, kokanee exhibit variable life-history patterns varying from 

stream spawning (Eiler et al. 1992) to shoreline spawning at depths greater than 20 m 

(Hassemer and Rieman 1981).  However, naturally reproducing fish are generally 
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categorized as shore-spawning or stream-spawning ecotypes.  Management agencies often 

employ hatchery programs to supplement or maintain kokanee populations.  The 

cooccurrence of hatchery propagation and naturally reproducing populations can create a 

complex mixture of wild and hatchery groups exhibiting different breeding strategies.  The 

complex assortment of kokanee breeding groups is epitomized in Lake Pend Oreille (LPO), 

Idaho.  In LPO, wild kokanee are categorized as either early- or late-run fish.  Early-run 

kokanee spawn in tributaries from August to September; whereas, late-run kokanee spawn in 

tributaries and along shorelines from November to December.  Tributary-spawning fish 

(early-run and late-run) are also collected by the Idaho Department of Fish and Game for 

broodstock to support statewide kokanee needs.  Progeny from LPO broodstock collections 

are stocked back into the lake; thus, kokanee in LPO represent wild-origin or hatchery-origin 

fish that exhibit early-run or late-run spawning behavior.  In addition to disparate spawning 

times, growth differences exist among breeding groups (Whitlock et al. 2018).  Based on 

trawl data collected from LPO from 2005–2015, early-run hatchery kokanee were on average 

about 20 mm longer than late-run hatchery kokanee and 20–30 mm longer than wild-origin 

(early-run and late-run) fish of the same age (0–3 y; Idaho Department of Fish and Game, 

unpublished data).  Although the disparity in average length between hatchery and wild fish 

is likely explained by hatchery rearing (e.g., consistent water temperatures and feeding); the 

difference in length between early-run and late-run hatchery fish is poorly understood.  

Understanding the mechanisms underlying the growth disparity between early- and late-run 

kokanee is important from a management perspective.  Fast-growing kokanee require less 

time in hatcheries to reach “stockable” lengths and are more likely to avoid size-selective 

predation than slow-growing fish once stocked (Miller et al. 1988).  Furthermore, fast-
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growing fish have been shown to have higher catchability due to behavioral characteristics 

associated with fast growth (e.g., aggressiveness; Biro and Post 2008; Tsuboi et al. 2016).  

As such, identifying the factors that contribute to fast growth is an important management 

consideration for kokanee. 

Identifying the primary factors that influence growth in kokanee is difficult.  The 

observed growth difference among kokanee breeding groups could be influenced by a 

multitude of extrinsic (e.g., water temperature, dissolved oxygen levels, food availability) 

and intrinsic (e.g., hormone secretion, age, morphology) factors (Moyle and Cech 1982).  

However, we were primarily interested in addressing two hypotheses surrounding the growth 

disparity between early-run and late-run hatchery fish.  Kokanee exhibited genetic 

differentiation based on breeding group (Whitlock et al. 2018) suggesting that early-run 

hatchery fish may be genetically predisposed (e.g., food-conversion efficiency) to grow faster 

than late-run hatchery fish (Huston and Deangelis 1987).  Conversely, certain hatchery 

practices could explain the growth disparity between hatchery-reared kokanee.  Due to 

disparate spawning times of wild fish, the development of early-run larvae reared in the 

hatchery precedes that of late-run progeny by about two months.  In an effort to stock 

similar-size kokanee, hatchery managers may “hold back” early-run hatchery fish by 

reducing feed such that they are of similar size to late-run kokanee at stocking (June; J. 

Rankin, personal communication).  Retarding growth of early-run kokanee may result in a 

compensatory growth response whereby periods of depressed growth are followed by periods 

of accelerated growth (Ali et al. 2003; Dmitriew 2011).  For instance, Yellow Perch Perca 

flavescens subjected to six cycles of 12 d of food deprivation (1.0% body mass day -1) 

followed by ad libitum feeding exhibited faster growth and achieved similar final weights as 
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control fish (continuous ad libitum feeding) after 147 d (Hayward et al. 2001).  In an effort to 

determine the underlying cause of the observed growth differences between early-run and 

late-run fish, we experimentally tested the hypotheses that 1) early-run kokanee are 

genetically disposed to grow faster than late-run kokanee at identical water temperatures or 

2) feed restriction elicits a compensatory growth response in early-run kokanee that explains 

the observed size difference between breeding groups.    

 

Methods 

Experiment one  

In January 2017, approximately 300 early-run kokanee (mean length = 39.3 mm) 

were obtained from the Idaho Department of Fish and Game Cabinet Gorge Hatchery and 

transported to the University of Idaho.  A similar number of late-run kokanee (mean length = 

36.0 mm) were obtained from Cabinet Gorge Hatchery and transported to the University of 

Idaho in February, 2017.  Prior to being transported to the University of Idaho for 

experimentation, both groups were approximately 125-d post hatch and experienced the same 

hatchery conditions.  Specifically, both breeding groups were reared at the same water 

temperatures (8.0°C–10.0°C) and were fed the same food at the same rate (3.8% body 

weight).  Both groups were used to evaluate potential growth differences between breeding 

groups.  

 Fish were allowed to acclimate for 48 h in a 950 l flow-through tank at water 

temperature of 10°C (± 1°C).  During the acclimation period, fish were fed 3% of their body 

weight twice daily.  Following the acclimation period, 15 3.8 l flow-through aquaria were 

stocked with 15 randomly selected early-run kokanee (n = 225).  Each aquarium was 

randomly assigned to one of three water-temperature treatments (winter [4ºC (± 1°C)], spring 
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[10ºC (± 1°C)], and summer [15ºC (± 1°C)]) such that five aquaria were allocated to each 

treatment.  Water temperatures used during the experiment were based on mean seasonal 

water temperatures of LPO.  Kokanee were allowed to acclimate to their aquaria for 72 h 

before beginning the experiment.  During the acclimation period, water temperatures were 

maintained at 10ºC (± 1°C) for 24 h.  After 24 h, water temperatures were increased or 

decreased to obtain the desired treatment temperature.  After 72 h, kokanee were removed 

from their aquaria, anesthetized with MS-222 (75 mg/l; tricaine methanesulfonate, Western 

Chemical, Ferndale, WA), measured for fork length (nearest 1.0 mm), weighed (nearest 0.01 

g), and returned to their respective aquaria.  Fish were not fed at least 15 h prior to collection 

of length and weight data.  In an effort to reduce handling stress, individual fish were 

removed from the anesthesia bath using a 5 cm × 5 cm aquarium net and placed directly onto 

a polyvinyl chloride measuring board.  After a length was recorded, the fish was transferred 

to a 5 cm × 5 cm piece of nylon mesh that was set on a dry paper towel to absorb excess 

water.  The fish was then transferred to a plastic weigh boat, weighed, and placed in an 

aerated recovery bath.  Collection of length and weight data took about 10 s per fish.   

Fish were fed 3% of their body weight twice daily using Rangen Trout and Salmon 

Starter #1 (Rangen, Buhl, ID) for the duration of the experiment.  Feed rations of each 

aquarium were adjusted weekly to account for changes in weight and(or) fish density (i.e., 

mortalities).  Aquaria were cleaned daily.  Dissolved oxygen and water temperature were 

monitored weekly.  All fish were exposed to a 12 h light: 12 h dark cycle.  Every 7 d, 

kokanee were anesthetized with MS-222, measured for fork length, and weighed following 

the procedure described above.  On the 28th d of the experiment, fish were euthanized with 

an overdose of MS-222 (200 mg/l), measured for fork length, and weighed.   
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Experiment two   

  In February 2018, approximately 600 early-run kokanee (50.0 mm) were obtained 

from Cabinet Gorge Hatchery and transported to the University of Idaho to evaluate the 

potential for a compensatory growth response following starvation.  Fish were allowed to 

acclimate for 48 h in a 950 l flow-through tank at water temperature of 10°C (± 1°C).  During 

the acclimation period, fish were fed 3% of their body weight twice daily.  Following the 

acclimation period, 30 3.8 l flow-through aquaria were each stocked with 15 randomly 

selected kokanee.  Prior to stocking, fish were anesthetized with MS-222 (75 mg/l), measured 

for fork length (nearest 1.0 mm), weighed (nearest 0.01 g), and placed in an aquarium.  All 

fish were measured and weighed following the procedure described for experiment one.  Five 

aquaria were randomly assigned to one of five food-deprivation treatments: 7 d without feed 

(7 d), 14 d without feed (14 d), 21 d without feed (21 d), 28 d without feed (28 d), and 35 d 

without feed (35 d).  The remaining five aquaria served as controls.  Control fish were fed for 

the duration of the experiment and treatment fish were fed following completion of their food 

deprivation period until the end of the experiment.  Because compensatory growth most often 

occurs through hyperphagia (Ali et al. 2008), treatment and control fish were fed an excess 

ration (6% mean body weight) of Rangen Trout and Salmon Starter # 1 twice daily to allow 

for increased food intake.  Feed rations of each aquarium were adjusted weekly to account 

for changes in weight and(or) fish density (i.e., mortalities).  The experiment was run for 70 d 

to allow any growth compensation to manifest.  Water temperatures of all aquaria were held 

at 10°C (± 1°C) to mimic spring water temperatures in LPO.  All fish were exposed to a 12 h 

light: 12 h dark cycle.  Every 7 d, kokanee were anesthetized with MS-222, measured for 

fork length, and weighed.  Aquaria were cleaned daily.  Dissolved oxygen and water 
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temperature was monitored weekly.  On the final day of the experiment, fish were euthanized 

with an overdose of MS-222 (200 mg/L), measured for fork length, and weighed.   

 

Analysis 

For both experiments, average length and weight were estimated for each 

measurement period and aquarium.  The specific growth rate (SGR) was estimated for each 

measurement period and aquarium as: 

(
𝑙𝑛 𝑊𝑓 − 𝑙𝑛 𝑊𝑖

𝑡
) × 100 

where Wf  represents the average final weight of fish in an individual aquarium, Wi represents 

the average initial weight of fish in an individual aquarium, and t represents the time between 

final and initial weight measurements (Shoup and Michaletz 2017).  

