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Abstract

The search for extraterrestrial life along with our desire to understand the necessary

conditions for the development of life are large motivators in the field of astronomy.

Although the Earth remains as our sole data point, it seems overwhelmingly likely

that either other Solar System bodies or distant exoplanets had, have, or will have

the capacity to host life of their own. Nonetheless, the assessment of a world’s

potential for habitability is a complex problem that requires thorough study of many

contributing aspects. One key aspect is the value and evolution of a planet’s obliquity,

or axial tilt, which sets the nature of its seasons and long-term climate by governing

the distribution of solar flux across its surface. Although we enjoy a pleasant cli-

mate thanks to the Earth’s stable moderate obliquity, other planetary bodies may be

either even better off or severely challenged in comparison. In dissertation, I help

build toward a more complete picture of habitability by studying planetary obliquity

evolution with the use of numerical simulations of planetary systems. Beginning

with Chapter 1, I provide a brief background of the dynamics that drive obliquity

evolution and describe previous work that establishes our current understanding

moving forward. In Chapter 2, I discuss a threatening secular spin-orbit resonance

that can destabilize the obliquities of retrograde rotators (planets with obliquities

greater than 90 degrees). Next, in Chapter 3 I introduce SMERCURY-T, a tool that

allows for the study of planetary obliquity evolution under the influence of tidal

forces. Finally, in Chapter 4 I apply SMERCURY-T to study the tidal obliquity evolution

of a moonless Earth and a potentially habitable early Venus. Each of these chapters

provides wider contributions past their individual results by urging direction to

future studies, releasing publicly available software, or identifying trends and process

that may be important to the obliquity evolution of extrasolar planets. These findings

can ideally be applied to such exoplanet systems in the future once further our

capability to detect and characterize their spin states.
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chapter 1

General Introduction

1 .1 planetary obliquity and climate

The possibility of discovering extraterrestrial life largely motivates the study of ex-

trasolar planets. Judging the habitability of these worlds requires the consideration

of a multitude of factors. Aside from the basic requirement that a planet’s orbit

must reside within the habitable zone (HZ), the region around a star at which liquid

water can exist on the planet’s surface, the nature of the planet’s obliquity, or axial

tilt, is fundamental to habitability. Planetary obliquity affects the climate of the

planet by governing the distribution and seasonal variation of its incoming solar

flux. Therefore it is important to know both the value of the planet’s obliquity and

how it evolves over time. Additionally, we can use this knowledge to gain insights or

make predictions for the spin dynamics of planetary bodies in the Solar System and

beyond.

Formally, planetary obliquity, ε, is the angle between a planet’s orbital and rota-

tional angular momentum vectors. Therefore, with respect to the planet’s direction of

orbital motion, obliquity values < 90◦ correspond to prograde rotation while obliq-

uity values > 90◦ correspond to retrograde (backwards) rotation. The Solar System

is host to planets possessing a variety of obliquity values spanning nearly the entire

180◦ space. Terrestrial planet obliquities are likely initially isotropic in distribution,

randomly decided from collisions in the protoplanetary disk after formation (Dones

and Tremaine, 1993; Lissauer et al., 1997; Miguel and Brunini, 2010), see however

Lissauer and Kary (1991). However, recent findings suggest that processes such as

planet-disk interactions could influence planetary obliquity early on (Millholland and

Batygin, 2019; Su and Lai, 2020).

There are unique consequences for each value of obliquity. The Earth’s relatively

low obliquity of ∼ 23.5◦ means that its equator receives the most annually-averaged

illumination while its poles receive very little. Low-obliquity worlds have the poten-
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tial to enter snowball states, in which ice envelops the entire planet similar to the

historic snowball Earth episode (Hoffman et al., 1998). On the other hand, planets

with obliquities near 90◦ have poles that experience extreme contrasts in solar flux

over the course of an orbit, while their equators actually receive the least amount

of illumination as seen in Figure 1 of Lissauer et al. (2012). High obliquity worlds

have a severe seasonality that can generally lead to warmer climates (Kang, 2019),

however see He et al. (2022). This seasonality could act to stave off snowball states

(Spiegl et al., 2015; Colose et al., 2019) or produce equatorial ice belts (Kilic et al.,

2018). Olson et al. (2020) and Barnett and Olson (2022) found that oceans of high

obliquity worlds may have more efficient nutrient recycling processes that would

benefit potential biological activity near the surface. Ultimately the fate of a planet’s

climate depends on the configuration and properties of the planetary system, where

studies that incorporate energy balance models show that any value of obliquity has

the potential to provide habitable conditions (Williams and Kasting, 1997; Williams

and Pollard, 2003; Kilic et al., 2017; Kane and Torres, 2017; Guendelman and Kaspi,

2019; Dong et al., 2019; Colose et al., 2019).

1 .2 obliquity variations and spin -orbit resonance

Since the value of obliquity affects planetary climate, changes in the obliquity drive

changes in the climate over time. In most cases, the expectation is that rapid large

swings in obliquity would likely be harmful to a planet’s habitability, acting as jolts

to its climate. For instance, the large obliquity variations of Mars contributed to its

atmospheric collapse (Head et al., 2004; Head et al., 2005; Forget et al., 2013). Although

muted compared to Mars, the periodic ∼ 2.4◦ shift of the Earth’s spin axis drives its

glacial cycles and Ice Ages (Milanković, 1998). Nonetheless, Armstrong et al. (2014)

found that in special circumstances extreme obliquity variations can be helpful, in

that they can push the outer limit of the HZ outwards by staving off snowball states.

Later, Deitrick et al. (2018b) applied a more robust model and argued that fast and

large variations in a planet’s rotational and orbital properties can actually do the

opposite, and sometimes lead to global glaciation.
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Many processes contribute to alter a planet’s obliquity over time. Constant torques

exerted on a planet’s equatorial bulge by its planetary neighbors in addition to the

regular precessional motion of the planet’s orbit plane set a range of small regular

obliquity variations. On the other hand, a planet can experience large obliquity

variations of many tens of degrees if it enters into a secular spin-orbit resonance.

Such a resonance occurs when a planet’s spin-axis precession becomes commensurate

with a driving eigenfrequency of its orbital precession (Colombo, 1966; Peale, 1969;

Henrard and Murigande, 1987). Considering the working parts that contribute to

this resonance, rhythmic gravitational tugs from neighboring planets drive orbital

precession while torques from the planet’s star and moons fuel its spin precession.

The rate of a planet’s spin precession obeys

ψ̇ =
α cos ε

(1− e2)
3
2

(1.1)

where epsilon is the obliquity and e is its orbital eccentricity. This relationship implies

that the spin-precession rate is larger for smaller values of obliquity and bigger values

of eccentricity. In the case of a moonless planet, the precession constant, α, goes as

α ≈ 3n2

2ωp

J2

C
(1.2)

Here n is the planet’s mean motion, ωp its spin rate, J2 its oblateness coefficient, and

C is its normalized polar moment of inertia (this expression is approximate, based

on the assumption that the planet’s dynamical ellipticity is roughly proportional to

ωp
2) (Laskar and Robutel, 1993b; Li and Batygin, 2014; Quarles et al., 2020).

The resultant obliquity variations of this spin-orbit resonance depend on the

amplitude of the participating orbital frequency in addition to the planet’s proximity

to the resonance center. Provided that a planet resides within a spin-orbit resonance,

its resonant angle, σ = ψ + φ, will typically librate about 0 (the stable Cassini States

1 and 2 or the unstable Cassini State 4) or 180 degrees (Cassini State 2, stable), where

ψ is the planet’s spin precession angle that defines the azimuthal orientation of the

planet’s spin vector and φ is the phase angle of the orbital precession mode (Deitrick

et al., 2018a; Saillenfest et al., 2019; Su and Lai, 2020). Furthermore, in the case that the
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widths of multiple spin-orbit resonances overlap, a planet’s spin axis can be subject

to chaotic evolution in which its obliquity swings across a wide range of values. Mars

is the poster child for this chaotic behavior, as its obliquity swings from ∼ 0− 60◦

(Laskar and Robutel, 1993b; Touma and Wisdom, 1993; Laskar et al., 2004b; Li and

Batygin, 2014). The Earth would suffer a similar fate if not for the Moon’s help in

speeding up the Earth’s spin-axis precession enough so that the Earth peacefully

resides outside of the chaotic region (Laskar et al., 1993a, 2004a; Brasser and Walsh,

2011).

1 .3 dynamic resonant encounters and the solar

tidal torque

The status of a planet’s presence within a spin-orbit resonance can change with time.

For instance, although the Earth rests easy now, it may have crossed a high-order reso-

nance just a few million years ago (Laskar et al., 1993a, 2004a). Change can be brought

on by a variety of processes, such as those that shift the location and amplitudes

of potentially resonant orbital frequencies. Planetary orbital migration mechanisms

are one such way to achieve these shifts (Brasser and Lee, 2015; Vokrouhlický and

Nesvorný, 2015; Millholland and Laughlin, 2019). In a similar vein, the works of

Saillenfest et al. (2020), Saillenfest et al. (2021a), and Saillenfest, Melaine et al. (2021)

studied the past and future influence that satellite migration may have had on the

obliquity evolution of Jupiter and Saturn. Millholland and Batygin (2019) and Su

and Lai (2020) studied another mechanism in which a shrinking protoplanetary disk

could cause sweeping spin-orbit resonances to influence the obliquity distribution

of newly formed protoplanets. Another study applied this concept to Uranus’s

circumplanetary disk to attempt to infer its dynamical history (Rogoszinski and

Hamilton, 2020).

Alternatively, a planet can be driven into or out of a spin-orbit resonance by

processes that alter its spin precession rate (Equation 1.1). Tidal spin torques are one

mechanism that can dynamically shape the fate of a planet’s spin state over time by

modifying the planet’s precession constant, obliquity, or orbital eccentricity. The tidal
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friction generated from a system’s star pulling on the equatorial bulges of a planet

will slowly drive it toward tidal equilibrium, in which its obliquity will typically

increase followed by a gradual decline to a small values (the solar tidal torque is

initially more efficient at reducing the planet’s spin component perpendicular to

its orbit plane (Barnes and Fortney, 2003)), while its spin rate undergoes rotation

braking until its spin period becomes synchronous with its orbital period (or pseudo-

synchronous for eccentric orbits). This journey amounts to a constant decline in

a planet’s precession constant and consequently its spin-precession rate over time,

allowing for opportunities to encounter spin-orbit resonances as time goes on. Tidal

spin torques can drive a planet’s spin axis to traverse parameter space and undergo

scenarios such as spin-orbit resonance crossings, captures, or even traverses of chaotic

resonance regions. Since the magnitude of the tidal force decays roughly as r−6 with

distance, this process is likely especially important for planets in close proximity

to their star. The Earth will likely undergo chaotic obliquity variations itself in a

few billion years after entering the chaotic zone thanks to its decaying rotation rate

(Neron de Surgy and Laskar, 1997a).

1 .4 outline

In this thesis, I organize the following work into subsequent chapters that describe

the work of three individual studies. In Chapter 2, I consider a fictitious simple

planetary system to demonstrate a special case of a spin-orbit resonance that can

excite large obliquity variations for retrograde-rotating planets on eccentric orbits.

Then in Chapter 3 I introduce SMERCURY-T, a numerical integrator that I developed

to study tidal obliquity evolution and perform several test experiments. Finally, in

Chapter 4 I apply SMERCURY-T to study the accelerated tidal obliquity evolution of

a moonless Earth and an early Venus in a complex spin-orbit resonance frequency

environment. I conclude in Chapter 5.
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chapter 2

Retrograde-rotating exoplanets experience obliquity

excitations in an eccentricity-enabled resonance
1

2 .1 summary

Previous studies have shown that planets that rotate retrograde (backwards with

respect to their orbital motion) generally experience less severe obliquity variations

than those that rotate prograde (the same direction as their orbital motion). Here

I examine retrograde-rotating planets on eccentric orbits and find a previously un-

known secular spin-orbit resonance that can drive significant obliquity variations.

This resonance occurs when the frequency of the planet’s rotation axis precession

becomes commensurate with an orbital eigenfrequency of the planetary system. The

planet’s eccentricity enables a participating orbital frequency through an interaction

in which the apsidal precession of the planet’s orbit causes a cyclic nutation of the

planet’s orbital angular momentum vector. The resulting orbital frequency follows

the relationship ν = 2v̇ − Ω̇, where v̇ and Ω̇ are the rates of the planet’s changing

longitude of periapsis and ascending node, respectively. I test this mechanism by sim-

ulating cases of a simple Earth-Jupiter system, and confirm the predicted resonance.

Over the course of 100 Myr, the test Earths with rotation axis precession rates near

the predicted resonant frequency experienced pronounced obliquity variations of

order 10◦-30◦. These variations can be significant, and suggest that while retrograde

rotation is a stabilizing influence most of the time, retrograde rotators can experience

large obliquity variations if they are on eccentric orbits and enter this spin-orbit

resonance.
1Kreyche, S. M., Barnes, J. W., Quarles, B. L., Lissauer, J. J., Chambers, J. E., & Hedman, M. M. (2020).

Retrograde-rotating exoplanets experience obliquity excitations in an eccentricity-enabled resonance.
The Planetary Science Journal, 1(1), 8.
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2 .2 contribution statement

For this chapter, I led the investigation by carrying out the numerical experiments,

performing the analysis, and writing the report. Jason W. Barnes advised me through-

out by providing feedback and guidance on the approach and solution to various

components of the study. I shared several useful conversations with Matthew M.

Hedman, where he provided useful ideas, feedback, and guidance in analyzing

the specific resonance under study. Billy L. Quarles provided useful feedback and

contributed code to perform the supplementary semi-analytical obliquity simulations.

Coauthors Jack J. Lissauer and John E. Chambers provided useful feedback for revi-

sion of the report.

2 .3 introduction

A planet is a retrograde rotator when it has an obliquity greater than 90◦ and rotates

backwards with respect to its orbital motion. A handful of studies considered the

obliquity evolution of retrograde rotators. Laskar and Robutel (1993b) studied the

obliquity evolution of the Earth under the influence of the Moon, and reasoned that

cases of Earths with retrograde obliquities would be expected to be more stable than

prograde ones. Later, Lissauer et al. (2012) explored the obliquity variations of a

moonless Earth and found in agreement, that the retrograde-rotating Earths were

generally more obliquity stable. Barnes et al. (2016) then explored the case of an

early Venus and again reported similar results, with the exception of a long-term

pronounced variability for some retrograde rotators. Quarles et al. (2019) found that

depending on the mutual inclination and orbital precession of the bodies, retrograde

rotators in the α Centauri AB binary-star system would likely be especially obliquity

stable. Together, these studies have shown that retrograde rotation largely stabilizes

obliquity under most circumstances.

In this chapter I explore an exceptional circumstance in which a spin-orbit res-

onance enabled by a retrograde-rotating planet’s orbital eccentricity can drive it

to experience significant obliquity variations. Specifically, the planet’s eccentricity

triggers a complex mechanism that enables a 1:1 secular spin-orbit resonance, in
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which the frequency of the planet’s rotation axis precession becomes commensurate

with an orbital eigenfrequency of the system.

Since orbital eccentricity enables this specific spin-orbit resonance, it is important

to discuss the influence that eccentricity has on planetary climate. Conservation

of angular momentum requires an eccentric planet to spend more time near its

apoapsis (the orbit’s furthest point from the primary body) than its periapsis (the

closest point to the primary body). At first glance, this relationship seems to imply

that significantly eccentric planets should be inhospitable, where a greater amount

of time spent further away from their energy source would trigger global glaciation.

