
 

 

 

Defining the Limits of Hi-C for Identifying Hosts of Plasmids and 

Antibiotic Resistance Genes in Simple Bacterial Communities 

 
 

 

A Thesis 

Presented in Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

with a 

Major in Bioinformatics and Computational Biology 

in the 

College of Graduate Studies 

University of Idaho 

by 

Bethel J. Kohler 

 

 

 

Major Professor: Celeste J. Brown, Ph.D. 

Committee Members: Tanya Miura, Ph.D.; Steve Krone, Ph.D.; Stephen Lee, Ph.D. 

Department Administrator: Eva Top, Ph.D. 

 

 

 

 

December 2017 

  



 ii 

Authorization to Submit Thesis 

This thesis of Bethel J. Kohler, submitted for the degree of Master of Science with a 

Major in Bioinformatics and Computational Biology and titled “Defining the Limits of 

Hi-C for Identifying Hosts of Plasmids and Antibiotic Resistance Genes in Simple 

Bacterial Communities,” has been reviewed in final form. Permission, as indicated by the 

signatures and dates below, is now granted to submit final copies to the College of 

Graduate Studies for approval. 

 

 

 

 

Major Professor:    _________________________________   Date: ____________ 

  Celeste J. Brown, Ph.D. 

 

 

Committee 
 Member:     _________________________________   Date: ____________ 

  Tanya Miura, Ph.D. 

 

  _________________________________   Date: ____________ 

  Steve Krone, Ph.D. 

 

  _________________________________   Date: ____________ 

  Stephen Lee, Ph.D. 

 

Department 
Administrator:    _________________________________   Date: ____________ 

  Eva Top, Ph.D.  

 
  



 iii 

Abstract 

The rapid spread of bacterial antibiotic resistance is a major public health threat that is 

making many of our known antibiotics ineffective at fighting pathogens. The horizontal 

transfer of antibiotic resistance genes (ARG) by mobile genetic elements such as 

plasmids plays a major role in this health crisis. To curb the spread of ARG, we need to 

identify the hosts and plasmids that carry them in the environment. Traditional 

metagenomic approaches have been of limited use in this because of their poor ability to 

link ARG to the chromosome or plasmid that carry them. Cultivation-based methods are 

also not effective due to the high abundance of unculturable bacteria in most ecosystems. 

The chromosomal conformation capture (Hi-C) approach has recently been proven useful 

for reconstructing individual genomes from mixed cell populations by physically linking 

DNA fragments that occupied the same cell prior to sequencing. However, the limits of 

Hi-C detection, especially in the areas of plasmid and antibiotic resistance research, have 

not been defined. This project tested the hypothesis that plasmid and bacterial carriers of 

ARG can be identified using the Hi-C method while also beginning to define its limits in 

these areas. Towards this end, a bioinformatics pipeline was constructed for Hi-C data 

analysis. Using this pipeline, the Hi-C clustering of metagenomic contigs by species can 

be done using a simple script implemented in R. A series of mock bacterial communities 

was designed to measure the limits of Hi-C detection for plasmids and ARG while 

mimicking realistic environmental and plasmid-transfer scenarios. The pipeline was 

shown to be effective for clustering the contigs from these communities by genome. 

Clustering based on Hi-C linkages also made it possible to identify the genetic context of 

ARG in bacterial communities, for instance, whether ARG were encoded on bacterial 

chromosomes or transmissible plasmids. Multiple plasmids could be accurately shown to 

be carried by the same species, the genome of a species present at as low as 5% of the 

community could be detected, and the same plasmid could be definitively determined to 

be present in multiple species when present in those species in equal amounts. This 

information will lead the way for future research applications using Hi-C to identify the 

bacterial carriers of ARG and plasmids in diverse environmental samples. 
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Chapter 1: Literature Review 

The Spread of Antibiotic Resistance 
 The discovery of penicillin by Alexander Fleming in 1928 heralded the beginning 

of the antibiotic era. Considered one of the greatest advances in therapeutic medicine, 

these miracle drugs were mass-produced and simple infections no longer equaled a death 

sentence (“American Chemical Society”, 2015). More drugs were developed and added 

to the market and it quickly became difficult to imagine a world without antibiotics, some 

of the most commonly prescribed drugs in modern medicine. However, as long ago as 

1945, when Alexander Fleming gave his acceptance speech for the Nobel Prize that he 

won for his discovery, he warned of bacteria becoming resistant to the drug. At that time, 

penicillin resistance had already been identified in strains of Streptococcus. Resistances 

in more strains and to more antibiotics quickly appeared (“Centers for Disease Control”, 

2017) as bacteria adapted to the presence of these drugs. 

 The rapid spread of bacterial antibiotic resistance is a global public health issue 

that has left many of our known antibiotic drugs ineffective at fighting pathogens. In 

2015, the White House recognized the significance of this issue, releasing a plan of action 

for combating the rise of antibiotic resistant bacteria and recognizing this plan as a 

necessary, lifesaving effort (White House, 2015). The term superbug was coined to refer 

to bacteria that can no longer be killed by some or all commonly used antibiotics. While 

these superbugs have created a strong push to discover new antibiotics (Maffioli et al., 

2017), new resistances and superbugs emerge regularly and at a much faster rate than 

new antibiotic drugs are being developed. The World Health Organization warned in 

2014 that we are very likely entering a “post-antibiotic” era where we will lack effective 

drug therapies for even the most common infections (“WHO”, 2014). 

 The horizontal transfer of antibiotic resistance genes (ARG) by mobile genetic 

elements such as plasmids has played a major role in this health crisis (Lester et al., 

2006). Plasmids are small, typically circular pieces of DNA that can be found in some 

bacterial cells in addition to the chromosome (Roth & Helinski, 1967). They often encode 

accessory genes that make it possible for their hosts to survive and even thrive in various, 
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more extreme living conditions (Kado, 1998). This includes surviving in the presence of 

antibiotics if a plasmid encodes for antibiotic resistance.  

 Some plasmids can transfer copies of themselves to neighboring cells. Once there, 

they may integrate into the chromosome or pick up more ARG before transferring new 

copies to other neighbors. This type of plasmid exchange is called conjugation. While not 

all plasmids are capable of conjugation, and some conjugating plasmids can only be 

transferred among specific species, some can be transferred to a broad host range (BHR). 

These BHR plasmids are especially important contributors to the rapid evolution of 

bacterial antibiotic resistance. One plasmid can often bestow multiple antibiotic 

resistances to a new species through just one of these conjugation events (Lester et al., 

2006). “Super” plasmids, carrying multiple resistances (Oliva et al., 2017), are an 

especially big public threat if they have conjugative capabilities (Dang et al., 2017; Tang 

et al., 2017) and a broad host range.  

Environmental Reservoirs of Antibiotic Resistance 
 To better understand the evolution of antibiotic resistance and better manage our 

antibiotic resources, a better understanding is needed of the direction of ARG movement 

in the environment (Berendonk et al., 2015). Environmental contamination with both 

antibiotics and ARG has become nearly ubiquitous (Berendonk et al., 2015). Due to their 

widespread presence, antibiotics have become contaminants of emerging concern 

(Dodder et al., 2014) that have been shown to get taken up by and be present in food 

sources such as vegetables (Kumar et al., 2005) and coastal mussels (Dodder et al., 

2014). Antibiotic resistance determinants have also been found in most areas studied, 

including ecosystems as diverse as soil (Forsberg et al., 2012), manure (Zhu et al., 2013), 

water, waste effluent, and river sediment (Dang et al., 2017). 

 Our current health crisis is due to multiple factors. It is possibly due in part to 

naturally occurring environmental ARG becoming plasmid borne, transferring to 

pathogens, and then showing up in hospitals where they become medically relevant 

(Forsberg et al., 2012). Some environmental microorganisms naturally produce 

antibiotics (Waksman & Woodruff, 1940) and these get released into the environment. 

Some microorganisms thus naturally carry resistance genes (Forsberg et al., 2012; 

D’costa et al., 2007) to survive in their presence. However, our health crisis is also likely 
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due to human factors. Antibiotic resistant bacteria from clinics or farms can disseminate 

through the environment by use of vectors or due to waste management practices that 

allow for genetic dispersal to new locations by natural means, such as by waterways 

(Munir et al., 2011). Mixing bacteria from an anthropogenic source with environmental 

bacteria creates an ideal environment for genetic exchange and evolution due to plasmid-

mediated horizontal gene transfer (Gotz & Smalla, 1997). Environmental contamination 

with commercially produced antibiotics also enriches for native bacteria that have 

evolved more resistances (Martinez, 2009). The fact that antibiotics can have 

significantly longer half-lives in matrices such as soil than they would in an aqueous 

solution (Du & Liu, 2012) means that contamination of some areas can have greater long 

term consequences. Compounding this problem, antibiotic waste is often disseminated in 

the environment alongside bacteria carrying resistance genes, such as when manure is 

spread on an agricultural field as fertilizer (Zhu et al., 2013; Heuer & Smalla, 2007, 

Udikovic-Kolic et al., 2014) or when treated waste water or biosolids are released into the 

environment (Munir et al., 2011). 

  Deciphering the most common origins and environmental reservoirs of ARG, 

before they show up in hospitals and become medically relevant, is fundamental to 

understanding the evolution of antibiotic resistance and managing antibiotic use. Gaining 

this understanding requires better methods for analyzing environmental bacterial samples. 

Whether a swab from a clinic or a gram of soil, these samples are comprised of an entire 

bacterial community. The community members could range from 2 – 5x104 species in the 

case of something as complex as soil (Roesch et al., 2007). The major species present 

may or may not be known and some or all the members could be carrying unknown 

plasmids in addition to their chromosome. There has not been a good way to 

comprehensively look at these community members in detail, because, until lately, most 

bacterial research has been limited to using either culture-based methods or metagenomic 

approaches. Both of these methods have major limitations. 

Previous Methods for Studying Antibiotic Resistance 
 Using the culture based method, bacterial isolates can be identified (Sengelov et 

al., 2003) and comprehensively studied. While bacterial culturing has allowed for the 

identification of many plasmids and ARG, and the fraction of culturable bacteria is 
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constantly expanding (Ferrari et al., 2008; Vartoukian et al., 2010), the method still has a 

very limited scope. Much of the microbial community is lost to analysis using this 

method because only a minor fraction of the microbiome can be cultured in a lab, 

approximately 1% (Vartoukian et al., 2010). This is a problem, especially in studies such 

as that done by Sengelov et al. (2003), where the level of antibiotic resistance in 

environmental samples is measured as the number of resistant bacterial isolates observed 

on a plate. Presumably, more bacteria carried the resistance but could not grow on the 

media provided. While the use of a control plate without antibiotics ensures that a 

researcher is calculating an accurate resistance ratio for culturable bacteria, this ratio of 

resistant to non-resistant bacteria could be different for the 99% of the microbiome not 

being analyzed. 

 The metagenomic approach bypasses the culturing problem by extracting total 

DNA directly from a sample and sequencing it. A larger fraction of the microbiome can 

then be studied. BLAST type searches against known databases, 16s rRNA identification, 

or PCR amplification (Munir et al., 2011) can be used on the extracted DNA. These can 

make it possible to identify the species, ARG, and even plasmid identifier genes present 

in such a dataset (Zhu et al., 2013). However, most extraction techniques fracture the 

DNA/genome making it difficult to attribute putative characteristics to specific bacterial 

taxa using these methods. Metagenomic assembly was developed to help with this.  

 Metagenomic assemblers are program that piece together overlapping, short DNA 

sequence reads into longer contiguous sequences (contigs). However, even after 

assembling metagenomic reads into longer contigs, any but the simplest bacterial 

communities can produce too many short contigs to identify which came from which 

species within the community. Improvements to assembly methods are made regularly, 

but high quality metagenomic assemblies can be difficult to achieve even when 

employing newer, more sophisticated methods (Howe et al., 2014). Highly complex 

bacterial communities such as those found in soil have proved especially difficult to 

assemble. When performing assemblies of soil metagenomes, Howe et al. (2014) found 

that only 10% of the sequences were sampled deeply enough to be assembled. This 

means that the majority of the genetic information in a complex sample like this is still 

lost to analysis. They also found that more than 60% of the predicted proteins in their 
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assemblies could not be annotated by comparison to known databases. This is because 

much of the environmental microbiome has never yet been characterized. It will continue 

to be difficult to characterize previously unknown bacterial species from fragmented 

assemblies.  

 The reliable identification of bacterial carriers of plasmids and replicon carriers of 

ARG using metagenomic approaches is also rare. This is because most reads and 

assembled contigs are too short to have both species identifier genes and ARG on the 

same stretch of DNA sequence and plasmid and chromosomal DNA should never be on 

the same stretch of DNA sequence. Determining whether ARG in a sample are located on 

a plasmid or chromosome is imperative if concerned about their mobility however. For 

instance, discovering which species a drug resistant plasmid has made its way into is 

relevant information when assessing an ARG’s public health risk. While long read 

sequencing technologies such as those from PacBio and Oxford Nanopore have the 

potential to help with this issue (Koren & Phillippy, 2015), the methods are still in 

development and are cost prohibitive for many research projects. If cost was not an issue, 

long read sequencing could help with determining ARG location as it can aid in 

assembling whole replicons from simple metagenomic samples (Driscoll et al., 2017). 

However, plasmid and chromosomal DNA should still never be on either the same read 

or same contig using long read technology because they originated from different 

replicons. Long read technology thus would not link plasmids to the species they came 

from in the context of an environmental sample made up of many different species. Thus, 

neither culture based methods nor metagenomic approaches are sufficient for answering 

detailed questions about bacterial community members. 