Fulton’s condition factor (K) was also estimated for each measurement period and 

aquarium as: 

(
𝑊𝑥

𝐿𝑥
3 ) × 100,000 

where W is the final weight of fish x and L is the final length of fish x (see Nash et al. 2006; 

Neumann et al. 2012).  Estimates of K were averaged for each aquarium and used for 

statistical comparisons.   

 For each experiment, potential differences in length, weight, K, and SGRs between 

breeding groups and temperature treatments were evaluated using an analysis of variance 

(ANOVA) or analysis of covariance (ANCOVA; Ott and Longnecker 2010).  We were 

primarily interested in potential long-term growth patterns and thus focused our analysis on 

mean lengths, weights, Ks, and SGRs at the end of each experiment.  Because starting 
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weights and lengths differed between early- and late-run fish in experiment one, an 

ANCOVA was used to evaluate potential differences among final mean length, mean 

weights, and mean K between groups by treatment temperature.  Breeding group (early-run, 

late-run) served as the main effect and initial mean length or initial mean weight was 

included as a covariate to control for initial differences in length and weight between early- 

and late-run kokanee.  All other comparisons were evaluated using ANOVA.  In experiment 

two, mean lengths, weights, and SGRs of kokanee (treatments, controls) were likely 

influenced by the time period following initial feeding (Ali et al. 2008).  As such, final 

average lengths, weights, and SGRs were compared by the number of days since feeding 

commenced using an ANOVA.  For example, SGR of controls and 35-d fish were compared 

at the 35th day following initiation of feeding.  If differences in indices occurred, a Tukey 

post-hoc test was used to detect differences between treatments (Ott and Longnecker 2010).  

All analyses were conducted using R statistical software (R Core Development Team 2017) 

and were considered significant at α = 0.05. 

 

Results 

Experiment one  

Over the course of the experiment, five fish (3 early-run; 2 late-run) died.  At the 

beginning of the experiment, average lengths differed between breeding groups (Figure 3.1).  

Early-run kokanee averaged 39.28 mm (SD = 0.98) in length and late-run fish were 36.07 

mm (1.21) in length.  As the experiment progressed, average lengths of all treatment groups 

increased and were positively influenced by water temperature.  Fish reared in 4°C water 

were the shortest (P < 0.001) among treatment groups.  Early-run fish raised in 4°C water 
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had a final mean length of 46.09 mm (0.61) and late-run fish in the same treatment averaged 

43.58 mm (0.98) in length at the end of the experiment.  Both early- and late-run fish reared 

in 15°C water obtained the longest mean length of any treatment group (early-run = 47.75 

mm [1.12], late-run = 48.10 mm [0.79]) by the conclusion of the experiment.  At the end of 

the experiment, mean lengths of early- and late-run fish were not statistically different for the 

4°C (F1,9 = 0.41, P = 0.54) and 10°C (F1,9 = 2.07, P = 0.19) treatments.  However, early- and 

late-run fish reared in 15°C water exhibited a significant difference in mean length at the end 

of the experiment (F1,9 = 17.69, P = 0.0001).   

At the beginning of the experiment, average weights differed between breeding 

groups (Figure 3.1).  Early-run kokanee averaged 0.39 g (0.02); whereas, late-run fish 

exhibited a mean weight of 0.28 g (0.01).  As the experiment progressed, average weights 

were variable and primarily influenced by water temperatures.  Both breeding groups 

obtained the lowest final mean weight in 4°C water (P < 0.001) at the conclusion of the 

experiment.  At the termination of the experiment, early-run fish raised in 4°C water 

averaged 0.64 g (SD = 0.19) in weight and late-run fish in the same treatment had a mean 

weight of 0.51 g (0.14).  Early-run fish raised in 10°C water were the heaviest among 

treatments (0.73 g, 0.25) at the end of the experiment; whereas, late-run kokanee obtained the 

heaviest mean weight in 15°C water (0.71 g, 0.15) over the same time period.  At the end of 

the experiment, mean weights between early- and late-run fish were not statistically different 

for the 4°C (F1,9 = 2.32, P = 0.18), 10°C (F1,9 = 0.85, P = 0.39), or 15°C (F1,9 = 2.22, P = 

0.19) treatments.   

Early-run kokanee exhibited better body condition than late-run fish at comparable 

time frames (Figure 3.2).  After 14 d, early-run fish had an average K between 0.66 (0.06) 
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and 0.69 (0.09) and late-run fish had an average K between 0.61 (0.05) and 0.64 (0.05) over 

the same time frame.  Similar patterns in condition were apparent at the end of the 

experiment.  For instance, estimates of K of all early-run fish were about 0.64 at 28 d; 

whereas, K of late-run fish were between 0.59 (0.05) and 0.65 (0.05) over the same time 

period.  Average K was influenced by water temperature, but the effects were variable.  Fish 

reared in 10°C and 15°C water tended to have better condition than fish raised in 4°C water.  

At the end of the experiment, K was not statistically different between early- and late-run fish 

at any temperature treatment (4°C [F1,9 = 4.45, P = 0.08], 10°C [F1,9 = 1.08, P = 0.34], 15°C 

[F1,9 = 1.88, P = 0.22]). 

Specific growth rates between kokanee breeding groups were variable through time 

and among treatments (Figure 3.3).  Late-run fish in 10°C treatment exhibited the fastest 

growth rate of all treatments.  For instance, late-run kokanee in the 10°C treatment averaged 

4.58% (0.62) growth each day in the first week of experimentation; whereas, all other 

treatments had SGRs of 3.62% or less.  Overall, SGRs declined through time and converged 

on relatively similar values at the end of the experiment.  No difference in growth between 

breeding group was apparent at the end of the experiment (F1,29 = 0.33, P = 0.57).  However, 

water temperature influenced the growth rate of both groups (F2,29 = 28.12, P < 0.001).  The 

final SGR of fish held in 4°C water was significantly less than that of fish held in 10°C and 

15°C water (P < 0.001), but there was no difference in mean SGR between fish in the 10°C 

and 15°C treatments (P = 0.86).  
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Experiment two 

A single fish died over the course of the experiment.  The mean length of study fish 

varied little over the course of the experiment (Figure 3.4).  At the beginning of the 

experiment, the mean length of all groups was 50.53 mm (1.37) and there was no significant 

difference between groups (F5,29 = 0.65, P = 0.66).  Control fish obtained the longest average 

length of all fish after 70 d (74.29 mm [7.35]).  However, control fish exhibited similar 

average lengths as treatment fish for a given time period.  For example, average lengths of 

treatment and control fish varied from 61.37 mm (35 d) to 65.70 mm (14 d) 35 d after 

initiation of feeding.  No significant differences in average length was observed between 

control fish and treatment groups regardless of the time period (P ≥ 0.05). 

Treatment fish exhibited fairly consistent weight gain regardless of their treatment 

(Figure 3.4).  The mean weight of study fish was 0.86 g (0.03) at the beginning of the 

experiment and there was no significant difference between groups (F5,29 = 2.04, P = 0.11).  

Control fish obtained the largest maximum weight of all fish and achieved an average weight 

of 3.22 g (0.96) after 70 d.  In general, food-deprived fish exhibited mean weights similar to 

controls for a given time period (P > 0.05).  The 14-d treatment group was the only treatment 

that showed a significant difference in mean weight at the end of the experiment when 

compared to controls (P = 0.03).  Fish in the 14-d treatment group averaged 2.99 g (0.78) 

after 56 d of excess feeding; whereas, controls had a mean weight of 2.64 (0.77).    

Average K of study fish was fairly consistent throughout the experiment (Figure 3.5).  

Control fish tended to exhibit the highest K regardless of the time period.  Average K 

decreased with increasing food deprivation time, but quickly achieved condition values 

similar to controls once feeding resumed.  However, the time required to reach K values 



44 

 

similar to controls was related to the amount of time fish were deprived of food.  For 

instance, 7-d fish obtained an average K similar to control fish after 7 d of feeding; whereas, 

28-d fish obtained a mean K similar to control fish after 42 d of feeding.  Excluding 35-d 

fish, all fish achieved a mean K similar to control fish by the end of the experiment (P > 

0.05).  Fish deprived of food for 35 d had the lowest mean K (0.73 [0.01]) and were the only 

group to exhibit a mean K that was statistically different from that of controls (P = 0.01).   

Specific growth rates of treatment fish tended to be positively related to food 

deprivation period (Figure 3.6).  For instance, 7-d fish obtained a maximum average SGR of 

3.13% (0.19) following feeding; whereas, 28-d fish had a maximum mean SGR of 3.42% 

(0.40) following refeeding.  However, the longer fish were deprived of food the longer it took 

those fish to obtain their maximum SGR.  Fish deprived of food for 14 d achieved a SGR 

(3.05% [0.22]) after 7 d of feeding; whereas, 35-d fish obtained a maximum growth rate 

(3.25% [0.09]) after 28 d of feeding.  All fish deprived of food for more than 7 d exhibited a 

higher SGR than controls for the duration of the experiment.  After 70 d, 35-d (2.43% [0.32]) 

and 28-d (2.41% [0.13]) fish had the highest specific growth rates followed by 21-d (1.80% 

[0.18]), 14-d (1.60% [0.08]), controls (1.40% [0.15]), and 7-d (1.32% [0.07]) fish.  Fish 

starved for 14 d and 28 d were the only groups to exhibit growth rates that were statistically 

higher than controls (14 d [P = 0.00]; 28 d [P < 0.001]) at comparable time frames.  All other 

treatments were not statistically different from controls at similar time periods (P > 0.05).  

