
On Validating Well Typed Programs Written in the Weakly Typed Programming

Language C

A Dissertation

Presented in Partial Ful�llment of the Requirements for the

Degree of Doctorate of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Kevin Arnold Krause

Major Professor: Jim Alves-Foss, Ph.D.

Committee Members: Clinton Je�ery Ph.D.; Paul Oman, Ph.D.;

Michael O'Rourke, Ph.D.

Department Administrator: Gregory Donohoe, Ph.D.

August 2015

ii

Authorization to Submit Dissertation

This dissertation of Kevin Arnold Krause, submitted for the degree of Doctorate of

Philosophy with a Major in Computer Science and titled �On Validating Well Typed

Programs Written in the Weakly Typed Programming Language C,� has been reviewed

in �nal form. Permission, as indicated by the signatures and dates given below, is now

granted to submit �nal copies to the College of Graduate Studies for approval.

Major Professor Date
Jim Alves-Foss, Ph.D.

Committee
Members Date

Clinton Je�ery, Ph.D.

Date
Paul Oman, Ph.D.

Date
Michael O'Rourke, Ph.D.

Department
Administrator Date

Gregory Donohoe, Ph.D.

iii

Abstract

This dissertation is a case study of type safety with respect to the C programming

language. In short, C is not type safe, as its integer data types are not protected against

entering one of several possible error conditions. Once a single integer error occurs,

an entire system is potentially at risk to fail or is vulnerable to hostile takeover. The

consequence of error can be devastating, depending on the critical nature of the system.

At worst, the losses could have major implications on national security.

Contained within, the problem space is explored after de�ning the concepts behind

type safety. Then, a syntax like typing speci�cation for the language is introduced and a

simpli�ed static typing semantics for its expressions and statements are expressed before

a solution is o�ered with a prototype tool that statically analyzes an abstraction of the

original C source code for type safety violations. Algorithms for the tool are based on an

enumeration of the likely causes to enter an integer error, a formalization of the static

typing semantics of C, and the requirements for safe C language constructs. Because of

the tool's underling language and by using the aforementioned formalizations, the tool

has the ability to prove that its reasoning about the code it is analyzing is correct.

iv

Acknowledgements

I would like thank my dissertation committee chair, Dr. Jim Alves-Foss and the remaining

committee members: Dr. Clinton Je�ery, Dr. Paul Oman, and Dr. Michael O'Rourke.

This dissertation would not have been possible without their numerous commitments and

constructive criticism.

In addition, this dissection was made possible by funds received from the National

Science Foundation under Grant No. DUE 1027409 (CyberCorps: Scholarship for Ser-

vice), the Idaho State Board of Education, Idaho Global Entrepreneurial Mission (IGEM)

grant program.

v

Table of Contents

Authorization to Submit Dissertation . ii

Abstract . iii

Acknowledgements . iv

Table of Contents . v

List of Tables . xv

List of Figures . xvi

Listings . xviii

1 Statement of Purpose . 1

1.1 Introduction . 1

1.2 Type Safety . 2

1.2.1 Building Blocks . 2

1.2.2 Security . 4

1.2.3 Type Safety . 4

1.2.4 The Relationship of Type Safety and Type Strength 6

1.3 Objectives and Contribution . 7

1.4 Structure of Remaining Dissertation . 11

2 The C Programming Language . 12

2.1 Humble Beginnings . 12

2.2 Strengths . 13

2.3 Pitfalls . 14

2.4 Integer Error Conditions . 15

vi

2.4.0.1 Integer Over�ow . 18

2.4.0.2 Integer Sign Error . 21

2.4.0.3 Integer Truncation Error 22

2.4.1 Casting . 22

2.4.2 Integer Errors Introduced by Operators 28

2.4.3 Other Conditions Leading to Vulnerabilities 30

2.4.3.1 Unde�ned Behaviors . 31

3 Current Error Mitigation Measures . 32

3.1 Optional Compiler Warnings . 32

3.2 Safe Coding Guidelines and Practices . 33

3.3 Safe Integer Libraries . 34

3.4 Safe Subsets of C . 35

3.5 Proposed Extensions to C . 37

3.5.1 Ranged Integers . 37

3.5.2 In�nitely Ranged Integers . 37

3.6 Source Code Analysis Tools . 39

3.6.1 Runtime Analysis . 39

3.6.2 Static Analysis . 40

4 Introduction to Language Formalism . 42

4.1 Elements of Language: Syntax and Semantics 42

4.2 Common Methods to Formalize Language Semantics 43

4.2.1 Axiomatic Semantics . 43

4.2.2 Denotational Semantics . 44

4.2.3 Operational Semantics . 47

4.2.3.1 Small-step Semantics . 47

4.2.3.2 Big-step Semantics . 49

vii

4.3 Approaches to the Formalization of Language Semantics 50

5 Historic Attempts to Formalize C . 51

5.1 Evolving Algebras . 51

5.2 An Abstract Dynamic Semantics for C 52

5.3 An Operational and Denotational Typing Semantics for C 53

5.4 A Formalism of C++ . 54

5.5 In Summary . 54

6 C Type Systems . 56

6.1 Introduction . 56

6.2 Syntax of C Types . 57

6.3 Object Types . 59

6.3.1 Scalar Types . 59

6.3.1.1 Arithmetic Types . 62

6.3.1.2 char Type . 64

6.3.1.3 Extended Integer Types 64

6.3.1.4 Enumerated Types . 64

6.3.1.5 Floating Types . 65

6.3.1.6 Pointer Type . 66

6.3.2 Aggregate Types . 66

6.3.2.1 Array Type . 67

6.3.2.2 struct Type . 67

6.4 union Type . 68

6.5 Function Types . 68

6.5.1 Function Speci�ers . 68

6.6 Incomplete Types . 69

6.7 Type Quali�ers and Storage Class Speci�ers 69

viii

6.7.1 Type Quali�ers . 70

6.7.2 Storage Class Speci�ers . 71

6.7.2.1 typedef Name . 72

6.8 Compatible Type . 72

6.9 Composite Type . 73

6.10 lvalue and rvalue . 74

7 Formalizing C Expressions and Statements 75

7.1 Introduction . 75

7.2 C Type Casting Rules . 76

7.2.1 Integer Conversion Rank . 76

7.2.2 Integer Promotions . 76

7.2.3 Usual Arithmetic Conversions . 77

7.2.4 Other Conversion Rules . 78

7.2.4.1 Conversion to Type _Bool 78

7.2.4.2 Conversions Between Signed and Unsigned Integers . . . 78

7.2.4.3 Conversions Between Real Floating and Integers 79

7.2.4.4 Conversions Between Real Floating Types 79

7.2.4.5 Conversions Between Complex Types 80

7.2.4.6 Conversions Between Real and Complex Types 80

7.2.4.7 Conversions Involving Pointers 81

7.3 Expressions . 82

7.3.1 Static Typing Semantics . 84

7.3.2 Type Safety Requirements . 89

7.4 Statements . 91

8 The Static Type Safety Analysis Tool . 96

8.1 The Fundamental Question . 96

ix

8.2 A Naïve Approach . 96

8.3 A Better Attack Plan . 97

8.3.1 In�uence of Literals . 98

8.4 The Underlying Language ACL2 . 99

8.4.1 Computational Logic . 100

8.4.2 Applicative Common Lisp . 101

8.4.2.1 Numbers . 101

8.4.2.2 Characters and Strings 102

8.4.2.3 Symbols . 102

8.4.2.4 Cons Pairs . 103

8.4.3 Reasons Behind the Use of ACL2 106

8.4.4 In Summary . 107

9 Leveraging State in a Static Analysis Environment 109

9.1 A State-full Introduction . 109

9.2 Application of Functions Run, Next, and Exit 110

9.3 Tracking State . 111

9.3.1 Type Safety Decision Algorithms 113

9.3.2 Tracking State-wise Changes with an Annotated Look-up Table . 117

9.3.2.1 The Fields TOKEN-ID and ("NAME") 119

9.3.2.2 The (TYPE-INFORMATION) �eld 120

9.3.2.3 The Type Sub�eld (TYPE-SPECIFIERS) 121

9.3.2.4 The Type Sub�eld (TYPE-QUALIFIERS) 122

9.3.2.5 The Type Sub�eld (STORAGE-CLASS-SPECIFIERS) . . . 123

9.3.3 The (VALUE) Field . 124

9.3.3.1 A Note on Modeling Other Data Objects 125

x

10 Conclusions and Future Work . 127

10.1 Review and Conclusions . 127

10.1.1 Organization of this Dissertation 127

10.1.2 Formalization . 128

10.1.3 The C Type Safety Veri�cation Tool 129

10.2 Assumptions . 130

10.3 Limitations . 131

10.4 Test Suite and Observed Performance . 132

10.5 Future Work . 135

10.6 Final Observations . 136

Bibliography . 138

Appendices . 153

A The Syntax of C Types . 153

B Required Predicate and Valuation Functions for Expressing Static Typ-

ing Semantics . 156

B.1 Populating the Lookup Table Type Speci�er Field 157

B.1.1 getDeclaredArithType(τ) . 157

B.2 Truth Returning Functions for Types . 159

B.2.1 isInteger(τ) . 159

B.2.2 isFloat(τ) . 161

B.2.3 isArithmetic(τ) . 162

B.2.4 isPointer(τ) . 163

B.2.5 isScalar(τ) . 164

B.2.6 isArray(τ) . 164

B.2.7 isStruct(τ) . 165

xi

B.2.8 isAggregate(τ) . 165

B.2.9 isUnion(τ) . 166

B.2.10 isObject(τ) . 166

B.2.11 isVoid(τ) . 167

B.2.12 isNull(τ) . 167

B.2.13 isQuali�ed(q) . 167

B.2.14 isModi�able(identi�er) . 168

B.3 Type Returning Type Functions . 169

B.3.1 intPromote(τ) . 169

B.3.2 arithConv(τ1, τ2) . 174

B.3.3 funcArgPromote(τ1, . . . , τn) . 174

B.4 Truth Returning Functions for Literals 175

B.4.1 isDecimal(lit) . 175

B.4.2 pre�x (lit) . 176

B.4.3 isOctal(lit) . 177

B.4.4 isHexadecimal(lit) . 177

B.4.5 isChar(lit) . 178

B.4.6 isWideChar(lit) . 179

B.4.7 isStringLit(lit) . 179

B.4.8 isWideString(lit) . 180

B.5 Type Returning Literal Functions . 180

B.5.1 su�x (lit) . 180

B.5.2 �rstToRepresent(lit, τ1, . . . , τn) 181

B.6 Value Returning Literal Functions . 182

B.6.1 lengthOfString(string) . 182

B.6.2 charToDecimalVal(lit) . 183

B.6.3 octToDecVal(lit) . 185

xii

B.6.4 hexToDecVal(lit) . 185

B.7 Value to Type Range Functions . 186

B.7.1 isValidIntValue(val,τ1, τ2) . 186

B.7.2 isValidRealValue(val,τ1, τ2) . 187

B.7.3 isValidArrayIndex (index,size) . 187

xiii

List of Tables

1.1 System criticality levels based on consequence of failure. 3

2.1 C operators and their potential to produce over�ow 29

2.2 C operators and their potential to produce a wrap 30

3.1 MISRA recommended typedefed arithmetic type names for 32-bit platforms 34

3.2 Critical unde�ned behaviors. 38

5.1 Abstract syntax of the C++ type system [108] 55

7.1 Operator order of precedence and operand associativity 83

9.1 High level instruction nodes . 111

9.2 Sub-expressions of EXSTMT node . 116

xiv

List of Figures

2.1 von Neumann architecture . 13

2.2 Number of integer errors generating CVE OS advisories 2002-11 16

2.3 Distribution of CVE OS integer error types 2002-11 17

2.4 Distribution of CVE OS integer error types 2012 18

2.5 Yearly exploit distribution resulting from integer error 2002-11 19

2.6 2012 individual OS advisory count due to integer error 20

2.7 Illustrative silent wrapping of 4-bit unsigned-integer-type [116], the me-

chanics are similar for larger unsigned integer types such as the 32-bit . . 21

6.1 The universe of C types . 58

6.2 C identi�er syntax . 58

6.3 keywords . 58

6.4 C declaration syntax . 60

6.5 Type-speci�er keywords . 61

6.6 Atomic-type-speci�er syntax . 61

6.7 Object-type . 61

6.8 Scalar-type . 61

6.9 Arithmetic-type . 62

6.10 Enum-speci�er syntax . 65

6.11 Pointer-type . 66

6.12 Aggregate-type . 66

6.13 Struct-or-union-speci�er syntax . 67

6.14 Union-type . 68

6.15 Function-type . 68

6.16 Function-speci�er syntax . 69

6.17 Incomplete-type . 69

xv

6.18 Type-quali�ers . 71

6.19 Storage-class-speci�ers . 71

6.20 Typedef-name syntax . 72

7.1 Syntax of C expressions . 84

7.2 Syntax of C statements . 92

8.1 The 32-bit patterns for 10 and −10 in two's complement 99

9.1 A simplistic AST . 112

9.2 Basic precondition algorithm . 114

9.3 Basic postcondition algorithm . 117

9.4 C type-speci�er keywords. 122

9.5 C type-quali�er keywords. 123

9.6 C storage-class-speci�er keywords. 123

xvi

Listings

2.1 Signed integer over�ow example . 21

2.2 Unsigned integer over�ow example . 22

2.3 Intended integer over�ow in the function htons 22

2.4 Integer over�ow is reversed a posteriori 23

2.5 Integer over�ow is checked a posteriori 23

2.6 Integer sign error example . 24

2.7 Integer truncation error example . 24

2.8 When 90 + 40 = −126 . 29

3.1 Typing errors missed by gcc . 33

3.2 A safe multiplication function call . 35

3.3 SafeMult function checking result value to value range of return type . . 35

3.4 SafeMult function checking operands for potential over�ow 41

6.1 const Declaration . 70

6.2 typedef declaration . 72

8.1 When 10 ≯ −10 . 99

8.2 ACL2 not function . 104

8.3 ACL2 member function . 105

8.4 An iterative solution in C for n! . 105

8.5 A recursive solution in C for n! . 106

8.6 A secursive solution in ACL2 for n! . 106

8.7 A simple C program that adds operands of mixed integer type 107

8.8 AST for a simple C program that adds operands of mixed integer types . 108

9.1 Annotated �elds for each basic data object in the lookup table 118

10.1 Simple C program that adds operands of mixed integer type 133

10.2 AST for simple C program that adds operands of mixed integer type . . 134

xvii

10.3 Example analysis output for simple C program that adds operands of

mixed integer type . 137

B.1 The four tuple of the c2acl2 generated lookup table for each data object 158

B.2 ACL2 isInteger . 160

B.3 ACL2 isAritmeticType . 163

B.4 ACL2 isPointerType . 164

B.5 ACL2 get-type-rank . 171

B.6 ACL2 get-type-rank-list . 172

B.7 ACL2 get-max-type-rank . 172

B.8 ACL2 get-dominate-type . 172

B.9 ACL2 get-type-from-type-rank . 173

B.10 ACL2 example usage of RATIONALP to �nd a decimal numeric literal . . . 176

B.11 ACL2 conditional identifying character literals to get ASCII decimal value 179

B.12 ACL2 get-ascii-dec-val . 184

1

Chapter 1: Statement of Purpose

1.1 Introduction

Without a doubt, computational technology has become an ubiquitous component in

the fabric of modern Western life. So much so, that at the dawn of the 21st century,

Kurzweil declared [69] that singularity would soon be realized, as mankind would merge

with machines (computers included) to achieve not only super human strength, but

undreamed of cognitive prowess as well. In part, Kurzweil's conjecture was based on

the fact that computer technology has adhered to the precepts of Moore's Law [83] by

becoming increasingly smaller, faster, and smarter while the code driving these devices

has become ever larger and complex. This phenomena was accomplished by a periodic

doubling of computational circuitry. On average, the cycle has been every eighteen

months, leaving many �state of the art� technologies obsolete shortly after their debut.

As evidence, just consider how much more computational power is embedded in today's

smart phones than that of the room sized behemoths driving the technology behind

mankind's successful lunar conquest.

Others, such as Garreau [36], have expressed reservations about the seemingly rapidly

approaching singularity. Among their concerns are the questions of the impact of com-

puter failure. For example, many of the systems steering the technological revolution

we continue to witness have been programmed with the programming language C. But,

programs written in C are prone to unexpected behaviors from calculations returning

unexpected results.

Even if an unexpected result does not produce an unexpected behavior, it does have

adverse implications on the state of a system's health, such as safety, security, and even

survivability. According to Cardelli, a program that is free of unexpected results is said

to have the property of type soundness [17]. Likewise, Milner [76] claims

�a well typed program is semantically free of type violations.�

2

Both Cardelli and Milner are describing the computer program property of type safety.

1.2 Type Safety

Central to this dissertation is the concept of type safety. But, what is the meaning of type

safety? Upon examination, the terms security and safety appear to be interchangeable. A

quick search in any leading dictionary (e.g., [103]) may provide the following de�nitions

for safety and security.

Safety - the state of being safe from the risk of experiencing or causing injury,

danger, or loss.

Security - the freedom from danger, risk, etc.: safety.

As a result, the two terms are often used interchangeably creating an even greater dis-

connect in the lexicon. But in the computer and technology realm, the two terms have

very disjunct and distinct meanings.

� security protects computers (technology) from the outside world and

� safety protects the outside world from computers (technology).

1.2.1 Building Blocks

It would be safe to say that modern society has become dependent on computers and

technology in general without fully realizing the extent of its dependency. Technology

oversees, if not manages, everything from mundane tasks to critical security-safety sys-

tems. Technology's ubiquity remains largely unnoticed until something in the technology

fails. As noted by Hatton [43], a least one fault is required for a failure to occur. It is

possible that many faults may never lead to failure.

De�nition 1.1. A failure is a dynamic system property that includes any di�erence

between actual and expected behavior.

3

Table 1.1: System criticality levels based on consequence of failure.

Criticality Level Consequence of Failure

Security and safety critical Reduced National defenses
Disruption of critical infrastructure

Safety critical Injury and/or loss of life
Compromised proprietary information
leading to future business loss

Security critical Possible �nes by regulators
Compromised classi�ed government information
leading to national security threat
Loss of customer trust and customers

Business critical Disruption of supply chain
Fines, license revocation, cessation of business

Non-Critical Minimal impact limited to users
May a�ect reputation of system supplier

De�nition 1.2. A fault is a static system property that is a point of potential failure.

A fault can be regarded as a vulnerability. We use the following de�nition provided

by Seacord [116].

De�nition 1.3. A vulnerability is a set of conditions allowing any violation of an explicit

or implicit security policy.

When computers fail, the consequences of the failure can run the gamut between a

mere inconvenience and a major catastrophe. By catastrophic, the implication is that

physical harm including death to humans is likely, untold �nancial loss or environmental

damage is possible, our national security compromised, etc. In any case, reputations of

the companies who either supply or use the technology are at stake.

The extent of the damage caused by failure depends on the critical nature of the

failed system (Table 1.1). For example, critical systems are those systems that man-

age our national defense and the national infrastructures such as energy, �nance, and

transportation. Critical systems may be classi�ed as security critical, safety critical, and

safety-security critical.

4

1.2.2 Security

Information security and assurance is generally presented in terms of the CIA triad

whose components include con�dentiality, integrity, and availability. According to Bishop

[11, 12], con�dentiality o�ers concealment; integrity guarantees and indemni�es the trust-

worthiness of both data and users; and, availability provides continuous authorized on-

demand access.

De�nition 1.4. Con�dentiality is the system property that hides user data and pro-

cesses.

Let X be a set of entities and let I be some data. I has the property of con�dentiality

with respect to X if no member X can obtain information about I.

De�nition 1.5. Integrity is a twofold system property as it validates the correctness of

data and processes in addition to validating user authorization to data and processes.

Let X be a set of entities and let I be some data or resource. I has the property of

integrity with respect to X if all members X trust I.

De�nition 1.6. Availability is a system property that insures timely, uninterrupted

authorized access to data and processes.

Let X be a set of entities and let I be a resource. I has the property of availability

with respect to X if all members X can access I.

Security is realized through a combination of policy and mechanism that target one

or more goals of the CIA triad.

1.2.3 Type Safety

The bulk of the available literature about type safety, e.g., Wright and Felleisen [127],

Milner [76] and Mitchell [80], de�ne type safety in terms of two main program properties:

preservation and progress. Preservation generally means that data types persist during

5

program execution. Formally, preservation is de�ned as

if ` e : τ and e→ e′, then ` e′ : τ ; (1.1)

and is read as �if there is an expression e of a certain type τ and e transitions to its next

state e′, then there is an implication that e′ is also of same type�. If preservation holds,

one can assert that the value v of expression e of type τ also has type τ . That is,

if ` e : τ and e→ v then, ` v : τ. (1.2)

Progress is said to show a relationship between the initial expression e and its �nal value

v through every step of a computation. Progress implies that a well typed program never

enters a stuck state; it either moves on to the next state or is in its expected terminal

state. Formally, progress is expressed as

if ` e : τ, then either (i) e→ e′ for some e′ or (ii) e is a terminal value. (1.3)

According to Pfenning [98], preservation and progress together are called type safety.

However, there are programming languages, generally considered not to be type safe,

that demonstrate both preservation and progress. For example, one can argue that the

language C preserves data types with its casting rules such as the integer promotions and

the usual arithmetic conversions [52, 53, 54]. Likewise, most systems programmed in C

are assumed to demonstrate progress once all of the faulty logic leading to a �segmentation

fault� or other failures have been �ushed out during the development cycle.

Without diminishing the importance of what preservation and progress give to a pro-

gram's property of type safety, we expand the notion of both properties by incorporating

the purpose of a type system as presented by Cardelli [17] to say type safety is a require-

ment that a program exhibits no unexpected behaviors. By doing so, one can show that

6

programs written in non type safe languages such as C can have the property of being

type safe.

1.2.4 The Relationship of Type Safety and Type Strength

There is a correlation between the type safety of a program and the type strength of the

language used to write the program where as the type strength increases, so too does type

safety. At times, type strength has been described by the popular anonymous anecdote:

�Pascal keeps your hands tied while C gives you enough rope to hang yourself.�

To be sure, type strength is a characteristic of a programming language with respect to

its usage of mixed (disjoint) data types. Strongly typed languages such as Standard ML

[77], Haskell [56], and Objective Caml [44], prohibit the use of mixed data types within

an expression. A weakly typed language, such as C, places no restrictions on the use of

mixed data types. The process used to detect typing errors is known as type-checking.

According to Liskov and Wing, type-checking can be relied upon to capture only a

small part of a program's overall correctness [72]. For example, in between the strongly

and the weakly typed languages are the nearly strongly typed languages, such as Ada

[55]. Like strongly typed languages, nearly strongly typed languages also prohibit using

mixed data types. However, they o�er a collection of libraries containing special functions

that allow programmers to use mixed types when needed. Once a programmer exercises a

library to relax type-checking, the onus of insuring correct program behavior falls squarely

on the programmer. As Lyons has noted [73],

�one can write bad software in any language; it is harder to do so with the

nearly strongly typed language Ada than it is with the weakly typed languages

such as C �

Ada was designed to meet the needs of the U.S. Department of Defense (DoD) and,

perhaps, went through the most rigorous development process of any programming lan-

7

guage because of the security/safety critical nature of DoD systems. Although developed

for the DoD, Ada has been used in the coding of several critical systems outside DoD

auspices. For example, the European Space Agency (ESA) relied on the type strength

of Ada in the �ight controllers of its Ariane rocket series. Nevertheless, the practice of

code reuse was attributed to a type safety violation contributing to the maiden �ight of

the Ariane 5 abruptly ending in explosion [71]. The suspected culprit in the $5B loss was

traced to the use of a 32-bit integer variable that was allowed to accept a 64-bit �oating

point value before it could be properly initialized. This code worked �ne for the Ariane 4

rocket, which used a slower processor. Thus, the primary goal of type safety enforcement

is to guarantee that a program remains well typed despite the underlying programming

language type strength and according to Milner, [76]

�a well typed program is semantically free of type violations. �

1.3 Objectives and Contribution

This dissertation is a study of the type safety problem inherent with the programming

language C. It is the cumulation of research to identify the root causes of the problem

and to o�er a viable solution. The solution, however, could not be obtainable without

�rst having a thorough and unambiguous understanding of C. This was achieved by

formalizing not only static typing semantics for all C expressions and statements, but

that of the type safety requirements for each C expression and statement as well. The

formalizations were then incorporated into a prototype static analysis tool to verify that

a program written in C source code has the property of being type safe [66]. The tool is

the proposed solution, because it has the ability to prove the correctness of its reasoning

about a program. In other words, if the tool can show that a program is without error,

potential or real, then the program is considered to be generally type safe.

8

Admittedly, the problem of type safety is nothing new. With respect to C, the problem

has been around since the inception of C. Because C is the �de facto� systems program-

ming language, its type safety problems have been widely studied. Several solutions have

been proposed over the years. However, the problem is both hard and persistent. It

has been said [20, 48] that �bug� �nding, using static analysis techniques, is non-trivial

and as such, is equivalent to Rice's Theorem that states all non-trivial questions asked

about a program eventually reduce to the �halting problem� [109]. A de�nitive solution

to the C type safety problem seems to be unlikely because the problem appears to be

undecidable. Even Dijkstra said [27],

�program testing can be used to show the presence of bugs, but to never show

their absence! �

At best, most tools endorsed by National Institute of Standards and Technology (NIST)

Software Assurance Metrics and Tool Evaluation (SAMATE) project [89] are merely

designed to catch a limited subset of all program code bugs potentially lurking in the

wild. Since each tool catches its own unique bug subset, there is often a disconnect in

truly understanding or tackling the type safety problem in C programs.

Complicating matters is the fact that the C language continues to evolve in an ef-

fort to adapt to the advances in underlying hardware of the architectures it supports.

For example, the newest standard, C11 was released in late 2011 and adds language

support for parallel processing [54]. Since every newer standard supersedes all previ-

ous standards, proposed solutions based on prior standards often become inadequate.

For instance, many of the prior attempts to formalize either the operational semantics

and static typing semantics of C [42, 43, 95], were applied to C90 [52] or it predecessor

ANSI C [6]. C99 [53] introduced support for 64-bit architectures whose native integer

size increased to 32-bits of precision from the 16-bit precision integer common to 32-bit

platforms C90 supported. The same can be said about the code analysis tools based on

9

the aforementioned formalizations or the other means attempting to ensure type safety

in C programs.

The research of this dissertation is based on C99 instead of C11. The reason is that

C11 was released well after this project was underway. However, the changes introduced

in C11 have no direct bearing on goals or outcomes of this project. Except for adding

a new type speci�er and a type quali�er with the keyword _Atomic, the typing syntax

remains largely unchanged. In fact, the _Atomic types are only applicable to those

platforms designed to support such types. Likewise, the syntax, semantics, and typing

constraints for expressions and statements remain unchanged. Therefore, the underlying

reasoning about C type safety in this research can be readily applied to C11.

What is unique about this dissertation is the approach taken. For example, the

formalization includes a formal presentation of the syntax of C types not seen before in

the literature. The typing syntax presented fully depicts the relational hierarchy among

all C type categories and is useful in understanding what is meant when the standard

imposes certain typing constraints on the operands of an expression. In addition, a

relational syntax of C types is crucial in understanding the often �quirky and �awed �

[110] and �unintuitive� [15] casting rules de�ned in the standard [52, 53, 54].

The formalism of the static typing semantics in this dissertation is similar to the work

of Papspyrou [95]. For simplicity, however, it is presented in a higher level of abstraction

without diving too deeply into category theory [99, 38, 100, 7, 9] and the use of monads

[9, 82]. The formalism presented in this document also makes provisions for 64-bit data

types as opposed to Papspyrou's work on a 32-bit standard. As mentioned earlier, the

inference rules de�ning the semantics of the type safe requirements for each expression

and statement are also presented.

The prototype static type safety analysis tool is unique for several reasons. First, it

is coded in ACL2 [58]. Other tools have been written in a diverse collection of languages,

such as, but not limited to OCaml [44] for Astrée [24] and Csur [96]; C for UNO [47, 48]

10

and Smatch [64]; and metal for xg++ [29]. Unlike the other programming languages,

ACL2 provides the ability to write the executables required to analyze the code and

the ability to write proofs to support and verify the reasoning the tool made about the

analyzed source code. ACL2 has been successfully used to verify a variety of projects such

as hardware [106, 104, 111], operational semantics [85, 86], and secure data �ow [51, ?].

But, the use of ACL2 to verify type safety of source code written any programming

language, let alone C, has yet to be documented in the published literature.

Similar to the commercially successful static analysis tool, Astrée [24], that is currently

used by AIRBUS [26] to verify its �ight control systems, the tool introduced in this

document is applied to an abstract interpretation of the source code. The di�erence

between the two is that Astrée uses a project driven selection of abstract domains out

of the dozens it has on hand and combines the domains through reduction processes

and user de�ned assertions. On the other hand, the tool introduced in this document

traverses a simple abstract syntax tree (AST) of the source code and applies one or more

predicate functions at each tree node.

Other tools may also use some form of code abstractions similar to an AST; but, they

employ techniques such as grep like utilities on regular expressions (Yasca [115]), simple

pattern matching to a repository of known bugs and vulnerabilities previously stored in

their databases (Flaw�nder [126] and Rats (rough auditing tool for security) [117]), or

annotated code (CQual [33, 34], LCLint [30, 31], and UNO [47, 48]). While not endorsed

by SAMATE, the Berkeley Lazy Abstraction Software Veri�cation Tool (BLAST) uses a

�counterexample� driven automatic re�nement in the construction its abstract model of

the code it analyzes [28, 10].

While not complete, the prototype tool introduced within this document provides a

large enough foundation from which an all encompassing static C type safety analysis tool

can be perfected, if not commercialized, and used to verify safety critical applications.

11

1.4 Structure of Remaining Dissertation

The structure of this dissertation largely follows the general methodology brie�y described

in Section 1.2 and is divided into four main sections. Transitions into each section should

be readily recognized as the �rst few chapters de�ne the problem space and the motivation

of this research. Chapters dedicated to the formalization of the C language follow and

precede the chapters on the prototype tool design and its preliminary results. Finally,

the dissertation ends with a chapter devoted to lessons learned, remaining work, and

conclusions.

12

Chapter 2: The C Programming Language

Stroustrup [102] once said,

�C makes it easy to shoot yourself in the foot.�

This conjecture about C is supported by the fact that the language is not type safe in the

sense that programs written in C have historically produced unexpected results. This

chapter explores the why C continues to be a favorite systems programming language

despite its shortcomings.

2.1 Humble Beginnings

The C programming language was developed as a systems programming language at the

Bell Telephone Laboratories (Bell Laboratories) between the years 1969 and 1973. The

principal investigator, Ritchie [110] a�rmed that C's development was closely tied to the

concurrent development of the Unix operating system [123]. Prior to C, most operating

system kernels were written in low level assembly languages. However, C introduced the

struct data type which, among its other language features, made the language expressive

enough for systems programming. In time, the Unix kernel became the �rst operating

system to be coded mainly in C. In addition to struct, other innovative features C

o�ered included:

� a standard input/output (I/O) library

� the 32-bit long int data type

� a collection of unsigned integer types

� several compound assignment operators in the form of op= where op is one of

several other distinct unary or binary operators, e.g., -= or +=

The successful Unix launch not only helped bring C into existence, it generated con-

siderable interest and increased usage of the language. However, several years passed

before a standardized usage of the language would be agreed upon, leaving many system

13

CPU

Control
unit

Arithmetic
logic unit

Memory

Figure 2.1: von Neumann architecture

programmers during that time frustrated after writing unstable, unworkable code. That

all changed in the 1980s when Kernighan joined Ritchie to publish the �rst edition of the

The C Programming Language which served as the �rst �o�cial informal � speci�cation

of the language known as �K&R C [65].�

The �rst �formal � speci�cation of C, known as ANSI C, was released in 1989 by

the American National Standards Institute (ANSI). The ANSI speci�cation was in turn,

rati�ed by the International Organization of Standardization (ISO) in 1990 and became

known as C90 [52]. C90 was superseded with another ISO standardization, C99 in 1999

[53] which in turn, was outdated with the 2011 ISO standardization of C11 [54].

2.2 Strengths

The popularity of the Unix kernel, and the subsequent language standardizations posi-

tioned C to be quickly anointed as the �de facto� systems programming language. C

continues to hold that prominence today and C's lasting popularity can be attributed to

several factors.

Most computational hardware based on the von Neumann [125] architecture operates

within an imperative execution paradigm where computations are spelled out. This is

necessary by design as both data and the instructions used for manipulating the data

share the same hardware (i.e., registers, data buses, memory, etc., see Fig. 2.1).

14

C is not only an imperative language, it makes provisions for most machine integer

types. Programs written in C tend to be high level abstractions of the machine hard-

ware. Thus, C programs are highly portable across many architectural platforms. Once

compiled for a speci�c architecture, the program usually maintains a fast execution that

is relatively equal to the execution times when the program is compiled on other plat-

forms. Finally, C provides a rich set of data types in addition to its integer types and

operators. Its collection of low level bitwise operations enable programmers to �feel the

bits� while the high level operations allows for the computation of complex problems. C

has a liberal usage syntax of its operators and operands making it highly expressible. As

such, programmers are seemingly unlimited in writing expressions containing multiple

operators of both levels. Furthermore, programmers are free to mix operand types. If a

programmer breaks a syntactic rule with respect to mixing operators and operands in a

single expression, the compiler will generate an error.

2.3 Pitfalls

The strengths of the C programming language were obtained at the expense of C's no-

torious lack of bounds checking. In 1996, the seminal paper �Smashing the stack for fun

and pro�t� demonstrated how a lack of bounds checking gave attackers a relatively easy

inroad to take control of a target system written in C with simple bu�er over�ow tech-

niques [2]. Although the problem of bu�er over�ow had been widely documented and

researched since well before 1996, the problem has persisted, and remains every bit as

serious today. For example, Christey and Martin [21] noted in 2007 that bu�er over�ow

kept its distinction as the leading cause of operating system (OS) vendor advisories in

the 2006 Common Vulnerabilities and Exposures (CVE) list maintained by the MITRE

Corporation [81].

15

2.4 Integer Error Conditions

C's lack of bounds checking is not limited to just bu�ers. The same Christey and Martin

report cited integer over�ow errors as the second leading cause of OS vendor advisories.

