
Efficient Seed Generation

for Expert-based Directed Fuzzing

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Koffi Anderson Koffi

Major Professor: Dr. Constantinos Kolias

Committee Members: Dr. Aleksandar Vakanski, Dr. Min Xian

Department Administrator: Dr. Terence Soule

May 2023

ii

Abstract

Fuzzing is a process for discovering inputs in a program that may trigger unexpected behavior.

In the past few years, fuzzing has gained traction for the discovery of bugs and security vulner-

abilities. However, the exploration of the input space of programs can often be prohibitively

expensive. To improve this exploration, several modern fuzzing techniques rely on human ex-

pertise to provide plausible initial test cases. However, the process of handcrafting test cases

for fuzzing is often strenuous for humans and requires a deeper understanding of the Program-

Under-Test (PUT). Also, the use of known inputs to programs often does not trigger vulnerable

program behavior or reach potentially vulnerable code locations. To address those issues, we

propose a seed generation framework with human-in-the-loop directed attributes. Our proposed

framework uses symbolic execution to generate seeds that exercise paths to target program lo-

cations. Moreover, our framework enables the visualization of the explored execution paths in

binaries for the test inputs. The experimental results of our approach show its effectiveness in

improving AFL’s performance in discovering software bugs.

iii

Acknowledgments

I want to extend my gratitude to my advisor Dr. Constantinos Kolias for his continuous

support and guidance. Also, I am grateful to the committee members, Dr. Alex Vakanski

and Dr. Min Xian, for their insightful feedback. I also appreciate the feedback and guidance

from researchers at the University of Idaho, namely Dr. Jia Song and researchers from the

Idaho National Laboratory (INL) Robert Ivans and Michael Cutshaw. I am also grateful to

the Falcon HPC team at INL for their help in conducting the experiments. I am grateful

to the Department of Energy (DoE) for partially sponsoring this research under the program

DoE-LDRD INL “Target Aware Fuzzing” project.

iv

Dedication

I am thankful to my wife, Sara Koffi, for her unconditional love and continuous support.

v

Table of Contents

Abstract . ii

Acknowledgments . iii

Dedication . iv

Table of Contents . v

List of Figures . ix

List of Tables . xi

List of Code Listings . xii

List of Acronyms . xiii

Chapter 1: Introduction . 1

vi

Chapter 2: Technical Background & Definitions 3

2.1 Historical Context . 3

2.2 Taxonomy . 3

2.2.1 Program Analysis . 4

2.2.2 Application Domain . 4

2.2.3 Input Generation . 5

2.2.4 Exploration Strategy . 5

2.3 Modern Fuzzers . 6

2.4 Overview of AFL . 6

2.4.1 Genetic Algorithms . 6

2.4.2 Code Coverage . 7

2.4.3 Instrumentation . 8

2.4.4 Test Cases Generation . 8

2.4.5 Fuzzing Strategies . 9

2.4.6 Limitations . 9

2.5 Challenges . 10

2.6 Directed Fuzzing Methods . 10

2.7 Human-Machine Collaboration Approaches . 10

2.8 Binary Analysis . 11

2.8.1 Angr: A Binary Analysis Tool . 11

2.9 Symbolic Execution . 13

2.9.1 Overview . 13

2.9.2 Path Explosion . 14

Chapter 3: Problem Statement . 15

Chapter 4: Proposed Framework . 17

4.1 Architecture . 17

4.1.1 Seed Generator . 17

4.1.2 Visualization . 18

4.2 Algorithms . 18

vii

4.2.1 Basic Block Address Extraction . 18

4.2.2 Depth-First-Search . 18

4.2.3 Directed Symbolic Execution . 19

4.3 Implementation . 20

4.3.1 Visualization . 20

4.3.2 Seed Generation . 20

Chapter 5: Experimental Setup & Dataset . 21

5.1 Evaluation Dataset . 21

5.2 Experimental Setup . 22

5.3 Implementation Considerations . 23

Chapter 6: Experimental Evaluation . 24

6.1 Seed Generation . 24

6.1.1 Crash Triage . 24

6.1.2 Performance Metrics . 24

6.1.3 First Crash Time . 25

6.1.4 Unique Crashes . 25

6.1.5 Fuzzing Execution Cycles . 26

6.1.6 Speed Up . 26

6.1.7 Symbolic Execution Overhead . 27

6.2 Visualization . 31

6.2.1 Paths of Generated Testcases . 31

6.2.2 Paths of AFL Testcase Queue . 31

Chapter 7: Discussion . 35

7.1 Path Visualization . 35

7.2 Direction Based on Symbolic Execution . 36

7.3 Efficiency . 36

7.3.1 Scalability . 36

7.3.2 Usability . 36

viii

Chapter 8: Related Work . 37

8.1 Human-Machine Collaboration in Fuzzing . 37

8.2 Visualization for Human-in-the-Loop Fuzzing . 39

8.3 Directed and Human-in-the-Loop Fuzzing . 43

8.4 Symbolic Execution in Human-in-the-Loop Fuzzing 45

Chapter 9: Conclusion & Future Work . 51

References . 53

ix

List of Figures

2.1 Fuzzing taxonomies . 4

2.2 AFL Genetic Algorithm . 8

2.3 Human-machine Collaboration in Fuzzing . 11

2.4 angr architecture [1] . 12

2.5 Typical binary analysis workflow with angr. 13

4.1 Architecture of the proposed framework. 18

6.1 First crash time . 25

6.2 Unique crashes found . 26

6.3 Number of executions of the binary . 27

6.4 Speedup over AFL for finding the first crash . 28

6.5 Seed generation processing times for branch depth and width 29

6.6 Seed generation processing times for condition complexity and vulnerable functions 30

6.7 CFG of function 2 . 32

6.8 Path traversed by the generated seed seed 1 . 33

6.9 Path traversed by the generated seed seed 2 . 34

8.1 Taxonomy of Human-machine collaboration in fuzzing 39

8.2 FuzzSplore visual panel . 40

8.3 FMViz sample image representation of testcase 41

8.4 VisFuzz path coverage visualization and fuzzing statistics 42

8.5 VisFuzz Call Graph visualization . 42

8.6 VisFuzz Control Flow Graph visualization . 42

8.7 JMPscare user interface in Binary Ninja . 45

x

8.8 HaCRS user interface diagram . 47

xi

List of Tables

2.1 Popular fuzzers . 6

5.1 C programs used in the experiments. 22

8.1 Summary of related works in Human-in-the-loop fuzzing 48

xii

List of Code Listings

5.1 Function vulnerable . 21

5.2 Example of a program in the evaluation dataset 22

xiii

List of Acronyms

AFL American Fuzzy Lop

PUT Program-Under-Test

GA Genetic Algorithm

CG Call Graph

CFG Control Flow Graph

DDG Data Dependency Graph

INL Idaho National Laboratory

DGF Directed Gray-box Fuzzing

HMC Human-machine Collaboration

SE Symbolic Execution

1

Chapter 1

Introduction

Fuzzing is an automated software testing technique that aims to discover bugs, i.e., unexpected

program behaviors, by exploring the alternative inputs. These inputs are typically provided as

a vector by the analyst. The total alternative inputs that can be provided to a target program

is often referred to as its input. Due to the large size of modern programs and their complexity,

the exploration of potential alternatives, i.e., search space can often be prohibitively time-

consuming. However, with an appropriate choice of initial seeds, the bug discovery process can

be significantly improved. Nevertheless, human experts typically need a deeper understanding

of the Program-Under-Test (PUT) to provide an initial set of high-quality seeds. Thus, in

practice, most users revert to known valid inputs to the program rather than investing time in

good-seed discovery. Unfortunately, by providing valid inputs to a program, a bug-free behavior

is expected to be triggered at least at the early stages of the fuzzing process. Typically, it is

only after extensive seed mutations that unexpected behavior can emerge. Thus, it is necessary

for the fuzzer to engage in strenuous cycles of seed mutation to unearth vulnerable program

behavior. To this day, finding good initial seeds for fuzzing is challenging and remains an active

research topic. To address those issues, extensive research has been dedicated to generating

seeds for fuzzers automatically. Such approaches often rely on modern techniques such as

Deep Learning (DL) and Machine Learning (ML) to create good initial seeds [2]. However,

such approaches tend to be fully automated, blind and do not provide insights into their inner

workings. Often, a human analyst has experience regarding previously seen patterns that may

lead to bugs. What is more, human experts tend to have intuition regarding candidates for the

specific location of bugs. Thus starting from or focusing on these areas can dramatically boost

2

the efficiency of a fuzzer.

Although some research has already been done to enable guided fuzzing (also seen as directed

fuzzing), most modern fuzzers do not allow the user to guide the process to specific program

locations. We argue that enabling the governance of fuzzers towards specific program locations

dictated by a human expert via means of specific, well-crafted initial seeds can lead to dramatic

boosts in fuzzing efficiency.

We propose a seed generation framework for Directed Fuzzing with Human-in-the-loop

functions in the fuzzing process. Our proposed framework uses symbolic execution to generate

seeds that guide fuzzing to target program locations. In addition, our proposed framework can

track the paths in the program traversed by a particular seed. In this way, feedback can be

provided to the human expert.

We implemented our solution using the angr binary analysis tool and constructed a dataset

of C programs to evaluate our methodology. Our experimental results showed a significant

performance over AFL using generic input seeds. Our approach can generate seeds that dras-

tically improve the performance of AFL with up to 1000x speed up for programs having more

complex branching conditions and depths. In addition, our proposed solution is non-intrusive

and completely decoupled from a particular fuzzer. As a result, most existing fuzzer tools can

benefit from our seed generation to improve their performance.