 

Discussion 

Growth in fishes is influenced by numerous intrinsic and extrinsic factors that often 

interact and change with a fishes’ age (Moyle and Cech 1982).  Our results confirm the 

positive effect of water temperature on the growth rate of fish.  Early-run and late-run 
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kokanee reared in 10°C and 15°C water exhibited significantly faster growth rates than fish 

raised in 4°C water.  In controlled experiments, the growth rate of Sockeye Salmon was 

maximized at 2.60% d-1 at 15°C (Brett et al. 1969).  Juvenile Atlantic Salmon Salmo salar 

and Rainbow Trout O. mykiss increased their growth rate by as much as nine times as water 

temperature increased from 4°C to 16°C (Austreng et al. 1987).  However, early- and late-run 

fish were similarly influenced by increasing water temperature in the current study 

suggesting that sympatric fish would have to exhibit divergent behavior (e.g., habitat use, 

diet) for differences in growth to manifest.  Whitlock et al. (2018) suggested that the 

observed differences in growth between adult (age 2–4) early-run and late-run wild kokanee 

in LPO was due to differences in behavior and(or) physiology related to genetic 

differentiation between groups.  Despite the findings of Whitlock et al. (2018), we did not 

observe meaningful differences in length, weight, or SGR between early-run and late-run 

kokanee.  However, the current study focused on age-0 fish and did not allow for potential 

differences in behavior or physiology that may manifest in wild, adult fish.  The offspring of 

two sympatric Arctic Charr Salvelinus alpinus morphs exhibited incongruent growth patterns 

in Lake Fjellfrøsvatn, Norway (Knudeson et al. 2015).  The authors suggested that divergent 

growth patterns were due to differences in habitat use whereby one morph occupied the 

profundal zone and exhibited consistent growth rates and the other morph occurred in the 

littoral zone and exhibited seasonal fluctuations in growth.  Early- and late-run hatchery 

kokanee are stocked in the same locations in LPO and are thought to occupy the same habitat 

type (limnetic zone) based on standard mid-water trawl surveys.  Furthermore, the observed 

growth disparity likely occurs early in life as evidenced by the consistent size difference 

among all age classes of early- and late-run kokanee in LPO.  As such, our results suggest 
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that observed growth difference between early- and late-run kokanee is due to extrinsic, 

rather than intrinsic, factors.     

The response of kokanee to periods of food deprivation may partially explain the 

difference in mean length observed in LPO.  The average growth rate of control fish was 2.38 

d-1 (SD = 0.44) during their first week of feeding; whereas, fish deprived of food exhibited 

growth rates varying from 2.28 d-1 (0.24; 35 d) to 3.13 d-1 (0.19; 7 d) during the first week of 

re-feeding.  Similar patterns of increased growth rate following periods of food deprivation 

have been reported for various fishes.  Atlantic Salmon receiving restricted rations for 37 d 

attained the same body size as control fish after 215 d of feeding (Nicieza and Metcalfe 

1997).  Sockeye Salmon starved for 1–3 weeks achieved the mean weight of control fish after 

8 weeks of feeding (Bilton and Robins 1973).  Despite the accelerated growth rate of 

kokanee in experiment two, none of the treatment groups obtained final mean weights similar 

to control fish.  However, when weights were compared by post-feeding time, all treatment 

groups equaled or exceeded the mean weight of controls.  Six weeks following feeding of 

excess rations, 7-d, 14-d, 21-d, and 28-d treatments had average weights between 1.88 g (SD 

= 0.54) and 2.04 g (0.53); whereas, controls had a mean weight of 1.88 g (0.56).  Fish starved 

for 14 d were the only treatment group to achieve an average weight that was significantly 

heavier than that of controls.  Although 14-d fish were the only group to surpass the mean 

weight of controls, these results suggest kokanee possess the capacity to overcompensate for 

lost growth and obtain heavier mean weights than controls.  Notwithstanding, it is unclear if 

accelerated growth at age 0 would manifest as appreciable size differences in adult fish.   

If compensatory growth causes long-term size differences between early- and late-run 

kokanee, the growth rate of early-run fish would have to equal or exceed that of late-run fish 
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over long-time frames.  However, previous research suggests that prolonged periods of 

accelerated growth are rare.  Of the 50 growth compensation studies reviewed by Ali et al. 

(2008), only one (Hayward et al. 1997) reported changes in final size that would likely 

perpetuate to later life stages.  Hayward et al. (1997) subjected hybrid sunfish Lepomis 

cyanellus × L. macrochirus to repeated cycles of no feeding and refeeding that varied in 

length from 2 d–14 d.  Sunfish subjected to the 2-d treatment outgrew controls by two times 

and fish from the 14-d treatment exceeded growth of controls by about one and a half times 

at the end of the 105-d experiment.  The growth rate of food-deprived sunfish never declined 

to that of control fish.  However, Hayward et al. (1997) continually subjected treatment fish 

to feed-no feed cycles, so it is unclear if the growth trajectories of treatment fish would 

persist if they were fed similar to controls.  Age-1 Arctic Charr fed a restricted diet for 8 

weeks and then fed ad libitum for 8 weeks showed an initial increase in growth that then 

decreased to levels similar to that of control fish (ad libitum feeding; Miglavs and Jobling 

1989).  In the current study, kokanee generally resumed growth rates commensurate with 

controls once a “normal” growth trajectory was achieved.  If early- and late-run kokanee 

exhibit similar growth patterns in LPO, early-run fish would have to achieve and maintain an 

initial size advantage over late-run fish for long-term growth disparities to manifest.   

 Differences in sizes at stocking could potentially influence the size disparity 

observed between early- and late-run fish in LPO.  Hatchery staff attempt to produce 

similarly sized early- and late-run fish at the time of stocking; however, early-run kokanee 

may exceed the length of late-run fish by about 13 mm in a given year (J. Rankin, Idaho 

Department of Fish and Game, personal communication).  The initial disparity in size 

between early- and late-run fish could persist assuming the growth rate of early-run fish 
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never declined below that of late-run fish.  Bimodal size distributions can be perpetuated 

through time assuming an initial size disparity and constant growth rates (Huston and 

Deangelis 1987).  Furthermore, differences in growth rates between sympatric groups would 

be amplified in relation to divergences in growth rates.  As such, a compensatory growth 

response of early-run fish coupled with an initial size advantage would magnify the disparity 

in size between early- and late-run fish.  Nonetheless, it remains unclear how size and growth 

rate at age 0 influence long-term growth trajectories.  Juvenile size and growth rate have been 

shown to influence a suite of life-history traits (e.g., adult growth rates, reproductive success) 

in adult cichlids Simochromis pleurospilus (Taborsky 2006).  The author reported that 

juvenile growth rate (and size) influenced adult size, but noted that growth rates were highly 

flexible and could be altered through feeding regimes.  Previously food deprived Atlantic 

Salmon displayed full compensation in autumn, but exhibited slower growth rates and lipid 

reserves than control fish the following spring (Morgan and Metcalfe 2001).  Presumably, 

early-run fish would be able to maintain a size advantage over late-run fish, but without long-

term data on growth-manipulated kokanee, it is difficult to know how accelerated growth in 

juvenile fish would influence the growth of kokanee at later life stages.   

The primary goal of this research was to identify the cause of divergent growth in 

sympatric breeding groups of kokanee.  We hypothesized that the observed growth difference 

between early- and late-run fish was due to each group’s respective genetics.  However, 

early- and late-run kokanee did not exhibit divergent growth patterns under experimental 

conditions suggesting that observed growth differences are due to factors other than those 

related to the genetics of each breeding group.  The growth rate of both groups responded 

similarly to changes in water temperature implying that early- and late-run fish would have to 
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exhibit different behavior (e.g., diet, habitat use) for a growth difference to manifest.  In light 

of the results of the first experiment, we hypothesized that the hatchery practice of retarding 

growth of early-run fish would result in a compensatory growth response and the observed 

differences in length between breeding groups.  Our results suggest kokanee possess the 

ability to overcompensate for lost growth following periods of food deprivation and support 

the hypothesis that growth retardation of hatchery fish may partially explain the observed 

growth difference between early- and late-run fish.  In addition, our results provide valuable 

insight for kokanee management.  Controlled feed restriction in hatcheries could be used to 

positively influence the growth rate of age-0 kokanee.  Increased growth rates would likely 

reduce the amount of time fish spend in the hatchery and even small increases in size may 

help juvenile fish avoid size-selective mortality (e.g., predation, starvation; Miller et al. 

1988).  However, growth compensation has been associated with considerable costs 

including hyperphagia-related predation, growth abnormalities, and decreased longevity (Ali 

et al. 2008; Inness and Metcalfe 2008).  As such, large-scale growth manipulations should be 

used with caution.  Although disentangling the factors that influence growth in fishes is 

difficult, an improved understanding of growth will help advance the management and 

conservation of economically and ecologically important species.   
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Figure 3.1. Average fork length (top panel) and weight (bottom panel) for early- 

(solid line; solid symbols) and late-run (dashed line; open symbols) kokanee 

raised in 4°C (triangle), 10°C (square), and 15°C (circle) water. 
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Figure 3.3. Mean specific growth rate for early- (solid line; solid symbols) 

and late-run (dashed line; open symbols) kokanee raised in 4°C (triangle), 

10°C (square), and 15°C (circle) water. 
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Figure 3.4. Average fork length (top panel) and weight (bottom panel) following 

initial feeding for early-run kokanee starved for 7 d (solid ×), 14 d (open triangle), 

21 d (open diamond), 28 d (open circle), and 35 d (open square).  Control fish are 

indicated by solid squares. 
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Figure 3.5. Average Fulton condition factor for early-run kokanee 

starved for 7 d (solid ×), 14 d (open triangle), 21 d (open diamond), 28 

d (open circle), and 35 d (open square).  Control fish are indicated by 

solid squares. 
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Figure 3.6. Average specific growth rate following initial feeding for early-

run kokanee starved for 7 d (solid ×), 14 d (open triangle), 21 d (open 

diamond), 28 d (open circle), and 35 d (open square).  Control fish are 
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Abstract 

Ontogenetic shifts represent important transitions that can influence how fish interact 

with their environment and other organisms.  However, ontogenetic shifts are rarely placed 

into a population context due to the difficulty of incorporating the vagaries of size-mediated 

interactions.  In an effort to better understand how kokanee Oncorhynchus nerka and 

Opossum Shrimp Mysis diluviana (hereafter Mysis) potentially compete for zooplankton 

prey, we investigated the role of ontogenetic shifts in diet as they relate to interactions 

between species in Lake Pend Oreille, Idaho.  Contemporary data were used to understand 

the short-term, spatiotemporal overlap in diet and distribution between Mysis and kokanee.  