The Hi-C Method 
 The Hi-C genome conformation capture method is a relatively new approach 

which allows the study of chromosomal conformation in a cell’s natural state by cross-

linking DNA molecules in close physical proximity within the cell. Hi-C data thus 

reflects the spatial arrangement of DNA at the time of cross-linking. Hi-C’s precursors, 

3C and 4C, were originally developed for looking at chromosomal interactions within 

yeast and mammalian cells (Wit & Laat, 2012). The method has recently been applied to 
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prokaryotes and has proven useful for reconstructing individual species’ genomes from 

bacterial communities (Beitel et al., 2014; Burton et al., 2014; Marbouty et al., 2014). 

 The Hi-C method is an elaborate DNA extraction method that produces DNA 

sequences where each end of the sequence originated from a different genetic location 

within the same cell. Each end of a sequenced Hi-C paired end read could thus come 

from different areas of the chromosome, from entirely different chromosomes in the case 

of eukaryotic cells, or plasmid and chromosome in the case of bacterial cells. To create 

Hi-C read sequences, a sample, such as a mixed bacterial community, is briefly treated 

with formaldehyde prior to cell lysis. The formaldehyde treatment is dilute and short 

enough to prevent significant DNA damage. It penetrates the intact cells and crosslinks 

DNA loci that are in close proximity within the cell (Orlando et al., 1997). The cells are 

then lysed and the recovered DNA is digested with a restriction enzyme. The digested 

ends are filled in and labeled with a biotin-labeled nucleotide. The still cross-linked 

restriction fragments are then diluted out and treated with ligase. As the DNA solution is 

dilute at this step, the ligase is more likely to ligate together two cross-linked restriction 

fragments than random DNA fragments within the solution. The crosslinks are then 

reversed on these now ligated restriction fragments. The DNA is purified and any 

unligated ends are digested to remove remaining biotin markers from sites that were not 

ligated. The DNA is purified again and sheared into fragments suitable for sequencing. 

Streptavidin is then used to isolate just the fragments with biotin labeled ligation 

junctions. These Hi-C, paired-end fragments, where each end came from a different 

restriction fragment, are then sequenced. 

 Figure 1.1 shows how these Hi-C read sequences are used to reconstruct 

individual genomes from a metagenomic dataset. The workflow for a Hi-C experiment 

involves splitting one sample to create two datasets. One dataset is the library of Hi-C 

reads as previously described. The other dataset is produced from a total DNA extraction 

of the same sample as the Hi-C reads were created from. The sequences from this total 

DNA extraction are shotgun sequenced. The resulting shotgun reads are overlapped and 

assembled into longer contigs (contiguous sequences) using a metagenomic assembler 

(Figure 1.1, Step 1). The Hi-C reads are then aligned to these contigs (Figure 1.1, Step 2). 

Each end of each Hi-C read pair is aligned separately, because each end of the read pair is 
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expected to align to different locations on a contig or to different contigs entirely. The 

number of Hi-C reads that link each contig pair is counted and stored in a matrix. Using 

this linkage data, the contigs are clustered by species (Figure 1.1, Step 3) since contigs 

from each species have more Hi-C read linkages among their own contigs than with 

contigs from other species. 

 The construction of not only chromosomes but also whole genomes including 

plasmids from a metagenomic sample could be revolutionary for the field of 

environmental microbiology. By identifying the genetic context of ARG in bacterial 

communities, this approach could determine if pathogenic bacteria or transmissible 

plasmids are carrying the ARG. It could make the characterization of environmental 

reservoirs of ARG more possible. This knowledge would greatly increase our ability to 

assess the risk associated with specific ARG and could inform decisions on waste 

management or the treatment of resistant infections in a medical scenario. 

Previous Research and Project Objectives 
 Three proof of concept studies recently demonstrated that Hi-C could separate 

metagenomic datasets by species genomes when applied to microbial communities. Each 

of these studies was looking for an effective way to bin datasets of metagenomic contigs 

by species and demonstrated that Hi-C was a way to assemble more complete genomes 

from metagenomic samples than was previously possible. As Hi-C technology was 

previously used for looking at chromosomal interactions within cells, these studies also 

looked at 3D chromosomal and plasmid/chromosome interactions for some of the species 

in their samples. 

 Beitel et al. (2014) simulated the metagenomic assembly of a bacterial community 

of five species by breaking their reference genomes into read length fragments and 

assembling the synthesized reads into contigs. Of the five species, two were Gram 

positive, two were different strains of E. coli, and one contained two native plasmids. The 

group produced Hi-C data from a real cell culture of a mix of the five species and 

clustered the simulated assembled contigs by species. They successfully separated 

contigs by species although the two E. coli strains clustered with each other. However, it 

was not clear how many contigs were assigned to the wrong species using Hi-C linkages. 
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The group also observed the plasmids interacting definitively with the chromosome of the 

species that carried them. 

   Burton et al. (2014) applied Hi-C methodology to a community of yeast as well as 

to a large community of yeasts, nine bacterial species and an Archaea. Like Beitel et al. 

(2014), the research group used simulated metagenomic assemblies but showed that Hi-C 

could cluster by genome a metagenome consisting of both prokaryotes and eukaryotes. 

The group observed that only ~90% of the contigs in each simulated metagenomic 

assembly could be clustered using their Hi-C library (presumably because the remaining 

contigs did not contain the restriction site recognized by their restriction enzyme), but 

they did recover the genome of a bacterium containing two chromosomes and a plasmid. 

Again, the number of misassigned contigs was not made clear. 

 Marbouty et al. (2014) distinguished different species using Hi-C on a small 

bacterial community of three species, a larger community of yeast, and an environmental 

sample of river sediment which had been enriched for bacteria. Since this project was a 

proof of the Hi-C concept, for the bacterial and yeast communities grown in the lab, Hi-C 

reads were aligned to sections of reference genome (30 kb each) rather than to true 

assembled contigs. For the environmental sample, Marbouty et al. (2014) recovered 19 

genomic clusters that each contained more than 1 Mb of genetic sequence. Eleven of 

these clusters could be identified by bacterial class and one appeared to carry plasmid 

identifiers. 

 While all these groups showed that in some instances Hi-C can assign a plasmid 

to its bacterial host in a metagenomic dataset, this ability was not explored in complex 

plasmid scenarios (Beitel et al., 2014; Burton et al., 2014; Marbouty et al., 2014). 

Moreover, simulated contigs were used except for the test on river water performed by 

Marbouty et al. (2014). When real contigs were used in that environmental scenario, 

many of the clusters did not contain enough genetic sequences for nearly a whole 

bacterial genome (1Mb). It would have been helpful to know how much DNA could be 

recovered in the other instances if a real metagenomic dataset were created. The number 

of cells used to build communities was also not given and none of these research groups 

published a working program for reproducing their cluster analysis of Hi-C data. So, 

while the research showed that species could be separated and plasmids could be detected 
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using Hi-C, it was not clear if this could be done easily or only in certain community 

circumstances. It was also not clear if the optimal cluster number could be determined 

when the number of species present was not already known. Scenarios where multiple 

species carried plasmids and the ways these plasmids interacted with the entire 

community were not tested. The placement of specific genes by Hi-C, necessary for the 

study of antibiotic resistance, was largely not discussed. Beitel et al. (2014) suggested 

that Hi-C may be useful for studying horizontal gene transfer but the previous published 

research has not classified Hi-C’s capabilities or tested its limits of detection in several 

areas critical to plasmid and antibiotic resistance research in a metagenomic setting. 

 The purpose of this project was to test the limits of Hi-C when studying the 

genomes of simple microbial communities carrying plasmids and antibiotic resistance 

genes. Previously untested limits include the capacity of Hi-C to discriminate between 

closely related plasmids, to recover full genomes, to recover ARG and correctly assign 

them to species, to show if an ARG is found on a plasmid or chromosome, to correctly 

assign a plasmid to its host when the plasmid is present in multiple bacterial species and 

to detect a plasmid in a host when present at a low percentage of the community. To 

define these limits, the Hi-C method was applied to a series of 7 mock bacterial 

communities that were carefully chosen to test these critical parameters. Towards this end 

it became necessary to construct a bioinformatics pipeline capable of performing Hi-C 

data analysis. 
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Figure 1.1 Hi-C experiment workflow1 

 
 

                     
 
Step	1:	Clean	metagenomic	reads	and	assemble	into	contigs	
 
 

                          
 
Step	2:	Align	each	end	of	Hi-C	reads	individually	to	contigs	
 

 
 
Step	3:	Cluster	contigs	by	species	based	on	Hi-C	linkages.	Statistically	there	will	be	more	Hi-C	linkages	
within	species	than	between	species	
 
1 Sequence reads and contigs not shown to scale  
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Chapter 2: Methods 

Growth of Bacterial Strains and Community Preparation 
 All strains used in this project were lab strains already present on site (Table 2.1). 

They were in the form of 20% glycerol stocks that had each been prepared from one 

bacterial colony. All stocks were stored at -70° C. To construct the bacterial 

communities, cultures of each Gram negative species were grown over night in Luria-

Bertani (LB) broth (VWR). The only Gram positive organism, Lactobacillus crispatus, 

was grown in a richer MRS broth (DifcoTM Lactobacilli MRS Broth, BD). The LB and 

MRS broths were prepared per their package specifications and autoclaved in glass 

bottles for sterilization. Culture and growth conditions for each species are listed in Table 

2.1. Antibiotics were included in some cultures to ensure plasmid and ARG retention. 

Non-native plasmids, pB10 and pBP136, were carried by some strains and carried 

antibiotic resistance genes to infer plasmid presence and ensure that they were not lost 

during the culturing step. 

 Cell density was measured by visually counting cells in the cultures using a Petroff 

Hausser counting chamber. To impede cell division during the counting process, each 

bacterial culture was aliquoted into 2mL microcentrifuge tubes and centrifuged for 2 

minutes at 13,000 g to pellet the cells. The supernatant was then removed and all the cell 

pellets for each species were combined and resuspended in 1x phosphate-buffered saline 

solution (PBS) to a final volume of 5mL. The PBS was used to hamper further cell 

division without causing cell death. A 100µL subsample of each 5mL culture was diluted 

10x with more PBS and used for counting. The remainder of each culture was stored at 

4°C to further prevent cell division while the cells were counted. Cell counts for each 

culture were performed in triplicate and averaged to calculate the number of cells in the 

culture (Tables 2.2 & 2.3). The counting chamber and cover slides were cleaned with 

70% ethanol between each sample. 

 The communities were assembled on different days with Communities 1 & 2 

grown and assembled first (Table 2.2) and the rest of the communities assembled on a 

later date (Table 2.3). To assemble the communities, differing amounts of each bacterial 

culture were added to 2mL microcentrifuge tubes to create the correct proportions of each 
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species based on cell density. The final volume of each community was approximately 

1.3mL. Total cells present in each community varied but was kept within the order of 

108-109.  

 Four replicates were assembled for each community. Immediately after community 

construction, a total DNA extraction was performed on one replicate of each. This was 

done using a GenEluteTM Bacterial Genomic DNA extraction kit (Sigma). The optional 

Gram positive lysozyme extraction step included in the instructions was performed to 

ensure good cell lysis. The DNA was eluted into 200µL final volume of PCR grade water 

and stored at -20°C until sent for sequencing.  

 The remaining three replicates of each community were prepped for the Hi-C 

protocol by adding 37% formaldehyde directly to the PBS mixed culture to a final 

concentration of 1%. They were incubated for 20-30 minutes at room temperature and 

periodically swirled. The formaldehyde crosslinking reaction was quenched by the 

addition of glycine to a final concentration of 0.133M. The samples were swirled to mix 

and then incubated for another 20-30 minutes at room temperature. The samples were 

then spun down for 2 minutes at 13,000 g. The supernatant was removed and each pellet 

was rinsed with 800µL of PBS. This was to remove formaldehyde. The samples were 

spun down again for 2 minutes at 13,000 g. The supernatant was decanted and the cell 

pellets stored at -20°C. 

Project Layout 
 The total DNA extractions from each community were sent to collaborators for 

shotgun sequencing. They were also sent 1 of the 3 Hi-C replicates for each community 

to complete the Hi-C prep using their proprietary Hi-C protocol and to perform the 

sequencing. These datasets were used for the development of the bioinformatics pipeline 

and to answer the research questions being asked of each community, and these are the 

results highlighted in Chapter 3. The remaining two replicates for each community were 

used for practice and development of the Hi-C method on site. This was done using 

previously published protocols (Beitel et al., 2014; Burton et al., 2014) that were 

combined and then modified to give the final protocol presented in Appendix A.  

 All samples were sequenced using Illumina Nextseq kits. The total DNA 

extractions were sequenced using paired end 150 kits for the shotgun reads. (This created 
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300bp of sequence per read.) The Hi-C samples were sequenced using paired end 75 kits. 

Longer reads are not needed for Hi-C libraries as only a short stretch of sequence is 

sufficient for aligning to the assembled contigs. 

Bioinformatics Pipeline 
 An overview of the bioinformatics pipeline designed for Hi-C data analysis is 

shown in Figure 2.1. Details of the commands for running each program and the R script 

written to perform clustering of Hi-C data are presented in Appendix B. 

Cleaning of Sequenced Reads 

 To remove superfluous reads from the metagenomic dataset, Super Deduper was 

used with default parameters. Super Deduper is an open source application 

(https://github.com/dstreett/Super-Deduper) and is designed to remove duplicate 

sequence reads introduced by PCR amplification prior to sequencing. These are present 

in most sequenced datasets and are known to hinder metagenomic assemblies (Petersen et 

al., 2015). Default parameters were used because files were in the form of paired end 

reads and that is the default mode for Super Deduper. 

