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Abstract 

 

A diversity of field-based grazing intensity measurements are used for rangeland 

management. However, there is a lack of acknowledgement that the choice of method and 

their implementation may influence the precision, accuracy, and sensitivity of grazing 

intensity estimates. Improved understanding of the sources of variation and bias within 

grazing intensity estimates can improve planning of monitoring programs, increase use of 

more appropriate methods for a given situation, and improve the ability of data to inform 

management. I evaluated and compared several methods for measuring utilization and 

grazing intensity in two semi-arid grassland and shrubland ecosystems: The Pacific 

Northwest bunchgrass prairie and sagebrush steppe. Utilization methods were also 

compared to actual stocking rates and locations of livestock using GPS data. A multiple-

regression approach used to attribute variation in grazing intensity estimates found a 

significant proportion of variation was related to observer’s recent experience and training, 

particularly with visual estimation methods. Other sources of variation in utilization estimates 

included plant composition and cover. Calibration techniques which used in-field estimates of 

utilization from quantitative measurements were able to improve the relationship between 

visual estimation methods and livestock GPS-based grazing intensity estimates. Different 

methods produced significantly different estimates of mean utilization at both fine and broad 

scales however correlation between methods and actual stocking rates increased at broader 

scales. Results suggested improvements to the implementation and design of rangeland 

monitoring including consideration of observers’ recent experience, increasing site-specific 

training, and using sample designs which represent the fine scale spatial variation in grazing 

intensity and vegetation cover. Improved understanding of the relative limitations of different 

rangeland monitoring methods creates capacity to leverage the growing trend in citizen 

science and provides an opportunity for increased flexibility and resilience in rangeland 

management. 
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CHAPTER 1: QUANTIFYING VARIANCE AND OBSERVER 

BIAS IN FOUR UTILIZATION MEASUREMENT TECHNIQUES 

 

1. Introduction 

Effective rangeland management depends upon reliable information about the short and long 

term effects of grazing animals (Eyre et al., 2011; Karl et al., 2017; Ortega-S and Lukefahr, 

2013; West, 2003). Monitoring at broad spatial and temporal scales is often required to 

understand these effects due to scale-dependent processes and the strong influence of 

environmental variation on arid and semi-arid grazinglands (Moir and Block, 2001; Turner, 

1989). Similarly, having a strong foundation of monitoring data can help determine early 

warning signals and thresholds for ecological change such as shifts from one community state 

to another (Bestelmeyer et al., 2013; Wang et al., 2012). Effective monitoring then allows land 

managers to detect changes in land health and vegetation patterns so that they may shift 

grazing management practices accordingly. 

For measurements to be comparable at multiple scales, estimates of grazing effects must be 

both accurate and repeatable across time and between different landscapes. At the same time, 

however, monitoring programs must work for the people implementing them. There can be 

significant financial and opportunity costs associated with intensive monitoring over broad 

landscapes including the need for higher level technical or statistical knowledge (Caughlan 

and Oakley, 2001). Thus, successful monitoring data should be efficient to collect and analyze 

for routine management (Jasmer and Holechek, 1984; Symstad et al., 2008).   

The balancing act between precision and efficiency has been a major goal of many monitoring 

methods commonly used today for rangeland management (Booth and Cox, 2011). Rapid 

visual assessments of percent use are often preferred over more time-consuming residual 

vegetation measurements because they are understandable to a wide audience and are 

simple to perform (Heady, 1949). However, quantitative residual measurements may be a 

better measure of actual grazing severity which relates more directly to rangeland health than 

percent use (Holechek and Galt, 2000). Additionally, accuracy and repeatability of visual 

estimation methods such as general reconnaissance or landscape appearance can depend 

on the “…experience and judgement of the inspector.” (Heady, 1949; Laycock, 1998).  
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Expertise and local knowledge are clearly an important part of sustainable and innovative 

grazing management (Biró et al., 2019; Ghorbani et al., 2013; Müller et al., 2007). Levels of 

expertise are also often variable within and between monitoring programs and differences in 

experience may affect the ability to accurately detect grazing effects. It is possible that higher 

levels of technical expertise (including knowledge of plant growth forms, phenology, grazing 

behavior, and monitoring methods) could lead to increased perception of signs of grazing 

which may be overlooked by less experienced observers. It is possible, that the reverse may 

also be true as more experience creates biased estimates from observers being more 

conscious of over-estimating utilization or recording what they expect to see (Marsh and 

Hanlon, 2007). Visual estimates of utilization, consumption or destruction of biomass by 

grazing animals (Bureau of Land Management, 1999), may be particularly vulnerable to these 

effects because they often require observers to both detect levels of grazing and estimate 

weight removed from visual assessments of plant heights. 

Differences in observer experience are not the only factors which influence precision of grazing 

intensity estimates. Technique choice, training, and location of measurement within a study 

area can all significantly alter estimates of utilization. For example, Halstead et al., (2000) 

found that utilization from paired grazed and ungrazed plots was higher (~20%) than estimates 

based on grass height and weight relationships. Systematic underestimation of utilization over 

time could lead to overstocking in subsequent years. Thus, understanding how different 

techniques relate to each other and how closely they can track grazing intensity in a specific 

grazing system can give land managers better context for interpreting monitoring data and 

developing monitoring programs. 

There are a variety of studies which have addressed variability among techniques and 

observers in bird surveys (Link et al. 1994, Sauer et al. 1994, Kendall et al. 1996, Thomas, 

1996, Link & Sauer 1997), plant community estimates (Abadie et al., 2008; Symstad et al., 

2008) and aquatic monitoring (Coles-Ritchie et al., 2003; Kaufmann et al., 2014). However, 

studies which consider sources of variability among techniques and observers in rangeland 

management are lacking. A recent review of utilization and residual measurements gives an 

overview of the challenges facing the field (SRM Rangeland Assessment and Monitoring 

Committee, 2018). Challenges include the scarce reporting of specified levels of precision in 

utilization estimates as well as a lack of recognition that training, technique choice, and 

technique implementation often affect method accuracy. Thus, an in-depth exploration of the 
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biases and factors that influence variability of commonly used utilization techniques would 

benefit rangeland management. 

The objective of this study was to evaluate the repeatability of utilization metrics in the context 

of a broad-scale experimental study investigating the effects of cattle grazing on greater sage-

grouse (Centrocercus urophasianus). I tested the following two hypotheses: 1) estimates of 

utilization vary among observers; 2) observer variation differed among four different utilization 

techniques including visual estimates and quantitative residual measurements. In particular, I 

describe the variance in utilization estimates attributed to the technical expertise of observers 

and their recent vegetation monitoring experience. 

2. Methods 

The Idaho Grouse and Grazing Project began in 2014 as a collaborative research project of 

the Idaho Cooperative Fish and Wildlife Research Unit, the University of Idaho, the Bureau of 

Land Management, Idaho Department of Fish and Game, several private ranchers, and 

several other partners (https://idahogrousegrazing.wordpress.com). The overall goal of the 

study was to identify effects of cattle grazing on demographic traits of greater sage-grouse and 

sage-grouse habitat characteristics across southern Idaho. The study involved experimental 

manipulation of stocking rate and timing of grazing on five southern Idaho study areas (Figure 

1.1). At ~100 plots in each study area, cover of shrubs and herbaceous plants, grass height 

and utilization were measured each year for the duration of the study. Livestock use across 

experimental pastures was assessed by four methods including plant-based (ocular estimates 

of utilization, height-weight relationships), plot-based methods (comparison of 

grazed/ungrazed plots), and pasture-scale pattern mapping (landscape appearance). 