Historical data were evaluated within the context of ontogenetic shits to better understand the 

long-term, population-level ramifications of interactions between Mysis and kokanee.  Diet 

analysis revealed age-specific divergences in diet whereby juvenile kokanee primarily 

consumed copepods and adult kokanee preferentially consumed cladocerans.  Our results 

also suggest kokanee and Mysis exhibit diet overlap that peaks in the autumn.  Age-specific 

diets coupled with seasonal diet overlap suggest Mysis primarily compete with adult fish and 

have the potential to influence kokanee population structure.  Following declines in Mysis 

density, cladoceran densities increased and adult kokanee experienced pronounced increases 

in growth.  Concurrently, age-0 kokanee exhibited a distinct increase in abundance and a 

subsequent decrease in growth.  Collectively, our results highlight the role ontogenetic diet 

shifts play in influencing competitive interactions and provide managers with an improved 

understanding of the mechanism by which Mysis influence kokanee growth and abundance.   
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Introduction 

Competitive interactions are characterized by spatiotemporal overlap in the use of a 

limited resource and theoretically result in declines in the fitness and density of inferior 

competitors (Morin 1999).  As such, interspecific competition and its effects have long been 

a major focus of ecologists.  However, clear patterns surrounding competitive interactions 

have remained elusive due to the confounding effects of ontogenetic shifts in diet and 

behavior that often occur in size-structured populations (Rose et al. 2001).  Competing 

species can also mitigate interactions by using alternative resources, further obscuring 

competitive relationships (Morin 1999).  Despite the challenges associated with identifying 

interspecific competition, understanding how species interact is incredibly important for 

explaining ecological processes and guiding management actions.  

The importance of understanding the mechanisms underlying competition is typified 

in systems with cooccurring kokanee Oncorhynchus nerka and Opossum Shrimp Mysis 

diluviana (hereafter Mysis) populations.  Kokanee is a zooplanktivore that provides valued 

recreational fisheries and represents an important prey resource for economically, socially, 

and ecologically important species such as Bull Trout Salvelinus confluentus and Rainbow 

Trout O. mykiss (Wydoski and Bennett 1981; Paragamian and Bowles 1995).  In an effort to 

improve the size structure of kokanee (and other sport fish), Mysis where widely introduced 

in the mid-20th century throughout systems in North American and Europe (Nesler and 

Bergersen 1991).  Ironically, recipient fish populations exhibited inconsistent patterns in 

growth, and population declines of kokanee were widely reported following introductions of 

Mysis (Lasenby et al. 1986; Bowles et al. 1991; Northcote 1991).  Mysis were later identified 

as a poor prey resource for kokanee due to opposing diel vertical migrations (Beeton 1960; 

Johnston 1990; Levy 1991) and proved to be an effective consumer of the preferred prey of 
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kokanee (i.e., cladoceran zooplankton).  In Lake Pend Oreille, Idaho Daphnia spp. and B. 

longirostris were generally available from April to December prior to the introduction of 

Mysis, but were restricted to July and August following establishment of Mysis (Rieman and 

Falter 1981).  The negative effect of Mysis on the composition and distribution of 

zooplankton led to the hypothesis that Mysis negatively influence kokanee through resource 

competition (Cooper and Goldman 1980; Rieman and Falter 1981; Beattie and Clancey 1991; 

Bowles et al. 1991; Chipps and Bennett 2000).  However, a direct link between Mysis’ 

influence on zooplankton and potential effects on kokanee populations has remained difficult 

to identify.  

Intuitively, age-0 fish should be more susceptible to competitive interactions than 

older fish due to their low energy reserves and limited prey options (Hjort 1914; Cushing 

1969, 1990).  However, previous research suggest age-0 kokanee are less susceptible to 

competitive interactions with Mysis than adult fish.  Age-0 kokanee exhibited no difference 

in lipid content or stomach fullness in lakes with and without Mysis; whereas, age-1 fish 

exhibited decreasing lipid content in systems with Mysis when compared to systems without 

Mysis (Clarke et al. 2004).  As competition between Mysis and kokanee is largely postulated 

on the ability of Mysis to regulate the density of seasonally available cladocerans (Rieman 

and Falter 1981), age-specific patterns in resource use become important considerations for 

understanding kokanee-Mysis interactions.  Assuming the dietary requirements of adult 

kokanee differ from juvenile fish, kokanee-Mysis interactions may exhibit age-specific 

patterns whereby adult fish are disproportionately influenced by Mysis.  However, 

competitive interactions between Mysis and kokanee may be complicated by mitigatory 

behavior of one or both species.  For instance, juvenile fish may seek alternative prey 
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resources to limit competitive interactions with Mysis.  Similarly, adult kokanee may 

partition resources in space and time to avoid competing with Mysis.  Notwithstanding, the 

ability to evaluate predictions associated with age-specific patterns in competition between 

Mysis and kokanee are limited by a general paucity of data.  As such, we sought to evaluate 

Mysis-kokanee interactions from an age-specific context with a focus on dietary and spatial 

overlap.  In addition, we leverage data surrounding a system-wide collapse of Mysis to better 

understand the population-level effects of resource overlap between Mysis and kokanee in 

Lake Pend Oreille, Idaho.  

  

Methods  

Study area 

Lake Pend Oreille is a large (383.0 km2), deep (mean depth = 164.0 m), meso-

oligotrophic lake located in northern Idaho (Figure 4.1).  The northern basin of the lake is 

relatively shallow (<200.0 m maximum depth), while the majority of the southern basin is 

over 300.0 m deep.  Due to the variable bathymetry of the system, the Idaho Department of 

Fish and Game divides the lake into northern, middle, and southern sections (Figure 4.1).  

Mysis were introduced into Lake Pend Oreille between 1966 and 1970, became established 

by 1974, and annual densities averaged between 200–400 individuals m-3.  Concurrently, 

lake-wide kokanee abundance declined and remained at a depressed state until hatchery 

supplementation was initiated in the mid-1970s (Hoelscher et al. 1990).  Mysis and kokanee 

abundance remained relatively unchanged until 2011.  In 2011, Mysis exhibited an 

unexplained collapse and have averaged between 6 and 157 individuals m-3 annually from 

2011–2017.  In addition to kokanee, the fish assemblage of Lake Pend Oreille consists of 

Largescale Sucker Catostomus macrocheilus, Longnose Sucker C. catostomus, Northern 
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Pikeminnow Ptychocheilus oregonensis, Mountain Whitefish Prosopium williamsoni, Pygmy 

Whitefish P. coultreii, Slimy Sculpin Cottus cognatus, Peamouth Mylocheilus caurinus, Bull 

Trout, Westslope Cutthroat Trout Oncohynchus clarki lewisi, Rainbow Trout, Lake 

Whitefish Coregonus culpeaformis, Brook Trout S. fontinalis, Brown Trout Salmo trutta, 

Lake Trout S. namaycush, Yellow Perch Perca flavescens, Black Crappie Pomoxis 

nigromaculatus, Largemouth Bass Micropterus salmoides, Brown Bullhead Ictalurus 

nebulosus, Pumpkinseed Lepomis gibbosus, Northern Pike Esox lucius, Walleye Sander 

vitreus, and Tench Tinca tinca (Hoelshcer 1993).  During the majority of the year, copepods 

(Cyclops bicuspidatus, Calanoida spp.) are the most abundant zooplankton in the system 

(Clarke and Bennett 2002).  However, cladocerans (Daphnia spp., Bosmina longirostris, 

Diaphanasoma leuchtenbergianum) are relatively abundant during summer.   

 

Trawling 

Since 1998, kokanee population composition (e.g., length structure, age distribution) 

has been evaluated using annual mid-water trawling surveys.  Mid-water trawling was 

conducted at night during the new moon in August or September.  From 1998–2002, kokanee 

were sampled using an otter trawl that measured 13.7 m in length and had a 3.0 m × 3.0 m 

mouth.  From 2003–2017, kokanee were sampled with a fixed-frame trawl that had a 3.0 m × 

2.2 m opening and measured approximately 10.5 m in length.  Both trawls were constructed 

of graduated mesh starting at 32.0 mm at the mouth decreasing to 6.0 mm mesh at the cod 

end.  Thirty-six transects (12 per section) were randomly selected each year.  Prior to 

sampling, the vertical distribution of kokanee was determined using a Furuno Model FCV-

585 depth sounder with a 10º hull-mounted transducer (Furuno Electric Co, LTD, 
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Washington).  Each transect was sampled in a stepwise-oblique pattern to sample the entire 

kokanee layer (Rieman 1992).  Each step was defined by the net height and was towed for 

three minutes at a consistent speed (~1.6 m s-1).  Due to changes in sampling protocols, 

weight data (nearest 0.1 g) were collected from 1998–2017; whereas, weight and length data 

(nearest 1.0 mm) were collected from 2003–2017.  Ageing structures (e.g., scales, otoliths) 

were consistently removed from about 10 fish per 1-cm length bin from 1998–2017.  

Kokanee age was independently estimated by two readers and age-length keys were applied 

to the corrected length distribution of kokanee to represent the ages and lengths of all 

kokanee sampled (Isley and Grabowski 2007; Quist et al. 2012).   

In 2017, juvenile and adult kokanee were sampled with mid-water trawls three times 

per year (i.e., May, August, November) to evaluate age-specific food habits.  Mid-water 

trawling was conducted as described previously.  However, trawl sampling opportunistically 

focused on areas of high kokanee density to ensure adequate catch.  Following each tow, the 

net was retrieved, and five kokanee from each 1-cm length group were preserved with 90% 

ethanol for diet analysis.  Kokanee less than 150 mm in length were preserved whole after 

the body cavity was opened to aid in preservation of gut contents.  The stomachs of kokanee 

larger than 150 mm were removed and preserved whole.  In an effort to avoid digestion of 

gut contents, trawl sampling only occurred within two hours of sunset (Rieman and Bowler 

1980).  The diet of individual kokanee was assessed by removing the digestive tract from 

esophagus to pyloric caeca.  The stomach was opened and its contents were rinsed into a 

graduated cylinder.  Stomach contents were then subsampled until at least 200 individuals of 

the most abundant taxa were identified and enumerated (Hyslop 1980; Bunnell et al. 2011).  
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Due to varying degrees of digestion, zooplankton and macroinvertebrates were only 

identified to order (e.g., Cladocera, Hymenoptera).   