In the opinion of Brumley et al.[15], the known integer bugs reported by the CVE between

1999 and 2006 merely represent the �tip of the iceberg� as many, many more remain undis-

covered. Meanwhile, Seacord contends that the C integer errors are the most overlooked

and the least understood memory errors found in C programs [116]. On the other hand,

fractional numeric types (of the real �oating types) in C are supported by an extensive

runtime check library and are generally not as prone to error conditions.

Prior to 2002, reported integer errors resulting in a CVE OS advisory was rare. Since

the Christey and Martin report, however, there has been a marked increase in the number

of integer errors reported as the root cause for a CVE OS vendor advisory (Fig. 2.2) and

integer over�ow remains to the leading integer bug cause (Fig. 2.3 and Fig. 2.4).

The CVE advisories were issued because the integer errors made the systems vul-

nerable to execution of arbitrary code (EAC), denial of service (DoS), or escalation of

privilege (EoP) attacks (Fig. 2.5). As fas as operating systems are concerned, it appears

that all are equally at risk from su�ering one of these vulnerabilities resulting from an

integer bug (Fig. 2.6).

De�nition 2.1. Execution of arbitrary code is the ability of an attacker to execute any

commands on a target machine or target process.

Most EAC attacks are achieved through a vulnerability that allows an attacker to

inject and execute code commonly called shellcode. The name shellcode comes from the

fact that the injected code often opens up a command shell for the attacker to gain control

of the victim machine. Typically, shellcode is written in machine code and the attacks

may take place locally or remotely. Both local and remote attacks can exploit bu�er

over�ows while remote attacks usually take place over TCP/IP (Transmission Control

16

0

20

40

60

80

100

120

140

160

180

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 2.2: Number of integer errors generating CVE OS advisories 2002-11

Protocol and Internet Protocol respectively) socket connections. When the attacks take

place over the Internet, the attack is commonly known as remote code execution. A

sampling of the attack (injection) avenues opened up by the integer errors reported in

2012 include altered .jpg, .bmp, or .png images, a heap-based bu�er over�ow triggers,

altered MPEG video or QTVR movie �les, and an altered True Type font.

De�nition 2.2. Denial of Service is an attempt to make a machine or network resource

unavailable to its intended users.

A few of the DoS vulnerabilities exploited by the integer errors reported in the 2012

CVE include kernel panic, application crash, memory corruption, segmentation fault,

and in�nite loops. There are �ve basic means to conduct a DoS attack:

1. Consumption of resources.

2. Disruption of con�guration information.

3. Disruption of state information.

4. Disruption of physical network components.

5. Obstruction of communication between user and victim.

A distributed denial of service (DDoS) is the use of many attack systems against one

victim system.

17

Overflow

70%

Underflow

7%

Sign Error

11%

Truncation Error

1%

Other

11%

Figure 2.3: Distribution of CVE OS integer error types 2002-11

De�nition 2.3. Escalation of privilege is when a user acquires privileges not normally

allowed to the user.

An escalation of privilege attack may be vertical or horizontal. A vertical EoP is when

a lower privileged user or application gains higher privileges. Whereas, a horizontal EoP

is when a user or application gains access to another user's private information and the

victim user has the same level of privileges as the attacker.

Because C belongs to the imperative programming paradigm, all variables (memory

stores) and their types, including the integers, must be declared prior to usage. The

amount of memory reserved for each variable is based on its numeric type. The current

C standard provides support for eight machine integer types including the integer type

native to the underlying architecture. Each machine integer type is unique from the

others by the constraints imposed by its bitwise precision and the interpretation of its

high order bit. Machine integers are either signed or unsigned. Signed integer values

maybe either positive or negative and use the high order bit to represent the + or −

sign. Since unsigned integers are strictly positive (0+), their high order bit is used as

a precision bit. Because of these bitwise constraints, all C integer types are vulnerable

18

Overflow

77 (75%)

Underflow

7 (7%)

Sign Error

7 (7%)

Other

11 (11%)

Figure 2.4: Distribution of CVE OS integer error types 2012

to enter at least one of three error conditions: over�ow/under�ow error, sign error, and

truncation error.

2.4.0.1 Integer Over�ow

De�nition 2.4. An integer over�ow error occurs whenever the value of an integer is

increased beyond the limit of its maximum value. An integer under�ow error occurs

whenever the value is decreased beyond the limit of its minimum value. According to

the standard, operations on unsigned-integer-type operands can never over�ow. Instead,

the value of a result that cannot be represented by the resulting unsigned-integer-type

is reduced modulo the number that is one greater than the largest value that can be

represented by the resulting type (Fig. 2.7 [116]). However, Keaton et al.[63], claim that

many programmers are prone to mistakenly assume wrapping is a well de�ned behavior,

while not fully understanding its implications.

19

0

20

40

60

80

100

120

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

DoS EAC EoP Other

Figure 2.5: Yearly exploit distribution resulting from integer error 2002-11

However, the behavior of the signed-integer-type over�ow is that the behavior is left

unde�ned by the standard. According to �3.4.3 of the standard, any of the following

reactions to program behavior are applicable:

�ignoring the situation completely with unpredictable results, to behaving

during translation or program execution in a document manner characteristic

of the environment (with or without the issuance of a diagnostic message),

to terminating a translation or execution (with the issuance of a diagnostic

message)[53].�

Over�ow/under�ow may be signed (Listing 2.1) or unsigned (Listing 2.2). Signed

over�ows occur when a value is carried over to the sign bit. Unsigned over�ows occur

when the underlying representation can no longer represent a value.

There are times, when over�ow conditions are intentionally created. Moy et al. [88]

cite three such cases:

1. The over�ow is intentionally caused with an explicit cast such as in the function

htons (Listing 2.3) which is used to convert an unsigned short int from host

20

Google Chrome

10 (40%)

Windows

7 (28%)

Apple/ MAC

6 (24%)

Linux

2 (8%)

Figure 2.6: 2012 individual OS advisory count due to integer error

byte order to a big-endian network byte order. The big-endian format stores

the numbers as one typically writes Arabic numbers where the �rst byte is the

most signi�cant or the highest magnitude number and the last byte is the least

signi�cant number. A little-endian byte order is the reverse of big-endian.

2. The over�ow is reversed a posteriori. These are generally associated with loop

increments and decrements. For example, when an element is removed from vector

vect, index i is decremented. If the element at index 0 is removed, then the

unsigned integer i over�ows to the largest value i can represent. The subsequent

increment removes the over�ow condition (Listing 2.4).

3. The over�ow is checked a posteriori. Many dedicated functions designed to execute

safe operations execute a posteriori checks. For example, the unsigned addition

function safe_uadd performs the test r < a after the operation r = a + b to

detect if an over�ow condition has occurred (Listing 2.5).

21

Figure 2.7: Illustrative silent wrapping of 4-bit unsigned-integer-type [116], the mechanics
are similar for larger unsigned integer types such as the 32-bit

Listing 2.1: Signed integer over�ow example

int i;

int INT_MAX = 2147483647;

int INT_MIN = -2147483648;

i = INT_MAX; // i = 2 ,147 ,483 ,647

i++;

printf("i %d\n",i); // i = -2,147,483,648

i = INT_MIN; // i = -2,147,483,648

i--;

printf("i = %d\n",i); // i = 2 ,147 ,483 ,647

2.4.0.2 Integer Sign Error

De�nition 2.5. An integer sign error occurs when there is casting between signed and

unsigned integer types that changes the meaning of the high order bit from a sign bit to

a precision bit or vice-versa (Listing 2.2).

22

Listing 2.2: Unsigned integer over�ow example

unsigned int j;

unsigned int UINT_MAX = 4294967295;

j = UINT_MAX; // 4 ,294 ,967 ,295

j++;

printf("j = %u\n", j); // j = 0

j = 0;

j--;

printf("j = %u\n", j); // j = 4 ,294 ,967 ,295

Listing 2.3: Intended integer over�ow in the function htons

uint16 htons(uint16 a)

{

uint x = a << 8;

uint y = a >> 8;

return (uint16)(x / y);

}

2.4.0.3 Integer Truncation Error

De�nition 2.6. An integer truncation error occurs when an integer is being converted

to a smaller integer type, holds a value larger than the representable value range of the

new type, and the cast discards the high order bits of the original value during the down

cast (Listing 2.7).

As a truncation error example, the unsigned short int is 16-bits wide and the

unsigned char is 8-bits wide. If an unsigned short holding the maximum value (1111

1111 1111 1111) for its type is to be converted to an unsigned char, the new value

after the conversion will be the maximum value of the unsigned char type (1111 1111).

2.4.1 Casting

A casting is an operation performed to ��nd a common type� for an expression. The cast

operation may be either explicitly de�ned by the programmer or implicitly de�ned by

23

Listing 2.4: Integer over�ow is reversed a posteriori

uint i = 0;

while(i < max)

{

if(sel(vect[i]))

{

vect.remove(i);

--i;

}

i++;

}

Listing 2.5: Integer over�ow is checked a posteriori

uint safe_uadd(uint a, uint b)

{

uint r = a + b;

if(r < a)

error ();

return r;

}

the compiler. The later is sometimes called a coercion. While most C casts are implicit,

all casts have been attributed to be the leading cause of integer errors [116, 15].

De�nition 2.7. A cast is the conversion of one data type to another. Casting in C

is mainly governed by the rules integer conversion rank (�6.3.1.1), integer promotions

(�6.3.1.1), and usual arithmetic conversions (�6.3.1.8).

De�nition 2.8. An integer conversion rank is the basis of the ranking system employed

by C to govern integer casting and is based on the bitwise precision of the types standard

integer and extended integer where as the precision increases, so too does the rank.

De�nition 2.9. The integer promotions rule de�nes the automatic coercion of any ex-

pression operand of integer type with a rank less than the rank of type int to the integer

type int. The intent of the integer promotions rule is to preserve signage as well as value.

Therefore, if the type int can fully represent the value of lessor integer type, then the

24

Listing 2.6: Integer sign error example

int i = -3;

unsigned short u;

u = i;

printf("u = %hu\n", u); // u = 65533

Listing 2.7: Integer truncation error example

long long int li = 214783647; // llong maximum value

short int si; // short maximum value = 32767

si = li;

printf("si = %d\n", si); // si = 32767

lesser type is converted to type int. If not, the lesser type is converted to type unsigned

int.

De�nition 2.10. The usual arithmetic conversions rule is an expansion of the integer

conversion rank and integer promotions rules as it applied to the other arithmetic types

bigger than int.

For the �oat types, the usual arithmetic conversion promotes the smaller type to the

larger found in a single expression. If an expression has a mix of �oats and integers,

then the integers are promoted to the largest �oat type. If the expression contains only

integer types, then the integers are promoted to the largest integer type. The unsigned

integer type takes precedence whenever there is a mix of signed and unsigned integer

types unless the signed integer has a larger bitwise precision than the largest unsigned

integer type.

According to Mitchell [80], if a language performs coercion, then a sub-typing rela-

tionship exists among its types. Indeed, the C coercions based on integer promotions and

the usual arithmetic promotions adhere to a set of sub-type based rules. In a sub-type

relation, denoted as

τ1 ⊆ τ2, (2.1)

25

τ1 is a sub-type of τ2 i� τ2 can represent all of the representable τ1 values. Sub-type

relations are re�exive, transitive and antisymmetric:

� re�exive � τ ⊆ τ

� transitive � if τ1 ⊆ τ2 and τ2 ⊆ τ3, then τ1 ⊆ τ3

� antisymmetric � if τ1 ⊆ τ2 and τ2 ⊆ τ1, then τ1 = τ2

In C, all arithmetic data types belong to a sub-type relation where integer types ⊆

real floating types and are ordered by the bitwise precision of each individual type. The

C integer conversion rank that orders the integer types by bit width is an example

[52, 53, 54].

However, the typing semantics of integer casting in C are often complex and unin-

tuitive [15]. Even Ritchie admitted that the typing rules were quirky and �awed [110].

For example, suppose we have variable x of an unsigned integer type with the value of

10 and we use x in a relational expression such as x > -10. If the bit width of the

unsigned integer type for x is equal to or greater than the native integer type (int) of

the underlying hardware, x > -10 will evaluate to false. If the unsigned integer type

has a bit width less than int, x > -10 will evaluate to true. Integer promotions and

usual arithmetic conversions are both responsible for the phenomena behind our x > -10

example, as explained below.

Integer promotion rules require all integer type of operands in an expression smaller

than int to be promoted to int before the expression is evaluated. The rationale behind

the rule is that the smaller integer types are more likely to enter an error condition

during expression evaluations. For example, the representable value range of signed

char integer type is -127 to 127. Suppose we have an expression, a * b - c where a,

b, and c are of type signed char and hold the values 65, 2, and 3 respectively. Without

the integer promotions rule, the evaluation of a * b would cause an over�ow condition

before the subtraction of 3 is applied.

26

In the case of x > -10 where x is an unsigned integer type that is smaller than int,

the integer promotion rule is applied. Both operands are promoted to type int and the

values they hold represent 10 and -10 respectively. Thus, 10 > -10 is true.

Likewise, the goal of the usual arithmetic conversions is to �nd a common real type

for all operands of an expression and for the result of the expression [52, 53, 54]. Under

usual arithmetic conversions, the arithmetic data types of all operands in an expression

are basically cast to the largest arithmetic data type contained within the expression. The

usual arithmetic conversions are applied after the application of the integer promotions.

If it is the case that all operands are of integer type, the usual arithmetic conversions

mandate that the resulting expression type will be the same type as the largest integer

type.

There is a caveat, and that is if all integers in an expression have the same bit width,

but at least one is unsigned and the other(s) signed, then the operands assume the largest

unsigned integer type. In the case of x > -10, if x is of type unsigned int (having the

same bit width as int) and holds the value 10, integer promotions are �rst applied

to the literal -10 to type the literal as an int and then, usual arithmetic conversions

converts the literal type of int to the type of unsigned int. Signed integers use the

most signi�cant bit (MSB) as the sign bit. If set, the value is negative, otherwise, the

value is positive. In unsigned integers the MSB is a precision bit. Since the MSB was set

when the literal -10 was initially typed as an int, the set MSB becomes a precision bit

when the literal is converted to type unsigned int and the once small negative value is

interpreted as the very large positive value of 4294967286 (on a 64-bit platform). Thus,

10 > 4294967286 is false.

From the usual arithmetic conversions between signed and unsigned integer types,

it is apparent that the integers are divided into two disjoint sub-type sets, signed and

unsigned. The signed integer subset relation is

27

Sub-Type: Signed Integers

CHAR ⊆ SHORT ⊆ INT ⊆ LONG ⊆ LLONG
(2.2)

and the unsigned integer relation is

Sub-Type: Unsigned Integers

UCHAR ⊆ USHORT ⊆ UINT ⊆ ULONG ⊆ ULLONG
(2.3)

It is also apparent that, except for one cast, most casts involving integers can cause an

error. The exception is an up-cast between integers of the same sign type. The inference

rules of an up-cast, depicted as

Cast: Up-Cast

Γ ` e : τ
τ ⊆ τ ′

Γ ` τ ′(e) : τ ′
(2.4)

states that in the typing environment Γ where the implication is an expression e of type

τ and τ is a subset of type τ ′, then in the same typing environment the implication is

the cast operation τ ′(e) will result in e being of τ ′.

On the other hand, the sub-typing relationship in a down-cast is backward, where

τ 6⊆ τ ′ and τ ′ ⊆ τ . Likewise, a sign-conversion-cast, does not have a subtype relationship

because neither τ 6⊆ τ ′ nor τ ′ 6⊆ τ . Whenever a 6⊆ relationship is present in the typing

environment Γ, the cast is unsafe because errors can be produced. The inference rule for

unsafe-cast is

28

Cast: Unsafe

Γ ` e : τ
τ 6⊆ τ ′

Γ ` τ ′(e) : τ ′
(2.5)

as it shows the possibility for error.

Whenever an integer enters an error condition during the execution of a C program,

it stays in it until it is reassigned another legal representable value. If it is in error

condition and is used as an operand in an expression other than the left hand side (LHS)

of an assignment operator, the error propagates. Integer errors place a system in a state

that is potentially vulnerable to either failure resulting from a possible denial of service

condition or several other security exploitations, such as the execution of arbitrary code

and privilege escalation.

In many cases, however, integer error conditions and the potential vulnerabilities they

introduce can be eliminated by the means of range checking a value prior to subjecting

it to a cast, using it as an operand, or before assigning it to a variable. Let v represent

the value in question, τMINval
represent the smallest representable value of type τ , and

τMAXval
represent the largest representable value of type τ . If v is to be assigned to a

variable of type τ or the type of v is to be cast to type τ and

τMINval
≤ v ≤ τMAXval

, (2.6)

then the operation is safe.

2.4.2 Integer Errors Introduced by Operators

In addition to casting errors, C integers are also prone to integer vulnerabilities resulting

from arithmetic operations (Table 2.1 and Table 2.2). According to the standard, most

operators require their operands to undergo the usual arithmetic conversions prior to the

29

Listing 2.8: When 90 + 40 = −126

char c1 = 90;

char c2 = 40;

char cResult;

cResult = c1 + c2;

printf("%d", cResult); // cResult = -126

Table 2.1: C operators and their potential to produce over�ow

Op Over�ow Op Over�ow Op Over�ow Op Over�ow

+ yes -= yes � yes < no
- yes *= yes � no > no
* yes /= yes & no >= no
/ yes %= yes | no <= no
% yes �= yes � no == no
++ yes �= no ~ no != no
� yes &= yes ! no && no
= no |= no unary + no || no
+= yes �= no unary - yes ? : no

operation on the operands. Suppose we were to add two integer values, say 90 and 40.

We would expect the value to be 130. Yet, in the environment shown in Listing 2.8 the

result is di�erent.

After compiling Listing 2.8 in gcc [35] without a single warning or error message, the

output of the code is -126 upon execution. The short answer to what went wrong is that

since cResult is an 8 bit signed char, the MSB is a sign bit and the maximum positive

value that it can hold is 127 with a binary bit pattern of 0111 1111. The value 130 can

be held in an eight-bit pattern as 1000 0010 when the MSB is used as a precision bit.

However, when the binary bit pattern for 130 is held by a signed integer type, the MSB

is set and on a two's complement platform, the interpreted value is -126. This error is a

classic example of an integer over�ow.

30

Table 2.2: C operators and their potential to produce a wrap

Op Wrap Op Wrap Op Wrap Op Wrap

+ yes -= yes � yes < no
- yes *= yes � no > no
* yes /= no & no >= no
/ no %= no | no <= no
% no �= yes � no == no
++ yes �= no ~ no != no
� yes &= no ! no && no
= no |= no unary + no || no
+= yes �= no unary - yes ? : no

2.4.3 Other Conditions Leading to Vulnerabilities

In addition to integer error conditions, unde�ned behavior can arise whenever a uninitial-

ized variable is used as an operand in an expression other than the LHS of an assignment

operator. Compilers, such as gcc [35], will provide a warning if one or more of its optional

additional warning �ags such as -Wall and -Wextra is set and it sees an uninitialized

variable as it produces an executable �le. However, if the warning is ignored and the

uninitialized variable is used as an operand in an expression, other than the LHS of an

assignment operator, it will contain a value of whatever bitwise artifacts remained in

its memory address prior to the variable's declaration and likely produce an unexpected

behavior.

Another potential error condition is a divide by 0. Most programmers would not

directly hard code a divide by 0. But, it is possible for a variable to wind up holding 0

and being used as a divisor. Without checks prior to either a division or mod operation,

this scenario could have serious consequences. For example, the Aegis class missile cruiser

USS Yorktown lost its propulsion system lying dead in the water for nearly three hours,

after a system administrator entered zero into a data �eld for the remote data base

manager program, causing a divide by zero error [118].

C has a collection of operators other than those used for assignments that are designed

to produce a side e�ect. In many cases, these operators, such as the post increment, o�er

31

convenience for a programmer. For example, it is much more e�cient to write x++ than

it is to write x = x + 1, when x is being used as a counter. However, there is nothing

syntactically incorrect about using these operators in other expressions such as a = b +

x++. Programmers who use such idioms need to be aware of the order of evaluation in

any given expression, yet order is compiler dependent.

According to the standard [52, 53, 54], a variable may be modi�ed only once between

sequence points. A sequence point often marks the beginning and end of an expression.

Thus, the evaluation behavior of an expression such as a = x++ + x++ is unknown.

2.4.3.1 Unde�ned Behaviors

�3 of the C standard de�nes three types of unknown behavior:

1. A behavior is unspeci�ed when the standard speci�es two or more di�erent pos-

sibilities without imposing requirements as to which possibility is correct. The

evaluation of function arguments is one of the 50 unspeci�ed behaviors enumer-

ated in Annex J of the standard.

2. A behavior resulting from the use of a nonportable or erroneous program construct

or of erroneous data that is unrestricted by the standard is unde�ned. The be-

havior of integer over�ow is one of 191 unde�ned behaviors enumerated in Annex

J of the standard.

3. A behavior is implementation-de�ned if it is unspeci�ed by the standard, but the

behavior choice is made and documented by individual implementations. How the

high-order bit is propagated when a signed integer is right shifted is one of 112

implementation de�ned behaviors enumerated in Annex J of the standard.

Many of the errors described in �2.4.3 and �2.4.3.1 of this document are software

errors and according to Cardelli, are not normally prevented by type systems [17].

32

Chapter 3: Current Error Mitigation Measures

Because C is well known as not being type safe, several approaches have been o�ered

in �building a better mouse trap� to mitigate type safety violations. This chapter is an

exploration of the implemented and proposed measures intended to make C more type

safe.

3.1 Optional Compiler Warnings

C compilers, such as gcc [35], are designed to enforce C's casting rules. Whenever a

compiler recognizes an error or other potential problem, it will issue either an error or a

warning statement. The di�erence between an error and a warning is that if an error is

recognized and reported, then the executable �le is not generated. On the other hand, if

only one or more warnings is reported, an executable is generated.

The gcc compiler has optional provisions to conduct a more rigorous error/warning

check during the compilation process than it does when operating in its default mode.

More thorough checks are activated by setting one or more �ag options. For example,

the -ftrapv �ag is designed to spot potential integer over�ow and wrapping conditions,

-Wall is designed to give all warnings, and -Wextra is designed to generate more warnings

than -Wall. Note, however, setting the -Wall and the -Wextra �ag did not catch the

intentional errors in Listing 3.1. The comments in Listing 3.1 are in place to describe

gcc's performance. In addition, it has been shown that -ftrapv catches only a limited

number of wrapping vulnerabilities [15].

The �ags -Wall and -Wextra will both issue a warning statement if a variable is

declared and not initialized as gcc creates an executable. The problem is as mentioned

above, the generation of only warnings does not prevent creation of an executable that

may be later run. If an uninitialized variable is used as an operand during the execution,

it will likely lead to an unexpected result. The reason for only a warning in this case is

33

Listing 3.1: Typing errors missed by gcc

int sx0 = -10; // error free

unsigned int ux1 = sx0; // error missed

unsigned int ux2 = -10; // error caught

unsigned int ux3; // error free

ux3 = -10; // error missed

that an initialized variable does hold a value. The value is generally unknown and it is

derived by the residual bit pattern left in memory from the previous memory store of the

same address space.

3.2 Safe Coding Guidelines and Practices

Safe coding guidelines are o�ered to help programmers avoid making mistakes by de-

scribing established safe coding practices and standardized coding styles. For example,

the 2004 the Motor Industry Research Association (MISRA) guidelines notes that the

expressiveness of C can be leveraged to write either �well laid out structured code� or

to write �perverse and extremely hard-to-understand code.� The latter coding style is

unacceptable for use in type-safe environments [79].

MISRA has published two safe coding guidelines with respect to C. The �rst was

published in 1998 and was geared toward the automotive industry for its control systems

[78]. The second was released in 2004 and was more general in purpose by providing

guidelines for critical systems [79]. Both guidelines are replete with sets of mandatory

and advisory rules with a goal to create a safe subset of C suitable for embedded systems.

The 2004 publication, for example, contained 121 mandatory and 20 advisory rules. An

example 2004 mandatory rule is �5.10.6 Rule 10.1 that states that �an integer type of

an expression shall not be implicitly converted to another type under any of the following

conditions :

� the conversion is not to a wider integer type of the same signedness

� the expression is complex

34

Table 3.1: MISRA recommended typedefed arithmetic type names for 32-bit platforms

typedef char char_t;
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long uint64_t;
typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;

� the expression is not constant and it is a function argument

� the expression is not constant and it is a return expression�

�6.6 Rule 6.3 is an example advisory rule that urges programmers to use typedef

types whose de�ned type name denotes type details such as size and signedness to declare

variables instead of using the basic arithmetic type names such as the integers and �oats

in a declaration statement. Table 3.1 lists the MISRA suggested typedef names when

developing C source code for 32-bit platforms.

MISRA does have a licensing fee for usage. However, there are several good alter-

natives that can be had at no charge. For example, The Software Engineering Institute

(SEI) of Carnegie Mellon University o�ers a free safe coding guideline on the Internet

[18].

3.3 Safe Integer Libraries

Safe integer libraries, such as SafeInt [70], IntSafe [49], and the Integral Security - Secure

Integer Library [19], are at the disposal of C programmers, to help protect integers from

entering an error condition. These libraries are generally a collection of function calls

designed to safely apply operations on integer operands. Instead of using a multiplication

35

Listing 3.2: A safe multiplication function call

if(safe_mult_32s(y, z))

x = y * z;

Listing 3.3: SafeMult function checking result value to value range of return type

int safe_mult_32s(int lhs , int rhs)

{

int INT_MIX = -2147483647;

int INT_MAX = 2147483647;

_Bool error_condition = 1; // set to true

signed long long temp;

temp = (signed long long)lhs * (signed long long)rhs;

if ((temp < INT_MIN) || (temp > INT_MAX))

{ // The product cannot fit in a 32-bit int OVERFLOW ERROR

error_condition = 0; // set to false

}

return error_condition;

}

expression such as x = y * z; where the three variables are of a signed 32 bit integer

type, a programmer may use a function, such as Listing 3.2, that checks to see if the

operation is safe before assigning x the product of y and z.

In the above example, the function simply checks the resultant value of the operation

to see if it is within the valid range that the return type can represent (Listing 3.3). More

complex functions may compare value of each operand to the other operand in order to

determine if an over�ow is the likely outcome of the operation (Listing 3.4).

3.4 Safe Subsets of C

Over the years, several safe subsets of C have been introduced as an alternative for

use in programming type safe and critical systems. Among them are EC- [43], CCured

[92], Clight [13] and Cyclone [124]. A safe subset of C is a language derived from C

that disallows many of the unsafe constructs permitted by C. Cyclone, for example, was

36

designed with the intent that programmers accustomed to working with C could still �feel

the bits.� For the most part, Cyclone uses the same preprocessor, lexical conventions, and

grammar that C uses. Cyclone uses the same data types and data representations that

C uses, such as pointers, arrays, structures, unions, enumerations, and all of the usual

�oating point and integer types. The major di�erences between Cyclone and C are all

safety related. Unlike C compilers, the Cyclone compiler performs a static analysis on the

source code and inserts run-time checks into the compiled output at those places where

the analysis cannot determine if an operation is safe. If the compiler cannot guarantee

that a program is safe, the program is rejected. As a result, some perfectly safe programs

may be rejected. A short list of restrictions imposed by Cyclone include:

� Pointer arithmetic is restricted

� Pointers must be initialized before use

� Limitations are placed on the key word free to prevent dangling pointers

� Only safe casts and unions are allowed

� Use of goto is prohibited

In addition to these restrictions, Cyclone has added several extensions to provide

safety while maintaining C programming idioms. For example, the fat pointer was intro-

duced to support pointer arithmetic with run-time bounds checking. The fat pointers in

Cyclone are represented with three words: the base address, the bounds address, and the

current pointer location. Compared to C pointers, the fat pointers have a larger space

overhead, larger cache footprint, increased parameter passing overhead, and increased

register pressure.

Although the original release of Cyclone used a combination of programmer-supplied

annotations, an advanced type system, a �ow analysis and run-time checks to ensure

type safety, Cyclone has been extended to enhance its safety capabilities. For example,

Hicks et al. [45] added unique pointers into the memory management framework to

37

locally track the state of an object by forbidding uncontrolled aliasing, and Grossman

[41] introduced a new lock_t〈`〉 where ` is the lock name to support multithreading.

3.5 Proposed Extensions to C

Others [37, 63, 25] have proposed making changes to the C types with new integer types

as opposed to introducing safe subsets of the language. Their rationale is to preserve the

ease of mixing data types without having to resort to cumbersome workarounds required

for stronger typed languages. There have been two main proposals.

3.5.1 Ranged Integers

Gennari et al. [37] introduced the concept of ranged integers to return a guaranteed

prede�ned value in the event of integer over�ow. Ranged integers can be either signed

or unsigned. Their valid value range is enforced after an assignment or an initialization

through the use of storage policies.

The storage policy may enforce either modwrap semantics or saturation semantics.

Modwrap semantics enforces a certain modulo behavior over a de�ned range of values

while saturation semantics produces the legal maximum value for the integer type in the

case of an over�ow and the legal minimum value in the case of an under�ow. Ranged

integers may appear in an expression as an rvalue, a lvalue, or as a pointer or an array;

and are intended to perform checks that would otherwise need to be done manually by

control statements such as if.

3.5.2 In�nitely Ranged Integers

In the in�nitely ranged integer model, all integer values are regarded as if they are being

held in the greatest width integer supported by the underlying system before usage. The

model is applied to both signed and unsigned integer types and relies on observation

38

Standard Section Proposed Critical Unde�ned Behavior

6.2.4 An object is referred to outside of its lifetime
6.3.2.1 An lvalue does not designate an object when evaluated
6.3.2.3 A pointer is used to call a function whose type

is not compatible with the pointed to type
6.5.3.2 The operand of the unary * operator

has an invalid value
6.5.6 Addition or subtraction of a pointer into, or just beyond,

an array object and an integer type produces a result
that points just beyond th array object and is used as
the operand of a unary * operator that is evaluated

7.1.4 An invalid argument to a function can cause an invalid address
computation and/or invalid access

7.20.3 The value of a pointer that refers to space deallocated by
a call to the free or realloc function is used

7.21.1, 7.24.4 A string or wide string utility function is instructed to
access an array beyond the end of an object

Table 3.2: Critical unde�ned behaviors.

points. The core idea behind the model is that it is acceptable to delay catching an

incorrect integer value until an observation point is reached, but just before the bogus

value is either used as an output or causes a critical unde�ned behavior. See Table 3.2

for a list of critical unde�ned behaviors.

Both Keaton et al. [63] and Dannenberg et al. [25], have proposed that the in�nitely

ranged integer model be implemented in gcc [35] such that compiled executables either

produce a legal value that can obtained using an in�nitely ranged integer or produce

a runtime constraint violation. If an observation point is reached while the over�ow

traps are enabled and no traps have been raised, then the output value of an integer

is assumed to be correctly represented. Observation points are those instances of time

when there is an output, including volatile object accesses, a pointer dereference leading

to unde�ned behavior, or a call to a library routine using arguments that lead to unde�ned

behavior. To eliminate previously unde�ned behavior by providing de�nitions of optional

predictable semantics, the model may be implemented in the following ways, and can be

customized for either the execution environment or implementation:

39

� Over�ow can set a �ag which compiler-generated code will test later

� Over�ow can immediately invoke a runtime-constraint handler

� The testing of �ags can be performed at an early point or be delayed

3.6 Source Code Analysis Tools

Except for the safe coding guidelines, use of safe integer libraries or safe subsets of the

C language may not be practical. Safe integer libraries generally add an operational

overhead that may be too much for applications with limited memory or power, and for

real time systems. Safe subsets of C may not be expressive enough to adequately program

sophisticated systems. In these situations, programmers can deploy one of the available

source code analysis tools. The analysis tools come in two �avors: runtime and static.

3.6.1 Runtime Analysis

The runtime analysis tools are designed to dynamically analyze code while the code is

executing. An example runtime analysis tool is RICH (Run-time Integer CHecking),

written in OCaml [44] introduced by Brumley et al.[15].

Operationally, RICH checks the intermediate representation of source code during the

code-generation phase to �ag any potentially unsafe integer operations. Central to the

operation of RICH are two rules to �nd unsafe integer operations, R-UNSAFE and R-

BINOPZ. R-UNSAFE relies on the three type safety rules: T-UNSIGNED, T-SIGNED,

and T-UPCAST. All three are based on expanding the notion of sub-typing (⊆) and

are supported by three type-safety check rules: D-CHECK (down cast), S-U-CHECK

(signed to unsigned), and U-S-CHECK (unsigned to signed). Whenever a potentially

unsafe cast ((τ)e : τe′) is encountered, expression e is rewritten to another expression e′

which is evaluated to a value x. The value x is later checked during run-time for data

loss. Speci�cally,

40

if τmin ≤ x ≤ τmax is false,

an error condition is generated.

RICH also uses the function R-BINOPZ to check for binary math operations that may

produce an over�ow/under�ow condition. The Z represents the next precision higher

integer type than that of the largest integer type involved in the operation. A temporary

variable of type Z is used to hold the intermediate result of the operation so that it can

be compared against the minimum and maximum representable values of the expression's

actual type. If the temporary value falls within the expression type's representable value

range, then it type safe. Otherwise, an error condition is generated. The drawback to

using R-BINOPZ, however, is that the checks on operations are limited to 32-bit integer

operands. C's largest integer type is 64-bits.

3.6.2 Static Analysis

A project of the National Institute of Standards and Technology (NIST) is the Software

Assurance Metrics and Tool Evaluation (SAMTE) program [89]. SAMTE is �dedicated to

improving software assurance by developing methods to enable software tool evaluations,

measuring the e�ectiveness of tools and techniques, and identifying gaps in tools and

methods.�

Of interest here is the collection of commercial and open source Source Code Security

Analyzers that are intended to examine C source code to detect and report weaknesses

that may lead to a security vulnerability [90]. Many of these tools were brie�y discussed

in Chapter 1. Most are coded in uniquely di�erent languages and each targets a select

sub-set of the C integer problem. The commercially available tool, Astrée [24] written in

OCaml [44], appears to give the most complete coverage. However, the coverage is only

realized by rerunning the tool in several di�erent analysis modes. That said, major gaps

remain in both tools and methods when it comes to analyzing C integer type safety.