However, the time averaged solar flux over the course of an orbit actually works out

to

〈F〉 ∝ (1− e2)−
1
2 (2.1)

This relationship shows that a planet actually receives a larger orbitally-averaged

global flux with increasing values of eccentricity (Laskar et al., 1993a), albeit the

planet’s average equilibrium temperature decreases slightly (Méndez and Rivera-

Valentín, 2017). Multiple studies applied energy balance and global circulation mod-

els to investigate the viability of eccentric planets as habitable worlds. Williams and

Pollard (2002) found that planets up to ∼ 0.7 eccentricity could remain habitable

even with seasonal departures outside of the HZ. Later studies generally confirmed

these findings with the exception of the occurrence of snowball states for the case

of planets orbiting stars hotter than the Sun (Dressing et al., 2010; Bolmont et al.,

2016). The climate of an Earth-like world could even remain temperate throughout

significant eccentricity variations over short timescales, as demonstrated by Way and

Georgakarakos (2017). Therefore, we should not necessarily discard eccentric worlds

as potentially habitable candidates and instead should study the effects of a planet’s

orbital eccentricity in conjunction with its obliquity.

In this chapter, I explore the obliquity stability of retrograde rotators, finding that

orbital eccentricity can generate large obliquity variations. I begin with Section 2.4, in

which I describe the mechanism that affects the obliquity of retrograde rotators. Then
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in Section 2.5 I explain my approach to test this mechanism. In Section 2.6, I reveal

the results of my frequency analysis and simulations, and discuss their implications.

I summarize my results and their implications for habitability in Section 2.7.

2 .4 conceptual model

Planetary obliquity, ε, is the angle between a planet’s orbital and rotational angular

momentum vectors. Therefore, a change in the orientation of either of these vectors

will alter a planet’s obliquity. Torques exerted on a planet’s rotational bulge from

its star and neighboring planets can directly change the orientation of the planet’s

rotational angular momentum vector. On the other hand, changes in a planet’s orbital

inclination, I, or changes in the its longitude of ascending node, Ω, the position

along an inclined orbit at which a planet ascends from below the reference plane

to above (Murray and Dermott, 1999), alter the orientation of the planet’s orbital

angular momentum vector. Aside from the most basic case of a single-planet system,

the properties and orientation of a planet’s orbit in a multi-planet system evolve over

time due to gravitational interactions with neighboring bodies.

Within this section, I first discuss how a planet’s rotation axis evolves over time

in Section 2.4.1. Then I review the different ways that a planet’s orbit can evolve

in Section 2.4.2. Finally, Section 2.4.3 describes how these processes can act in

conjunction to lead to excitations of the obliquities of retrograde rotators.

2.4.1 Rotation Axis Evolution

Two angles fully describe the orientation of a planet’s rotational angular momentum

vector: the obliquity and the precession angle, ψ. While the obliquity specifies the

polar angle between the orbital and rotational angular momentum vectors, the preces-

sion angle specifies the azimuthal angle at which the rotational angular momentum

lies about the orbital angular momentum vector. Torques exerted on the planet’s

equatorial bulge by the primary body and/or by potential satellites cause this angle

to precess over time. This phenomenon is rotation axis precession, or axial precession.

Axial precession acts in the opposing direction to the orbital motion for planets with
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prograde obliquities. For planets with retrograde obliquities however, the direction of

precession flips, as shown in Figure 2.1, and instead moves in the direction of orbital

motion. Following Neron de Surgy and Laskar (1997b), the planetary obliquity,

precession constant (α from Equation 1.2), and orbital eccentricity define the rate

of the axial precession according to Equation 1.1.

2.4.2 Orbital Evolution

Considering the case of a multi-planet system, one way that a planet’s orbit evolves

over time is by nodal precession. Depicted in panel (a) of Figure 2.1, nodal pre-

cession is the process in which the orbital ascending node precesses through space

in the opposing direction to that of the planet’s orbital motion. This corresponds

to a cyclically changing direction at which the orbital angular momentum vector

points in space with respect to the invariable plane (the plane that lies orthogonal

to the net angular momentum vector of the planetary system) at the frequency Ω̇

(the rate of the changing longitude of ascending node). This process resembles a

coin spinning on a table top, in which the top face of the coin reorients itself in

space as it rotates. Physically, forces from neighboring planets that are normal to

a planet’s orbit plane as it traverses along its orbit drive nodal precession, with a

complete cycling occurring on a timescale of ∼ 70, 000 years for the Earth (Muller

and MacDonald, 1995). Therefore this process only occurs when either the orbital

plane of the planet shares a mutual inclination with that of a neighboring planet, or

their orbital ascending nodes share some angular separation.

Looking to panel (b) of Figure 2.1, for the case of an eccentric orbit, the orientation

of a planet’s orbit can also evolve through a process called apsidal precession. This

process involves the precession of the line of apsides, the imaginary line connecting

the orbit’s periapsis and apoapsis. During apsidal precession the orbital argument of

periapsis, ω, the angle from the orbital ascending node to the position of periapsis,

as well as the orbital longitude of periapsis, v, the angle from the origin of the

reference frame to the position of periapsis, both precess in the same direction as

that of the planet’s orbital motion. The motion of apsidal precession “hula hoops" the

planet’s orbit around its star at the frequency ω̇ (the rate of the changing argument
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Figure 2.1 Panel (a) depicts the nodal precession of a retrograde-rotating planet’s
orbit that has some inclination, I, with respect to the invariable plane (the plane
orthogonal to the net angular momentum vector of the planetary system). During this
process, the longitude of the planet’s ascending node, Ω, precesses in the clockwise
direction while the planet’s rotation axis precesses in the opposite (counter-clockwise)
direction. Panel (b) depicts a visualization of the apsidal precession of the eccentric
planet’s orbit with a top-down view situated above the orbit plane. During this
process the planet’s longitude of periapsis, v, precesses in the counter-clockwise
(prograde) direction while the planet’s rotation axis precesses in the same direction,
as seen with the side view within the figure inset.

of periapsis). In contrast to nodal precession, forces from neighboring planets that

are radial and tangential to the planet along its orbit drive apsidal precession. This

precession cycle elapses over the course of ∼ 112, 000 years for the Earth (van den

Heuvel, 1966). Unlike nodal precession, apsidal precession does not affect obliquity

directly because the orientation of the orbital angular momentum vector does not

change.

2.4.3 A Spin-Orbit Resonance Enabled by Eccentricity

Bearing in mind the processes in which the rotation axis and planetary orbit can

evolve, special circumstances can induce large-amplitude obliquity variations. One

such circumstance is the event of a 1:1 secular spin-orbit resonance between a planet’s

axial precession frequency, ψ̇, and an orbital eigenfrequency of the planetary system
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(usually a driver of nodal precession). While prograde rotators experience axial

precession in the same direction as their nodal precession and can potentially achieve

this spin-orbit resonance, retrograde rotators conventionally cannot. A positive or-

bital frequency that comes near a retrograde rotators axial precession frequency does

not usually exist. Indeed, previous studies found retrograde rotators to be especially

obliquity stable (Laskar and Robutel, 1993b; Lissauer et al., 2012; Barnes et al., 2016). I

propose an exceptional circumstance. The orbital eccentricity of a retrograde-rotating

planet can act to trigger a mechanism that enables a spin-orbit resonance which

consequently drives obliquity variations.

For a planet with nonzero eccentricity, the process of apsidal precession indirectly

affects that of nodal precession and introduces an additional orbital frequency. Figure

2.2 demonstrates this mechanism and shows four edge-on snapshots of a two-planet

system, each with a different value of the inner planet’s argument of periapsis. Here

the inner planet has some mutual inclination with the outer body, and its orbit

experiences apsidal precession as ω changes. Considering a more massive exterior

planet which can be thought of as a uniform ring of mass in the long-timescale secular

approximation, the orbit of the inner planet tips asymmetrically out of the ring mass

plane twice over the duration of the precession cycle, that is, at a frequency of 2ω̇. The

inner planet therefore feels a difference in force pulling on it and its orbit experiences

a precessional torque as it proceeds over the course of this cycle. This is important not

only due to the contrast between the distance of the orbit’s periapsis and apoapsis,

but also because conservation of angular momentum requires that more time is spent

at apoapsis compared to periapsis. This effect becomes more and more significant

with larger values of eccentricity, and affects the process of nodal precession in the

sense that the orbital angular momentum vector experiences an additional nutating

motion.

Figure 2.3a visualizes this process, where an opposing nutating circular motion

accompanies the traditional circular motion traced out by the orbital angular mo-

mentum vector during nodal precession. This motion can be thought of as two

superimposed precessions, each with its own amplitude, frequency, and direction.

Figure 2.3b summarizes this concept and shows that the primary nodal precession



13

frequency drives the orbital angular momentum vector at the frequency Ω̇ while

the nutating motion operates at the frequency 2ω̇. The resulting orbital frequency I

expect to see for this nutation goes as

ν = 2ω̇ + Ω̇ = 2v̇− Ω̇ (2.2)

where I used the relationship v = Ω + ω which translates to v̇ = Ω̇ + ω̇. Following

this, the condition for the aforementioned spin-orbit resonance is when ν = ψ̇, or

2v̇− Ω̇− ψ̇ = 0.

Figure 2.2 This edge-on perspective shows a massive outer planet’s orbital plane
(black) and an inclined, eccentric inner planet’s orbital plane (red). The panels show
four cases of the inner planet’s argument of periapsis, ω, as it undergoes apsidal
precession. Here I ignore the nodal precession of their orbits for simplicity and
assume their longitudes of ascending node are equal (their orbital planes both remain
edge on from my perspective). The cases for ω = 0◦ and 180◦ (when the line of
apsides is co-planar with outer planet’s orbital plane) occur twice, for which the
normal force felt by the inner planet is zero at periapsis and apoapsis. The cases for
ω = 90◦ and 270◦ show that the inner planet’s orbital plane is tilted out of the outer
planet’s orbital plane, enabling a precessional torque due to the large difference in
the normal force felt by the inner planet at the apsides. The letters on each of the
panels map to the plot beneath, showing the net torque on the inner planet’s orbit
as a function of ω. The difference between the minimum and maximum net torque
would grow for increasing eccentricity.
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(a ) The Physical Process

Nodal Precession Rate = 
Nutation Rate = 2

x

(b ) Superimposed Precessions

Figure 2.3 Figure 2.3a shows a planet’s orbital angular momentum vector as the
straight black vector arrow. The planet’s orbit has some inclination, I, with respect to
the invariable plane (the plane that lies orthogonal to the net angular momentum
of the planetary system). Due to the perturbations of a neighboring planet, its
orbital angular momentum vector precesses around the invariable plane normal
in the clockwise direction (viewed from above). In the case that the planet’s orbit
is eccentric, its orbital angular momentum vector nutates in the counter-clockwise
direction. Figure 2.3b depicts the processes that I describe in Figure 2.3a acting as
superimposed precessions with rates of Ω̇ and 2ω̇, where Ω̇ and ω̇ are the rates
at which the longitude of ascending node and argument or periapsis are changing,
respectively.
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2 .5 numerical treatment

2.5.1 Approach

I explore the validity of my analytical derivation by performing numerical simula-

tions with the use of the mixed-variable symplectic N-body integrator, SMERCURY,

which is a modified algorithm that adds spin-tracking capabilities to the original

MERCURY package (Chambers, 1999). Similar to the works of Lissauer et al. (2012),

Barnes et al. (2016), and Quarles et al. (2020), I use SMERCURY to track a planet’s obliq-

uity evolution while the planetary system dynamically evolves. I refer to Lissauer

et al. (2012) for a thorough description of my technique, although I highlight some

key details here.

SMERCURY computes the orbital evolution of the system’s bodies based on orbital

forcing interactions between one another, in which I base the calculations on a time

step of at most 5% of the orbital period of the inner-most planet. In the meantime,

the SMERCURY algorithm only tracks the obliquity evolution of one body in a specified

system, although it features what I call “ghost planets". Ghost planets are essentially

massless clones of the tracked body with their own assigned rotation states, in which

their obliquities evolve independently. This scheme allows for a broad exploration of

parameter space and saves computation time.

A SMERCURY simulation treats the tracked planet along with its ghost planets as

axisymmetric rigid bodies, in which their rotation states evolve due to gravitational

torques exerted on their rotational bulges. I assign a value for the planet’s oblateness

coefficient J2 based on the their rotation periods, computed by following the Darwin-

Radau relation (Hubbard, 1984; Murray and Dermott, 1999). This value remains fixed

throughout the duration of the simulation, which implies that I do not account for

tidal dissipation effects. I can neglect these effects so long as the timescale for tidal

effects to become important for the planet greatly exceeds the chosen integration time.

Considering a moonless Earth with a rotation period of 24 hours as an example, it

would take of order 1010 years for the Earth to become tidally locked with the Sun.

In this case, the amount of tidal deceleration over the course of a 100 Myr simulation

would have little effect on its spin evolution.



16

I initialize each simulation by generating the rotation states of each planet based

on their desired orientation and rotation period, taking into account the orientation of

the orbit plane. Recalling from Section 2.4, together the obliquity and the precession

angle specify the orientation of a planet’s rotational angular momentum vector. I

transform these angles by accounting for the orbital inclination and longitude of

ascending node, following the explanation of Neron de Surgy and Laskar (1997b)

and Barnes et al. (2016).

2.5.2 Initial Conditions

I design a simple numerical experiment to test the eccentricity mechanism that I

predict destabilizes the obliquities of retrograde rotating planets. I consider a toy

system consisting of the Sun as the primary body, a moonless Earth I call Earthmoo

(the exclusion of the Moon simplifies my experiment), and Jupiter. Earthmoo is taken

to have the same density as the real Earth yet has the mass of the combined Earth-

Moon system, which is consistent with the approach of Lissauer et al. (2012) and

Barnes et al. (2016). I arbitrarily initialize my simulations according to Table 2.1, for

which the orbital elements are with respect to the J2000 epoch and ecliptic (Murray

and Dermott, 1999). Earthmoo’s orbital elements mostly mimic that of the real Earth-

Moon barycenter at this epoch, although I assign values of 0, 0.1, 0.3, and 0.5 for its

initial orbital eccentricity across separate simulations. I begin Jupiter on a circular

orbit (its initial eccentricity is set to zero) at the start of all of my simulations in

order to avoid unwanted excitation of Earthmoo’s eccentricity. Importantly, I place a

mutual inclination between Earthmoo and Jupiter in order to ensure that the orbit of

Earthmoo will experience nodal precession as Jupiter exerts gravitational tugs normal

to Earthmoo’s motion. I set the initial orbital inclinations of Earthmoo and Jupiter

to the arbitrary values of 2.30530◦ and 1.30530◦, respectively; note that their mutual

inclination actually works out to be 3.04204◦ from the spherical law of cosines, due

to the angular difference between their orbital ascending nodes. Deitrick et al. (2018a)

similarly tested a mutually inclined Earth-Jovian system with large eccentricities, but

did not test Earths with retrograde obliquities.
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System Orbital Parameters
Planet m [M�] a [AU] e I [deg] ω [deg] Ω [deg] M [deg]

Earthmoo 3.04 x 10−6
1.00000011 - 2.30530 114.20783 348.73936 357.51716

Jupiter 9.5450 x 10−4
5.20336301 0 1.30530 274.19770 100.55615 19.65053

Table 2.1 Initial values for the planetary mass (m), semi-major axis (a), eccentricity
(e), inclination (I), argument of periapsis (ω), longitude of ascending node (Ω), and
mean anomaly (M) for the Earthmoo-Jupiter system taken from Murray and Dermott
(1999). These values correspond to the J2000 ecliptic with respect to the Earth-Moon
barycentre. The mass of Sun taken to be 1.98911×1030 kg, while I set Earthmoo’s
initial eccentricity to 0, 0.1, 0.3, and 0.5.
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Earthmoo Rotational Parameters

Prot [hrs] Req [km] J2 α [′′/yr]
4 6721.04 0.0441685 118.86406

6 6520.71 0.0179269 72.36607

10 6438.62 0.0062130 41.80041

16 6412.76 0.0023978 25.81175

24 6403.80 0.0010612 17.13579

34 6400.24 0.0005279 12.07568

46 6398.64 0.0002882 8.91882

Table 2.2 Computed initial values for the rotation period (Prot), equatorial radius (Req),
oblateness coefficient value (J2), and precession constant (α) for Earthmoo determined
from Lissauer et al. (2012).