 

Hydroacoustics 

Since 1998, hydroacoustic surveys occurred immediately before or after annual mid-

water trawl sampling to provide abundance estimates.  Surveys consisted of six to eight 

transects varying in length from 3.6 to 7.7 km.  Each transect travelled from shore to shore at 

a boat speed of approximately 1.3 m s-1.  All surveys were conducted using a Simrad EK60 

echo-sounder equipped with a 120.0 kHz split-beam transducer (Kongsberg Maritime, 

Horten, Norway).  Kokanee density was estimated with Echoview software (Echoview 

Software, Hobart, Tasmania) using the echo-integration technique (Parker-Stetter et al. 

2009).  The density of kokanee along each transect was estimate as: 

𝜌 = (
𝑁𝐴𝑆𝐶

4𝜋10
𝑇𝑆
10

)0.00292 

where ρ is density (number of fish per ha), NASC is the total backscattering (m2/nautical 

mile2), and TS is the mean target strength (decibels) in the sampling area.  Kokanee 

abundance was estimated for each section by multiplying the geometric mean density by the 

area within a section.  Lake-wide and section-specific abundances were apportioned to age-

specific abundances by first separating age-0 kokanee (<100 mm) from older age classes 

based on a frequency histogram of target strengths.  Older age-classes (1–5 years) were 

further separated based on the age frequency identified from mid-water trawling data.  Age-

specific estimates of abundance were used in analyses.      

From 2015–2017, the spatiotemporal distribution of kokanee was sampled with 

hydroacoustic surveys.  Contemporary sampling was largely conducted using the methods 
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described above; however, the frequency was changed to elucidate monthly patterns in 

kokanee distribution.  Three to four transects per lake section (11 total transects) were 

sampled from April 2015 to December 2017.  All other facets of hydroacoustic surveys 

remained unchanged.   

 

Mysis and zooplankton sampling 

From 1998–2017, Mysis were sampled in June within one week of the new moon due 

to the negative phototaxis of Mysis (Rieman and Bowler 1980).  Mysis sampling intensity 

varied through time, but between eight and fifteen samples were annually collected from 

each lake section.  Mysis were collected with vertical hauls using a 1-m diameter net with a 

1,000 µm mesh body and a 500 µm mesh collection bucket.  The net was lowered to a depth 

of 45.7 m and raised to the surface at about 0.5 m s-1 (Rieman and Falter 1981).  The net was 

rinsed and all collected Mysis were preserved in 90% ethanol.   

From 2015–2017, Mysis and zooplankton were sampled monthly to evaluate their 

distribution, species composition (zooplankton), and the diet of Mysis.  All sampling was 

conducted at night within five days of the new moon.  From April 2015 to December 2017, 

Mysis and zooplankton were sampled at 10–12 randomly selected sites per lake section (34 

total sites).  Sites were randomly selected using a geographic information system based on 

500.0 m2 quadrats of the lake surface and were re-selected on a monthly basis.  Mysis were 

sampled once at each site following the sampling methods described above.  Zooplankton 

were sampled once at each site using a 0.5-m-diameter Wisconsin-style plankton net (80.0-

µm-mesh).  Zooplankton were sampled from a depth of 20.0 m to the surface at a speed of 
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0.4 m s-1 (Paragamian and Bowles 1995).  Mysis and zooplankton samples were preserved in 

90% ethanol.  

Mysis less than 10 mm in length are primarily herbivorous and less likely to compete 

with kokanee for zooplankton prey (Branstrator et al. 2000).  As such, our analysis focused 

on adult Mysis (>10 mm).  Adult Mysis density was estimated for each site and month by 

dividing the total number of adult Mysis sampled by the volume of water sampled.  In May, 

August, and November of 2017, five Mysis from each site were sampled for diet analysis.  

The gastric mill (i.e., foregut) of each individual was removed and transferred to a glass slide 

with melted glycerol jelly (Caldwell et al. 2015).  The contents were distributed throughout 

the melted glycerol jelly, covered with a coverslip, and analyzed under a compound 

microscope.  Contents in Mysis guts were identified to the lowest possible taxonomic level 

and enumerated.  Zooplankton prey were identified to order (e.g., Cladocera) based on 

diagnostic structures (e.g., caudal rami, mandibles; Chess and Stanford 1998; Johannsson et 

al. 1994).  

Zooplankton composition and density were estimated for each site and month.  

Zooplankton were identified and enumerated from 1.0–2.0 ml subsamples until 200–400 

zooplankton of the most abundant taxa were identified (Barbiero et al. 2009; Bunnell et al. 

2011).  Zooplankton were identified to the lowest possible taxonomic level.  Zooplankton 

density was estimated for each site and month by dividing the total number of zooplankton 

sampled by the volume of water sampled.   
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Analysis 

The potential influence of Mysis on kokanee was evaluated using data collected from 

1998–2017.  General patterns in the relationship between kokanee abundance and Mysis 

density was summarized as lake-wide averages for each year.  The analysis focused on age-0 

and adult fish (ages 3-5) to understand patterns in recruitment and abundance of kokanee.  

Although competition may ultimately result in changes in abundance, competitive 

interactions likely manifest as changes in fitness-related measures (e.g., growth, survival) 

prior to observable changes in density (Morin 1999).  As such, the relationship between 

Mysis density and kokanee condition was evaluated as age-specific changes in mean length 

and weight of kokanee before and after the Mysis collapse in 2011.  Because lake-wide 

averages likely obfuscate smaller-scale changes in kokanee length and weight, length and 

weight data were described by lake section.  Previous research has shown that mid-water 

trawls are size selective for small kokanee (Klein et al. in press).  As such, analysis of length 

and weight data focused on age-0 through age-3 kokanee to avoid erroneous conclusions 

based on small sample sizes of large, old fish (age-4 and age-5 kokanee).   

 The temporal dynamics of common zooplankton (Calanoida spp., Cyclops 

bicuspidatus, Bosmina longirostris, Diaphanosoma leuchtenbergianum, and Daphnia spp.) 

were originally evaluated on an annual basis.  However, annual patterns in zooplankton 

densities were similar among years and were combined as a monthly average from 2015–

2017 to aid in interpretation.  Patterns in the distribution of kokanee, Mysis, and zooplankton 

were evaluated by month and section to describe the temporal distribution of each species. 

Spatiotemporal patterns among kokanee, Mysis, and zooplankton were further analyzed to 

understand resource use and spatial overlap across taxa.  Biotic interactions among taxa were 
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evaluated by stratification period (stratified, unstratified), lake section, and year using linear 

regression.  Kokanee and Mysis density served as dependent variables and taxa-specific 

density of zooplankton were independent variables.  Kokanee and Mysis densities were also 

included as independent variables to evaluate spatial overlap between species.  Kokanee 

density could only be partitioned as age-0 and age-1 and older fish because monthly mid-

water trawling data were unavailable.   

Distribution models were fit using R statistical software (R Development Core Team, 

2018).  Candidate models were constructed using the dredge function in the MuMin package.  

Akaike’s information criterion adjusted for small sample size (AICc) was used to compare 

candidate models and select the best model (i.e., lowest AICc value; Burnham and Anderson 

2002). Models with a delta AICc (ΔAICc) less than or equal to two were considered 

plausible.  Models were further evaluated using the coefficient of determination (R2).  

In 2017, seasonal diet overlap was evaluated to understand potential interactions 

between kokanee and Mysis.  Diet was described as percent by number for cladocerans 

(Bosmina longirostris, Daphnia spp., Diaphanosoma leuchtenbergianum), copepods 

(Calanoida spp., Cyclops bicuspidatus), and an “other” category.  The other category for 

kokanee included Aranea, Coleoptera, Collembola, Diptera, Emphemoptera, Hymenoptera, 

Mysis, Odonata, and Ostracoda.  The other category for Mysis included rotifers and pollen.  

Mysis rarely consume an entire prey item and instead focus on soft, easily digestible portions 

of zooplankton prey (Grossnickle 1982; Smokorowski et al. 1982).  Thus, the total number of 

items consumed by Mysis is likely underestimated (Caldwell et al. 2015).  Notwithstanding, 

we were primarily interested in describing temporal patterns in diet and assume estimates of 

diet composition were consistent through time.  Due to the difficulty of sampling large 
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numbers of fish, Mysis and kokanee diets were summarized as lake-wide averages for each 

month (May, August, November) and age class (kokanee only).  Diet analysis focused on 

adult Mysis (≥ 10mm) and age-0–age-3 fish due to low catch of age-4 and age-5 kokanee in 

mid-water trawls.  

Diet overlap was described using the Schoener Index of diet overlap (α; Schoener 

1970): 

𝛼 = 1 − 0.5(∑|𝑝𝑥𝑖 − 𝑝𝑦𝑖|

𝑛

𝑖=1

) 

where n denotes the number of food categories, pxi represents the proportion of prey item i in 

the diet of species x, and pyi represents the proportion of prey item i in the diet of species y.  

Proportions were based on the number of individual prey items.  The Schoener Index varies 

from 0.0 to 1.0 with values over 0.60 denoting biologically significant diet overlap (Zaret and 

Rand 1971; Mathur 1977).   