41

Listing 3.4: SafeMult function checking operands for potential over�ow

_Bool safe_mult_32s(int lhs , int rhs)

{

int INT_MIX = -2147483647;

int INT_MAX = 2147483647;

_Bool error_condition = 1;

if ((lhs == 0) || (rhs == 0))

{

return error_condition;

}

if(lhs > 0)

{

if(rhs > 0)

{

if(lhs > (INT_MAX / rhs))

{ // OVERFLOW ERROR

error_condition = 0;

}

}

else

{

if (rhs < (INT_MIN / lhs))

{ // OVERFLOW ERROR

error_condition = 0;

}

}

}

else

{

if(rhs > 0)

{

if(lhs < (INT_MIN / rhs))

{ // OVERFLOW ERROR

error_condition = 0;

}

}

else

{

if((lhs != 0) && (rhs < (INT_MAX / lhs)))

{ // OVERFLOW ERROR

error_condition = 0;

}

}

}

return error_condition;

}

42

Chapter 4: Introduction to Language Formalism

With this chapter, the theme of this dissertation shifts to the formalism of the C language

as it contains introductory material with respect to language formalization. The following

chapters show the work to de�ne the syntax of C types and the static typing semantics

of both C expressions and statements.

4.1 Elements of Language: Syntax and Semantics

All human languages, natural and formal, have two elementary components: syntax and

semantics.

De�nition 4.1. Syntax, often called grammar, is the set of rules de�ning the proper,

correct usage of language constructs including words and punctuation.

As prescribed by Cardelli, the �rst step to formalize a language is to describe its syntax

of types and terms [17]. Accordingly, types express the static knowledge of the program

and the terms, such as expressions and statements, express the algorithmic behavior. It

is commonplace for the syntax of expressions and statements of programming languages

such as C to be formally presented in Backus-Naur Form (BNF) [8, 91]. BNF is used

because it exhibits the syntax in a context-free manner.

Spiser [119] de�nes a a context free grammar (CFG) using a four tuple

(V, Σ, R, S), (4.1)

where:

1. V is a �nite set of variables.

2. Σ is a �nite set of terminals disjoint from the variables.

3. R is a �nite set of rules (each rule is constructed of a variable, a string of variables,

and terminals).

43

4. S ∈ V is the start variable.

De�nition 4.2. The semantics of a language is the meaning of its constructs.

The semantics of the programming language C is generally, informally, de�ned in

the standard using natural language. As a result, the exact meaning of expressions and

statements de�ned in the standard are often left open to interpretation.

4.2 Common Methods to Formalize Language Semantics

There are three main formal semantic approaches used by computer scientists to clear

up confusion arising from informally de�ned semantics found in the standard: axiomatic,

denotational, and operational.

4.2.1 Axiomatic Semantics

The axiomatic semantics often used by computer scientists was �rst introduced by Floyd

[32] and further developed Hoare [46].

De�nition 4.3. Axiomatic semantics is the means of using generally accepted truths

(axioms) to provide meaning.

Fundamental to this semantics known as Hoare or Floyd-Hoare logic is the Hoare

triple that describes how the execution of code changes the computational state. A

Hoare triple is of the form

{ P } C { Q } (4.2)

where P and Q are assertions and C is either a command or a statement. Speci�cally, P is

the precondition that must be satis�ed so that after the execution of C and termination,

the postcondition Q is satis�ed.

Like denotational and operational semantics, Hoare logic is often presented in the

form of inference rules. An inference rule takes the form

44

Inference Rule Structure:

P1 P2 . . . Pn

C
(4.3)

where each Pi are the premises and the C is the conclusion. The conclusion is true if and

only if (i�) each premise is true.

Generally speaking, standard Hoare logic is considered to be partially correct in the

sense that it does not show that C actually terminates. Termination is required for

total correctness and proof of termination is critical for formal veri�cation. To show

termination, a measure from the domain of any well-founded-relation, such as the ordinal

numbers introduced by Cantor [16], must be present. An ordinal number denoted as α

can be any positive integer {1, . . . , n − 1, n} used to create an ordered set of numbers

(ordinals)

{0, . . . , α− 1}. (4.4)

A measure based on a set of ordinals that decreases according to the relation along

every possible step of an algorithm shows termination because the basic property of a

well-founded relation is that no in�nite descending chains can exist.

4.2.2 Denotational Semantics

Scott and Strachey [114] are credited for developing denotational semantics.

De�nition 4.4. Denotational semantics is the construction of mathematical objects

called denotations to represent the domains that are used to describe the meaning of

programming language expressions.

To give meaning to a computer program, Scott and Strachey viewed a program as

a function comprised of partial functions mapping inputs to outputs. To understand

the mapping process, each program construct, such as commands, environments, expres-

45

sions, identi�ers, states, values, variables, etc., are respectively grouped to their own

unique domains. Partial functions that are denoted as the members of each domain are

then expanded to form partially ordered sets called complete lattices or posets (partially

ordered sets) represented as

(D,w). (4.5)

The basic structure of a complete lattice has two requirements: partial ordering and

having a least upper bound. A partial ordering for any domain D is written as

x v y (4.6)

for

x, y ∈ D. (4.7)

The relationship x v y, intuitively meaning x approximates y, is re�exive, transitive,

and anti-symmetric. If in D, χ ⊆ 0, 0 exists and is the least upper bound (lub) of subset

χ, written ⊔
χ. (4.8)

Thus, for ∀y ∈ D ⊔
χ v y iff x v y, ∀x ∈ χ (4.9)

uniquely characterizes
⊔
χ ∈ D.

In addition to a lub for each subset contained in a complete lattice, the lattice also

has an extreme bottom ⊥ and an extreme top > lub. For Scott and Strachey, the ⊥ was

the empty subset ∅ and the > was the full subset of D respectively written as

⊥ =
⊔
∅ and > =

⊔
D, (4.10)

46

such that ∀x ∈ D, it is the case that

⊥ v x v >. (4.11)

Because of this, each function de�ned and applied to a complete lattice has to be mono-

tonic in the sense that they preserve ordering and have �xed point solutions.

According to Schmidt [113], all denotational semantic de�nitions consist of three

parts: an abstract syntax of the language to be de�ned, the semantic algebras, and

valuation functions. The abstract syntax and semantic algebras are used to de�ne the

appearance and meaning of a language. A semantic algebra is combination of a domain

and its operations to show functionality and to specify mappings. Functionality is de�ned

by the operation's domain and co-domain. For example the functionality of

f : D1 ×D2 × . . .× Dn → A (4.12)

says that f needs an argument from each domainDi to produce an answer in its co-domain

A. Set functions are classi�ed by they mappings they produce. Example classi�cations

include:

1. f : R → S is an one-one (1-1) function i� for ∀x ∈ R and ∀y ∈ R., f(x) = f(y)

implies x = y.

2. f : R→ S is an onto function i� S = {y | there exists some x ∈ R such that f(x) =

y}.

3. f : R→ R is the identity function for R if ∀x ∈ r, f(x) = x.

4. for some f : R → S, if f is one-one and onto, then the function g : S → R,

de�ned as g(y) = x if f(x) = y is called the inverse function of f . Function g is

denoted by f−1.

47

The valuation functions connect or map the abstract syntax to the semantic algebras;

and, there is a valuation function for each syntactic domain to assign a uniform meaning

to a construct regardless of its context.

4.2.3 Operational Semantics

There are two categories of operational semantics: structural or small-step semantics and

natural or big-step semantics.

De�nition 4.5. Operational semantics is a mathematical description of how a computer

program behaves by de�ning its sequence of computational steps.

For example, the evaluation process of a simple expression e, such as

(1 + (2 + 3)) + (4 + 5), (4.13)

to its result m can be expressed as

e = e1 → . . . −→ en−1 → en = m (4.14)

where for ∀ei,

ei → ei+1 ≡ ei+1 is the result of the first evaluation step of ei. (4.15)

4.2.3.1 Small-step Semantics

Plotkin [101] is credited in developing small step semantics as a logical method to depict

the behavior of a program as it executes by using a transition system expressed in a set

of inference rules.

48

De�nition 4.6. A transition system denoted ts, is a structure

〈 Γ,−→ 〉 (4.16)

where Γ is a set of elements γ (con�gurations) and −→⊆ Γ×Γ is a binary relation called

the transition relation.

Notation of ts is of the form

γ −→ γ′ (4.17)

and is read as �there is a transition from the con�guration γ to the con�guration γ′�.

De�nition 4.7. A terminal transition system denoted tts, is a structure

〈 Γ,−→, T 〉 (4.18)

where 〈 Γ,−→ 〉 is a ts and T ⊆ Γ is the set of �nal con�gurations that satisfy the

condition

∀γ ∈ T ∀γ′ ∈ Γ.γ /−→ γ′. (4.19)

Plotkin built con�gurations for small step semantics using the linguistics developed

by Scott and Strachey [114] and from the main syntactic classes used by Gordon [39] and

Tennet [122]; expressions, commands, and declarations. For example, the ts (con�gura-

tion) of an expression is the expression e and a store (state) σ, 〈 e, σ 〉. The relation

〈 e, σ 〉 −→ 〈 e′, σ 〉 (4.20)

means one step of the evaluation of e with store σ results in the expression e′ without

a change to the store σ. Unlike expressions, commands are stored in the state and the

transition sequences of commands is seen as state changing by terminating in a new

49

state σ′. A command con�guration 〈 c, σ 〉 is the transition sequences for the terminating

executions of a command c from a store σ is formalized as

〈c , σ 〉 = 〈 c0, σ0 〉 −→ 〈 c1, σ1 〉 −→ . . . −→ 〈 cn−1, σn−1 〉 −→ σn (4.21)

As is the case of statements, declarations change state. However, the evaluation steps

of all three syntactic classes are syntax directed. If a terminal con�guration T cannot

be reached, i.e., no γ′ with γ −→ γ′, the �nal con�guration reached from the stepwise

evaluation is considered to be stuck. A stuck con�guration is an error condition.

De�nition 4.8. A stuck con�guration γ is whenever γ /∈ T and ¬∃γ′. γ −→ γ′ in a tts

structure 〈Γ, T,−→〉.

4.2.3.2 Big-step Semantics

Big step semantics was introduced by Kahn [57] as a �uni�ed manner to present the dif-

ferent semantics of programming languages, such as dynamic semantics, static semantics,

and translation." The original notation for big-step sequents took the form

σ ` a⇒ i (4.22)

that is interpreted as an implication that a evaluates to i in state (environment) σ.

De�nition 4.9. Big-step semantics is a �denotational� style operational semantics.

Big-step de�nitions are de�nitions of functions or relations to interpret each language

construct in an appropriate domain. The big-step sequents (consequences or results) are

relations over con�gurations expressed as C ⇒ R or C ⇓ R with the meaning that R is

the con�guration obtained after the evaluation of C. A big-step rule takes the form

50

Big Step Rule Structure:

C1 ⇒ R1 C2 ⇒ R2 . . . Cm ⇒ Rn

C ⇒ R
(4.23)

where C, C1, C2, . . . , Cn are con�gurations of program fragments and R, R2, . . . , Rn

are result con�gurations. Each R is irreducible as it cannot be advanced.

4.3 Approaches to the Formalization of Language Semantics

The previous discussion on the popular approaches to formalize semantics is intended for

introductory or review purposes only. By no means was it an attempt to cast a more

favorable light on any single approach. Which method to use is a matter of personal choice

and what is being modeled. With complex languages such as C, a certain construct may

be easier to formalize using one method while another method may be better suited to

formalize a di�erent construct. In fact, a formalization process may use elements from any

approach, in any combination. In this dissertation, a denotational like big-step approach

will be utilized. At times, a small-step feel will manifest with the formalization of the C

standard required type transitions. As for the Hoare logic, the static type safety analysis

tool to be introduced in Chapter 8 is designed with several sets of predicate functions to

serve as the various premises to reach individual conclusions.

51

Chapter 5: Historic Attempts to Formalize C

According to Reis and Stroustrup [108], the static semantics of the C programming

language has historically resisted formal approaches. This is in part due to the complexity

of the C language because it was designed to perform both low (bitwise) and high level

(math) level calculations. Furthermore, its syntax makes C highly expressive in the sense

that the same task can ofter be expressed in many di�erent ways. Despite this, there

have been a few notable attempts to formalize the semantics, albeit mainly operational,

of C. This chapter is a review of the previous attempts to do so.

5.1 Evolving Algebras

One of the �rst attempts to formalize C was by Gurevich and Huggins [42] and their use of

evolving algebras applied to the ANSI Standard described in Kernighan and Ritchie [65]

to develop an operational semantics. An evolving algebra A is an abstract state machine.

Each signature of A is �nite collection of function names that individually have a �xed

arity. A state of A is a set, the super-universe, and interpretations of the function names

in the signature called the basic functions of the state. The super-universe does not

change as A evolves.

A basic function of arity r has r operations on the super-universe. The super-universe

contains distinct elements such as true, false, and undef (unde�ned) which permits the

use of partial functions. A program of A is a �nite collection of transition rules taking

the form

if t0 then f(t1 . . . tr) := tr+1 endif (5.1)

where t0, f(t1 . . . tr) and tr+1 are closed terms, i.e., without free variables in A. The

expression above means evaluate all the terms ti in the given state; if t0 evaluates to

true, then change the value of the basic function f at the value of the tuple (t1 . . . tr) to

the value of tr+1. Otherwise, do nothing.

52

Gurevich and Huggins showed that evolving algebras could be applied to program

written in C because they saw that programs were merely a set of rules. Four algebras

were developed to model statements, expressions, memory allocation and initialization,

and function invocation and return. Although errors such as division by zero or de-

referencing a pointer to an invalid address admittedly stalled the evolving algebra to the

error state forever, error handling was generally ignored.

5.2 An Abstract Dynamic Semantics for C

Norrish [94] presents an abstract dynamic semantics for C to prove that a language as

complicated C can be formalized and could be modeled in the mechanized theorem prover

HOL [40]. The HOL semantics used was called Cholera and the C Standard was C90

[52].

Dynamic semantics does not address the static issue of type correctness. Rather, it

tries to abstract memory changes. Because the actions of side e�ects are the sole cause

of memory changes in C, the semantics presented take an �arrow� relation form

〈 v0, σ0 〉 → 〈 v, σ 〉, (5.2)

where σ0 and σ are the initial and �nal states, and where v is the form of C syntax being

de�ned. Each rule is de�ned by using one or more of the three di�erent state related

functions:

1. State independent functions such as a conversion to a memory value.

2. State functions such as addresses of variables or typing functions.

3. State modi�cation functions such as add a side e�ect to memory or declare a

variable with an initial value.

After building the rules in their appropriate contexts such as expressions, statements,

etc., theorems were proved by mimicking the axiomatic rules of Hoare [46] such as the

53

assertion about the partial correctness of S in the triple {P} S {Q} that states if S is

executed in a state where P holds and if S terminates, then the resulting state Q is true.

Omitted from the semantics presented here was the library, the switch and goto

statements, quali�ed types, union type, string constants, and bit-�elds within structs.

5.3 An Operational and Denotational Typing Semantics for C

Perhaps the most ambitious and comprehensive typing semantics of the C language was

presented in the dissertation by Papaspyrou [95]. The 1998 work o�ered both a dynamic

and static typing semantics for the standard C90 [52].

It was a work heavily steeped category theory [99, 38, 100, 7, 9] and the use of monads

[9, 82]. For example, data types found in memory and associated to program constructs

were sorted by the usual base (�data�) and object types. However, these types were

categorized much further to include:

1. Quali�ed and unquali�ed versions of each data and array type.

2. Function types including return and parameter types.

3. Denotable types that are object and function types that are associated with an

identi�er.

4. member types of structures and unions including both object types and bit-�elds

which may or may not be quali�ed (bit-�elds are one of three integer types: int,

signed-int, and unsigned int).

5. Value types (r-values) associated with data and function types.

6. Identi�er types that denote if the data type is an object, a typedef, or an enumer-

ation constant.

7. Phrase types that are associated to program segments such as expressions, state-

ments, and declarations and their initializations.

The work was intended to support a Haskell based abstract interpreter of the op-

erational semantics of C to de�ne an execution model. According to Papaspyrou [95],

54

Haskell is a strongly-typed lazy functional language [50, 97]. Haskell was chosen because

it �provides non-strict semantics, a static polymorphic type system, algebraic data types,

modules, monads and monadic I/O and a rich system of primitive data types.�

5.4 A Formalism of C++

Reis and Stroustrup [108] took up the task to formalize C++ [121], a daunting challenge

based on the fact that C++ is rooted in C. They begin with de�ning an abstract type

system (Table 5.1) and then apply the type system to expressions, declarations, and

statements. Finally, the type system was applied to a set of typing rules to account for

implicit conversions and function overloading. Conceptually, expression operators were

treated the same as other user de�ned function applications.

Their formalism was developed in line with a minimal representation of C++ code to

clarify distinctions and interactions between overloading, template partial specialization,

and overriding ; three concepts considered to be the most confusing in literature yet key

to C++'s template system.

5.5 In Summary

From the literature, it appears that Reis and Stroustrup [108] are correct in stating

that the static semantics of the C programming language has historically resisted formal

approaches. Most attempts in formalization have been dynamic in nature by showing

the operational semantics of C [42, 94]. A static typing semantics was presented by

Papaspyrou [95]. Except for Reis and Stroustrup [108] who o�ered a formal typing

semantics of the closely related language C++, all other works reviewed in this chapter

were applied to the standards C90 [52] and earlier. The static typing semantics presented

in this dissertation is applied to C99 [53].

55

Table 5.1: Abstract syntax of the C++ type system [108]

τ ::= types
t type constants
| α type variables
| ref (τ) reference types
| ptr(τ) pointer type
| const(τ) const-quali�ed types
| volatile(τ) volatile-quali�ed types
| array(τ, c) array types with known bound
| array(τ, ε) array types with unknown bound
| (τ1, ..., τn)→ τ function types
| ΠJ~p : TnK _ τ type template
| χ[γ1, ..., γn] type template instantiations

T ::= generalized types
τ ordinary types
| \ type of ordinary type
| T1 × ...× Tn _ T template type

γ ::= compile-time entities
c constant expressions
| τ types
| χ named type templates

56

Chapter 6: C Type Systems

According to Cardelli [17], the formalization of a type system for any given programming

language essentially requires the formalization of the entire language. However, the �rst

step in this process is describing the syntax of types for the language. This chapter

examines the C type system and formally presents a syntax of its type speci�cations.

6.1 Introduction

A dictionary, such as [103], may de�ne type as

�type (t��p) n., v., typed, typ·ing. �n. 1. a class, group, or category of

things or persons sharing one or more characteristics: ...�

Plotkin [101] said types provide the true meaning to any given expression. Plotkin's

truism holds for the expressions found in both computer programs and mathematics.

Moreover, Cardelli [17] states that the fundamental purpose of type systems in program-

ming languages is to prevent the occurrence of execution errors during program runtime.

As such, an e�ective and safe type system should have three basic properties:

1. A type system should be decidedly veri�able through the use of one or more type

checking algorithms.

2. A type system should be �self-evident.�

3. A type system should be enforceable, routinely verifying type declarations through

a multitude of static (compile time) and dynamic (runtime) checks.

Apart from performing type casting based on the conversion rules such as integer promo-

tions and usual arithmetic promotions, on a limited basis during compile time, the type

system of C fails to meet these properties. Therefore, C is not type safe.

According to Cardelli [17], a formal type system is a mathematical description of the

informal type system of a programming language described in its manual (standard).

For example, the C type system is de�ned in �6.2.5 of the standard [52, 53, 54] by 26

57

informal rules and two examples. Together the rules and examples attempt to introduce

all members of the type system and their relational hierarchy.

In a C computational environment, the data types take on a variety of shapes and

sizes according to their intended purposes. Some are designed to simply hold a binary

(base-2) number, to represent value, an instruction, or a memory address. Others may

be complex collections of like and/or disparate data types to facilitate the generation of

character strings or enable record keeping. While others are specialized to represent void

or null conditions.

6.2 Syntax of C Types

Unlike the formal presentation of the syntax for expressions and statements, the syntax

of C types are informally speci�ed in �6.2.5 of the standard. Accordingly,

�the meaning of a value stored in an object or returned by a function is de-

termined by the type of the expression used to access it.�

Each type in the universe of C types belongs to one of the three general type categories:

object-type, function-type, or incomplete-type (Fig 6.1). The complete syntax of type

speci�cations of C types is presented in BNF to show the typing relationships can be

reviewed in Appendix A.

De�nition 6.1. An object-type fully describes data objects, for example, structures,

arrays, and the base types such as integers and rational numbers.

De�nition 6.2. A function-type describes the return type of functions. The parameter

types of a function are generally object types are not considered in the determination of

a function's type.

De�nition 6.3. An incomplete-type can be either a void pointer or an declared object-

type that is not fully de�ned, such as an array without a declared size.

58

〈 c-type 〉 ::= 〈 object-type 〉 | 〈 function-type 〉 | 〈 incomplete-type 〉

Figure 6.1: The universe of C types

〈 identi�er 〉 ::= 〈 nondigit
| 〈 identi�er 〉 〈 nondigit 〉
| 〈 identi�er 〉 〈 digit 〉

〈 non-digit 〉 | a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _

〈 digit 〉 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 6.2: C identi�er syntax

keyword ::= auto | break | case | char | const

| continue | default | do | double | else

| enum | extern | float | for | goto

| if | inline | int | long | register

| return | short | signed | sizeof | static

| struct | switch | typedef | union | unsigned

| void | volatile | while | _Bool | _Complex

| _Imaginary

Figure 6.3: keywords

59

Because C is an imperative language, all memory objects must be declared with an

identi�er (Fig. 6.2) and type prior to usage. Identi�ers can be composed of any mix

of alphabet (nondigit including the underscore) or numeric (digit) characters. However,

the �rst character of an identi�er cannot be a number. An identi�er's type is assigned

in a declaration statement by one or more declaration-speci�er keywords. A keyword

(Fig. 6.3) is a case sensitive token reserved for translation purposes and cannot be used

otherwise. The syntax for declaration statements (Fig. 6.4) is described in �6.7 of the

standard.

The type-speci�er keywords (Fig. 6.5) are de�ned in �6.7.2 of the standard. They

are used in declaration expressions to specify the interpreted type and size of a reserved

memory store based on the declared object-type. At least one or more type-speci�er is

used to declare an object-type. It should be noted that C11 [54] introduced the atomic-

type-speci�er (Fig 6.6) to be used with the new header �le stdatomic.h to support

multitasking threading and atomic operations. The atomic-type-speci�er has two con-

straints:

1. They cannot be used if the implementation does not support atomic types.

2. The type name in an atomic-type-speci�er cannot refer to an array-type, a function-

type, an atomic type, or a quali�ed type.

6.3 Object Types

The object-type includes all types that fully describes data objects and is divided into one

of three general type categories: scalar-type, aggregate-type, and union-type (Fig. 6.7).

6.3.1 Scalar Types

A scalar-type (Fig. 6.8) is either an arithmetic-type (Fig. 6.9) or a pointer-type (Fig. 6.11).

60

〈 declaration 〉 ::= 〈 declaration-speci�ers 〉 〈 init-declarator-listopt 〉
〈 declaration-speci�ers 〉 ::= 〈 storage-class-speci�er 〉 〈 declaration-speci�ersopt 〉

| 〈 type-speci�er 〉 〈 declaration-speci�ersopt 〉
| 〈 type-quali�er 〉 〈 declaration-speci�ersopt 〉
| 〈 function-speci�er 〉 〈 declaration-speci�eropt 〉

〈 init-declarator-list 〉 ::= 〈 init-declarator 〉
| 〈 init-declarator-list 〉 , 〈 init-declarator 〉

〈 init-declarator 〉 ::= 〈 declarator 〉
| 〈 declarator 〉 = 〈 initializer 〉

〈 declarator 〉 ::= 〈 pointeropt 〉 〈 direct-declarator 〉
〈 direct-declarator 〉 ::= 〈 identifer 〉

| (〈 declarator 〉)
| 〈 direct-declarator 〉

[〈 type-quali�er-listopt 〉
〈 assignment-expressionopt 〉]

| 〈 direct-declarator 〉
[static 〈 type-quali�er-listopt 〉
〈 assignment-expressionopt 〉]

| 〈 direct-declarator 〉
[〈 type-quali�er-list 〉 static
〈 assignment-expression 〉]

| 〈 direct-declarator 〉
[〈 type-quali�er-listopt 〉 *]

| 〈 direct-declarator 〉 (〈 parameter-type-list 〉)
| 〈 direct-declarator 〉 (〈 identi�er-listopt 〉)

〈 pointer 〉 ::= * 〈 type-quali�er-listopt 〉
| * 〈 type-quali�er-listopt 〉 〈 pointer 〉

〈 parameter-type-list 〉 ::= 〈 parameter-list 〉
| 〈 parameter-list 〉 , ...

〈 parameter-list 〉 ::= 〈 parameter-declaration 〉
| 〈 parameter-list 〉 , 〈 parameter-declaration 〉

〈 parameter-declaration 〉 ::= 〈 declaration-speci�ers 〉 〈 declarator 〉
| 〈 declartion-speci�ers 〉 〈 abstract-declaratoropt 〉

〈 identi�er-list 〉 ::= 〈 identi�er 〉
| 〈 ideni�er-list 〉 , 〈 identi�er 〉

Figure 6.4: C declaration syntax

61

〈 type-speci�ers 〉 ::= void

| char

| short

| int

| long

| float

| double

| signed

| unsigned

| _Bool

| _Complex

| _Imaginary

| 〈 struct-or-union-speci�er 〉
| 〈 enum-speci�er 〉
| 〈 typedef-name 〉

Figure 6.5: Type-speci�er keywords

〈 atomic-type-speci�er 〉 ::= _Atomic (type-name)

Figure 6.6: Atomic-type-speci�er syntax

〈 object-type 〉 ::= 〈 scalar-type 〉 | 〈 aggregate-type 〉 | 〈 union-type 〉

Figure 6.7: Object-type

〈 scalar-type 〉 ::= 〈 arithmetic-type 〉 | 〈 pointer-type 〉

Figure 6.8: Scalar-type

62

〈 arithmetic-type 〉 ::= 〈 std-integer-type 〉
| 〈 �oating-type 〉
| 〈 enumerated-type 〉

〈 standard-integer-type 〉 ::= char

| 〈 standard-signed-integer-type 〉
| 〈 standard-unsigned-integer-type 〉

〈 standard-signed-integer-type 〉 ::= signed char

| signed short int

| signed int

| signed long int

| signed long long int

〈 standard-unsigned-integer-type 〉 ::= _Bool

| unsigned char

| unsigned short int

| unsigned int

| unsigned long int

| unsigned long long int

〈 �oating-type 〉 ::= 〈 real-�oat-type 〉
| 〈 complex-type 〉

〈 real-�oat-type 〉 ::= float

| double

| long double

〈 complex-type 〉 ::= float _Complex

| double _Complex

| long _Complex

〈 enumerated-type 〉 | 〈 enumeration 〉
〈 enumeration 〉 | 〈 standard-integer-type 〉 . . .

〈 standard-integer-type 〉

Figure 6.9: Arithmetic-type

6.3.1.1 Arithmetic Types

An arithmetic-type is one of the base memory types such as an integer or a �oating type.

An arithmetic-type is declared with one or more type speci�er keyword(s). If more than

one keyword is required to declare an arithmetic-type, the keywords can be used in any

order. For example, the standard-signed-integer-type long int may be declared in any

of the following semantically equivalent keyword combinations:

� long

� signed long

63

� long signed

� long int

� int long

� signed long int

� long signed int

� long int signed

� signed int long

� int long signed

� int signed long

Since the standard-integer-types are abstractions of the machine integers, the stan-

dard de�nes them in terms of bits and bytes.

De�nition 6.4. A bit is an unit of data storage in an execution environment large enough

to hold one of two values: 0 or 1.

De�nition 6.5. A byte is an addressable unit of data storage large enough to hold any

member of the basic character set of the execution environment.

The precision or range of values a machine type can hold is determined by the number

of bits allocated for precision. For example, an unsigned machine integer type with n

precision bits can hold the value (2n−1). The least signi�cant bit (LSB) whose precision

range is limited to (0, 1), is called the low-order bit; and, the most signi�cant bit (MSB)

or magnitude bit is called the high-order bit. A machine integer type can either represent

strictly positive values or represent both positive and negative values. The former are

unsigned integer types and the latter signed integer types. For unsigned integer types,

0 is regarded as a positive value. For signed integer types, 0 may be either positive or

negative, depending on the implementation.

For signed integers in C, the MSB loses its function as a precision bit to become a

sign bit. If the MSB is set to 1, the value of the signed integer is a negative number.

Otherwise, if the MSB is unset (0), the value of the integer is a positive number. By

64

losing a precision bit to indicate sign, signed integer types with n precision bits have the

value range (−2(n−1), . . . , 0, . . . , 2(n−1) − 1).

6.3.1.2 char Type

According to �6.2.5 of the standard, the type char is an object large enough to store any

member of the basic execution character set, such that when stored as a char, the value

of the execution character is �guaranteed� to be positive. Both the value and the sign of

all other characters stored as a char object are implementation-de�ned.

6.3.1.3 Extended Integer Types

The members of the extended-integer-types, such as int#_t, int_least#_t, int _fast#_t,

intptr_t, and intmax_t, are de�ned in stddef.h and in stdint.h. They were intention-

ally omitted from the arithmetic-type syntax (Fig. 6.9) because they are considered to

be out of scope of this dissertation. Additional integer types de�ned in stddef.h, such

as ptrdiff_t, size_t, and wchar_t, were also excluded for the same reason.

6.3.1.4 Enumerated Types

An enumerated-type is comprised of a set of named integer constants. According to

�6.7.2.2 of the standard, the value of each integer constant must be value representable

by the type int and compatible with either a char, a standard-signed-integer-type, or

a standard-unsigned-integer-type. The choice of type compatibility is implementation-

de�ned.

65

〈 enum-speci�er 〉 ::= enum 〈 identi�eropt 〉 { 〈 enumeration-list 〉 }
| enum 〈 identi�eropt 〉 { 〈 enumeration-list 〉 , }
| enum 〈 identi�er 〉

〈 enumerator-list 〉 ::= 〈 enumerator 〉
| 〈 enumeration-list 〉 , 〈 enumerator 〉

〈 enumerator 〉 ::= 〈 enumeration-constant 〉
| 〈 enumeration-constant 〉 = 〈 constant-expression 〉

Figure 6.10: Enum-speci�er syntax

6.3.1.5 Floating Types

The three real-�oating-type types (float, double, and long double) and the three

complex-type types (_Complex, double _Complex, and long double _Complex) are col-

lectively called the �oating-types. According to �5.2.4.2.2 of the standard, a �oating-type

is characterized by the following parameters:

� s � a sign (±1)

� b � the base (radix) of the exponent representation (an integer > 1)

� e � an exponent (an integer between a minimum emin and a maximum emax)

� p � precision (the number of base-b digits in the signi�cand)

� fk � nonnegative integers less than b (the signi�cand digits)

Floating point arithmetic is implementation de�ned, however, each implementation must

adhere to the following �oat model.

x = sbe
p∑

k=1

fkb
−k, emin ≤ e ≤ emax (6.1)

The complex-type types have the same representation and alignment requirements as

an array-type of two elements of the corresponding real type. The �rst element is the real

part and the second element is the imaginary part of the complex number. According to

�6.7.2 of the standard, an implementation is not required to provide for complex types.

66

〈 pointer-type 〉 ::= 〈 pointer 〉
〈 pointer 〉 | 〈 object-type 〉

| 〈 function-type 〉
| 〈 incomplete-type 〉

Figure 6.11: Pointer-type

〈 aggregate-type 〉 ::= 〈 array-type 〉
| 〈 structure-type 〉

〈 array-type 〉 ::= 〈 element-type 〉
〈 element-type 〉 ::= 〈 object-type 〉
〈 structure-type 〉 ::= 〈 member-type 〉
〈 member-type 〉 ::= 〈 object-type 〉

Figure 6.12: Aggregate-type

6.3.1.6 Pointer Type

The pointer-type pointer is de�ned in �6.7.5.1 in the standard (Pointer declarators).

According to the standard [53], a pointer type is created in a declaration �T D1� of the

form

* type-quali�er-listopt identi�er

where the type speci�ed for identi�er in the declaration is a �derived-declarator-type-list

T� and the type speci�ed for identi�er is a �derived-declarator-type-list type-quali�er-list

pointer to T�.

6.3.2 Aggregate Types

Members of the aggregate-type category are the array-type and struct-type data struc-

tures (Fig. 6.12). Both types reserve a contiguous memory store large enough to contain

all of their respective declared types of element-type and of member-type.

67

〈 struct-or-union-speci�er 〉 ::= 〈 struct-or-union 〉
〈 identi�eropt 〉 { 〈 struct-declaration-list 〉 }

| 〈 struct-or-union 〉 〈 identi�er 〉
〈 struct-or-union 〉 ::= struct

| union

〈 struct-declaration-list 〉 ::= 〈 struct-declaration 〉
| 〈 struct-declaration-list 〉 〈 struct-declaration 〉

〈 struct-declaration 〉 ::= 〈 speci�er-quali�er-list 〉 〈 struct-declarator-list 〉 ;
〈 speci�er-quali�er-list 〉 ::= 〈 type-speci�er 〉 〈 speci�er-quali�er-listopt 〉

| 〈 type-quali�er 〉 〈 speci�er-quali�er-listopt 〉
〈 struct-declarator-list 〉 ::= 〈 struct-declarator 〉

| 〈 struct-declarator-list 〉 , 〈 struct-declarator 〉
〈 struct-declarator 〉 ::= 〈 declarator 〉

| 〈 declaratoropt 〉 : 〈 constant-expression 〉

Figure 6.13: Struct-or-union-speci�er syntax

6.3.2.1 Array Type

The type of an array generally corresponds to the converted type of its set of elements.

An element-type is often an arithmetic-type. However, an element-type may be another

array-type, struct-type, or union-type.

6.3.2.2 struct Type

A struct-type is declared with a struct-or-union-speci�er (Fig 6.13) as de�ned in �6.7.2.1

of the standard. A structmay also be comprised of diverse members of the member-type

including members of struct-type, array-type, arithmetic-type, and bit-�eld.

According to the standard (�6.7.2.1, constraint 4.), a bit-�eld shall have a type that

is a quali�ed or unquali�ed version of _Bool, signed int, unsigned int, or some other

implementation-de�ned type. The only di�erence between a bit-field and the members

of standard-integer-type is that a bit-field bit-wise precision is programmer de�ned

and its precision may be as small as 1 (_Bool) bit or as large as the precision of an

unsigned long long int. Collectively, the member types of struct-type are members

68

〈 union-type 〉 ::= 〈 member-type 〉

Figure 6.14: Union-type

〈 function-type 〉 ::= 〈 return-type 〉
〈 return-type 〉 ::= 〈 object-type 〉 | void

Figure 6.15: Function-type

of object-type. A struct declaration reserves enough memory space to accommodate all

of its members.