2.1 Study Areas 

Study sites were located in southern Idaho within sage-grouse management zone IV: The 

Snake River Plain (Knick 2011, Figure 1.1). Each study site was selected based on the 

following characteristics: more than 15% foliar cover of sagebrush species, including Wyoming 

big sagebrush (Artemisia tridentata ssp. wyomingensis), dominance of native grasses and 

forbs in the understory, and occurrence of at least one sage-grouse lek of >25 males. The 

study implemented a staggered entry design such that data collection began on the Browns 

Bench and Jim Sage sites in 2014, Big Butte and Sheep Creek sites in 2015, and the 

Pahsimeroi site was added in 2017. Study sites varied in size between 2,500-ha (Jim Sage) 

and 11,000-ha (Pahsimeroi). 
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Study sites showed physiographic features which are common among arid and semi-arid 

rangelands throughout the west. The Big Butte site consisted of an undulating landscape 

dominated by lava plains and remnant volcanoes with an average elevation of 1,561 m. 

Average annual precipitation during the study period was 220 mm. Soils were made up of 

loams and clay loams with a large proportion of rock outcroppings. Three-tip sagebrush 

(Artemisia tripartita Rydb.) and basin big sagebrush (Artemisia tridentata ssp. tridentata Nutt.) 

were the dominant shrub species. Brown’s Bench was situated between the Salmon River 

reservoir and the Monument Springs Mountains. The landscape was made up of hillslopes, 

alluvial fans, and terraces with shallow to deep gravelly clay and clay loam soils interspersed 

with several ephemeral streams. Average elevation was 1,623-m and average annual 

precipitation was 270 mm. Plant communities were dominated by black sagebrush (Artemisia 

nova A. Nelson) and Wyoming big sagebrush. The Jim Sage site showed similar topography 

including hillslopes and remnant fans made up of loam and silt loam surface soils. Dominant 

shrubs included Wyoming big sagebrush, mountain big sagebrush (Artemisia tridentata ssp. 

vaseyana (Rydb.) Beetle), as well as low sagebrush (Artemisia arbuscula Nutt.) occurring in 

shallower soils. Average elevation at Jim Sage was 1,652-m and average annual precipitation 

was 246 mm. The Pahsimeroi valley site was located between Idaho’s Lemhi and Big Lost 

River mountain ranges. This site had an average elevation of 2,000-m which varied between 

river floodplains at the valley floor to partially forested toe-slopes to the far east and west of 

the site. Average annual precipitation at the Pahsimeroi was 220 mm and vegetation cover 

was dominated by low sagebrush on the valley floor and Wyoming big sagebrush on the 

mountain slopes. The final site, Sheep Creek was a remote area characterized by lava plains, 

steep basalt canyons, mountain slopes and riparian areas situated at 1,640-m in elevation. 

Soils were mostly silt loams and silty clay loams, average annual precipitation was 330 mm 

and vegetation was characterized by Wyoming big and low sagebrush. 

The most common understory grasses across all sites (ordered based on abundance) included 

Sandberg’s bluegrass (Poa secunda J Presl), bottlebrush squirreltail (Elymus elymoides [Raf.] 

Swezey), bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love), western 

wheatgrass (Pascopyrum smithii [Rydb.] A. Love), and needlegrass species (Achnatherum spp 

and Hesperostipa spp). 

All five study sites included federally managed public lands often surrounded by or adjoining 

private pastures. Livestock grazing has been the primary land use in these areas since 

European-American settlement. Each site also provides important habitat for sagebrush-
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obligate species and game species including bighorn sheep (Ovis canadensis) and pronghorn 

(Antilocapra americana). 

 
Figure 1.1 - Five study sites in southern Idaho where field work has been conducted for the Idaho Grouse 
and Grazing Project. 
 

2.2 Design and Protocols 

Grazing Treatments 

Each of the five study sites had four grazing treatments applied each year within separate 

pastures. Treatments included no grazing, spring grazing in even years (i.e., 2016, 2018), 

spring grazing in odd years (i.e., 2015, 2017), and annual alternation between spring and fall 

grazing. Spring grazing occurred between 1 March and 15 June and fall grazing between 1 

September and 15 December. Measurement of utilization occurred in all pastures (both grazed 

and ungrazed) at the same time as the vegetation monitoring plots (described below). For this 

study only pastures which had been grazed in the spring were included in the data analysis. 

Sampling Design 
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Four methods were used to estimate the percent of above-ground perennial grass biomass 

removed by herbivores (% utilization) – ocular estimates, landscape appearance, the height-

weight method, and paired grazing exclosure plots – and sampling design varied by method.  

Ocular estimates of utilization were measured at 20 randomly selected sampling sites (referred 

to hereafter as vegetation plots) within each study pasture. Randomly-selected plots consisted 

of two perpendicular 30-m line intercept transects centered on a potential sage-grouse nest 

shrub (Conway et al., 2018). Vegetation plots were sampled at the end of the growing season, 

between July 19th and September 1st,, following cattle removal. 

Landscape appearance estimates and height-weight measurements were collected along 

randomly placed north-south transects 300-m apart (Figure 1.2). At 200-m intervals along each 

transect, observers estimated utilization according to the landscape appearance technique 

within a 15-m radius half-circle in front of them. Heights of grazed and ungrazed grasses were 

measured every 600-m along each north-south transects. See Conway et al. (2019) for more 

detailed description of methods. This resulted in between 50 and 500 landscape appearance 

observations per pasture depending on the pasture size and half as many for height-weight. 

In 2018, paired grazed and ungrazed plots were established at 12 randomly chosen vegetation 

plots within each grazed pasture for a total of 60 paired plots across all five study sites. All 

other utilization measurements were taken throughout the duration of the study since 2014. 
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Figure 1.2 – An example of the sample design for one grazed pasture from the Grouse and Grazing 
Project. Vegetation plots were randomly located and a subset of 12 of these contained paired plots with 
grazing exclosures. Landscape appearance plots were located every 200-m on parallel transects 
spaced 300-m apart. Heights of grazed and ungrazed grasses were also collected every third point 
along these transects (every 600 m). 

Utilization Techniques 

Ocular Estimates:  

Ocular estimates of utilization (by grass species) were recorded at each vegetation plot every 

2-m along the line transects for a total of 29 observations (subplots) per vegetation plot 

(estimating the center point only once). At each subplot location, up to three perennial grass 

species were measured within 1-m of the respective meter mark on the transect and plants 

were selected based on proximity to the meter mark. This resulted in a ~1.5-m2 subplot area 

at each meter mark. For each individual perennial grass measured, field technicians made an 

ocular estimate of percent of the above-ground biomass consumed or destroyed by herbivores 

(Bureau of Land Management, 1999). Field technicians were trained on how to visually 

estimate percent biomass removed prior to sampling with the use of species-specific 
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photographs. Each year this sampling was conducted at a minimum of 15 random vegetation 

plots in each pasture. 