3

Chapter 2

Technical Background & Definitions

In this section, we present some technical background of fuzzing, binary analysis, and symbolic

execution.

2.1 Historical Context

The introduction of the term fuzzer was done by Professor Barton Miller in his 1988 CS736 class,

at the University of Wisconsin. The purpose of his method was to cause certain unix programs

to crash by feeding them with random inputs [3]. About one-third of the programs tested at

the time would crash during fuzzing. This approach at the time was proven quite effective at

discovering software vulnerabilities. However, this rudimentary approach cannot yield the same

success in modern software programs which are order of magnitude more complex. Since then,

researchers have introduced several novel techniques [2, 4, 5, 6] to develop more sophisticated

fuzzers that improve the overall fuzzing process.

2.2 Taxonomy

Since drastically diverse fuzzing approaches have been developed, a comprehensive fuzzing

taxonomy can be useful in classifying alternative types of fuzzers and their characteristics.

Fuzzing can be organized into alternative families (Figure 2.1) based on the level of program

analysis, the application domain, the input generation, and the fuzzing exploration strategy.

4

Figure 2.1: Fuzzing taxonomies

2.2.1 Program Analysis

One criterion for classifying fuzzers is based on the degree of program analysis and availability

of source code or program’s execution information. Fuzzers can leverage the knowledge of a

program structure to guide the fuzzing process. White-box fuzzers have access to the program’s

source code [7, 8, 9], while gray-box fuzzers do not have access to the source code but rely on

program analysis techniques to gain specific information about the target program [5, 6, 10].

Black-box fuzzers do not have access to the program’s source code and rely solely on external

inputs to test the program [11, 12].

2.2.2 Application Domain

Fuzzers can be classified based on their application domain such as software fuzzing (file for-

mat fuzzing, API fuzzing, or web application fuzzing), hardware fuzzing (IoT devices, micro-

controllers, FPGAs, etc), and network fuzzing (network protocols, networking applications and

tools, etc).

5

2.2.3 Input Generation

Based on the type of input generation used, a fuzzer can be classified as random, generation-

based, mutation-based, and evolutionary. Random fuzzers is less used since they generate

random input test cases to be fed to a program without performing any analysis. Generation-

based fuzzers, at the other hand, uses the information on the structure of the input of the

program to generate more plausible inputs. More specifically, generation-based fuzzers take

information about the expected input format or protocol through specifications and generate

inputs accordingly. They require knowledge of the program and cannot select mutations intelli-

gently. Mutation-based fuzzers attempt to mutate or modify the provided input to feed to the

program following several mutation strategies and input scheduling algorithms. In this case, no

knowledge of program input is required, but a set of valid initial inputs are usually required.

Evolutionary fuzzers build on mutation-based fuzzers by selecting some inputs over others for

mutation based on some heuristic.

2.2.4 Exploration Strategy

Fuzzers can also be classified based on the fuzzing exploration strategy used during the fuzzing

process. Feedback-driven fuzzing aims to provide feedback to the fuzzer about the program’s

behavior to guide the mutation selection process. Coverage-guided fuzzing seeks to cover as

much program coverage as possible to expose bugs. Directed fuzzing is a more targeted approach

that aims to guide the fuzzer towards potential bug locations in a program.

Overall, understanding the taxonomy of fuzzing can help researchers and practitioners

choose the appropriate fuzzer for a given testing scenario and ultimately improve the quality

and security of software systems. By selecting the right fuzzer and input generation technique,

and applying coverage-guided or directed fuzzing approaches, it is possible to increase the like-

lihood of uncovering vulnerabilities and bugs that might otherwise go undetected. Modern

fuzzers such as hongfuzz, American Fuzzy Loop (AFL), and libFuzzer can leverage several of

those techniques.

6

Name of fuzzer Input Generation Exploration strategy Program analysis

AFL Genetic algorithm Coverage-guided Grey-box
AFL++ Genetic algorithm Coverage-guided Grey-box
AFLFast Markov Chains Coverage-guided Grey-box
Driller Concolic Execution Coverage-guided Grey-box

Table 2.1: Popular fuzzers

2.3 Modern Fuzzers

Modern fuzzers make use of several sophisticated techniques to enhance the fuzzing process (See

Table 2.1). Approaches such as Machine Learning, Deep Learning, Evolutionary computation,

and Symbolic and Concolic Execution have been extensively incorporated in the past as part

of different stages of the fuzzing process.

Currently, AFL, which is one of the most popular fuzzer, uses a genetic programming for

mutating the input seeds. AFL has proven its efficacy in finding several critical vulnerabilities.

Therefore, it is often considered a benchmark to compare the performance of newly developed

fuzzers.

2.4 Overview of AFL

The American Fuzzy Lop (AFL) is a mutation-based and coverage-based fuzzer [5]. It is an

instrumentation-guided, i.e., instruments or adds compile time code for measuring code coverage

to the target programs. AFL is also a genetic fuzzer, i.e., uses genetic programming for mutating

the input seeds. Thus, AFL uses compile-time instrumentation and relies on Genetic Algorithm

(GA) to automatically discover test cases that trigger new internal states in a target binary.

2.4.1 Genetic Algorithms

A Genetic Algorithm (GA) is a search-based algorithm rooted in natural selection and is often

used to solve optimization problems [13]. GA perform usually better than random search or

brute-force algorithms.

In a GA, the population is a subset of the probable solutions to the search problem. The

7

elements in the population are ranked based on a fitness function. Thus, a fitness function is a

function that returns a score representing the suitability of a given solution, typically referred

to as chromosome, i.e., a set of genes. Hence, a fitness score determines the probability of a

chromosome (or solution) being chosen for further modifications and testing (in this context

referred to as reproduction).

The reproduction are perform with a set of Genetic operators which are a set of opera-

tors that can alter the genetic composition of the next generation. The most utilized genetic

operators are selection, mutation, and crossover. A selection chooses which candidates in the

population can become parents in the next generation. The mutation operator applies random

modifications to some candidates in the population. A crossover produces next generation from

some combination of parents in the population. The primary goal of a genetic operator is to

guide the search algorithm toward suitable solutions.

AFL maintains a queue of testcases as the population of its genetic algorithms. The queue

of testcases are the testcases provided by the user and the testcases discovered during fuzzing.

AFL uses a fitness function to provide fitness scores that measure the ability of testcase to

increase the code coverage. In AFL terminology interesting test cases are those that increase

the code coverage; while favorite testcases are the fastest and smallest interesting testcases.

AFL uses several genetic operators (bit/byte flips, swaps, deletion, insertion, etc.) to perform

mutations and cross-overs of input seeds. The selection of the next generation in AFL is

made by popping a test case from the queue. Finally, the reproduction in AFL executed by

applying various operations on a test case retrieved from the queue. The tool ensures that all

the necessary mutations and crossover (bit flip, swaps, arithmetics, etc.) are done by skipping

some which might not lead to good execution paths. Furthermore, the AFL fuzzer replaces the

old population (the testcases in the queue) with a new population according to their fitness

scores.

2.4.2 Code Coverage

Code coverage a metric often employed to estimate how much of the target’s binary is covered

during fuzzing. In code coverage fuzzing, a Basic Block (BB) is the unit of measurement of

the program coverage. AFL uses the edge/branch measurement method to represent basic

8

Figure 2.2: AFL Genetic Algorithm

blocks. AFL shared mem array is a 64 kB shared memory region passed to the instrumented

binary by the caller. Every byte set in the output map can be considered a hit for a particular

(branch src, branch dst) tuple in the instrumented code.

2.4.3 Instrumentation

During the instrumentation phase, AFL inject a compile-time random integer value to the

variable cur location for each basic block. AFL computes a hash representing a basic block

transition from prev location to curr location and stores the corresponding byte value in a

bitmap shared mem array. Thus, enables AFL to track the code coverage through code instru-

mentation and coverage bitmap.

2.4.4 Test Cases Generation

AFL can receive some initial inputs as set of files or as command-line inputs. The content

of the inputs are later on mutated by a genetic algorithm. In each iteration, AFL takes the

seed, mutates it to generate a test case and adds the test case to the current execution corpus

9

directory (sequence of branching points explored, e.g., A → B → C → D). In all subsequent

fuzzing iterations, AFL takes the previous mutated seed, further mutates it, and adds the new

test case to the current corpus if it triggers new states (or coverage).

Since the generated files that contain the test cases can become extremely large, AFL trims

the test cases files to their minimal size that can still trigger the corresponding internal states.

2.4.5 Fuzzing Strategies

AFL starts its fuzzing strategy following a deterministic approach and proceeds to non-deterministic

operations. The deterministic strategies consist of sequential bit flips with varying lengths and

stepovers, sequential addition and subtraction of small integers, and sequential insertion of

known interesting integers (0, 1, INT MAX, etc.). In most cases, the deterministic strategies

will tend to generate compact test cases with slight differences between the non-crashing and

crashing inputs. After the deterministic processes are completed for a particular input file, AFL

will continue with a never-ending loop of non-deterministic operations that consist of a sequence

of stacked bit flips, insertions, deletions, arithmetics, and splicing of different test cases.

As a last resort, AFL will perform test case splicing. This strategy consists of taking two

input files from the queue that differ in at least two locations and splicing them randomly in

the middle an operation which resembles crossover. The resulting inputs are run through a

stacked tweaks algorithm.

2.4.6 Limitations

Generally, AFL does not attempt to reason about the relationship between specific mutations

and program states. Thus, AFL fuzzing steps are inherently blind and are only guided by

the evolutionary process of the input queue. Another major limitation of AFL is that its

mutation engine is syntax-blind and only optimized for compact data formats such as binary

files. Generally, it considered challenging for most general-purpose fuzzers to deal with rich

syntax input formats.