I explore a range of rotation states composed of varied rotation periods and

initial obliquities that correspond to varied axial precession frequencies following

Equation 1.1. This variation allows for a contrast of Earthmoos caught both in and

out of my proposed spin-orbit resonance. Therefore, I test a range of Earthmoo

rotation periods spanning 4 to 46 hours, where I select the 4 hour lower limit due

to the physical limitation that Earthmoo would be near breakup and no longer

axisymmetric, sticking to my Darwin-Radau assumptions discussed in the previous

section. Taking Earthmoo to have a density of 5.5153 g/cm3 and a constant moment

of inertia coefficient of 0.3296108, I compute the J2 values for each case. I show a

summary of the rotational parameters I use in Table 2.2. Since this work investigates

retrograde rotating planets, I test initial obliquities of Earthmoo ranging from 90◦ to

180◦, in 5◦ increments. Each obliquity value that I test pairs with a precession angle

(ψ) value; I arbitrarily set the initial ψ value of the Earthmoos to 348.74◦.
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2 .6 results and discussion

2.6.1 Frequency Analysis

The mechanism that I describe in Section 2.4 suggests that my Earthmoo-Jupiter

system will involve a significant positive orbital frequency pertaining to the nodal

precession of an eccentric Earthmoo’s orbit. I predict that this frequency will take on

a value according to Equation 2.2. In order to test this mechanism, I perform a set of

simulations and conduct a Fourier analysis to obtain the secular eigenfrequencies of

the system.

I ran 100 Myr simulations sampled at 100 year intervals of the Earthmoo-Jupiter

system described by Table 2.1; here I set the integration time step to 2.5% of Earth-

moo’s orbital period. From this, I performed a Fourier analysis over the course

of the simulation of the inclination vector ([I cos Ω, I sin Ω]) and the eccentricity

vector ([e cos v, e sin v]). This is done using a Frequency-modified Fourier Transform

(Šidlichovský and Nesvorný, 1996), yielding the amplitude, frequency, and phase

for each mode. The two most prominent amplitude frequencies (the subsequent

frequencies have orders of magnitude less power and are thus left out) are displayed

for each in Table 2.3. I exclude a prominent peak of inclination vector found in each

analysis at 0
′′/yr, as it is an artifact due to a degeneracy in the inclination vector

(Murray and Dermott, 1999).

Looking to Figure 2.4, for each case of eccentricity, I show the orbital frequencies

of the inclination vector; I overlay Earthmoo’s range of axial precession frequencies

according to Equation 1.1 to allow for a visual comparison. I expect pronounced

obliquity variation to occur near regions of parameter space in which these fre-

quencies have values near one another. Inspecting the values within Table 2.3, a

significant positive frequency peak appears for the eccentric cases, yet is absent for

the zero eccentricity case. This peak grows in amplitude for increasing values of

eccentricity. Also observe that both the dominant negative peak and the positive

peak shift to higher frequencies with larger values of eccentricity due to Earthmoo’s

orbit becoming easier to torque, which causes its ascending node to precesses faster.
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Secular Orbital Frequencies

Inclination Vector Series Eccentricity Vector Series

e0 j νj [′′/yr] Sj φ
(0)
j [deg] µj [′′/yr] Ej θ

(0)
j [deg]

0 1 -7.06 3.038000 325.28 7.03 0.000027 90.91

2 -14.13 0.000610 100.43 0.01 0.000003 247.14

0.1 1 -7.22 3.036219 325.7 7.00 0.100044 103.08

2 21.22 0.020543 240.49 -21.45 0.000188 8.25

0.3 1 -8.49 3.036676 328.68 6.75 0.300010 103.07

2 21.98 0.180591 237.46 -23.72 0.000501 14.30

0.5 1 -10.95 3.110164 334.51 6.18 0.499828 103.05

2 23.32 0.498464 231.59 -28.08 0.000698 25.97

Table 2.3 The results from my Frequency-modified Fourier Transform analysis of
the inclination vector ([I cos Ω, I sin Ω]) and the eccentricity vector ([e cos v, e sin v])
of Earthmoo for different initial values of eccentricity (e0), where I is the orbital
inclination, Ω is the longitude of ascending node, e is the eccentricity, and v is the
longitude of periapsis. I show the top two values of the frequency (νj), amplitude (Sj),
and phase (φj) of the inclination vector, as well as the top two values of the frequency
(µj), amplitude (Ej), and phase (θj) of the eccentricity vector.
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Frequency Comparison

e0 νpredict [′′/yr] νactual [′′/yr]
0 - -

0.1 21.22 21.22

0.3 21.99 21.98

0.5 23.32 23.32

Table 2.4 The predicted value of the eccentricity-enabled frequency (νpredict) for each
case of initial eccentricity (e0) according to Equation 2.2 using the frequency values
from Table 2.3. For comparison, I list the actual frequency value (νactual) from the
Fourier analysis, which is also listed as ν2 in Table 2.3. This prediction does not
apply to the 0 initial eccentricity case.
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Figure 2.4 The power spectra of the orbital frequencies of Earthmoo’s inclination
vector for each case of initial eccentricity (e0) obtained from my Frequency-modified
Fourier Transform analysis. I show these spectra as the varied black lines paired with
the left and bottom axes, which are normalized on a log scale. I overlay Earthmoo’s
range of axial precession frequencies for varied rotation periods and obliquities,
computed according to Equation 1.1; I show these frequencies as colored lines that
pair with the right and bottom axes, for each case of eccentricity (I vary the line
styles the same way as the the orbital frequencies). The obliquity can be excited
when Earthmoo’s axial precession frequency becomes commensurate with an orbital
frequency in a spin-orbit resonance. The positive orbital frequency peak present for
the eccentric cases has the potential to enter a spin-orbit resonance with retrograde-
rotating Earthmoos.

I describe in Section 2.4 that this positive frequency should follow a predictable

relationship stated in Equation 2.2. Noting that the dominant frequency for the

inclination vector for each of the eccentricity cases in Table 2.3, ν1, corresponds to

Ω̇, the driver of nodal precession. Similarly the dominant frequency found in the

analysis of the eccentricity vector in Table 2.3, µ1, corresponds to v̇, the driver of

apsidal precession. Taking the 0.3 eccentricity Earthmoo case as an example, I find

that Ω̇ = ν1 = −8.49 ′′/yr and v̇ = µ1 = 6.75 ′′/yr. According to Equation 2.2, this

yields ν = 2v̇ −Ω = 21.99 ′′/yr, which nearly matches my reported value from the

Fourier analysis for ν2 of 21.98 ′′/yr. I compare the frequency values for the other
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eccentricity cases in Table 2.4. These cases provide good support for my proposed

mechanism and show that the frequency relationship described in Equation 2.2 holds.

In addition, using the same results but only the first 500,000 years of my sim-

ulations, I generate plots of the inclination vector components as seen in Figure

2.5. In essence, these plots demonstrate the projection of a planet’s orbital angular

momentum vector as it reorients in space due to variations in the orbital inclination

and the process of nodal precession. I examine these plots for each Earthmoo-

Jupiter test case in order to gain additional understanding into the physical process

that takes place. While the 0 and 0.1 eccentricity cases show the orbital angular

momentum vector trace a neat, mostly circular path, the 0.3 and 0.5 eccentricity

cases reveal more complex behavior. These higher eccentricity cases show that the

position of the orbital angular momentum vector strays from circular, and swings

outward periodically to produce the outer “petals" seen with the overlap of previous

tracings. This observation exemplifies the physical process described in Figures 2.3a

and 2.3b, in which the additional positive frequency introduced acts to nutate the

orbital angular momentum vector in the opposing direction as it undergoes nodal

precession.

2.6.2 N-body Simulations

The previous section showed and discussed the nature of the secular orbital eigen-

frequencies in my toy Earthmoo-Jupiter system. The mechanism that I describe in

Section 2.4 successfully predicts a significant positive secular frequency that could

participate in a spin-orbit resonance for a retrograde-rotating Earth. However, I must

also determine whether this resonance is significant enough to drive large-amplitude

obliquity variations important for the consideration of life.

I demonstrate this phenomenon by simulating the aforementioned Earthmoo-

Jupiter system over the course of 100 Myr, sampling at 10,000 year intervals with an

integration time step of 5% of Earthmoo’s orbital period. Note that orbital changes

of Earthmoo’s inclination and ascending node throughout the simulations result in

changes in its obliquity, so I expect a baseline obliquity variation of up to ∆ε =

εmax − εmin ≈ 2Im ∼ 6◦ (Quarles et al., 2019), where Im is the mutual inclination
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Figure 2.5 For each case of initial eccentricity I plot the inclination vector components
as [I sin Ω] versus [I cos Ω] over the course of 500,000 years, sampled every 100 years.
This depiction serves as a projection of the direction of Earthmoo’s orbital angular
momentum vector over time; the green and red dots mark the start and end of the
simulation, respectively. The 0 and 0.1 eccentricity cases show Earthmoo’s orbital
angular momentum vector tracing out a nearly circular path as its inclination varies
and its ascending node precesses. However, the 0.3 and 0.5 eccentricity cases show
a path that deviates from circular, in which the orbital angular momentum vector
swings outward periodically. This motion is due to the eccentricity mechanism
described in Section 2.4, in which the orbital angular momentum vector undergoes a
nutation in the opposing direction.

between the orbits of Earthmoo and Jupiter as stated in Section 2.5.2. I am interested

in pronounced obliquity variations that arise from the proposed spin-orbit resonance,

which I expect to be nestled among this baseline variation. I describe the results in

the following section, with frequent reference to Table 2.3 and Figure 2.4 in order to

discuss their relations.
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Beginning with the zero initial eccentricity case, Figure 2.6 displays the range of

obliquity variation explored by each Earthmoo for the tested parameter space over

the course of the 100 Myr simulation. For the rotation periods and initial obliquities

tested, the majority of Earthmoos experience little variation in their obliquity across

the board, mostly varying∼ 1◦-3◦, similar to that of the present day Earth. Here I find

that 100% of the Earthmoos vary less than the expected 2Im baseline value. However,

an exception here is a pronounced increase in obliquity variation for the Earthmoos

with initial obliquities set near 90◦. These cases experience obliquity variations of

∼ 3◦-6◦. Although these are still relatively small values, looking back to Figure 2.4,

the proximity of the axial precession frequencies of these 90◦ obliquity Earthmoos to

the dominant negative orbital frequency explains the pronounced variation. Looking

to Table 2.3, the frequency ν1 is the primary driver of nodal precession, clocking at

-7.07
′′/yr. Recall that for the zero eccentricity case, there is no significant positive

orbital frequency present, hence the general lack of interesting variation across the

parameter space.

Moving on to the 0.1 initial eccentricity case, as a similar plot, Figure 2.7 displays

the range of obliquity variation for this set of Earthmoos. Again the majority of

test cases exhibit obliquity variations ∼ 1◦-3◦ (99.2% vary less than 2Im), with the

Earthmoos having nearly 90◦ obliquities showing variations of ∼ 4◦-6◦. Interestingly,

there are a few additional test Earthmoos that stick out with pronounced obliquity

variations. These include the 100◦ obliquity Earthmoo in the 4 hour case varying

∼ 3◦, the 120◦ obliquity Earthmoo in the 10 hour case varying ∼ 4◦, and the 145◦

obliquity Earthmoo in the 16 hour case varying ∼ 6◦. Figure 2.4 maps these regions

of parameter space, where the Earthmoos of these combinations of rotation period

and obliquity have frequencies near to the now excited positive orbital frequency

peak which Table 2.3 marks as 21.23
′′/yr.

The 0.3 initial eccentricity case follows this trend, looking to Figure 2.8. Most

of these Earthmoo cases see obliquity variations of ∼ 1◦-4◦ (94.7% vary less than

the 2Im), while the 90◦ obliquity Earthmoos swing ∼ 5◦-6◦ with rotation periods

6-46 hours. The 4 hour 90◦ obliquity Earthmoo in particular experienced a much

larger ∼ 15◦ range of variation. The 4 hour case also has an additional “hot spot"
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Figure 2.6 For the Earthmoo case with an initial eccentricity of zero, I show the range
of obliquity variation (∆ε) explored by each Earthmoo ghost planet over the course
of the 100 Myr simulation as the colored markers with the vertical axis. The black
dashed lines mark the threshold of the expected baseline obliquity variation due
solely to orbital changes (twice the mutual inclination of Earthmoo and Jupiter). The
horizontal axis corresponds to the initial obliquity at the start of the simulation, while
each subplot groups corresponds to the different rotation periods (Prot) of 4, 6, 10, 16,
24, 34, and 46 hours that I test. The color scheme is consistent with that of Figure 2.4.

for the Earthmoo with an initial set obliquity of 100◦, varying by ∼ 6◦. The 6

hour case has an Earthmoo with a pronounced ∼ 7◦ variation with an initial 105◦

obliquity. Additionally, the 10 hour case has Earthmoos that experience ∼ 10◦ and 5◦

variations for the initial obliquities 115◦ and 120◦, respectively. The 16 hour case sees
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Figure 2.7 Similar to Figure 2.6, but for the Earthmoo case with an initial eccentricity
of 0.1.

pronounced variation centered around the 135◦ and 140◦ obliquity cases each with

∼ 14◦ variation. The 24 hour case is not as dramatic, but sees slightly pronounced

variation for its higher obliquity cases > 155◦ by a few degrees. According to Table

2.3, the positive orbital frequency peak has increased in amplitude and has been

shifted to a frequency of 21.98
′′/yr. The shift of the peak appears to correlate roughly

with the regions of pronounced obliquity variation as mapped by Figure 2.4.

Finally, Figure 2.9 displays the results of the 0.5 initial eccentricity case. Most

of test Earthmoo cases with rotation periods 4-16 hours only experience obliquity
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Figure 2.8 Similar to Figure 2.6, but for the Earthmoo case with an initial eccentricity
of 0.3.

variations of ∼ 1◦-4◦. The majority of Earthmoos with rotation periods 24-46 hours

see consistent yet higher variations of ∼ 5◦-6◦. Here I find that 75.9% of the Earth-

moos experience obliquity variations less than the expected 2Im baseline value. This

time, the Earthmoos with initial obliquities of 90◦ don’t stick out quite as much,

although the 4 hour and 6 hour case Earthmoos do experience variations of ∼ 24◦

and 21◦, respectively. The driver of the large obliquity variation for the 90◦ obliquity

Earthmoos has appeared to be the fault of the negative orbital frequency peak at

-10.95
′′/yr according to Table 2.3. This peak appears to have now shifted enough
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so that the Earthmoos with rotation periods > 6 hours evade a resonance with it.

Notable test cases with pronounced variation include the four hour 95◦ obliquity

Earthmoo that varies ∼ 19◦, the 6 hour 100◦ obliquity Earthmoo that varies ∼ 11◦,

the 10 hour 110◦ obliquity Earthmoo that varies ∼ 14◦, the 16 hour 125◦ and 130◦

obliquity Earthmoos that vary about 18◦ and 20◦, respectively, and the 24 hour batch

of Earthmoos with initial obliquities ranging from 145◦ to 160◦ that vary from 16◦ to

31◦. The positive frequency orbital peak has again increased in amplitude due to the

greater value of eccentricity, and is roughly 23.32
′′/yr according to Table 2.3. Figure

2.4 once more largely maps out the pattern of variation.