 Flash2 was then used to merge overlapping paired-end reads. It is also an open 

source application (https://github.com/dstreett/FLASH2) and is a modified version of the 

original FLASH (Magoc & Salzbert, 2011). FLASH was designed to merge paired-end 

reads that were sequenced from DNA fragments shorter than the combined length of the 

reads. For example, when a 250bp sequence fragment is sequenced using a paired end 

150 kit, each end is sequenced for 150bp. The resulting reads then overlap by 25bp. 

Merging these reads prior to metagenomic assembly results in a simpler dataset for the 

assembler and helps the assembly take less time and computational power. Flash2 was 

used with default parameters plus the additional options: -M 200 -O -C 70 -Q 20 (see 

Appendix B). 

 Sickle (Joshi & Fass, 2011; https://github.com/najoshi/sickle) was then used to 

quality trim both the merged and unmerged reads with a length threshold of 75 and a 

quality threshold of 20. Quality trimming of reads aids in assembly because reads 

produced from most modern sequencing technologies have progressively lower quality 

approaching the 3’-end and sometimes at the 5’-end as well. Trimming off these bases 
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increases the quality of the reads. Sickle will also discard reads based upon a length 

threshold if specified. This means that reads which have been quality trimmed to too 

short of a length get discarded. This capability was utilized because if a read is too short, 

it only makes for a larger dataset without adding much useful genetic information. These 

short, uninformative reads slow down assembly. 

Metagenomic Assembly 

 The cleaned reads were overlapped and assembled into longer contiguous DNA 

sequences (contigs) using Spades 3.7.1 (Nurk et al., 2013) in meta mode with default 

parameters. Contigs longer than 500bp were kept for clustering. 

Hi-C Read Cleaning 

 The Hi-C reads were cleaned (Figure 2.1) using HiCUP (Wingett et al., 2015), a 

set of scripts made available by Babraham Bioinformatics. As well as removing PCR 

duplicates, HiCUP sorts out valid Hi-C reads, which are those where each end of the 

paired end read aligns to different restriction fragments and where each end aligns to only 

one genetic location. In lieu of reference genomes, the assembled contigs were provided 

to HiCUP for its alignment step to demonstrate that this pipeline could be used with 

environmental samples where the species identities were not already known. One of the 

outputs of HiCUP is an alignment file with the extension “.bam”. This file specifies to 

which contig(s) each end of every valid (Wingett et al., 2015; Servant et al., 2015) Hi-C 

read aligns. The bam file was turned into sam format using the “view” command from 

SAMtools (Li et al., 2009; https://github.com/samtools/samtools). The third column of 

this sam file was used as input for an R script written to do the clustering for this project. 

Clustering Contigs Based on Hi-C Linkages 

 The first step in clustering was to build a matrix (Lajoie et al., 2015), the 

dimensions of which were equal to the number of contigs in the dataset. The matrix was 

filled in with counts of the number of Hi-C reads connecting each contig combination. 

The matrix was symmetrical. The matrix was turned into a correlation matrix and these 

values were used as distances in lieu of true Euclidean distances. Hierarchical clustering 

was performed using R’s “hclust” function with the ward.D method. Each branch of the 

resulting dendrogram represents a contig. Visual analysis of the branching structure made 

the optimal number of clusters obvious in most cases and this number always 
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corresponded with the number of species present in that community. The dendrogram 

tree branches were cut at a height that yielded the desired amount of clusters. 

Alternatively, the optimal number of clusters could have been determined by creating a 

series of silhouette plots. However, this did not seem necessary in such simple 

communities as used here. 

Contig Identification 

 The contigs within each cluster were then analyzed for species identity and the 

presence of any ARG and/or plasmid sequence. Since the species present in each 

community was already known, species identity was determined by aligning all contigs to 

a collection of reference genomes that represented the community composition. This was 

done using NCBI’s blast tool with an e-value of 0.0001. In the case of multiple 

alignments, the match with the highest numerical value when the match percentage 

identity was multiplied by the length of the match was deemed to be the true identity of 

the contig. Each contig was identified by species or plasmid this way. The contigs were 

also compared to the Resfinder database to locate ARG in the community. The Resfinder 

database is a compilation of known ARG. 

Visualization of Clustering 

 The hierarchically clustered contigs were further visualized using the R package 

“rgl”. This made it possible to view each community’s Hi-C interactions in 3-

dimensional (3D) principle coordinate space. Principle coordinate analysis reduces the 

most important information within a large, many-dimensional dataset, such as this one, 

down to few enough dimensions to be visualized in a plot. While the 3D plots make 

comprehension of the data much easier, they do not show which contigs can be 

determined to be closely connected through the clustering algorithm. So while the 3D 

plots are easier to read, if one were trying to determine the genomic compartments of 

contigs whose species identity was not known, this would have to be determined using 

the hierarchical clustering pattern depicted in the dendrograms. 
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Table 2.1: Bacterial Species and Growth Conditions 

Species (plasmid1) Strain2 Media Antibiotic Temp ℃ 

Escherichia coli (pB10) MG1655 LB Tc104 37 

Escherichia coli MG1655 LB - 37 

Escherichia coli:Km K12 LB Km505 37 

Escherichia coli (pBP136) BW25113 LB Km505 37 

Acinetobacter baumannii (pB10) ATCC179783 LB Tc104 37 

Acinetobacter baumannii ATCC179783 LB - 37 

Pseudomonas aeruginosa PAO1 LB - 37 

Lactobacillus crispatus MV-1A-US MRS - 37 

Pseudomonas putida (pB10:Km) UWC1 LB Km505 30 

 
1 A. baumannii also has two native plasmids: pAB1 & pAB2. They are not listed as they don’t affect 
growth conditions. 
2 Some strains had been used in lab for some time. Mutations causing slight differences from reference 
genomes were thus expected. 
3 A variant of strain ATCC17978 used in our lab that no longer has sul2 resistance gene 
4 Tetracycline added to a final concentration of 10ng/µL 
5 Kanamycin added to a final concentration of 50ng/µL 
 



 

	

17	

Table 2.2: Construction of Communities 1 and 2 

Species (plasmid) Escherichia 
coli 

(pB10) 

Escherichia 
coli:Km 

Acinetobacter 
baumannii 

(pAB1, pAB2) 

Pseudomonas 
aeruginosa 

Lactobacillus 
crispatus1 

Pseudomonas 
putida 

(pB10:Km) 

Total Cells in 
Community 

Count Replicate        
1 207 173 39 25 116 57  
2 195 115 48 27 85 59  
3 182 131 41 32 110 59  
Average 194.7 139.7 42.7 28 103.7 58.3  
cells/mL 2.4x109 1.8x109 8.5x109 5.6x109 1.3x108 7.3x108  
Volume of culture 
used (mL) 

       

Comm1 0.8000  0.2280    3.9x109 

Comm2  0.0743  0.0232 1.0000 0.1781 5.2x108 

 
The calculation for cells/mL is average x dilution x 25 x 50,000 when counting 0.2mm squares and average x dilution x 16 x 25 x 50,000 for 0.05mm squares. 
Large squares were counted in all cases except for those counts shown in shading where smaller 0.05mm squares were used due to cell density. 
 
1 L. crispatus culture was so dilute as to not allow 10x dilution before counting. Dilution factor was removed from calculation 
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Table 2.3: Construction of Communities 3, 4a, 4b, 5a, and 5b 

Species 
 
Plasmid 

Escherichia 
coli 

(pB10) 

Escherichia 
coli 

Escherichia 
coli 

(pBP136) 

Acinetobacter 
baumannii 

(pB10) 

Pseudomonas 
aeruginosa 

Lactobacillus 
crispatus1 

Total Cells in 
Community 

Count Replicate        
1 30 29 22 36 83 72  
2 28 27 17 42 80 61  
3 26 20 30 44 84 75  
Average 28 25.3 23 40.7 82.3 69.3  
cells/mL 5.6x109 5.1x109 4.6x109 8.1x109 1.7x1010 8.7x108  
Volume of culture 
used (mL) 

       

Comm3   0.1885 0.1066 0.0525 1.0000 3.5x109 

Comm4a 0.1548   0.1066 0.0525 1.0000 3.5x109 

Comm4b 0.0310   0.1920 0.0525 1.0000 3.5x109 
Comm4c 0.0031   0.2111 0.0525 1.0000 3.5x109 

Comm5a 0.0155 0.1540  0.1066 0.0525 1.0000 3.5x109 
Comm5b 0.0015 0.1693  0.1066 0.0525 1.0000 3.5x109 
 
The calculation for cells/mL is average x dilution x 25 x 50,000 when counting 0.2mm squares and average x dilution x 16 x 25 x 50,000 for 0.05mm squares. 
All cultures shown had been diluted 10x. 
 
1 L. crispatus culture was so dilute as to require counting of 0.2mm squares. The smaller 0.05mm squares were used for all other cultures. 
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Figure 2.1: Bioinformatics pipeline 
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Chapter 3: Experimental Plan and Results 

 The Hi-C method has been proven useful for reconstructing individual species’ 

genomes from bacterial communities (Beitel et al., 2014; Burton et al., 2014; Marbouty et 

al., 2014). The previous published research has not classified Hi-C’s capabilities or tested 

its limits of detection in several areas critical to plasmid and antibiotic resistance research 

in a metagenomic setting however. Untested limits include the capacity of Hi-C to 

discriminate between closely related plasmids, to separate species present at low 

percentages of a community, to recover ARG and correctly assign them by species, to 

show if an ARG is found on a plasmid or chromosome, and to correctly assign a plasmid 

when the plasmid is present in multiple bacterial species. The Hi-C method was applied 

to a series of seven bacterial communities that were carefully constructed to test these 

critical parameters. They were analyzed using the bioinformatics pipeline constructed to 

perform Hi-C cluster analysis. 

Description of the Communities 

 The community composition of each of the seven assays was designed to test the 

limits of detection for the Hi-C method while also serving as low complexity datasets for 

pipeline development (Table 3.1). For example, Community 1 was composed of 50% 

Escherichia coli carrying the pB10 plasmid and 50% Acinetobacter baumannii carrying 

its native plasmids: pAB1 and pAB2. This first community was designed to be a very 

simple dataset on which to practice Hi-C genome clustering while the pipeline was being 

designed. Despite having only two species, it contained three plasmids, and these served 

to verify, early in the project, whether plasmids, including those of different sizes, could 

be detected using the developed bioinformatics pipeline. 

 The six remaining assays all contained Pseudomonas aeruginosa and 

Lactobacillus crispatus. These species served as background noise and introduced more 

complexity into the communities by increasing the total number of species to four. They 

were included to test if the questions being asked could be answered in communities 

slightly more complex than two species as in Community 1. The background species 

were each present at 25% of their communities in all cases. The addition of L. crispatus 
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also brought a Gram positive organism into the mix to ascertain whether the lab protocol 

worked equally well on Gram positive and Gram negative organisms.  

 In addition to P. aeruginosa and L. crispatus, Community 2 was composed of 25% 

E. coli with a kanamycin (Km) resistance gene carried on the chromosome and 25% 

Pseudomonas putida with the same Km resistance gene present on the plasmid pB10. 

This assay was designed to test if the same ARG could be detected on multiple replicons 

within one community or if having the same gene present in multiple locations would 

cause confusion during assembly. Since the P. putida shared some sequence similarity 

with P. aeruginosa, this assay also tested whether two related species were 

distinguishable using Hi-C. 

 Community 3 was composed of 25% E. coli carrying the IncP-1 plasmid, pBP136, 

and 25% A. baumannii carrying the IncP-1 plasmid, pB10, in addition to P. aeruginosa 

and L. crispatus. Coming from the same incompatibility group, these two plasmids bore 

moderate sequence identity over 35,097 nucleotides (76.3% identity). The assay was 

designed to test if these similar plasmids could be assembled and assigned to the species 

they came from or if sequence similarity would cause confusion during the assembly and 

genome clustering steps. Since A. baumannii contained two native plasmids, pAB1 and 

pAB2, in addition to pB10, it also tested whether as many as three different plasmids 

could be detected in a single species. 

 In addition to the two background species, Community 4a consisted of 25% E. coli 

and 25% A. baumannii, both carrying the plasmid pB10. This assay was designed to test 

if the same plasmid could be reliably assigned to multiple species within a community. 

The assay mimicked a possible plasmid transfer scenario, where a plasmid has spread to 

multiple species within a community. Community 4b took this concept a step further with 

A. baumannii carrying pB10 making up 45% of the community and E. coli with pB10 

making up only 5% of the community. This assay tested whether a species would cluster 

individually even when present at only a small percentage of the total community. Many 

species present at small percentages of the total sample is more likely in most 

environmental settings than a few species present at high percentages of the community 

(Howe et al., 2014). Community 4b also tested whether the plasmid would show up in a 

species present at such a low percentage or whether the plasmid would have so many 
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more Hi-C reads linking it to the species present in a higher percentage that it would only 

show up in that cluster. 

 Community 5a mimicked a different possible plasmid transfer scenario. In addition 

to the background species, there was 25% A. baumannii with plasmid pB10, 2.5% E. coli 

with plasmid pB10, and 22.5% the same strain of E. coli without any plasmid. This 

community mimicked a realistic environmental scenario where the plasmid pB10 had 

been transferred from A. baumannii to E. coli via conjugation, but had only been acquired 

by 10% of the E. coli so far. The plasmid was expected to show up in the A. baumannii 

cluster. However, this assay tested whether it would also show up in the E. coli cluster at 

a level high enough above the background noise that it could be confidently determined 

to be present in both species. Community 5b took this scenario a step further and 

consisted of the background species, 25% A. baumannii with plasmid pB10, 0.25% E. 

coli with plasmid pB10, and 24.75% E. coli without any plasmid. It again mimicked a 

plasmid transfer scenario where the plasmid pB10 had been transferred from A. 

baumannii to E. coli, but where it had only been acquired by 1% of the E. coli so far. 