10

2.5 Challenges

Several challenges can impede the performance of fuzzers. Many works have attempted to

address those challenges, but several problems still remain open. First of all, fuzzing can be

a challenging process due to the large search space of inputs in most real-world programs.

Notice that a program with N checks on an integer value in a C program would require a

search space of 232∗N , which can be very large, which makes the task of bypassing complex

condition statements necessary for fuzzers. In addition, it is often challenging for fuzzer to

trigger certain complex bug types. For example, some vulnerabilities, such as race conditions,

time bombs, etc., can only be triggered in some specific and rare circumstances. Moreover,

most fuzzers cannot fuzz some targets which rely on external dependencies such as events and

states. For example, hardware and firmware, as well as stateful software, are often difficult

to fuzz. Additionally, fuzzing can benefit from human expertise, but it is often challenging to

enable efficient human-machine collaboration in fuzzing. Finally, most fuzzers are intended to

be used only by human experts. To this day, improving the usability of fuzzing tools remains

elusive.

2.6 Directed Fuzzing Methods

The seminal work by [6] introduced the concept of directed greybox fuzzing which aims to

control the fuzzing process to focus on specific parts of a program. Unlike previous approaches

based on symbolic execution and constraint solving, directed greybox fuzzing uses compile-time

instrumentation and a runtime seed selection algorithm to optimize the distance between inputs

and program code targets.

2.7 Human-Machine Collaboration Approaches

Since its inception, fuzzing has enabled human auditors to discover many vulnerabilities. To

work effectively, fuzzers can benefit from human knowledge and expertise. In a typical setting,

the human provides knowledge about the target program while the fuzzer outputs insights

into its fuzzing process to the human (see Figure 2.3). Thus, the human and the fuzzer can

11

collaborate to enable an efficient fuzzing cycle. However, the level of human involvement in the

fuzzing process can be a determinant of the overall performance of the fuzzer. Human-machine

collaboration in fuzzing aims involve human expertise in the fuzzing process [14].

Figure 2.3: Human-machine Collaboration in Fuzzing

2.8 Binary Analysis

Binary analysis is a technique for analyzing programs in their binary format, their properties,

and structures [15]. The binary analysis primarily deals with machine code and binary data.

Binary analysis can be grouped into two main categories: static analysis and dynamic analysis.

In static binary analysis, the analysis engine does not execute the binary during analysis which

allows it to scale linearly with the program size. The static analysis engine aims to reason

about the behavior of the binary without execution which can often lead to false positives.

Thus, static analysis can often be infeasible due to incomplete information about the binary

(e.g., dynamically loaded code). In dynamic binary analysis, the analysis engine executes the

binary. Therefore, dynamic analysis can scale with the execution length while avoiding false

positives in discovery bugs. In general, dynamic analysis is more suitable for programs where

appropriate inputs are available. Both type of analyses require the availability of a binary

obtained through compilation.

2.8.1 Angr: A Binary Analysis Tool

The Binary analysis tool angr [1] is a popular analysis tool for implementing high-level analysis

on binaries. Analysis such as CFG, CDG, Call Graph, Pointer Analysis, etc., can be easily

12

implemented in angr for most binary executable formats. In addition, analysis tools can use angr

to perform Symbolic execution, automatic exploit generation, and automated binary hardening.

Angr is comprised of several components (see Figure 2.4).

Figure 2.4: angr architecture [1]

One of the most important modules of angr is its binary loader, namely CLE (CLE Loads

Everything). The CLE is responsible for loading the binary by extracting code and data from

formats such as ELF and PE (Portable Executable). Next, the Archinfo module contains

architectural information about the target binary. It is essentially a database of architectural

information about the binary such as the compilation platform, the architecture (AMD, ARM,

etc.), and the register size (32-bit or 64-bit). Another import module is the SimEngine which

is the simulation executor. This module provides the necessary tools for symbolically executing

a binary and collecting constraints that can be solved by a solver engine. Another component

is the lifter, called PyVEX, which provides machine-code translation to the VEX intermediate

representation. The module SimOS provides OS-level emulation and an emulated file system

during the analysis. Finally, angr’s module Claripy is a constraint solver built on top of the

popular Z3 Theorem solver [16]. Figure 2.5 shows a typical binary analysis workflow using angr.

13

Figure 2.5: Typical binary analysis workflow with angr.

2.9 Symbolic Execution

2.9.1 Overview

Symbolic execution is a software analysis technique that uses symbolic values to analyze pro-

grams instead of using concrete values [17]. During the execution, all variables in the PUT are

converted to the symbolic representation counterpart, and the operation performed on them

are translated to mathematical equations or constraints. Thus, in symbolic execution, a sym-

bolic value or input is a mathematical symbol representing a concrete variable in a program.

Instead of concretely running a program, a symbolic execution engine substitutes the concrete

values of variables with symbolic values during executions. During execution, the symbolic

execution engine maintains a set of symbolic states and an execution context, i.e., a mapping

from concrete to symbolic values. For each execution path, a symbolic execution engine will

construct a path constraint, which is a logical formula representing the condition an input must

satisfy to execute that path. A symbolic execution engine will often rely on a constraint solver

to check properties on the path constraints. One of the most well-known solver engines is the

Z3 Theorem solver, which is a Satisfiability Modulo Theories (SMT) solver. The Z3 solver can

be used to check whether a path constraint is satisfiable or not, i.e., there exists a solution or

inputs to exercise the path during execution. Traditionally, symbolic execution has been used

extensively to enable directed fuzzing.

14

2.9.2 Path Explosion

During symbolic execution, a symbolic execution engine checks the path satisfiability and makes

a copy (fork) of the symbolic states of satisfiable path constraints for each conditional branching

instruction. The forking of states enables a symbolic execution engine to explore different

paths without executing the same instructions several times. However, this can be problematic

because it doubles the number of states for each conditional branching instruction. Thus, the

number of states can increase exponentially based on the number of conditional branching

instructions present in a program. In addition, unbounded loops in a program can lead to

unbounded symbolic states during symbolic execution. This issue, referred to as the path

explosion problem, is a common problem for most symbolic execution engines. Recent works

have attempted to address the path explosion problem with various techniques, such as directed

symbolic execution [18, 19, 20], selective symbolic execution [21, 22], using fuzzing in symbolic

execution, and concolic execution [8, 23].

15

Chapter 3

Problem Statement

Fuzzing can be viewed as a human-machine collaboration process. The human involvement

in the fuzzing process can be limited to having the human act as a mere user. In all cases,

the human need to provide good initial test cases can undermine their usability because of the

difficulties in handcrafting valuable test cases. Thus, a tool for discovering good initial seeds for

fuzzers in a human-in-the-loop fashion is highly desirable. In addition, it is often challenging to

stir up the fuzzing process toward the direction of potentially vulnerable or interesting locations

in the programs during fuzzing. It is often desirable for the human auditor of a software program

to visualize the different areas in the program exercised during the analysis. But, visualization

tools [24, 25] often fail to provide insight into the analysis.

Many works have attempted to incorporate human knowledge and insight into the fuzzing

process [24, 25, 26, 27]. However, they often fail to enable the human expert to guide the

fuzzing process toward paths of interest.

We aim to address those issues with a Directed fuzzing approach using symbolic execution

and visualization in human-in-the-loop fuzzing. Symbolic execution is highly susceptible to the

path explosion problem, which we address with directed symbolic execution on the shortest

paths to target basic blocks. Thus, we use user-provided targets; we address the issue of lack

of guidance in the fuzzing process and the problem of handcrafting initial seeds. Moreover, we

provide a visualization tool for the test cases, which enables practical insight into the fuzzing

process and can inform human experts regarding the performance of each input seed.

The main contributions of our work are as follows:

16

A seed generation tool. Prior works [20, 28, 29] have demonstrated the use of directed

symbolic execution to generate inputs for testing specific parts of programs. Our proposed

approach differs from these works by leveraging human-in-the-loop for seed generation.

The experimental results show that our approach can increase the speed of finding the

first crash up to 10,000x compared to AFL.

A visualization tool. We observe that visualization can help human experts get a

more in-depth understanding of a PUT. Related works [24, 26, 27] have demonstrated the

effectiveness of visualization in providing insight to human experts to improve the fuzzing

process. We propose a visualization of the Call Graph (CG) and Control Flow Graph

(CFG) for fuzzing test cases, which can give insightful information to human experts.

17

Chapter 4

Proposed Framework

In our work, we proposed a HMC framework for an effective seed generation using symbolic

execution for DGF. Our proposed framework uses a human-in-the-loop approach to enable

directed fuzzing on existing fuzzers by generating seeds that can effectively reach specified

target code locations in a binary during fuzzing.

4.1 Architecture

Our framework consists of an input seed generator and visualization components that aim to

help the human expert directly guide AFL’s fuzzing process toward target code locations. Both

tools complement each other by allowing the human-expert to not only generate good initial

seeds which target specific code locations, but also to visualize whether those seeds can reach

those locations during fuzzing.

4.1.1 Seed Generator

The seed generator takes as input a list of target functions and the program’s binary to fuzz and

generate initial seeds for the fuzzer. The generated seeds can be included in the seeds corpus

to fuzz the program.

18

Figure 4.1: Architecture of the proposed framework.

4.1.2 Visualization

In addition, the human expert can visualize the paths taken by certain seeds in the program’s

CFG or can choose to monitor the progress of the fuzzing by visualizing the paths taken by

all seeds in the fuzzer’s seeds queue. This can help the auditor to discard some seeds which

take potentially non-interesting paths in favor of those which take paths that contain suspicious

functions.