6.4 union Type

A union-type is also declared with a struct-or-union-speci�er (Fig 6.13) as de�ned in

�6.7.2.1 of the standard. The union-type (Fig. 6.14) appears to be similar to a struct

type in the sense that it can also have the members of member-type. However, the union-

type is di�erent because the memory space reserved by an union declaration is only as

large as that is required by the largest type of its member-type.

6.5 Function Types

Despite the fact that functions can have 0 to many arguments or parameters of diverse

types, a function-type is determined by the object-type of a function's return type

(Fig. 6.15). However, the return type cannot be an array-type object. If the function

has no return, then the function return type is incomplete-type void.

6.5.1 Function Speci�ers

The function-speci�er is de�ned in �6.7.4 of the standard (Fig. 6.16). A function declared

with the keyword inline is an inline function. The purpose of an inline function is to

make the fastest calls to that function. However, the speed of the function calls is

implementation de�ned. The function-speci�er keyword inline has three constraints:

69

〈 function-speci�er 〉 ::= inline

Figure 6.16: Function-speci�er syntax

〈 incomplete-type 〉 ::= void

| 〈 array-type (of unknown size) 〉
| 〈 structure-type (of unknown content) 〉
| 〈 union-type (of unknown content) 〉

Figure 6.17: Incomplete-type

1. inline can only be used in the declaration of a function.

2. An inline de�nition of a function with external linkage cannot contain a de�nition

of a modi�able object with static storage duration (see � 6.7.2 of this chapter),

and cannot contain a reference to an identi�er with internal linkage.

3. In a hosted environment, inline cannot be used in a declaration of main.

A hosted environment is any third party application, such as a virtual machine, that

holds data and executes its own programs.

6.6 Incomplete Types

An incomplete-type is either the type void or it is an aggregate-type or union-type that

is not fully de�ned during its declaration (Fig. 6.17). For example, an array may be

declared without having its size fully de�ned.

6.7 Type Quali�ers and Storage Class Speci�ers

The typing syntax just presented represents the unquali�ed C types without storage class

assignments. However, the syntax can be replicated to include quali�ed types and storage

class speci�ers by adding the keywords of each respectively.

70

Listing 6.1: const Declaration

const int INT_MAX;

INT_MAX = 2147483647; // assuming 64 bit platform

6.7.1 Type Quali�ers

The keyword members of type-quali�er are de�ned in �6.7.3 of the C standard. A type-

quali�er (Fig. 6.18) places usage restrictions on the declared object-type reserved in

memory. For example, the declaration statement in Listing 6.1 reserves a memory store

named INT_MAX. Because the type-quali�er const was used, the contents of the store

cannot be altered once it is given a value in an assignment expression (Listing 6.1).

Use of a type-quali�er in a declaration statement is optional. If used, one or more

may be used and as is the case with the type-speci�er keywords, type-quali�er keywords

may be used in any order. Semantically, however, type-quali�er keywords can con�ict

with one another. For example, the keyword volatile de�nes an object to be change-

able internally or externally to the scope of the program for which it appears, and is

diametrically opposed to the keyword const. The quali�er restrict can only be used

on pointers to promote program optimization. While the use of two or all of the type-

quali�er keywords within a single declaration is syntactically correct according to the

standard, most compilers will translate the �rst type-quali�er keyword read and ignore

the rest because of their con�icting semantics.

C11 introduced the additional type-quali�er keyword _Atomic to be used with the new

header �le stdatomic.h to support the multitasking threading and atomic operations.

The type-quali�er _Atomic has two usage constraints:

1. Types other than pointer-type referencing an object-type cannot be restrict

quali�ed.

2. The _Atomic quali�er cannot be applied to an array-type or a function-type.

71

〈 type-quali�er 〉 ::= 〈 quali�er-list ... quali�er_list 〉
〈 quali�er-list 〉 ::= const

| volatile

| restrict

Figure 6.18: Type-quali�ers

〈 storage-class-speci�er 〉 ::= typedef | extern

| static | auto | register

Figure 6.19: Storage-class-speci�ers

The keyword _Atomic may be used semantically in tandem with any other type-

quali�er keyword on a C11 compliant compiler.

6.7.2 Storage Class Speci�ers

The keywords of storage-class-speci�er are de�ned in �6.7.1 of the standard (Fig. 6.19).

The storage-class-speci�er keywords instruct a compiler about of the storage related

speci�cation of an object or a function being declared, such as its duration, visibility,

and/or storage.

The duration refers to the lifetime of an object or a function. The lifetime is either

global (keyword static) or local (keyword auto - meaning automatic). A global lifetime

is one that exists throughout the execution of a program. For example, functions have

global lifetimes. An auto variable has a local lifetime and its storage space is allocated

whenever the execution of the program enters the block in which the auto variable is

de�ned. Visibility refers to whether an object or function was originally declared locally

or externally (keyword extern) to the program. Finally, the storage directive register

is a request to create a register object.

Like the type-quali�er keywords, use of a storage-class-speci�er keyword in a decla-

ration expression is optional. Unlike the type-speci�er and the type-quali�er keywords

where more than one can be used in a declaration, at most one storage-class-speci�er key-

word can be used. The storage-class-speci�er keyword typedef is the exception to the

72

Listing 6.2: typedef declaration

typedef unsigned long uint_32t;

uint_32t x = 100000;

〈 typedef-name 〉 ::= 〈 identi�er 〉

Figure 6.20: Typedef-name syntax

rule where the addition of at most one more storage-class-speci�er keyword may follow

the keyword typdef.

The storage-class-speci�er keyword typedef is an anomaly among the other storage-

class-speci�er keywords in the sense that typedef does not specify a memory criteria.

Instead it is used to create an alias for another object-type (Listing 6.2). The MISRA safe

coding guidelines recommends that whenever an arithmetic-type is declared it should be

typedefed and the typedef name should describe the arithmetic-type [79] (Table 3.1).

For example, the typedef name of the unsigned long (Listing 6.2) is uint_32 to indicate

the type is a unsigned 32 bit integer. According to the standard, the typedef keyword

was placed in the storage-class-speci�er set out of convenience.

6.7.2.1 typedef Name

The typedef-name is de�ned in �6.7.7 of the standard (Fig 6.20). It is the identi�er

that is associated with the type speci�ed in a typedef declaration. Thus, the identi�er

becomes a derived type speci�er (derived-declarator-type-list (Fig. 6.4)) in subsequent

declarations where the identi�er is used to declare type.

6.8 Compatible Type

A compatible type is de�ned in �6.2.7, �6.7.2 (for type speci�ers), �6.7.3 (for type quali-

�ers), and �6.7.5 (for declarators). In �6.2.7, two types are said to be compatible if the

two types are the same. Two structure, union, or enumerated types declared in sepa-

73

rate translation units are the same if their tags and members satisfy the following two

requirements:

1. If one type is declared with a tag, then both types must have the same tag.

2. For two complete structure, union or enumerated types, the following conditions

must be met:

(a) There has to a be a one-to-one correspondence between the member types

such that each pair has compatible type and identical names.

(b) Members of two structures have to be declared in the same order.

(c) For both structures and unions, corresponding bit-�elds must have the same

width.

(d) For two enumerations, corresponding members must have the same value.

Furthermore, all declarations to the same object or function are of compatible type.

6.9 Composite Type

According to �6.2.7 of the standard, a composite type is constructed from two compatible

types if the following four conditions are met and can be applied recursively:

1. For array-types, if one array has a known constant size, the composite type is an

array of the known constant size; otherwise, if one array has a variable length size,

the composite type also has a variable length size.

2. If only one type is a function type with a parameter type list (a function proto-

type), the composite type is a function prototype with the parameter type list.

3. For two function types with parameter type lists, the type of each parameter

in the composite parameter type list is the composite type of the corresponding

parameters.

74

6.10 lvalue and rvalue

They �nal types of note are that of the lvalue and the rvalue. According to �6.3.2.1 of the

standard, a lvalue (location value) is an expression that designates an object-type or an

incomplete-type other than the type void. As a memory location value, the lvalue type

is that of an integer. A modi�able lvalue is any lvalue other the lvalue of an array-type,

an incomplete-type, a const-quali�ed type, or a member-type of either a structure-type

or an union-type.

A rvalue is the value of a data store or an expression. For an assignment expression,

the rvalue is the right hand side (RHS) of assignment operator (=). The rvalue has the

type of the data store or the expression.

75

Chapter 7: Formalizing C Expressions and Statements

Once the syntax of type speci�cations for a language is formalized, one can begin to

formalize the remaining constructs of the language. In this chapter, the formalization of

the static typing semantics of C expressions and statements is presented. In addition,

the chapter addresses the formal type safety requirements that cannot expressed in the

static typing semantics.

7.1 Introduction

The standard has somewhat formalized the syntax of both expressions and statements in

BNF [8, 91] to insure consistent and identical parse trees among the various compilers.

On the other hand, the operational and static typing semantics of C expressions and

statements are not formalized. Instead, the standard uses natural language to de�ne

the semantics. To be sure, we can agree upon the operational semantics for most of the

operators contained within expressions and statements. For example, the operational

semantics of the binary addition operator + is the summation of its operands. However,

the natural language presentation of the static typing semantics for both expressions and

statements are ambiguous and left open to interpretation. The goal of this chapter is to

remove the ambiguity of the static typing semantics

Because C allows programmers to write many expressions containing operands of

mixed data types and the disjoint operand types are usually normalized during compile

time, the C type casting rules are an essential element of the static typing semantics for

expressions and statements. As such, we need to review the C type casting rules before

presenting the formalization process.

76

7.2 C Type Casting Rules

The criteria for the compile time type coercion process is based on sub-typing. The

numerous coercion rules are found in �6.3 of the standard.

7.2.1 Integer Conversion Rank

Every integer type has an integer conversion rank based on its bit width and that rank

determines how the integer types are coerced during compile time. The following integer

ranking system is found in �6.3.1.1 of the standard:

� No two signed integer types regardless of their precision shall have the same rank

� The rank of a signed integer type is greater than the rank of signed integer type of

lesser precision

� The rank of an unsigned integer type shall equal the rank of a corresponding signed

integer type

� The rank of any standard integer type shall be greater than any extended integer

type with the same precision

� The rank of char is equal to the rank of signed char and unsigned char

� The rank of an enumerated type is equal to the rank of its compatible integer type

� The rank of any extended signed integer type with the same precision of another

extended signed integer type is implementation de�ned

� Integer ranks are transitive in the sense that for all integer types τi, τ1, τ2, and τ3,

if τ1 has greater rank than τ2 and τ2 has greater rank than τ2, then τ1 has greater

rank than τ3

7.2.2 Integer Promotions

The integer promotions rule states that if a signed int can represent all values of any

integer type with less precision and a smaller rank than that of aa signed int, the

77

value of the smaller integer type is converted to a signed int; otherwise, the smaller

integer type is converted to an unsigned int. The goal of integer promotions is to

preserve signage as well as the value (avoiding potential over�ow/under�ow or signage

error conditions) of the intermediate results of an expression containing smaller precision

integer operands.

7.2.3 Usual Arithmetic Conversions

The goal of the usual arithmetic conversions is to �nd a common real type for the operands

and the result of an expression. The rules comprising the usual arithmetic conversions

are described in �6.3.1.8 of the standard:

1. If an operand of type long double exists, the other operand(s) are converted to

long double.

� Otherwise, if the largest corresponding real type of an operand is a double,

the other operand is converted to a double

� Otherwise, if the largest corresponding real type of an operand is a float,

the other operand is converted to a float

� Otherwise, the integer promotions are performed on the operands prior to

applying the following rules:

� If both operands have the same integer type, no further conversion is

performed

� Otherwise, if both operands have signed integer types or if both have

unsigned integer types, the operand with the lesser integer conversion rank

is converted to the integer type of the operand with the greater rank

� Otherwise, if one operand has an unsigned integer type with a greater

than or equal rank of the other operand of signed integer type, the signed

integer operand is converted to the unsigned type

78

� Otherwise, if one operand has signed integer type and can fully represent

the values of the other operand of unsigned integer type, the unsigned

integer is converted to a signed integer

� Otherwise, both operands are converted to the unsigned integer type cor-

responding to the type of the signed integer type

2. If the values of �oating operand and the results of �oating expressions are repre-

sented in greater precision and range than what is required by the type, the types

are not changed.

7.2.4 Other Conversion Rules

�6.3 of the standard contains numerous other rules that fall outside of the auspices of the

integer promotions and the usual arithmetic conversion.

7.2.4.1 Conversion to Type _Bool

Any scalar value can be converted to _Bool (�6.3.1.2 of the standard). The result of the

conversion is 0 if the value of the scalar type is equal to 0. Otherwise, the result is 1.

7.2.4.2 Conversions Between Signed and Unsigned Integers

Conversions between signed and unsigned integer types is de�ned in �6.3.1.3 of the stan-

dard. The three rules generally re�ect the rules found in the usual arithmetic conversions

with respect to integer conversions:

1. If the value of an integer type would remain unchanged if converted to another

integer type other than _Bool, then the integer type is unchanged.

2. Otherwise, if the new type is an unsigned integer type, the value of the origi-

nal integer type is converted by repeatedly adding or subtracting one more than

79

the maximum value that can be represented by the new unsigned type until the

converted value is in the range of the new type.

3. Otherwise, if the new type is a signed integer type and the converted value cannot

be represented in it; the behavior is implementation-de�ned.

7.2.4.3 Conversions Between Real Floating and Integers

�6.3.1.4 of the standard provides two rules with respect to conversions between real

�oating and integer types:

1. Whenever a value of a real �oating type is converted to an integer type other than

_Bool, the fractional part is discarded. If the integral part of a real �oating type

cannot be represented by the new integer type, the behavior is unde�ned.

2. When value of an integer type is converted to a real �oating type and if the

converted value can be represented exactly in the new real �oating type, the

value is unchanged. If the converted value is in the range of values that can be

represented by real �oating type, but cannot be represented exactly, the result

is either the nearest higher or nearest lower representable value of the new type.

The value chosen is implementation-de�ned. If the value being converted to a real

�oating type is outside of the range of values that can be represented by the new

type, the behavior is unde�ned.

7.2.4.4 Conversions Between Real Floating Types

The two rules with respect to conversions between real �oating types found in �6.3.1.5

of the standard largely re�ect the usual arithmetic conversions:

1. When a float is promoted to a

double or a long double, or when a double is promoted to a long double, the

original value remains unchanged.

80

2. When either a double is demoted to either a float or a long double is demoted

to a double or a float or if a value to be converted is of an integer type and

has greater precision and range than required by the new real �oating type, if

the value being converted can be represented by the new �oating type, the value

remains unchanged. If the value being converted is in the range of values that can

be represented by the new real �oating type but cannot be represented exactly,

the resulting value is either the nearest higher or nearest lower representable value

according to rules of the underlying implementation. If the value being converted

is outside of the range of values that can be represented by new real �oating type,

the behavior is unde�ned.

7.2.4.5 Conversions Between Complex Types

�6.3.1.6 of the standard states the when the value of one complex type is converted to

another complex type, both the real and imaginary parts adhere to the real �oating

conversion rules previously stated in � 7.2.4.4 above.

7.2.4.6 Conversions Between Real and Complex Types

There are two rules in �6.3.1.7 of the standard with respect to conversions between real

and complex types:

1. When a value of a real type is converted to a complex type, the real part of the

complex result value is governed by the rules previously stated in �5.11.3.4 above.

The imaginary part of a real to complex conversion results in zero.

2. When the value of a complex type is converted to a real type, the imaginary

part of the complex value is discarded and the value of the real part is converted

according to the corresponding rules found in � 7.2.4.4 above.

81

7.2.4.7 Conversions Involving Pointers

There are eight pointer conversion rules found in �6.3.2.3 of the standard:

1. A pointer to void can be converted to or from another pointer to any incomplete

or object type. When converted back again, the result shall be equal to the original

pointer.

2. For any quali�er q, a pointer to a non-quali�ed type may be converted to a pointer

to a q-quali�ed version of the same pointed to type where the values stored in the

original and converted pointer remain equal.

3. If an integer constant expression holds the value 0 and is cast to type void *, the

result is called a null pointer constant. If a null pointer constant is converted to

a pointer type, the resulting pointer is called a null pointer and is guaranteed to

compare unequal to a pointer to any other object or function.

4. Conversion of a null pointer to another pointer type produces a null pointer of

the same type as the original null pointer and the two null pointers shall compare

equal.

5. An integer type can be converted to any pointer type. However, the resulting

behavior is implementation-de�ned.

6. Any pointer type can be converted to an integer type. The result is implementation-

de�ned. If the result cannot be represented by the integer type, the behavior is

unde�ned.

7. A pointer to an object or incomplete type may be converted to another respective

object or incomplete type. If the resulting pointer is not correctly aligned for the

pointed-to type, the behavior is unde�ned. Otherwise, when converted back, the

result shall compare equal to the original pointer. When a pointer to an object is

converted to a pointer to a character type, the result points to the lowest addressed

byte of the object. Successive increments of the result, up to the size of the object

produces pointers to the remaining bytes of the object.

82

8. A pointer to a function of one type may be converted to a pointer to a function

of another type and back again such that the result will compare equal to the

original pointer. If a converted pointer is used to call a function whose type is not

compatible with the pointed-to type, the behavior is unde�ned.

7.3 Expressions

C expressions are the �work horses� of the language. They perform calculations, make

comparisons, and �ip bits. According to �6.5 of the standard, an expression is a sequence

of operators and operands that speci�es computation, designates an object or a function,

or generates side e�ects, or any combination thereof. However, a value may be modi�ed at

most once between sequence points during the evaluation of an expression. All sequence

points are listed in Annex C of the standard.

Each expression form, whether it be unary, binary, or ternary, has its own syntax

rules. Except for function calls, the logical AND, the logical OR, the conditional, and

comma operator expressions, the order of evaluation of the subexpressions and the order

in which side e�ects take place are unspeci�ed. That said, expression operators have and

adhere to an order of precedence. For example, the mathematical operators follow the

traditional precedence rules found in mathematics unless otherwise speci�ed by the use of

enclosing parenthesis. For all C expressions, the operands to each operator have a speci�c

associativity (Table 7.1). In Table 7.1, the larger precedence number takes precedence

over the lower precedence number. If a mathematical operation is not de�ned, such as a

divide by 0 or if the result of an expression evaluation is not in the range of representable

values for the type of the expression, the behavior is unde�ned.

The standard provides for seven expression forms (Fig. 7.1). Except for the primary-

expressions (identi�ers, literals, and parenthesized expressions), all other expressions are

comprised of an operator applied to one or more operands. The e�ective type of an

operand object is determined at the time of the object's declaration. However, each

83

Table 7.1: Operator order of precedence and operand associativity

Precedence Operator Description Associativity

++ Su�x increment Left-to-right

� Su�x decrement Left-to-right

1 () Function call Left-to-right

[] Array subscripting Left-to-right

. Element reference Left-to-right

-> Element pointer Left-to-right

++ Pre�x increment Right-to-left

� Pre�x decrement Right-to-left

+ Unary plus Right-to-left

- Unary minus Right-to-left

2 ! Logical NOT Right-to-left

� Bitwise NOT Right-to-left

(type) Type cast Right-to-left

* Indirection Right-to-left

& Address-of Right-to-left

sizeof Size-of Right-to-left

* Multiplication Left-to-right

3 / Division Left-to-right

% Modulo Left-to-right

4 + Addition Left-to-right

- Subtraction Left-to-right

5 � Bitwise left shift Left-to-right

� Bitwise right shift Left-to-right

< Less than Left-to-right

6 <= Less than or equal to Left-to-right

> Greater than Left-to-right

>= Greater than or equal to Left-to-right

7 == Equal to Left-to-right

!= Not equal to Left-to-right

8 & Bitwise AND Left-to-right

9 � Bitwise XOR Left-to-right

10 | Bitwise OR Left-to-right

11 && Logical AND Left-to-right

12 || Logical OR Left-to-right

? : Ternary conditional Right-to-left

= Simple assignment Right-to-left

+= Assignment by sum Right-to-left

-= Assignment by di�erence Right-to-left

13 *= Assignment by product Right-to-left

/= Assignment by quotient Right-to-left

% = Assignment by remainder Right-to-left

�= Assignment by bitwise left shift Right-to-left

�= Assignment by bitwise right shift Right-to-left

& = Assignment by bitwise AND Right-to-left

�= Assignment by bitwise XOR Right-to-left

|= Assignment by bitwise OR Right-to-left

14 , Comma Left-to-right

84

〈 expression 〉 ::= 〈 primary-expression 〉
| 〈 post�x-expression 〉
| 〈 unary-expression 〉
| 〈 cast-expression 〉
| 〈 binary-expression 〉
| 〈 ternary-expression 〉
| 〈 assignment-expression 〉

Figure 7.1: Syntax of C expressions

operator places additional typing speci�c constraints on its operands. For example, the

operands of the modulo operator % must be of integer type. In all, there are 23 unique

operand typing constraints imposed by the various operators comprising all expression

forms.

7.3.1 Static Typing Semantics

To express the static typing semantics of any given expression, the typing constraints are

used in conjunction with the accompanying operational semantics that de�ne the type

conversion mechanisms within the standard to create a series of judgments in the form

of

Static Typing Semantics: Typing Inference Structure

Precondition

C onclusion
(7.1)

where P are the predicates or pre-conditions that must hold for the conclusion Q to be

true. More speci�cally, each P and Q is judgment of the form

Static Typing Semantics: Judgement

Γ ` A (7.2)

where Γ is the static typing environment and A is an assertion such that Γ implies A. A

typing judgment takes the form

85

Static Typing Semantics: Typing Judgement

Γ ` e : τ
(7.3)

which asserts that e has type τ with respect to the typing environment Γ.

The typing constraint premises that an operator imposes on its operands can be

expressed in a predicate function returning either true or false according to the declared

type of an operand object. For example, if an operand is required to be of integer type,

then the predicate function isInteger() (equation 7.4) can be used to type check the

operand. As a predicate function, isInteger() is a boolean-valued function of the type

f : X → B, where X is an arbitrary set and B is 2-element set, B = {0, 1}, and is

interpreted in truth returning, logical applications as B = {false, true}. In the case of

isInteger(), X = TYPE, where TYPE is the set of all C types whose members are

denoted as τ . If τ is equivalent to one of the integer types listed in equation 7.4, then

isInteger() returns true. Otherwise, isInteger() returns false.

isInteger : TYPE→ B
isInteger = (λτ. case τ of

_BOOL | SCHAR | UCHAR | SHORT | USHORT |
INT | UINT | LONG | ULONG | LLONG | ULLONG→ true
Otherwise→ false). (7.4)

The sub-type relationships from the syntax of the type speci�cations (Chapter 6)

allows some predicate functions to be built upon the predicate functions of the sub-

types of a super-type. For example, the sub-types of the super-type, arithmetic type,

are the standard integer types and the real �oating types. Thus, the predicate function

isArithmetic() can be de�ned as in equation 7.5.

isArithmetic : TYPE→ B
isAritmetic = (λτ. case τ of

isInteger(τ)→ true
Otherwise→ isFloat(τ)). (7.5)

86

Other premises are constructed of functions that return a type f : X → T. For

example consider the type conversions based on the integer promotions that state if

a signed int can represent all values of the original integer type with less precision

than that of a signed int, the value of the original type is converted to a signed int;

otherwise, the original type is converted to an unsigned int. If the native integer type

is 32-bits, then the process is straight forward (equation 7.6) as the values of all smaller

bitwise signed and unsigned integer types are within the range of a signed 32-bit signed

int.

intPromote : TYPE→ TYPE
intPromote = (λτ. case τ of

char→ signed int

signed char→ signed int

unsigned char→ signed int

signed short→ signed int

unsigned short→ signed int

otherwise→ τ) (7.6)

However, if the native integer type is 16-bits, then an additional value check has to

be added to the type unsigned short before its promotion to either a signed int or to

an unsigned int. Although the types unsigned short and signed int have the same

bitwise size, the maximum value that can be held by an unsigned short is 65535 and

the maximum value can be held by an signed int is 32767. Thus, if the value of an

unsigned short is less than or equal to 32767, then the unsigned short is promoted

to an signed int. Otherwise, the unsigned short is promoted to an unsigned int.

A listing of the main predicate functions for the typing constraints and other sup-

portive functions appear in Appendix ??.

For a simple example, consider a modulo expression (equation 7.7) such as a % b.

There are �ve preconditions that must be satis�ed in the static typing semantics of

modulus expressions. The operands a and b have to have a type in the type environment

Γ. Type is represented by τ1 and τ2. Although e generally represents an expression, it

87

is used here to represent each operand because an operand might be an expression. The

typing constraints placed on the operands by modulo operator (�6.5.5 of the standard)

requires the them to be of integer type. In addition, the semantics also say that the usual

arithmetic conversions are performed on both operands before the operation is executed.

The converted type is represented by τ ′.

The operational semantics of the modulus operator states that the result is the inte-

ger remainder resulting from dividing the �rst operand from the second operand. The

conclusion states that the type of the result is the same as the converted operand type

prior to the operation.

Static Typing Semantics: Modulo

Γ ` e1 : τ1 Γ ` e2 : τ2
isInteger(τ1) isInteger(τ2)

arithConv(τ1, τ2) ; τ ′

Γ ` e1 % e2 : τ ′
(7.7)

For many expressions, such as those that are arithmetic by nature, the type of the

result is the converted type of the operands. However, the result type of conditional

and equality expressions may be di�erent than the converted operand types. Consider

the equality expression (equation 7.8) where the �rst of three distinct typing constraints

require both operands of the equality operators to be of arithmetic type subjected to the

usual arithmetic conversions. Recall, an arithmetic type is either a �oating type or a

standard integer type.

The operational semantics of the �is equal� == operator produces 1 to represent true

if the two operands are equal. Otherwise, it produces 0 to represent false if the two

operands are unequal. Likewise, the �is not equal� != operator produces 1 to represent

true if the two operands are unequal. Otherwise, it produces 0 to represent false if the

two operands are equal. The result type of both operators is of type int. Let eq_op

represent { == | != }.

88

Static Typing Semantics: Equality Op Constraint 1

Γ ` e1 : τ1 Γ ` e2 : τ2
isArithmetic(τ1) isArithmetic(τ2)

arithConv(τ1, τ2) ; τ ′

Γ ` e1 eq_op e2 : τINT
(7.8)

At times, static typing considers location values (lvalue) as opposed to result values

(rvalue). Recall, a lvalue is an integer type holding the memory address of an data

object. As such, the lvalue cannot be a negative value. For example, consider the post�x

expression of array subscripting. �6.5.2.1 of the standard states that a post�x expression

followed by an expression enclosed in square brackets is a subscripted designator of an

array object. The operational semantics of the subscript operator [] is de�ned as e1[e2]

is identical to (∗(e1) + (e2)) where ∗ is pointer to e1 which is the initial element of a

named array object in memory and e2 is an integer designating the e2-th element of e1

counting up from zero. In equation 7.9,

Static Typing Semantics: Array Subscript

Γ ` ∗(e1 + e2) : lvalue(ARRAYτ)

Γ ` e1[e2] : lvalue(ARRAYτ, n),
(7.9)

the premise states that in the typing environment Γ, a pointer * to the named array

object e1 added to e2 element of e1 is the location value of an array of type τ . If the

premise holds, the conclusion is that a named array object e1 followed by a bracket

enclosed element value [e2] is also a location value of an array of type τ of a size n.

For a �nal example, consider the static typing semantics of variables. Arrays and

other operands of named memory objects are variables associated / to an identi�er I.

The static typing semantics of an identi�er states (equation 7.10) that if in Γ, an identi�er

I associated / to a data object obj and obj has a type τ , then in Γ, I also has τ .

89

Static Typing Semantics: Identifier

Γ ` I / obj : τ

Γ ` I : τ
(7.10)

7.3.2 Type Safety Requirements

The static typing semantics examples described above do not express the type safety

requirements of the expressions. The most basic type safety requirement is that the

result of any expression can be represented by the type of the expression. Let τMINvalue

represent the smallest value that can be represented by the expression type, resultvalue

represent the evaluated resultant value of the expression, and τMAXvalue represent the largest

value that can be represented by the expression type. If the following condition is met

τMINvalue ≤ resultvalue ≤ τMAXvalue , (7.11)

the expression evaluation is type safe.

Each expression has its own set of other type safety requirements in addition to

range checking the result value to the valid values representable by the expression type.

Let us reconsider the above static typing examples. In the case of the modulo expression

(equation 7.7), there are four additional, primary type safety requirements: if an operand

represents a data object stored in memory, then it must have a value, an operand that

represents a stored data object must not be in an error condition, such as in an over�ow

state. The divisor cannot be zero (division by 0 is unde�ned) and if one of the operands

is of type unsigned int (UINT), unsigned long int (ULONG), or unsigned long long

int (ULLONG), then the other operand has to ≥ 0. If it is the case, however, where the

other operand is the divisor of the modulo (division) expression, then it has to be > 0.

90

Type Safey Requirements: Modulo

e1 : val 6= nil ∧ e2 : val 6= nil

e1 : val 6∈ error ∧ e2 : val 6∈ error

e2 : val 6= 0

if τ ′ ∈ { UINT ULONG ULLONG }, then e1 : val ≥ 0 ∨ e2 : val > 0

τ ′MINvalue
≤ e1 % e2 : val ≤ τ ′MAXvalue

e1 % e2 : valτ ′
(7.12)

The type τ ′ in TypeSafetyRequirements equation 7.8 is the converted type of the mod-

ulo expression after the operands have been subjected to the usual arithmetic conversions

prior to the execution of the statement.

For equality expressions (equation 7.8), the type safety requirements are that both

operands have to be initialized and not in an error condition. In addition, if one operand

is an unsigned integer type greater than UINT, then the other operand value must be ≥ 0.

In equation 7.13, let eq_op represent { == | != }.

Type Safey Semantics: Equality Op

e1 : val 6= nil ∧ e2 : val 6= nil

e1 : val 6∈ error ∧ e2 : val 6∈ error

if e1 ∈ { UNIT ULONG ULLONG }, then e2 : val ≥ 0
if e2 ∈ { UNIT ULONG ULLONG }, then e1 : val ≥ 0

e1 eq_op e2 : valτINT
(7.13)

Type safe array subscripting (equation 7.9) requires that value of e2 (the array index)

to be greater than or equal to 0 and less than or equal to the declared array size minus

1. In addition, the array size has to greater than or equal to 1. In equation 7.14, let n

represent the declared array size.

Type Safe Semantics: Array Subscript

n ≥ 1
e2 : val ≥ 0 ∧ e2 : val ≤ (n− 1) ∧ n ≥ 1

Γ ` e1[e2] : lvalue(ARRAYτ , n)
(7.14)

91

Type safe usage of an identi�er (equation 7.10) is based on its constraints. In the case

of the initial character being a digit and in the case of an identi�er matching a keyword,

it is assumed that a compiler will catch the error. However, it is possible for a compiler

to create ambiguous identi�ers in the rare chance that two or more identi�ers are longer

than 32 characters in length and that their �rst 32 characters equally match. Thus, the

type safety rules for identi�ers follow.

Type Safey Semantics: Identifier

lengthOf (I) ≤ 32

Γ ` I : τ
(7.15)

The static typing semantics for all expression de�ned in �6.5 of the standard and their

corresponding type safety rules are enumerated in Appendix ??.

7.4 Statements

While expressions do the so called �heavy lifting,� C statements ultimately decide the

order in which the expression will be executed. Statements and blocks are de�ned in

�6.8 of the standard. Statements are semantically executed in sequence unless otherwise

indicated and the purpose of each statement is to specify an action to be performed. A

block is a set of declarations and statements grouped into one syntactic unit. The storage

duration of declarations declared within a block is as long as a program is executing within

the scope of the block. Finally, the standard de�nes a full expression as an initializer,

an expression within an expression statement, the controlling expression of a selection

statement (if or switch), the controlling expression of a while or a do statement,

the optional expressions of a for statement, and the optional expression in a return

statement. Other than the preceding expression types, a full expression is not part of

another expression or of a declaration declarator, and the end of a full expression is a

sequence point.

92

〈 statement 〉 ::= 〈 labeled-statement 〉
| 〈 compound-statement 〉
| 〈 expression-statement 〉
| 〈 selection-statement 〉
| 〈 iteration-statement 〉
| 〈 jump-statement 〉

Figure 7.2: Syntax of C statements

Syntactically, there are six statement forms (Fig. 7.2). Because most statements

contain an embedded expression to enable �ow control decisions, their static typing

closely mirrors that of the static typing semantics of the embedded expression. Likewise,

the individual expressions contained within a statement block have the same static typing

semantics as discussed in the previous section.

For example, consider the if and the if else selection statements. Both statements

are de�ned in �6.8.4.1 of the standard. The operational semantics for the if and the if

else statements state that the �rst sub statement contained within the scope statement

is executed if the controlling expression compares unequal to 0. In the else form, the

second sub statement is executed if the controlling expression compares equal to 0. If

the �rst sub-statement is reached via a label, the second sub statement is not executed.

For both, the controlling expression is constrained to have scalar-type.

Equation 7.16 depicts the static typing semantics of the if statement. The terms exp

and stmt respectively represent the controlling expression and the statements contained

withing the scope of if block. The premises of the static typing semantics state that

in the typing environment Γ there is a controlling expression that is an expression of

type τ ′. The type is labeled τ ′ because the statement contained with the if block may

have di�erent typing requirements. The type of the controlling expression τ ′ has to be

of scalar type. Within the if block there is another typing environment Γ that has a

statement of type τ .

93

Static Typing Semantics: If Statement

Γ ` exp : τ ′

isScalar(τ ′)
Γ ` stmt : τ

Γ ` if(exp) stmt : τ
(7.16)

If premises hold for equation 7.16, the conclusion is that in a typing environment Γ

a if expression is the type of the statement τ . The if else statement in equation 7.17

di�ers from the if statement because it contains a typing environment for the if block

containing stmt1 and a typing environment for the else block containing stmt2.

Static Typing Semantics: If Else Statement

Γ ` exp : τ ′

isScalar(τ ′)
Γ ` stmt1 : τ
Γ ` stmt2 : τ

Γ ` if(exp) stmt1 else stmt2 : τ
(7.17)

If the premises hold for equation 7.17, the conclusion of the if else statement is the

same as that of the if statement in the sense that it is the type τ statement it branches

to. The else is associated with the lexically nearest preceding if that is allowed by the

syntax.