This assay was designed to further test the limits of plasmid detection using Hi-C. 

Read Cleaning and Assembly Results 

 The sequenced metagenomic shotgun reads and the Hi-C reads were processed 

prior to further analysis. Cleaning metagenomic shotgun reads entailed three steps: 

removing duplicates introduced by PCR amplification, merging overlapping reads, and 

trimming off low quality read ends (Appendix B). The cleaning results for the 

metagenomic shotgun reads are given in Table 3.2.  

 Communities 1 and 2 both began the cleaning process with close to 75 million 

reads. The remaining communities were sequenced in a separate run and our 

collaborators sequenced neither the Hi-C nor the metagenomic reads as deeply as the first 

two communities. Of these later communities, some only had approximately 1/10 the 

number of reads as the first two communities, which was not sufficient to support good 

assemblies on these later communities. The fractured contigs combined with the lower 

number of Hi-C reads prevented informative downstream analysis as well. More of the 

same samples were thus sequenced in an additional run, creating two metagenomic and 

two Hi-C datasets for each of Communities 3, 4a, 4b, 5a, and 5b. The results were 
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concatenated to give one dataset for each sample and this total read count is given in 

Tables 3.2 and 3.3. Concatenating the data like this did not appear to cause any analysis 

problems when results were compared to those from Communities 1 and 2 which came 

from single sequence runs. 

 The metagenomic shotgun reads were sorted using Super Deduper to remove PCR 

duplicates introduced by the PCR amplification required prior to sequencing. Table 3.2 

shows that the later communities had fewer starting reads compared to Communities 1 

and 2. However Super Deduper removed a high percentage of duplicate reads in 

Communities 1 and 2 (20-30%). Communities 1 and 2 appear to have been over 

sequenced for their community complexity. 

 Flash2 was used to merge paired-end reads that were sequenced from DNA 

fragments shorter than the combined length of the reads. Communities 1 and 2 had a very 

high percentage of reads overlapped by Flash2 (~80%). This improved the speed and 

quality of their assemblies when compared to the rest of the samples where only ~30% of 

the reads overlapped.  

 The final number of cleaned reads after quality trimming by Sickle is shown in the 

last line of Table 3.2. While this number was close to 50 million for all samples, a higher 

percentage of these were longer, overlapped reads for Communities 1 and 2 and more of 

these were shorter, non-overlapped reads for the rest of the communities. 

 Spades -meta was the assembler used to overlap reads into longer contiguous 

sequences (contigs). The number of contigs produced by Spades -meta for each sample is 

shown in the first row of Table 3.3. Communities 1 and 2 both assembled into fewer 

contigs with a higher mean length when compared to the rest of the samples. Only 

contigs longer than 500bp were kept for clustering. The length of 500bp was chosen as an 

arbitrary cutoff point to remove contigs too short to provide meaningful results. The 

average number of contigs longer than 500bp was approximately 400 (Table 3.3). The 

total additive, assembled length of all contigs longer than 500bp is shown in Table 3.3. 

This value can be compared to the expected assembled length on the line below. 

Expected assembled length for each community was calculated by adding together the 

length of the reference genomes for all replicons present. For all samples these two 

values were similar enough to suggest that the sequence depth as well as cleaning and 
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assembly pipeline were adequate to recover most of the genetic information present in the 

sample.  

 The Hi-C reads were both cleaned and aligned to the assembled contigs by the 

program HiCUP. Three statistics were of the most interest during the cleaning of the Hi-

C reads: the number of read pairs going into HiCUP, the number of valid Hi-C reads as 

determined by HiCUP (Wingett et al., 2015), and the number of those valid reads that 

were unique. Reads are valid if each end of the read aligned to different restriction 

fragments and each end aligned to only one genomic location. Valid reads are unique if 

they are not PCR duplicates created by the sequencing process. The numbers of raw, 

starting reads varied between samples but in all cases were greatly reduced during 

cleaning (Table 3.3). This was not a surprise because Hi-C datasets are inherently noisy 

(Beitel et al., 2014). For this project, it was observed that one quarter to one third of the 

sequenced read pairs in a reasonably good Hi-C dataset represented valid Hi-C 

associations as determined by HiCUP (Wingett et al., 2015). Removing PCR duplicates 

from these valid read pairs to get the number of both valid and unique Hi-C read pairs 

also decreased the variation in number of Hi-C reads among the samples despite the 

samples being sequenced to different depths. These results suggest that the Hi-C datasets 

can be over sequenced more easily than anticipated. The numbers of both raw and 

cleaned Hi-C reads are higher for Communities 4b and 5b when compared to the other 

samples (Table 3.3). These communities were sequenced slightly deeper to increase the 

chances of picking up community members that were present at lower concentrations 

than in the other communities. 

 Not all of the contigs over 500bp aligned to one of the reference genomes (Table 

3.3). In addition, not all contigs were detected during the Hi-C clustering, meaning that 

some didn’t have even one Hi-C read aligned to them. There was a high overlap in those 

contigs that did not align to a reference genome and those not detected by Hi-C. Also, 

those not detected by Hi-C were short contigs quite close to the 500bp cutoff mark. These 

small contigs were most likely either misassemblies (artifacts of the assembly process), 

or small repeats that neither the assembler nor Hi-C could assign uniquely to one 

genomic location. In some communities a few slightly longer contigs didn’t align to a 
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reference genome but were still detected by Hi-C read alignments. When present they 

were always found in the L. crispatus genome cluster (1-4 contigs each time). 

Description of Cluster Plots 

 Principle coordinate plots and hierarchical clustering were used to visualize how 

well Hi-C separated the contigs by species (Figure 3.1-3.7). In the 3 dimensional (3D), 

principle coordinate plots, each of the dots represents one contig. The dots are colored by 

true species identity as determined by alignment to reference genomes. These plots give a 

good visualization of the species separation and plasmid placement achieved by Hi-C for 

each community. The dendrogram following each 3D plot shows the hierarchical 

clustering that determined genome identity as determined by Hi-C. The dendrogram 

leaves each represent one contig and are also colored by true species identity as 

determined by alignment to reference genomes. The table following each dendrogram 

gives the same information in numerical form. Since hierarchical clustering cannot assign 

the same point to two clusters, in the case where the same plasmid was present in 

multiple locations, the dendrograms show that the plasmid was necessarily placed into 

only one genome cluster. 

Clustering Results for Each Community 

 The two species in Community 1 separate quite dramatically on one axis (Figure 

3.1.a). As the plasmids assembled to nearly full length in these samples it was quite easy 

to locate them within their species clusters. Plasmids pAB1 and pAB2 were one contig 

each and clustered neatly within the A. baumannii cluster because of plasmid-

chromosome Hi-C linkages. Two contigs were identified as the larger plasmid, pB10, and 

both contigs can be seen clustering quite near the middle of the E. coli cluster. This assay 

verified that the bioinformatics pipeline worked effectively (Figures 3.1.b & 3.1.c), at 

least in simple communities, and that plasmids as well as their species of origin could be 

identified using the Hi-C method and our analysis pipeline. 

 As can be seen in the 3D depiction of Community 2 (Figure 3.2.a), good species 

separation was also achieved with four species. The two species included as noise, P. 

aeruginosa and L. crispatus, did not seem to affect the quality of clustering. They also 

demonstrated that the Hi-C protocol was effective for both Gram positive and Gram 
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negative organisms. Gram positive L. crispatus does appear to cluster less tightly than the 

Gram negative organisms. This could be due to L. crispatus having a smaller 

chromosome than the other species and them swamping the dataset. Despite their close 

relationship, P. putida and P. aeruginosa achieved good genomic separation and verified 

that our pipeline can separate species of the same genus. The orange P. putida contig 

seen in the purple P. aeruginosa cluster is a somewhat short contig (3379bp) that aligned 

to both the P. putida and P. aeruginosa reference genomes with very similar alignment 

scores (Fig 3.2.a). It had a very slightly higher score for the P. putida alignment and that 

is why the pipeline determined its identity to be P. putida even though hierarchical 

clustering (Figure 3.2.b) determined it to be part of the P. aeruginosa genome. It is not 

surprising that these two species have a stretch of DNA sequence in common since they 

are from the same genus. Of the two blue E. coli contigs in the orange P. putida cluster, 

one represents a small contig that aligned with very similar scores to both the E. coli and 

P. putida reference genomes. It was a short sequence that they happened to have in 

common. The other represents the only contig containing the Km resistance gene that was 

known to be on the E. coli chromosome as well as on plasmid pB10 in P. putida. This 

contig was the sixth longest contig assembled in this community so it was much longer 

than just this shared gene. Over half the length of this contig aligned to the E. coli 

reference genome. After that came the Km gene and approximately three quarters of the 

pBP10 plasmid. The assembler appeared to have merged plasmid pBP10 with a portion 

of the E. coli chromosome due to them having the Km gene in common. This contig 

along with the ARG was assigned to P. putida rather than E. coli, which made up most of 

the contig. As plasmids can have multiple copies within one cell, the higher copy number 

of pB10 versus E. coli chromosome appeared to have caused more Hi-C read linkages to 

pB10’s host for this contig. 

 Community 3 was designed to test the limits of the method by including two 

plasmids that shared regions of nearly identical sequence. There were not major 

misassembly problems; however, the plasmid contigs were much more fragmented than 

in the other assays. While the species still showed good separation by hierarchical 

clustering, stretches of similar plasmid sequence made the separation of genomic clusters 

less visually obvious with principle coordinate analysis compared to the other 
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communities (Figure 3.3). The two species containing one of the plasmids, A. baumannii 

and E. coli, appeared together on the same plane in 3D space with a cloud of plasmid 

between them (Figure 3.3.a). For the most part, the pBP136 contigs were closer to E. coli 

and the pB10 contigs were closer to A. baumannii as they should be based on community 

composition. Hi-C appears to produce so many more plasmid-plasmid interactions than 

plasmid-chromosome interactions that in the case of similar plasmids the analysis may 

tend to give similar plasmids their own joint cluster between their hosts rather than 

clustering them within their host clusters as is seen otherwise. The majority of the contigs 

for both plasmids were determined to be in A. baumannii (Figure 3.3.c) as hierarchical 

clustering cannot assign a point to multiple clusters. 

 Community 4a again showed good species separation (Figure 3.4.a). The plasmids 

pAB1 (black) and pAB2 (gray) can just be seen hidden in the middle of the A. baumannii 

cluster. The white contigs seen in the L. crispatus cluster are two of the contigs 

mentioned earlier that did not align to any of the reference genomes but cluster quite 

definitively with L. crispatus. This assay caused no assembly problems so each plasmid 

assembled as one contig making their placement easier to determine. The question being 

asked with this assay was whether the plasmid pB10, which was present in both A. 

baumannii and E. coli, could be detected in both using Hi-C. Though the hierarchical 

clustering places pB10 within the E. coli genome cluster (Figure 3.4.b and 3.4.c), it is 

nearly halfway between the two species’ clusters in the 3D plot (Figure 3.4.a). 

 Community 4b, which was a variation on 4a, looked quite similar other than the 

placement of pB10, which was now located somewhat closer to A. baumannii than E. coli 

(Figure 3.5.a). As expected, pB10 was determined to be part of the A. baumannii genome 

by the hierarchical clustering (Figure 3.5.b & 3.5.c) since A. baumannii was present at 

45% of the community in this assay while E. coli was only present at 5%. What was 

somewhat surprising was that pB10 could still be seen so clearly to be between the two 

species rather than clustering in closer proximity to A. baumannii.  

 Community 5a is the community where only 10% of the E. coli contained pB10 

while all A. baumannii carried it. Plasmid pB10 clustered much closer to A. baumannii 

than E.coli as expected (Figure 3.6.a). While the other species are positioned further 

back, E. coli and A. baumannii are again found on the same plane in the 3D plot with 
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pB10 placed between them. Observing a plasmid placement like this, rather than directly 

within the species cluster, seems to be the way to determine that a plasmid is present in 

both species to some extent rather than just in one species cluster as the hierarchical 

clustering data would make it appear (Figures 3.6.b & 3.6.c). A. baumannii was chosen 

for pB10’s cluster placement, because pB10 had significantly more interactions there. In 

contrast to pB10, native A. baumannii plasmids pAB1 and pAB2 are clustered so deeply 

within the A. bamannii cluster that they cannot be seen in the 3D plot. Instead of being a 

tight cluster like P. aeruginosa, the E. coli cluster is distorted, perhaps from being 

stretched towards A. baumannii and pB10. This is presumably because its shared 

interactions with pB10 prevented it from forming a tight cluster only with itself. In Figure 

3.6.a, the blue E. coli contig floating out in space is again a very short contig that bore 

sequence similarity with multiple species but had a slightly higher alignment score with 

E. coli than the other species. 

 The visual results for Community 5b, where the frequency of E. coli carrying pB10 

was only 1% (Figure 3.7.a) are quite similar to 5a. The plasmid pB10 clustered a bit 

closer to A. baumannii in this assay and was still assigned to that genome cluster by the 

hierarchical clustering (Figure 3.7.b & 3.7.c). A. baumannii also clustered more tightly, 

probably because pB10 is now pulling it less towards E. coli. Native plasmids, pAB1 and 

pAB2, are again not visible because they are clustered so tightly within the A. baumannii 

cluster. E. coli appears to be even more elongated in 5b, with some of its contigs in closer 

proximity to pB10. Several contigs (white) that didn’t align to the reference genome can 

again be seen within the L. crispatus cluster. While Figure 3.7.a might not suggest that 

pB10 is found in any species other than A. baumannii, pB10 is placed further outside of 

the cluster than is seen in communities where it was only located in one species, such as 

in Community 1 (Figure 3.1.a). Plasmid pB10 was only carried by E. coli in that assay 

and is placed within its species cluster rather than on the outskirts as in 5b. 