 

Results 

The annual abundance of kokanee was negatively related to Mysis density from 

1998–2017 (Figure 4.2).  Following declines of Mysis in 2011, age-0 abundance peaked at 

over 16 million fish.  Similarly, age-3 through age-5 kokanee neared two million fish in 2013 

and 2014.  The relationship between average length of kokanee and the density of Mysis 

exhibited distinct, but alternative patterns by age class (Figure 4.3).  Age-0 and age-1 fish 

exhibited decreases in mean length following declines in Mysis; whereas, age-2 and age-3 

fish generally increased in average length after Mysis collapsed.  Patterns in mean weight 

were similar to those observed for mean length (Figure 4.4).  Age-0 and age-1 fish exhibited 

a decrease in mean weight following declines in Mysis density.  However, declines in mean 
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weight were most apparent in age-0 fish.  Age-2 and age-3 kokanee exhibited increases in 

mean weight following Mysis collapse, but the pattern was more distinct in age-3 fish.  In 

general, age-0 fish were the only group to exhibit spatial patterns in growth whereby fish 

were typically larger in the northern portion of Lake Pend Oreille (Figures 4.3 and 4.4).   

Zooplankton abundance and seasonal availability were variable and taxa specific in 

Lake Pend Oreille (Figure 4.5).  Calanoida spp. were relatively abundant throughout the year 

(mean ± SD; 6.45 ± 3.05 L-1), but exhibited a slight peak in abundance (14.47 ± 4.16 L-1) in 

May.  C. bicuspidatus occurred throughout the year in Lake Pend Oreille, but exhibited a 

peak in abundance (50.84 ± 15.16 L-1) in July.  Compared with copepods, cladocerans were 

less abundant and only available seasonally.  B. longirostris were relatively rare in Lake Pend 

Oreille, but exhibited two minor peaks in abundance in June (1.71 ± 0.14 L-1) and September 

(1.39 ± 0.47 L-1).  Daphnia spp. were generally absent from samples until May and then 

peaked in abundance in July and August (1.98 ± 0.90 L-1).  D. leuchtenbergianum were the 

most abundant cladoceran in Lake Pend Oreille.  D. leuchtenbergianum appeared in samples 

in May and exhibited peak densities in August and September (4.80 ± 0.71 L-1).   

Kokanee and Mysis had similar temporal distributions in Lake Pend Oreille (Figure 

4.6).  Average Mysis densities tended to be similar throughout Lake Pend Oreille and 

exhibited peaks in density in July among all lake sections.  Age-0 kokanee were most 

abundant in the southern portion of Lake Pend Oreille throughout the year and exhibited peak 

abundance in May and July.  Age-1 and older fish were also most abundant in the southern 

portion of Lake Pend Oreille and were most abundant in March.  Zooplankton composition 

was similar among sections in Lake Pend Oreille.   
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Kokanee and Mysis exhibited similar patterns in spatial use and overlap with 

zooplankton in Lake Pend Oreille (Table 4.1).  Mysis were positively associated with C. 

bicuspidatus, and D. leuchtenbergianum densities and negatively associated with Calanoida 

spp. densities.  Age-0 fish densities were predominately associated with stratification period 

and lake section; whereas, age-1 and older fish densities were positively related to the density 

of C. bicuspidatus, and D. leuchtenbergianum and negatively associated with copepod 

densities.  In general, Mysis and kokanee densities were positively associated regardless of 

the time period or lake section.     

 Kokanee and Mysis diets reflected the seasonal availability of zooplankton in Lake 

Pend Oreille (Figure 4.7).  In May, kokanee diets were dominated by copepods; whereas, 

Mysis primarily consumed pollen and rotifers over the same period.  Cladocerans were more 

prevalent in the diets of kokanee and Mysis in August when compared to May.  However, 

cladocerans were a relatively minor component of Mysis diets.  In November, Mysis 

consumed more cladocerans when compared to May and August.  Kokanee continued to 

consume cladocerans in November, but they constituted a smaller proportion of overall 

kokanee diets.  Schoener Index values largely reflected season-specific diet habits and 

increased from 0.11 in May to 0.58 in August (Table 4.2).  In addition to seasonal food 

habits, kokanee exhibited distinct age-specific patterns in consumption of zooplankton 

(Figure 4.7).  When cladocerans were available, age-2 and age-3 kokanee consumed higher 

proportions of cladocerans when compared to younger age classes.  For example, cladocerans 

composed about 36% of the diet of age-3 kokanee in November; whereas, cladocerans 

constituted about 12% of the diet of age-0 fish in the same month.   
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Discussion 

Our results suggest kokanee exhibit age-specific patterns in diet that influence how 

the species interacts with Mysis.  Cladocerans comprised between 75% and 57% of age-2 

and age-3 kokanee diets in August; whereas, age-0 and age-1 fish contained between 15% 

and 39% over the same time frame.  Although our results highlight apparent ontogenetic 

shifts in diet of kokanee, the majority of literature surrounding kokanee food habits suggest 

kokanee diets vary little with age (Bevelhimer and Adams 1993; Stockwell and Johnson 

1997; Stockwell and Johnson 1999) and are largely related to seasonal zooplankton 

availability (Northcote and Lorz 1966; Scheuerell et al. 2005).  For instance, age-0 through 

age-2 kokanee consumed seasonally abundant zooplankton in Lake Granby, Colorado, 

whereby cladocerans were the dominant prey item of kokanee in the summer and copepods 

dominated diets for the remainder of the year (Martinez and Bergersen 1991).  Optimal 

foraging theory suggests fish should maximize their energy intake by consuming 

energetically profitable (e.g., larger prey) items that require short handling times (Townsend 

and Winfield 1985).  As such, the use of energetically costly prey items (e.g., evasive 

behavior; O’Brien 1979; Drenner et al. 1980) by juvenile kokanee raises questions as to the 

constraints imposed on kokanee that lead to age-specific patterns in resource use.   

Diet can be influence by myriad factors including prey availability, habitat, and biotic 

interactions (e.g., competition, predation; Morin 1999).  However, considerable research 

suggest predation is a predominant factor influencing the behavior and diet of kokanee 

(Townsend and Winfield 1985).  For instance, age-0 kokanee exhibited large diel vertical 

migrations in Blue Mesa Reservoir despite decreased daytime foraging opportunities 

(Hardiman et al. 2004).  The authors suggested the observed migration patterns were largely 

associated with increased predation risk by Lake Trout.  Similarly, juvenile O. nerka 
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(kokanee, Sockeye Salmon) in lakes in the Stanley Basin, Idaho, exhibited increasing 

avoidance of limnetic zones as predator densities increased and zooplankton densities 

decreased (Beauchamp et al. 1997).  Although direct comparisons between systems are 

difficult, predation of kokanee is a principal concern in Lake Pend Oreille (Hansen et al. 

2008; Hansen et al. 2010; Corsi et al. in press) and is principally focused on juvenile fish 

(Vidergar 2000).  As such, juvenile kokanee in Lake Pend Oreille may avoid limnetic zones 

until light attenuation reduces predation risk (Beauchamp et al. 1997).  As cladocerans are 

typically distributed in the upper epilimnion, predator avoidance behavior by juvenile 

kokanee may constrain fish to deeper habitats that are dominated by copepods (Rieman and 

Falter 1981).  Adult fish are not subject to the same constraints and can more readily feed on 

cladocerans thereby increasing their competitive interactions with Mysis.       

Adult kokanee could mitigate competitive interactions with Mysis by partitioning 

habitat use to avoid areas of high Mysis density (Morin 1999).  For instance, Bluegill 

Lepomis macrochirus and Pumpkinseed transitioned from littoral habitats to energetically 

sub-optimal open water habitats to avoid interactions with a superior competitor (i.e., Green 

Sunfish L. cyanellus) in experimental ponds (Werner and Hall 1979).  Mysis and kokanee 

densities were positively related in Lake Pend Oreille resulting in consistent overlap in the 

areal distribution of both species.  However, adult kokanee and Mysis were positively 

associated with the most abundant cladoceran in the system (i.e., D. leuchtenbergianum); 

whereas, juvenile kokanee and Mysis did not exhibit similar patterns in resource use.  

Concurrent patterns in resource use between Mysis and adult kokanee suggest an increased 

potential for competitive interactions that likely have population-level effects when 

cladocerans are limited in Lake Pend Oreille.   
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Theoretically, competition for limited resources should result in declines in density 

related to emigration, increased mortality, or decreases in fitness components (e.g., body 

size; Morin 1999).  Bluegill and Pumpkinseed growth declined linearly as Bluegill density 

and competition for littoral invertebrates increased (Mittelbach 1988).  Mysis’ consumption 

of zooplankton has been estimated to account for 70%–100% of the daily standing stock of 

cladocerans in Lake Pend Oreille (Chipps and Bennett 2000; Caldwell et al. 2015) during the 

period of highest dietary overlap between Mysis and kokanee (e.g., autumn).  Thus, 

reductions in Mysis in Lake Pend Oreille should result in overall increases in cladoceran 

abundance and positively influence the growth and survival of adult fish (Rieman and Myers 

1992).  In Lake Pend Oreille, cladoceran densities more than doubled following the collapse 

of Mysis (see Hoelscher et al. 1990) while age-3 kokanee exhibited an average increase of 

about 10 mm in length (pre-Mysis collapse vs. post-Mysis Collapse; 225.8 ± 24.4 mm vs. 

236.3 ± 15.1 mm) and 30.0 g in weight (90.3 ± 24.5 g vs. 121.32 ± 28.1 g).  Body size is 

positively related to nearly every aspect of a fish’s life including survival (Sogard 1997) and 

reproduction (e.g., fecundity, egg size; McGurk 2000; Whitlock et al. 2018a).  Therefore, 

increases in kokanee body size can confer improvements in overall fitness and likely explain 

population-level patterns observed in Lake Pend Oreille.  For instance, the number of mature 

adults increased from an average of about 570,000 to over 900,000 following declines in 

Mysis densities in Lake Pend Oreille.  Similarly, natural recruitment increased from a mean 

of 6.6 million to about 10.4 million over the same time period.  Although declines in Mysis 

and concurrent increases in cladocerans have positively influenced kokanee in Lake Pend 

Oreille, a reduction in interspecific competition may exacerbate interactions between 

conspecifics.   
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O. nerka are well known for exhibiting density-dependent reductions in growth 

(Ricker 1937; Goodlad et al. 1974; Peterman 1984; Rieman and Myers 1992).  Age-1–3 

kokanee displayed a clear inverse relationship between fish density and length-at-age in ten 

lakes and reservoirs throughout Idaho (Rieman and Myers 1992).  In the current study, age-0 

kokanee exhibited similar density-dependent effects.  Following increases in natural 

recruitment in Lake Pend Oreille in 2011, age-0 kokanee lost an average of 10 mm in length 

(60.95 mm ± 4.99 vs. 50.76 mm ± 6.45) and 0.8 g in weight (1.86 g ± 0.47 vs. 1.07 g ± 0.35).  