4.2 Algorithms

4.2.1 Basic Block Address Extraction

We extract the addresses of the basic blocks from the user-provided target function calls. Our

tool is able to retrieve the address of the function calls based on their name. We present our

algorithm to retrieve all the addresses of target function calls in Algorithm 1.

4.2.2 Depth-First-Search

The main goal of our approach is to reach deeply hidden bugs. To do so, we prioritized paths to

target basic blocks of interest based on the user-provided target functions. We use depth-first-

search to force the symbolic execution to prioritize depth over breadth during the search for

the basic blocks. Finally, we pruned the symbolic execution states by prioritizing basic block

19

Algorithm 1 Finding target function call addresses

Require: targets ▷ A set of function call targets
Require: CFG ▷ The Control Flow Graph of the binary program
Ensure: addresses ▷ A set of basic block addresses containing the function calls

for function in CFG.functions do
for block in function.blocks do

if last instruction in the block is call instruction and call in targets then
addresses← block.address

end if
end for

end for

nodes along the shortest paths to target basic blocks. The shortest paths are computed using

Dijstra’s shortest path algorithm. Our approach aims to address the issue of path explosion by

only exploring in a depth-first-search approach the shortest paths to target basic blocks (see

Algorithm 2).

Algorithm 2 Depth-First-Search and Shortest Path of the CFG exploration (path pruning)

Require: simgr ▷ The symbolic execution simulation manager
Require: CFG ▷ The Control Flow Graph of the binary program
Require: addresses ▷ A set of basic block addresses containing the function calls
Ensure: paths ▷ The shortest paths

paths← set(all shortest paths(CFG, target = t) for t in addresses)
for source, dest in dfs edges(CFG) do

for node in addresses do
if (source ̸= node or dest ̸= node) or not node in paths then

simgr.move(from stash = ”active”, to stash = ”pruned”)
end if

end for
end for

4.2.3 Directed Symbolic Execution

We apply symbolic execution with directed fuzzing to reach specific basic blocks of code based

on a user-provided target function on the shortest paths in a depth-first-search manner. When

a target is reached, a seed is generated by solving the constraint on the current path.

20

Algorithm 3 Directed symbolic execution on the shortest paths to targets

Require: simgr ▷ The symbolic execution simulation manager
Require: CFG ▷ The Control Flow Graph of the binary program
Require: addresses ▷ A set of basic block addresses containing the function calls
Ensure: seeds ▷ The input test cases
paths← set(all shortest paths(CFG, target = t) for t in addresses)
while length of simgr.active >= 0 do

simgr.step()
path pruning(simgr, CFG, addresses) ▷ Path pruning based on algorithm 2
if any (address in simgr.active for address in addresses) then

seeds← solve(simgr.active) ▷ Find inputs that satisfy the path constraints
break

end if
end while

4.3 Implementation

We implement our framework as a set of two tools: a seed generation and a visualization

tool. We use the Python binary analysis tool angr to perform symbolic execution and CFG

recovery from the binary. We construct a custom exploration strategy that leverages angr

simulation manager and uses static code analysis to identify target locations. Our seed generator

is completely decoupled from the fuzzer and can be used with any existing fuzzers. Also, we

provide a visualization of the path taken by the generated seeds on the CFG of the binary using

Angr, which we export as a graph DOT file and as an image file.

4.3.1 Visualization

Our seed visualization tool recovers the CFG of the binary. Next, our tool symbolically executes

the binary with the provided seeds while tracing the exercised paths. The Python package

networkx is used to obtain the graph DOT file and an image of the paths exercised in the CFG.

4.3.2 Seed Generation

Our seed generation tool uses the recovered CFG of the binary to guide the symbolic execution

toward target basic blocks. We implement the path pruning using the Python netwokx package

using a depth-first-search for the target basic blocks and prune the basic block nodes that are

not included in the shortest paths to the targets.

21

Chapter 5

Experimental Setup & Dataset

5.1 Evaluation Dataset

We built a dataset of 12 small C programs with various levels of complexity (see Table 5.1).

Our focus is mainly on the ability to reach the deepest branching locations in the programs

while solving complex branching conditions. We restricted the nested branching to 6 to allow

conventional AFL to discover bugs within a reasonable time frame of 24h. In addition, we cre-

ated several other C programs with varying branch conditions and widths, as well as dangerous

C function calls (gets, scanf, strcpy, strcat, etc.).

Listing 5.1: Function vulnerable� �
1 void vulnerable () {

2 char buffer [24];

3 printf("Enter your name: ");

4 scanf("%s", buffer);

5 printf("Hello , %s!\n", buffer);

6 }

7 � �
All the programs called a vulnerable function named vulnerable (see example), which

contains a buffer overflow vulnerability. Moreover, we added vulnerable function calls in the

test programs for testing vulnerable function calls.

22

Programs Metrics Number of programs (n)

depth n branch depth 3
width n branch width 3

condition n complexity in branch conditions 3
function n dangerous function calls 3

Table 5.1: C programs used in the experiments.

Listing 5.2: Example of a program in the evaluation dataset� �
1 int main() {

2 printf("Enter the code: ");

3 char a = getc(stdin);

4 char b = getc(stdin);

5 if (a == 123 && b == 34) {

6 printf("Access Granted .\n");

7 vulnerable ();

8 } else {

9 printf("Access Denied !\n");

10 }

11 return 0;

12 }

13 � �

5.2 Experimental Setup

We perform our fuzzing experiments on a set of nodes on Falcon HPC clusters. We run a set

of 2800 jobs as seven sets of 400 Slurm jobs array in computing clusters with each job running

for 24h for custom C programs.

23

5.3 Implementation Considerations

A key challenge in assessing the performance of our approach is the level of the complexity

of the constructed programs. Programs with trivial branching conditions are easily traversed

by both standard AFL and our proposed approach. However, they are not interesting as, in

both, the discovery is rapid. On the other hand, a very complex branching condition might be

too difficult for AFL to find the right seed; thus, no meaningful comparison can be made in a

reasonable time frame. We constructed a set of programs with increasingly complex branching

conditions to allow AFL to find some crashes in a 24h fuzzing session and be complex enough

to show the improvement gain of our approach.

Additionally, it is challenging to record the first time a crash occurred during AFL fuzzing

session. By default, AFL does not store the first time a crash happens during fuzzing in its

output directory. So, we modified AFL to include it as a field first crash in the output directory

statistics. This metric first crash records the timestamp of the first unique crash, which helps

with our assessment.

Another challenge is the ability to stop AFL after some crashes have occurred. For example,

the number of cycles is influenced by the running time of the fuzzing sessions, and it might

be unfair to continue after the goal of reaching a set number of crashes is reached. AFL does

not allow the users to stop the fuzzing session after some unique crashes have occurred. We

modified AFL to enable the use of an environment variable, namelyAFL STOP AFTER N -

UNIQUE CRASHES to stop the AFL fuzzing session after ‘n‘ unique crashes have occurred.

24

Chapter 6

Experimental Evaluation

6.1 Seed Generation

6.1.1 Crash Triage

We filter the fuzzing results to only include the fuzzing session with at least one crashing input.

We store results of all the fuzzing metrics from AFL, such as cycles done, unique crashes,

etc., as well as a custom metric, first crash time to measure the first crash time.

6.1.2 Performance Metrics

AFL uses a set of metrics to measure the performance of the fuzzing process. The metric

cycles done counts the fuzzer number of passes on the queue’s interesting testcases, where a

pass includes fuzzing the binary with a testcase. On the other hand, execs done measures the

number of times the program was run since the fuzzing process started. The unique crashes

measures the unique crashes discovered during the fuzzing session. We use those metrics to

measure the performance impact of our seed generation on AFL. In addition, we modified AFL

to add a metric for measuring the first time a crash was discovered, which we named first -

crash time. These metrics are stored in the AFL output directory. We use those metrics to

evaluate the performance of our approach on the branch depth, width, condition complexity,

and the number of vulnerable functions in the programs.

25

6.1.3 First Crash Time

A desired goal of fuzzing is to trigger a crash as fast as possible. Thus, a good metric is the first

time a crash is discovered during a fuzzing session. We report the first time AFL finds a crash

with a generic seed and when AFL finds a crash with our generated seed. The experimental

results show a significant improvement over AFL for each program tested (see Figure 6.1).

Figure 6.1: First crash time

6.1.4 Unique Crashes

Another good measurement of the performance of a fuzzer is based on the number of unique

crashes found during fuzzing. In the case of AFL, a unique crash consist of the seed used to

trigger the crash and where in the program the crash occurred. We report the unique crashes

found in the programs with multiple vulnerable function calls. Our results show that our

approach can find all the unique crashes in significantly less time than AFL.

26

Figure 6.2: Unique crashes found

6.1.5 Fuzzing Execution Cycles

The number of execution cycles in a fuzzing process can be a good indication of the effectiveness

of the initial seeds. Poor seeds usually exhibit the behavior of causing the fuzzer to make

multiple passes through the program without finding a new execution path. Ideally, good

initial seeds should enable the fuzzer to have fewer execution cycles. We report the number of

execution cycles accomplished by AFL and our approach. Our results show that we drastically

reduced the number of execution cycles needed to find a first crash (see Figure 6.3).