ARG Placement 

 While each assay tested some specific question or questions about the ability of the 

Hi-C method to separate species and place plasmids, one of the overarching questions for 

the whole project was how well Hi-C could correctly assign ARG to the species and 

replicon that carried them. Table 3.4 lists the species and plasmids used in this study that 
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were known to carry some ARG. The ARG that each replicon carried were determined by 

comparing all reference genomes to the Resfinder database (Chapter 2). The ARG carried 

by each replicon are marked. All the ARG carried by plasmids shared 100% gene identity 

with those in the ResFinder database. Some ARG from the hosts had only 96.8 - 99.9% 

gene identity with ResFinder genes: fosA, aph(3')-IIb, and blaOXA-50 in P. aeruginosa 

and blaOXA-180 and blaADC-25 in A. baumannii. Most identities were above 99% but 

prior research in the lab has not confirmed whether any of these genes conferred 

functional resistances or not. The A. baumannii reference genome also had a 

sulphonamide resistance gene: sul2. This is not included in Table 3.4 because from 

previous research it was known to have been lost following the acquisition of pB10. 

Neither of our A. baumannii variants contained sul2 anymore. P. putida on the other hand 

showed an ARG, catA1, that was not in the reference genome. However, the strain used, 

P. putida UWC1, is an unsequenced derivative of P. putida KT2440 that has evolved 

spontaneous resistances and possibly picked up some catabolic activity from a plasmid 

(McClure et al., 1989). KT2440 was the closest reference genome available and is nearly 

the same but not an exact match. Given this information, it seemed quite likely that the 

local variant did carry this gene, which is why it was included in the table of known 

resistances. Since the catA1 ARG was present at 99.7% gene identity rather than 100%, 

the gene may not yet confer a functional resistance and that could be why it has not been 

documented. 

 For each community, all contigs longer than 500bp were analyzed by Resfinder to 

identify which contigs carried ARG. This information was used to determine which 

species clusters these ARG had been assigned to as well as which replicon the ARG was 

recovered on, i.e. plasmid or chromosome. In all cases, all ARG were assigned to the 

expected species clusters and to the correct replicon within those clusters, i.e. plasmid or 

chromosome (Table 3.5). For example, in Community 1, all of the known pB10 ARG 

were found on a pB10 contig within the E. coli/pB10 cluster.  

 There are a few cases that should be noted, however. The first was in Community 

2 where the same Km resistance gene was present on both pB10 and the E. coli 

chromosome. The gene was assigned to the P. putida/pB10 cluster. It did not show up at 

all in the E. coli cluster because, as previously mentioned, this gene caused problems at 
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the assembly level: a contig was assembled with both E. coli and pB10 sequence joined 

together by the Km gene. This contig was likely assigned to P. putida rather than E. coli 

because of pB10’s multiple copy number. A higher copy number would mean a higher 

probability of Hi-C linkages linking it to P. putida than of E. coli intra-chromosomal 

linkages. The second case was in Community 3 where similar plasmids pBP136 and 

pB10 almost formed a small cluster of their own. For the most part both plasmids were 

assigned to A. baumannii. Even though contigs from both plasmids were found in the A. 

baumannii cluster, pB10 ARG were only found on pB10 contigs. The third case was in 

Community 4a where both E. coli and A. baumannii carried pB10 at the same 

percentages of the population. Plasmid pB10 was somewhat arbitrarily assigned to E. coli 

by the clustering algorithm and the ARG were assigned to that cluster along with it as 

was expected. In the rest of the communities, pB10 along with its ARG was always 

assigned to the species that carried it at the highest percentage of the community. 
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Table 3.1: Community Composition1 of the Seven Assays Designed to Define the Limits 
of the Hi-C Method 

Species (plasmid) 1 2 3 4a 4b 5a 5b 
Escherichia coli (pB10) 50   25 5 2.5 0.25 
Escherichia coli      22.5 24.75 
Escherichia coli:Km  25      
Escherichia coli (pBP136)   25     
Acinetobacter baumannii2 (pAB1, pAB2, 
pB10) 

  25 25 45 25 25 

Acinetobacter baumannii2 (pAB1, pAB2) 50       
Pseudomonas aeruginosa  25 25 25 25 25 25 
Lactobacillus crispatus  25 25 25 25 25 25 
Pseudomonas putida (pB10:Km)  25      

 
1 All numbers given as percentage of the entire community 
2 Plasmids pAB1 and pAB2 are native to A. baumannii 
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Table 3.2: Cleaning Statistics for Shotgun Metagenomic Reads 

 Comm1 Comm2 Comm3 Comm4a Comm4b Comm5a Comm5b 
Super Deduper        
Total read pairs 74,007,384 74,760,777 33,582,514 25,496,938 42,787,661 34,293,216 39,176,874 
Duplicates 22,070,260 14,491,886 3,266,849 1,971,431 3,940,845 2,950,445 2,506,125 
% removed 29.82 19.38 9.73 7.73 9.21 8.6 6.4 
Flash2        
Total read pairs 51,937,124 60,268,891 30,315,665 23,525,507 38,846,816 31,342,771 36,670,749 
Discarded 1215 4587 4054 2705 4442 3461 3191 
% discarded 0.000 0.010 0.010 0.010 0.010 0.010 0.010 
% combined 78.93 78.62 35.7 23.61 41.71 30.9 26.81 
Sickle PE        
Input pairs 10,945,492 12,882,454 19,491,465 17,969,106 22,641,183 21,654,721 26,838,795 
Kept pairs 9,884,934 11,298,829 18,011,150 16,773,246 21,114,161 20,173,992 24,156,297 
Single records kept 674,953 1,075,249 1,276,021 1,044,691 1,311,393 1,273,564 2,279,565 
Pairs discarded 385,605 508,376 204,294 151,169 215,629 207,165 402,933 
% pairs discarded 3.52 3.95 1.05 0.84 0.95 0.96 1.50 
Sickle SE        
Single records 40,990,417 47,381,850 10,820,146 5,553,696 16,201,191 9,684,589 9,828,763 
Single reads kept 31,891,868 37,565,594 10,485,629 5,250,686 15,711,271 9,361,212 9,530,254 
% kept 77.80 79.28 96.91 94.54 96.98 96.66 96.96 
Assembly Reads1 52,336,689 61,238,501 47,783,950 39,841,869 59,250,986 50,982,760 60,122,413 
 
1 Total reads going into assembly rather than read pairs 
  



 

	

33	

Table 3.3: Assembly and Clustering Statistics 

 Comm1 Comm2 Comm3 Comm4a Comm4b Comm5a Comm5b 
Spades Assembly        
Number of Contigs 549 1,452 3,462 3,179 3,308 2,911 3,094 
1st quartile 63 69 58 58 57 57 59 
Median length 88 106 73 69 66 67 71 
Mean length 15,502 13,333 4,999 5,441 5,221 5,937 5,577 
3rd quartile 211 2578 194 102 91 98 96 
Max length 766,980 571,663 914,504 648,482 1,043,942 655,756 655,420 
Contigs > 10kb 81 258 297 245 206 214 215 
Contigs > 500bp 121 490 649 474 411 403 403 
Total Assembled Length (Mb) 8.47 19l26 17.04 17.08 17.04 17.08 17.04 
Total Expected Length (Mb) 
HiCUP 

8.72 19.00 17.27 17.29 17.29 17.29 17.29 

Raw Hi-C read pairs 16,087,327 21,535,332 22,048,451 22,683,831 34,390,863 27,350,848 82,124,574 
Valid Hi-C pairs 3,029,349 9,044,708 6,833,465 6,661,693 12,212,963 7,990,584 28,363,039 
Valid & Unique Hi-C Pairs 2,952,352 8,044,553 6,067,993 5,911,677 11,793,838 7,687,469 12,229,967 
Ratio of Hi-C pairs to contigs 24,399.6 16,417.5 9,349.8 12,471.9 28,695.5 19,075.6 30,347.3 
Contigs that align to references1 121 487 634 470 405 397 397 
Contigs not detected by Hi-C2 2 16 24 12 17 12 7 
 
1 Alignments determined by NCBI blast 
2 Contigs that no Hi-C read pairs aligned to  
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Table 3.4: Expected Antibiotic Resistance Genes by Replicon 

 
1 Resistances determined by comparing reference genomes to Resfinder database (Zankari et al., 2012) 
  

Expected 
Resistances1 

blaPAO catB7 fosA blaOXA-
50 

aph(3’)-
Ilb 

aph(3’)
Ia 

catA1 tet(A) blaOXA-
2 

sul1 strB strA blaOXA-
180 

blaADC-
25 

A. baumannii             x x 
P. aeruginosa x x x x x          

pB10        x x x x x   
pB10:Km      x  x x x x x   
E. coli:Km      x         
P. putida       x        
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Table 3.5: Genomic Cluster Each Antibiotic Resistance Gene was Assigned to Using Hi-C 

 
 
 
  

Resistance Genes 
 

blaPAO catB7 fosA blaOXA-
50 

aph(3’)-
Ilb 

aph(3’)
Ia 

catA1 tet(A) blaOXA-
2 

sul1 strB strA blaOXA-
180 

blaADC-
25 

Comm1               
E. coli /pB10        x x x x x   
A. baumannii             x x 

Comm2               
P. aeruginosa x x x x x          

P. putida /pB10      x x x x x x x   
Comm3               

P. aeruginosa x x x x x          
A. baumannii/ pB10 

/pBP136 
       x x x x x x x 

Comm4a               
P. aeruginosa x x x x x          
A. baumannii             x x 
E. coli /pB10        x x x x x   

Comm4b               
P. aeruginosa x x x x x          

A. baumannii /pB10        x x x x x x x 
Comm5a               

P. aeruginosa x x x x x          
A. baumannii /pB10        x x x x x x x 

Comm5b               
P. aeruginosa x x x x x          

A. baumannii /pB10        x x x x x x x 
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Figure 3.1: Contigs clustered based on Hi-C read linkages for Community 1, which had two plasmid containing bacterial species (a.) 
PCoA plot (b.) Hierarchical clustering dendrogram (c.) Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
  

   1 2 
A. baumannii (50%)   29 0 
      pAB1   1 0 
      pAB2   1 0 
E. coli (50%)   0 85 
      pB10   0 3 

a. 

c. 

b. 
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Figure 3.2: Contigs clustered based on Hi-C read linkages for Community 2, which had four bacterial species including two of the 
same genus and the same Km resistance gene on a plasmid and a chromosome (a.) PCoA plot (b.) Hierarchical clustering dendrogram 
(c.) Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
3 Plasmid pB10 was combined with an E. coli contig in this analysis 
4 E. coli and pB10 carried the same Km resistance gene 

   1 2 3 4 
P. putida (25%)   1 0 0 121 
      pB10 3,4   0 0 0 0 
P. aeruginosa (25%)   72 0 0 0 
L. crispatus (25%)   0 184 0 0 
E. coli 4 (25%)   0 0 91 2 

a. 

c. 

b. 
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Figure 3.3: Contigs clustered based on Hi-C read linkages for Community 3, which has four bacterial species and similar plasmids in 
different hosts (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
  

   1 2 3 4 
P. aeruginosa (25%)   61 0 0 0 
A. baumannii (25%)   1 281 0 0 
      pAB1   0 1 0 0 
      pAB2   0 1 0 0 
      pB10   0 8 0 0 
L. crispatus (25%)   0 0 173 0 
E. coli (25%)   1 0 0 83 
      pBP136   0 13 0 2 

a. 

c. 

b. 
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Figure 3.4: Contigs clustered based on Hi-C read linkages for Community 4a, which has four bacterial species and the same plasmid 
(pB10) in two different hosts that are present at equal quantities (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) Number 
of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
3 Plasmid pB10 was present in both A. baumannii and E. coli 

   1 2 3 4 
P. aeruginosa (25%)   51 0 1 0 
A. baumannii (25%)   0 132 0 0 
      pAB1   0 1 0 0 
      pAB2   0 1 0 0 
L. crispatus (25%)   0 0 0 186 
E. coli (25%)   0 0 86 0 
      pB10 3  0 0 1 0 

a. 

c. 

b. 
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Figure 3.5: Contigs clustered based on Hi-C read linkages for Community 4b, which has four bacterial species and the same plasmid 
(pB10) in two different hosts which are present at different quantities (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) 
Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
3 Plasmid pB10 was present in both A. baumannii and E. coli 

   1 2 3 4 
P. aeruginosa (25%)   0 0 69 0 
A. baumannii (45%)   34 0 0 0 
      pAB1   1 0 0 0 
      pAB2   1 0 0 0 
      pB10 3   1 0 0 0 
L. crispatus (25%)   0 0 0 192 
E. coli (5%)   0 87 1 5 

a. 

c. 

b. 
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Figure 3.6: Contigs clustered based on Hi-C read linkages for Community 5a, which has four bacterial species and the same plasmid 
(pB10) in two different hosts but present in only 10% of one of the hosts (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) 
Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
3 10% of the E. coli also carried pB10 

   1 2 3 4 
P. aeruginosa (25%)   64 0 0 0 
A. baumannii (25%)   0 0 0 62 
      pAB1   0 0 0 1 
      pAB2   0 0 0 1 
      pB10 3   0 0 0 1 
L. crispatus (25%)   0 0 176 0 
E. coli (25%)   1 84 0 0 

a. 

c. 

b. 
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Figure 3.7: Contigs clustered based on Hi-C read linkages for Community 5b, which has four bacterial species and the same plasmid 
(pB10) in two different hosts but present in only 1% of one of the hosts (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) 
Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
3 1% of the E. coli also carried pB10

   1 2 3 4 
P. aeruginosa (25%)   61 0 0 0 
A. baumannii (25%)   0 0 0 59 
      pAB1   0 0 0 1 
      pAB2   0 0 0 1 
      pB10 3   0 0 0 1 
L. crispatus (25%)   0 0 190 0 
E. coli (25%)   0 79 0 0 

a. 

c. 

b. 
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Chapter 4: Discussion and Future Directions 

 Seven simple bacterial communities were constructed, assayed using the Hi-C 

method and analyzed using our bioinformatics pipeline. For these simple communities, 

our analysis defines the limits of the Hi-C method in the areas of separating species, 

determining plasmid hosts, and placing ARG by replicon (i.e., plasmid or chromosome). 