Ocular estimates of utilization were summarized in two ways: 1) average estimated weight 

removed across vegetation plot, and 2) frequency of grazed plants. Frequency was calculated 

by simplifying ocular subplots into grazed and ungrazed and then calculating a proportion of 

grazed subplots per vegetation plot. 

Landscape Appearance: 

The landscape appearance method (Bureau of Land Management, 1999) was used to 

estimate utilization in all experimental pastures using the classes shown in Table 1.1. This 

technique relied upon observing the extent and intensity of grazing based on knowledge of 

grazing behavior, forage preference, grass growth forms and phenology. For example, 

classifications were made using observations of the relative use of low and high value forage 

species, the presence of current year’s culms, and the extent or patchiness of grazed areas.  

 

Table 1.1 – Seven classes of utilization used in the landscape appearance method including descriptive 
guide (Bureau of Land Management, 1999). 
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Height-Weight: 

Heights were measured for up to four different species of grasses at four separate subplots 

along the north-south landscape appearance transects for a total of up to 16 individual plant 

measurements at each sampling location. Subplots were placed ~3-m apart as determined by 

pacing. The nearest four grass species within 1-m of the subplot location were measured. For 

each plant measured within each subplot, observers recorded if the grass plant had been 

grazed, the droop height, and the average height of all grazed stems (if there was evidence of 

grazing). Estimated height removed from grazed plants was calculated using the average 

ungrazed height specific to each study site, year and species (Bureau of Land Management, 

1999). Utilization (weight removed by grazing) was then calculated using site- and species-

specific height-weight relationships developed in 2017 (Julson, 2017) according to the protocol 

outlined by Sprinkle and Arispe (2017). 

Paired plots: 

Ungrazed subplots were contained within a 2.5-m by 2.5-m metal-fenced grazing exclosure 

(Figure 1.3). Exclosures were 1.5-m tall with ~20-cm by 20-cm wire mesh to prevent large 

herbivore grazing. The actual ungrazed subplot area was placed within the caged area with a 

~45-cm buffer zone between the cage and the plot to mitigate any alterations in microclimate 

or effects due to livestock or wildlife attraction caused by the frame. The plot area was split 

into four 75-cm by 75-cm subplots for ease of clipping and collection. This resulted in a total 

clipped area of 2.25-m2.  

For each ungrazed subplot, a corresponding grazed plot was located nearby. Grazed plots 

were located >30-m from caged plots to prevent bias from cattle attraction to the grazing 

exclosure. Care was taken to place grazed plots in areas with the same soils, species 

composition and cover as within the caged plot. These plots were also made up of four 75-cm 

by 75-cm subplots (Figure 1.3). 

After the grazing period when forage species had reached their growth potential (mid-July to 

mid-August) all herbaceous foliar cover in each caged and uncaged plot was clipped to within 

2.5-cm of the soil surface and weighed in the field following the interagency technical reference 

on utilization studies (Bureau of Land Management, 1999). Clipped material was weighed by 

species for grasses. Because forbs typically made up a small portion of total subplot biomass, 

all forb species were grouped into one category and weighed together. Approximately 50 g of 

each grass species and group of forbs was retained in order to lab-dry and obtain a wet to dry 
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weight conversion factor. Utilization estimates from paired plots were summarized by key 

forage species (i.e., grass species which were preferred or desirable forage species for cattle).  

 

Figure 1.3 – Paired plots at the Idaho Grouse and Grazing Project. These consisted of two subpots: 
caged and uncaged, located at least 30-m apart. Subplots were placed such that they were similar in 
terms of species composition, cover, and soil type. 

2.3 Data analysis 

This study defined technical expertise as the broad differences in an observer’s background 

and long-term experience. This included the observer’s major field of study (e.g., range, 

wildlife, or botany) and their official role within the research project. We defined monitoring 

experience as shorter-term differences between observers such as who they were working 

with, which plant communities they had most recently worked in, and levels of grazing they 

had recently perceived. Collectively, these metrics were referred to as observer effects.  

A variance decomposition approach (Lawler and Edwards, 2006; Whittaker, 1984) was used 

to describe the amount of error caused by the observer effects within each measurement 

technique across all years and study sites of the grouse and grazing study. This approach 
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used multiple linear regression to attribute and describe variance in the utilization estimates 

within and between observers. All data analysis and model creation was performed using R 

version 3.5.3 (R Core Team, 2013).  

In evaluating sources of variability in utilization measurements, we defined precision as the 

amount of variation from each method caused by observer effects and other variables 

unrelated to the effects of grazing. More precise methods were those that did not vary because 

of differences between observers. A related concept, bias, was defined as a systematic or 

directional level of imprecision. Accuracy was defined as the degree to which the utilization 

estimates reflected the “true” grazing intensity in the study areas. Accuracy was harder to 

define in the context of this study because we had no independent measures of grazing 

intensity at plot scales. As a proxy, we evaluated accuracy of utilization measurements via the 

correlation of field estimates to pasture-level stocking rates (i.e., the amount of livestock per 

unit of time and area), measured in Animal Unit Months per hectare (AUM ha-1).  

Four types of regression models were created for each utilization technique, all containing the 

utilization estimate as the dependent variable: 1. A simple model containing only the utilization 

estimate and study site and year of study as independent variables; 2. An observer effects 

model selected by stepwise selection using AIC (Akaike’s Information Criterion) containing 

site, year and any observer effects variables (described below) selected based on minimizing 

AIC as independent variables; 3. The ‘best’ model including any of the independent variables 

mentioned above as well as any site covariates described below which were selected by 

stepwise selection using AIC; 4. Technique comparison models with one utilization technique 

as a dependent variable and another technique’s estimate as the independent variable. Nested 

models were compared to assess which variables helped to explain the most amount of 

variation within the data. 

The observer and best models were constructed using estimates of utilization from each of the 

different field techniques as the dependent variable and observer characteristics and in the 

case of the best models, study site covariates as independent variables. All models included 

study site and year of study as independent variables. Starting with the simplest model 

(Equation 1.1) which included only the utilization estimate, study site and year, independent 

variables were added using a forward and backward stepwise approach using AIC using the 

“stepAIC” function in the MASS package in R (Venables and Ripley, 2002). This function starts 

with the simplest model and adds or removes variables at each step when doing so would 
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decrease model AIC. The amount of variance explained by adding additional variables was 

equated to the relative change in adjusted R2 values.  

𝑌 = 𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 +  ⋯ 𝛽𝑝𝑋𝑝 + 𝜖1    Equation 1.1 

Equation 1.1 – The multiple regression model structure used to analyze variance within utilization 
estimates. Y is the utilization estimate, 𝛽0 is the intercept, 𝛽1 … 𝛽𝑝 represent independent variable 

parameters, and 𝜖1 is the error. All models contained study site and year as explanatory variables. 
Additional variables describing differences between observers were added based on their ability to 
explain model error. 

 

Particular attention was made to examine observer characteristics including: technical position  

which was related to an observer’s technical experience and day to day workload (e.g., wildlife 

biologist, range technician, or general volunteer); days of experience working on the grouse 

and grazing project; time spent at a sampling location; an observer performance rating; and 

the observer’s original study site assignment and if they had moved between sites. 