Although reduced growth in age-0 kokanee implies increased intraspecific competition, 

identifying competitive interactions among kokanee is difficult.  Increases in kokanee 

abundance should confer decreases in zooplankton density; however, average zooplankton 

density nearly doubled following the collapse of Mysis in Lake Pend Oreille (see Hoelscher 

et al. 1990).  Despite increases in overall zooplankton abundance, reductions in growth of 

age-0 fish could be associated with more complex changes in the food web of Lake Pend 

Oreille.  The vertical distribution of pelagic zooplankton can be “squeezed” between 

planktivorous fish from above and predatory invertebrates from below (Zaret and Suffern 

1976; Bowers and Vanderploeg 1982; Hays et al. 2003; Peacor et al. 2005).  In the absence 

of high Mysis densities, zooplankton may be released from invertebrate predation and able to 

exhibit more extensive avoidance of kokanee.  Regardless of the exact mechanism governing 

density-dependent processes in Lake Pend Oreille, the observed patterns in growth of age-0 

kokanee brings into question common kokanee management practices in the system. 

Hatchery supplementation was initiated in Lake Pend Oreille to rebuild the declining 

kokanee population in the 1970s.  Between 500,000 and 17 million age-0 fish are annually 

stocked into Lake Pend Oreille following years of low adults returns or when abundant 
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spawning adults create “surplus” juveniles (Whitlock et al. 2018b).  However, each stocking 

scenario can create abnormally high numbers of age-0 fish that likely intensifies density-

dependent processes.  Additions of hatchery fish following years of low adult returns likely 

compounds density-dependent processes due to compensatory stock-recruitment 

relationships typical of wild kokanee in Lake Pend Oreille (Whitlock et al. 2018b).  

Similarly, high returns of mature kokanee are positively correlated with the number of 

hatchery and wild age-0 fish leading to concordant increases in natural recruitment and 

stocking rates of juveniles.  Declines in Mysis have only acted to intensify existing density-

dependent processes due to increases in adult fitness and survival.  For instance, the total 

number of kokanee in Lake Pend Oreille has increased by 62% following the collapse of 

Mysis in 2011.  Hatchery supplementation is an undeniably valuable tool for kokanee 

management, but declines in Mysis abundance have further altered the dynamics of Lake 

Pend Oreille necessitating a reevaluation of current hatchery practices.  

Admittedly, the ability to completely untangle the complex relationships occurring 

between Mysis and kokanee is challenging.  However, our results suggest kokanee exhibit 

spatiotemporally variable patterns in resource use that change with age and ultimately 

influence how the species interacts with Mysis.  Competitive interactions between species 

have the potential to alter the population structure of kokanee and may necessitate large-scale 

mitigation measures.  Mysis-kokanee interactions can presumably be mitigated through 

habitat manipulations (e.g., lake-wide fertilization; Northcote 1991; Thompson 1999), 

biological agents (e.g., parasites, disease, predators; Leathe 1984; Martinez and Bergersen 

1989), mechanical removals (Northcote 1991; Ashley et al. 1997), and hatchery 

supplementation.  Although each mitigation measure has merit, hatchery supplementation is 
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proven and has consistently controlled kokanee declines in Lake Pend Oreille.  However, 

recent declines in Mysis densities have again altered the dynamics of Lake Pend Oreille and 

shifted the balance between interspecific and intraspecific competition.  Collectively, our 

results highlight the need to fully consider the age-specific dynamics of biotic interactions to 

more completely understand how fish interact with competitors thereby influencing large-

scale patterns in population structure. 
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Table 4.1. Candidate models used to evaluate the influence of covariates on the 

section-specific density of Mysis, juvenile kokanee, and adult kokanee in Lake Pend 

Oreille, 2015–2017.  Akaike’s Information Criterion (AICc) adjusted for small sample 

size was used to rank models.  Models with a delta AIC rank (ΔAICc) less than 2 

were considered plausible and are shown.  Model weight (wi), total number of 

parameters (K), log likelihood (LL), and coefficient of determination (R2) are also 

included.  Directionality of effects are indicated with a negative or positive sign.  

Covariates include Mysis (Mys.), Bosmina longirostris (Bos.) Calanoida (Cal.), 

Cyclops bicuspidatus (Cyc.), Daphnia spp. (Dap.), Diaphanosoma 

leuchtenbergianum (Dia.), Period (Per.), and Section (Sec.), and Year. 

 

 

Candidate models by group K AICc ΔAICc Wi LL R2 

Mysis       
-Cal. + +Cyc. + +Dia. + Sec. + Year 9 131.50 0.00 0.07 -55.56 0.44 
+Kok. + -Cal. + +Cyc. + +Dia. + Sec. + Year 10 132.00 0.49 0.06 -54.52 0.45 
-Cal. + +Cyc. + +Dia. + Per. + Sec. + Year 10 132.50 1.03 0.04 -54.79 0.45 
+Dia. + Per. + Sec. + Year 8 132.80 1.29 0.04 -57.45 0.41 
+Cyc. + +Dia. + Per. + Sec. + Year 9 132.80 1.31 0.04 -56.22 0.43 
-Cal. + +Dia. + Per. + Sec. + Year 9 133.20 1.74 0.03 -56.43 0.43 
+Kok. + -Cal. + +Cyc. + +Dia. + Per. + Sec. + Year 11 133.30 1.80 0.03 -53.86 0.46 

Age-0 fish       
 Per. + Sec. 5 179.60 0.00 0.04 -84.44 0.19 
-Cal. + Per. + Sec.  6 179.70 0.12 0.04 -83.34 0.21 
-Cal. + +Dia. + Per. + Sec. 7 179.90 0.27 0.03 -82.23 0.23 
+Dia. + Per. + Sec. 6 180.30 0.65 0.03 -83.61 0.21 
-Cal. + +Dia. + Sec. 6 180.30 0.67 0.03 -83.62 0.21 
-Bos. + -Cal. + +Dia. + Per. + Sec. 8 180.30 0.70 0.03 -81.27 0.25 
+Mys. + Per. + Sec. 6 180.70 1.12 0.02 -83.84 0.21 
-Bos. + -Cal. + Per. + Sec. 7 180.80 1.21 0.02 -82.70 0.23 
-Bos. + Per. + Sec. 6 180.90 1.23 0.02 -83.90 0.20 
-Bos. + -Dia. + Per. + Sec. 7 181.00 1.41 0.02 -82.80 0.22 
+Mys. + -Cal. + Per. + Sec. 7 181.00 1.42 0.02 -82.81 0.22 
-Cyc. + Per. + Sec. 6 181.60 1.95 0.02 -84.26 0.20 

Age-1 and older fish       
-Bos. + -Cal. + -Cyc. + +Dia. + Per. + Sec. 9 211.40 0.00 0.05 -95.52 0.31 
-Bos. + -Cal. + +Dia. + Per. + Sec. 8 211.90 0.52 0.04 -97.02 0.28 
-Bos. + -Cyc. + +Dia. + Per. + Sec. 8 211.90 0.53 0.03 -97.03 0.28 
-Bos. + -Cyc. + Per. + Sec. 7 212.10 0.65 0.03 -98.31 0.26 
+Mys. + -Bos. + -Cyc. + Per. + Sec. 8 212.20 0.84 0.03 -97.18 0.28 
+Mys. + -Cyc. + Per. + Sec. 7 212.30 0.87 0.03 -98.42 0.26 
-Cyc. + Per. + Sec. 6 212.30 0.93 0.03 -99.63 0.24 
-Bos. + -Cal. + -Cyc. + Per. + Sec. 8 212.30 0.93 0.03 -97.23 0.28 
+Mys. + -Bos. + -Cal. + -Cyc. + Per. + Sec. 9 212.90 1.49 0.02 -96.26 0.30 
-Cal. + -Cyc. + Per. + Sec. 7 212.90 1.49 0.02 -98.73 0.25 
-Cyc. + +Dia. + Per. + Sec. 7 213.00 1.64 0.02 -98.80 0.25 
-Cal. + -Cyc. + +Dia. + Per. + Sec. 8 213.10 1.71 0.02 -97.62 0.27 
+Mys. + -Cal. + -Cyc. + Per. + Sec. 8 213.20 1.79 0.02 -97.66 0.27 
-Bos. + -Cal. + -Cyc. + +Dap. + +Dia. + Per. + Sec. 10 213.30 1.90 0.31 -95.18 0.31 
-Bos. + -Cal. + -Cyc. + +Dap. + Per. + Sec. 9 213.30 1.91 0.29 -96.47 0.29 
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Table 4.2. Schoener index values of diet overlap between kokanee and Mysis 

sampled in the May, August, and November of 2017.  Indices were calculated 

using percent by number for each prey type.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Age (years)  

Season  0 1 2 3 Overall 

Spring  0.11 0.11 0.11 0.11 0.11 

Summer  0.50 0.50 0.50 0.49 0.50 

Autumn  0.57 0.58 0.53 0.58 0.58 
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Pend Oreille River

Clark Fork River

Sandpoint

Hope

Bayview

Figure 4.1. Map of Lake Pend Oreille, Idaho with major tributaries included.  Solid 

black lines represent boundaries between the south, middle, and north sections.  Dashed 

black lines represent boundaries between zones within each section.  Dotted lines 

represent 500 m2 sampling quadrats.  Areas of Lake Pend Oreille with an average depth 