Nearly all contigs clustered accurately by species. The plasmid host could be determined 

except when similar plasmids were found in the community. ARG were placed on the 

correct replicon except when they were found on multiple replicons in the community. 

Species Separation Using Hi-C 

 Both Hi-C and the bioinformatics pipeline performed robustly when it came to 

accurately separating the contigs by species. There were a few contig misassignments, 

but several communities had perfect contig placement. Never more than six contigs in a 

community were misassigned, and these were never long contigs but short ones. In 

addition, these shorter contigs often had very similar alignment scores for multiple 

reference species. These “misassignments” were thus most likely reflective of sequence 

similarities between species rather than an incorrect Hi-C interaction or a problem with 

the clustering algorithm. The presence of these similar sequences in multiple genomic 

locations no doubt caused assembly difficulties that kept these shorter sequences from 

being included in a longer contig that would have clustered more easily. The placement 

of these genes may indicate the species that carried them in the highest quantity, 

especially if they were repeat sequences. 

 The angle at which some snapshots of the 3D plots were taken demonstrates 

another interesting pattern (e.g. Figure 3.5.a). Those species that assembled into few 

contigs like P. aeruginosa tended to cluster into a tighter sphere. Those that were more 

fragmented, like L. crispatus, tended to be visualized as a longer rod using principle 

coordinate analysis. These phenomena are likely because the clustering algorithm is 

based on how many Hi-C reads align to each contig. Longer contigs have more Hi-C read 

interactions because they have more length available for Hi-C interactions to occur. More 

Hi-C interactions corresponds to a shorter distance between contigs. They are then 

visualized as a tighter cluster of dots using principle coordinate analysis (P. aeruginosa, 
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Figure 3.5.a). Those with more, shorter contigs like L. crispatus have less Hi-C 

interactions between each contig pair and thus cluster less tightly. As Hi-C is known to 

show DNA interactions within the cell in 3D space (Le et al., 2013), it is also possible 

that this rod shape is at least partly due to L. crispatus having that cell morphology. If one 

end of the chromosome was more often found at one end of the cell than the other, there 

would be more Hi-C interactions between that section of the chromosome and itself than 

with the other end of the chromosome due to their proximity in 3D space. 

Plasmid Placement 

 The plasmids in our assays also assembled well and could be accurately placed by 

species using Hi-C, except in the case of multiple species carrying similar plasmids. In 

Community 3, similar plasmids, pBP136 and pB10, resulted in much more fractured 

plasmid assemblies than were observed in the rest of the communities. In most of the 

assays, plasmids pAB1, pAB2, and pB10 assembled into 1 contig each and were easily 

placed by species. This showed that Hi-C could be quite useful for clustering unique, 

native plasmids with the species carrying them. In Community 3 however, the many 

contigs from these similar plasmids showed interactions with each other (due to sequence 

similarity) as well as with the species that carried them. Visually, this formed a plasmid 

cloud between the two species although pBP136 clearly associated more often with E. 

coli and pB10 associated more with A. baumannii (Figure 3.3.a). While the analysis of 

this community was still quite simple using this pipeline, it should be noted that a 

situation like this would be much more difficult to decipher in the context of an 

environmental sample with no a priori knowledge of the community members. Similar 

clustering patterns would need to be looked for and further investigated in these 

communities. 

 The other interesting case that came up when identifying the bacterial carriers of 

plasmids, occurred in Communities 4a, 4b, 5a, and 5b. In each of these assays the same 

plasmid, pB10, was present in two species but often in different percentages. Since it was 

the same plasmid in both species, it easily assembled into one contig in each assay. When 

pB10 was present in two species in equal percentages, it clustered directly between the 

two species (Figures 3.4.a). When pB10 was present at different percentages in the two 

species, it always clustered closer to the species where it was present at a higher 
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percentage (Figures 3.5.a, 3.6.a, & 3.7.a). This indicates that Hi-C could be a very useful 

tool for researching plasmid transfer scenarios. Using principle coordinate analysis, this 

plasmid placement was easy to observe in 3D space. With a more complex community of 

10 or 100 species however, this 3D space would look much more cluttered and plasmid 

interactions such as these would be much more difficult to identify visually. 

 Hi-C still has the potential to be useful for linking plasmids to their hosts in larger 

communities if the data are looked at numerically instead of in principle coordinate 

space. Figures 4.1 through 4.4 show the number of Hi-C read pairs linking the pB10 

plasmid contig to each species cluster in Communities 4a, 4b, 5a, and 5b. Figure 4.1 

shows that pB10 had very similar amounts of Hi-C interactions with both E. coli and A. 

baumannii and that it had significantly more Hi-C interactions with them than it did with 

L. crispatus and P. aeruginosa. The fact that pB10 did have some interactions with 

species other than those it was found in was not a cause for concern as Hi-C datasets are 

known to be noisy (Beitel et al., 2014).  

 The numbers of Hi-C reads showing real interactions were also well above the 

background noise. Figure 4.2 shows how the Hi-C interactions of pB10 with A. 

baumannii increased proportionally and numerically as A. baumannii was present at a 

higher percentage of the community compared to Figure 4.1. The Hi-C interactions of 

plasmid pB10 with E. coli, which was now present at only 5% of the community, 

decreased to the level of the background noise, however. Presumably, if E. coli was 

present at only 5% of the community and carried no pB10, its Hi-C interactions with 

pB10 would have fallen further below the background noise of those species that were 

each 25% of the community. Similarly in Communities 5a and 5b, where pB10 was 

present in E. coli at 2.5% and 0.25% of the community respectively, pB10’s interactions 

with E. coli fell to below the level of the background noise (Figures 4.3 & 4.4). The 

number of Hi-C read pairs linking plasmid pB10 with the A. baumannii chromosome 

were always significant. Plasmid pB10’s Hi-C linkages with the other species appear to 

be a function of the number of contigs in each species cluster. For instance, the 

background noise is always highest in L. crispatus, which also happens to be the species 

with the most contigs in each of these communities. 
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ARG Placement 

 The Hi-C method worked quite well for accurately determining the placement of 

ARG within a bacterial community. ARG were placed on the correct replicons and within 

the correct species in all cases except for situations like Community 2, where the same 

ARG was present in multiple species. This community was included in the study as a 

control to determine whether or not the assembler/clustering method could perform 

robustly when the same gene was found in different locations. This caused assembly 

problems, as was expected. It is a major problem with metagenomic assemblies and a 

major limitation in downstream applications of those assemblies, like this method. The 

misassembled contig in Community 2 was easy to identify using the Resfinder blast 

search, as it was the only contig carrying the Km resistance gene. An alignment to the 

reference genomes showed that the Km resistance gene was connected to both E. coli and 

pB10 DNA. However, in the case of a more complex community where more than two 

replicons could potentially carry the same ARG and no known reference genomes were 

available, a misassembled contig like this would become increasingly impossible to 

deconvolute. It would have been easy to assume that the Km resistance gene was only 

present in P. putida if the decision was based on the Hi-C clustering alone or that it was 

only in E. coli if the decision was based solely on the NCBI database alignment. This 

looks to be a major limitation on Hi-C’s usefulness with complex, environmental 

samples. This study does suggest however, that when an ARG is present in multiple 

locations, Hi-C is more likely to assign it to a species cluster where it is found on a 

plasmid than a cluster where it is found on a chromosome. This is likely due to plasmids 

being present at a higher copy number and thus having more Hi-C interactions linking 

them to their cluster. 

Future Scenarios to Test 

Other Community Assays 

 The results are promising in that it was easy to determine that a species carried a 

plasmid when the species was present in at least 25% of the community. This was true for 

pB10 in A. baumannii (Figures 4.2, 4.3, & 4.4). It was also easy to determine that 

multiple species carried a plasmid if both species were present at 25% of the community 
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and the entirety of their species carried it (Figure 4.1). The numbers of plasmid 

interactions with the plasmid carrying species are even high enough at this level that it 

seems likely that plasmid host could still be determined when species are present at less 

than 25% of the community (Figure 4.1). These results do suggest that a plasmid host 

would need to be present at more than 5% of the community to accurately determine 

plasmid location (Figure 4.2). Further testing would have to be done with plasmid 

carrying species present at different percentages of the community to determine Hi-C’s 

absolute limits of detection when it comes to plasmid placement. It would also perhaps be 

helpful to repeat one of these assays with the same plasmid present in more than 2 

community members to observe any differences that might arise in the clustering 

patterns. 

 In the 3D plots for the communities where plasmid pB10 was present in two 

species (Figures 3.4.a, 3.5.a, 3.6.a, & 3.7.a), pB10 appears to be placed between the host 

species. This between species placement was even found in scenarios where pB10 could 

not be seen in both species based solely on counts of Hi-C read interactions (Figures 4.2, 

4.3, & 4.4). This 3D placement could still have been observed because the contigs from 

cells that pB10 was in had a greater strength of association with their species clusters 

than the background noise contigs had with their species clusters. This cannot be assumed 

for certain though and should be tested further before being used to determine definite 

plasmid placement in an environmental sample with no knowledge of actual plasmid 

placement. The possibility that pB10 was located between A. baumannii and E. coli 

because of similar DNA sequence or Hi-C interactions causing these particular species to 

cluster near each other should be ruled out. It would be helpful to set up a community 

similar to Community 4b but with different species to see if the same clustering pattern 

was observed.  

 In Communities 5a and 5b (Figures 3.6.a & 3.7.a), pB10 is seen slightly outside of 

the A. baumannii cluster. It cannot be known for certain if that is because of its valid 

associations with E. coli or because of the higher levels of background noise compared to 

Community 1 for instance. While the native A. baumannii plasmids, pAB1 and pAB2, do 

cluster directly within the A. baumannii cluster even in the case of background noise, 

they are smaller than pB10. They are thus expected to associate more with their species 
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and less with themselves than a larger replicon unit like pB10 which can form its own 

cluster more easily. Running an assay the same as Community 1 but with P. aeruginosa 

and L. crispatus as background noise could also serve as a control and show whether the 

large plasmid, pB10, would cluster directly within its species cluster as in Community 1 

even with more background noise present. 

Environmental Samples 

  This method and pipeline could be tested on more complex, environmental 

samples with a few adjustments. The included R code (Appendix B) was designed so that 

the only large input file is the list of contig interactions taken from the Hi-C cleaning 

results (HiCUP). This file will have as many lines as there are valid and unique Hi-C 

reads. While it can be a lengthy file, it is not extremely large as the lines themselves 

consist of nothing but contig names. The R script then uses this dataset to construct a 

symmetrical matrix, the dimensions of which are equal to the number of contigs. R can 

hold a matrix far larger than any produced in this study. If for some reason the dataset 

became many orders of magnitude larger and the R analysis could not be performed 

remotely on a computer with sufficient memory, the script could perhaps be modified to 

accommodate this using one of R’s big data packages. 

 In lieu of reference genomes the contigs would have to be identified by blasting 

them against a much larger database. This could be done using NCBI-blast with its 

genomic or nucleotide database. In a more complex sample, it is quite likely that the 

number of clusters would not be visually obvious in either a dendrogram or 3D principle 

coordinate plot. In this situation, the silhouette function in R’s “cluster” package could be 

used on the distance matrix as a way of determining the optimal number of clusters. 

When plotted over a range of values for k, the value which yields the highest average 

silhouette width can be assumed to be the optimal number of clusters. 

Conclusions 

 Overall, the Hi-C method is a promising tool for linking ARG and replicon units 

within bacterial communities as well as distinguishing bacterial genomes from a mixed 

metagenomic dataset. The bioinformatics pipeline developed here performed quite 

robustly in the case of bacterial communities with only a few members as were used in 
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this study. The species not only achieved nearly perfect separation but also nearly the 

whole genome was retrieved in most cases. Further experimentation and statistical 

analysis could determine more precisely its limits of detection in the area of plasmid 

placement as well as how many species at a time this pipeline can separate clearly. 