Performance of each observer was rated by the project lead at the end of each year by three 

categories (Excellent, Average, Poor) based on work ethic and technical aptitude. Site 

covariates included the dominant plant functional groups, cover of plant species, and average 

grass and shrub heights. 

Technique comparison models were constructed at two scales: individual plot locations and 

plots aggregated to the pasture. At the plot scale, this involved modeling paired plots against 

ocular estimates, then landscape appearance estimates were compared against height-weight 

estimates separately. All four techniques were compared against each other at the pasture 

scale. Since there were two separate sample designs used to locate utilization plots, landscape 

appearance and height weight could not be compared to either the paired plots or ocular 

estimates at the plot scale. Similarly, there was only one year of paired plot estimates and so 

comparisons were limited to five pastures in 2018. Correlation to paired plot estimates were 

used as a measure of precision since paired plots showed the least amount of observer 

variability and are regarded as a precise method for measuring utilization (Halstead et al., 

2000, but see Chapter 2). To assess accuracy of each method, results were also compared to 

actual stocking rates measured in Animal Units Months (AUMs) per hectare. Closeness of fit 

between pairs of techniques was assessed using Pearson correlation coefficient (r) for 

continuous estimates and Spearman rank for the landscape appearance estimates. As above, 

observer characteristics, study site and year were added stepwise to these models to help 

explain differences between the utilization estimates.  
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Landscape appearance data was analyzed as both a categorical variable using the seven 

utilization classes and as a continuous variable using the midpoint values from each of the 

classes shown in Table 1.1. When considering class values, differences in landscape 

appearance estimates between sites and observers were compared using Chi-squared tests. 

3. Results  

3.1 Influence of Monitoring Experience 

Paired Plots 

Across all forage species, Brown’s Bench showed significantly higher levels of utilization in 

2018 compared to all other study sites (61% ± 8% with 90% confidence, Figure 1.4). The 

Pahsimeroi site showed the lowest level of overall utilization when looking at the paired plots 

(18% ± 12%).  

Estimates of utilization from paired plots showed slight observer bias due to the amount of time 

spent at each plot (observer model explained 5% more variation than simple model, model 

adjusted R2 = 0.338 compared to 0.283 in simplest model, Table 1.2). Stepwise selection using 

AIC including site covariates explained another 5% of variation and included differences 

between individual observers and average grass heights at each plot. 
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Figure 1.4 – Percent weight of key species removed determined by five techniques for measuring 
utilization across all five study sites of the grouse and grazing project in 2018. Error bars represent 90% 
confidence intervals and bar heights are mean utilization across all paired plots within grazed pastures. 
Utilization measured from different field techniques often produced significantly different estimates.  

 

Landscape Appearance 

Landscape appearance data showed a high degree of sensitivity to changes in observer 

experience. The observer effects model included individual differences among observers as 

well as variation explained by observers who had moved between sites or not. These two 

variables accounted for roughly 13% of the variance in the landscape appearance data (model 

adjusted R2 = 0.268 compared to R2 = 0.138 in the simplest model, p-value < 0.005). The best 

model from stepwise selection using AIC included these same observer effects as well as 

several plant functional group covariates including, dominant perennial grass and shrub 

species. These covariates explained an additional 4% of the variation (R2 = 0.309, p-value < 

0.005). 

Observers who had moved between sites and had a range of monitoring experience across 

different plant communities and grazing management schemes consistently recorded higher 
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levels of utilization (mean utilization estimate = 17%) than observers who had a narrower range 

of recent monitoring experience across all study sites and years (10% utilization).  

Table 1.2 – Comparison of simple models of utilization estimates (containing only study site and year 
as dependent variables), models containing only observer variables, and best models created with 
stepwise selection using AIC. The difference in Adjusted R2 illustrates the amount of variation in 
utilization estimates explained by adding additional observer effect variables and plant composition 
variables into the models. All models were significant with p < 0.005. 

 

The Pahsimeroi study site exemplified this effect strongly since each year it is visited by many 

different field observers. Crews from other study sites will help with data collection at the 

Pahsimeroi towards the end of field season since it is the largest study area and the final site 

to finish collecting utilization data. The original site assignment of these ‘help’ crews has a 

significant effect on the data collected at the Pahsimeroi study site (Figure 1.5). In general, 

field observers who spent the majority of their season collecting data at other study sites 

(Brown’s Bench, Jim Sage, Big Butte and Sheep Creek) gave significantly higher estimates of 

utilization at the Pahsimeroi compared to crews which had spent all year there.  

From within these ‘help’ crews, observers who had worked at multiple sites per season (‘All 

Sites’ in Figure 1.5) showed the closest fit to Pahsimeroi crews but still recorded more 

observations in all four of the highest utilization classes. Observers which spent most of the 

season at the highest use site, Brown’s Bench, then went on to record the lowest estimates of 

Simple 

Model

Observer 

Model

Best 

Model

Landscape 

Appearance
0.138 0.268 0.309

Observer's identity, movement 

between sites

Observer's identity, movement 

between sites, dominant perennial 

grass, dominant shrub

Ocular Estimates (% 

Use)
0.061 0.200 0.252

Observer's identity, movement 

between sites

Grass heights, observer's identity, 

movement between sites

Ocular Estimates 

(Frequency)
0.124 0.407 0.571 Observer's identity

Observer's identity, grass height, shrub 

height 

Height-Weight 0.035 0.105 0.300
Observer's identity, movement 

between sites

Dominant grass and shrub, cheatgrass 

cover, observer identity, movement 

between sites

Paired plots 0.283 0.338 0.381 Time spent at plot Observer's identity, grass height

Method (Indicator) 
Additional Variables  in Best 

Model

Adjusted R2
Additional Variables  in Observer 

Model
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utilization from the ‘help’ crews with more than 90% of sample sites recorded in the lowest two 

utilization categories (Figure 1.5). Conversely, observers from Sheep Creek and Big Butte, 

which had comparable levels of utilization to Pahsimeroi but different dominant plant species, 

recorded the highest levels of utilization compared to Pahsimeroi crews - Sheep Creek and 

Big Butte crews recorded 30% and 60% of their sampling locations, respectively within the 

‘Light’ (21-40% utilization) and ‘Moderate’ (41-60%) classes.  

 

 

Figure 1.5 – Proportion of landscape apperance plots from the Pahsimeroi study site falling into each of 
the different utilization classes grouped by where the observers spent the majority of their field season. 
The legend and y axis describe utilization classes according to their midpoint value.  

Ocular estimates 

The simplest model including ocular estimates of utilization, study site and year accounted for 

~ 6% of the variation in the data (adjusted R2 = 0.061, p < 0.005). The observer model produced 

by stepwise selection using AIC included study site, study year, the identity of both the 

observer and recorder (second observer) at the sample site, and whether the observer had 

moved between several study sites. Including these observer characteristics as explanatory 

variables explained an additional 14% of the variance (adjusted R2 = 0.200, p < 0.005, Table 

1.2). Observers who moved between different sites tended to give slightly higher estimates of 

utilization (4.3% versus 2.7%, difference between means was significant with p = 0.03). 

Addition of average grass heights as an independent variable on the best model explained an 

additional 5% of the variation on ocular estimates. 