6.1.6 Speed Up

Overall, we measure the speed-up achieved for all our metrics of interest. We report the speed-

up performed for the first time a crash occurred, the number of execution cycles, etc. Our

results show that we achieve a speed-up in finding the first crash for the branch depth, width,

condition complexity, and vulnerable functions (see Figure 6.4). We use equation 6.1 to measure

the speed up over AFL in our metrics.

speedup =
AFLfirst crash

Ourfirst crash
(6.1)

27

Figure 6.3: Number of executions of the binary

6.1.7 Symbolic Execution Overhead

Our seed generation uses symbolic execution to solve the path constraints to reach desired code

location to generate seeds. We measure the time it takes to create the seeds to reach all the

target locations. Symbolic execution is known to suffer from path explosion and can add an

extra time overhead during the seed generation.

We measure the preprocessing time for our seed generation to evaluate the overhead of our

approach. The preprocessing time includes the Control Flow Graph (CFG) generation, the

filtering of function calls, the extraction of path constraints, the symbolic execution with path

pruning, and the seed extraction from the constraints’ solutions. Figure 6.5 and Figure 6.6

show the time spent during preprocessing.

28

Figure 6.4: Speedup over AFL for finding the first crash

29

Figure 6.5: Seed generation processing times for branch depth and
width

30

Figure 6.6: Seed generation processing times for condition
complexity and vulnerable functions

31

6.2 Visualization

We track each seed’s paths in the CFG to evaluate their effectiveness in reaching the target code

locations. After finding a bug, we use our visualization tool to generate the paths traversed by

each seed in our generated corpus and AFL’s queue.

6.2.1 Paths of Generated Testcases

Our generated seeds can reach all the vulnerable target calls in the binary. Our tool generates

an image showing the different paths to the vulnerable target calls for each seed (see Figure 6.9).

We track the different paths in the CFG exercised by each seed to evaluate their effectiveness

to reach the target code locations.

6.2.2 Paths of AFL Testcase Queue

We use our tool to visualize the target basic blocks reached by each seed in the AFL test case

queue after mutating a generic input seed.

32

Figure 6.7: CFG of function 2

33

Figure 6.8: Path traversed by the generated seed seed 1

34

Figure 6.9: Path traversed by the generated seed seed 2

35

Chapter 7

Discussion

Previous works have demonstrated the effectiveness of good initial test cases in the fuzzing pro-

cess [30]. In addition, a human-in-the-loop approach can significantly impact the performance

of existing fuzzers [14]. Moreover, a fuzzing process can benefit from a human-in-the-loop ap-

proach in two ways. First, the fuzzer can provide insight into its internal workings to the human

using visualization. Second, humans can provide knowledge about the target program to guide

the fuzzing process toward interesting program locations. Our results support and augment

these findings.

7.1 Path Visualization

Our approach enables human-in-the-loop fuzzing through the visualization of generated and

user-provided seeds’ paths in the CFG. Our tool can show the path taken by each seed pro-

vided by the user or produced by AFL mutation strategies. This gives valuable information

to the human in understanding the path exercised during fuzzing. In addition, the user is

able to determine when the fuzzer is stuck or unable to make meaningful progress through the

visualization of its test case queue.

36

7.2 Direction Based on Symbolic Execution

Our results show that the seeds generated by our tool can exercise the path of interest. In

addition, our results show significant improvement over AFL in finding the first crash that

occurs in programs.

7.3 Efficiency

The examination of our results show an improvement over AFL in scalability and usability. Both

our visualization tool and seed generation tool complement each other to achieve a human-in-

the-loop efficient fuzzing process.

7.3.1 Scalability

Our results show that our framework can scale with the complexity of the conditional branching

instructions. This is demonstrated with results of the set of experimental programs where the

condition of the if branches of increasing complexity. In addition, as we increase the depth of

the nested conditional branches, our tool is able to maintain a near linear performance. Also,

increasing the width of the branches a in our test programs, our approach main significant

speed up over AFL in finding the first crash. Finally, our seed generation tool incurs a very

small overhead (a few seconds) and can scale with program size and discover all the of bugs

present in our experimental programs.

7.3.2 Usability

The visualization of user-provided and mutated seeds can enable non-expert humans to get

insight into the inner workings of a fuzzer. This can proof useful on two angles. First, human

can leverage this information to understand the input structure of the program. Second, the

human can understand roadblocks which the fuzzer encounters during fuzzing. Thus, our

approach can contribute to improvement in the usability of existing fuzzers.

37

Chapter 8

Related Work

8.1 Human-Machine Collaboration in Fuzzing

While the most important tasks of fuzzers are implemented as software that acts autonomously,

there are several important steps that require or can be benefited from the intervention of a hu-

man. From this viewpoint, the fuzzing process in its entirety can be regarded as a collaboration

between a human expert and a fuzzer.

The level of involvement of the human expert in the fuzzing process is indicative of the

class of interaction. The survey in [14] proposed three main classifications of human-machine

collaboration in fuzzing: Human-out-of-the-loop, Human-on-the-loop, and Human-in-the-loop.

This classification assumes the following roles for the human in the fuzzing process:

• User, where the human only uses the tool to retrieve the results;

• Assistant, where the human provides information to the fuzzer regarding the structure

of the target program with the aim to possibly speed up or improve the quality of the

results of the fuzzing process;

• Supervisor, which monitors or receives important insights about the fuzzing process, so

that subsequent fuzzing rounds become more efficient;

• Collaborator, where the human can update the configuration or provide recommendations

that can significantly impact the course of the ongoing fuzzing process.

38

Human-out-of-loop: In Human-out-of-loop approaches, the human acts merely as a User

and does not provide any guidance or aid to the fuzzer nor the human attempts to increase the

fuzzing efficiency. Works in this category focus on using techniques such as machine learning

for example with the aim to automatically generate testcases [5, 9, 31]. For example, Driller [9]

uses selective concolic execution to explore favored paths by AFL to find deeply hidden bugs.

Human-on-the-loop: In Human-on-the-loop, the human can take the role of an Assistant or

Supervisor to guide the fuzzing process. In this approach, the fuzzer can incorporate human

knowledge in its test case generation procedures [6, 10]. For example, Nautilus [32] uses a

user-provided context-free-grammar and code coverage feedback to generate semantically and

structurally correct test cases.

Human-in-the-loop: Finally, in human-in-the-loop fuzzing, the human acts as a Collaborator.

Additionally, this approach can provide better information about the target program to humans

and leverage the use of an interactive environment [25] to increase the fuzzer’s efficiency. This

approach is particularly useful for target programs that are overwhelmingly complex.

Many works have explored different ways to improve the efficiency and effectiveness of

fuzzing techniques using visualization, guidance, and symbolic execution. Hereunder, we shall

analyze some of the most influential of these approaches that fall under these categories. Notice

that while such approaches are applied to all three classes of human-fuzzer collaboration we

will insist in Human-in-the-loop approaches due to their potential and research interest.

39

Figure 8.1: Taxonomy of Human-machine collaboration in fuzzing

8.2 Visualization for Human-in-the-Loop Fuzzing

Many works have explored ways to improve the efficiency of fuzzing techniques by leveraging

visualization with a human-in-the-loop approach. In this section, we will present works that

aim in employing visualization elements as means to provide insights to the human regarding

various aspects of the fuzzing execution.

In [24], the authors proposed FuzzSplore, which provides a corpus of test cases to AFL++

to create various visual analysis graphs such as Testcases Scatterplot, Coverage Growth Plot,

Interesting Testcases Plot, and Generations Graph. These graphs provide a visual summary

of important aspects of the fuzzing process. For example, the Testcases Scatterplot helps to

visualize the relationship between test cases by plotting them based on their coverage similarity.

The Coverage Growth Plot shows the increment in code coverage over time during the fuzzing

process. The Interesting Testcases Plot shows the test cases which AFL++ considers the most

interesting as they are generated during the fuzzing process. The Generations Graph shows the

evolution of test cases and the coverage achieved by each fuzzer over time. Overall, FuzzSplore

40

provides a helpful tool for understanding the behavior of fuzzers and identifying areas for

improvement. However, it fails to enable human interaction with a fuzzer during its execution.

Instead, the focus is to understand the behavior of the fuzzer so that the human expert can

apply optimal configurations as these are discovered, to subsequent fuzzing cycles. Moreover,

traditional graphing techniques can benefit mainly trained experts in the area and they do not

provide significant aid to generalist analysts.

Figure 8.2: FuzzSplore visual panel

In [26], the authors proposed FMViz, a tool for visualizing the mutation patterns generated

by AFL at the byte level. The tool uses inputs that are generated as AFL mutates the original

seeds. The tool provides a visualization of byte-level mutations in fuzzers, which can help

researchers and developers understand the patterns and identify areas for improvement. The

authors applied their tool to libxml2 and demonstrated how it could be used to visualize and

analyze the mutation patterns from the inputs generated by AFL. Although the tool enables the

visualization of the inner workings of AFL mutation patterns, it fails to provide an interactive

environment to allow the human expert to utilize this information to provide feedback to the

fuzzer. Furthermore, using images to capture the information about the mutated bytes of the

test cases can fail to capture rich semantic information of complex inputs.

Another work [27] proposed VisFuzz, which provides a Web interface for real-time visu-

41

Figure 8.3: FMViz sample image representation of testcase

alization of the fuzzing process by extracting a call graph and the control flow graph from

source code. The tool uses test cases and AFL bitmap to provide charts and a Call Graph

and the CFG of the target program. The tool is implemented on top of a modified version of

AFL as an LLVM plugin. The authors demonstrated how their tool could be used to identify

and understand the behavior of the fuzzer and help users improve the overall efficiency of the

fuzzing process. But, this approach relies on the availability of the source code and cannot be

used for black-box fuzzing. Moreover, it expects from the human expert to effectively utilize

the visualization information and manually handcraft test cases which can be a challenging

undertaking especially for complex programs.