2.6.3 Semi-Analytical Secular Model

Although I am confident in my methodology and the accuracy of my results, running

simulations with SMERCURY is computationally expensive and limits the parameter

space that I can explore. I choose to complement my results by examining a broader

parameter space and employ the less robust but useful semi-analytical secular spin

evolution approach as featured in Quarles et al. (2019). This approach applies a

secular time-dependent Hamiltonian to the orbital integration results computed by

SMERCURY in order to compute the spin evolution of a planet. I use the same initial

conditions as my other simulations (according to Table 2.1), and apply this model to

the 100 Myr, sampled every 100 years, orbital evolution results as featured in Figures

2.4 and 2.5. However, I now explore initial obliquities for Earthmoo from 90◦ to

180◦ in 1◦ increments while I sweep the values of the precession constant (relates

to rotation period) from 0
′′/yr to 120

′′/yr in 1
′′/yr increments. Here the initial

precession angle is 348◦.

Looking to Figure 2.10, I display the range of obliquity variation (∆ε) each Earth-

moo experienced for each case of initial eccentricity. Since I was able to explore

a much finer grid of parameter space using this approach, I present my results

in different way that more easily highlights the trends. These results are in good

agreement with those discussed in Section 2.6.2. The majority of Earthmoos are quite

stable and only vary 1◦-2◦, while the cases in which Earthmoo had an initial obliquity

near 90◦ similarly resulted in heightened obliquity variation. The test Earthmoos
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Figure 2.9 Similar to Figure 2.6, but for the Earthmoo case with an initial eccentricity
of 0.5.

experienced pronounced obliquity variation near the predicted locations of the spin-

orbit resonance. In addition, there is a splitting trend that distinguishes two regimes

of variation that follow the predicted resonance location which become more evident

for higher values of eccentricity. Figure 12 of Quarles et al. (2020) showcases a similar

splitting trend, in which the authors explain that it is a consequence as a result of the

difference between the initial precession angle and the initial longitude of ascending

node (ψ0 − Ω0) having a large angular separation from the phase of the resonant

orbital frequency (shown as γi in Table 2.3). I again find that the magnitude of these
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variations generally increase with eccentricity (due to increasing amplitudes of the

orbital frequencies), where I report a maximum variation of 35.24◦ for the Earthmoo

with an initial eccentricity of 0.5 with an initial obliquity of 174◦ and a precession

constant of 16
′′/yr.

2.6.4 A Closer Look at the Resonance

Taking the results of my N-body simulations, I can gain additional insight into the

nature of this eccentricity-enabled spin-orbit resonance through further analysis. In

Section 2.4 I discussed that the condition for this resonance was that 2v̇− Ω̇− ψ̇ = 0.

The corresponding resonant angle, λ, is therefore

λ = 2v−Ω− ψ (2.3)

Saillenfest et al. (2019) provides an analytical theory that identifies this angle as a first-

order term that obeys the “Colombo’s Top" Hamiltonian. Here, I use my numerical

simulations to verify that λ is indeed a valid resonant angle, and that it is connected

to the observed obliquity variations. I select the Earthmoo with a 16-hour rotation

period and an initial obliquity of 140◦ from the 0.3 initial eccentricity case (featured in

Figure 2.8) to serve as an example. I plot the Earthmoo’s resonant angle and obliquity

as functions of time for the first 5 Myr of the simulation in Figure 2.11. This plot is

revealing, and shows that λ is indeed librating about zero, as one would expect for a

valid resonant angle. Furthermore, the variations in λ lead the variations in obliquity

by 90◦, implying a direct dynamical connection between these two angles.

The behavior shown in Figure 2.11 also highlights the importance of initial con-

ditions. Previous work found that the choice of the initial precession angle can

influence the obliquity evolution in the sense that it affects the phasing of frequencies

involved in the spin-orbit resonance, which in turn moderates the strength of the

resonant interactions (Lissauer et al., 2012; Barnes et al., 2016; Quarles et al., 2020). The

example Earthmoo in Figure 2.11 had an initial precession angle of 348.74◦, in which

the wide libration of its resonant angle and subsequent large obliquity variations was

likely determined by its initial combination of v, Ω, and ψ. Therefore I conclude that
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Figure 2.10 For each case of initial eccentricity (e0), I show the obliquity variation (∆ε)
each Earthmoo experienced over the course of the 100 Myr simulation for a range
of values of the initial obliquity and precession constant, α (related to the rotation
period). The values of obliquity variation are mapped to the color bar shown at the
top of the plot, ranging from zero to the maximum recorded value of 35.24◦ (from
the e0 = 0.5 case) according to the semi-analytical approach described in Section 2.6.3.
The dashed white lines for the 0.1, 0.3, and 0.5 eccentricity cases mark the predicted
locations of the spin-orbit resonance.

these angles play a role in controlling the range of affected obliquity configurations

near the resonance. Future work could explore this phenomenon.
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Figure 2.11 The first 5 Myr of the evolution of the resonant angle and obliquity of the
Earthmoo on an orbit with an initial eccentricity of 0.3 with a 16-hour rotation period
and an initial obliquity of 140◦. I display the resonant angle from Equation 2.3 as the
dotted gold line that pairs with the left vertical axis. The dashed horizontal gold line
marks the 0◦ location for the resonant angle. I show the Earthmoo’s obliquity as the
solid silver line that pairs with the right vertical axis.

2 .7 conclusion

I investigate a mechanism in which orbital eccentricity acts to influence the obliquity

evolution of retrograde-rotating planets. This mechanism can lead to pronounced

obliquity variations in the event of a spin-orbit resonance, when a retrograde rota-

tor’s axial precession frequency becomes commensurate with an eccentricity-enabled

orbital frequency. I demonstrate this phenomenon by performing numerical simula-

tions of a toy system consisting of the Sun, a moonless Earth I call Earthmoo, and

Jupiter.

I find that the predicted orbital frequency is indeed present for the cases in which

Earthmoo is eccentric; this orbital frequency obeys the relationship I describe in

Equation 2.2, while it shifts to higher values and grows in amplitude for greater
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values of eccentricity. Over the course of the 100 Myr rigid body simulations I find

that 92.5% of the Earthmoos that I test are relatively obliquity stable and experienced

variations less than what I expect from orbital variations alone. However, for regions

of parameter space near the predicted spin-orbit resonance locations, Earthmoo expe-

rienced pronounced obliquity variations of order 10◦-30◦. Generally, greater values

of eccentricity led to an increase in the fraction of parameter space occupied by

solutions with large obliquity variations, in which these variations also increased

with increasing eccentricity.

The magnitude of these obliquity variations over this timescale is likely significant

in the consideration of habitability. I do not employ a climate model in this work

similar to Armstrong et al. (2014), Deitrick et al. (2018b), and others, but others

have shown that large swings in a planet’s obliquity could be the deciding factor

between conditions that are detrimental to life, or foster it. Although the system

that I consider here is purely fictional, I show the importance of the consideration of

orbital eccentricity for retrograde-rotating planets and suggest that this effect may be

important in future efforts to characterize planetary habitability. Retrograde rotation

stabilizes obliquity under most circumstances, but the obliquity evolution of a planet

is ultimately at the mercy of its system’s orbital architecture. It’s possible that

exoplanets on significantly eccentric orbits with retrograde rotation can experience

large obliquity variations.
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chapter 3

Exploring tidal obliquity variations with SMERCURY-T 2

3 .1 summary

I introduce my new code, SMERCURY-T, which is based on existing codes SMERCURY (Lis-

sauer et al., 2012) and Mercury-T (Bolmont et al., 2015). The result is a mixed-variable

symplectic N-body integrator that can compute the orbital and spin evolution of a

planet within a multi-planet system under the influence of tidal spin torques from its

star. I validate my implementation by comparing my experimental results to that of

a secular model. As I demonstrate in a series of experiments, SMERCURY-T allows for

the study of secular spin-orbit resonance crossings and captures for planets within

complex multi-planet systems. These processes can drive a planet’s spin state to

evolve along vastly different pathways on its road toward tidal equilibrium, as tidal

spin torques dampen the planet’s spin rate and evolve its obliquity. Additionally,

I show the results of a scenario that exemplifies the crossing of a chaotic region

that exists as the overlap of two spin-orbit resonances. The test planet experiences

violent and chaotic swings in its obliquity until its eventual escape from resonance

as it tidally evolves. All of these processes are and have been important over the

obliquity evolution of many bodies within the Solar System and beyond, and have

implications for planetary climate and habitability. SMERCURY-T is a powerful and

versatile tool that allows for further study of these phenomena.

3 .2 contribution statement

For this chapter, I led the investigation by carrying out the numerical experiments,

performing the analysis, and writing the report. Jason W. Barnes advised me through-

out by providing feedback and guidance on the approach and solution to various
2Kreyche, S. M., Barnes, J. W., Quarles, B. L., & Chambers, J. E. (2021). Exploring tidal obliquity

variations with SMERCURY-T. The Planetary Science Journal, 2(5), 187.
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components of the study. The coauthors Billy L. Quarles and John E. Chambers

provided useful feedback to revise and improve the report.

3 .3 introduction

A planet’s status within a spin-orbit resonance or chaotic region can change over time

due to a variety of processes that either alter the planet’s spin-precession rate or the

position of the resonant orbital frequency. One process that continuously dampens

the precession constants of planets is the solar tidal torque, which causes planets to

undergo tidal braking in which their rotation rates slow while their obliquity evolve

until eventual near zero values. Considering the impact that complex tidal obliquity

evolution might have on planetary climate as they could potentially traverse many

spin-orbit resonance encounters, this subject warrants further study.

I introduce SMERCURY-T (Kreyche et al., 2021a), a joining of the existing code

SMERCURY (Lissauer et al., 2012) with elements from Mercury-T (Bolmont et al., 2016) so

that I can investigate these dynamic tidal spin phenomena and build a more complete

picture of planetary spin dynamics. While SMERCURY utilizes its implementation of

the spin Hamiltonian from Touma and Wisdom (1994) to accurately compute the

orbital and rotational dynamics of a planetary system due to N-body interactions,

it is not equipped to compute tidal evolution. On the other hand, Mercury-T is

capable of computing the tidal evolution of a system but limits the study planetary

spin evolution by neglecting planet-planet cross terms in its spin calculations. In

addition, Mercury-T lacks a scheme to efficiently explore parameter space like the

“ghost planet" scheme featured in the SMERCURY-T code (discussed in Section 3.4.1).

Similar open-source codes such as Posidonius (Blanco-Cuaresma and Bolmont, 2017)

and VPLanet (Barnes et al., 2020) are also guilty of these charges. I bridge this gap

by branching SMERCURY-T from SMERCURY to include modifications that allow for the

complete simultaneous computation of the orbital and spin evolution of a planet

while under the effects of stellar tidal spin torques.

In this chapter, I begin with Section 3.4 in which I describe the SMERCURY-T code

and discuss my implementation of its new modules. Following that, in Section
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3.5 I perform several experiments that demonstrate the phenomena of spin-orbit

resonance crossings, captures, and chaotic crossings which express the versatility

of SMERCURY-T as a tool. I conclude in Section 3.6.

3 .4 methods

3.4.1 The Base Code

I present my new code, SMERCURY-T, as a modified version of its predecessor, SMERCURY

(Lissauer et al., 2012; Barnes et al., 2016; Quarles et al., 2020; Kreyche et al., 2020).

SMERCURY is a mixed-variable symplectic N-body integrator which is itself a modified

spin-tracking version of the original MERCURY package (Chambers, 1999). Just like the

code that SMERCURY-T derives from, it is capable of computing the orbital evolution

of multiplanet systems while tracking the spin state of one planet and its “ghosts".

The ghost planet scheme entails the simultaneous simulation of massless copies of the

spin-tracked planet, in which the user assigns a unique initial spin state to each ghost

planet which will evolve while its orbital evolution mimics that of the original planet.

This scheme makes SMERCURY-T advantageous over similar codes by allowing for

efficient exploration of parameter space, however its present implementation restricts

the user to only being able to simulate the spin evolution of one system’s planet at a

time. SMERCURY-T is publicly available (Kreyche et al., 2021a).

SMERCURY-T treats the spin computation by considering the spin-tracked planet

to be an axisymmetric rigid body. Gravitational torques from the planet’s star and

neighboring planets exerted on the spin-tracked planet’s equatorial bulge modify its

obliquity. When preparing a simulation, I express the planet’s spin rate by assigning

it a value for its zonal gravity coefficient J2 according to the Darwin-Radau relation

(Hubbard, 1984; Murray and Dermott, 1999). This takes the form

J2 =
ω2

pR3

3Gmp

(
5
D
− 1
)

(3.1)
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with ωp, R, and mp as the planet’s spin rate, mass, and equatorial radius, respectively.

Here G is the universal gravitational constant and the placeholder D is short for

D =
25
4

(
3
2

C− 1
)2

+ 1 (3.2)

where C is the planet’s normalized polar moment of inertia. I calculate R according

to

R =

GmpD
ωp2

2−
√

4− 30ωp2

GDπρ

10




1
3

(3.3)

with ρ as the average density of the planet. I refer to Lissauer et al. (2012) for a more

thorough description of this technique.

3.4.2 Code Modifications

In this section, I describe the modifications that I include within the SMERCURY-T

package based on the alterations that I made to the base SMERCURY code. Here I

include the details and implementation of the tidal spin torque module and then

discuss the results of a test experiment to verify its accuracy. I also discuss my

additional inclusion of a general relativity module.

Tidal Spin Torque Module — The most significant inclusion to the SMERCURY-T

code is the tidal spin torque module. I follow the methods of Bolmont et al. (2015)

and adopt the constant time lag tidal formulation expressed by Leconte et al. (2010)

and others (Mignard, 1979; Hut, 1981; Eggleton et al., 1998), which is valid for arbi-

trary values of obliquity, spin, and orbital eccentricity. Contrary to the rigid body

considerations that I employ for the N-body torque computations, this model as-

sumes that the body is made of a weakly viscous fluid (Alexander, 1973). In the

future, SMERCURY-T’s modular design makes it simple to implement and explore

alternative tidal models. my approach differs from the aforementioned works in that

I neglect orbital tides (when the tidal force works to circularize an orbit and reduce its
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semi-major axis) and consider only the effects of tidal spin torque on the spin-tracked

planet from its star. This choice saves valuable computation time, while still allowing

for sufficient study of the behavior of planetary spin evolution in most planetary

systems except the most compact ones. Readers can refer to Table 2 of Mardling

and Lin (2004), or can perform quick calculations with handy equations such as

those found in Rodríguez, A. and Ferraz-Mello, S. (2010) to estimate the importance

of orbital tides in their desired system. I justify my study of the systems that I

consider in Section 3.5 by estimating the semi-major axis damping timescale (a/ȧ)

and eccentricity damping timescale (e/ė) to be practically infinite for the Earth-mass

planet under study compared to my integration time of 4 Gyr. Another consequence

of my methodology is that it is technically in violation with the law of conservation of

angular momentum, since the spin-tracked planet’s spin angular momentum decays

while the system gets nothing back in return. The choice to neglect the effects of

this feedback is acceptable for the study of planetary systems since the total angular

momentum of the system will always vastly dwarf the the spin-tracked planet’s spin

angular momentum.