* Significantly 
different from 

Pahsimeroi at α = 
0.005 
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Ocular estimates were also influenced by the different daily experiences of different position 

types. For example, at the Jim Sage study site in 2015, graduate students, project coordinators 

and general technicians had significantly different ocular estimates compared to field crews 

which worked at the Jim Sage study site all season (Figure 1.6). These three groups with the 

most divergent estimates represented people who often worked by themselves, worked across 

multiple different study sites each season, and worked on multiple aspects of the project 

(wildlife, range, insect sampling). On the other hand, there do not seem to be any consistent 

patterns relating to the observer’s technical expertise. Observers with wildlife backgrounds 

(crew leaders, IDFG technicians and wildlife technicians) had very similar estimates and 

amount of variability as range technicians. Similarly, the project coordinator position, which 

had the highest level of technical expertise, had similar estimates and variance as the generic 

technicians which included undergraduate students and volunteers with a relatively low level 

of expertise. 

 

Figure 1.6 – Ocular estimates of percent herbaceous biomass removed by herbivores at the Jim Sage 
study site in 2015 split out by observer position. Points are mean utilization and error bars represent 
90% confidence intervals. Sample size (n) represents the number of individuals within each position 
type. 
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Frequency of Grazed Plants 

A large degree of variation in the grazed frequency data was explained by differences between 

observers – adding observer characteristics to the grazed frequency model increased adjusted 

R2 from 0.124 in the simplest model to 0.407 in the observer model chosen by stepwise 

selection with AIC. As well as the independent variables found in the simplest model (study 

site and study year), the best model also included observer effects from both observers 

(measurer and recorder) who collected data together at the plot and whether or not the 

observer had moved between study sites (Table 1.2). Frequency was also sensitive to 

vegetative site covariates including grass and shrub heights which explained ~17% more 

variation compared to the observer effects model (Adjusted R2 = 0.571, Table 1.2). 

Height-Weight 

Compared to the ocular estimates, utilization as estimated from grass heights showed a much 

smaller amount of variation derived from observer differences. Observer effects explained 

roughly 7% of the variation found in the height-weight estimates. Adjusted R2 of the simplest 

model was 0.035 compared to 0.105 in the model containing observer effects chosen with 

stepwise selection. A larger portion of variation in the best model chosen by stepwise selection 

using AIC was driven by site covariates including cheatgrass (Bromus tectorum L.) cover, as 

well as dominant shrub and perennial grass species. These covariates explained an additional 

20% of the variation (best model R2 = 0.300s, p < 0.005). The best model also included 

differences between observers who had worked at multiple study sites during the same season 

and had worked for multiple years on the project. Observers who had worked at multiple 

different study sites tended to estimate higher levels of utilization compared to observers who 

collected data at a single site all season (p-value from t test comparing the two groups < 0.005). 

However, the difference in average utilization between these two groups was small (4% 

utilization compared to 5%). 

Utilization estimates from grass height measurements were consistently lower than visual 

estimates using the landscape appearance method collected at the same sampling locations 

(Figure 1.7). Height-derived utilization estimates had the largest range at locations classified 

in the moderate utilization classes (between 20-60% use). For example, plots classified in the 

41-60% use category based on landscape appearance had between 0 to 80% utilization based 

on the height-weight method at that same sampling location by the same observer.  
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Figure 1.7 – Relationship between utilization estimated from grass heights and visual estimates using 
landscape appearance collected at the same sampling locations. Utilization estimates from grass height 
measurements were much lower than those based on landscape appearance classes.  

 

3.2 Influence of Technical Expertise 

Ocular estimates of individual plant use at sampling sites were compared to paired plots at the 

same sampling locations (Figure 1.8). In general, the ocular estimates underestimated 

utilization and showed no linear relationship with estimates from paired plots. More than 70% 

of the sampling locations had ocular utilization estimates of 5% weight removed, despite this 

representing between 0 and 80% utilization from paired plots at the same locations.  
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Figure 1.8 – Relationship between ocular estimates of percent herbaceous biomass removed and co-
located paired exclosure plots. The two techniques show very little resemblance to each other – ocular 
estimates underestimated use with the majority of data points below 5% utilization. These represented 
anywhere between 0 and 80% utilization based on estimates from paired exclosures plots.  

 

Converting the ocular estimates of utilization into frequency of grazed plants improved the fit 

of the linear relationship with the paired plots (i.e., Pearson’s correlation coefficient increased 

from 0.239 to 0.398). The strongest relationships between paired plots and grazed frequency 

came from the Brown’s Bench study site (Figure 1.9). In comparison to the other four sites, 

Brown’s Bench had the highest utilization overall in 2018 (61% ± 8% estimated from paired 

plots) and data was consistently collected by the same two observers both of whom were range 

technicians (technicians hired specifically to sample vegetation based on their botanical 

Adjusted R2 = 0.0353, 

p-value = 0.1136 
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expertise). Other study sites which lacked observers with as much botanical expertise showed 

more variance in estimates when compared to paired plots.  

Height-weight, landscape appearance, and paired plot estimates did not appear to be 

influenced by technical expertise or position title. 

 

 

Figure 1.9 – Multiple regression of frequency of grazed plants (derived from plant-based ocular 
estimates of utilization), utilization from paired plots at the same locations in 2018, and observer job title 
grouped by study site. Overall, including observer title as a covariate helped to explain variation in the 
frequency data (adjusted R2 increased by 6%). 
 

3.3 Comparing to Stocking Rates 

Relationships between different field techniques improved at broader scales. At the pasture 

scale, paired plots had the strongest correlation to actual stocking rates (r = 0.786), followed 

by height weight (r = 0.506) and frequency of grazed plants (r = 0.462, Figure 1.10). Height-

weight estimates also showed consistently high precision when compared to other techniques 

(r = 0.759, 0.791, 0.767, 0.848 with ocular estimates, frequency, landscape appearance and 

paired plots, respectively). 

Separating estimates from observers who had remained at one study site versus observers 

who had moved between sites in a single season influenced the accuracy of the landscape 
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appearance and grazed frequency techniques. Estimates from observers who worked at a 

single study showed higher correlations to stocking rates – r increased from 0.26 to 0.50 for 

landscape appearance and from 0.43 to 0.61 in frequency. Both these changes were 

significant at α = 0.05. Moving between sites did not change the precision of these techniques 

(i.e., correlation with other techniques remained relatively constant).  

 

Figure 1.10 – Pearson’s correlation, frequency distributions, and regression lines between utilization 
estimates from five different field techniques and stocking rates when summarized to the pasture scale. 
AUMha = Animal Unit Months per hectare. Stars represent significance level of the correlation: *** (p < 

0.0001), ** (p < 0.001), * (p < 0.01), . (p < 0.05). Shaded areas represent 95% confidence intervals 

around the regression lines.  
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4. Discussion 

4.1 Observer Experience 

Across all utilization techniques other than paired grazing exclosures, a significant amount of 

variation was explained by where observers had worked during the year: Observers who 

moved between multiple study sites gave consistently higher estimates of utilization compared 

to observers who worked at a single site. One potential reason for this effect was observer 

familiarity with plant communities and grazing levels at a site where they spent the most time. 

The Idaho Grouse and Grazing project study sites had a variety of dominant plant species and 

levels of grazing intensity. It is possible that recent experiences observing specific patterns of 

grazing in a study area can lead to more precise measurements. This was illustrated when 

comparing techniques at the pasture scale: correlations between stocking rates and both 

landscape appearance and frequency estimates were higher with observers who had spent all 

their time at a single site.  