42

Figure 8.4: VisFuzz path coverage visualization and fuzzing statistics

Figure 8.5: VisFuzz Call Graph visualization

Figure 8.6: VisFuzz Control Flow Graph visualization

43

8.3 Directed and Human-in-the-Loop Fuzzing

Directed fuzzing is a type of fuzzing in which the goal is to reach specific program locations

[6, 33]. This can be done by manually defining these locations e.g., specific functions in a

human-in-the-loop fashion or in an out-of-the-loop fashion by simply defining fitness metrics.

The concept of Directed Fuzzing was first introduced in the work of [6] where the authors used a

simulated annealing-based power schedule to give more mutational time to seeds that are closer

(based on a distance metric) to the target locations. Subsequent works have capitalized various

techniques to effectively provide guidance towards a specific portion of the programs during

fuzzing. One area of focus is the identification of the type of target location in the program. In

[34], the authors used Git commits to identify the targets. Other target identification approaches

include the use of vulnerability descriptions [21, 35, 36], bug traces [29], patch-related branches

[37, 38], and deep learning [2, 39, 40]. Another approach often used in Directed fuzzing focuses

on the target bugs detection. The works in [29, 41] aim to detect specific types of vulnerabilities

namely, use-after-free vulnerabilities by capitalizing the target operation sequences. Other

approaches attempt to leverage the fuzzing fitness metrics [6, 36, 41]. Finally, various techniques

such as machine learning [34, 40] and symbolic execution [21] are often used to provide effective

guidance to the fuzzer.

Human-in-the-loop fuzzing can leverage the use of interactive environments to allow human

experts to reason about the fuzzing process and guide it toward area of interest. Consequently,

the human expert can provide practical guidance to the fuzzer. Several works have relied on

human-in-the-loop mechanisms to direct the fuzzer to desirable locations in the programs.

In [42], the authors proposed Ijon, a tool that guides AFL-based fuzzers but it depends

on having access to manually annotated version of the source code. This allows the fuzzers

to solve complex constraints. In turn, solving those challenging constraints makes the fuzzer

generate inputs that lead to desirable locations in the program. Although The author’s tool

can solve some very complex constraints effectively, it requires the human to have a deeper

understanding of the program and manually annotate the source code using a specific format.

The entire process is error-prone and time-consuming. In addition, the requirement for anno-

tations necessitates the source code to be available. For this reason, black-box fuzzing is not

44

an option. Finally, the tool has no visualization capabilities, making it difficult for a human to

provide feedback during the fuzzing process.

Conventional coverage reports can be overwhelming. To address this issue, in [43], the

authors proposed a compartment analysis approach that uses a weighted list to help the hu-

man expert prioritize which portion of code to focus their efforts on. The authors define a

compartment as a large portion of code that has not been covered during the fuzzing process.

Thus, the main goal of the proposed approach is to help the human expert discover inputs

that can reach the most important compartments defined by a ranking system. The ranking

of compartments is based on the profiling coverage information derived through static analysis

of the interprocedural control-flow graph (ICFG). The LLVM DataFlowSanitizer (DFSan), a

dynamic data analysis tool, is used to label each compartment using the input label data and

the harness label data. The authors implemented their approach with Data Flow Analysis and

DFSan to provide compartment analysis using the LLVM library of the clang compiler on top

of the fuzzer AFL++. Moreover, they added a fork-server (cov fuzzer) to AFL++ to provide

profiling information such as Function ranking, Block Weight, Calls Weight, and Conditional

as a compartment list. The authors’ approach can help the human discover test cases that can

cover code that typical coverage-guided fuzzers like AFL++ might not be able to reach due to

the complexity of the program. The experimental results show that compartment analysis can

contribute to a 94% coverage improvement over AFL++. However, this approach requires the

human expert to handcraft the test cases based on the compartment list provided by the tool.

Most modern fuzzers require the human to understand a target program well enough to

harness it, i.e., a setup to enable the fuzz target to utilize the generated or user-provided test

cases. However, complex and large programs are often challenging for a human to analyze.

Thus, the authors in [44] developed an introspection toolkit, namely JMPscare, to analyze the

test cases’ queues of fuzzers. This analysis aims to provide insight into fuzzing test case queues

by highlighting unreachable basic blocks from all test cases during fuzzing. The branches that

were never taken during fuzzing (so-called frontiers) are used during the analysis. In addition,

the authors provide an integration plugin to the binary analysis tool Binary Ninja [45] to

enable the forced execution through binary patching of the target to traverse the frontiers. The

forced execution is achieved by altering the target’s control flow with a patch or instrumented

45

branches to bypass the frontier checks. Moreover, JMPscare can work with most target binaries

for black-box fuzzing in AFL++. Also, the toolkit is implemented as a Python and Rust library

with support for fuzzers such as unicornafl [46], BaseSAFE [47], and qiling [48] harnesses. In

addition, JMPscare provides a Binary Ninja plugin to enable the visualization of the covered

and uncovered basic blocks with their conditions discovered during the fuzzing campaign. The

proposed tool uses Potential New Coverage (PNC) analysis to effectively highlight branches to

basic blocks never taken to the human expert. PNC analysis assigns scores to frontier branches,

with a higher score indicating a potentially interesting branch. However, this approach is

susceptible to False positives to forced execution using binary patching.

Figure 8.7: JMPscare user interface in Binary Ninja

8.4 Symbolic Execution in Human-in-the-Loop Fuzzing

Symbolic execution is a software testing technique that aims to explore different paths of a

program by symbolically executing the target program while collecting path constraints [49].

The paths’ constraints can be solved with SMT or SAT solver to generate inputs that traverse

those paths. Symbolic execution is particularly useful in identifying bugs and vulnerabilities

in programs without the need to have knowledge concrete input values. However, symbolic

46

execution suffers from path explosion [9, 49, 50], i.e., the number of symbolic states increases

exponentially with the length of the branching paths. Due to the success of fuzzing in auto-

matically generating inputs to discover bugs, several works [6, 9, 35] have considered a hybrid

approach that can leverage the fuzzing and symbolic execution paradigms to discover bugs

effectively.

Traditional approaches in Directed fuzzing were based on symbolic execution [4, 18]. How-

ever, these automated testing approaches often fail to perform as well as human experts for

programs containing complex logic. To address this issue, the authors proposed Human-assisted

Cyber Reasoning System (HaCRS) [50], a human-assisted autonomous vulnerability analysis

tool. HaCRS interface uses a text-based terminal interface, coined as Human Automation Link

(HAL), with the following components: Program description, Interaction terminal, Tasklet goal

and feedback, Example interactions, and CRS-Generated suggestions. The program description

outlines details regarding the execution of the program, while the Interaction terminal pro-

vides the user with an interface to interact with the automation tool. The Tasklet instructions

show the instruction presented to the human assistant, while the Example interactions display

the previous interactions with the program. The CRS-Generated Suggestions display helpful

information to generate alternative test cases during the Tasklet goal and feedback provides

feedback on the uncovered paths CFG and string outputs along those paths. The HAL text-

based terminal interface allows the human assistant to provide inputs that can reach previously

unreachable code by test cases in the fuzzer test case queues. Next, the human-generated test

cases are mutated by the exploration components of HaCRS. The human can monitor and mod-

ify the test cases generated by all other human assistants to increase code coverage. Finally,

the automation tool will mutate the test cases and prompt the human to review them. HaCRS

can automatically discover the input format of programs to inform the automation tool or the

human expert during test case generation. In addition, HaCRS can automatically analyze the

CFG of binaries to identify and categorize the string references contained in them HaCRS can

leverage its automation tool to generate alternative symbolic tokens (inputs) to give suggestions

to human experts during test case generation. Although HaCRS suggestions can be helpful to

human experts, it requires them to understand and utilize that information to generate suitable

test cases which often be challenging.

47

Figure 8.8: HaCRS user interface diagram

48

T
a
b
le

8
.1
:
S
u
m
m
a
ry

o
f
re

la
te
d

w
o
rk

s
in

H
u
m
a
n
-i
n
-t
h
e
-l
o
o
p

fu
z
z
in
g

W
o
rk

G
o
a
l

T
e
ch

n
iq
u
e
s

A
d
v
a
n
ta

g
e
s

L
im

it
a
ti
o
n
s

C
a
te
g
o
ry

H
u
m
a
n

R
o
le
(s
)

Ij
on

[4
2]

G
u
id
e
A
F
L
-b
as
ed

fu
zz
er
s
u
si
n
g

H
u
m
an

an
n
ot
at
io
n
s

S
ou

rc
e
co
d
e

an
n
ot
at
io
n
s

C
an

so
lv
e
co
m
p
le
x

co
n
st
ra
in
ts

an
d

ge
n
er
at
e

st
ru
ct
u
re
d
in
p
u
ts

In
tr
u
si
ve

an
d

m
an

u
al

co
d
e

an
n
ot
at
io
n

D
ir
ec
te
d

F
u
zz
in
g

S
u
p
er
v
is
o
r,

C
o
ll
a
b
o
ra
to
r

H
om

o
in

M
ac
h
in
a
[4
3]

In
cr
ea
se

co
ve
ra
ge

b
y
p
ro
v
id
in
g

co
m
p
ar
tm

en
ts

li
st

to
h
el
p
h
u
m
an

s

fi
n
d
in
p
u
ts

w
h
ic
h

ca
n
re
ac
h
th
em

.