The task to modify the spin routine of SMERCURY-T to include tidal spin torques is

a relatively straight-forward one. Since SMERCURY-T already integrates the summation

of all of the torques felt by the spin-tracket planet’s rotational bulge at each time step,

all that remains is calculating the additional tidal torque within the routine. From

Bolmont et al. (2015), the non-averaged tidal torque felt by a planet from its star goes

as

NT = 3G
ms

2R5

r7 k2τ(rωp − (r ·ωp)er − er × v) (3.4)

where r is the radial vector between the planet at its star, ωp is the planet’s spin

vector, er is the radial unit vector, v is the planet’s velocity vector, k2 is its potential

Love number of degree 2, τ is the constant time lag, ms is the mass of the star, and G

is the universal gravitational constant. This calculation treats the star as a point mass

while the planet is made up of a reduced central point mass with two point mass

bulges. Figure 1 from Bolmont et al. (2015) is a useful diagram that demonstrates
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some of these elements. Converting this result to heliocentric coordinates allows for a

final expression that conforms with the requirements of SMERCURY-T’s spin algorithm.

Taking the planet’s spin angular momentum as S, the adjusted tidal torque is

d
dt

S = − ms

ms + mp
NT (3.5)

As the spin-tracked planet’s spin rate damps over time due to the inclusion of the

tidal torque, it is necessary to update the planet’s J2 and equatorial radius at each

time step to represent the reduction of its equatorial bulge. This is important not

only due to the dependence of the strength of the tidal torque on R, but even more so

due to the sensitive nature of the N-body spin dynamics computations to the value of

J2 as the planet’s spin state evolves. I develop a scheme to update these parameters

and provide the details in Appendix a. This scheme involves instructing SMERCURY-T

to use the value of the planet’s spin angular momentum to solve a cubic equation to

ultimately determine new values for R and J2 using Equations a.6 and 3.1.

One possible concern with the inclusion of the tidal spin torque module is that

there may be scenarios in which the magnitude of the computed tidal torque is so

small that it under flows machine precision, causing the planet’s tidal evolution to

cease entirely. I solve this issue by implementing a “tidal tolerance" input parameter

that the user can specify prior to running a simulation. This parameter is a fractional

value that determines a certain threshold after being multiplied by the total spin

angular momentum at the current time step. If the tidal torque components exceed

this threshold, then they are integrated and added to the spin vector. However, if

they fall below the threshold then SMERCURY-T saves their values and adds them to

a running total to be checked the next time around. A typical value for the tidal

tolerance parameter that I use in this chapter is 10−12.

3.4.3 Tidal Spin Torque Module Verification

I verify the implementation of the SMERCURY-T tidal spin torque module by simulating

and comparing the results of a test system’s tidal evolution to that of an alternative

secular code based on the framework of Leconte et al. (2010). The secular code is
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Planet Physical Parameters

C ρ [g/cm3] P0 [hrs] R0 [km] k2 τ [sec] ε0 [deg]
0.3296108 5.5136 24 6378 0.305 698 45

Table 3.1 Physical values for the test planet that I describe in Section 3.4.3. Here I list
the planet’s moment of inertia (C), average density (ρ), initial spin period (P0), initial
equatorial radius (R0), potential Love number of degree 2 (k2), constant time lag (τ),
and initial obliquity (ε0).

capable of solving the averaged equations of one planet’s orbital and rotational tidal

evolution. However, since SMERCURY-T only accounts for the effects of tidal spin

torques, for a fair comparison I hold the orbital elements constant and evolve the

secular code solely with the spin equations. I implement the same scheme from

Section 3.4.2, detailed in Appendix a, into the secular code to similarly update the

planet’s equatorial radius at each time step.

The test system that I use here is a one-planet system that consists of the Sun and

an Earth-mass planet with an semi-major axis of 0.2 AU and an orbital eccentricity of

0.3. This choice ensures a short integration time and demonstrates the capability of

SMERCURY-T to handle large eccentricities. For both simulations, I assign this planet

with a polar moment of inertia, average density, initial spin period, initial equatorial

radius, potential Love number of degree 2, constant time lag, and initial obliquity

according to Table 3.1. I integrate the SMERCURY-T simulation with a time step of 1.6

days (∼ 5% of the inner-most planet’s orbital period, my usual rule of thumb) and

sample at an interval of 1000 years. The time step for the averaged equations of the

secular code does not need to be as small, so I proceed with 1000 year increments. I

run both simulations for 10 Myr which is more than enough time for the planet to

reach tidal equilibrium.

Looking to Figure 3.1, I show a comparison between the results of the two codes

for the spin evolution of the Earth-mass planet due to the effects of tidal spin torques.

Examining the evolution of the planet’s obliquity, spin period, equatorial radius, J2

(initially calculated with Equation 3.1), and spin angular momentum, I show that

SMERCURY-T is in good agreement with the secular code. Although there is a slight

discrepancy between the extent of the planet’s obliquity values near the peaks of the
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plot in Figure 3.1’s upper left panel, each parameter ultimately tracks and converges

to the same end value with little difference between the two codes. In summary, We

see that tidal spin torques cause the planet to initially experience an increase in its

obliquity until its spin rate decays such that the altitudinal component of its spin

angular momentum overtakes the azimuthal component, as shown in the upper and

lower right panels of Figure 3.1. From there, its spin period continues to increase

while its obliquity declines until it reaches tidal equilibrium when its obliquity is

near zero and its spin period is that of its pseudo-synchronous period (∼ 21 days

here). The planet’s equatorial radius shrinks by about 7 km while its J2 reduces

considerably.

General Relativity Module — I also incorporate the general relativistic

(GR) force due to the post-Newtonian potential into SMERCURY-T as an optional mod-

ule following section 2.2 of Bolmont et al. (2016). The GR force not only plays

an important role with regard to the stability of a planetary system, but I reason

that it can also have an indirect influence on planetary obliquity evolution. This

influence stems from the GR effect that causes the precession of periapsis of planetary

orbits to speed up. Bearing this in mind, GR can indirectly influence planetary

obliquity by shifting the potentially resonant orbital eigenfrequencies. While these

effects are important to a degree in our own Solar System, they are likely especially

important for compact exoplanet systems whose planets reside deep within their

star’s gravitational well.

In the spirit of one famous confirmation of Einstein’s general theory of relativity

(Einstein, 1916), I verify the implementation of my GR module by checking the

contribution of GR to the precession of periapsis of our planetary neighbor, Mercury.

I compare the results of my SMERCURY-T simulation to that of the measured rate from

the MESSENGER spacecraft reported by Park et al. (2017). I obtain an average value

of 42.9790 ′′/Julian century over the course of my 1 Myr simulation in which I used a

system consisting only of the Sun and Mercury to isolate the effect of GR. Specifically,

this value is the difference between Mercury’s precession rate when the GR module

was enabled versus another simulation when it was not. Here I set the integration
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Figure 3.1 A comparison between SMERCURY-T (dashed lines) and the secular tidal
model from Leconte et al. (2010) (solid lines) for the spin evolution of an Earth-
mass planet orbiting at 0.2 AU with an eccentricity of 0.3. Tidal spin torques cause
the planet’s obliquity (top left), spin period and equatorial radius (top right), zonal
gravity coefficient, J2 (bottom left), and spin angular momentum, S/S0 (expressed as
a fraction of the total initial spin angular momentum, bottom right), to evolve over
the course of each 10 Myr simulation. For the SMERCURY-T result, I also show the
breakdown of the planet’s total spin angular momentum into its azimuthal (dashed
blue line) and normal components (dashed red line) with respect to the invariable
plane.

time step to be 5% of Mercury’s orbital period and sampled at 100 year intervals.

This value is in good agreement and lies within the error bars of the Park et al. (2017)

result.
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System Orbital Parameters
System Planet mp [M�] a [AU] e I [deg] ω [deg] Ω [deg] M [deg]

E-J Earth 3.003 x 10−6
0.5 0 1 0 0 0

Jupiter 9.54244 x 10−4
2.5 0 0 0 0 0

E-E-J Inner Earth 3.003 x 10−6
0.5 0 5 0 0 0

Outer Earth 3.003 x 10−6
0.7 0 2.5 0 0 0

Jupiter 9.54244 x 10−4
3.5 0 0 0 0 0

Table 3.2 Initial values for the plantary mass (mp), semimajor axis (a), eccentricity
(e), inclination (I), argument of periapsis (ω), longitude of ascending node (Ω), and
mean anomomly (M) for the Earthmoo-Jupiter (E-J) and Earth-Earth-Jupiter (E-E-J)
systems that I test in this chapter. I set the mass of Sun to 1.98911×1030 kg.

3 .5 experiments

In this section, I apply the code modifications discussed in Section 3.4.2 to demon-

strate the usefulness and versatility of SMERCURY-T as a tool to study planetary spin

dynamics. Here I showcase examples of three different scenarios driven by the effects

of tidal spin torques: a spin-orbit resonance crossing, a spin-orbit resonance capture,

and a chaotic resonance crossing. I enable the general relativity and tidal spin torque

modules (“tidal tolerance" set to 10−12) for these experiments with the exception of

the initial frequency analysis runs detailed in Sections 3.5.1 and 3.5.3.

3.5.1 Spin-orbit Resonance Crossing

Initial Conditions and Pre -analysis — I design an experiment to exem-

plify the scenario in which tidal spin torques drive a planet to undergo a spin-orbit

resonance crossing as its increasing obliquity and spin period cause its precession

constant to decline over time. I choose to use a simple toy system consisting of

the Sun, an Earth-mass planet initially placed at 0.5 AU, and a Jupiter-mass planet

initially placed at 2.5 AU. This choice allows us to study this process appropriately

while minimizing the necessary integration time thanks to the stronger presence of

tides closer to the Sun. I display the masses and orbital elements of these bodies

in Table 3.2 listed under system E-J, which shows that the Earth-mass planet and

Jupiter-mass planet share an initial mutual inclination of 1◦.

I perform an initial simulation of the E-J system over the course of 10 Myr,

sampling on an interval of 1000 years with a numerical time step of 6.46 days (∼
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5% of the Earth-mass planet’s orbital period). For this part I am only interested

in the system’s orbital evolution, so I leave the GR module enabled but disable

the tidal spin torque module in the interest of shaving off some computation time.

Taking these results, I perform a frequency analysis routine by applying a Frequency-

modified Fourier Transform (Šidlichovský and Nesvorný, 1996) to the Earth-mass

planet’s inclination and eccentricity vectors ([sin I
2 cos Ω, sin I

2 sin Ω] and [e cos v,

e sin v] respectively). This process extracts the frequencies, amplitudes, and initial

phases of the precessional modes that could enter resonance with the Earth-mass

planet. First order resonances appear directly in the inclination series. I display these

values in Table 3.3 listed under system E-J. This information allows us to compute

both the location of a resonance center and its width enclosed by the separatrix as a

function of a planet’s precession constant and obliquity, following the procedure of

Saillenfest et al. (2019). The simplicity of the E-J system results in the single dominant

ν1 mode in the inclination series at ≈ −22.69 ′′/yr. This frequency sets the target

resonance for the Earth-mass planet in the experiments I describe in Section 3.5.1

and 3.5.2.

Targeting the ν1 mode, I initialize the Earth-mass planet so that it will begin its

tidal evolution just outside of the resonance and cross paths with the resonance center

some time later. Therefore I assign it with an initial obliquity of 50◦ and a precession

constant of 60
′′/yr (using Equation 1.2 with a spin period of ≈ 54.7 hours and

J2 = 2.03779× 10−4). These planetary characteristics are not unrealistic, and could

be the aftermath of various primordial scenarios such as giant impacts. I set its

initial precession angle to be 0◦, while I use the same values for its average density,

normalized polar moment of inertia, potential Love number of degree 2, and constant

time lag as found in Table 3.1. I run this simulation for 4 Gyr and sample every 10,000

years with the same 6.46 day time step.

Results and D iscussion — I explore the results of the spin-orbit resonance

crossing experiment by looking to Figure 3.2. We see that the Earth-mass planet

begins with an obliquity of 50◦ and experiences benign obliquity variations of a few

degrees that are primarily due to the precessional motion of its orbit. The planet’s
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Secular Orbital Frequencies
Inclination Vector Series Eccentricity Vector Series

System j νj [′′/yr] Sj × 108 φ
(0)
j [deg] µj [′′/yr] Ej × 108 θ

(0)
j [deg]

E-J 1 -22.69 871406 359.94 22.89 804.86 179.80

2 0.00 1221 0.00 0.03 431 183.31

3 -22.47 183 15.31 -9.11 15 41.66

4 -22.90 170 149.56 -6.23 14 346.47

5 -22.30 102 6.21 -7.45 13 235.11

E-E-J 1 -10.67 3736801 359.99 30.74 704 180.09

2 -32.25 617977 359.84 0.03 617 180.22

3 -3.97 8169 0.09 12.59 53 2.33

4 -53.83 2096 179.43 9.15 14 191.46

5 10.91 786 358.52 -98.64 8 77.37

Table 3.3 The results from my Frequency-modified Fourier Transform analysis of
the inclination vector ([sin I

2 cos Ω,sin I
2 sin Ω]) and the eccentricity vector ([e cos v,

e sin v]) of the Earth-mass planet in the Earth-Jupiter (E-J) system and the inner
Earth-mass planet in the Earth-Earth-Jupiter (E-E-J) system, where I is the orbital
inclination, Ω is the longitude of ascending node, e is the eccentricity, and v is the
longitude of periapsis. I show the top five values of the frequencies (νj), amplitudes

(Sj), and phases (φ(0)
j ) of the inclination vector, as well as the top five values of the

frequencies (µj), amplitudes (Ej), and phases (θ(0)j ) of the eccentricity vector.
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precession constant declines while tidal spin torques cause its obliquity to gradually

increase as it approaches the resonance. Upon entering the resonance region, the

planet’s obliquity swings wildly in the range of ∼ 50− 60◦. Then, at about 98 Myr

into the simulation, the planet’s obliquity suddenly shifts ten degrees as it crosses

the resonance center and swings in a new range of ∼ 60 − 70◦. The planet then

proceeds to exit the resonance and eventually converges towards tidal equilibrium

with the behavior of Cassini State 1, as its obliquity draws near zero and its spin

period approaches the synchronous period of ∼ 129 days. The nature of these short

term obliquity variations as the planet crossed through this resonance during its

tidal evolution would likely be harmful toward its prospects for climatic stability and

habitability. However, a true assessment of these prospects would require a more

complete study that that would explore the application of a climate model.

Further examination of the resonance crossing event leads us to reason that my

choice of the planet’s initial precession angle ensured that it crossed through the

resonance’s hyperbolic point (Saillenfest et al., 2021a). In other words, this behavior

resulted due to the chance timing and positioning of the planet’s spin axis as its spin

precession wound down while the planet crossed the resonance center. Looking to

Figure 3.3, I examine the evolution of the angle σ = ψ−Ω centered around the time

of the resonance center crossing event at ∼ 98 Myr, where ψ is its spin precession

angle and Ω is the planet’s longitude of ascending node. I treat this angle as a close

approximation of the resonant angle, in which it is diagnostic of the nature of a

resonance event. This angle tends to librate about 180◦ when a planet is captured in

resonance in the vicinity of Cassini State 2, otherwise it usually circulates (Deitrick

et al., 2018a; Quarles et al., 2020). Here I show that the resonant angle circulates while

the planet approaches and moves away from the resonance center while an inflection

point appears at the time of the crossing. This behavior reinforces that the planet was

never captured into the resonance at any point in time and indeed crossed through

its hyperbolic point.
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Figure 3.2 I show the evolution of the Earth-mass planet’s precession constant,
obliquity, and rotation period over the course of 4 Gyr for the Earth-Jupiter system
described in Table 3.2. Here the planet’s initial precession angle was 0◦. In the upper
panel the green and red dots indicate the start and stop points of the simulation,
while the black line traces out the spin evolution of the Earth-mass planet as tidal
spin torques cause it to traverse through the pink-filled spin-orbit resonance region
and across the ν1 resonance center (Cassini state 2, solid red line). The middle panel
isolates the obliquity evolution and includes an inset that showcases the dramatic
shift in obliquity around the time of the resonance crossing event (highlighted in
gold). The lower panel shows the evolution of the spin period over time and marks
the location of the planet’s synchronous period (dashed black line).