Not surprisingly, the effect of past observer experience was most strongly seen with visual 

estimation techniques more so than with metrics based on height measurements or biomass 

clippings from exclosures. The efficacy of these methods depends largely on the observer’s 

knowledge of plant growth forms, forage preference and phenological cycles of forage species. 

For the landscape appearance method, bias was a result of switching from one study area to 

another with different levels of cattle use. Observers familiar with higher grazing intensity 

tended to record higher estimates when at lower use sites. This suggests some level of 

confirmation bias with estimation techniques (i.e., observers are recording what they expect to 

see).  

For height-weight and paired plots there was a small amount of variation related to observer 

experience and these differences tended to be small (1-2% utilization). Conversely, differences 

in utilization estimates between landscape appearance observers tended to be larger and thus 

more consequential to potential management decisions. This also suggests landscape 

appearance may be less repeatable over time and poorer at detecting long-term changes in 

grazing effects. Given that utilization techniques are generally intended to be used to evaluate 

short-term grazing management goals (SRM Rangeland Assessment and Monitoring 

Committee, 2018), observer bias may be offset by also collecting long term monitoring data 

such as cover and composition of plants, bare ground amount, or soil aggregate stability to 

provide more context on rangeland health and trend. 
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4.2 Technical Expertise and Ocular Estimates 

Ocular estimates of utilization on individual plants showed the highest amount of variability 

compared to other field techniques. A large portion of this variance was explained by 

differences among observers (i.e., observer bias). Observers with more experience monitoring 

utilization, including field technicians and project coordinators who had worked in their 

positions for several consecutive seasons, tended to record higher ocular estimates of 

utilization than technicians with less experience. The ocular estimate method generally 

underestimated utilization compared to other methods (i.e., most estimates recorded as less 

than 5%, despite paired plot estimates in the same locations giving estimates of up to 80%). 

These results highlight difficulties involved in visually estimating plant material that has been 

removed, and then converting this estimate to a weight-based measure.  

Slightly amending the ocular estimation method by converting to frequency of grazed plants 

helped to reduce some of the observer bias. Observers tended to be better at differentiating 

between grazed and ungrazed plants as opposed to determining a specific amount of grazing 

when it had occurred. While frequency of grazed plants does not directly measure utilization, 

it appears to improve the clarity of observation, improve detection of differences in grazing 

intensity, and improve consistency between observers. The frequency method also improved 

correlation with actual stocking rates, providing evidence for higher accuracy. 

For ocular estimates – technical experience did not appear to affect the overall estimate of 

utilization (which was more closely related to day to day experience), but it did influence the 

correlation between paired plots. Since paired plots were the measurement with the least 

amount of susceptibility to observer imprecision, it was assumed that higher correlation to 

paired plot estimates related to greater precision. This suggests that for ocular estimates, 

accuracy (closeness to population value) was more closely influenced by technical expertise 

while precision (variability around sample estimate) was driven by day to day monitoring 

experience.  

4.3 Comparisons between Techniques 

The height-weight method showed the least amount of variability explained by differences 

between observers. Variation in this technique was influenced more highly by differences in 

plant functional groups and cover estimates. Despite this, height-weight estimates showed 

consistently high precision and accuracy at the pasture scale evidenced by high correlations 

with all other techniques and the second highest correlation with stocking rates (following 

paired plots). 
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Both height-weight and ocular utilization estimates did, however, produce consistently lower 

estimates of utilization than all other techniques (particular landscape appearance and paired 

plots), suggesting a systematic bias associated with the technique (McKinney, 1997). This 

supports results from Halstead et al. (2000) who compared the height-weight to paired plots at 

the plot and pasture scale. This result is significant to rangeland managers since consistently 

underestimating utilization could have effects on short- and long-term management decisions 

– for example, failing to move cattle out of an overused area or overstocking a pasture the 

following year.  

1.3 Challenges in Rangeland Monitoring 

While plant or plot-based approaches may accurately reflect conditions at small spatial scales, 

these approaches alone may be insufficient to reflect grazing intensity at ranch or landscape 

scales due to high variability between sampling areas. This may be particularly true in 

moderately grazed areas in which even seemingly homogenous ‘key areas’ can have a large 

amount of variability (SRM Rangeland Assessment and Monitoring Committee, 2018). In 

practice, assessments of forage biomass and utilization are often rough estimates made from 

quick observations by the rancher or manager, and high sample sizes are often impractical for 

annual rangeland monitoring (SRM Rangeland Assessment and Monitoring Committee, 2018). 

The inability to accurately assess biomass and livestock impacts (as a function of grazing 

intensity and duration), in both the short and long term, can result in overstocking for the 

coming year (Ortega-S and Lukefahr, 2013). Thus, improvements are needed in the ability to 

accurately measure forage production, utilization, and residual biomass in the field and to 

aggregate those measurements up to the scale at which management decisions are made.  

Similarly, assessments of grazing effects should be appropriate for the specific management 

objectives and incorporate current ecological knowledge of disturbance and ecosystem 

processes. Utilization measures tend to focus on the amount and condition of residual biomass 

from which a measure of utilization or forage consumed can be calculated. While percent 

utilization can provide useful insights into managing cattle, it tells only part of the story. 

Because plant growth and resilience is dependent on environmental conditions including 

precipitation, similar levels of utilization from year to year may have varying effects on plant 

communities (Biondini et al., 1998). Thus, management decisions should be made based on 

a combination of utilization measures, environmental conditions, past management history and 

trend (Agricultural Experiment Station Oregon State University, 1998; Holechek et al., 2001). 

Past management actions and disturbance regimes can have considerable influence on plant 
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species distributions and persistence and in some cases may be more influential than 

precipitation levels (Chýlová and Münzbergová, 2008; Vandewalle et al., 2014). Moreover, 

past disturbances which alter plant community structure can have far reaching influences on 

ecosystem responses to future disturbance (Foster et al., 2003). These feedbacks, as 

described in the state and transition model concept, provide strong evidence for monitoring 

trend in grazing intensity over broad temporal scales as well as documenting plant community 

transitions (Bestelmeyer et al., 2003; Briske et al., 2005; Stringham et al., 2003). Thus, grazing 

field measurements should both be able to consider current years conditions and be consistent 

enough to provide reliable estimates of trend over time.  

4.4 Management Implications  

Most of the monitoring techniques evaluated here showed imprecision based on an observer’s 

experience at different study sites and whether they moved between sites. Understanding the 

source of this variation is extremely beneficial since it is easy to detect and thus mitigate. One 

solution could be increasing training time at a site – learning the differences between grazing 

systems and plant communities. This may involve ‘calibrating’ or learning from other observers 

with in-depth knowledge of that site.  

The height-weight technique showed the least amount of variability due to observer effects, 

but it also gave consistently lower utilization estimates. This illustrates that variability (i.e., 

precision) only tells one part of the story and substituting high precision for lower accuracy in 

a monitoring technique can create equally negative consequences for rangeland management. 

This may be particularly true in public rangeland management in the Western U.S. where 

utilization estimates are often used in combination with long-term land health monitoring to 

inform causal factors of land degradation (Bureau of Land Management, 2001). 