The static typing semantics of iteration statements are similar to selection statements

in the sense that there a controlling expression containing a set of statements. Consider

the while loop statement that is de�ned in �6.8.1 of the Standard. The operational

semantics of the while state that the controlling expression exp is evaluated before each

statement stmt execution of the loop body. In equation 7.18, the static typing premises

and conclusion are the same as the if statement.

94

Static Typing Semantics: While Statement

Γ ` exp : τ ′

isScalar(τ ′)
Γ ` stmt : τ

Γ ` while(exp) stmt : τ
(7.18)

For a �nal example, consider the jump statements as de�ned in �6.8.6 of the standard.

A jump statement, such as return, causes an unconditional jump to another place in the

program. As for the return statement, it terminates execution of the current function

and returns control to its caller. If a return statement with an expression is executed,

the value of the expression is returned to the caller as the value of the function call

expression. If the expression has a type di�erent from the return type of the function

in which it appears, the value is converted as if by assignment to an object having the

return type of the function. Equation 7.19 represents the static typing semantics of

return statements with an expression stmt. Rather than having a set of premises, the

typing semantics is axiomatic in the sense that in the typing environment Γ, type τ is

the type of the statement stmt.

Static Typing Semantics: Return Statement 1

Γ ` return stmt : τ
(7.19)

A return statement with an expression shall not appear in a function whose return

type is void. A void statement without an expression, equation 7.20 shall only appear

in a function whose return type is void.

Static Typing Semantics: Return Void

Γ ` return : VOID
(7.20)

95

As for type safe operation of statements, the safety requirements are based on the

expressions held in the statements.

The typing semantics for all statements de�ned in �6.8 of the standard are enumerated

in Appendix ??.

96

Chapter 8: The Static Type Safety Analysis Tool

With this chapter, the theme of this dissertation shifts to the prototype static type safety

analysis tool introduced by Krause and Alves-Foss [66]. In the following chapters, the

discussion will include the design speci�cations and functionality of the tool.

8.1 The Fundamental Question

In the preceding chapters, the conditions that can produce type safety violations in the

programming language C, such as, but not limited to the integer errors resulting from

either casting or arithmetic operations, were enumerated. In addition, the syntax of the

C typing speci�cations and the static typing semantics of C expressions and statements

were formalized. Armed with this knowledge, the main question is what should the tool

do?

8.2 A Naïve Approach

A language that prohibits the casting of one type to another is said to be strongly typed.

We could take a similar heavy handed prohibitive approach in designing the functionality

of our type safety analysis tool. That is, every expression or statement containing a binary

operation with type mismatched operands would be �agged and reported as unsafe.

Likewise, the tool could �ag and report every instance of a casting between di�erent

types contained within the code under its review. Safe upcasting between types within

the same type family, such as the unsigned integers, would not be immune as they too

would be �agged as a type mismatch.

By taking this naïve approach with languages such as C where implicit coercions by

either an integer promotion or an usual arithmetic conversion is a normal and routine

operating procedure, we would produce either too many false positives or too many false

negatives to be very useful. Adelsbach et al. [1] provides the de�nitions of each decision.

97

De�nition 8.1. A false positive is a false alarm where an event that did not produce

an error condition was �agged as an error condition event.

De�nition 8.2. A false negative is a missed error that was not �agged as an error

condition.

Arriving at a false positive is straightforward. For example, the positive value 1

belongs to all signed and unsigned integer types. Suppose we had an unsigned int x

with the value of 1 and added it to a long int y also with the value of 1. The expression

x + y is type mismatched and would be �agged taking the strictly prohibitive approach

even though the result has not violated any type safety conditions. Clearly, the value of

the result in this example is 2 which can be represented by all integer types.

On the other hand, false negatives would be generated on those operations where

both operands are of the same type but, the result produces one of the following integer

error conditions: over/under�ow or truncation error. For example, if we had a signed

char result, a signed char x with the value of 10, and a signed char y with the

value of 120, the expression result = x + y would be evaluated to result = 130 not

raise an alarm even though the evaluation had produced an over�ow error.

8.3 A Better Attack Plan

Because of the potentially large number of both false positives and false negatives, a

functionality design of the analysis tool that takes a strictly prohibitive approach would be

impracticable. Instead, the tool should have the capacity to not only have type awareness

of the data objects held in memory, but to track and record every value associated with

each memory store beginning with the initial value immediately following a declaration

statement and continuing through each successive value change of the store state resulting

from expression and statement evaluations. Whenever there is change to a value stored

in memory, then the new value should be validated against the legal range of values with

98

respect to the type of the data object represented at that memory location. Fortunately,

any tool designed to analyze C source code can leverage the fact that C is a declarative

language which means all memory data stores must be declared before usage. Although

good coding practices recommend that all declarations of data objects are made at the

beginning of the block in which they appear, C will allow such declarations to occur

anywhere within the scope of the respective block so long as the declaration is made

prior to usage of that data object.

The type safety analysis tool needs to adopt a high level abstraction of the compu-

tational process, where a computation is merely the evaluation of an initial expression

followed by a sequence of 0 or more expressions until the program terminates. An expres-

sion may contain singleton items, such as left hand side (LHS) and the right hand side

(RHS) in simple assignment expressions similar to x = y; or it may be a rather complex

expression comprised of several operators and operands, a control statement, leading to

one of two or more expression statements, a function call, or any mix of expressions,

control statements, and function calls.

Expressions are sorted into blocks and on a granular level, a block is basically the

code contained within the scope of a function, a control statement such as the if or if

else statement, a loop structure such as the for, while, and do while, and the for

statements. Any block may contain 0 or more internal blocks by the inclusion of internal

nested control statements.

8.3.1 In�uence of Literals

In traditional data �ow analysis such as the intra-procedural analysis techniques, such

as live variables, available expressions, reaching de�nitions, and very busy expressions,

explained in Nielson et al. [93], the objective is to track all memory store changes in

relationship to the in�uence of other memory stores in the code. In other words, how is

a particular memory store in�uenced by the state of another memory store? Often called

99

Listing 8.1: When 10 ≯ −10

x = 10;

if(x > -10)

{

// do something important

}

0000 0000 0000 0000 0000 0000 0000 1010 = 10

1111 1111 1111 1111 1111 1111 1111 0110 = −10

Figure 8.1: The 32-bit patterns for 10 and −10 in two's complement

constant values, literals and their in�uence on the data �ow are generally disregarded in

most data �ow analysis. For example, if a variable is stored in memory store then the

assignment of a literal to a variable name, such as x = 10, erases or resets the history

of in�uence behind the variable x prior to the assignment statement because in the

assignment x = 10, x is not in�uenced by any other memory object. When it comes to

type safety, literals have a direct in�uence io the integrity of the values held in memory.

For example, consider the implication of the C code in listing 8.1.

On face value, -10 in Fig. 8.1 is de�nitely less than the value represented by x is 10.

But what if x was declared as an unsigned int? According to the C usual arithmetic

conversion rules 3 and 5 found in �6.1.1.8 of the Standard, the signed int value of -10

is promoted to a very large positive unsigned int value, i.e., 4294967286 on a 32-bit

integer architecture or 65526 on a 16-bit architecture. Fig. 8.1 shows the 32-bit patterns

of both numbers, 10 and -10. Clearly, if the sign bit is ignored, then the complement

scheme, be it one's or two's complement, is lost.

8.4 The Underlying Language ACL2

This section is provided for the bene�t of those unfamiliar with ACL2. ACL2 is an

acronym for A Computational Logic for Applicative Common Lisp [58, 59, 60]. As it can

be surmised, ACL2 is two languages in one.

100

8.4.1 Computational Logic

The computational logic component is a theorem prover in Boyer-Moore tradition [58]

where theorems are proved in a �rst order mathematical theory of recursively de�ned

functions and constructed objects using rewrites, decision procedures, mathematical in-

duction, and other proof techniques. First order logic uses predicate functions returning

a truth value (true or false) built from arguments that may be other predicate functions

as well as variables. Arguments may be quanti�ed with the universal quanti�er ∀ (for

all) and/or the existential quanti�er ∃ (there exists) to allow reasoning with respect to

sets and shared set properties.

ACL2 was designed to eliminate the many di�culties users often faced when apply-

ing the Boyer-Moore Theorem Prover, otherwise known as Nqthm [14], to large scale

proof problems. Nqthm (pronounced en-queue-thum) is an acronym for �New, Quali�ed

THeoreM Prover,� a name derived from the directory containing its development �les.

The computational logic of ACL2 includes an extensive axiom database de�ning many

primitive functions for use as the logic embeds propositional calculus and equality into

a term structure that resembles Lisp. According to the Nqthm tutorial [62], new axioms

are added to the database by de�ning one or more of the following:

� Boolean constants T and F

� the IF function with the property that (IF x y z) is z if x is F and y otherwise

� boolean connectives AND, OR, NOT, and IMPLIES

� the equality function EQUAL with the property that (EQUAL x y) is T or F according

to whether x is equal to y

� and inductively constructed objects including natural numbers and cons pairs

101

8.4.2 Applicative Common Lisp

The Applicative Common Lisp component is a subset of the functional programming

language Common Lisp [120] as it uses many of the same Lisp functions originally intro-

duced by McCarthy [75]. Lisp is a functional language and uses functions in the same

sense that functions are used in mathematics, where a function maps a domain to a

range. In math, a function f de�ned on some input n is written f(n). The same function

in Lisp is written (f n). In both mathematics and the Lisp language family, every time

f is applied to n, f returns the same value. For example, the addition function (+ a b)

in Lisp means the values represented by the inputs a and b are summed.

By being an applicative subset, ACL2 prohibits all the data destructive side e�ects

that Common Lisp allows, such as the use of global variables. Instead, ACL2 creates new

data sets as an output while preserving all input data. Executables written in ACL2 are

functions applied to �ve disjoint atomic data types:

1. numbers, such as 0, -123, 22/7, or #c(2 3)

2. characters, such as #\A, #\a, #\$, or #\Space

3. strings, such as �This is a string.�

4. symbols, such as nil

5. cons pairs, such as (a), (1.2), (a b c), or ((a.1)((b 2))

8.4.2.1 Numbers

An ACL2 number is typically written in base 10 or decimal notation. However, ACL2

also supports binary, octal, and hexadecimal notation. For example, the decimal 123

may be written as #b1111011 for binary, #o173 for octal, and #x7b for hexadecimal.

ACL2 does not support decimal �oating point numbers. Whenever a rational number

is required, it is written in fractional form. ACL2 will reduce any fraction to its lowest

terms. Example rational numbers include 0, -77, 123, 1/3, or 22/7. The real and imag-

102

inary parts of complex numbers, such as 3+5i and written as #c(3 0) in ACL2, are also

considered rational numbers. Moreover, ACL2 uses the arbitrary-precision arithmetic

model known as bignums where numbers are typically stored in variable-length arrays of

digits instead of a �xed number of binary bits. That means an ACL2 integer can greatly

exceed the maximum and minimum representable limits of the C integer types.

8.4.2.2 Characters and Strings

An ACL2 character is any member of the 256 ASCII character set. Upper case alpha

characters such as the letter A are written as #\A; likewise, the lower case alpha character

is written #\a. Other characters such as digits, punctuation marks, and signs are written

similarly. That is, the #\ precedes the desired character. Whitespace characters require

their names to be spelled out, such as, #\Space, #\Tab, and #\Newline. A �nite sequence

of characters enclosed in double quotation marks form ACL2 strings. For example, �Hello

World� is a string. If a double quotation mark needs to be part of a string contents, it

must be preceded with a backslash such as \� or \�.

8.4.2.3 Symbols

The ACL2 symbol is a data type representing a word. For example, T or t and NIL

or nil (case does not matter because all lower case alpha characters are automatically

converted to upper case unless otherwise escaped) are the ACL2 boolean symbols for true

and false. The usage of nil can be overloaded to indicate an empty list. ACL2 symbols

include all function and variable names. As such, a symbol may be used as a constant

and except for the symbols t and nil, must be quoted to indicate an intended constant

usage, for example, `x.

A symbol may also be comprised of two strings to represent a package name and

a symbol name. Both parts are joined with �::� operator. The :: operator is used

103

to associate a symbol name to the package name in which the symbol was de�ned,

for example PackageName::SymbolName means SymbolName is in the package linked to

PackageName. Packages are beyond the scope of this introduction. But it is worth noting

that symbols printed with a leading : are of the package named �KEYWORD�. For example,

:HINTS represents the symbol HINTS in the package KEYWORD.

8.4.2.4 Cons Pairs

The �nal ACL2 data type is the cons. Sometimes called a list, a cons pairs, a dotted

pair, or a binary tree, a cons is an ordered pair of objects. Any two objects, including

another cons pair may be used in any cons. The left hand side is the car and the right

hand side is the cdr. nil is the empty list and may be written as (). If all the elements

of the lists are conses, then we have an association list or alist. An alist can be used as

a lookup table with each car along the list serving as an unique lookup key.

ACL2 can be used to solve problems, by performing computations through a series

of expressions. Simple expression in ACL2 may be one of the following forms:

� a variable symbol other than a constant such as x

� a constant symbol such as t, nil, a keyword, or any other symbol declared using

defconst

� a constant expression that is either a number, character, string, or quoted ACL2

object

� the application of a function expression of n arguments that is either a func-

tion symbol applied to n arguments or a closed lambda expression of the form

(lamba (v1 . . . vn) body), where the vi are n distinct variable names, body is a

simple expression and no other variable other than the vi occurs freely in the body

ACL2 expressions are used to formulate terms. A term in traditional �rst-order

predicate calculus is a syntactic entity denoting some object in the universe of all objects.

But in ACL2, terms are used in place of both atomic and non-atomic formulas because

104

Listing 8.2: ACL2 not function

(defun not (p)

(if p nil t))

in the universe of ACL2 objects, an object is either true or false. Atomic formulas are

terms built with predicate symbols such as equal and member. Non-atomic formulas are

built from atomic formulas using propositional operators such as not and implies. The

non-atomic formulas are generally referred to as formulas.

In ACL2, terms also provide the semantics of expression. For example, the term 3

is simply the decimal number three and a function term such as (if x y a) means the

value of a if the value of x is nil, otherwise the value of y. The meaning of the term

x depends on the environment. x may represent a function argument or it could be the

target of a let construct. For example,

(let ((x (+ 5 3))))

gives x the value 8 if the addition of 5 and 3 is closed to x (contained within parenthesis).

ACL2 functions are either built-in or user de�ned. Most ACL2 functions, however,

are user de�ned using the keyword defun for de�ne function. A short list of built in

functions include car, cdr, integerp, zp, ≤, and not (Listing 8.2 [58]). We can interpret

the de�nition for not (Listing 8.2) as �de�ne function not, with formal parameter list

(p), such that the application of not to p is equal to (if p nil t).� To clarify, (if p

nil t) means if p is true then return nil (false), otherwise return t (true). A complete

list of built in functions can be found via the �PROGRAMMING� link at the ACL2

on-line documentation site [61].

ACL2 functions are recursive. Consider the ACL2 function member (Listing 8.3 [58])

that determines if an object has set membership. The member function takes two pa-

rameters, parameter e is the search value and parameter x is a list to search. If e is in

the list x, then e is a member of x and t is returned. Otherwise, nil is returned. The

105

Listing 8.3: ACL2 member function

(defun member (e x)

(if (endp x)

nil

(if (equal e (car x))

t

(member e (cdr x)))))

Listing 8.4: An iterative solution in C for n!

int factorial(int n)

{

int fact = 1;

for(int i = n; i > 0; i--)

{

fact = fact * i;

}

return fact;

}

cond states that if the list is empty (using endp to test an empty list), exit. Otherwise,

compare e to the car of x. If equal, return true. Otherwise, call the member function

using e and the cdr of x as arguments.

ACL2 does not directly support iteration. However, iterative logic, such as a loop,

can be de�ned recursively. For example, consider the mathematics factorial denoted n!

where n! is the product of all positive integers less than or equal to n. If n = 5, then

5! = 5× 4× 3× 2× 1 = 120. Using C, we can write a function to compute n! iteratively

(Listing 8.4) or recursively (Listing 8.5). Using ACL2, however, the function to compute

n! is recursive (Listing 8.6 [58]).

In ACL2, all functions are total meaning they must terminate. With application

of both language features, ACL2's strength rests in supporting formal models of algo-

rithms, compilers, microprocessors, and machine languages that are both executable and

analyzable [58].

106

Listing 8.5: A recursive solution in C for n!

int factorial(int n)

{

int fact = n;

if(n == 1)

return 1;

else

return fact * factorial(n - 1);

}

Listing 8.6: A secursive solution in ACL2 for n!

(defun factorial (n)

(if (zp n)

1

(* n (factorial (- n 1)))))

8.4.3 Reasons Behind the Use of ACL2

In addition to the applicative nature of ACL2, three other factors that led to the choice

of using ACL2 in constructing the C integer type safety checking tool [66] introduced

here within. First, the data types supported by ACL2 do not su�er from the same error

conditions common to the C integer types. In particular, ACL2 uses bignums which does

not limit integers bit-wise precisions. We can leverage bignums to store intermediate

values for range check comparisons against the representable minimum and maximum

values of any given C integer type. Second is the proof generation capacity of ACL2.

ACL2 can generate proofs to verify that the assumptions made about C static typing

semantic are correct. In addition, ACL2 can be used to prove that the tool is working

accurately and completely. Furthermore, ACL2 can be used produce an executable that

readily models the type safety speci�cations of C programs.

Finally, the ACL2 based type safety analyzer will take advantage of, and add value

to another ACL2 based tool, the c2acl2 translator [3]. The c2acl2 translator creates

a symbol table (SYMTAB) and the abstract syntax parse tree (AST, Listing 8.8) from C

107

Listing 8.7: A simple C program that adds operands of mixed integer type

int main()

{

signed char schar_1;

short short_1 = -10;

unsigned int uint_1 = 10;

int int_1 = 120;

schar_1 = schar_1 + uint_1;

schar_1 = short_1 + uint_1;

schar_1 = schar_1 + uint_1;

schar_1 = short_1 + int_1;

schar_1 = int_1 + uint_1;

return schar_1;

}

source code (Listing 10.1). In its current version, however, the tool only acts upon the

c2acl2 generated AST.

8.4.4 In Summary

The combination of its programming and theorem proving capabilities makes ACL2 suit-

able for a wide range of tasks. According to Kaufman et al. [59], ACL2's strength rests

in its support of formal models which gives ACL2 the ability to solve many modeling

problems from algorithms, compilers, microprocessors, and machine languages that are

both executable and analyzable. The formal models can specify results and act as e�-

cient simulators. ACL2 has successfully modeled and veri�ed several systems. The short

list includes a Java like byte code and its interaction in the Java Virtual Machine [86],

software-based fault isolation or �sandboxing� [74], �ash memories [106], secure COTS in

hardware design [104] and the AMD processor [111].

108

Listing 8.8: AST for a simple C program that adds operands of mixed integer types

(C2ACL2 (FILE ``simpleAdd '')

(

";**"

"; Function Definition for function: main"

";**"

(FUNC (INT)(ID "main" 1) NIL

(BLOCK

(DECL (SIGNED CHAR)(ID "schar_1" 2)NIL)

(DECL (SHORT)(ID "short_1" 3)

(INIT (UNMINUS (LIT 10))))

(DECL (UNSIGNED INT)(ID "uint_1" 4)

(INIT (LIT 10)))

(DECL (INT)(ID "int_1" 5)

(INIT (LIT 120)))

(EXPSTMT (ASSN (ID "schar_1" 2)

(ADD (ID "schar_1" 2) (ID "uint_1" 4))))

(EXPSTMT (ASSN (ID "schar_1" 2)

(ADD (ID "short_1" 3) (ID "uint_1" 4))))

(EXPSTMT (ASSN (ID "schar_1" 2)

(ADD (ID "schar_1" 2) (ID "uint_1" 4))))

(EXPSTMT (ASSN (ID "schar_1" 2)

(ADD (ID "short_1" 3) (ID "int_1" 5))))

(EXPSTMT (ASSN (ID "schar_1" 2)

(ADD (ID "int_1" 5) (ID "uint_1" 4))))

(RETURN (ID "schar_1" 2))

)

)" ; End of function main"

)

)

109

Chapter 9: Leveraging State in a Static Analysis Environment

Although the type safety veri�cation tool introduced in this dissertation performs a

static analysis by traversing, line by line, an abstraction of C source code, it needs to be

somewhat aware of state. In this chapter, the importance of state and how to track it is

discussed.

9.1 A State-full Introduction

Procedures to verify programming languages and computer programs often rely on the

concept of state [67]. Bishop de�nes state as the set of all data residing within a compu-

tational framework at any given time slice [11, 12]. This includes data held in memory,

the registers, the program counter (PC), etc.

According to Ray et al. [107], program correctness is proved by showing that the

program began in a state satisfying one or more certain preconditions and terminated

in a state satisfying one or more certain postconditions. Without making a preferential

claim, Ray et al. [107] present three main proof strategies, that may be used individually

or interchangeably, to verify deterministic, sequential programs:

1. the employment of stepwise invariants,

2. the application of clock functions, and

3. by reasoning drawn from inductive assertions anchored to program cutpoints.

For example, Moore [85, 86, 87] applied clock functions to an abstract machine semantics

of the Java Virtual Machine (JVM) to verify its operational semantics by showing that

state changes of any given operation were both predictable and repeatable. State of the

JVM was modeled as a tuple holding the PC, the stack (STK), the memory (MEM), the

exit condition (HALT), and the code. Instructions for the operational semantics were

derived from the assembly code generated from compiling JVM code. All three proof

110

strategies typically leverage state with abstract machine semantics to verify pre and post

conditions using Hoare [32, 46] like axiomatic semantics.

Several of the tools to verify the operational semantics of programming languages

[85, 86, 87] and the secure data �ow of programs [4, ?, 51] have been written in ACL2

[58]. Most use an abstract machine semantics that the tools step through with the aid

of two state wise functions Ray et al. [51, 105, 107] call next and run. Both functions,

next and run, are derived from the abstract interactions of the PC and the source code.

For example, the function next : S → S enables state to next state transitions where

S is the set of member states individually denoted by s. For any s, next(s) returns the

state after executing one instruction ∈ IN from s. Executions are handled in the function

run : S × IN→ S which returns the state after n instructional transitions from s.

run(s, n) ,

 s if exit(s)

run(next(s, n− 1)) otherwise
(9.1)

Exit is the terminal state and is a third predicate in addition to the pre and post

conditions. The exact meaning of exit depends on the program being analyzed. For

example, if the analysis is of a sub routine, such as a function, then exit is the point

where control is given back to the calling program. If all three predicate types can be

satis�ed, then a program's correctness is said to be complete. If the analysis cannot

reach the terminal state, however, all pre and post conditions have been satis�ed, then

correctness is said to be partial.

9.2 Application of Functions Run, Next, and Exit

The prototype type safety tool introduced in this dissertation uses an abstraction of C

source code generated by the c2acl2 translator [4]. The high level instructions (Table 9.1)

of the abstraction are organized either globally or within scope or blocks of functions,

111

Declarations Expression Statements Flow Control

DECL EXPSTMT IF

FUNCDECL ELSE

TYPEDEFDECL CASE

DO

WHILE

FOR

COND

Table 9.1: High level instruction nodes

individually denoted by FUNC. Within each FUNC block, there is a series of declarations,

expression, and �ow control statements. The execution �ow control statements introduce

their own sub-scoping blocks of the high level instructions within the FUNC block (Fig. 9.1).

Each instruction set is arranged as nodes along a �linear tree�. The tool steps the in-

structions contained in this tree by sequentially evaluating one instruction at a time after

beginning with the �rst instruction node on the tree. Evaluation of the �rst instruction is

the current run function. Once evaluated, the remaining tree is passed back into the tool

where the �rst instruction of that tree is then evaluated. The process of returning the

remaining instruction tree is the run next function. Once all of the instructions contained

in the tree are evaluated, the exit function is reached.

9.3 Tracking State

As each instruction is evaluated, the integer type safety tool makes one of three deter-

minations.

1. The instruction is type safe.

2. The instruction is not type safe.

3. Not enough is known about the instruction to make a determination about its

type safety.

112

FUNC DECL_STMT

DECL_STMT

EXPSTMT_1

FLOW_CTRL

EXPSTMT_2

EXPSTMT_3EXIT

Figure 9.1: A simplistic AST

113

The �rst two type safety judgments are intuitive. The third is a reality of any static anal-

ysis of source code that calls upon external data sources or externally de�ned functions

whose values and types are only realized during dynamic run time conditions.

The output of the tool to report its type safety decisions can be �ne tuned. When

the most verbose output is used, type safe instructions are echoed with an appended

line number. If the instruction is a DECL, the change to memory is recorded. If the

instruction is an EXPSTMT that has an assignment (ASSN), the memory updates resulting

from the assignment are also recorded. Instructions that are deemed to be either not

type safe or if the type safety cannot be determined are also echoed with an appended

line number and a corresponding error or warning message. In the case of instructions

considered to be unsafe, an error message is generated. If it is the case when a safety

decision cannot be made, a warning message is generated. A warning message serves a

veri�cation marker to indicate that the function requires external data sources and needs

additional type safety analysis. Moreover, the warning messages can be customized to

produce veri�cation conditions stating that the instruction will be type safe if one or

more attributes of the data are satis�ed. For example, the data value has to belong to a

speci�ed range of values within the representable values of the data type of the expression

or statement.

9.3.1 Type Safety Decision Algorithms

For each instruction node along the AST, the integer type safety tool executes a series of

precondition predicate checks based upon the static typing semantics and the type safety

requirements with respect to the corresponding expression. If all predicates are satis�ed,

then the conditions prior to execution are type safe. If one predicate is not satis�ed, a

corresponding error message is generated. The general algorithm for the precondition

checks is presented in Fig. 9.2.

114

expType = getExpType(operator)
for i = 1 to n do

if operandType(operandi) /∈ expType then
return ERROR MSG

end if

end for

for i = 1 to n do

if operandWarningCond(operandi) then
return WARNING MSG

end if

end for

for i = 1 to n do

if operandErrorCond(operandi) then
return ERROR MSG

end if

end for

for i = 1 to n do

if getOperandVal(operandi) = nil then

return ERROR MSG
end if

end for

unit_p = negVal_p = nil

for i = 1 to n do

if getOperandType(operandi) >= UINT then

uint_p = T
end if

end for

for i = 1 to n do

if getOperandVal(operandi) < 0 then
negVal = T

end if

end for

if uint_p and negVal_p then

return ERROR MSG
end if

Figure 9.2: Basic precondition algorithm

115

There are �ve main precondition checks contained in Fig. 9.2. The �rst is built with

respect to the typing constraints that the operator places on its operand. Admittedly,

most compilers should catch operand types that are outside of the operator typing con-

straints. However, this precondition is included for coverage completeness of the tool.

The second precondition checks to see if an operand residing in memory has been issued

a warning condition. Warnings like error conditions reside in memory until that mem-

ory location has been reassigned with a valid value for its type. As such, the warning

associated to a memory operand has to propagate until a suitable reassignment to that

operand has been performed. The third precondition applies to those memory operands

that have entered an error condition. These operands are treated the same as those

operands that have been associated to a warning where the associated error propagates

until the memory location is reassigned a valid value for its type. The fourth precondi-

tion checks to see if the operand residing in memory has been at least initialized with a

valid value for its type. The �fth and �nal precondition checks compiler type coercions.

Because the C coercion rules usually force all operands to the same type of the largest

bitwise operand type and because all ACL2 number types are of type bignums, this con-

dition has been heuristically simpli�ed. That is, since most up-casts are generally safe if

there is not a sign-age change among the integer types, the tool will issue a warning on

those expressions that contains one operand of type unsigned integer or a larger unsigned

integer type based on integer rankings and if another operand contains a negative value.

If all preconditions are satis�ed, the tool attempts to fully evaluate the high level

instruction set. For declaration instructions, designated by the node DECL or FUNCDECL

or TYPEDEFDECL, the instruction can only be fully evaluated if there is an initialization

value. If an initialization value is present, the tool checks to see if the value can be fully

represented by the declared type.

Expression statements, designated by the node EXPSTMT, are much more interesting.

An EXPSTMT can be comprised of one or more sub-expression statements (Table 9.2).

116

Expression Operator AST node

Binary: Logical OR || OR

Logical AND && AND

Inclusive OR | BITOR

Exclusive OR � BITXOR

AND & BITAND

Equal == EQ

Not equal != NEQ

Less than < LT

Greater than > GT

Less than or equal <= LEQ

Greater than or equal >= GEQ

Shift left � SHIFTL

Shift right � SHIFTR

Addition + ADD

Subtraction - SUB

Multiplication * MULT

Division / DIV

Modulo % MOD

Cast: Cast () CAST

Unary: Address & AMP

Indirection (pointer) * STAR

Unary plus + UNPLUS

Arithmetic-negation - UNMINUS

Negation (bit-wise complement) � NEG

Not ! NOT

sizeof () SIZEOF

Array subscripting [] [

Function call () (

Structure or Union member . DOT

Structure or Union member pointer -> DEREF

Post�x increment ++ POSTINC

Post�x decrement � POSTDEC

Primary: Identi�er ID

Constant LIT

Ternary: Conditional ? : COND

Table 9.2: Sub-expressions of EXSTMT node

117

expResult = evalExp(expression)
if expResult ⊆ expTypevalRange then
return expResult

else

return ERROR MSG
end if

Figure 9.3: Basic postcondition algorithm

Each sub-expression is de�ned in �6.5 of the standard as any combination of a sequence

of operators and operands to compute a value, a designation of an object or function, or

generate a side e�ect. If all operand values for their respective operators are known in the

source code, the tool fully evaluates the expression using a basic postcondition algorithm

(Fig. 9.3). Basically, the tool performs a range check to see if the result value can be

legally represented by the type of the expression. If the value cannot be represented by

the expression type, an error message is generated. If it is the case that the operand is

of a legal type of the expression, but its value is unknown, the tool generates a warning

message to indicate that additional analysis is needed.

9.3.2 Tracking State-wise Changes with an Annotated Look-up

Table

From the type safety checking algorithms, it is apparent that the type safety veri�cation

tool has to be somewhat state-wise aware as it performs a static analysis. In contrast,

an executing program could care less if an operand from memory contains a legal value

or if its value is in an error condition. Unless runtime safety checks are programmed into

the source code, an executing C program merely shoves data bits from memory to the

registers, performs the calculations, and if programmed to do so, stores the calculated

results back in memory. Thus in many ways, a C program during runtime is not state-wise

aware.

118

Listing 9.1: Annotated �elds for each basic data object in the lookup table

((TOKEN-ID ; mandatory field - lookup key

("NAME") ; mandatory field - human readable name

((TYPE-SPECIFIERS) ; mandatory TYPE-INFORMATION field

(TYPE-QUALIFIERS) ; with three typing sub fields

(STORAGE-CLASS-SPECIFIERS))

(VALUE) ; mandatory field

(ERROR\WARNING)) ; optional field - used as needed

To assist the tool in making type safety decisions that are often times based on state,

an annotated lookup table was developed [68]. The concept of annotating data objects

is not new. For example, the programming language Jif [112], a subset of Java, allows

programmers to label its data objects to express how the data held by each data object

can be used. Gennari et al. [37] proposed that C object types be programmer annotated

with the representable value range of the data type to enable validation of state changes.

Our tool di�ers from these proposals as it automatically annotates the types during

evaluation without needing additional programmer intervention.

The annotation schema for the members of our model consists of four primary �elds

and one optional �eld (Listing 9.1). The rationale and purpose for each �eld are detailed

in the following sections. The �elds for each member of the lookup table are initially pop-

ulated whenever a new member is introduced by a declaration statement beginning with

either DECL, TYPEDEFDECL, or FUNCDECL. After the �rst member is added to the lookup

table, the lookup table is updated with either additional members or state-wise memory

changes from the subsequent functions for the examination of the remaining declarations,

expressions, control statements, function calls and returns, and loop counters for type

safety violations.

119

9.3.2.1 The Fields TOKEN-ID and ("NAME")

According to �6.7 of the C standard, all declared variables must have an identi�er name,

and each name must be unique within the scope of which the variable is declared. Scope

may be either global or local. Global is applicable to anywhere in a program and local

is con�ned within the block of a procedure, such as a control statement or a function. A

global identi�er can only be used once, while an identi�er for a local variable can be used

more than once, so long as it is unique to the block in which it resides. For example, the

identi�er i is typically used as shorthand for the name �index� because it is often used

as the counter in the controlling expression of iterative statements, such as a for loop

with the construct

for (clause-1 ; expression-3 ; expression-3) statement.

If i is declared in clause-1, the scope of i is con�ned to the for loop body. Because of

this, the identi�er i may be declared in the clause-1 of many di�erent for loops within

a single program and still remain unique to each for loop.

As c2acl2 translates C source code, it issues an unique integer as the identi�er to

each newly declared object. This integer identi�er is an abstraction of a memory location

and it is what populates the TOKEN-ID �eld. For example, in the c2acl2 translated

declaration statement

(DECL (INT)(ID "i" 2) NIL)

the integer value 2 in the �eld (ID "i" 2) is the unique identi�er issued by c2acl2. Our

integer type safety tool uses the TOKEN-ID �eld as a lookup key to �nd the data members

residing in the lookup table.

Likewise, the ("NAME") �eld is populated with the identi�er used in the C declaration

statement. In the case of this example, the "i" populates ("NAME"). The primary

purpose of the ("NAME") �eld is to keep the output of our tool human readable by using

named memory variables.

120

9.3.2.2 The (TYPE-INFORMATION) �eld

The (TYPE-INFORMATION) �eld and its three sub-�elds serve three primary purposes for

our integer type safety checking tool. First, the (TYPE-INFORMATION) �eld assists in

determining legal value ranges based on expression operand types. Each operand object

type τ has a minimum and a maximum representable value it can hold based on its

bitwise precision. Our tool uses this value range to validate values assigned to operand

objects. If a value is a subset of the operand type representable value range

τminval < τminval+1
< ... < τmaxval−1

< τmaxval , (9.2)

then the value can legally be used by that object. If value cannot be represented by

the operand type, our tool generates an appropriate ERROR statement and populates the

optional �fth (ERROR\WARNING) �eld in the lookup table for that operand.