3.5.2 Spin-orbit Resonance Capture

Initial Conditions and Pre -analysis — Following the spin-orbit reso-

nance crossing experiment described in Section 3.5.1, I now consider an alternative

fate for the Earth-mass planet in which it could instead become captured into the spin-

orbit resonance. Here I use the exact same initial conditions as the former experiment
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Figure 3.3 I show the evolution of the Earth-mass planet’s (from the Earth-Jupiter
system described in Table 3.2) resonant angle over time centered about the time that
the planet crossed the ν1 resonance center. In this case, the planet’s initial precession
angle, ψ, was 0◦. For the resonant angle I use σ = ψ − Ω, with Ω as the planet’s
longitude of ascending node.
This angle is diagnostic of the presence of a planet in a spin-orbit resonance. Here

the angle circulates with a brief inflection point at the time of the crossing event
(∼ 98 Myr), which indicates that the planet was not captured into the resonance and

instead crossed through its hyperbolic point (Saillenfest et al., 2021a).

save one: the initial precession angle. Since the outcome is probabilistic based on

the value of the precession angle upon its arrival at the resonance (Henrard, 1982;

Saillenfest et al., 2021a), I consider a slew of initial precession angles but handpick

the case of the Earth-mass planet with an initial precession angle of 180◦. I stress here

that although this serves my example, this is an atypical pathway toward resonance

capture since the planet crosses the resonance “from above" (α/ν1 proceeds toward

unity from greater to smaller values) (Ward and Hamilton, 2004; Hamilton and Ward,

2004). I simulate this system for 4 Gyr with the same sample rate and time step as

the experiment described in Section 3.5.1.

Results and D iscussion — I show the results of the spin-orbit resonance

capture experiment by looking to Figure 3.4. While the Earth-mass planet begins

on a track very similar to the crossing experiment described in Section 3.5.1, its spin
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evolution takes a very different path once it enters the resonance. After about 75

Myr into the simulation, the planet crosses the resonance center and is subsequently

captured into the ν1 resonance. From here, its obliquity experiences large variations

of order ∼ 20◦ as it is bound to the follow the track of the resonance’s center as its

precession constant declines. Eventually, at around the 350 Myr mark the separatrix

of the resonance disappears and the planet exits the resonance. Since the planet’s

ride within the resonance led to an inefficient decay of its spin rate, the planet’s

obliquity then trends to greater values until peaks at about 50◦ and then reverses

while the planet heads towards tidal equilibrium. The path that the planet’s obliquity

ultimately took from start to finish spanned a wide range of values with frequently

large obliquity variations over short timescales. Similar to the resonance crossing

experiment from Section 3.5.1, this behavior would likely be detrimental toward the

planet’s prospects for habitability.

Why did this experiment lead to the Earth-mass planet getting captured into the

resonance while the other did not? Recalling that I set this planet to have an initial

precession angle of 180◦ rather than the former experiment’s 0◦, I show the temporal

evolution of its resonant angle centered around the event in Figure 3.5. Here I show

that prior to the planet’s encounter with the resonance center its resonant angle

circulates. However, following the event the resonant angle then librates about 180◦,

albeit very widely, which is confirmation of the planet’s capture into the resonance.

This time, my choice of initial precession angle ensured that the conditions were ripe

for capture into the resonance at the time of crossing.

3.5.3 Chaotic Crossing

Initial Conditions and Pre -analysis — For my final experiment, I design

a scenario that exemplifies a chaotic spin-orbit resonance crossing. The resonance

overlap criterion specifies that chaotic regions of parameter space exist in the case

that two first-order resonances overlap. Therefore I now consider a system with an

additional planet to introduce an additional forced inclination frequency (Saillenfest

et al., 2019). I present this system in Table 3.2 listed under system E-E-J, which

shows my new system to consist of the Sun, an Earth-mass planet at 0.5 AU with
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Figure 3.4 Similar to Figure 3.2, here I show an alternative pathway for the evolution
of the inner Earth-mass planet’s precession constant, obliquity, and rotation period
over the course of 4 Gyr for the Earth-Earth-Jupiter system described in Table 3.2.
Here the planet’s initial precession angle was 180◦. The middle panel includes an
inset that showcases the shift in obliquity after the planet is captured into the ν1
resonance (highlighted in gold).

an inclination of 5◦, an Earth-mass planet at 0.7 AU with an inclination of 2.5◦, and a

Jupiter-mass planet at 3.5 AU whose orbit sits flat with an inclination of 0◦.

I conduct the same frequency analysis as described in Section 3.5.1 to extract

the information on the relevant modes of this system. I display this information in

Table 3.3 listed under system E-E-J. This time, my inclusion of the additional Earth-

mass planet raised the “temperature" of the system, where the inner Earth shows

two prominent driving frequencies in its inclination series. The first mode, ν1, has

a frequency of ≈ −10.67 ′′/yr and is the primary driver of the inner Earth-mass

planet’s orbital precession. The second mode, ν2, has a frequency of ≈ −32.25 ′′/yr
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Figure 3.5 Similar to Figure 3.3, here I show an alternative evolution of the Earth-
mass planet’s (from the Earth-Jupiter system described in Table 3.2) resonant angle
over time centered about the time that the planet crossed the ν1 resonance center.
In this case, the planet’s initial precession angle was 180◦. We see that this time the
resonant angle transitions from circulating to librating about 180◦ upon the encounter,
which is a strong indicator that it was captured into the resonance.

with a considerably smaller amplitude. These two frequencies have resonant widths

that overlap to form a chaotic region.

I set the inner Earth’s obliquity to 60◦ and its precession constant to 110
′′/yr

(using Equation 1.2 with a spin period of ≈ 29.88 hours and J2 = 6.83897× 10−4) so

that it will begin its tidal evolution just outside of the ν2 resonance region and will

tidally evolve to cross into the chaotic region. The inner Earth has the same average

density, normalized polar moment of inertia, potential Love number of degree 2, and

constant time lag found in Table 3.1. I simulate this system over the course of 4 Gyr

by sampling on 10,000 year intervals with a 6.46 day time step.

Results and D iscussion — I show the results of the chaotic spin-orbit reso-

nance crossing experiment in Figure 3.6. These results share similarities with Figures

4a and 4b of Neron de Surgy and Laskar (1997a) that studied possible chaotic futures

for the real Earth. Here the inner Earth begins with an obliquity of 60◦ and experi-

ences variations of order 5− 10◦ which are on par with benign variations resulting
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primarily from the precessional motion of its orbit. As tidal spin torques dampen

the planet’s precession constant and push its obliquity towards higher values, the

planet crosses into the ν2 resonance after about 150 Myr. The resonance excites larger

obliquity variations as the planet first crosses the center of the ν2 resonance and

then into the chaotic overlap region of the ν2 and ν1 resonance. Chaos ensues, in

which the planet’s obliquity violently swings as much as ∼ 60◦ in an unpredictable

fashion within the range 30− 90◦. This behavior spans from 200-600 Myr into the

simulation until the planet finally transitions to crossing through just the ν1 resonance

and eventually exits to proceed towards tidal equilibrium where its obliquity trends

towards zero and its spin period approaches the synchronous period ∼ 129 days.

Although this planetary system is fictional, its example of chaotic spin evolution

implicates the probable catastrophic effects that this behavior could have on the

planet’s well-being.

3 .6 conclusion

In this chapter I presented my new code, SMERCURY-T, a numerical N-body integrator

that is capable of computing the orbital and rotational evolution of a planet under

the influence of tidal spin torques. Additionally, I included a module that adds the

effects of the general relativistic force to planetary orbital evolution. I verified the

proper implementation of these inclusions and showed the potential of SMERCURY-T

as a powerful and versatile tool that is capable of tackling a variety of problems.

I used SMERCURY-T to perform a series of experiments to investigate different phe-

nomena that a planet could experience due to the effects of tidal spin torques. These

processes are likely important to the long-term dynamics of many planets. The spin-

orbit resonance crossing and capture experiments demonstrated the possibility that

a planet can take vastly different pathways which are determined purely by its initial

conditions. While the resonance crossing experiment showed an example in which

tidal spin torques drew a planet to encounter a spin-orbit resonance followed by an

abrupt kick to its obliquity, the resonance capture experiment instead resulted in the

planet engaging in a stable libration within the resonance while it was transported
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Figure 3.6 Similar to Figure 3.2, here I show the evolution of the inner Earth-mass
planet’s precession constant, obliquity, and rotation period over the course of 4 Gyr
for the Earth-Earth-Jupiter system described in Table 3.2. The upper panel shows
the region and center of the ν2 resonance (light blue fill and solid blue line) and the
region and center of the ν1 resonance (pink fil and solid red line). The extent of their
overlap exists as a chaotic region (purple fill). The middle panel includes an inset
that showcases the chaotic obliquity regime from ∼ 200− 600 Myr (highlighted in
gold).

toward lower obliquity for a period of time. I also showed the results of the crossing

of a chaotic region formed by the overlap of two spin-orbit resonances. The large

chaotic swings of the planet’s obliquity are familiar and consistent with the dynamics

of some of the bodies in my own Solar System.

Although the planetary systems that I considered in this chapter were fictional,

my general study of the nature of tidal obliquity evolution demonstrates possible

scenarios that may have implications for the past, present, and future dynamics of
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planetary obliquity evolution. Knowing that the climatic stability and consequently,

the habitability of planet, is strongly related to the nature of its obliquity evolution,

understanding the dynamic role that tidal spin torques can play is critical knowledge.

Large and rapid obliquity variations like those that I observed in my experiments

would likely be detrimental toward a planet’s climatic stability, and therefore its

prospects for habitability. Although I did not investigate this claim in this chapter, an

interesting avenue for future work could involve the application of a climate model

to explore the potentially destructive consequences of these evolutionary pathways.

For future work, SMERCURY-T can serve as a tool to further explore tidal obliquity

evolution and seek answers to questions about the planets in our Solar System and

beyond. The effects of tidal spin torques are especially relevant to planets that are

in close proximity to their star, such our own system’s inner terrestrial planets or

those in compact exoplanet systems such as TRAPPIST-1. Future characterization

of exoplanet obiquities will allow for the opportunity to perform more complete

assessments of their dynamical nature.
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chapter 4

Tidal obliquity evolution of a moonless Earth and early

Venus

4 .1 summary

A more complete understanding of how planetary obliquity (axial tilt) can evolve

over time is necessary to assess the potential for habitability in planetary systems.

I consider a moonless Earth and an early Venus in our own well-characterized 8-

planet Solar System and perform numerical experiments using SMERCURY-T (Kreyche

et al., 2021b) to study the role that the solar tidal torque plays during the obliquity

evolution of planets residing in a complex planetary system. The result is a variety of

evolutionary pathways where the severity and timescale of the planets’ obliquity vari-

ations sensitively depends on the planet’s initial conditions as tidal braking causes

the planets to traverse chaotic frequency space that exists as the overlap of spin-

orbit resonances. Although large shifts in the obliquity are often an eventuality on

the journey toward tidal equilibrium (usually Cassini State 1 with low obliquity ∼ 0◦

and synchronous rotation), both the moonless Earth and Venus generally experienced

their most gradual obliquity shifts when they had retrograde rotation (having an

obliquity greater than 90◦), in addition to when they had long initial spin periods or

initial obliquities near 90◦. These results can inform how tidal obliquity variations

may have or will influence both the short and long-term habitability of bodies in the

Solar System as well as for exoplanets.

4 .2 contribution statement

For this chapter, I led the investigation by carrying out the numerical experiments,

performing the analysis, and writing the report. Jason W. Barnes advised me through-

out by providing feedback and guidance on the approach and solution to various
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components of the study. William J. Miller contributed code and effort to help

generate the frequency map in the included figures, and also helped to improve

the algorithm within the SMERCURY-T code.

4 .3 introduction

The work in Chapter 3 presented SMERCURY-T as a useful tool that enables the explo-

ration of planetary obliquity evolution under the influence of the solar tidal torque.

Although the included SMERCURY-T demonstration experiments were instructive, they

involved simple planetary systems whose spin-orbit resonance frequency environ-

ment was clear cut and therefore unrealistic for real planetary systems. The intended

purpose of SMERCURY-T is to consider realistic multi-planet systems with complex

resonance frequency environments that may influence planetary obliquity evolution

in interesting ways along their path toward tidal equilibrium. Alternative analytical

or semi-analytical methods cannot study these phenomena effectively.

Since the Solar System is the only planetary system for which I can be confident

that I have complete dynamical knowledge, I choose to revisit the case of a moonless

Earth and early Venus as considered in previous works (Lissauer et al., 2012; Li and

Batygin, 2014; Barnes et al., 2016). A moonless Earth (I use the nickname “Earthmoo"

following Lissauer et al. (2012)) is an interesting problem motivated by the question of

whether the Moon is necessary for the habitable conditions I enjoy on Earth thanks to

its stabilizing influence in speeding its spin precession to place it comfortably distant

from resonances. Although present-day Venus is a tough sell as a habitable planet, it

is an interesting exercise to consider the possible evolution of its spin state in the first

few Gyr after its formation when it could have been habitable under the faint young

Sun. Looking to the top row of Figure 4.1, I show the orbital spectra of Earthmoo

and Venus after applying a Frequency-modified Fourier Transform (Šidlichovský and

Nesvorný, 1996) to their inclination vectors ([sin I
2 cos Ω, sin I

2 sin Ω] over a 100 kyr

simulation of the full 8-planet Solar System. Taking these orbital frequencies as

input, I show the spin-orbit resonance frequency environment in the bottom row of

Figure 4.1 as a function of the planet’s precession constant and obliquity. I generated
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these maps following the methodology within the work of Saillenfest et al. (2019),

and similarly display second and third-order resonances that have a weaker but

potentially still important influence on planetary spin dynamics over secular time

scales. Note that Earthmoo and Venus both have very similar resonance frequency

maps as a result being subject to similar dynamical interactions. As pointed out

and tested in previous work, retrograde rotation (having an obliquity greater that

90◦) seems to be an obliquity-stabilizing characteristic due to the lack of resonances

in that region (Laskar et al., 1993a; Lissauer et al., 2012; Barnes et al., 2016). The

study of the obliquity dynamics of both planets can inform our expectations for how

tidal obliquity variations might influence the obliquity of other planets in extrasolar

systems, especially those in closer proximity to their stars where tides would be a

greater influence.

In this chapter, I perform numerical experiments to investigate tidal obliquity

evolution of a moonless Earth and an early Venus. I begin with Section 4.4 in which

I describe the methods that I use to approach this problem and provide the initial

conditions that I use for my simulations. Then in Section 4.5 I present the results of

my experiments and discuss their implications in a more general context. Finally I

conclude in Section 4.6.

4 .4 methods

4.4.1 Approach

I explore the nature of tidal obliquity variations for Earthmoo and early Venus by

performing numerical simulations using the mixed-variable symplectic N-body in-

tegrator, SMERCURY-T (Kreyche et al., 2021a,b). SMERCURY-T is a modified version of

SMERCURY, (Lissauer et al., 2012; Barnes et al., 2016; Kreyche et al., 2020; Quarles et al.,

2020) which itself was an upgrade to the original MERCURY code (Chambers, 1999).