 This research project did show that complications can arise when the same ARG is 

present in multiple species or when the same or similar plasmids are present in multiple 

species. These situations seem to cause difficulties during contig assembly. Comparison 

to the clustering patterns described here for these simulated situations could perhaps 

resolve some of the clustering ambiguity in simple environmental samples (i.e. river 

water). It looks like it would be difficult to impossible to determine with certainty the 

placement of shared ARG and plasmids in complex environmental samples such as soil 

(Howe et al., 2014) however. While ambiguity in the placement of shared genes is a 

major limitation of the method, being able to cluster most of the contigs by species would 

still be quite useful with any metagenomic samples. Even if only partial genomes for the 

major species could be recovered, as has been demonstrated previously (Marbouty et al., 

2014), Hi-C can organize metagenomic datasets to a level which has been difficult up to 

this point. This pipeline provides a simple way to do the necessary cluster analysis. This 

method may prove most useful in lab or clinical scenarios however where there are 

bacterial communities with limited types of species. In such situations, Hi-C provides a 

sufficient level of resolution to determine the most likely bacterial carriers of specific 

genetic elements. The method could perhaps prove useful for tracking plasmid movement 

or informing the best antibiotic treatment strategies in the case of resistant infections. It 

could also hold promise as a method for tracking pathogen/ARG spread within hospitals 

as is being done in the Hospital Microbiome Project (Smith et al., 2013). 
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Figure 4.1: Hi-C read pairs linking pB10 to each species cluster in Community 4a, where 
pB10 was present in A. baumannii and E. coli (each present at 25% of the community) 
 

 
 
 
 
 
Figure 4.2: Hi-C read pairs linking pB10 to each species cluster in Community 4b, where 
pB10 was present in A. baumannii and E. coli (present at 45% and 5% of the community 
respectively) 
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Figure 4.3: Hi-C read pairs linking pB10 to each species cluster in Community 5a, where 
pB10 was present in A. baumannii and E. coli (each present at 25% of the community) 
but only present in 10% of the E. coli 
 

 
 
 
 
 
Figure 4.4: Hi-C read pairs linking pB10 to each species cluster in Community 5b, where 
pB10 was present in A. baumannii and E. coli (each present at 25% of the community) 
but only present in 1% of the E. coli 
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Appendix A 

 The Hi-C method has recently been proven useful for reconstructing individual 

genomes from mixed cell populations by physically linking DNA fragments that 

occupied the same cell, prior to sequencing. This project was designed to test whether 

plasmid and bacterial carriers of ARG can be identified using the chromosomal 

conformation capture (Hi-C) approach. Towards this end, a series of mock bacterial 

communities were designed to answer a series of questions including Hi-C’s limits of 

detection for plasmids and ARG and whether we could develop a working version of the 

Hi-C protocol in house.  

Hi-C Protocol 

 Three replicates were made of each bacterial community (Table 3.1). One replicate 

of each was prepared by our collaborators using a proprietary Hi-C protocol. The 

remaining two replicates for each community were used for practice and development of 

the Hi-C method on site. This was done using previously published protocols (Beitel et 

al., 2014; Burton et al., 2014) that were combined and then modified to give the 

following Hi-C wet lab protocol. During this development process two replicates each of 

samples 1 and 2 were used as test samples. While one set of these was sequenced lightly, 

the percentage of valid Hi-C reads in the libraries was so low that it was not deemed 

useful to sequence them to full depth. Two community replicates, 3.3 and 4a.3, were 

successfully prepped on site and sequenced by our collaborators however. The analysis of 

these samples is included for comparison to those prepped using the proprietary protocol. 

The Hi-C sequences were processed and analyzed using the same bioinformatics pipeline 

previously described (Chapter 2). 

Formaldehyde Crosslinking 

Samples were prepped for the Hi-C protocol by adding 37% formaldehyde 

directly to the PBS mixed culture to a final concentration of 1%. They were incubated for 

20-30 minutes at room temperature and periodically swirled. The formaldehyde 

crosslinking reaction was quenched by the addition of glycine to a final concentration of 

0.133M. The samples were swirled to mix and then incubated for another 20-30 minutes 
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at room temperature. The samples were then spun down for 2 minutes at 13,000 g. The 

supernatant was removed and each pellet was rinsed with 800µL of PBS. This was to 

remove formaldehyde. The samples were spun down again for 2 minutes at 13,000 g. The 

supernatant was decanted and the cell pellets stored at -20°C until the prep was 

completed. 

Cell Lysis 

 Cross-linked cell pellets were thawed on ice. Five hundred µL of 0.1mm diameter 

zirconia-silica beads (BioSpec) and 1mL of chilled 1x TBS with 1% Triton-X and 

EDTA-free Protease Inhibitors (diluted per package specifications; Pierce) were added. 

The sample was then vortexed five times for 5min. each time with 1-2min. rests on ice in 

between. Each 2mL sample tube was put into a 15mL conical tube so that it hung inside 

the larger tube. A small hole was poked at the bottom of the 2mL tube with a hot needle 

so that the chromatin suspension could filter through the glass beads and into the larger 

tube. The assembly was spun at 3000 RPM for 3min. at 4°C so that the small tube 

dripped into the 15mL tube leaving the glass beads behind. The flowthrough was 

transferred to a fresh 2mL tube and spun at 13000 g for 10min. at 4°C to pellet chromatin 

and cellular debris. The supernatant was discarded and the pellet resuspended in 1mL of 

the same chilled 1x TBS with 1% Triton-X and EDTA-free Protease Inhibitors (pellet 

requires gentle mushing with pipette tip). The rinse was repeated using chilled 1x TBS 

(no additives). The sample was pelleted once more and resuspended in 500µL of 10mM 

Tris pH8. At this point the sample can be stored at 4°C and a subsample quantified with 

QubitTM to check for a high enough DNA concentration (expecting 1-10ng/µL but can be 

a little higher). 

Digest Chromatin 

 To 200µL of the chromatin suspension, 120µL of irradiated, sterile, deionized 

water, 20µL of the 4-cutter restriction enzyme Sau3AI, and 40µL of the associated 

NEBuffer 1.1 were added. The solution was incubated for 4 hours in a 37°C water bath. 

Four-cutter restriction enzymes recognize a specific sequence of 4 base pairs (bp) 

whereas other Hi-C protocols have used restriction enzymes that recognize a sequence of 

6bp. Restriction sites of 4bp are much more common than those of 6bp so the 4-cutter, 
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Sau3AI, was chosen to maximize the number of cuts and increase the number of possible 

Hi-C interaction sites (Lajoie et al., 2015).  

Fill in DNA Ends with Biotin 

 The digested ends were next filled in with biotin. Nine µL each of the nucleotides: 

dA, dT, and dG; all diluted to 1mM prior to addition, were added to 250µL of the 

digested chromatin. Twenty µL of 0.4mM biotinylated dCTP (Invitrogen) and 7.5µL of 

Klenow (NEB, DNA Polymerase I large fragment) were also added. No additional buffer 

was necessary because of that carried over from the last step. The solution was gently 

mixed and incubated for 45-60min. in a 37°C water bath. The enzymes were then 

deactivated by incubating at 70°C for 10-15min. in a heat block. It is important to not 

leave it for longer than that or the crosslinks will start reversing. 

Ligation 

 At this point, DNA concentration was measured using a QubitTM dsDNA BR 

Assay Kit kit. DNA concentration varies at this step but was approximately 3.5 ng/µL for 

samples 3.3 and 4a.3. Ligations are set up to have DNA concentrations of no higher than 

0.5 ng/µL. Biotinylated chromatin was mixed with water to a final volume of 900µL and 

a final concentration of 0.4-0.5 ng/µL. To this dilution, 100µL of T4 DNA Ligase Buffer 

(NEB) and 6.25µL of T4 DNA Ligase enzyme (NEB) were added. If DNA 

concentrations are high enough this reaction can be multiplied for larger volumes. For 

samples 3.3 and 4a.3 the reaction was a little more than doubled resulting in final 

volumes of 2.1mL. If DNA concentrations are higher, ligase reactions up to 4-8mL final 

volume can be used. Final concentrations of ligase enzyme and buffer must be kept the 

same however. The ligase reaction was incubated for 4-6 hours at room temperature. 

Reverse Crosslinks 

 The crosslinks were then reversed by the addition of proteinase K (25µL of 

10mg/mL per 2mL total reaction). The reaction was incubated at 70°C overnight. 

Purify DNA 

 The DNA was cleaned and concentrated using the Zymo DNA Clean & 

ConcentratorTM -100 kit using 5 volumes of DNA Binding Buffer for each 1 volume of 

sample. In the case of larger ligation volumes, one recovery membrane should be used for 

each 2mL of ligation mixture. The solution was pushed through the membrane using a 
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sterile syringe and the DNA cleaned and recovered per the kit’s directions. DNA was 

eluted into 300µL (2 x 150µL to increase recovery) of PCR grade water for each 

membrane used. Three µL of RNAse A (Thermo Scientific, 10mg/mL) were added for 

each 300µL of recovered DNA. This reaction was incubated for 30-45min. in a 37°C 

water bath.  

Remove Unligated Biotinylated Ends 

 To remove unligated biotinylated ends, 33µL of NEBuffer 2.1 with BSA, 3µL of 

10mM dATP, 3µL of 10mM dGTP, and 4µL of T4 DNA Polymerase (NEB) were added 

to the ~300µL of DNA. Increase amount of reagents added in proportion to final volume 

of recovered DNA if more than 300µL is available. The reaction was incubated for 10 

minutes at room temperature and then 12°C for 1 hour in a PCR machine. 

Clean DNA 

 The DNA was cleaned via DNA Clean & ConcentratorTM -5 Kit (Zymo). One 

membrane was used for each ~300µL of reaction to be concentrated. The DNA was 

eluted into 130µL of PCR grade water. Can elute into 65µL for each membrane if 

multiple cartridges are required. 4µL of each sample was used for QubitTM high 

sensitivity quantification. Final DNA concentrations were 0.48 ng/µL for sample 3.3 and 

1.98 ng/ µL for 4a.3. The remaining 126µL of each sample were shipped to collaborators 

for a streptavidin pull down to enrich for fragments with a biotinylated ligation junction 

and Illumina library prep. 

Clustering Results for Samples Prepped on Site 

 The Hi-C linkages from the samples prepped using the protocol modified on site 

did not cluster the contigs from Communities 3 and 4a as cleanly as the Hi-C linkages 

from the samples prepped by our collaborators did. While looking at hierarchical 

clustering dendrograms for those samples prepped by our collaborators was sufficient for 

determining the optimal number of species clusters for those communities, the optimal 

number was less obvious in the analysis of the communities prepped locally. As we 

wanted to compare the quality of clustering from our Hi-C reads to that from our 

collaborators’ reads, the same numbers of clusters were used to analyze Communities 3.3 
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and 4a.3 as were used to analyze Communities 3 and 4a. This resulted in four species 

clusters for each community. 

 Community 3.3 was a replicate of Community 3 where the Hi-C prep was done by 

us using the proceeding protocol. Community 3.3’s 3D plot (Figure A.1.a) shows the 

same overall trend as Community 3 (Figure 3.3.a) where the two plasmids, pBP136 and 

pB10, form a plasmid cloud between their two host species, E. coli and A. baumannii. 

Plasmid pBP136 is again closer to its carrier, E. coli, and pB10 is again closer to its 

carrier, A. baumannii. The plasmids are pulled towards each other by inter-plasmid Hi-C 

interactions as well as towards their respective hosts. Although the clustering trend is the 

same as Community 3, the clustering is not as clean. The species are clustered less tightly 

and there is less space between species clusters, thus not all contigs were assigned to the 

correct species (Figure A.1.b & A.1.c) as well as they were in Community 3 (Figure 

3.3.c). As there were half as many valid and unique Hi-C read pairs to link the 

Community 3.3 contigs as there were for Community 3 (Tables A.1 & 3.3), looser 

clustering was expected. However, Community 3.3 (Table A.1) was sequenced as deeply 

as Community 3 (Table 3.3) even though it did not produce as many valid and unique Hi-

C read pairs. This implies that Community 3.3 did not have as high quality of a Hi-C 

library since a smaller percentage of the read pairs could be classified as valid and unique 

Hi-C pairs. 

 Community 4a.3 (Figure A.2.a) shows the same plasmid placement as Community 

4a (Figure 3.4.a) but the species are again clustered much less tightly and some contigs 

are thus misassigned (Figures A.2.b & A.2.c). The hierarchical clustering does not 

separate species genomes as clearly even though the amount of valid and unique Hi-C 

pairs performing the clustering is quite similar to Community 4a (Tables A.1 & 3.3). 

Community 4a.3 did not contain as high a percentage of PCR duplicates as Community 

4a, implying that it could have been sequenced deeper to recover more unique valid 

reads. There is no telling whether this would have improved the clustering however. As 

Community 4a.3 already had nearly the same amount of valid and unique Hi-C read pairs 

as Community 4a, it appeared that the Hi-C library was not of as high quality in some 

way even though the valid reads for both communities met the same criteria of coming 

from different, non-contiguous restriction fragments. 
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ARG and Plasmid Placement 

 Community 3.3 (Table A.2) had the same results as Community 3 (Table 3.6) as 

far as ARG placement. ARG were accurately placed on plasmid contigs but the hosts of 

those plasmids were not always determined correctly by hierarchical clustering. Some of 

these plasmid contigs were misassigned because the similar plasmids, pB10 and pBP136, 

caused clustering confusion. In Community 4a, both E. coli and A. baumannii carried 

pB10 at the same percentages of the population. In the replicate prepped by our 

collaborators, pB10 was somewhat arbitrarily assigned to E. coli by the clustering 

algorithm and the ARG were assigned to that cluster along with it as was expected. In 

Community 4a.3, pB10 and thus its ARG were assigned to A. baumannii instead. As 

pB10 presumably had a 50/50 chance of being assigned to either one, this difference 

between the two replicates was not considered significant. 

Discussion 

 Hi-C read pairs coming from the two Hi-C preps done using our modified protocol 

performed adequately at clustering. Species separation can be observed (Figures A.1.a & 

A.2.a) and the vast majority of the contigs were correctly assigned to their species cluster. 

A higher contig misassignment rate was observed in the samples prepped using our 

protocol however, with 31 and 20 contigs being misplaced in Communities 3.3 and 4a.3 

respectively. While this is a somewhat high error rate, these misassignments were out of 

625 and 462 contigs respectively (Table 3.3) making for an error rate of approximately 

5% for both communities when based simply on number of contigs. However, the 5% 

error rate is somewhat misleading in that shorter contigs got misassigned while the much 

longer contigs, which made up the majority of the genetic sequence for the communities, 

were assigned to the correct species. A comparison of number of nucleotides misassigned 

to total nucleotides in the dataset would give a more accurate error rate that is much, 

much lower. The protocol was thus improved enough to perform adequately when it 

comes to separating a metagenomic dataset by species.  