Second, the (TYPE-INFORMATION) �eld is used to validate type casting operations

based on the C integer ranking, integer promotions, and usual arithmetic conversions

rules. For example, the outcome of a relational expression with an unsigned integer

operand (x = 10) and negative signed integer operand, such as

if(x > -10){ // do something important... },

can produce two di�erent outcomes depending on the integer rank of x. If the rank of

x is less than the rank of the signed int, such as the unsigned char or the unsigned

short, then the integer promotion rule will promote x to type int which is signed. The

literal -10 is also promoted to int and because its value remains unchanged, the outcome

of the relational expression is true. If x is of type unsigned int, the negative signed

integer value is promoted to the unsigned integer type and its value becomes a very large

positive value causing the outcome to be false. Whenever our tool evaluates an expression

with integer operands of di�erent sign types, it checks to see if the signed integer has a

negative value in addition to applying the conversion rule. If it is determined that the

121

negative value will lose its sign bit, our tool generates an appropriate ERROR statement

that populates the optional �fth (ERROR\WARNING) �eld.

Finally, many C expressions have operators that place speci�c typing constraints on

their operands. The (TYPE-INFORMATION) �eld is used by our tool to check all expression

operator typing constraints as de�ned in the C standard. Again, if a typing violation is

found, an appropriate ERROR statement is populated in the optional �fth �eld. Whenever

a �fth �eld error message is generated, the error message will propagate every time the

data object is used as an expression operand other than the operand on the left hand

side (LHS) of an assignment expression. If the LHS operand is reassigned a valid value,

then the error message is dropped. Otherwise, the error stays in place until the data

object is reassigned a legal value.

Each of the three TYPE-INFORMATION sub�elds,

� the (TYPE-SPECIFIERS),

� the (TYPE-QUALIFIERS), and

� the (STORAGE-CLASS-SPECIFIERS),

corresponds to one of the three kinds of declaration-speci�ers used in the syntax of

declarations as de�ned in �6.7 of the C standard and may be used individually or together

to validate the type safety of any given program construct.

9.3.2.3 The Type Sub�eld (TYPE-SPECIFIERS)

TYPE-SPECIFIERS de�ne the type of the declared memory object identi�er by the use of

at least one type-speci�er keyword (Fig. 9.4). If more than one type-speci�er keyword is

required, the keywords may be used in any order. For example, the expressions unsigned

int x; and int unsigned x; are semantically equivalent. In the case where more than

one keyword is required to de�ne a type such as unsigned int, the tool populates

TYPE-SPECIFIERS with standardized type abbreviations (ordered by bitwise precision)

_BOOL, UCHAR, USHORT, UINT, ULONG, and ULLONG for the unsigned integer types. For

122

type-speci�er ::= void | char | short | int | long | float | double
| signed | unsigned | _Bool | _Complex | _Imaginary
| struct-or-union-speci�er | enum-speci�er
| typedef-name

Figure 9.4: C type-speci�er keywords.

the signed integer types, it uses SCHAR, SHORT, LONG, and LLONG. Since the signage of

the C type char is implementation de�ned, our tool conservatively considers it to be an

UCHAR for the time being. The tool applies the same technique to the �oat types and the

incomplete-type VOID. The �oating types _Imaginary and _Complex are rare because

they are only used by the few implementations that support such types and, as such,

they are not included in the current development of the type safety veri�cation tool.

9.3.2.4 The Type Sub�eld (TYPE-QUALIFIERS)

TYPE-QUALIFIERS represent the type-quali�er keywords1 assigning speci�c usage prop-

erties to a declared object (Fig. 9.5). For example, the type quali�er const declares an

object to be unmodi�able. On the other hand, a volatile object can be changed either

internally or externally with respect to the scope of the program for which it appears.

The quali�er restrict can only be used on pointers and is intended to promote program

optimization.

Because the semantics of the type-quali�er keywords can have con�icting meanings,

an object generally may only have one type-quali�er keyword applied to it during its

declaration. Nevertheless, the syntax of type-quali�er usage allows the presence of zero

or more type-quali�er keywords in a single declaration statement. The keywords can be

used in any order, however, compilers generally apply only the �rst while stripping o�

the rest when reserving an object's memory space. Our tool mimics the general compiler

action by populating (TYPE-QUALIFERS) sub�eld with the �rst type-quali�er keyword

1C11 introduced the type-quali�er _Atomic to be used in conjunction with the new header �le

stdatomic.h to support multitasking such as threading and atomic operations.

123

type-quali�er ::= const | restrict | volatile

Figure 9.5: C type-quali�er keywords.

storage-class-speci�er ::= typedef | extern | static | auto | register

Figure 9.6: C storage-class-speci�er keywords.

appearing in a declaration statement. If a type-quali�er keyword is not used during the

declaration, the (TYPE-QUALIFIERS) �eld of the type �eld is populated with NOQUAL.

9.3.2.5 The Type Sub�eld (STORAGE-CLASS-SPECIFIERS)

STORAGE-CLASS-SPECIFIERS (Fig. 9.6) records the storage-class-speci�ers keywords that

may be used in the declaration statement. Compilers use these keywords to determine

the duration, the visibility, and the storage needs of the object or function being declared.

The lifetime is either global or local. A global lifetime is static in the sense that it exists

throughout the execution of a program. Functions, for example, have global lifetimes.

An automatic object has a local lifetime in the sense that its storage space is allocated

whenever the execution of the program enters the block where the automatic variable is

de�ned. Visibility refers to whether an object was originally declared locally or externally

to the program. Finally, the storage directive register is a request to create a register

object. The syntax of storage-class-speci�er declaration statements requires that at most

one storage-class-speci�er keyword may be used with the following caveat. If it is the

case that the keyword is typedef, then at most one additional storage-class-speci�er

keyword may be used.Thus, the tool populates (STORAGE-CLASS-SPECIFIERS) with the

single storage-class-speci�er keyword or with NOSTORE to represent the absence of such a

keyword.

124

9.3.3 The (VALUE) Field

VALUE is primary used to record state-wise value changes to a data object and is initially

populated when our tool evaluates the declaration statement of that object. If an ini-

tializer is not present, it is populated with nil. The purpose of nil is to alert whenever

an uninitialized operand is being used in an expression other than as the LHS operand

of an assignment expression. Such an operand condition will produce an appropriate

ERROR statement. If a declaration statement has an initializer, the tool �rst evaluates the

expression to produce a result value (RESULT). Then, RESULT is range checked against

the representable values the declared type can hold. If

τminval ≤ RESULT ≤ τmaxval , (9.3)

VALUE is populated with RESULT. If not, VALUE is populated with nil and an appropriate

ERROR message is issued.

VALUE gives our tool the ability to evaluate expressions, statements, function calls,

loop counters, etc. for type safety violations. If a result of the evaluation can be deter-

mined, the (VALUE) �eld for the LHS operand of an assignment is repopulated with the

new result which is range checked to the type of the LHS operand. If the result cannot

be determined as is the case with unknown external input values or externally de�ned

functions, a WARNING statement is appended in the �fth (ERROR\WARNING) �eld stating

that the unknown input is legal if and only if it falls within the legal range of values

that can be represented by the given type. The warning message is akin to a veri�cation

condition. Warning messages like error messages propagate until the data objects they

are associated with are reassigned with a valid representable value.

125

9.3.3.1 A Note on Modeling Other Data Objects

While the focus of the previous discussion on the annotated lookup table has been on the

base arithmetic-types, integers and �oats, the model of our lookup table can be adapted

to accommodate other data types by adding additional sub�elds within the main �elds of

the schema. The complete aggregate-type array, for example, has at least one declared

size and a corresponding set of values. Its type is determined by its member objects,

however, its size is of integer type and must have a value greater than 0. The size

information becomes a sub�eld of the (TYPE-QUALIFIERS) �eld. Since the typical length

of the (TYPE-QUALIFIERS) equals 1 for the base arithmetic-types, the application of a

couple built in ACL2 Lisp functions, such as

(> (length (TYPE-QUALIFIERS)) 1),

is a quick and simple way to determine if the member of the lookup table is either an

aggregate-type, a pointer type, or an union-type. Only one additional test is required to

determine if the member is an array.

Likewise, each index value of an array is represented by separate sub�elds in the

(VALUE) �eld taking the form

(((i0)...(in−1)))

where i is the index (member) value and n is the size with the range {n − n = 0, (n −

n) + 1, . . . , (n−n) +n− 1}. For multi-dimensional arrays, each dimension is contained

within separate sub�elds of the (VALUE) �eld to hold their respective element values. For

example, a two dimensional array with two sizes, n and m, and two sets of values, i and

j, takes the form

(((i0)...(in−1))((j0)...(jm−1))).

If an array is declared with a size, but without an initialization, then the number of value

sub�elds corresponds to the size are populated with nil. If it is the case that there is at

126

least one member initialization, the remaining uninitialized members are initialized to 0

as prescribed by the standard.

127

Chapter 10: Conclusions and Future Work

This dissertation summarized an investigation into solving the ongoing problem of integer

type safety in the programming language C. The problem is as old as the language itself

and has been well studied. Over the years, many solutions have been proposed and yet,

the problem persists. This chapter reviews the contributions this dissertation revealed in

attacking the C integer type safety question.

10.1 Review and Conclusions

While justifying why another investigation into the problem of C integer type safety

shortcoming is important, this dissertation noted that type safety is the program property

that is free of unexpected behaviors manifesting from unexpected results. Unlike security

that protects computer systems from external threats, safety strives to o�er protection

to the environment the system operates within. While not all safety violations result

in actual damages, they can leave a system vulnerable to security breaches through the

attack vectors that include denial of service, escalation of privileges, and execution of

arbitrary, malicious code.

10.1.1 Organization of this Dissertation

This dissertation continued with three main sections. The �rst examined the root causes

of type safety failure with respect to C. One reason C continues to be a leading systems

programming language is because of the many freedoms it a�ords to system or computer

programmers. But its strengths were derived at the cost of a lack of bounds checking on

many of the data structures held in memory during runtime. This includes the integer

types which are suspect to enter one of three error conditions: over�ow or under�ow

error, sign error, and truncation error. Many of the error conditions are the result of a

casting or a coercion operation. Whether the operation is explicit or implicit, there is

128

only one safe integer type conversion and that is the up-cast of a smaller integer type to

a larger integer of the same sign type. This integer conversion is the only conversion that

can be represented in a sub-type relationship. All other casting or coercion operations

are potentially unsafe. An integer error condition may also become apparent following

an operation applied to integers where the result of the operation results is a value that

is either too larger or too small to be represented by the integer type of the operation or

the type of the memory data store. In addition to integer errors, unde�ned operations

such as divide by 0 will likely produce unde�ned behaviors. This section concluded with

summary of the current mitigation strategies in use and proposed to avoid type safety

violations. These range from safe coding practices to safe sub-sets of the language to the

use of internal integer operation validation functions and the use of external validation

tools.

10.1.2 Formalization

The second section of this dissertation was a two step exercise in formalizing C. In the

�rst step, a speci�cation of the C type system using a Backus-Naur Form like structure

was introduced. Presentation of the type speci�cation using this method is not only

new, it also shows the sub-type relationships for all types. For example, both signed and

unsigned integer types are a sub-type of the �oating types but neither integer type is a

subtype of the other integer type.

In the second step, the static typing semantics for C expressions and statements were

expressed and enhanced with formal type safety requirements. Although C static typing

semantics have been formalized before, the interpretation used in this dissertation is

much simpler than that of the prior attempts. The goal here was that programmers and

others without an extensive mathematical background could readily understand what

was being expressed. Moreover, previous work in formalizing the static typing semantics

129

were applied to earlier standards of the C language and did not include the 64 bit integer

types; and, the earlier works did not include the supplemental type safety requirements.

10.1.3 The C Type Safety Veri�cation Tool

The �nal section of this dissertation introduced a new type safety veri�cation tool for

programs written in C. The logic of its functional algorithms was based on the contents

of the previous two sections of this dissertation: the factors that can bring forth type

safety issues and a formal understanding of the C type system, its static typing semantics

and type safety requirements.

The tool was written in ACL2 because ACL2 provides a means to write executables

that can model the typing semantics and operations of C source code. In addition,

ACL2 theorem proving capabilities give the ability to reason about the above models

and to show that the models are correct. ACL2 can do this because it was designed to

preserve all original, input data sets and will create additive data sets whenever needed.

As a result, all original abstractions of the source code remain unaltered. Finally, the

representation of numbers using bignums in ACL2 allows for valid range without the bit

width restrictions imposed on C data types.

The tool contains hundreds of functions contained within several thousand lines of

code. Often, it is the case that the tool utilizes a collection of functions to perform a

single task. As such, the inner workings of every function cannot be detailed in this

dissertation. Although the tool performs a static analysis by traversing, line by line,

over an abstraction of C source code, it maintains a limited notion of state by using a

annotated lookup table whose members are populated from the declaration expressions

contained within the source code. Each respective entity in the lookup table contains

�elds to assist with its identi�cation, record its typing and value information, and indicate

if the data object is in an error condition.

130

Whenever possible, the tool fully evaluates the abstracted expression or statement. If

the expected input data is supplied from external data source, its value cannot be know

during the static analysis. If that is the case, a veri�cation condition (warning statement)

will be generated. In either case, if the tool determines that an error condition is likely

or certain, it will issue an error statement. Error and warning statements remain in the

lookup table until the data object in question is reassigned a valid value representable

by its type.

10.2 Assumptions

Success of the tool cannot be determined without the acknowledgment of certain assump-

tions and limitations. For example, it is generally believed that the tool can reason about

fairly obfuscated C source code, the tool is designed to analyze code written to good cod-

ing practices. That said, certain constructs are not allowed and marked as PROHIBITED

by the c2acl2 translator:

� functions with variable length parameter lists

� compound assignment operators

� /=, %=, +=, -=, <<=, >>=, &=, �=, and |=

� the unary pre�x ++ and -- operators

Also currently prohibited by the c2acl2 translator are the type speci�ers FLOAT and

DOUBLE. It is also recommended that usage of the goto and continue should be limited.

Expressions should be as simple as possible with the intent of accomplishing a single

step of a computational solution. Ideally, the source code should contain validation

functions and it needs to be well documented. Although the latter is removed during the

c2acl2 abstraction, the documentation in the original code can provide valuable insight

to the expected behaviors during the review process.

131

10.3 Limitations

At present, there are three major limitations to the tool introduced in this dissertation.

First and by default, ACL2 is designed to manipulate rational numbers only. For example,

ACL2 executables can handle values such as 11/10 but not its equivalent �oating point

representation of 1.1. Thus, the tool in its current state is not equipped to reason about

�oating point values and will crash whenever it encounters a �oating point value in the

c2acl2 abstraction. It is assumed that a script could be written that would translate the

representation of a �oating value to that of a rational number. However, such an option

has not yet been explored.

Experience with another research project has shown a second limitation and that is

an ACL2 alist has its own size constraints. That is, an alist containing somewhere

between 20k and 25k contiguous linear nodes will cause a program stack over�ow during

routine list transversal operations such as those used in lookup functions. This could

become problematic in analyzing large bodies of source code containing many thousands

or millions of lines of code.

One of the largest test �les analyzed to date contained 79 declared memory objects.

While some of the declarations were uninitialized, many others were initialized with a

variety of character and numeric literal expressions. The numeric literals were represented

in either decimal or hexadecimal format, for example, 10 and OxA respectively. Extra

overhead required to traverse the larger lookup table seemed to be unnoticeable. At

some point, the overhead will become apparent when the lookup table contains several

thousand nodes. Answering that question was out of the scope of this dissertation and

the goal of delivering a working proof of concept type safety analysis tool. However, the

anticipation here is that large bodies of source code will be segmented into thousands of

functions to accomplish speci�c tasks by design. That said, the tool is designed to be

capable of analyzing either a single function or a sub-set of all functions without losing

its functionality.

132

The third limitation is the tool's current inability to reason about struct and union

data types. This is because the c2acl2 translator does not fully abstract these. When

c2acl2 was developed, the purpose of the abstraction was to verify secure data �ow.

Because most data �ow analysis techniques are primarily concerned with �nding those

data objects in memory that in�uence the state of other memory data objects, the ab-

straction did not require data values. Since modeling the members of struct or union

data structure was too complicated and was not required for the scope of the original

c2acl2 purposes, the abstraction for these objects remains to be �nalized. Fortunately,

c2acl2 did fully abstract all other data objects which included their values.

10.4 Test Suite and Observed Performance

When a designing any tool, be it physical or software based, two fundamental questions

must be answered. First, was the right tool built? Secondly, does the tool actually

complete its task? The answer for both questions can be derived from extensive testing

against a comprehensive test suite. For complete coverage, the test suite for this project

needed to include all conditions that can lead to failure or, in the case of this dissertation,

a violation of type safety.

The original test suite included several hundred �les. It was compiled for another

research project that investigated the validation of secure data �ow. When constructed,

the test suite intentionally contained numerous examples of type safety violations. Since

most data �ow validation procedures are primarily interested in what data objects resid-

ing in memory play a role in changing the state of other data stores in memory, the fact

that several of the test �les would produce unexpected results did not matter.

Listing 10.1 and its AST (Listing 10.2) are such examples. Within the source code

and its respective AST, there are several expressions that can produce unexpected errors.

For example, the �rst expression statement, c1 = c2 + c1;, contains an uninitialized

133

Listing 10.1: Simple C program that adds operands of mixed integer type

int main()

{

char c1;

unsigned char c2 = 'a';

short s1 = 10;

int i1 = 123;

int i2 = -10;

unsigned int ui1 = 1;

c1 = c2 + c1;

c1 = c2 + s1;

c1 = i1 + s1;

c1 = i1 + ui1;

c1 = i2 + ui1;

c1 = ui1;

}

addition operand, c1. Because of this, the evaluated result of the addition expression is

likely to be unpredictable.

The tool was built in a stepwise fashion. The �rst step was to tackle the declarations

and their initializations. This provided the required the necessary lookup tables. Then

the collection of evaluation functions for each expression type were written in their en-

tirety as single groups. This was done because of the disjoint typing requirements that

operators placed on their operands. Whenever possible, those expressions with similar

typing requirements would call the same set of type checking functions.

It became apparent during the development process of the type safety analysis tool,

that the test suite did not provide complete coverage for detecting type safety violations.

For example, the C99 standard states that for any given data object held in memory, the

state (value) of that object can be changed at most one time in any given expression.

The original test suite included basic cases for the post decrement and post increment

operators that could lead to over�ow or under�ow conditions. However, it did not in-

clude examples of unde�ned state changes such as x = x++ + y. Whenever it was found

that the test suite did not include a particular scenario the would lead to a type safety

134

Listing 10.2: AST for simple C program that adds operands of mixed integer type

(C2ACL2 (FILE "expAddVV")

(

";**"

"; Function Definition for function: main"

";**"

(FUNC (INT)(ID "main" 1) NIL

(BLOCK

(DECL (CHAR)(ID "c1" 2) NIL)

(DECL (UNSIGNED CHAR)(ID "c2" 3)(INIT (LIT "'a'")))

(DECL (SHORT)(ID "s1" 4)(INIT (LIT 10)))

(DECL (INT)(ID "i1" 5)(INIT (LIT 123)))

(DECL (INT)(ID "i2" 6)(INIT (LIT -10)))

(DECL (UNSIGNED INT)(ID "ui1" 7)(INIT (LIT 1)))

(EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "c2" 3) (ID "c1" 2))))

(EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "c2" 3) (ID "s1" 4))))

(EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "i1" 5) (ID "s1" 4))))

(EXPSTMT (ASSN (ID "c1" 2) (ADD (ID "i1" 5) (ID "ui1" 7))))

(EXPSTMT (ASSN (ID "c2" 2) (ADD (ID "i2" 6) (ID "ui1" 7))))

(EXPSTMT (ASSN (ID "c1" 2) (ID "ui1" 7))))

)

)" ; End of function main"

)

135

violation, one or more test �les were added to the test suite for complete coverage. In

every case during the development process, the tool performed as expected on those �les

that contained known type safety violations and those that did not. This was applicable

and observable to both the original test �les or those that had to be written as needed.

10.5 Future Work

The commercially viable C type safety analysis tool, Astrée provided the most validation

of any single tool o�ered prior to this research. Astrée took 21 man years to develop as

a team of no less than three scientists needed seven years to complete the project. By

comparison, this project has been conducted by a single person for about half the time

frame. As such, plenty of work remains.

In addition to adding reasoning capabilities for �oating point numbers and the data

types struct and union (see � 10.3 above), the tool is in desperate need of an graphical

user interface (GUI). Currently without a GUI, the abstraction of the source code to be

analyzed is physically inserted into the input parameter of the main analysis function

call. A GUI would simplify this process by allowing a user to either enter a �le name

or select a �le from a list as the input. From that point, the GUI would contain the

necessary �les to open and read the �le into the tool. Moreover, a GUI could allow the

tool to be further customized by allowing a user to specify the target and the scope of

an analysis. For example, a feature for detecting bu�er over�ows resulting from poorly

designed loop invariants is one of many possibilities. An example GUI feature would

allow the user to �ne tune the scope and depth of the analysis. This GUI feature is

currently supported by Astrée. Finally, the GUI could let a user select how verbose the

analysis output needs to be. In the current state, the output (Listing 10.3) of the tool

is verbose as it includes every line of the abstract source code and the changes made to

the annotated lookup table. It was designed this way to verify that the tool is working

correctly. When analyzing thousands of lined of source code, it may be the case that the

136

analyst is only interested in seeing those lines of code that generate an error or warning

statement.

Finally, the tool presented within this document is a proof of concept. The consider-

able e�ort expended to get to its current state has produced a tool that analyzes most

declarations including typedef and enum declarations and the ability to reason about

unary and binary expressions. More work is required for those conditional statements

that can lead to one or more outcomes such as a conditional expression or the if and

if else statements. A key question that must be answered is how should one track the

alternative outcomes. This becomes evermore complicated by the depth of the scope of

such nested constructs.

10.6 Final Observations

All things considered, the proof of concept has been successful. The logic built upon the

knowledge of the conditions leading to type safety violations, the formalization of the

static typing semantics of the language C, and the formal expressions of the condition

for type safe operations appears to be sound. While plenty of work remains before the

tool becomes fully functional and ready for some sort of public release, the prototype

provides a solid foundation. As the tool matures, the goal is make it robust enough to

be incorporated within other evaluation tools such as compilers. Realization of this end

can be made possible with an investment of time. Moreover, the techniques used in this

process can be adapted to programming languages other than C.

137

Listing 10.3: Example analysis output for simple C program that adds operands of mixed
integer type

(TYPE -SAFETY -ANALYSIS

((FUNC (INT) (ID "main" 1) NIL (LINE 1))

(BLOCK)

(DECL (CHAR)(ID "c1" 2) NIL (LINE 2)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(NIL)))

(DECL (UNSIGNED CHAR)(ID "c2" 3)(INIT (LIT "'a'"))(LINE 3)

(3 ("c2")((UCHAR)(NOQUAL)(NOSTORE))(97)))

(DECL (SHORT)(ID "s1" 4)(INIT (LIT 10))(LINE 4)

(4 ("s1")((SHORT)(NOQUAL)(NOSTORE))(10)))

(DECL (INT)(ID "i1" 5)(INIT (LIT 123))(LINE 5)

(5 ("i1")((INT)(NOQUAL)(NOSTORE))(123)))

(DECL (INT)(ID "i2" 6)(INIT (LIT -10))(LINE 6)

(6 ("i2")((INT)(NOQUAL)(NOSTORE))(-10)))

(DECL (UNSIGNED INT)(ID "ui1" 7)(INIT (LIT 1))(LINE 7)

(7 ("ui1")((UINT)(NOQUAL)(NOSTORE))(1)))

(EXPSTMT (ASSN (ID "c1" 2)

(ADD (ID "c2" 3) (ID "c1" 2)))(LINE 8)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(NIL)

("Error: rhs addition operand uninitialized")))

(EXPSTMT (ASSN (ID "c1" 2)

(ADD (ID "c2" 3) (ID "s1" 4)))(LINE 9)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(107)))

(EXPSTMT (ASSN (ID "c1" 2)

(ADD (ID "i1" 5) (ID "s1" 4)))(LINE 10)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(133)

("Error: value greater than valid range of type CHAR")))

(EXPSTMT (ASSN (ID "c1" 2)

(ADD (ID "i1" 5) (ID "ui1" 7)))(LINE 11)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(124)))

(EXPSTMT (ASSN (ID "c2" 2)

(ADD (ID "i2" 6) (ID "ui1" 7)))(LINE 12)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(NIL)

("Error: operand sign conversion error")))

(EXPSTMT (ASSN (ID "c1" 2) (ID "ui1" 7))(line 13)

(2 ("c1")((CHAR)(NOQUAL)(NOSTORE))(1)))

)

)

138

Bibliography

[1] A. Aldelsbach, D. Alessandri, C. Cachin, S. Creese, Y. Deswarte, K. Kursawe,

J. Laprie, D. Powell, B. Randell, J. Riordan, P. Ryan, W. Simmonds, R. Stroud,

P. Verissimo, M. Waidner, and A. Wespi, �Conceptual Model and Architecture of

MAFTIA (Malicious- and Accidental-Fault Tolerance for Internet Applications,�

University of Newcastle upon Tyne, Tech. Rep. MAFTIA deliverable D22, January

2003.

[2] AlephOne, �Smashing the stack for fun and pro�t,� PHRACK, vol. 7(49), 1996.

[Online]. Available: http://www.insecure.org/stf.smashstack.txt

[3] J. Alves-Foss, �C2ACL2 Translator Design Document,� Computer Science Depart-

ment, University of Idaho, Moscow, ID, USA, Tech. Rep., 2010.

[4] J. Alves-Foss and C. Taylor, �An analysis of the GWV security policy,� in In 5th

Internat. Workshop on ACL2 Prover and Its Applications, 2004, pp. 2�2004.

[5] American Standard Code for Information Interchange, RFC 20: ASCII Format

for Network Interchange, American National Standards Institute Std. ANSI

X3.4-1968, October 1969. [Online]. Available: http://tools.ietf.org/html/rfc20

[6] ANSI, American National Standard for Information Systems�Programming Lan-

guage C, American National Standards Institute Std. X3.179-1989, 1989.

[7] A. Asperti and G. Longo, Categories, Types, and Stuctures: An Introduction to

Category Theory for the Working Computer Scientist, ser. Foundations of Comput-

ing Series. Cambridge, MA: MIT Press, 1991.

[8] J. Backus, �The Syntax and Semantics of the Proposed International Algebraic

Language of the Zurich ACM-GAMM Conference,� In Proc. International Conf. on

Information Processing, UNESCO, Clemson, SC, 1959, pp. 125�132.

http://www.insecure.org/stf.smashstack.txt
http://tools.ietf.org/html/rfc20

139

[9] M. Barr and C. Wells, Category Theory for Computing Science, 2nd ed., ser.

Prentice-Hall International Series in Computer Science. New York, NY: Pren-

tice Hall, 1996.

[10] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, �The software model

checker Blast: Applications to software engineering,� Int. J. Softw. Tools

Technol. Transf., vol. 9, no. 5, pp. 505�525, Oct. 2007. [Online]. Available:

http://dx.doi.org/10.1007/s10009-007-0044-z

[11] M. Bishop, Computer Security: Art and Science. Upper Saddle River, NJ: Pearson

Education, 2003.

[12] ��, Introduction to Computer Security. Upper Saddle River, NJ: Pearson Edu-

cation, 2005.

[13] S. Blazley and L. Xavier, �Mechanized semantics for the Clight subset of the C

language,� Journal of Automated Reasoning, vol. 43, no. 3, pp. 263�288, 2009.

[14] R. S. Boyer and J. S. Moore, A Computational Logic. New York, NY: Academic

Press, 1979. [Online]. Available: http://www.cs.utexas.edu/users/boyer/acl.pdf

[15] D. Brumley, D. Song, and J. Slember, �Towards automatically eliminating integer-

based vulnerabilities,� School of Computer Science, Carnegie Mellon University,

Tech. Rep. CMU-CS-06-136, March 2006.

[16] G. Cantor, �Contributions to the Founding of the Theory of Trans�nite Numbers

II,� Mathematische Annalen, vol. 49, pp. 207�246, 1897.

[17] L. Cardelli, �Type Systems,� in Handbook of Computer Science and Engineering.

CRC Press, 1997, ch. 103.

http://dx.doi.org/10.1007/s10009-007-0044-z
http://www.cs.utexas.edu/users/boyer/acl.pdf

140

[18] CERT, �CERT C Secure Coding Standard,� Software Engineering Institute,

Carnegie Mellon University, 1995 - 2011, last edited 11/10/2010. [Online].

Available: https://www.cert.org/certcc.html

[19] ��, �Integral Security - Secure Integer Library,� Computer Emergency Readiness

Team, Software Engineering Institute, Carnegie Mellon University, 1995 - 2011,

last updated 11/18/2010. [Online]. Available: http://www.cert.org/secure-coding/

IntegerLib.zip

[20] B. Chess and G. McGraw, �Static analysis for security,� Security Privacy, IEEE,

vol. 2, no. 6, pp. 76�79, 2004.

[21] S. Christey and R. A. Martin, �Vulnerability Type Distributions in CVE,� May

2007, Document Version: 1.1. [Online]. Available: http://cve.mitre.org/docs/

vuln-trends/vuln-trends.pdf

[22] A. Church, �A set of postulates for the foundation of logic,� Annals of Mathematics,

vol. XXXIII, pp. 346�366, 1932.

[23] ��, �A set of postulates for the foundation of logic,� Annals of Mathematics, vol.

XXXIV, pp. 839�864, 1933.

[24] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival, �Why does

Astrée scale up?� Form. Methods Syst. Des., vol. 35, no. 3, pp. 229�264, Dec.

2009. [Online]. Available: http://dx.doi.org/10.1007/s10703-009-0089-6

[25] R. Dannenberg, W. Dormann, D. Keaton, T. Plum, R. C. Seacord, D. Svoboda,

A. Volkovitsky, and T. Wilson, �As-If In�nitely Ranged Integer Model,� Software

Engineering Institute, CERT Program, Carnegie Mellon University, Tech. Rep.

CMU/SEI-2010-TN-008, April 2010, Second Ed.

https://www.cert.org/certcc.html
http://www.cert.org/secure-coding/IntegerLib.zip
http://www.cert.org/secure-coding/IntegerLib.zip
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://dx.doi.org/10.1007/s10703-009-0089-6

141

[26] D. Delmas and J. Souyris, �ASTRÉE: from research to industry,� in Proceedings of

14th International Static Analysis Symposium/Workshop on Static Analysis, ser.

Lecture Notes in Computer Science, G. Filé and H. Riis-Nielson, Eds., vol. 4634.

Berlin: Springer, August 2007, pp. 437�451.

[27] E. W. Dijkstra, �Notes on Structured Programming,� 1997. [Online]. Available:

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

[28] �BLAST: Berkeley Lazy Abstraction Software Veri�cation Tool,� Electrical

Engineering and Computer Sciences, University of California, Berkeley, CA.

[Online]. Available: http://mtc.ep�.ch/software-tools/blast/index-ep�.php

[29] D. Engler, B. Chelf, A. Chou, and S. Hallem, �Checking system rules using

system-speci�c, programmer-written compiler extensions,� in Proceedings of the

4th conference on Symposium on Operating System Design & Implementation -

Volume 4, ser. OSDI'00. Berkeley, CA, USA: USENIX Association, 2000, pp.

1�1. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251229.1251230

[30] D. Evans, LCLint User's Guide 2.5, University of Virginia, June 2003. [Online].

Available: http://www.splint.org/guide/guide.pdf

[31] D. Evans, J. Guttag, J. Horning, and Y. M. Tan, �LCLint: a tool

for using speci�cations to check code,� in Proceedings of the 2nd ACM

SIGSOFT Symposium on Foundations of Software Engineering, ser. SIGSOFT

'94. New York, NY, USA: ACM, 1994, pp. 87�96. [Online]. Available:

http://doi.acm.org/10.1145/193173.195297

[32] R. W. Floyd, �Assigning Meaning to Programs,� pp. 19�32, 1967.

[33] J. Foster, �CQUAL: A tool for adding type quali�ers to C,� 2004. [Online].

Available: http://www.cs.umd.edu/~jfoster/cqual

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://dl.acm.org/citation.cfm?id=1251229.1251230
http://www.splint.org/guide/guide.pdf
http://doi.acm.org/10.1145/193173.195297
http://www.cs.umd.edu/~jfoster/cqual

142

[34] J. S. Foster, CQual User's Guide Version 0.991, The Regents of the University

of California., April 2007. [Online]. Available: http://www.cs.umd.edu/~jfoster/

cqual/user-guide-0.991.pdf

[35] Free Software Foundation, Inc., �gcc 4.1.2,� 51 Franklin St. Fifth Floor, Boston,

MA 02110, released 2/13/2007. [Online]. Available: http://gcc.gnu.org

[36] J. Garreau, Radical Evolution: The Promise and Peril of Enhancing Our Minds,

our Bodies � and What it Means to be Human. New York, NY: Doubleday (USA),

2005.

[37] J. Gennari, S. Hedrick, F. Long, J. Pincar, and R. C. Seacord, �Ranged Integers for

the C Programming Language,� Software Engineering Institute, CERT Program,

Carnegie Mellon University, Tech. Rep. CMU/SEI-2007-TN-027, September 2007.

[38] J. A. Goguen, �A Categorical Manifesto,� Mathematical Structures in Computer

Science, vol. 1, pp. 49�68, 1991.

[39] M. J. Gordon, The Denotational Description of Programming Languages: An In-

troduction. New York, NY: Springer-Verlag, 1979.

[40] M. J. C. Gordon and T. Melham, Introduction to HOL: a theorem proving environ-

ment. Cambridge University Press, 1993.

[41] D. Grossman, �Type-safe multithreading in Cyclone,� Sigplan Notices, vol. 38,

no. 3, pp. 13�25, 2003.

[42] Y. Gurevich and J. K. Huggins, �The Semantics of the C Programming Language,�

Selected papers from CSL'92 (Computer Science Logic), Springer Lecture Notes in

Computer Science, no. 702, pp. 274�308, 1993.

http://www.cs.umd.edu/~ jfoster/cqual/user-guide-0.991.pdf
http://www.cs.umd.edu/~ jfoster/cqual/user-guide-0.991.pdf
http://gcc.gnu.org

143

[43] L. Hatton, �EC-: A measurement based on safer subset of ISO C suitable for

embedded system development,� Information and Software Technology, vol. 47,

no. 3, pp. 181�187, March 2003.