My code is capable of computing the orbital evolution of a multi-planet system while

tracking the spin of one planet and its massless “ghosts" that are subject to both

N-body gravitational torques from their planetary neighbors and the dampening

tidal torque from the central body. The tidal spin torque module within SMERCURY-T
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Figure 4.1 I show the normalized power spectrum of the inclination vector (top) and
the corresponding spin-orbit resonance frequency map (bottom) for the moonless
Earth (left) and Venus (right). The frequency maps use the 100 highest amplitude
frequencies from my Frequency-modified Fourier Transform (FMFT) analysis and
follow Saillenfest et al. (2019) to chart the locations and widths of the first (red),
second (blue), and third order (green) resonances in terms of the precession constant,
α, and the planet’s obliquity. The darker shades of each color indicate regions of
overlap between resonances of the same order.

follows the methodology of Bolmont et al. (2015) to incorporate the constant time lag

tidal formulation from Mignard (1979); Hut (1981); Eggleton et al. (1998); Leconte et al.
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(2010), however SMERCURY-T only computes the effect of the tidal spin torque on the

spin-tracked planet since it saves valuable computation time while studying systems

for which the effects of orbital tides are negligible (Kreyche et al., 2021b).

I verify that my implementation of the tidal torque correctly dissipates a planet’s

rotational energy by performing a few quick calculations for a select Earthmoo sim-

ulation from Section 4.4.2. Here the very much Earth-like Earthmoo began with the

physical properties according to Section 4.4.2, a rotation period of 24 hours, and an

initial obliquity of 23.44◦. Taking the difference of this Earthmoo’s initial and final

rotational kinetic energy at the beginning and end of the 1 Gyr simulation amounts

to a 2.18× 1029 J loss. This is in good agreement with my analytical calculation of

2.16× 1029 J for the tidal energy loss over this time span using Equations 22 and 31

within Hut (1981); Bolmont et al. (2015), respectively.

Within a SMERCURY-T simulation, I treat the spin-tracked planet and its ghosts

as axisymmetric rigid bodies in which gravitational N-body torques act on their

rotational bulges. SMERCURY-T dynamically computes and updates the values for the

planets’ spin rates, radii, and oblateness coefficients (J2) based on the Darwin-Radau

relation (Hubbard, 1984; Murray and Dermott, 1999) in order to ensure accuracy

while the tidal spin torque module modifies the spin angular momenta. I refer to

Kreyche et al. (2021b) for a more thorough description of my methodology.

4.4.2 Initial Conditions

Preparing the suites of simulations for Earthmoo and Venus requires the input of

the initial conditions that completely describe the orbital and spin characteristics of

the planetary system. Here I simulate the full 8-planet Solar System with orbital

ephemerides with respect to the J2000 epoch and ecliptic. Earthmoo is positioned at

the location of the Earth-Moon barycenter. I set the simulation time step to be 5% of

the shortest orbital period in the system (Mercury) which amounts to 4.4 days, while

I output data at the interval of 10 kyr. Across all of my simulations I set the tidal

tolerance parameter (Kreyche et al., 2021b) to 10−14. I detail the physical parameters

that I set to characterize the spin states of Earthmoo and Venus separately in Sections

4.4.2 and 4.4.2.
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Moonless Earth — I initialize Earthmoo in my simulations by assigning it with

the necessary physical parameters to treat it as the combined object of the Earth and

the Moon with a total mass of 3.04032185 × 10−6M�, upholding the tradition as

in Lissauer et al. (2012); Kreyche et al. (2020). This choice ensures that Earthmoo

experiences practically the same secular interactions with its planetary neighbors as

the real Earth would. Accordingly, I give Earthmoo a normalized polar moment

of inertia coefficient of 0.3308, an average density of 5.51 g/cm3, a potential Love

number of degree 2 of 0.305, and a constant time lag of 698 seconds. Importantly,

although the latter two values are typical tidal inputs for an Earth-like planet (Bol-

mont et al., 2015), I greatly accelerate Earthmoo’s tidal evolution by multiplying its

tidal spin torque magnitude by a factor of 100 within SMERCURY-T. This operation

is equivalent to reducing Earthmoo’s tidal quality factor, Q, by 100, which I do

in order to focus on the study of Earthmoo’s long-term qualitative tidal obliquity

behavior while saving valuable computation time. Looking to Table 4.1, I outline

the parameter space that I explore in this study which includes a range of values

for Earthmoo’s initial precession constant and the corresponding initial spin period,

radius, and J2 that SMERCURY-T computes at the beginning of each simulation. Each

value of precession constant is paired with several values of obliquity with the values

5◦, 25◦, 45◦, 65◦, and 85◦. Additionally, for Earthmoo I also perform simulations for

the retrograde obliquity values of 95◦, 115◦, 135◦, 155◦, and 175◦. Considering the

spin-orbit resonance frequency space for Earthmoo in Figure 4.1, these parameter

space choices allow us to explore a variety of different outcomes.

Venus — I largely explore the same parameter space for the Venus simulations

as I do for Earthmoo in Section 4.4.2, noting their similar resonance frequency space

in Figure 4.1. One key distinction is that of course the mass and average density of

Venus differ, and are instead 2.448327885× 10−6M� and 5.204 g/cm3, respectively.

Similar to Barnes et al. (2016), I actually use the same normalized polar moment

of inertia as Earthmoo, since a potentially habitable early Venus would have likely

had a different internal structure than present day. For the same reason, I also use

the Earthmoo value for Venus’s k2 while assigning the same amplified constant time
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Planet Initial Spin Parameters

Planet α [′′/yr] P [hr] R [km] J2
Earthmoo 10 41.29 6400.75 3.61× 10−4

20 20.71 6407.92 1.44× 10−3

30 13.89 6419.86 3.22× 10−3

40 10.50 6436.48 5.69× 10−3

50 8.48 6457.73 8.48× 10−3

Venus 10 115.40 6067.53 4.89× 10−5

20 57.72 6068.45 1.96× 10−4

30 38.51 6069.99 4.40× 10−4

40 28.91 6072.14 7.81× 10−4

50 23.16 6074.90 1.22× 10−3

Table 4.1 Initial values for the spin period (P), equatorial radius (R), and oblateness
coefficient (J2) computed according to the Darwin-Radau relation (Kreyche et al.,
2021b) which correspond to the assigned value of precession constant (α) for both
Earthmoo and Venus.
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lag value to accelerate its tidal evolution. Since my goal is to explore the spin-orbit

resonance frequency environment of Venus as evenly as possible, I test the same five

initial precession constant as I do for Earthmoo, although the corresponding initial

spin periods, radii, and J2 differ due to the different physical properties of Venus (see

the lower half of Table 4.1). I pair the same initial obliquity values from Section 4.4.2

to each precession constant which allows for a thorough exploration of the spin-orbit

resonance frequency environment.

Setting the Initial Spin -precession Angle — The spin-precession angle

ψ, the angle that defines the azimuthal orientation of a planet’s spin axis, plays an

influential role in determining the outcome of a planet’s dynamic interaction with a

spin-orbit resonance. Although the conditions for a planet to enter resonance strictly

requires the spin precession frequency and orbital frequency to be commensurate,

the angle that ψ makes with the orbital frequency’s phase angle can determine the

outcome of the resonance response for the planet to either cross the resonance or

potentially become captured about it (Deitrick et al., 2018a; Saillenfest et al., 2019;

Su and Lai, 2020; Kreyche et al., 2021b). Therefore while the spin-precession angle

constantly circulates at a rate determined by Equation 1.1, the initial ψ value set at the

beginning of a simulation is especially important. The works of Lissauer et al. (2012)

and Barnes et al. (2016) conducted various experiments that examined the effects of

spin chaos as they varied ψ at several increments. In this study, looking to Figure 4.2

I conduct a similar experiment to better understand the effect of varying ψ with the

added effect of the solar tidal torque that was not included in the aforementioned

works.

For this experiment, I consider an Earthmoo that has similar characteristics to

that of the present-day Earth by setting an initial 24 hour spin period and obliquity

of 23.44◦. Looking to Figure 4.2, I run 1 Gyr simulations of twelve copies of Earthmoo

with varied initial spin-precession angles ranging from 0 to 330 degrees in 30 degree

increments. Thinking big picture, the spin period and obliquity of each Earthmoo

ultimately evolves along a similar arc in which the obliquity undergoes frequent shifts

while traversing the resonant frequency space and gradually increases toward high
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values around 70◦. This behavior occurs while the ever-present solar tidal torque

dampens each Earthmoo’s spin period, and consequently its precession constant.

However, each Earthmoo in this experiment does experience a unique evolution

where some suffered more rapid and severe obliquity variations than others due

to their differing initial spin-precession angles. Contrasting the ψ = 90◦ and the

ψ = 330◦ for instance demonstrates what would likely be a stark difference on impact

toward climatic stability and potential for habitability, where Earthmoo’s obliquity

in the former case experiences a massive shift from about 20 to 60 degrees near the

α = 8 ′′/yr mark while Earthmoo’s obliquity in the latter case evolved more gradually

within the 30 to 60 degree range.

From this experiment I conclude that it would not be feasible to systematically set

the initial spin-precession angle of the spin-tracked planets in consideration of the

complex chaotic resonant frequency space in addition to the need to reduce parame-

ter space and computation time. Therefore for the remainder of experiments in this

study I assign randomized values for the initial spin-precession angles according to a

uniform distribution which would realistically be random anyways for real planetary

systems.

4 .5 results and discussion

4.5.1 Moonless Earth

In this section, I perform numerical experiments to study the tidal obliquity evolution

of a moonless Earth in order to gain a qualitative sense for the impact of its initial

conditions on its outlook for climatic stability and habitable conditions.

Initial Prograde Obliquity — Based on my discussion in Section 4.3 of

Earthmoo’s spin-orbit resonance frequency environment, it is evident that there are

many perilous regions of parameter space for prograde obliquities which include

the chaotic overlap of strong obliquity-exciting resonances. Looking to Figure 4.3,

I show the results of a set of SMERCURY-T simulations which sweep a variety of

initial spin states that each include differing values for Earthmoo’s initial precession
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Figure 4.2 I show a grid of results for the tidal obliquity evolution over the course of
1 Gyr of an Earthmoo with the same initial spin period and obliquity as the present-
day Earth. However, I vary the value of Earthmoo’s initial spin-precession angle, ψ0,
in 30 degree increments from 0 to 330 degrees (I display ψ0 in the upper left corner
of each panel). The black lines chart the spin evolution of each Earthmoo in terms of
the precession constant, α, the corresponding spin period (mapped to the right-hand
axis), and its obliquity with the spin-orbit resonance frequency map from Figure 4.1
as a backdrop for context. The white circle and cross mark the beginning and end of
each simulation, respectively.

constant, obliquity, and (randomized) spin-precession angle. Figure 4.4 serves to

complement Figure 4.3 by showing the time evolution the same batch of simulations

in order to provide important the context needed to properly judge the impact that

the subsequent obliquity variations may have on habitability. Although my simula-

tions investigate accelerated tidal evolution would likely differ in detail compared to

true timescale simulations (due to the timing of probabilistic resonance encounters
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(Henrard, 1982; Saillenfest et al., 2021a)), it remains instructive to study the big picture

trends.

We see a rich variety of pathways along which Earthmoo’s spin state evolves as

it proceeds towards its eventual tidal equilibrium end state (Cassini State 1). This

end state entails near zero obliquity and a dampened spin rate with a synchronous

or pseudo-synchronous period, however Earthmoo does not yet meet this end even

after 1 Gyr of accelerated tidal evolution. First looking to the slowest rotators with

initial precession constants of 10
′′/yr found in the bottom row of Figure 4.3, these

Earthmoos begin as the closest to tidal equilibrium due to their reduced spin angular

momentum. Nonetheless, these Earthmoos with initial obliquities of 5, 25, and 45

degrees initially reside within one of the large chaotic regions of spin-orbit resonance

and subsequently experience shifting envelopes of obliquity variations of order 10-50

degrees within the first 100 Myr as their spin-precession rates decline. Looking to

the larger initial precession constant cases, Earthmoos with low to moderate obliquity

were placed in various regions of frequency space and usually experienced similar

chaotic obliquity variations, but for longer periods of time up to the first ∼ 500 Myr

of their simulations since the tidal torque must act on the longer before their chaotic

zone exit. One particularly striking case is that of the Earthmoo with an initial obliq-

uity of 5◦ and an initial precession constant of 40
′′/yr, which experienced a rapid

∼ 20 million year 60◦ kick in obliquity at about the 100 Myr mark. Another notable

example is the 30
′′/yr initial precession constant, 65◦ initial obliquity Earthmoo

that showcased an example of resonance capture as its obliquity and precession rate

decayed along the track of a low-frequency first-order resonance for the first ∼ 400

Myr. Most of these cases had Earthmoos that eventual resigned to more gradual

and steady increases in obliquity during the second half of their simulation once

their spin-precession rates distanced the planets away from the proximity of strong

resonances. However, the aforementioned rapid and chaotic obliquity variations of

these Earthmoos would likely be destabilizing to their climate and prospects for

habitability.

Thinking further about habitably favorable conditions that might mean stable

periods of obliquity, I can look to some of the Earthmoos that began with more
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extreme initial conditions. For instance, the upper left of Figures 4.3 and 4.4 shows

Earthmoos that began with large spin-precession rates that enable a brief ∼ 100 Myr

period of constrained 5◦ obliquity variations before declining into chaotic frequency

space. On the other hand, the Earthmoos with initial obliquities of 85◦ show a mix

of both resonance capture encounters and steady obliquity evolution (seen clearly

as relatively flat lines in Figure 4.4) while their precession rates decline in straight-

forward manner away from strong resonance.

Initial Retrograde Obliquity — I will now explore the results of the nu-

merical simulations of the Earthmoos with initial obliquities that were retrograde.

Previous studies suggest that retrograde rotation (having an obliquity greater than

90◦) is a largely obliquity-stabilizing influence (Laskar and Robutel, 1993b; Lissauer

et al., 2012; Barnes et al., 2016) with the exception of resonant interactions in high

eccentricity systems (Kreyche et al., 2020). A look to the power spectra and resonance

frequency maps in Figure 4.1 show that retrograde rotators only have a few weak

clusters of positive frequencies to interact with, which should translate to similar

findings. This study will check if the trend of stabilizing retrograde rotation holds

for planets undergoing tidal obliquity evolution.

Looking to Figure 4.5, I show the results of a batch of simulations in which I

assigned Earthmoo with the same precession constants as in Section 4.5.1 but pair

them with an initial retrograde obliquity instead. Additionally, Figure 4.6 shows

the time evolution of this batch of simulations for temporal context. Here we see

a stark contrast across the board for the retrograde obliquity evolutionary tracks in

comparison to the prograde obliquity runs. The initial retrograde Earthmoos do

indeed generally experience constrained obliquity variations of just a few degrees

over short million year timescales, noting the weak slopes in Figure 4.6 that progress

to stronger slopes with increasing initial obliquity. Due to their retrograde rotation,

the solar tidal torque works to reduce Earthmoo’s obliquity and spin period in

unison in which the planet evolves toward an eventual tidal equilibrium state with

low obliquity and synchronous or pseudo-synchronous rotation that requires their

spin pole to flip in orientation from beneath its orbital plane to above. We see the
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Figure 4.3 Similar to Figure 4.2, but here I show a grid of results for the tidal obliquity
evolution of a variety of Earthmoos over the course of 1 Gyr by varying the initial
values of the precession constant and obliquity. Each row and column share the same
initial value for the initial precession constant and obliquity, respectively. I indicate
each Earthmoo’s initial spin-precession angle, ψ0 in the upper left corner of each
panel, which were uniformly randomized to take values between 0 and 360 degrees.

beginnings of this orientation flip for the bottom row Earthmoos of Figure 4.5 which

became prograde in the last ∼ 200 Myr of their simulations. I note that for all of

the retrograde obliquity cases, the scattered weak first-order resonances and second

and third-order resonance regions do not appear to have any meaningful influence

on their spin state evolution.
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Figure 4.4 I show the tidal obliquity evolution as a function of time for each Earthmoo
within the same grid of simulations as Figure 4.3. I again display the value of
Earthmoo’s initial spin precession angle, ψ0 in the upper left corner of each panel.