< 25.0 m were excluded from sampling and do not have a sampling grid. 
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Figure 4.2. Historic estimates of adult Mysis density (white bars) and kokanee 

abundance in Lake Pend Oreille, 1998–2017.  Kokanee abundance is separated into 

age-0 (dashed line) and age 3-5 (solid line) fish.  
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Figure 4.3. Boxplots showing age-specific mean length (mm) for kokanee 

sampled from Lake Pend Oreille pre-Mysis collapse (1998–2010) and post-

Mysis collapse (2011–2017).    
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Figure 4.4. Boxplots showing age-specific mean weight (g) for kokanee 

sampled from Lake Pend Oreille pre-Mysis collapse (2003–2010) and post-

Mysis collapse (2011–2017).    
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Figure 4.5. Average density of zooplankton in Lake Pend Oreille, 2015–2017.  
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Figure 4.6. Average monthly composition (proportional density) of common 

zooplankton and mean density of Mysis (transparent gray bars), age-0 (dashed 

line), and age-1 and older (solid line) kokanee by section for Lake Pend Oreille, 

2015–2017.  Kokanee abundance is represented as individuals hectare-1 (× 1,000) 

and Mysis densities are represented as individuals m-3.   
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Figure 4.7. Average proportion by number in the diets of age-0 through age-3 

kokanee and Mysis for May, August, and November in Lake Pend Oreille.  Diet 

categories include cladocerans (Bosmina longirostris, Daphnia spp., 

Diaphanosoma leuchtenbergianum), copepods (Calanoida spp., Cyclops 

bicuspidatus), and other (see text for details). 
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Chapter 5: Conclusion 

Kokanee Oncorhynchus nerka are arguably one of the most important cold-water fish 

due to their value as a recreational species and prey resource for ecologically, economically, 

and culturally significant fishes.  As such, the effective management of kokanee is a central 

concern for biologists and was the primary goal of this dissertation.  Specifically, this work 

addressed uncertainty surrounding common kokanee sampling techniques, evaluated the 

potential causes of growth disparities between different breeding groups of kokanee, and 

investigated age-specific patterns in competition between kokanee and Mysis.   

Each chapter of this dissertation focused on a specific question surrounding the 

management and(or) ecology of kokanee that was ultimately limiting management of the 

species.  The results of Chapter 2 suggest that mid-water trawls are size selective for small 

kokanee; whereas, gill nets are size-selective for large fish.  Although these results are 

largely corroborated in the literature, managers now have empirical data supporting their gear 

choice as it relates to their sampling objectives.  Chapter 3 identified that small changes in 

hatchery practices can have large, long-term ramifications for the growth trajectory of 

kokanee.  The results of Chapter 3 not only provide a mechanism explaining observed 

growth patterns between early- and late-run kokanee, but also suggest periodic growth 

retardation could be used to increase the overall growth rate of juvenile fish.  Finally, the 

results of Chapter 4 clarify the mechanism by which Mysis and kokanee compete and suggest 

large, adult fish are likely most susceptible to resource competition.  Chapter 4 highlights the 

need to fully consider how ontogenetic shifts influence biotic interactions and provide 

managers with a better understanding of the population-level effects of resource competition 

between Mysis and kokanee.   
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Although each chapter revolves around a different aspect of kokanee management 

and ecology, our results improve the understanding of the species.  For instance, the results 

of Chapter 3 suggest age-0 kokanee are fairly robust to starvation and possess the ability to 

rebound from period of food deprivation.  As such, age-0 fish are likely resistant to the 

negative effects of competitive interactions with Mysis.  However, the resiliency of age-0 

kokanee necessitates comprehensive consideration of hatchery supplementation to avoid 

negatively influencing kokanee through density dependent processes.  Collectively, our 

results highlight the complexity of managing kokanee, but aid the ability to provide a valued 

recreational species and important prey resource into perpetuity.   

 

 

Future Directions 

Chapters 2–4 provide valuable information regarding the management of kokanee in 

Idaho and North America.  However, each chapter raises interesting questions as to the future 

of kokanee management and research that are addressed below.    

 

Chapter 2 

• All sampling in Chapter 2 was conducted within five days of the new moon to 

circumvent gear avoidance by kokanee.  However, this sampling scheme is 

largely based on speculation necessitating corroboration with empirical data.  

As such, future research should address the influence of light intensity on the 

efficacy of gill nets and mid-water trawls.   
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• The results of Chapter 2 identify gill nets as an effective tool for sampling 

most kokanee populations.  However, our results suggest relative selectivity 

adjustments for gill nets do not effectively represent the “true” population 

structure.  As such, future research should address the efficacy of gill nets at 

characterizing “true” population structure by estimating selectivity using 

traditional techniques (e.g., mark-recapture).  

 

Chapter 3 

• The results of Chapter 3 suggest the observed growth differences between 

early-run and late-run kokanee in Lake Pend Oreille is largely due to hatchery 

practices, but the long-term ramifications of altered growth trajectories are not 

addressed.  For instance, what do growth disparities mean for the respective 

survival of early- and late-run fish?  Similarly, how do increased growth rates 

of age-0 fish influence their future fitness?  Future research should address the 

influence of slowing growth of fish in the hatchery on the long-term growth 

and survival of kokanee in Lake Pend Oreille. 

• Chapter 3 suggests that retardation of growth in the hatchery could result in 

increased growth rates of hatchery fish in the wild.  As such, periodic 

starvation could be used to increase the growth rate of hatchery fish.  

However, the ability to (and influence of) improve growth rates through 

starvation cycles in kokanee is largely untested and necessitates future 

research.   
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Chapter 4  

• Chapter 4 shows that ontogenetic shifts in diet and behavior influence biotic 

interactions between Mysis and kokanee and can result in large-scale, 

population-level changes.  However, our results are largely correlative and 

may be confounded by biotic or abiotic characteristics that were unidentified 

in the current study.  As such, future investigations surrounding Mysis-

kokanee interactions should address age-specific patterns in competitive 

interactions using controlled experiments.   

• The results of Chapter 4 highlight the difficulty of managing kokanee in a 

dynamic system such as Lake Pend Oreille.  For instance, hatchery 

supplementation was invaluable for rebuilding kokanee stocks following 

population declines in the 1970s.  However, the collapse of Mysis has altered 

the dynamics of Lake Pend Oreille thereby shifting the balance from 

competition between species to competition among conspecifics.  As such, 

future research should evaluate alternative hatchery supplementation 

strategies to account for apparent increases in competition among kokanee in 

Lake Pend Oreille.   
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Appendix A.1.  Average monthly densities (individuals L-1) of Calanoida spp., Cyclops 

bicuspidatus, Bosmina longirostris, Daphnia spp., and Diaphanosoma leuchtenbergianum 

sampled from Lake Pend Oreille, 2015–2017.  Standard deviations are provided in 

parenthesis.   

 

Month Calanoida spp. 

Cyclops 

bicuspidatus 

Bosmina 

longirostris Daphnia spp. 

Diaphanosoma 

leuchtenbergianum 

2015 
April 5.7 (4.5) 0.5 (0.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

May 15.3 (9.0) 9.6 (6.9) 0.0 (0.1) 0.0 (0.0) 0.0 (0.0) 

June 1.6 (1.0) 41.9 (27.3) 4.7 (2.3) 0.6 (0.5) 0.1 (0.1) 

July 8.9 (4.1) 60.7 (26.4) 0.8 (0.7) 7.7 (3.4) 1.8 (0.9) 

August 6.4 (2.9) 30.0 (10.4) 0.5 (0.5) 0.4 (0.2) 6.6 (4.1) 

September 7.7 (2.1) 10.1 (3.0) 1.5 (0.8) 0.3 (0.2) 2.7 (1.3) 

October 7.9 (2.1) 5.0 (1.6) 1.3 (0.6) 0.2 (0.1) 1.7 (0.7) 

November 5.7 (1.8) 5.0 (1.3) 0.2 (0.2) 0.0 (0.0) 0.5 (0.2) 

December 5.2 (3.0) 1.9 (0.9) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

2016 
January 4.1 (1.5) 1.3 (0.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

February 7.2 (2.9) 1.1 (0.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

March 6.2 (3.0) 1.0 (0.6) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

April 9.9 (5.3) 1.5 (0.9) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

May 19.5 (8.5) 7.7 (4.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

June 3.3 (1.8) 35.5 (10.5) 0.4 (0.4) 0.0 (0.1) 0.1 (0.2) 

July 6.0 (2.0) 57.6 (20.5) 0.4 (0.5) 0.6 (0.6) 0.3 (0.3) 

August 5.4 (2.4) 53.6 (15.1) 0.8 (0.6) 3.2 (1.8) 7.0 (3.0) 

September 7.6 (1.3) 14.1 (3.8) 2.7 (1.3) 1.2 (0.5) 8.1 (3.2) 

October 4.4 (1.3) 9.3 (2.7) 0.2 (0.2) 0.4 (0.3) 1.0 (0.6) 

November 4.5 (1.0) 6.0 (1.3) 0.0 (0.0) 0.0 (0.0) 0.3 (0.2) 

December 5.2 (0.9) 4.7 (0.9) 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 

2017 
January 5.1 (2.9) 1.6 (0.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

February 5.0 (1.8) 1.1 (0.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

March 6.2 (2.9) 1.3 (0.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

April 8.7 (5.4) 1.7 (1.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

May 9.5 (7.2) 10.3 (5.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

June 4.9 (3.0) 24.3 (9.2) 0.1 (0.2) 0.0 (0.0) 0.0 (0.1) 

July 7.5 (1.8) 31.6 (11.5) 0.2 (0.2) 0.1 (0.1) 0.5 (0.4) 

August 2.4 (1.1) 28.8 (8.0) 0.0 (0.0) 0.0 (0.0) 0.6 (0.4) 

September 2.4 (1.0) 12.9 (4.8) 0.1 (0.1) 0.0 (0.0) 3.7 (1.4) 

October 4.7 (1.4) 9.2 (2.1) 0.6 (0.4) 0.0 (0.0) 0.9 (0.4) 

November 7.3 (2.8) 5.0 (1.8) 0.0 (0.0) 0.0 (0.0) 0.2 (0.1) 

December 4.9 (1.2) 2.2 (0.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

 

 

 