[44] J. Hickey, �Introduction to the Objective Caml Programming Language,�

September 2004. [Online]. Available: http://www.seas.upenn.edu/~cis500/

cis500-f02/resources/ocaml-intro.pdf

[45] M. W. Hicks, G. Morrisett, D. Grossman, and J. Trevor, �Experience with safe

manual memory-management in Cyclone,� in ACM International Symposium on

Memory Management, Vancouver, British Columbia, Canada, October 2004, pp.

73�84.

[46] C. A. R. Hoare, �An axiomatic basis for computer programming,� Commun.

ACM, vol. 12, no. 10, pp. 576�580, Oct. 1969. [Online]. Available: http:

//doi.acm.org/10.1145/363235.363259

[47] G. J. Holzmann, uno � static analysis tool for ANSI-C programs. [Online].

Available: http://www.spinroot.com/uno/uno_man.pdf

[48] ��, �Static source code checking for user-de�ned properties,� in Proc. IDPT

2002, Pasadena, CA, USA, 2002. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.13.1408

[49] M. Howard, �Safe integer arithmetic in C,� February 2002. [Online]. Available:

blogs.msdn.com/b/michael_howard/archive/2006/02/02/523392.aspx

[50] P. Hudak, J. Fasel, and J. Peterson, �A Gentle Introduction to Haskell,� Yale

University, Dept. of Computer Science, Tech. Rep. YALEU/DCS/RR-901, May

1996.

http://www.seas.upenn.edu/~ cis500/cis500-f02/resources/ocaml-intro.pdf
http://www.seas.upenn.edu/~ cis500/cis500-f02/resources/ocaml-intro.pdf
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://www.spinroot.com/uno/uno_man.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.1408
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.1408
blogs.msdn.com/b/michael_howard/archive/2006/02/02/523392.aspx

144

[51] W. A. Hunt, Jr., R. B. Krug, S. Ray, and W. D. Young, �Mechanized Information

Flow Analysis through Inductive Assertions,� in Proceedings of the 8th Interna-

tional Conference on Formal Methods in Computer-Aided Design (FMCAD 2008),

A. Cimatti and R. B. Jones, Eds. Portland, OR: IEEE Computer Society, Nov.

2008, pp. 227�230.

[52] ISO/IEC, Programming Languages�C, International Organization for Standard-

ization Std. ISO/IEC 9899:1990, 1990.

[53] ��, C Programming Language, International Committee for Information Tech-

nology Standards Std. ISO/IEC 9899:1999, 1999.

[54] ��, Programming Language�C, International Committee for Information Tech-

nology Standards Std. ISO/IEC 9899:2011, October 2011.

[55] ISO/IEC/ANSI, Information technology � Programming languages � Ada: An-

notated Ada Reference Manual, Intermetrics, Inc. Std. ISO/IEC/ANSI 8652:1987,

December 1995.

[56] S. P. Jones, Ed., Haskell 98 language and libraries: the Revised Report. Cambridge

University Press, 1999.

[57] G. Kahn, �Natural semantics,� in STACS, 1987, pp. 22�39.

[58] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Reasoning: An

Approach. Norwell, MA: Kluwer Academic Publishishers, 2000.

[59] ��, Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Pub-

lishishers (USA), August 2002.

[60] M. Kaufmann and J. S. Moore, �ACL2 Users Manual (ver. .3.3),� Austin, TX,

USA. [Online]. Available: http://www.cs.utexas.edu/users/moore/acl2

http://www.cs.utexas.edu/users/moore/acl2

145

[61] ��, �Documentation for ACL2 Version 4.3,� Austin, TX, USA, July

2001. [Online]. Available: http://www.cs.utexas.edu/users/moore/acl2/current/

acl2-doc-major-topics.html

[62] M. Kaufmann and P. Pecchiari, �Interaction with the Boyer-Moore Theorem Prover:

A Tutorial Study Using the Arithmetic-Geometric Mean Theorem,� Journal of

Automated Reasoning, vol. 16, pp. 181�222, 1996.

[63] D. Keaton, T. Plum, R. C. Seacord, D. Svoboda, A. Volkovitsky, and T. Wilson,

�As-if in�nitely ranged integer model,� Software Engineering Institute, Carnegie

Mellon University, Tech. Rep. CMU/SEI-2009-TN-023, July 2009. [Online].

Available: http://www.sei.cmu.edu

[64] KernelJanitors (http://janitor.kernelnewbies.org/), �Smatch!!!� [Online]. Avail-

able: http://smatch.sourceforge.net

[65] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed. En-

glewood Cli�s, NJ: Prentice Hall, Inc., March 1988.

[66] K. Krause and J. Alves-Foss, �On Designing an ACL2-Based C Integer Type Safety

Checking Tool,� in 5th NASA Formal Methods Symposium, NFM 2013, NASA

Ames Research Center Mo�ett Field, CA, USA, May 14-16, 2013, ser. Lecture

Notes in Computer Science, G. Brat, N. Rungta, and A. Venet, Eds., vol. 7871.

Berlin Heidelberg: Springer-Verlag, 2013, pp. 472�477.

[67] ��, �On Using ACL2 to Verify C Integer Type Safety: A Semi-state Endeavor,�

in Cyber Security Symposium: Public-Private Partnerships. Moscow, ID: Center

for Secure and Dependable Systems, April 2013, pp. 11�20.

[68] ��, �On Checking C Source Code for Integer Type Safety: A Schema for Modeling

Data Objects,� 2014, Preprint submitted to Journal of Symbolic Computation.

Available on request: krau1931@vandals.uidaho.edu.

http://www.cs.utexas.edu/users/moore/acl2/current/acl2-doc-major-topics.html
http://www.cs.utexas.edu/users/moore/acl2/current/acl2-doc-major-topics.html
http://www.sei.cmu.edu
http://smatch.sourceforge.net

146

[69] R. Kurzweil, The Singularity is Near: When Humans Transcend Biology. New

York, NY: Penguin Group (USA), 2005.

[70] D. LeBlanc, �SafeInt,� 2003. [Online]. Available: http://www.codeplex.com/SafeInt

[71] J. L. Lions, �ARIANE 5 Flight 501 Failure: Report by the Inquiry Board,�

Paris, France, 1996. [Online]. Available: http://sunnayday.mit.edu/accidents/

Ariane5accidentreport.html.

[72] B. H. Liskov and J. M. Wing, �A Behavioral Notion of Subtyping,� ACM Transac-

tions on Programming Languages and Systems, vol. 16, pp. 1811�1841, 1994.

[73] R. P. Lyons, Jr., �Introduction to Section IV,� in The Avionics Handbook, C. R.

Spitzer, Ed. Boca Raton, FL: CRC Press, 2001.

[74] S. McCamant and G. Morrisett, �Evaluating SFI for a CISC Architecture,� in 15th

USENIX Security Symposium, Vancouver, BC, Canada, August 2�4, 2006, pp.

209�224.

[75] J. McCarthy, �Recursive functions as symbolic expressions and their computation

by machine (part I),� CACM, vol. 3, no. 4, pp. 184�195, 1960.

[76] R. Milner, �A Theory of Type Polymophism in Programming,� Journal of Com-

puter and System Sciences � JCSS, vol. 17, no. 3, pp. 348�375, July 1978.

[77] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The de�nition of Standard ML

(revised). MIT Press, 1997.

[78] MISRA, Guidelines for the use of the C language in vehicle based software,

Motor Industry Research Association Std., April 1998. [Online]. Available:

www.misra.org.uk

http://www.codeplex.com/SafeInt
http://sunnayday.mit.edu/accidents/Ariane5accidentreport.html.
http://sunnayday.mit.edu/accidents/Ariane5accidentreport.html.
www.misra.org.uk

147

[79] ��, Guidelines for the use of the C language in critical systems, Motor Industry

Research Association Std. MISRA-C:2004, October 2004. [Online]. Available:

www.misra-c.com

[80] J. C. Mitchell, �Type inference with simple subtypes,� Journal of Functional Pro-

gramming, vol. 1, no. 3, pp. 245�285, 1991.

[81] MITRE Corp., �Common Vulnerabilities and Exposures: The Standard

for Information Security Vulnerability Names.� [Online]. Available: http:

//cve.mitre.org

[82] E. Moggi, �An Abstract View of Programming Languages,� University of Edin-

burgh, Laboratory for Foundations of Computer Science, Tech. Rep. ECS-LFCS-

90-113, 1990.

[83] G. E. Moore, �Cramming more components onto integrated circuits,� IEEE Solid-

state Circuits Newsletter, vol. 20, pp. 33�35, 2006, Reprinted from Electronics, vol.

38, no. 8, April 19, 1965, pp. 114�118.

[84] J. S. Moore, �Index.� [Online]. Available: http://www.cs.utexas.edu/users/moore/

acl2/v3-4/acl2-doc-index.html

[85] ��, �Symbolic Simulation: An ACL2 Approach,� in Formal Methods in Computer-

Aided Design, ser. Lecture Notes in Computer Science, G. Gopalakrishnan and

P. Windley, Eds. Springer Berlin Heidelberg, 1998, vol. 1522, pp. 334�350.

[Online]. Available: http://dx.doi.org/10.1007/3-540-49519-3_22

[86] ��, �Proving Theorems About Java-Like Byte Code,� in Correct System

Design, Recent Insight and Advances, (to Hans Langmaack on the occasion

of his retirement from his professorship at the University of Kiel). London,

UK, UK: Springer-Verlag, 1999, pp. 139�162. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=646005.673749

www.misra-c.com
http://cve.mitre.org
http://cve.mitre.org
http://www.cs.utexas.edu/users/moore/acl2/v3-4/acl2-doc-index.html
http://www.cs.utexas.edu/users/moore/acl2/v3-4/acl2-doc-index.html
http://dx.doi.org/10.1007/3-540-49519- 3_22
http://dl.acm.org/citation.cfm?id=646005.673749
http://dl.acm.org/citation.cfm?id=646005.673749

148

[87] ��, �Mechanized Operational Semantics: The M1 Story,� 2008.

[Online]. Available: http://www.cs.utexas.edu/users/moore/publications/talks/

marktoberdorf-08/papers/main.pdf

[88] Y. Moy, N. Bjørner, and D. Siela�, �Modular Bug-�nding for Integer Over�ows

in the Large: Sound, E�cient, Bit-precise Static Analysis,� Microsoft Research,

Microsoft Corporation, One Microsoft Way, Redmond, WA, Tech. Rep. MSR-TR-

2009-57, 2009.

[89] National Institute of Standards and Techology - Software Assurance Metrics

and Tool Evaluation, �Source Code Analyzers.� [Online]. Available: http:

//samate.nist.gov

[90] ��, �Source Code Analyzers.� [Online]. Available: http://samate.nist.gov/index.

php/Source_Code_Security_Analyzers.html

[91] P. Naur, �Report on the Algorithmic Language ALGOL 60,� Commun. ACM, vol. 3,

no. 5, pp. 299�314, 1960.

[92] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, �CCured: Type-

Safe Retro�tting of Legacy Software,� ACM Transactions on Programming Lan-

guages and Systems, vol. 47, no. 3, pp. 477�526, May 2005.

[93] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis: With

51 Tables. Berlin, Heidelberg: Springer, 1999, 2005.

[94] M. Norrish, �An abstract dynamic semantics for C,� Computer Laboratory, Uni-

versity of Cambridge, Tech. Rep., 1997.

[95] N. S. Papaspyrou, �A Formal Semantics for the C Programming Language,� Ph.D.

dissertation, National Technical University of Athens, Dept. of Electrical and Com-

http://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/papers/main.pdf
http://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/papers/main.pdf
http://samate.nist.gov
http://samate.nist.gov
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

149

puter Engineering, Div. of Computer Sci. Software Engineering Laboratory, Athens,

Greece, February 1998.

[96] F. Parrennes, �CSUR Project,� 2004. [Online]. Available: http://www.lsv.

ens-cachan.fr/Software/csur

[97] J. Peterson and K. e. Hammond, �Report on the Programming Language Haskell,

version 1.4,� March 1997. [Online]. Available: http://www.csee.umbc.edu/courses/

graduate/631/Fall2002/haskell.pdf

[98] F. Pfenning, �Lecture Notes on Type Safety, 15-312: Foundations of Programming

Languages,� Sept. 2004. [Online]. Available: http://www2.cs.cmu.edu/~fp/

courses/312/handouts.06-safety.pdf

[99] B. C. Pierce, �A Taste of Category Theory for Computer Scientists,� Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep. CMU-CS-90-113R, September 1990.

[100] ��, Basic Category Theory for Computer Scientists, ser. Foundations of Com-

puting Series. Cambridge, MA: MIT Press, 1991.

[101] G. D. Plotkin, �A structural approach to operational semantics,� Computer Science

Dept., Aarhus University, Denmark, Tech. Rep. DAMI FN-19, 1981.

[102] �Bjarne Stroustrup Quotes,� Quotes.net. STANDS4LLC, 2013. [Online]. Available:

http://www.quotes.net/quote/9012

[103] Random House, Ed., Random House Webster's College Dictionary. Random

House, Inc., 2001.

[104] S. Ray and W. A. Hunt, Jr., �Mechanized Certi�cation of Secure Hardware De-

signs,� in Proceedings of the 8th International Workshop on Microprocessor Test

and Veri�cation, Common Challenges and Solutions (MTV 2007), M. S. Abadir,

http://www.lsv.ens-cachan.fr/Software/csur
http://www.lsv.ens-cachan.fr/Software/csur
http://www.csee.umbc.edu/courses/graduate/631/Fall2002/haskell.pdf
http://www.csee.umbc.edu/courses/graduate/631/Fall2002/haskell.pdf
http://www2.cs.cmu.edu/~ fp/courses/312/handouts.06-safety.pdf
http://www2.cs.cmu.edu/~ fp/courses/312/handouts.06-safety.pdf
http://www.quotes.net/quote/9012

150

L. Wang, and J. Bhadra, Eds. Austin, TX: IEEE Computer Society, Dec 2007,

pp. 25�32.

[105] S. Ray and J. S. Moore, �Proof Styles in Operational Semantics,� in Proceedings

of the 5th International Conference on Formal Methods in Computer-Aided Design

(FMCAD 2004), ser. LNCS, A. J. Hu and A. K. Martin, Eds., vol. 3312. Austin,

TX: Springer, Nov. 2004, pp. 67�81.

[106] S. Ray, T. Portlock, and R. Syzdek, �Modeling and Veri�cation of Industrial Flash

Memories,� in 11th IEEE International Symposium on Quality Electronic Design

(ISQED 2010), San Jose, CA, March 2010, pp. 705�712.

[107] S. Ray, W. A. Hunt, Jr., J. Matthews, and J. S. Moore, �A mechanical analysis of

program veri�cation strategies,� J. Autom. Reason., vol. 40, no. 4, pp. 245�269,

May 2008. [Online]. Available: http://dx.doi.org/10.1007/s10817-008-9098-1

[108] G. D. Reis and B. Stroustrup, �A formalism for C++,� International Committee for

Information Technology Standards, American National Standards Institute, Wash-

ington, DC, USA, Tech. Rep. N1885=05-0145, ISO/IEC/JTC1/SC22/WG21, Oct

2005.

[109] H. G. Rice, �Classes of Recursively Enumerable Sets and Their Decision

Problems,� Transactions of the American Mathematical Society, vol. 74, no. 2, pp.

358�366, 1953. [Online]. Available: http://www.jstor.org/stable/1990888

[110] D. M. Ritchie, �The Development of the C Language,� ACM SIGPLAN Notices,

vol. 28, no. 3, pp. 201�208, March 1993, preprints of the Second ACM SIGPLAN

History of Programming Language (HOPL II).

[111] D. Russiono�, M. Kaufmann, and E. Smith, �Formal Veri�cation of Floating-Point

RTL at AMD Using the ACL2 Theorem Prover,� 17th IMACS World Congress:

Scienti�c Computation, Applied Mathematics and Simulation, July 2007.

http://dx.doi.org/10.1007/s10817-008-9098-1
http://www.jstor.org/stable/1990888

151

[112] A. Sabelfeld and A. C. Myers, �Language-Based Information-Flow Security,� IEEE

Journal On Selected Areas In Communications, vol. 21, no. 1, p. 2003, 2003.

[113] D. Schmidt, �Denotational Semantics,� 1986, out of print. [Online]. Available:

http://people.cis.ksu.edu/~schmidt/text/densem.html

[114] D. Scott and C. Strachey, �Toward a Mathematical Semantics for Computer Lan-

guages,� in The Symposium on Computers and Automata, J. Fox, Ed., vol. XXI,

April 2008, pp. 19�46.

[115] M. V. Scovetta, �Yasca.� [Online]. Available: http://www.scovetta.com/yasca.html

[116] R. C. Seacord, Secure Coding in C and C++. Pearson Education, 2006.

[117] �Rough Auditing Tool for Security (RATS),� Secure Software Inc. [Online].

Available: http://code.google.com/p/rough-auditing-tool-for-security

[118] G. Slabodkin, �Software glitches leave Navy Smart Ship dead in the water,�

Government Computer News, vol. 17, no. 17, July 1998. [Online]. Available:

http://www.gcn.com/17_17/news/33727-1.html

[119] M. Spiser, Introduction to the Theory of Computation, 2nd ed. Boston, MA:

Thomson Course Technology, 2006.

[120] G. L. Steele, Jr., Common Lisp The Language. Burlington, MA: Digital Press,

1984.

[121] B. Stroustrup, The Design and Evolution of C++. Addison-Wesley, 1996.

[122] R. D. Tennet, The Principles of Programming Languages. New York, NY: Prentice-

Hall, 1981.

[123] The Open Group, �UNIX.� [Online]. Available: http://www.unix.org

http://people.cis.ksu.edu/~ schmidt/text/densem.html
http://www.scovetta.com/yasca.html
http://code.google.com/p/rough-auditing-tool-for-security
http://www.gcn.com/17_17/news/33727-1.html
http://www.unix.org

152

[124] J. Trevor, G. Morriset, D. Grossman, M. Hicks, J. Cheney, and Y. Wang, �Cyclone:

a safe dialect of C,� in USENIX Annual Technical Conference, June 2002, pp.

275�288.

[125] J. Von Neumann, �The Principles of Large-Scale Computing Machines,� IEEE An-

nals of The History of Computing, vol. 3, pp. 263�273, 1981, originally printed in

1946.

[126] D. A. Wheeler, �Flaw�nder.� [Online]. Available: http://www.dwheeler.com/

�aw�nder

[127] A. K. Wright and M. Felleisen, �A Syntactic Approach to Type Soundness,� Infor-

mation and Computation, vol. 115, pp. 38�94, 1992.

http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder

153

Appendix A: The Syntax of C Types

154

This Appendix is a contiguous presentation of the typing speci�cation of C types dis-

cussed in Chapter 6.

〈 c-type 〉 ::= 〈 object-type 〉
| 〈 function-type 〉
| 〈 incomplete-type 〉

〈 object-type 〉 ::= 〈 scalar-type 〉
| 〈 aggregate-type 〉
| 〈 union-type 〉

〈 scalar-type 〉 ::= 〈 arithmetic-type 〉
| 〈 pointer-type 〉

〈 arithmetic-type 〉 ::= 〈 std-integer-type 〉
| 〈 �oating-type 〉
| 〈 enumerated-type 〉

〈 standard-integer-type 〉 ::= char

| 〈 standard-signed-integer-type 〉
| 〈 standard-unsigned-integer-type 〉

〈 standard-signed-integer-type 〉 ::= CHAR

| SHORT

| INT

| LONG

| LLONG

〈 standard-unsigned-integer-type 〉 ::= _BOOL

| UCHAR

| USHORT

| UINT

| ULONG

| ULLONG

〈 �oating-type 〉 ::= 〈 real-�oat-type 〉
| 〈 complex-type 〉

〈 real-�oat-type 〉 ::= FLOAT

| DOUBLE

| LDOUBLE

〈 complex-type 〉 ::= FLOAT_COMPLEX

| DOUBLE_COMPLEX

| LONG_COMPLEX

〈 enumerated-type 〉 | 〈 enumeration 〉
〈 enumeration 〉 | 〈 standard-integer-type 〉 . . .

〈 standard-integer-type 〉
〈 pointer-type 〉 ::= 〈 pointer 〉

〈 pointer 〉 | 〈 object-type 〉
| 〈 function-type 〉
| 〈 incomplete-type 〉

155

〈 aggregate-type 〉 ::= 〈 array-type 〉
| 〈 structure-type 〉

〈 array-type 〉 ::= 〈 element-type 〉
〈 element-type 〉 ::= 〈 object-type 〉
〈 structure-type 〉 ::= 〈 member-type 〉
〈 member-type 〉 ::= 〈 object-type 〉
〈 union-type 〉 ::= 〈 member-type 〉

〈 incomplete-type 〉 ::= void

| 〈 array-type 〉
(of unknown size)

| 〈 structure-type 〉
(of unknown content)

| 〈 union-type 〉
(of unknown content)

〈 function-type 〉 ::= 〈 return-type 〉
〈 return-type 〉 ::= 〈 object-type 〉

| void

156

Appendix B: Required Predicate and Valuation Functions for

Expressing Static Typing Semantics

157

In Chapter 7, the 23 typing constraints imposed by operators on their operands as de�ned

in the standard for C expressions were enumerated. This appendix provides a general

overview of the respective predicate functions and other support functions required to

formalize the static typing semantics of C expressions and statements.

B.1 Populating the Lookup Table Type Speci�er Field

The type safety veri�cation tool presented in this dissertation stores all declared objects

in a lookup table (Listing B.1). The lookup table is created at the �rst instance of

declaration statement in the code being analyzed and is appended with each subsequent

declaration [68]. Each entity in the lookup table is a tuple containing the �elds ID#,

NAME, TYPE, VALUE, and ERROR-WARNING. The table is indexed by the unique integer

value identi�er assigned to each declared data object by the c2acl2 translator [3].

The type �eld contains three sub-�elds. The �rst holds the standardized type name

derived from the type-specifier keywords used for an object declaration (Fig. 6.5). The

second and third hold the type-qualifier and storage-class-specifier keywords

used in the object declaration respectively (Fig. 6.18 and Fig. 6.19).

B.1.1 getDeclaredArithType(τ)

The function getDecaredArithType(τ) (Equation B.1) is used to populate the TYPE-SPECIFIER

�eld in the tools primary lookup table whenever a declaration statement is evaluated.

Because one or more type-speci�er key words may be used in any order to specify a type,

the tool generates a standardized type name for each arithmetic type. For example, the

combination of type-speci�ers to specify a signed long int is labeled by the analysis tool

as LLONG:

� long

� long int

� signed long

� signed long int

158

Listing B.1: The four tuple of the c2acl2 generated lookup table for each data object

(ID#

("NAME")

((TYPE -SPECIFIER)(TYPE -QUALIFIER)(STORAGE -CLASS -SPECIFIER))

(VALUE)

(ERROR -WARNING))

B.1.1.1 getDeclaredRealType(τ) and getDeclaredIntType(τ)

Generally, all declared types can be reduced to a single arithmetic-type or a collection

of arithmetic-types. Since arithmetic types are real numbers, �oats and integers, the

function getDecaredArithType(τ) calls getDecaredReal(τ). If getDecaredReal(τ) does not

return a �oating-type, it calls getDecaredInt(τ) (Equation B.3) and if it fails to return a

standard-integer-type, it returns nil

getDecaredArithType : TYPE→ TYPE
getDecaredArithType = (λτ. case τ of

getDeclaredReal ⇒ τ) (B.1)

getDecaredReal : TYPE→ TYPE
getDecaredReal = (λτ. case τ of

τ.specifer = {float} ⇒ FLOAT

τ.specifer = {double} ⇒ DOUBLE

τ.specifer = {long double} ⇒ LDOUBLE

τ.specifer = {float _COMPLEX} ⇒ FLOAT_COMPLEX

τ.specifer = {double _COMPLEX} ⇒ DOUBLE_COMPLEX

τ.specifer = {long double_Complex} ⇒ LDOUBLE_COMPLEX

τ.specifer = {float _Imaginary} ⇒ FLOAT_IMAGINARY

τ.specifer = {double_Imaginary} ⇒ DOUBLE_IMAGINARY

τ.specifer = {long double_Imaginary} ⇒ LDOUBLE_IMAGINARY

Otherwise ⇒ getDeclaredInt) (B.2)

159

getDecaredInt : TYPE→ TYPE
getDecaredInt = (λτ. case τ of

τ.specifer = {_Bool} ⇒ _BOOL

τ.specifer = {signed char} ∨ {char} ⇒ SCHAR

τ.specifer = {unsigned char} ⇒ UCHAR

τ.specifer = {signed short int} ∨ {signed short} ∨
{short int} ∨ {short} ⇒ SHORT

τ.specifer = {usigned short int} ∨ {usigned short} ⇒ USHORT

τ.specifer = {signed int} ∨ {int} ⇒ INT

τ.specifer = {unsigned int} ⇒ UINT

τ.specifer = {signed long int} ∨ {signed long} ∨
{long int} ∨ {long} ⇒ LONG

τ.specifer = {unsigned long int} ∨ {unsigned long} ⇒ ULONG

τ.specifer = {signed long long int} ∨ {long long} ∨
{signed long long} ∨ {long long int} ⇒ LLONG

τ.specifer = {unsigned long long int} ∨
{unsigned long long} ⇒ ULLONG

Otherwise ⇒ nil)
(B.3)

B.2 Truth Returning Functions for Types

Typing predicate functions are applied to data objects cataloged in the lookup table as

the tool performs its evaluations. These functions return a truth value (true or false)

based upon the declared type of the data object. Predicate functions of sub-types can

be used in the construction of the predicate functions of the super-types.

B.2.1 isInteger(τ)

The predicate function isInteger(τ) (Equation B.4) is used to identify the standard-

integer-type (Fig. 6.9) objects. Members of the standard-integer-type include all integer

types including the members of the standard-signed-integer-type and of the standard-

unsigned-integer-type.

160

Listing B.2: ACL2 isInteger

(defun isInteger (type)

(let* ((integer_p

(cond ((or

(equal (car type) 'INT)

(equal (car type) 'UINT)

(equal (car type) 'LONG)

(equal (car type) 'ULONG)

(equal (car type) 'LLONG)

(equal (car type) 'ULLONG)

(equal (car type) 'CHAR)

(equal (car type) 'SCHAR)

(equal (car type) 'UCHAR)

(equal (car type) 'SHORT)

(equal (car type) 'USHORT)

(equal (car type) 'BOOL))

T)

(t nil))))

integer_p))

isInteger : TYPE→ B
isInteger = (λτ. case τ of

_BOOL | CHAR | SCHAR | UCHAR | SHORT | USHORT |
INT | UINT | LONG | ULONG | LLONG | ULLONG ⇒ T

Otherwise ⇒ nil) (B.4)

The equivalent isInteger(τ) function written in ACL2 is shown in Listing B.2. The

parameter type for the custom ACL2 function isInteger is extracted from the �rst

element of the �rst type �eld whose �rst element is a single type symbol (name). If the

extracted type symbol held in the lookup table matches the integer type in the condition

statement, the isInteger predicate function returns T (true). Otherwise, it returns nil

(false).

B.2.1.1 isSignedInt(τ) and isUnsignedInt(τ)

For type safety purposes, it is necessary to di�erentiate between signed and unsigned

integers because of the potential for sign error when these di�erent integer types are used

161

together in a single expression. The predicate function isSignedInt(τ) is used to identify

the standard-signed-integer-type objects. For purposes of this dissertation, the integer

type CHAR is considered to be signed.

isSignedInt : TYPE→ B
isSignedInt = (λτ. case τ of

CHAR | SCHAR | SHORT | INT | LONG | LLONG ⇒ T

Otherwise ⇒ nil) (B.5)

Whereas, the predicate function isUnsignedInt(τ) is used to identify the standard-

unsigned-integer-type objects.

isUnsignedInt : TYPE→ B
isUnsignedInt = (λτ. case τ of

_BOOL | UCHAR | USHORT | UINT | ULONG | ULLONG ⇒ T

Otherwise ⇒ nil) (B.6)

Of course, the use of only one of these two functions is required to determine if an

integer is signed or not. For example, if isSignedInt(τ) (Equation B.5) returns false, then

the integer type being evaluated is unsigned.

B.2.1.2 isBool(τ)

At times, it is necessary to identify the standard-unsigned-integer-type _BOOL using the

predicate function isBool(τ).

isBool : TYPE→ B
isBool = (λτ. case τ of

_BOOL ⇒ T

Otherwise ⇒ nil) (B.7)

B.2.2 isFloat(τ)

The predicate function isFloat(τ) (Equation. B.8) is used to identify �oating-type objects.

Floating type objects include members of the real-�oat-type and of the complex-type.

162

As such, it is constructed from the two predicate functions isReal(τ) (Equation. B.9) and

isComplex (τ) (Equation. B.10).

isFloat : TYPE→ B
isFloat = (λτ. case τ of

isReal ⇒ T

Otherwise ⇒ isComplex) (B.8)

B.2.2.1 isReal(τ)

The predicate function isReal(τ) is used to identify real-�oat-type (rational numbers)

data objects.

isReal : TYPE→ B
isReal = (λτ. case τ of

FLOAT | DOUBLE | LDOUBLE ⇒ T

Otherwise ⇒ nil) (B.9)

B.2.2.2 isComplex(τ)

The predicate function isComplex (τ) is used to identify complex-type (i.e., the numbers

comprised of real and imaginary parts) data objects.

isComplex : TYPE→ B
isComplex = (λτ. case τ of

FLOAT_COMPLEX | DOUBLE_COMPLEX | LONG_COMPLEX ⇒ T

Otherwise ⇒ nil) (B.10)

B.2.3 isArithmetic(τ)

Since arithmetic-types include the standard-integer-types and the �oating-types, the

predicate function isArithmetic(τ) (Equation. B.11) is constructed from isInteger(τ)

(Equation B.4) and isFloat(τ) (Equation B.8).

163

Listing B.3: ACL2 isAritmeticType

(defun isArithmeticType (type)

(let* ((isArithmetic_p

(cond ((or

(isInteger type)

(isFloat type))

T)

(t nil))))

isArithmetic_p))

isArithmetic : TYPE→ B
isArithmetic = (λτ. case τ of

isInteger ⇒ T

isReal ⇒ T

Otherwise ⇒ nil) (B.11)

The equivalent isArithmetic(τ) function was written in ACL2 and named isArithmeticType

is de�ned in Listing B.3.

B.2.4 isPointer(τ)

The predicate function isPointer(τ) is used to identify pointers to data objects. The C

unary address indirection operator (*) is used to identify pointers.

isPointer : TYPE→ B
isPointer = (λτ. case τ of
∗τ ⇒ T

Otherwise ⇒ nil) (B.12)

The equivalent isPointer(τ) function written in ACL2 is named isPointerType and is

shown in Listing B.4. Except for aggregate (array and struct), union, and pointer types,

the length of the TYPE-SPECIFIER �eld (Listing. B.1) is one. The TYPE-SPECIFIER �eld

representing a pointer is> 1. For example, a pointer-type is designated as (TYPE-SPECIFIER

*), (TYPE-SPECIFIER * *), or (TYPE-SPECIFIER * * *).

164

Listing B.4: ACL2 isPointerType

(defun isPointerType (type)

(let* ((isPointer_p

(cond ((and (> (length type) '1)

((or

(equal (second type) '*)

(equal (third type) '*)

(equal (fourth type) '*))))

type)

(t nil))))

isPointer_p))

B.2.5 isScalar(τ)

Scalar-types include the arithmetic-types and the pointer-types. As such, the predicate

function isScalar(τ) is constructed from the predicate functions isArithmetic(τ) (Equa-

tion B.11) and isPointer(τ) (Equation B.12).

isScalar : TYPE→ B
isScalar = (λτ. case τ of

isArithmetic ⇒ T

isPointer ⇒ T

Otherwise ⇒ nil) (B.13)

B.2.6 isArray(τ)

An array is one of the two aggregate-types. The predicate function isArray(τ) (Equa-

tion B.14) is used to identify objects of array-type.

isArray : TYPE→ B
isArray = (λτ. case τ of

τ [⇒ T

Otherwise ⇒ nil) (B.14)

165

B.2.7 isStruct(τ)

the other aggregate-type is the structure-type and the predicate function isStruct(τ) is

used to identify objects of such type. A structure-type may or may not have a tag

(identi�er) represented by t and has members represented by π.

isStruct : TYPE→ B
isStruct = (λτ. case τ of

STRUCT[t, π] ⇒ T

Otherwise ⇒ nil) (B.15)

At present, the type safety checking tool does not support structure types.

B.2.8 isAggregate(τ)

The predicate function isAggregate(τ) is used to identify aggregate-type objects and is

built from the functions isArray(τ) (Equation B.14) and isStruct(τ) (Equation B.15).

isAggregate : TYPE→ B
isAggregate = (λτ. case τ of

isArray ⇒ T

isStruct ⇒ T

Otherwise ⇒ nil) (B.16)

B.2.8.1 isComplete(τ)

The predicated function isComplete(τ) (Equation B.17) determines if an array or a struc-

ture is complete. At present, only complete arrays are identi�ed by having size (number

of elements or indexes) which either explicitly declared or implicitly declared via initial-

ization. In the type checking tool, array declarations add two additional �elds to the

TYPE-SPECIFIER �eld of the type tuple, i.e., (TYPE-SPECIFIER [n) where the integer n

is the declared size.

166

isComplete : TYPE→ B
isComplete = (λτ. case τ of

τ [n ∧ n 6= nil ⇒ T

Otherwise ⇒ nil) (B.17)

B.2.8.2 isEqualType(τ1, τ2)

At times, it is necessary to know if two types are equal, such as with structure-types,

before performing certain operations. The predicate function isEqualType(τ1, τ2) is used

to check type equality.

isEqualType : TYPE×TYPE→ B
isEqualType = (λτ. case τ1 and τ2 of

τ1 = τ2 ⇒ T

Otherwise ⇒ nil) (B.18)

B.2.9 isUnion(τ)

The union-type is the last of the object-types. The predicate function isUnion(τ) is used

to identify objects of union-type. Like the structure-type, the union-type may or may

not have a tag (identi�er) represented by t and has members represented by π.

isUnion : TYPE→ B
isUnion = (λτ. case τ of

UNION[t, π] ⇒ T

Otherwise ⇒ nil) (B.19)

At present, the type safety checking tool does not support union types.