One major source of variability in utilization estimates not addressed here is the spatial 

heterogeneity of grazing intensity inherent in moderately grazed systems. This study assumed 

that correlation between utilization estimates and stocking rate at the pasture level was 

equivalent to accuracy in grazing intensity. These correlations were useful because they 

directly related to a specific management action that could be altered. However, this approach 

fails to recognize the spatial variation in the cattle use throughout the pasture. Comparing 

utilization estimates to actual cattle locations could help to further improve our understanding 

of the accuracy of these techniques are multiple scales. 
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A key strength of this study design that should not be overlooked is that observers were 

collecting multiple types of utilization estimates which could be used in tandem for their most 

appropriate applications. Routine collection of multiple monitoring techniques for measuring 

utilization allows rangeland managers to get a better sense of actual livestock use. This 

approach adds resilience to the monitoring program and allows for the potential use of a 

combination of indicators or methods based on shifting management questions and needs.  

In recent years there has been a shift across multiple disciplines towards a higher amount of 

‘citizen science’ style monitoring in which data is collected by volunteers or student observers 

with minimal training (Eglington et al., 2010; Foster-Smith and Evans, 2003; Mitchell, 2000). In 

the field of rangeland management, this would encompass collaborative monitoring data 

collection by ranchers as well as land managers. This trend has great potential to improve 

scientific inquiry and resource management (Hochachka et al., 2012; Kosmala et al., 2016). In 

order to leverage this growing trend in citizen science, rangeland managers and practitioners 

should have a thorough knowledge of which monitoring techniques are more or less 

susceptible to variability in experience. This will facilitate informed choices when designing 

monitoring programs and improve interpretation and analysis of monitoring results. Similarly, 

further knowledge of the sources of these biases can reduce or mitigate them and improve the 

quality of monitoring data and thus the decisions dependent on them.  
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CHAPTER 2: EVALUATING ACCURACY AND PRECISION OF 

UTILIZATION MEASUREMENT USING CATTLE GPS 

LOCATIONS AND TECHNIQUE CALIBRATION 

 

1. Introduction 

1.1 Overview 

Livestock grazing occurs on approximately 30% of the Earth’s ice-free land globally, by far the 

most extensive land use in the Anthropocene (Ellis et al., 2010). The outcomes of this land use 

have extensive implications for wildlife management (Beck and Mitchell, 2000; Vavra, 2005), 

ecosystem function (Augustine, 2003; DiTomaso, 2000; Fleischner, 1994; Fuhlendorf and 

Engle, 2004), food security (O’Mara, 2012), and socio-economic development (Aryal et al., 

2014; Wilmer et al., 2018). This is particularly true in the arid grasslands and shrublands of the 

western United States where energy development, recreation and residential expansion 

continue to change the way these rangelands are perceived and managed (Brunson and 

Gilbert, 2003; Ellis et al., 2010; Gamo and Beck, 2017). Monitoring the direct effects of grazing 

animals and understanding how they modify the environment for other resource uses is 

fundamental to successful management of grazing lands. Isolating these effects is challenging 

due to climatic variability as well as heterogeneity in vegetation and grazing severity. Similarly, 

changes in disturbance regimes such as wildfire and invasive species add an additional layer 

of complexity and enhance our need for precise grazing management and measurement (Berg 

et al., 2016; Manier et al., 2014).  

Improving the certainty and clarity of grazing measurements may also have wider implications 

for public land management policy as a whole (Haynes et al., 2001). Rangeland ecology and 

management in the United States stands at the intersection between scientific research and 

public land policy. Public land management decisions and policies regarding these landscapes 

are often controversial since there are many stakeholders and objectives involved (Clark and 

Meidinger, 1998). Thus, it is especially important to recognize the limitations of the data and 

measurement techniques used to make these decisions. Similarly, techniques should be 

selected based on specific objectives and with end users in mind (Elzinga et al., 2001; Krebs, 

1989). Reducing bias and improving confidence in the monitoring of management outcomes 
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such as grazing is the first step in understanding which management actions work best and 

why, which is fundamental to both adaptive management and policy. 

1.2 Field Techniques for Measuring Grazing Effects 

Quantifying the impacts of grazing within constantly changing natural systems necessitates 

accurate and unbiased measurements which are representative of the grazed area over time. 

The cumulative effects of grazing animals depend on the intensity, timing, and distribution of 

grazing (Holechek and Galt, 2000). Historically, measurements of the effect of grazing animals 

have focused on grazing intensity as this is seen as the most influential of these three factors. 

The key indicators of grazing intensity are forage production, utilization, residual biomass and 

cover (Holechek et al., 2001). This study focuses on measurement of two indictors of grazing 

intensity: utilization and residual cover. Utilization is defined as the percent weight of current 

years forage removed or destroyed by grazing animals, and residual indicators are the cover 

and condition of forage plants following the grazing period (Society for Range Management, 

1998). Accurate utilization and residual measurements can improve decision making for: when 

and where to move livestock (Clary and Leininger, 2000), setting sustainable stocking rates 

(Ash et al., 2011), assessing rangeland health (Veblen et al., 2014), and describing the effects 

of livestock on fuels managements (Davies et al., 2016) and wildlife species (Kolada et al., 

2009).  

In general, grazing intensity monitoring techniques fall into two categories: 1) visual estimates 

of the amount of plant material removed by grazing either at the individual plant or plot scale, 

and 2) measurements of individual plants.  

Visual Estimation Techniques  

Visual estimation techniques rely on ocular evaluation of grazing signs such as amount of plant 

material removed, distribution of grazing events, reproductive capability of plants, and relative 

consumption of highly preferred versus low preference forage plants (Bureau of Land 

Management, 1999). These techniques include plot- or transect-based methods such as 

landscape appearance or general reconnaissance as well as visual estimates of individual 

plants, tend to be rapid, and are thus preferred when monitoring large areas. Implementing 

visual estimates over large pastures can be a fast method for obtaining spatial pattern maps 

of grazing intensity (Bureau of Land Management, 1999). Visual estimation methods also have 

a high degree of flexibility for use over large areas such that well trained observers can 

estimate use of a variety of forage and browse species (Smith et al., 2007). However, accuracy 
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and precision of these methods can depend significantly on the experience and training of the 

observer (Agricultural Experiment Station Oregon State University, 1998; Jasmer and 

Holechek, 1984). These techniques require knowledge of local species growth forms, spatial 

differences in plant growth potential and phenology, animal forage preference as well as skill 

in detecting signs of grazing which may be variable between observers.  

Measurement Techniques  

Measurement-based techniques for grazing intensity include measuring vegetation heights, 

clipping and weighing biomass from paired plots (grazing exclosures), stem counts, and 

frequency of grazed plants (Bureau of Land Management, 1999). These methods tend to be 

more intensive and time-consuming compared with visual estimation. Measurement-based 

techniques may require less specialized experience to implement and can be more easily 

replicated over time and between observers. The additional complexity and time required by 

measurement-based techniques often mean fewer data can be collected per grazed area and 

thus spatial patterns of grazing intensity at broad scales may be difficult to obtain.  

However, this may be offset by increased accuracy and reduced variation between observers. 