Considering implications for habitability, here the Earthmoos with initial obliq-

uities of 95◦ stand out as the most advantageous due to their minimal variation

both on short timescales as well varying a total of 5-10 degrees over the entire 1 Gyr

simulation. The initial 180◦ Earthmoos also enjoy a prolonged period of minimal shift

of just 10-15 degrees for the first 400 Myr of their simulations prior to the onset of a

quickening pace. The retrograde Earthmoos found in the middle panels of Figure 4.5
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with intermediary obliquities shift through a much larger range of obliquities during

the initial spin period damping phase, albiet still perhaps preferred to the chaotic

behavior of various prograde Earthmoos in Section 4.5.1.

Figure 4.5 Similar to Figure 4.3, but here I show a grid of results for the tidal obliquity
evolution of retrograde Earthmoos with initial obliquities greater than 90◦ over the
course of 1 Gyr. The rows of panels explore the same variety of initial precession
constants, while Earthmoo’s initial spin-precession angle was again randomized on
a uniform distribution.
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Figure 4.6 I show the tidal obliquity evolution as a function of time similar to Figure
4.4, but for the retrograde Earthmoo simulation batch featured in Figure 4.5.

4.5.2 Early Venus

In this section, I perform numerical experiments for a potentially habitable early

Venus in order study its tidal obliquity evolution as I did for Earthmoo in Section

4.5.1.
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Initial Prograde Obliquity — Considering the resonance frequency space

of Venus in Figure 4.1, I note that it is qualitatively similar to that of Earthmoo’s and

encompasses many similar areas of linked chaotic resonance regions. Therefore we

should expect that Venus should experience many of the same trends and tidal obliq-

uity behavior as we studied for Earthmoo in Section 4.5.1. One notable difference is

that while I sweep the same parameter space for Venus as I did for Earthmoo, due to

its closer position to the Sun the Solar tidal torque is stronger and will cause Venus

to tidally evolve much quicker even over the shortened 500 Myr time span. Looking

to Figure 4.7, I show the results of the tidal obliquity evolution of Venus for a variety

of initial precession constants and obliquities. Figure 4.8 complements this results by

showing the time evolution of Venus’s obliquity for the same batch of simulations.

The obliquity evolution of Venus indeed follows many of the same trends in

behavior as noted for Earthmoo in Section 4.5.1. In a much denser timeline due

to the stronger tidal torque, the Venus cases for low to moderate obliquity of all

initial precession constants experience various forms of chaotic obliquity evolution

encounters. Figure 4.8 shows that most of this chaotic behavior regime occurs within

the first ∼ 100 Myr of the simulation before each Venus exits the chaotic resonance

zone and proceeds along a familiar track of increasing obliquity followed by a unified

decline with its spin-precession rate. These results include features of loose resonance

capture such as the 85◦ initial obliquity, 30
′′/yr initial precession constant Venus, in

which capture here could possibly be fortunate in confining its obliquity variations

and transporting it toward lower obliquity for about 750 Myr before its exit. One

standout example of rapid large obliquity variations includes a ∼ 40◦ swing over just

∼ 5 Myr for the 25◦ initial obliquity, 50
′′/yr initial precession constant Venus. The

decline from the peak of a Venus tidal obliquity track to its near zero value near the

end of its tidal evolution happens over just a few Myr so that we see their end state

by the time the simulation completes.

While the tidal obliquity evolution of low to moderate obliquity Venus involves

large and often rapid obliquity variations, the high obliquity cases of Venus at 85◦

are comparatively much obliquity stable for the first 200 Myr. Specifically, there are

periods of time when their obliquity varies only 5-10◦ which stands out in a similar
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way as the Earthmoo results. Looking to Figure 4.8 however, the Venus case with an

initial precession constant of 40
′′/yr and initial obliquity of 85◦ is a notable exception

in which its evolution included a rapid swing from about 50◦ to 5◦ over about 10 Myr

before returning to a high-obliquity state following its exit of the chaotic resonant

region. Similar to Earthmoo, Venus also has a similar safe harbor region shown in

the upper-left of Figure 4.7 where there is an absence of resonant regions and only

small obliquity variations of order 5◦ occur before entering the chaotic zone in a few

tens of millions of years.

Initial Retrograde Obliquity — I expect that the initial retrograde obliq-

uity cases of Venus should qualitatively be very similar to the Earthmoo results in

Section 4.5.1 due to the similar lack of resonance features we observe in Figure 4.1.

For the sake of brevity, I refer to my discussion of retrograde Earthmoo cases for the

same general behavior, the quicker tidal evolution of Venus due to its closer posi-

tioning to the Sun again allows us to see the complete journey to tidal equilibrium.

Look to Figure 4.9 for the tidal spin evolution results of Venus as the tidal torque

drives them from high initial obliquities to eventual low obliquities that decline with

their spin-precession rates. This amounts to an extreme difference in obliquity over

the course of each 500 Myr simulation, although I note that on short timescales the

obliquity variations are constrained to small fluctuations of order 5◦. Figure 4.10

complements these results by providing important context on the time evolution of

the tidal evolution. The general trends suggest that in terms of prolonged periods of

obliquity stability, the Venus cases with initial obliquities of 95◦ maintained a steady

slope for about 150 Myr until their rotation rates declined to the point of a unified

rapid decline.

4 .6 conclusion

I investigated the tidal obliquity evolution of a moonless Earth and a potentially

habitable early Venus with the use of the N-body numerical integrator SMERCURY-T.

In my experiments I performed numerical simulations of these planets’ accelerated
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Figure 4.7 I show a grid of results for a variety of tidal obliquity simulations for
Venus over the course of 500 Myr, similar to my presentation of the Earthmoo results
in Figure 4.3. Here the spin-orbit resonance frequency map for Venus from Figure 4.1
is a backdrop in each panel to serve as spatial context, while the mapped spin period
values appropriately map according to Venus’s physical parameters.

tidal spin evolution which allowed for a thorough exploration of their complex spin-

orbit resonance frequency space while vastly reducing the computation time required

for them to reach tidal equilibrium or well on the way to it. Although this approach

forfeits my ability to reasonably forecast the true evolution of these bodies due to

obliquity chaos (Lissauer et al., 2012), these cases serve as useful examples to better
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Figure 4.8 I show the tidal obliquity evolution of Venus over a time for the same grid
of simulations as Figure 4.7, similar to the use of Figure 4.4’s display of the Earthmoo
results.

understand the qualitative pathways and behaviors that possible exoplanets could

take in real complex planetary system similar to the Solar System.

With regard to the findings from my experiments, the inclusion of the solar

tidal torque in conjunction with the orbital and N-body spin interactions proves

to have great influence on the evolution of a planet’s spin state. Although no two

spin-state tracks were the same, due to their similar spin-orbit resonance frequency
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Figure 4.9 Similar to Figure 4.7, but here I show a grid of results for the tidal obliquity
evolution of retrograde Venus with initial obliquities greater than 90◦ over the course
of 500 Myr.

space, Earthmoo and Venus both experienced similar tidal obliquity evolutionary

trends dependent on the initial conditions that define their spin states. Here the

tidal spin torque acted as a constant drain that continuously saps their angular

momentum while often causing an initial period of increasing obliquity (Barnes

and Fortney, 2003), causing them to traverse their spin-orbit resonance frequency

environments. This phenomenon is less explored due to the often considered “static"

rotation periods in many obliquity studies. Along the way, frequent large and rapid
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Figure 4.10 I show the tidal obliquity evolution as a function of time similar to Figure
4.4, but for the retrograde Venus simulation batch featured in Figure 4.9.

shifts in obliquity occur on the scale of millions to tens of millions of years were

often an eventuality due to the extent of the Solar System’s chaotic resonance zones.

Earthmoo and Venus especially suffered significant obliquity variations for cases of

low to moderate initial obliquities and for faster initial spin-precession rates. Fully

considering the prospects of habitability of such states is outside of the scope of

this study, but I speculate that such severe obliquity variations would likely be

detrimental to the stability of their climate and development of life.
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A subset of my simulations suggest that there are some initial conditions that

result in mild obliquity variations which reinforces the idea that the Earth can be

obliquity stable without the Moon and that an early Venus could have had desirable

prospects for habitability. For instance, both Earthmoo and Venus enjoyed a brief

initial respite when starting with a combination of low initial obliquity and high

initial precession constant before tidal braking ultimately dragged them through

chaotic frequency space. Additionally, I saw several instances of resonance capture

in which a planet was transported in libration about a strong resonance appeared

to offer a form of stability while its rotation slowed. Importantly, cases in which

both Earthmoo and Venus had initial obliquities near 90◦ were especially obliquity

stable during the initial spin dampening phase, while retrograde rotation generally

meant constrained short-term obliquity variations due to the sparse presence of

retrograde resonances to interact with. Although high obliquity could potentially

be harmful toward planetary habitability due to the stark contrast in seasons as each

pole alternates between extremes of incident solar flux, previous work suggests that

high obliquity generally produces warmer climates (Kang, 2019) and can help to stave

off snowball states (Spiegl et al., 2015; Colose et al., 2019), however see He et al. (2022).

For future work, it would be interesting to revisit the case of a moonless Earth

and early Venus by considering the true, slower rate of tidal braking, in order to more

realistically study those scenarios and gain a statistical sense for habitably favorable

scenarios. However, the trends in obliquity evolution that I note in this study are still

realistic for these two bodies. Performing simulations of this nature with SMERCURY-T

would require a substantially longer amount of computation time, but would only

need to provide have a long enough look on the billion year time scale to study the

consequences for habitability. In the consideration of exoplanets we can apply the

lessons that we have learned here toward judgement of their habitability once we

gain the capability to characterize their spin states and frequency environment. We

can expect that each planetary system’s unique orbital architecture would produce

vastly different spin-orbit resonance frequency environments than for the planets

in the Solar System, where more “dynamically hot" systems could spell trouble for

retrograde rotators. Ultimately, tidal obliquity evolution is an important process to
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factor into the assessment of habitability but its importance is likely dependent on a

case by case basis that requires the consideration of planetary and system properties.
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chapter 5

General Conclusion

This dissertation is comprised of three individual studies that together serve to help

build a more complete understanding of planetary obliquity evolution in the con-

text of habitability. Within Chapter 2, I employ numerical experiments to study a

secular spin-orbit resonance enabled by planetary eccentricity that can excite signif-

icant obliquity variations for retrograde-rotating planets. In Chapter 3, I introduce

SMERCURY-T, an N-body integrator capable of simulating tidal obliquity evolution

for planets in complex systems and demonstrate spin-orbit resonance encounter

scenarios as a result of tidal braking. Finally, in Chapter 4 I apply SMERCURY-T to the

useful cases of a moonless Earth and early Venus in order to study how tidal obliquity

evolution plays out in multi-planet systems with complex frequency environments.

Each of the studies within this dissertation provided additional value and made

wider contributions to the field past their individual results and findings. The work

within Chapter 2 importantly raised awareness and stressed the need to consider

retrograde obliquities within the considered parameter space of obliquity studies, as

often only prograde obliquities are. While I identified and explored one particular

retrograde spin-orbit resonance, future studies could explore the mechanisms driv-

ing additional retrograde spin-orbit resonances enabled by orbital eccentricity that

may potentially be important for the spin dynamics of eccentric exoplanets. The

development of SMERCURY-T in Chapter 3 was not only useful for my subsequent

exploration in Chapter 4, but was also made publicly available so that other studies

may apply it to new investigations. This chapter also procedurally presented simple

secular spin-orbit resonance encounters triggered by the tidal spin torque in order to

better educate the community on what are likely common processes in more compact

exoplanetary systems where tides are especially important. Although the work in

Chapter 4 explored specific cases of tidal obliquity evolution in the Solar System,

the findings of the experiments within identified general trends and behaviors on

what we could expect for potentially habitable exoplanets in complex multi-planet
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systems. For this study in addition to those within the previous two chapters, the

lessons learned for what conditions or processes lead to stable or unstable obliquity

variations may one day be useful references for the judgement of exoplanet habitabil-

ity once their obliquities might be measured and characterized.

Ideally, the knowledge gained in this dissertation as well as from numerous other

obliquity studies could be applied to real exoplanetary systems in the future. Knowl-

edge of system and planetary properties could quickly be referenced and compared

to analytical and numerical findings like this work which reveal specific processes

and trends that may be relevant to that particular system. However, to date, we have

not yet been able to directly measure the obliquity of an exoplanet. There are several

methodologies that have been proposed to do so, including: constraining obliquity by

measuring planetary oblateness and rotation period from transit photometry (Barnes

and Fortney, 2003), inferring obliquity from seasonal differences in infrared light

curves (Gaidos and Williams, 2004), obtaining obliquity by looking for geometric

effects of directly imaged exoplanets (Kawahara, 2016), and others. Although it was

likely a brown dwarf companion in orbit around an M dwarf star, a recent study

actually managed to loosely constrain the brown dwarf’s obliquity (Bryan et al., 2020).

It is only a matter of time before we gain the capability to do so for exoplanets with

future technological advances, where we can then apply what we have learned to

make judgements on their habitability based on their obliquity evolution.
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appendix a

Supplementary Information to Chapter 3

a .1 scheme to update planetary radius and J2

The inclusion of the tidal spin torque module that we discuss in Section 3.4.2 calls

for the need to update the values of the spin-tracked planet’s equatorial radius, R,

and zonal gravity coefficient, J2, at each time step within a SMERCURY-T simulation

(or at an interval set by the “tidal tolerance" parameter). This is necessary because

the effects of the tidal torque on the planet’s equatorial bulge cause its spin rate, and

therefore its equatorial radius and J2, to decay over time. These parameters are critical

for SMERCURY-T to compute the magnitude of the tidal torque following Equation 3.4

as well as to populate the planet’s inertia tensor for the N-body torque calculations

following Lissauer et al. (2012).

Sticking with the rigid body considerations described in Section 3.4.1, we begin

an expression for the planet’s equatorial radius (like that of Equation 3.3) as

R3 =
GmpD

ω2
p

2−
√

4− 30ω2
p

GDπρ

10

 (a.1)

where mp, ωp, and ρ are the planet’s mass, spin rate, and average density, respectively.

Here G is the universal gravitational constant and

D =
25
4

(
3
2

C− 1
)2

+ 1 (a.2)

where C is the planet’s normalized polar moment of inertia. Now, we can shuffle the

equation S = Ipωp for the planet’s rotational angular momentum to get

ωp =
S
Ip

=
S

CmpR2
(a.3)
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Here S is the magnitude of the planet’s spin angular momentum and Ip its moment

of inertia. We plug Equation a.3 into Equation a.1 to work toward a solution for R.

This gives

R3 =
Gmp

3DC2R4

S2


2−

√
4− 30S2

Gmp2DC2
πρR4

10

 (a.4)

Shifting some things around, squaring both sides, and isolating the R terms to one

side yields:

− 40S2

Gmp3DC2 R3 +
100S4

G2mp6D2C4 R2 +
30S2

Gmp2DC2
πρ

= 0 (a.5)

This reduces to

− 4
mp

R3 +
10S2

Gmp4DC2 R2 +
3

πρ
= 0 (a.6)

This equation takes the form ax3 + bx2 + cx + d = 0, for which we solve for R

with the use of Cardano’s general cubic formula (Cardano, 1993). We obtain the

corresponding value of ωp by plugging the solution for R back into Equation a.3.

Finally, we calculate the planet’s J2 with Equation 3.1.
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