B.2.10 isObject(τ)

The predicate function isObject(τ) (Equation B.20) is used to identify all objects belong-

ing to the object-type category. Because the scalar-types, aggregate-types, and union-

167

types are members of object-type, functions isScalar(τ) (Equation B.13), isAggregate(τ)

(Equation B.16), and isUnion(τ) (Equation B.19) are used to construct isObject(τ).

isObject : TYPE→ B
isObject = (λτ. case τ of

isScalar ⇒ T

isAggregate ⇒ T

isUnion ⇒ T

Otherwise ⇒ nil) (B.20)

B.2.11 isVoid(τ)

The predicate function isVoid(τ) is used to identify the incomplete-type void.

isVoid : TYPE→ B
isVoid = (λτ. case τ of

VOID ⇒ T

Otherwise ⇒ nil) (B.21)

B.2.12 isNull(τ)

The predicate function isNull(τ) is used to identify Null pointer constants.

isNull : TYPE→ B
isNull = (λτ. case τ of
∗0 ⇒ T

Otherwise ⇒ nil) (B.22)

B.2.13 isQuali�ed(q)

The predicate function isQualified(q) (Equation B.23) is used to identify type-quali�ers

when applied to object-types. A type-quali�er is identi�ed by one of the keywords const,

volatile, and restrict. A type-quali�er keyword list is represented by q. Instead of

returning true, the function returns the �rst quali�er keyword to represent true. If a

quali�er keyword is not present, the function returns NOQUAL to represent false. The

168

comparable function written ACL2 is applied to the second sub-�eld (TYPE-QUALIFIER)

of the type �eld contained in the data object lookup table (Listing. B.1).

isQualifed : TYPE→ B
isQualified = (λq. case q of

CONST ⇒ CONST

VOLATILE ⇒ VOLATILE

RESTRICT ⇒ RESTRICT

Otherwise ⇒ NOQUAL) (B.23)

B.2.13.1 isCompatibleQuali�ed(τ1q1,τ2q2)

At times, it is necessary if two types are compatibly quali�ed. The predicate function

isCompatibleQualified(τ1q1, τ2q2) checks for compatibility.

isCompatibleQualified : TYPE×TYPE→ B
isCompatibleQualified = (λ〈τ1, τ2〉. case q1 and q2 of

q1 = q2 ⇒ T

Otherwise ⇒ nil) (B.24)

The same logic can be used for �nding equal quali�ers. isEquallyQualified(τ1q1, τ2q2)

is one such function.

B.2.14 isModi�able(identi�er)

The �nal predicate function with respect to object-types applies to the lvalue of individ-

ual memory objects. The function isModifiable(identifier) (Equation B.25) determines if

a location value can be changed. This generally pertains to the LHS of an assignment

expression expressed as an identi�er (I). For example, if the LHS I is declared with

the quali�er keyword CONST with an initialized value, then I is not modi�able. Let I

be viewed as a constant, I.q be the type quali�er associated to I, and I.v be the value

associated to I.

169

isModifiable : CONST→ B
isModifiable = (λI. case I of

I.q 6= CONST ⇒ T

I.q = CONST ∧ I.v = nil ⇒ T

Otherwise ⇒ nil) (B.25)

B.3 Type Returning Type Functions

At times, it is necessary to query the type of an object. This is trivial in ACL2 by using a

lookup function on the data object lookup table that associates to a data object's unique

identi�er and returns it's type �eld.

B.3.1 intPromote(τ)

The integer promotion (�6.3.1.1 of the standard) rules state that if an INT can represent

all values of the original integer type with less precision than that of an INT, the value of

the original type is converted to an INT; otherwise, the original type is converted to an

UINT. The goal of integer promotions is preserve any sign-age as well as the value (avoiding

potential over�ow/under�ow or sign-age error conditions) of the intermediate results of

an expression containing smaller precision integer operands. If the native integer type

is 32-bits, then the process is straight forward as the values of all bitwise smaller signed

and unsigned integer types are within the range of a signed 32-bit INT. The following

intPromote(τ) function assumes 32-bit integer types.

intPromote : TYPE→ TYPE′

intPromote = (λτ. case τ of
SCHAR ⇒ INT

UCHAR ⇒ INT

SHORT ⇒ INT

USHORT ⇒ INT

Otherwise ⇒ τ) (B.26)

170

If the native integer type is 16-bits, however, then type SHORT is equivalent to type

INT and type USHORT is equivalent to type UINT. Although the types USHORT and INT

have the same bitwise size, the maximum value that can be held by an USHORT is 65535

and the maximum value can be held by an INT is 32767. Thus, if the value of an USHORT

is less than or equal to 32767, then the USHORT is promoted to an INT. Otherwise, the

USHORT is promoted to an UINT.

Because of bignums, ACL2 executables do not promote numeric values for compu-

tational purposes. While this facilitates value to type value range checking, it provides

no notion of the promoted type of a C expression. The contrary, however, can be ac-

complished through a series of custom functions. The �rst function, get-type-rank

(Listing B.5), written in ACL2 is based on a modi�ed C integer ranking system de�ned

in �6.3.1.1 of the standard.

In particular, the integer ranking system states that no two operands of the same

type shall have the same rank. However, it is safe to say that if an expression contains

two operands of the same type, then the expression will also be of the same type as

its operands. Heuristically, if two operands of the same type are given the same rank,

then the expression type has not changed. That is unless the operands are of an integer

type less than the rank of type INT, then the expression type is promoted to type INT

to accommodate integer promotions. Otherwise, the largest type rank will su�ce for the

usual arithmetic conversions. That said, the ACL2 promotion functions have included

the real-types in ranking system based on bit-wise size such that functions will su�ce

the usual arithmetic conversions.

The function, get-type-rank, is called by function, get-type-rank-list (List-

ing B.6) which lists the ranks of all operands contained within an expression. The

overall expression type is determined by two additional functions. The �rst, get-max-

type-rank (Listing B.7) inputs the type rank list returned by function get-type-rank

-list and returns the largest rank contained in the list. The function, get-dominate-

171

Listing B.5: ACL2 get-type-rank

(defun get-type-rank (type)

(let*

((type-rank

(cond ((equal type 'BOOL) 0)

((or

(equal type 'CHAR)

(equal type 'SCHAR)) 1)

((equal type 'UCHAR) 2)

((equal type 'SHORT) 3)

((equal type 'USHORT) 4)

((equal type 'INT) 5)

((equal type 'UINT) 6)

((equal type 'LONG) 7)

((equal type 'ULONG) 8)

((equal type 'LLONG) 9)

((equal type 'ULLONG) 10)

((equal type 'FLOAT) 11)

((equal type 'DOUBLE) 12)

((equal type 'LDOUBLE) 13)

((equal type 'FLOAT_COMPLEX) 14)

((equal type 'DOUBLE_COMPLEX) 15)

((equal type 'LDOUBLE_COMPLEX) 16)

((equal type 'FLOAT_IMAGINARY) 17)

((equal type 'DOUBLE_IMAGINARY) 18)

((equal type 'LDOUBLE_IMAGINARY) 19)

(t nil))))

type-rank))

type (Listing B.8) �rst determines if the maximum rank of an expression is less than the

rank of type INT. In this case, the rank of type INT is 5. Then, function get-dominate-

type calls get-type-from-type-rank (Listing B.9) passing a type rank. If the rank is <

5, then the rank of 5 is passed to get-type-from-type-rank which return type INT. Oth-

erwise, the rank is passed unaltered. The output of function get-type-from-type-rank

is the reverse of function get-type-rank as it returns the type based on the rank set by

get-type-rank based on type.

172

Listing B.6: ACL2 get-type-rank-list

(defun get-type-rank-list (type-list)

(if (endp type-list) nil

(let*

((fst (car type-list))

(rst (cdr type-list))

(type-rank-list

(cons (get-type-rank fst)

(get-type-rank-list rst))))

type-rank-list)))

Listing B.7: ACL2 get-max-type-rank

(defun get-max-type-rank (max-type-rank type-rank-list)

(if (endp type-rank-list) max-type-rank

(let*

((fst (car type-rank-list))

(rst (cdr type-rank-list))

(rank

(max max-type-rank fst)))

(get-max-type-rank rank rst))))

Listing B.8: ACL2 get-dominate-type

(defun get-dominate-type (operand-type-list)

(if (endp operand-type-list) nil

(let*

((type-rank-list

(get-type-rank-list operand-type-list))

(max-type-rank

(get-max-type-rank

(car type-rank-list) type-rank-list))

(dominate-type

(cond

((or

(equal max-type-rank 0)

(equal max-type-rank 1)

(equal max-type-rank 2)

(equal max-type-rank 3)

(equal max-type-rank 4))

(get-type-from-type-rank 5))

(t

(get-type-from-type-rank max-type-rank)))))

dominate-type)))

173

Listing B.9: ACL2 get-type-from-type-rank

(defun get-type-from-type-rank (type-rank)

(let*

((type

(cond ((equal type-rank 0) 'BOOL)

((equal type-rank 1) 'CHAR)

((equal type-rank 2) 'UCHAR)

((equal type-rank 3) 'SHORT)

((equal type-rank 4) 'USHORT)

((equal type-rank 5) 'INT)

((equal type-rank 6) 'UINT)

((equal type-rank 7) 'LONG)

((equal type-rank 8) 'ULONG)

((equal type-rank 9) 'LLONG)

((equal type-rank 10) 'ULLONG)

((equal type-rank 11) 'FLOAT)

((equal type-rank 12) 'DOUBLE)

((equal type-rank 13) 'LDOUBLE)

((equal type-rank 14) 'FLOAT_COMPLEX)

((equal type-rank 15) 'DOUBLE_COMPLEX)

((equal type-rank 16) 'LDOUBLE_COMPLEX)

((equal type-rank 17) 'FLOAT_IMAGINARY)

((equal type-rank 18) 'DOUBLE_IMAGINARY)

((equal type-rank 19) 'LDOUBLE_IMAGINARY))))

type))

174

B.3.2 arithConv(τ1, τ2)

The goal of the usual arithmetic conversions is to �nd a common real type for the operands

and the result of an expression. The rules comprising the usual arithmetic conversions

are described in �6.3.1.8 of the standard and are generally based on the bit-wise size of

the types. The output of arithConv(τ1, τ2) is the result of this type conversion process.

arithConv : TYPE×TYPE→ TYPE′

arithConv = (λ〈τ1, τ2〉. case τ1 and τ2 of
(τ1 = LDOUBLE) ∨ (τ2 = LDOUBLE) ⇒ LDOUBLE

(τ1 = DOUBLE) ∨ (τ2 = DOUBLE) ⇒ DOUBLE

(τ1 = FLOAT) ∨ (τ2 = FLOAT) ⇒ FLOAT

intPromote = (λ〈τ ′1, τ ′2〉. case τ ′1 and τ ′2 of
(τ ′1 = ULLONG) ∨ (τ ′2 = ULLONG) ⇒ ULLONG

((τ ′1 = LLONG) ∧ (τ ′2 = ULONG)) ∨
((τ ′2 = LLONG) ∧ (τ ′1 = ULONG)) ⇒ ((ULONG ⊆ LLONG)→ LLONG, ULLONG)
(τ ′1 = LLONG) ∨ (τ ′2 = LLONG) ⇒ LLONG

(τ ′1 = ULONG) ∨ (τ ′2 = ULONG) ⇒ ULONG

((τ ′1 = LONG) ∧ (τ ′2 = UINT)) ∨
((τ ′2 = LONG) ∧ (τ ′1 = UINT)) ⇒ ((UINT ⊆ LONG)→ LONG, ULONG)
(τ ′1 = LONG) ∨ (τ ′2 = LONG) ⇒ LONG

(τ ′1 = UINT) ∨ (τ ′2 = UINT) ⇒ UINT

(τ ′1 = INT) ∧ (τ ′2 = INT) ⇒ INT)))
(B.27)

B.3.3 funcArgPromote(τ1, . . . , τn)

While it is generally accepted that the type of function is that of it's return type, the

evaluation of functions will require the static typing semantics of it's parameters (argu-

ments). The function funcArgPromote(τ1, . . . , τn) (Equation B.28) represents the default

argument promotions de�ned in �6.5.2.2 of the standard and is based on the usual arith-

metic conversions. Each τ1 parameter of funcArgPromote(τ1, . . . , τn) represents the type

of the corresponding arguments (τ1, . . . , τn) for the function being evaluated.

175

funcArgPromote : TYPE×TYPE→ TYPE′

funcArgPromote = (λτ. case τi of
LDOUBLE ⇒ LDOUBLE

DOUBLE ⇒ LDOUBLE

FLOAT ⇒ DOUBLE

Otherwise ⇒ arithConv(intPromote)) (B.28)

B.4 Truth Returning Functions for Literals

Several predicate and value adding functions are required to identify and give meaning

to the literal values contained within a program. For example, when data objects are

initialized while being declared, the initialization value is generally a literal value. If

there is an initialization, that value is the �rst value assigned to the (VALUE) �eld of the

data object lookup table (Listing. B.1).

B.4.1 isDecimal(lit)

The predicate function isDecimal(lit) returns T if the literal is presented as a decimal

number n composed of one or more decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Otherwise, it returns nil. Contained within isDecimal(lit) is the function prefix (lit)

(Equation B.31) which is explained in Section B.4.2 of this appendix.

isDecimal : LITERAL→ B
isDecimal = (λl. case l of

prefix = ∅ ∧ n ⇒ T

Otherwise ⇒ nil) (B.29)

The same logic is applicable to determine if a �oating point number represented by f

is expressed in decimal. f is comprised of the same decimal digits used to express n with

the addition of a single decimal point (.). At present, the analysis tool does not reason

about literals expressed as f .

176

Listing B.10: ACL2 example usage of RATIONALP to �nd a decimal numeric literal

(defun literal-value (lit)

(cond ((rationalp lit) lit)

(t nil)))

ACL2 has a collection of built in (standard Lisp) functions to recognize numbers. For

example, RATIONALP recognizes real numbers and INTEGERP recognizes whole numbers.

If RATIONALP is applied to the number 10,

(RATIONALP 10), (B.30)

it returns T for true because integers ⊂ rationals . It should be noted that RATIONALP

does not work on �oating point values, such as 0.5. However, it can reason about

fractional numbers, such as 1/2. The C integer type safety checking tool distinguishes

between decimal and hexadecimal numeric literals using RATIONALP in a larger function

that extracts the decimal values of both numeric and character literals (Listing B.10).

The RATIONALP function, however, does not work on decimal numeric literals that

have character su�x to indicate an intended type. For example, the numeric decimal

literal value 10u represented as (LIT 10u) has the su�x u to designate that the literal

is an unsigned integer (UINT) and if applied to RATIONALP, the result would be NIL for

false.

B.4.2 pre�x(lit)

At times, a numeric literal has a pre�x to that the value is represented in other than

decimal (base 10). Likewise, a character or string literal may be pre�xed the a single L to

indicate the character or string is wide. The function prefix (lit) (Equation B.31) returns

the set of alpha characters that pre�x a numeric literal to represent T. The valid pre�x

177

characters are L and 0; and, the two valid pre�x strings are 0x and 0X. If none of these

characters are present, ∅ is returned to represent nil.

prefix : LITERAL→ B
prefix = (λl. case l of

0 ⇒ 0

l | L ⇒ L

0x | 0X ⇒ 0X

Otherwise ⇒ ∅) (B.31)

B.4.3 isOctal(lit)

The predicate function isOctal(lit) returns T if the numeric literal is presented as an octal

number. Otherwise, it returns nil. A octal number begins with the pre�x 0 (a zero)

and is followed by one or more octal digits: 0, 1, 2, 3, 4, 5, 6, and 7. Let o represent an

octal number.

isOctal : LITERAL→ B
isOctal = (λl. case l of

prefix = 0 ∧ o ⇒ T

Otherwise ⇒ nil) (B.32)

At present, the type safety analysis tool does not reason about octal numeric literals.

This is because ACL2 removes leading zeros from numeric values. This can be corrected

by altering the c2acl2 translator to generate the alphabet character O instead of the

numeric character 0 to pre�x an octal literal.

B.4.4 isHexadecimal(lit)

The predicate function isHexadecimal(lit) (Equation B.33) returns T if the numeric literal

is presented as a hexadecimal number. Otherwise, it returns nil. A hexadecimal number

begins with the pre�x �0x� or �0X� and is followed by one or more hexadecimal digits: 0,

178

1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, and F. Let h represent a hexadecimal

number.

isHexadecimal : LITERAL→ B
isHexadecimal = (λl. case l of

prefix = 0X ∧ h ⇒ T

Otherwise ⇒ nil) (B.33)

B.4.5 isChar(lit)

Character literals are either a singleton character enclosed in single quote marks (' ')

or a string of one or more characters enclosed in double quotation marks (" "). The

function isChar(lit) returns T if the literal is a single printable American Standard Code

for Information Interchange (ASCII) [5] character. Otherwise, it returns nil|.

isChar : LITERAL→ B
isChar = (λl. case l of

! | ” | # | $ | % | & | ' | (|) | ∗ | + | , | − | . | / |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | : | ; | < | = | > |
? | @ | A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | Q | R | S | T | U | V | W | X | Y | Z | [| \ |
] | ^ | _ | ` | a | b | c | d | e | f | g | h | i | j | k | l |
m | n | o | p | q | r | s | t | u | v | w | x | y | z |
{ | | | } |˜| space ⇒ T

Otherwise ⇒ nil) (B.34)

The C2ACL2 translator translates character literals into a character string where a

single character enclosed by single quotes is enclosed by double quotes, e.g., the literal

'a' is represented as " 'a' " by the output of C2ACL2. Thus, the function written in ACL2

to identify character literals is part of a condition (Listing B.11) based on four known

facts about the C2ACL2 translated character literal: it is a string, the length of the string

is three, the �rst character of the string is a single quotation mark, and the last character

of the string is a single quotation mark.

179

Listing B.11: ACL2 conditional identifying character literals to get ASCII decimal value

(cond ((and (stringp lit)

(equal (length lit) 3)

(equal "'" (subseq lit 0

(- (length lit) 2)))

(equal "'" (subseq lit (- (length lit) 1)

(length lit))))

(get-ascii-dec-val lit)))

B.4.6 isWideChar(lit)

The predicate function isWideChar(lit) returns T if the character literal is pre�xed with

L. Otherwise, it returns nil. Let c represent a character literal.

isWideChar : LITERAL→ B
isWideChar = (λl. case l of

prefix = L ∧ c ⇒ T

Otherwise ⇒ nil) (B.35)

B.4.7 isStringLit(lit)

The predicate function isStringLit(lit) returns T if the literal is enclosed in double quo-

tation marks. Otherwise, it returns nil. Let l represent a literal.

isStringLit : LITERAL→ B
isStringLit = (λl. case l of

"l " ⇒ T

Otherwise ⇒ nil) (B.36)

ACL2 has the built in function STRINGP to recognize strings. For example,

(STRINGP "hello world") (B.37)

returns T because an ACL2 string object is enclosed in double quotation marks.

180

B.4.8 isWideString(lit)

The predicate function isWideString(lit) returns T if the string literal is pre�xed with a

L. Otherwise, it returns nil. Let s represent a string literal.

isWideString : LITERAL→ B
isWideString = (λl. case l of

prefix = L ∧ s ⇒ T

Otherwise ⇒ nil) (B.38)

ACL2 has a collection of built in functions to recognize characters and strings. For

example,

(STRINGP "hello world") (B.39)

returns T because an ACL2 string is enclosed in double quotation marks.

B.5 Type Returning Literal Functions

At times, a literal value can indicate its type. The following functions assist the type

safety analysis tool to reason about type.

B.5.1 su�x(lit)

The function suffix (lit) (Equation B.40) returns the set of valid alpha characters con-

tained in the su�x of a numeric literal to indicate type. Otherwise, it returns nil. Valid

su�x characters and their meanings are f or F for FLOAT, l or L for LONG, u or U for

UNSIGNED, ll or LL for LLONG, ul or UL for ULONG, and ull or ULL for ULLONG.

181

suffix : LITERAL→ TYPE
suffix = (λl. case l of

f | F ⇒ FLOAT

l | L ⇒ LONG

u | U ⇒ UNSIGNED

ll | LL ⇒ LLONG

ul | UL ⇒ ULONG

ull | ULL ⇒ ULLONG

Otherwise ⇒ nil) (B.40)

A c2acl2 translation of a su�xed numeric literal is represented as the number with

trailing alpha character(s). It is not recognized as a number or a string by any of the

ACL2 built in functions. However, ACL2 has a built in function (STRING) that coerces

any data type into a string type. For example, the output of

(STRING 10u) (B.41)

is the string

"10u". (B.42)

Once coerced to a string type, ACL2 has a number of string [84] functions that employ

pattern matching to �nd the legal numeric typing su�xes. The same logic applies to

numeric pre�xes.

B.5.2 �rstToRepresent(lit, τ1, . . . , τn)

The function firstToRepresent(lit , τ1, . . . , τn) (Equation B.43) Let n represent a numeric

integer value and each τi represent an constant integer type value { INT.MAX | LONG.MAX

| LLONG.MAX | ULLONG.MAX }. Let l represent a literal integer value and c represent a

τ1.

182

firstToRepresent : LITERAL×CONST→ TYPE
firstToRepresent = (λl. case l and c of

l ≤ INT.MAX ⇒ INT

l > INT.MAX ∧ l ≤ LONG.MAX ⇒ LONG

l > LONG.MAX ∧ l ≤ LLONG.MAX ⇒ LLONG

l > LLONG.MAX ∧ l ≤ ULLONG.MAX ⇒ ULLONG

Otherwise ⇒ ERROR) (B.43)

The function firstToRepresentUnsigned(lit , τ1, . . . , τn) uses the same logic as the

signed counterpart firstToRepresent(lit , τ1, . . . , τn). Let l represent a numeric integer

value and c represent each τi that represents an constant unsigned integer type value {

UINT.MAX | ULONG.MAX | ULLONG.MAX }.

firstToRepresentUnsigned : LITERAL×CONST→ TYPE
firstToRepresentUnsigned = (λτ. case l and c of

l ≤ UINT.MAX ⇒ UINT

l > UINT.MAX ∧ l ≤ ULONG.MAX ⇒ ULONG

l > ULONG.MAX ∧ l ≤ ULLONG.MAX ⇒ ULLONG

Otherwise ⇒ ERROR) (B.44)

B.6 Value Returning Literal Functions

B.6.1 lengthOfString(string)

The function lengthOfString(s) returns the number of characters enclosed in double quo-

tation marks plus 1 to include the null string terminal character.

lengthOfString : STRING→ Z (B.45)

The lengthOfString(s) function uses the formula

1 +
n∑
i=0

1 (B.46)

where n is the number of string characters. In ACL2, lengthOfString(s) can be realized

by applying the built in function LENGTH to a string literal and adding 1 to its output.

183

For example,

(+ (LENGTH "hello") 1) (B.47)

returns 5 accounting for the null string terminal character generally required for C func-

tions applied to character arrays.

B.6.1.1 lengthOf (string)

The function lengthOf (s) is a modi�ed version of lengthOfString(s) as it does not add 1

to the output to account for the null string terminal character. This function is used to

determine the length of identi�ers that should not be built of no more than 32 characters

to be type safe.

B.6.2 charToDecimalVal(lit)

The function charToDecimalVal(lit) Of the 128 ASCII characters, 34 are non-printable

control characters. Obviously, these control characters will not appear as a character

literal enclosed in single quotes (' '). The presentation of charToDecimalVal(lit) in

Equation B.48) has been abbreviated to preserve space. The ellipsis represent the omitted

contiguous character set and their associated ASCII values. The variable c represents a

character literal. The equivalent function written in ACL2 is presented in Listing B.12.

184

Listing B.12: ACL2 get-ascii-dec-val

(defun get-ascii-dec-val (lit)

(cond ((equal '"' '" lit) 32) ;; the blank space

((equal '"'!'" lit) 33)

((equal '" '\"'" lit) 34) ;; \ used to escape

;; single double quotation mark

((equal '"'#'" lit) 35)

((equal '"'$'" lit) 36)

((equal '"'%'" lit) 37)

((equal '"'&'" lit) 38)

...

...

((equal '"'y'" lit) 121)

((equal '"'z'" lit) 122)

((equal '"'{'" lit) 123)

((equal '"'|'" lit) 124)

((equal '"'}'" lit) 125)

((equal '"'~'" lit) 126))

(t nil))) ;; end get-ascii-dec-val

charToDecimalVal : LIRERAL→ Z
charToDecimalVal = (λc. case c of

⇒ 32 /* the blank space */

! ⇒ 33

" ⇒ 34

⇒ 35

$ ⇒ 36

% ⇒ 37

& ⇒ 38

.

.
y ⇒ 121

z ⇒ 121

y ⇒ 122

{ ⇒ 123

| ⇒ 124

} ⇒ 125

~ ⇒ 126

Otherwise ⇒ nil) (B.48)

185

B.6.3 octToDecVal(lit)

The octVal(lit) function returns the decimal value a literal represented in octal.

octToDecVal : LITERAL→ N (B.49)

The octToDecVal(lit) function uses the formula

k =
n∑
i=0

(ai × 8i) (B.50)

where k is the octal integer literal and ai is the octal digit being converted where the

i is the position of the digit (counting from 0 for the rightmost digit). At present, this

function is not used because ACL2 truncates leading zeros of numeric values. Thus, the

octal value 01 is interpreted as the decimal integer value 1. This should be an easy �x

and can be accomplished by changing the pre�x the c2acl2 translation of an octal value

from a 0 (zero) to either the upper case or lower case alpha character O.

B.6.4 hexToDecVal(lit)

The hexToDecVal(lit) function returns the decimal value a literal represented in hex-

adecimal.

hexToDecVal : LITERAL→ N (B.51)

The hexToDecVal(lit) function uses the formula

k =
n∑
i=0

(ai × 16i) (B.52)

where k is the hexadecimal integer literal and ai is the hexadecimal digit being converted

where the i is the position of the digit (counting from 0 for the rightmost digit). If the

upper bitwise precision of the machine integer is 64-bits, the n = 15 due to the fact that

each ai occupies 4-bits.

186

In ACL2, numeric hexadecimal values are preceded with #x and the decimal value

can be derived using LET. For example,

(LET ((n #x3A)) n) (B.53)

will return the decimal value 58 that n represents.

B.7 Value to Type Range Functions

The �nal set of functions are used for type safety purposes. For example, C integer types

are likely to enter an error condition when they are assigned a value that is outside of

the valid minimum and maximum range for the integer type.

B.7.1 isValidIntValue(val,τ1, τ2)

The predicate function isValidIntValue(val , τ1, τ2) returns T if a value lies within the

valid range that can be represented by the integer type. Let v represent a numeric

value, τ1 represent one of the constant minimum values an integer type can repre-

sent ({ CHAR.MIN | SCHAR.MIN | SHORT.MIN | USHORT.MIN | INT.MIN | UINT.MIN |

LONG.MIN | ULONG.MIN | LLONG.MIN | ULLONG.MIN }) and τ2 represent the constant

maximum value the corresponding integer type can represent ({ CHAR.MAX | SCHAR.MAX

| SHORT.MAX | USHORT.MAX | INT.MAX | UINT.MAX | LONG.MAX | ULONG.MAX | LLONG.

MAX | ULLONG.MAX }).

isValidIntValue : LITERAL×CONST→ B
isValidIntValue = (λv. case v, τ1, and τ2 of

v ≥ τ1 ∧ v ≤ τ2 ⇒ T

Otherwise ⇒ nil) (B.54)

187

B.7.2 isValidRealValue(val,τ1, τ2)

The precision of real numbers (�oats) is often dependent on the problem being solved,

most C programs are compiled with extensive run time checks for the �oats. Because of

this, the �oats are not as susceptible to entering an error condition as are the integers.

For example, if a �oat literal is invalid, an expectation to indicate that the value is not a

number (Nan) is thrown. For completeness, however, the tool introduced in this disser-

tation performs valid range checking for the �oats. The function isValidRealValue(val , τ)

employs the same logic used by isValidIntValue(val , τ). In this case, τ1 represents one of

the constant minimum values an �oat type can represent ({ FLOAT.MIN | DOUBLE.MIN

| LDOUBLE.MIN | FLOAT_COMPLEX.MIN | DOUBLE_COMPLEX.MIN | LONG_COMPLEX.MIN })

and τ2 represent the constant maximum value the corresponding integer type can rep-

resent ({ FLOAT.MAX | DOUBLE.MAX | LDOUBLE.MAX | FLOAT_COMPLEX.MAX | DOUBLE_

COMPLEX.MAX | LONG_COMPLEX.MAX }).

isValidRealValue : LITERAL×CONST→ B
isValidRealValue = (λv. case v, τ1, and τ2 of

n ≥ τ1 ∧ n ≤ τ2 ⇒ T

Otherwise ⇒ nil) (B.55)

B.7.3 isValidArrayIndex(index,size)

The �nal example type safety predicate function is isValidArrayIndex (index , size) (Equa-

tion B.56) that returns true if an array index is valid to the declared size of the array.

This function is useful in detecting potential and actual array boundary errors. Remem-

ber, an array index value cannot be less than 0 and because array indexing begins at

0, the index value cannot be greater than the declared (size - 1). Let i represent an

index value and n represent the declared array size.

188

isValidArrayIndex : LITERAL× LITERAL→ B
isValidArrayIndex = (λi. case i and n of

i ≥ 0 ∧ i ≤ (n− 1) ⇒ T

Otherwise ⇒ nil) (B.56)

	Authorization to Submit Dissertation
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Listings
	1 Statement of Purpose
	1.1 Introduction
	1.2 Type Safety
	1.2.1 Building Blocks
	1.2.2 Security
	1.2.3 Type Safety
	1.2.4 The Relationship of Type Safety and Type Strength

	1.3 Objectives and Contribution
	1.4 Structure of Remaining Dissertation

	2 The C Programming Language
	2.1 Humble Beginnings
	2.2 Strengths
	2.3 Pitfalls
	2.4 Integer Error Conditions
	2.4.1 Casting
	2.4.2 Integer Errors Introduced by Operators
	2.4.3 Other Conditions Leading to Vulnerabilities

	3 Current Error Mitigation Measures
	3.1 Optional Compiler Warnings
	3.2 Safe Coding Guidelines and Practices
	3.3 Safe Integer Libraries
	3.4 Safe Subsets of C
	3.5 Proposed Extensions to C
	3.5.1 Ranged Integers
	3.5.2 Infinitely Ranged Integers

	3.6 Source Code Analysis Tools
	3.6.1 Runtime Analysis
	3.6.2 Static Analysis

	4 Introduction to Language Formalism
	4.1 Elements of Language: Syntax and Semantics
	4.2 Common Methods to Formalize Language Semantics
	4.2.1 Axiomatic Semantics
	4.2.2 Denotational Semantics
	4.2.3 Operational Semantics

	4.3 Approaches to the Formalization of Language Semantics

	5 Historic Attempts to Formalize C
	5.1 Evolving Algebras
	5.2 An Abstract Dynamic Semantics for C
	5.3 An Operational and Denotational Typing Semantics for C
	5.4 A Formalism of C++
	5.5 In Summary

	6 C Type Systems
	6.1 Introduction
	6.2 Syntax of C Types
	6.3 Object Types
	6.3.1 Scalar Types
	6.3.2 Aggregate Types

	6.4 union Type
	6.5 Function Types
	6.5.1 Function Specifiers

	6.6 Incomplete Types
	6.7 Type Qualifiers and Storage Class Specifiers
	6.7.1 Type Qualifiers
	6.7.2 Storage Class Specifiers

	6.8 Compatible Type
	6.9 Composite Type
	6.10 lvalue and rvalue

	7 Formalizing C Expressions and Statements
	7.1 Introduction
	7.2 C Type Casting Rules
	7.2.1 Integer Conversion Rank
	7.2.2 Integer Promotions
	7.2.3 Usual Arithmetic Conversions
	7.2.4 Other Conversion Rules

	7.3 Expressions
	7.3.1 Static Typing Semantics
	7.3.2 Type Safety Requirements

	7.4 Statements

	8 The Static Type Safety Analysis Tool
	8.1 The Fundamental Question
	8.2 A Naïve Approach
	8.3 A Better Attack Plan
	8.3.1 Influence of Literals

	8.4 The Underlying Language ACL2
	8.4.1 Computational Logic
	8.4.2 Applicative Common Lisp
	8.4.3 Reasons Behind the Use of ACL2
	8.4.4 In Summary

	9 Leveraging State in a Static Analysis Environment
	9.1 A State-full Introduction
	9.2 Application of Functions Run, Next, and Exit
	9.3 Tracking State
	9.3.1 Type Safety Decision Algorithms
	9.3.2 Tracking State-wise Changes with an Annotated Look-up Table
	9.3.3 The (VALUE) Field

	10 Conclusions and Future Work
	10.1 Review and Conclusions
	10.1.1 Organization of this Dissertation
	10.1.2 Formalization
	10.1.3 The C Type Safety Verification Tool

	10.2 Assumptions
	10.3 Limitations
	10.4 Test Suite and Observed Performance
	10.5 Future Work
	10.6 Final Observations

	Bibliography
	Appendices
	A The Syntax of C Types
	B Required Predicate and Valuation Functions for Expressing Static Typing Semantics
	B.1 Populating the Lookup Table Type Specifier Field
	B.1.1 getDeclaredArithType()

	B.2 Truth Returning Functions for Types
	B.2.1 isInteger()
	B.2.2 isFloat()
	B.2.3 isArithmetic()
	B.2.4 isPointer()
	B.2.5 isScalar()
	B.2.6 isArray()
	B.2.7 isStruct()
	B.2.8 isAggregate()
	B.2.9 isUnion()
	B.2.10 isObject()
	B.2.11 isVoid()
	B.2.12 isNull()
	B.2.13 isQualified(q)
	B.2.14 isModifiable(identifier)

	B.3 Type Returning Type Functions
	B.3.1 intPromote()
	B.3.2 arithConv(1,2)
	B.3.3 funcArgPromote(1, …, n)

	B.4 Truth Returning Functions for Literals
	B.4.1 isDecimal(lit)
	B.4.2 prefix(lit)
	B.4.3 isOctal(lit)
	B.4.4 isHexadecimal(lit)
	B.4.5 isChar(lit)
	B.4.6 isWideChar(lit)
	B.4.7 isStringLit(lit)
	B.4.8 isWideString(lit)

	B.5 Type Returning Literal Functions
	B.5.1 suffix(lit)
	B.5.2 firstToRepresent(lit, 1, …, n)

	B.6 Value Returning Literal Functions
	B.6.1 lengthOfString(string)
	B.6.2 charToDecimalVal(lit)
	B.6.3 octToDecVal(lit)
	B.6.4 hexToDecVal(lit)

	B.7 Value to Type Range Functions
	B.7.1 isValidIntValue(val,1,2)
	B.7.2 isValidRealValue(val,1,2)
	B.7.3 isValidArrayIndex(index,size)