 The 3D PCoA plots for Communities 3.3 and 4a.3 (Figures A.1.a & A.2.a) are 

more visually ambiguous than those from the samples prepped using our collaborator’s 

proprietary protocol. Not having clarity in these PCoA plots could be a big drawback in 
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samples such as 5b where a clear 3D plot is the easiest way to see that a plasmid may be 

present in more than one species. The higher resolution offered by our collaborator’s 

protocol was thus quite helpful for determining plasmid placement (Figure 3.3.a vs. 

Figure A.1.a; Figure 3.4.a vs. Figure A.2.a).  
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Table A.1: Hi-C Cleaning and Clustering Statistics for Communities 3.31 and 4a.31  

 Comm3.3 Comm4a.3 
HiCUP   
Raw Hi-C read pairs 22,434,054 23,187,814 
Valid Hi-C pairs 3,388,148 5,664,470 
Valid & Unique Hi-C Pairs 2,920,341 5,565,686 
Ratio of Hi-C pairs to contigs 4,499.8 11,742.0 
Contigs that align to references2 634 470 
Contigs not picked up by Hi-C3 24 12 
 
1 Clustering same set of contigs as for Communities 3 & 4 
2 Alignments determined by NCBI blast 
3 Contigs that no Hi-C read pairs aligned to 
 

 

 

Table A.2: Genomic Cluster Each Antibiotic Resistance Gene was Assigned to Using Hi-C for Communities 3.3 and 4a.3 

 
 

Resistance Genes 
 

blaPAO catB7 fosA blaOXA-
50 

aph(3’)-
Ilb 

aph(3’)
Ia 

catA1 tet(A) blaOXA-
2 

sul1 strB strA blaOXA-
180 

blaADC-
25 

Comm3.3               
P. aeruginosa x x x x x          

A. baumannii/ pB10 
/pBP136 

       x x x x x x x 

Comm4a.3               
P. aeruginosa x x x x x          

A. baumannii /pB10        x x x x x x x 
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Figure A.1: Contigs clustered based on Hi-C read linkages for Community 3.3, which has four bacterial species and similar plasmids 
in different hosts (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) Number of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes  

   1 2 3 4 
P. aeruginosa (25%)   61 0 0 0 
A. baumannii (25%)   1 255 0 26 
      pAB1   0 1 0 0 
      pAB2   0 1 0 0 
      pB10   0 6 0 2 
L. crispatus (25%)   0 0 169 4 
E. coli (25%)   0 0 0 84 
      pBP136   0 13 0 2 

a. 

c. 

b. 
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Figure A.2: Contigs clustered based on Hi-C read linkages for Community 4a.3, which has four bacterial species and the same plasmid 
(pB10) in two different hosts which are present at equal quantities (a.) PCoA plot (b.) Hierarchical clustering dendrogram (c.) Number 
of contigs1 in each cluster for each species2 
 
1 Length of contigs varies 
2 Species determined by alignment of contigs to reference genomes 
3 PB10 was present in both A. baumannii and E. coli

   1 2 3 4 
P. aeruginosa (25%)   51 0 0 1 
A. baumannii (25%)   0 129 0 3 
      pAB1   0 1 0 0 
      pAB2   0 1 0 0 
      pB10 3  0 1 0 0 
L. crispatus (25%)   0 0 0 186 
E. coli (25%)   0 0 70 16 

a. 

c. 

b. 
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Appendix B 

Cleaning Metagenomic Shotgun Reads 

##Duplicate reads were removed using Super Deduper, which can be installed from: 
https://github.com/dstreett/Super-Deduper. Our paired end reads came as two files: one 
for forward reads and one for reverse reads. Because of this file format, default 
parameters were used via the following command: 
 
>super_deduper -1 shotgun_forward_R1.fastq.gz -2 shotgun_reverse_R2.fastq.gz 
 
##Flash2 was used on the output from Super Deduper to merge overlapping paired end 
reads. Flash2 can be installed from: https://github.com/dstreett/FLASH2.  
 
##Options:  
## -M 200 to set the maximum overlap length to 200 (overkill since our reads were only 
150bp in each direction) 
## -O checks for read overlaps at both ends of the reads 
## -Q 20 sets the quality score (reads will be cut off if they fall below) 
## -C 70 sets the percentage of the read that will be cut off if it falls below the quality 
score (quality score is used to break ties in the case of multiple overlaps) 
 
>	flash2 -M 200 -O -Q 20 -C 70 output_nodup_PE1.fastq output_nodup_PE2.fastq 
 
##Sickle, which can be installed from: https://github.com/najoshi/sickle, was used to trim 
the reads based on quality. It was used on the three read files output from Flash2. The 
two, unmerged paired end files were quality trimmed using sickle pe. The output is three 
files: two for the forward and reverse reads and one for single reads. The single reads 
were created when the quality of one read in the pair was too low. The merged, extended 
reads output from Flash2 were quality trimmed using sickle se with the same options as 
sickle pe. 
 
##Options: 
## -n removes all reads with an N in them because this denotes low quality 
## --length-threshold 75 discards reads that were trimmed to a length shorter than 75bp 
## --qual-threshold 20 sets the quality threshold for trimming 
## --qual-type sanger is used for reads processed using CASAVA 1.8 or higher as was 
the case with our modern, Illumina reads 
 
>sickle pe -n --length-threshold 75 --qual-threshold 20 --qual-type sanger -f 
out.notCombined_1.fastq -r out.notCombined_2.fastq -o cleaned_PE1.fastq -p 
cleaned_PE2.fastq -s cleaned_SE1.fastq 
 
>sickle se -n --length-threshold 75 --qual-threshold 20 --qual-type sanger --fastq-
file out.extendedFrags.fastq --output-file cleaned_SE2.fastq 
 



 

	

67 

##The cleaned, unpaired reads output from sickle pe and those output from sickle se were 
concatenated into one file. The two separate files were then discarded. 
 
>cat cleaned_SE1.fastq cleaned_SE2.fastq > cleaned_SE.fastq 

Assembly into Contigs 

##Cleaned metagenomic reads were assembled into contigs using Spades in meta mode. 
Spades can be installed from: http://cab.spbu.ru/software/spades/. It was used in default 
meta mode. The default k-mer sizes are 21, 33, and 55. Different k-mer sizes were tested 
but did not improve assemblies for our data. (Number of threads or amount of memory 
used can be changed from defaults depending on size of dataset and computational power 
available.) 
 
>spades.py --meta -1 cleaned_PE1.fastq -2 cleaned_PE2.fastq -s cleaned_SE.fastq -o 
spades_output/ 
 
##Contigs longer than 500bp were saved as one file called: longcontigs.fasta 

Species Identification 

##If reference genomes are available, the species identity of contigs longer than 500bp 
can be determined by an alignment to the reference genomes using NCBI-blast. 
 
##Turn file of contigs longer than 500bp into a blast database. 
 
>	makeblastdb -dbtype nucl -in longcontigs.fasta -hash_index 
 
##Blast concatenated file of all references against contig blast database 
 
>	blastn -query all_ref.fasta -db longcontigs.fasta -outfmt 6 -evalue 0.0001 -out outfile -
max_hsps 1 
 
##Save columns 1, 2, and 4 of output as future input for R script. 
 
>	awk '{print$1,$2,$4}' outfile > outfile1 

Cleaning Hi-C Reads 

##Hi-C reads were cleaned using HiCUP which can be installed from: 
https://www.bioinformatics.babraham.ac.uk/projects/hicup/. As using the scripts takes 
several steps, watching or working alongside their detailed instructional video is highly 
recommended: https://www.youtube.com/watch?v=i6imVs66aew. 
 
##Digest references. Provide sequence recognized by restriction enzyme used during Hi-
C prep (GATC for enzyme Sau3AI). Sample can be named using --genome option: 



 

	

68 

 
>hicup_v0.5.8/hicup_digester -z -re1 ^GATC --genome Comm1 longcontigs.fasta 
 
##Make Bowtie indices (must have Bowtie installed) that HiCUP will use, again have 
option to name samples: 
bowtie2-build -f longcontigs.fasta Comm1 
 
##Must create output folder prior to running HiCUP and designate the output folder’s 
location as well as the Hi-C read file names in configuration file template provided with 
HiCUP: hicup_example.conf. 
##HiCUP runs off the information provided in hicup_example.conf using the command: 
>hicup_v0.5.8/hicup --config hicup_example.conf 
 
##One of the files output by HiCUP has the extension “.hicup.bam”. Convert it into sam 
format using samtools. 
 
>samtools view _____.hicup.bam > hicup.sam 
 
##Only the third column of hicup.sam, which lists the names of the contigs that each Hi-
C read aligned to, is needed for the next step. The following short Python script was used 
to extract it in a concise format: 
 
import sys 
 
with open (sys.argv[1],'r') as infile: 
 for line in infile: 
  column2 = line.split()[2] 
  print(column2.split('l')[0]) 
 
##This script was saved as an executable and applied using the command: 
 
>python2.7 Matrix.py hicup.sam > interactions.csv 
 
##The file: interactions.csv, was used as input for the R script which clustered the contigs 
based on Hi-C linkage frequencies. 
 
##The other input required by the R script is the number of valid and unique Hi-C reads 
as determined by HiCUP. This number can be found near the end of the .html file found 
in the HiCUP output folder. 
 
##Optionally, the output from the NCBI-blast alignment to reference genomes, outfile1, 
can be used as an input to color the contig cluster plots by species identity. 

Clustering and Visualization in R 

##This script was run in RStudio (“RStudio”, 2016) 
install.packages("sparcl") 
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install.packages("rgl") 
install.packages("cluster") 
 
 
##set up variables 
a = #number of valid and unique Hi-C reads, enter as a number, no commas 
b = 2*a 
c = b-1 
Interactions <- read.csv("interactions.csv", header = FALSE) 
 
 
##build symmetrical matrix of Hi-C interactions 
even_indexes <- seq(2,b,2) 
odd_indexes <- seq(1,c,2) 
contig1 <- data.frame(x=Interactions[odd_indexes,1]) 
contig2 <- data.frame(x=Interactions[even_indexes,1]) 
m <- cbind.data.frame(contig1,contig2,deparse.level = 2) 
colnames(m, do.NULL = TRUE, prefix = "col") 
colnames(m) <- c("contig","partner") 
x <- with(m, table(contig, partner)) 
y <- t(x) 
u <- unique(c(rownames(x),colnames(x))) 
imat <- matrix(0,ncol=length(u),nrow=length(u),dimnames=list(u,u)) 
i1 <- as.matrix(expand.grid(rownames(x),colnames(x))) 
i2 <- as.matrix(expand.grid(rownames(y),colnames(y))) 
imat[i1] <- x[i1] 
imat[i2] <- imat[i2] + y[i2] 
 
 
##perform clustering 
##uses correlations between variables "as distance" 
dd <- as.dist((1 - cor(imat))/2) 
hc <- hclust(dd,method = "ward.D") 
plot(hc) #to see a dendrogram of clustered variables 
rect.hclust(hc, k = 4) #k = number of clusters as determined visually or by silhouette pltos 
dataset <- cutree(hc, k = 4) 
##to save dataset of the cluster each contig was assigned to: 
#write.table(dataset, "file name", quote = FALSE, sep="\t") 
 
 
##color dendrogram by species identity as determined by Hi-C 
library(sparcl) 
ColorDendrogram(hc, as.numeric(dataset$V1), main = 'Title') 
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##color dendrogram by species as determined by blasting contigs against reference 
genomes (need outfile1) 
identity = read.table('outfile1') 
identity[,5] = (identity[,3]/100)*identity[,4] 
identity = identity[,c(1:2,5)] 
identity = identity[order(identity[,2], identity[,3], decreasing = T),] 
identity = subset(identity, !duplicated(identity[,2])) 
identity$V2 = sub("l.*", "", identity$V2) 
dataset = as.data.frame(dataset) 
dataset = merge(dataset, identity[,-3], by.x = "row.names", by.y = "V2", all.x = T) 
dataset[is.na(dataset$V1),] 
ColorDendrogram(hc, as.numeric(dataset$V1)) 
##view summary of clustering (how many contigs for each species) 
table(dataset$V1) 
##view summary of which clusters species got assigned to 
table(dataset$V1, dataset$dataset) 
 
 
##view clusters in 2D (colored by species as determined by reference genomes) 
loc <- cmdscale(dd) 
plot(x = loc[,1], y = loc[,2]) 
text(x = loc[,1], y = loc[,2], rownames(loc), cex = 0.5, col = as.numeric(dataset$V1), asp 
= 1) 
 
 
##view clusters in 3D (colored by species as determined by reference genomes) 
##manually open xquartz prior to running this section if using a Mac 
library(rgl) 
open3d()  
loc2 = cmdscale(dd, k = 3) 
plot3d(x = loc2[,1], y = loc2[,2], z = loc2[,3], col=as.numeric(dataset$V1), 
size=1,type='s') 
##add legend 
legend3d("topright", legend = paste(c('vector','of','species','names')), pch = 16, 
         col = c('vector','of','color','names'), cex=1.2, inset=c(0.05)) 
##to save snapshot of 3D plot 
snapshot3d(filename = 'filename', fmt ='png') 
##to save snapshot in high def, save as pdf using rgl.postscript and convert to png later 
rgl.postscript("filename", fmt = 'pdf', drawText = T) 
 
 
##manually set colors (adjust vector accordingly for more than 5 species/plasmids) 
col.pal <- palette() 
col.pal[1:5] <- c('yellow','magenta','green','red','blue') 
palette(col.pal) 
##only run next command after done creating plots 
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palette("default") 
 
 
##to determine optimal number of cluster by silhouette plot, run this command using a 
##range of values instead of just 4 
##chose number of clusters that gives the maximum average silhoutte width 
library(cluster) 
plot(silhouette(cutree(hc,4), dd)) 