C
om

p
ar
tm

en
t

an
al
y
si
s

H
ig
h
er

co
d
e

co
ve
ra
ge

fo
r

co
m
p
le
x
p
ro
gr
am

s

R
eq
u
ir
es

h
an

d
cr
af
ti
n
g
se
ed

s

w
h
ic
h
co
ve
r
th
e

co
m
p
ar
tm

en
t
li
st

D
ir
ec
te
d

F
u
zz
in
g
,

V
is
u
a
li
za
ti
o
n

A
ss
is
ta
n
t,

S
u
p
er
v
is
o
r

49

T
a
b
le

8
.1

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

J
M
P
sc
ar
e
[4
4]

P
ro
v
id
e
in
si
gh

t

in
to

fu
zz
in
g
te
st

ca
se

q
u
eu

es
b
y

h
ig
h
li
gh

ti
n
g

u
n
co
ve
re
d
b
as
ic

b
lo
ck
s
ac
ro
ss

al
l

q
u
eu

e
it
em

s

d
u
ri
n
g
fu
zz
in
g.

P
ot
en
ti
al

N
ew

C
ov
er
ag

e
(P

N
C
)

an
al
y
si
s

C
an

w
or
k
w
it
h

b
in
ar
ie
s
an

d
ca
n

co
ve
r
n
ev
er

ta
k
en

b
ra
n
ch
es

(f
ro
n
ti
er
s)

to

gu
id
e
th
e
h
u
m
an

ex
p
er
t
to
w
ar
d
s

in
te
re
st
in
g

fr
on

ti
er
s.

C
an

h
av
e
fa
ls
e

p
os
it
iv
es

d
u
e
to

fo
rc
ed

ex
ec
u
ti
on

u
si
n
g
b
in
ar
y

p
at
ch
in
g.

D
ir
ec
te
d

F
u
zz
in
g
,

V
is
u
a
li
za
ti
o
n

S
u
p
er
v
is
o
r

H
aC

R
S
[5
0]

P
ro
v
id
e

re
co
m
m
en

d
at
io
n
s

to
h
u
m
an

as
si
st
an

ts
d
u
ri
n
g

te
st

ca
se

ge
n
er
at
io
n

H
u
m
an

-b
as
ed

C
om

p
u
ta
ti
on

&

C
an

d
is
co
ve
r
th
e

in
p
u
t
fo
rm

at
of

p
ro
gr
am

s
to

h
el
p

h
u
m
an

ex
p
er
ts

d
u
ri
n
g
te
st

ca
se

ge
n
er
at
io
n

R
eq
u
ir
es

to

eff
ec
ti
ve
ly

u
ti
li
ze

th
e
p
ro
v
id
ed

su
gg

es
ti
on

s
to

h
an

d
cr
af
t
go

o
d

te
st

ca
se
s

S
y
m
b
ol
ic

ex
ec
u
ti
on

,

V
is
u
al
iz
at
io
n

S
u
p
er
v
is
o
r,

C
o
ll
a
b
o
ra
to
r

50

T
a
b
le

8
.1

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

F
u
zz
E
x
p
lo
re

[2
4]

P
ro
v
id
e
in
si
gh

ts

in
to

th
e
fu
zz
in
g

p
ro
ce
ss

of
a

p
ar
ti
cu

la
r
ta
rg
et

w
it
h
th
e
h
el
p
of

a

v
is
u
al

fe
ed

b
ac
k

co
m
p
on

en
t.

P
lo
ts

of
va
ri
ou

s

m
et
ri
cs

fo
r

co
ve
ra
ge

an
d
te
st

ca
se
s
ge
n
er
at
io
n

P
ro
v
id
es

v
is
u
al

in
fo
rm

at
io
n
,a
b
ou

t

te
st

ca
se

si
m
il
ar
it
y

an
d
co
ve
ra
ge

ev
ol
u
ti
on

R
eq
u
ir
es

an

u
n
d
er
st
an

d
in
g

v
is
u
al

el
em

en
ts

p
ro
v
id
ed

V
is
u
a
li
za
ti
o
n

S
u
p
er
v
is
o
r,

C
o
ll
a
b
o
ra
to
r

V
is
F
u
zz

[2
7]

P
ro
v
id
e
v
is
u
al

in
fo
rm

at
io
n
to

h
el
p
h
u
m
an

ex
p
er
ts

u
n
d
er
st
an

d
an

d

im
p
ro
ve

th
e

ov
er
al
l
effi

ci
en

cy
of

th
e
fu
zz
in
g
p
ro
ce
ss

R
ea
l-
ti
m
e

v
is
u
al
iz
at
io
n
of

C
F
G

C
al
l
G
ra
p
h
,

an
d
fu
zz
in
g

st
at
is
ti
cs

P
ro
v
id
es

a
w
eb

in
te
rf
ac
e
th
at

ca
n

b
e
on

h
et
er
og

en
eo
u
s

d
ev
ic
es

E
x
p
ec
ts

an

eff
ec
ti
ve
ly

u
ti
li
ze

th
e
v
is
u
al
iz
at
io
n

in
fo
rm

at
io
n
to

h
an

d
cr
af
t
te
st

ca
se
s

V
is
u
a
li
za
ti
o
n

S
u
p
er
v
is
o
r,

C
o
ll
a
b
o
ra
to
r

51

Chapter 9

Conclusion & Future Work

The use of handcrafting test cases in fuzzing poses several issues which can impede their adop-

tion. To address those issues, we propose a seed generation and visualization framework that

leverages human-in-the-loop directed fuzzing. Our approach uses symbolic execution with a

path pruning technique based on the Depth-First-Search and Dijstra’s shortest path algorithms.

Our experimental results show a significant improvement over the AFL fuzzing process.

Several challenges still exist which are not addressed by our current approach. First, the

user-provided target might not be present in the CFG of the binary. We address this issue with

a symbolic execution in a depth-first approach until an exit node is found in the CFG. How-

ever, future work should address this issue with techniques that can leverage similarity metrics

between the missed basic block targets and existing basic blocks in the CFG. Additionally, our

seed visualization tool outputs its results in a DOT and PNG image file. Future work could

make use of the graph visualization tool to enable visualization in heterogeneous devices and

platforms such as computer browsers, Virtual Reality headsets, etc.

The Cyber Grand Challenge [51, 52, 53] was a vulnerability discovery and defense com-

petition organized by DARPA (Defense Advanced Research Projects Agency). Over 100 US

entities participated in the competition, which was held from 2014 to 2016. During the compe-

tition, several teams built binary analysis tools such as BAP [54] and angr, and fuzzers such as

Driller and Mayhem during the competition. These tools are still used for automated software

testing and analysis. The challenge datasets for the qualifying event is a set of 131 source

codes and binaries written in C/C++ intended to run in custom and open source Linux OS

52

named DECREE (DARPA Experimental Cyber Research Evaluation Environment). Though

it is possible to compile those binaries for different OS [55]. The challenge sets source code

contains 50 Common Weakness Enumeration (CWE) vulnerabilities such as buffer overflow,

integer overflows, and use after free. Our future work will use the challenge sets to perform a

more in-depth evaluation of our framework.

53

Bibliography

[1] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,

S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War: Offensive

Techniques in Binary Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[2] X. Zhu, S. Liu, X. Li, S. Wen, J. Zhang, J. Zhang, S. Camtepe, Camtepe Seyit, and

Y. Xiang, “DeFuzz: Deep Learning Guided Directed Fuzzing.” arXiv: Cryptography and

Security, 2020.

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX

utilities,” Communications of The ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.

[4] V. Ganesh, T. Leek, and M. Rinard, “taint based directed whitebox fuzzing,” 2009 IEEE

31st International Conference on Software Engineering, 2009.

[5] “american fuzzy lop.” [Online]. Available: https://lcamtuf.coredump.cx/afl/

[6] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed Greybox

Fuzzing,” CCS, pp. 2329–2344, Oct. 2017.

[7] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic generation of

high-coverage tests for complex systems programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[8] I. Yun, S. Lee, Meng Xu, Meng Xu, Meng Xu, M. Xu, Y. Jang, and T. Kim, “QSYM: a

practical concolic execution engine tailored for hybrid fuzzing,” USENIX Security Sympo-

sium, pp. 745–761, Aug. 2018.

https://lcamtuf.coredump.cx/afl/

54

[9] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,

C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing Through Selective Symbolic

Execution.” Network and Distributed System Security Symposium, Jan. 2016.

[10] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” in 2018 IEEE

Symposium on Security and Privacy (SP). IEEE, 2018, pp. 711–725.

[11] C. Holler, K. Herzig, A. Zeller et al., “Fuzzing with code fragments.” in USENIX Security

Symposium, 2012, pp. 445–458.

[12] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang, and

K. Zhang, “Iotfuzzer: Discovering memory corruptions in iot through app-based fuzzing.”

in NDSS, 2018.

[13] S. Katoch, S. S. Chauhan, V. Kumar, and V. Kumar, “A review on genetic algorithm:

past, present, and future,” Multimedia Tools and Applications, vol. 80, no. 5, pp. 1–36,

2020.

[14] Qian Yan, Minhuan Huang, and Huayang Cao, “A Survey of Human-machine Collabora-

tion in Fuzzing,” International Conference on Data Science in Cyberspace, 2022.

[15] D. Andriesse, Practical binary analysis: build your own Linux tools for binary instrumen-

tation, analysis, and disassembly. no starch press, 2018.

[16] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” International Conference on

Tools and Algorithms for Construction and Analysis of Systems, pp. 337–340, Mar. 2008.

[17] Y. Liu, X. Zhou, andW.-W. Gong, “A Survey of Search Strategies in the Dynamic Symbolic

Execution,” vol. 12, p. 03025, Jan. 2017.

[18] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental symbolic execu-

tion,” ACM-SIGPLAN Symposium on Programming Language Design and Implementa-

tion, vol. 46, no. 6, pp. 504–515, Jun. 2011.

[19] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic execution,” Sensors

Applications Symposium, pp. 95–111, Sep. 2011.

55

[20] A. Y. Gerasimov, “Directed Dynamic Symbolic Execution for Static Analysis Warnings

Confirmation,” Programming and Computer Software, vol. 44, no. 5, pp. 316–323, Sep.

2018.

[21] J. Kim and J. Yun, “Poster: Directed Hybrid Fuzzing on Binary Code,” Conference on

Computer and Communications Security, pp. 2637–2639, Nov. 2019.

[22] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E Platform: Design, Implementa-

tion, and Applications,” ACM Transactions on Computer Systems, vol. 30, no. 1, p. 2,

Feb. 2012.

[23] L. Borzacchiello, E. Coppa, and C. Demetrescu, “FUZZOLIC: Mixing fuzzing and concolic

execution,” Computers & Security, vol. 108, p. 102368, Jun. 2021.

[24] Andrea Fioraldi and Luigi Paolo Pileggi, “FuzzSplore: Visualizing Feedback-Driven

Fuzzing Techniques,” ArXiv, 2021.

[25] M. Grishin and I. Korkin, “Human-Controlled Fuzzing With AFL,” 2022.

[26] Aftab Hussain and Mohammad Amin Alipour, “FMViz: Visualizing Tests Generated by

AFL at the Byte-level,” ArXiv, 2021.

[27] C. Zhou, M. Wang, J. Liang, Zhe Liu, Zhe Liu, Z. Liu, Chengnian Sun, C. Sun, Chengnian

Sun, and Y. Jiang, “VisFuzz: understanding and intervening fuzzing with interactive visu-

alization,” International Conference on Automated Software Engineering, pp. 1078–1081,

Nov. 2019.

[28] Z. Chen, S. Guo, and D. Fu, “A Directed Fuzzing Based on the Dynamic Symbolic Execu-

tion and Extended Program Behavior Model,” 2012 Second International Conference on

Instrumentation, Measurement, Computer, Communication and Control, pp. 1641–1644,

Dec. 2012.

[29] M.-D. Nguyen, Manh-Dung Nguyen, Manh-Dung Nguyen, Sébastien Bardin, S. Bardin,

Sébastien Bardin, R. Bonichon, Roland Groz, R. Groz, and M. Lemerre, “Binary-level

Directed Fuzzing for Use-After-Free Vulnerabilities,” arXiv: Cryptography and Security,

Feb. 2020.

56

[30] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1, no. 1, pp. 1–13,

2018.

[31] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input fuzzing,”

in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, 2017, pp. 50–59.

[32] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert, “NAU-

TILUS: Fishing for Deep Bugs with Grammars.” Network and Distributed System Security

Symposium, Feb. 2019.

[33] P. Wang, Pengfei Wang, Pengfei Wang, Xu Zhou, and X. Zhou, “SoK: The Progress,

Challenges, and Perspectives of Directed Greybox Fuzzing.” arXiv: Cryptography and

Security, May 2020.

[34] W. You, P. Zong, K. Chen, X. Wang, XiaoFeng Wang, XiaoFeng Wang, X. Liao, P. Bian,

and B. Liang, “SemFuzz: Semantics-based Automatic Generation of Proof-of-Concept

Exploits,” Conference on Computer and Communications Security, pp. 2139–2154, Oct.

2017.

[35] M. E. Garbelini, Chundong Wang, C. Wang, and S. Chattopadhyay, “GREYHOUND: Di-

rected Greybox Wi-Fi Fuzzing,” IEEE Transactions on Dependable and Secure Computing,

no. 99, pp. 1–1, Jan. 2021.

[36] Y. Wang, J. Xiangkun, Xiangkun Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, Dinghao Wu, and

P. Su, “Not All Coverage Measurements Are Equal: Fuzzing by Coverage Accounting for

Input Prioritization.” Network and Distributed System Security Symposium, Jan. 2020.

[37] X. Zhu and M. Böhme, “Regression Greybox Fuzzing,” Conference on Computer and

Communications Security, Nov. 2021.

[38] P. Jiaqi, F. Li, L. Feng, F. Li, B. Liu, L. Xu, L. Binghong, K. Chen, and W. Huo,

“1dVul: Discovering 1-Day Vulnerabilities through Binary Patches,” Dependable Systems

and Networks, pp. 605–616, Jun. 2019.

57

[39] Y. Zhao, Y. Li, Y. Li, Y. Tengfei, H. Xie, Haiyong Xie, and Haiyong Xie, “Suzzer: A

Vulnerability-Guided Fuzzer Based on Deep Learning,” Conference on Information Secu-

rity and Cryptology, pp. 134–153, Dec. 2019.

[40] Y. Li, S. Ji, C. Lv, Y. Chen, J. Chen, Q. Gu, and C. Wu, “V-Fuzz: Vulnerability-Oriented

Evolutionary Fuzzing.” arXiv: Cryptography and Security, Jan. 2019.

[41] Haijun Wang, H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, Y. Liu, S. Qin, H. Chen,

and Y. Sui, “Typestate-guided fuzzer for discovering use-after-free vulnerabilities,” Inter-

national Conference on Software Engineering, pp. 999–1010, Jun. 2020.

[42] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring Deep State Spaces

via Fuzzing,” IEEE Symposium on Security and Privacy, pp. 1597–1612, May 2020.

[43] Josh Bundt, Andrew Fasano, Brendan Dolan-Gavitt, W. Robertson, and T. Leek, “Homo

in Machina: Improving Fuzz Testing Coverage via Compartment Analysis,” ArXiv, 2022.

[44] D. Maier and L. Seidel, “JMPscare: Introspection for Binary-Only Fuzzing,” Jan. 2021.

[45] “Binary Ninja.” [Online]. Available: https://binary.ninja/

[46] “UnicornAFL,” Apr. 2023, original-date: 2021-11-29T14:43:39Z. [Online]. Available:

https://github.com/AFLplusplus/unicornafl

[47] D. Maier, L. Seidel, and S. Park, “Basesafe: Baseband sanitized fuzzing through emula-

tion,” in Proceedings of the 13th ACM conference on security and privacy in wireless and

mobile networks, 2020, pp. 122–132.

[48] “qilingframework/qiling,” Apr. 2023, original-date: 2019-08-22T13:22:15Z. [Online].

Available: https://github.com/qilingframework/qiling

[49] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A Survey of Symbolic

Execution Techniques,” ACM Computing Surveys, vol. 51, no. 3, p. 50, May 2018.

[50] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel, and G. Vigna,

“Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning Systems with Human

Assistance,” arXiv: Cryptography and Security, Aug. 2017.

https://binary.ninja/
https://github.com/AFLplusplus/unicornafl
https://github.com/qilingframework/qiling

58

[51] J. Song and J. Alves-Foss, “The DARPA Cyber Grand Challenge: A Competitor’s Per-

spective,” IEEE Security and Privacy, vol. 13, no. 6, pp. 72–76, Nov. 2015.

[52] ——, “The DARPA Cyber Grand Challenge: A Competitor’s Perspective, Part 2,” IEEE

Security and Privacy, vol. 14, no. 1, pp. 76–81, Jan. 2016.

[53] Newton Lee and N. Lee, “DARPA’s Cyber Grand Challenge (2014–2016),” pp. 429–456,

Jan. 2015.

[54] David Brumley, David Brumley, and D. Brumley, “The Cyber Grand Challenge and the

Future of Cyber-Autonomy.” Log in, vol. 43, Jan. 2018.

[55] S. securitylearner, “Your tool works better than mine? Prove

it.” Aug. 2016. [Online]. Available: https://blog.trailofbits.com/2016/08/01/

your-tool-works-better-than-mine-prove-it/

https://blog.trailofbits.com/2016/08/01/your-tool-works-better-than-mine-prove-it/
https://blog.trailofbits.com/2016/08/01/your-tool-works-better-than-mine-prove-it/

	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms
	Introduction
	Technical Background & Definitions
	Historical Context
	Taxonomy
	Program Analysis
	Application Domain
	Input Generation
	Exploration Strategy

	Modern Fuzzers
	Overview of AFL
	Genetic Algorithms
	Code Coverage
	Instrumentation
	Test Cases Generation
	Fuzzing Strategies
	Limitations

	Challenges
	Directed Fuzzing Methods
	Human-Machine Collaboration Approaches
	Binary Analysis
	Angr: A Binary Analysis Tool

	Symbolic Execution
	Overview
	Path Explosion

	Problem Statement
	Proposed Framework
	Architecture
	Seed Generator
	Visualization

	Algorithms
	Basic Block Address Extraction
	Depth-First-Search
	Directed Symbolic Execution

	Implementation
	Visualization
	Seed Generation

	Experimental Setup & Dataset
	Evaluation Dataset
	Experimental Setup
	Implementation Considerations

	Experimental Evaluation
	Seed Generation
	Crash Triage
	Performance Metrics
	First Crash Time
	Unique Crashes
	Fuzzing Execution Cycles
	Speed Up
	Symbolic Execution Overhead

	Visualization
	Paths of Generated Testcases
	Paths of AFL Testcase Queue

	Discussion
	Path Visualization
	Direction Based on Symbolic Execution
	Efficiency
	Scalability
	Usability

	Related Work
	Human-Machine Collaboration in Fuzzing
	Visualization for Human-in-the-Loop Fuzzing
	Directed and Human-in-the-Loop Fuzzing
	Symbolic Execution in Human-in-the-Loop Fuzzing

	Conclusion & Future Work
	References