Due to the complementary nature of the two approaches, efforts have been made to combine 

the speed and ease of visual estimates with the accuracy of measurement-based techniques 

(Holechek and Galt, 2000). This type of double sampling or visual estimation calibration has 

been adopted for use in biomass sampling (Parrott et al., 2012) and annual production (Herrick 

et al., 2009), but is not widely used for grazing intensity measurements. Calibration techniques 

for improving consistency between observers are used in vegetation monitoring programs and 

have shown to be an effective quality assurance measure, for example Duniway et al. (2012) 

achieved agreement and consistency between observers using an image interpretation tool 

classified by experts. Improving utilization in this way could be a time-effective method of 

improving accuracy and precision.  

While there have been several studies documenting the various benefits and limitations of 

visual estimation versus measurement methods for grazing intensity related to accuracy, 

simplicity, and potential for observer bias (Agricultural Experiment Station Oregon State 

University, 1998; Jasmer and Holechek, 1984), there is a lack of research evaluating these 

methods within the context of contemporary land management objectives. For example, many 

descriptions of the relative merits of individual techniques relate only to grazing management 

instead of a multiple use viewpoint reflected by more broad management objectives such as 
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wildlife habitat management and ecological resilience. Similarly, comparisons between 

measurement techniques are most often qualitative descriptions instead of direct quantitative 

evaluations of different methods within the same study area. Grazing intensity techniques 

could benefit from a ‘variance decomposition’ style approach which aims to isolate specific 

sources of error (Lawler and Edwards, 2006; Whittaker, 1984).  

1.3 Spatial and Temporal Patterns in Rangelands 

There have been many significant advancements in the field of rangeland ecology since the 

establishment of grazing intensity methodologies - most notably, the development of the field 

of landscape ecology (Wiens, 2009, 1999) and the advancement of remote sensing technology 

(Hunt et al., 2003). Advances in landscape ecology have illustrated the importance of spatial 

and temporal patterns as well as the varying effects of scale on ecological processes (Dunning 

et al., 1992; Turner, 1989). All the methods above provide estimates of grazing intensity which 

are often only looking at a single temporal or spatial scale. However, the spatial extent and 

distribution of grazing events can have a significant influence on the landscape, independent 

from grazing intensity. For example, the degree of spatial heterogeneity in grazing events can 

influence plant community dynamics, pattern, diversity, and interactions with disturbance, such 

as wildfire (Adler et al., 2001; Collins and Smith, 2006; Weber et al., 1998). Since the pattern 

and spatial heterogeneity of grazing varies with scale, it is important to match the resolution 

and extent of observational techniques to these relevant scales as well as use techniques and 

sampling designs which can be useful at multiple scales (Atkinson, 1997; Toevs et al., 2011).  

While field-based measurements of grazing intensity may help to infer the distribution of 

grazing, direct measurements of the exact locations and movement of livestock is rarely 

collected. This lack of information can also have consequences to the productivity or 

sustainability of livestock operations. For example, management decisions are often made 

based on general principles of livestock distribution, but actual use patterns may vary by 

individual animal, be pasture specific and related to other factors such as historic use or 

predators (Stephenson and Bailey, 2017). Moreover, indirect measurements of use patterns 

typically assign all herbivory to cattle and can be misleading if other herbivores are removing 

a substantial amount of herbaceous biomass and/or their use patterns differ from cattle. Direct 

measurements of livestock movements within pastures could provide ranchers with knowledge 

and options for making better use of forage resources. Global Positioning System (GPS) 

collars provide a means for gathering this type of information. Modern GPS collars can record 

the location of individual animals to within a few meters every 5 to 10 minutes (Bailey et al., 
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2018). Many studies have demonstrated the value of GPS location data for understanding 

grazing behavior (Turner et al., 2000), describing livestock use of rangelands (Liao et al., 

2017), and quantifying livestock/wildlife interactions (Clark et al., 2017).  

By integrating field estimates of grazing intensity and GPS movement and distribution, a more 

rigorous and accurate understanding of grazing at management scales can be achieved. 

Stocking rate, density, and to some extent spatial and temporal distribution of cattle on a 

landscape are factors which can be altered by land managers. Increasing our knowledge of 

how different techniques relate to these factors and how they affect other resources on the 

landscape will improve our ability to adapt our management practices based on monitoring 

results. 

This study used small experimental grazing paddocks to characterize the relationship between 

four methods for estimating grazing intensity under a range of known stocking rates. This 

involved comparing estimates from the different methods and examining sources of error and 

variation within them using a variance decomposition approach. Secondly, we looked at the 

influence of several different ‘calibration’ techniques for improving accuracy of grazing intensity 

estimates using the landscape appearance method. Lastly, we tested the accuracy of each 

technique by comparing plot-based estimates to spatial patterns and intensity of grazing based 

on actual cattle locations at several spatial scales by comparing field measurements of grazing 

intensity to those estimated from low-cost GPS collars.  

2. Methods 

2.1. Zumwalt Prairie Study Site 

Data collection for evaluating calibration techniques and GPS collars was conducted in 2019 

at the Zumwalt Prairie Preserve in Wallowa County, Oregon (Figure 2.1). The 13,000-ha 

preserve is owned and managed by The Nature Conservancy. The prairie is dominated by cool 

season bunchgrasses including Idaho fescue (Festuca idahoensis Elmer), bluebunch 

wheatgrass (Psuedoroegneria spicata [Pursh] Á. Löve), Sandberg’s bluegrass (Poa secunda 

J. Presl) and prairie junegrass (Koeleria macrantha [Ledeb.] Schult). Mean annual precipitation 

as recorded by the Zumwalt weather station for the last 13 years (2006-2018) was 358mm, 

most of which falls in the spring months. Annual mean temperature for this same period was 

5.9° C (42.6° F) with July and December as the hottest and coldest months of the year, 

respectively (The Nature Conservancy, 2018). The year of this study had above average 

precipitation in the spring (March-May was 55mm more than 30-year average) and drier than 
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average summer (June-August was 65mm less than 30 year average) (Oregon State 

University, 2017). 

Due to the short growing season and shallow soils, the Zumwalt prairie was not historically 

used for intensive agriculture. Since the early 1700’s these grasslands were grazed by horses 

and subsequently by cattle following Euro-american settlement in the late 1800’s (Kennedy et 

al. 2009). Cattle grazing for beef production has been the primary land use for the last century. 

Figure 2.1 - Sample design and plot locations for the Zumwalt prairie grazing intensity study. Plots were 
located using a spatially balanced random sample design stratified by grazing intensity levels from 2018, 
as modelled using the Landsat- biomass models from Jansen et al. (2016). A subset of two plots per 
paddock also had grazing exclosure cages. Map of the Zumwalt Prairie, Oregon (adapted from Jansen 
et al. 2016). 

2.2 Study Design 

The research was conducted using an existing experimental design from Johnson et al., (2011) 

using a randomized complete block design of 4 blocks of 4 paddocks, totaling 16 paddocks, 

with each paddock equaling roughly 40 hectares in area (Figure 2.1). Within each block, 4 

different grazing treatments (three grazing levels plus a no-grazing control) were randomly 

assigned. One block (C) did not follow this assignment due to a lack of water during the study 

period. This resulted in one paddock in a fifth treatment level – “Very High” and two “Low” 
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treatment paddocks within that block (Figure 2.1). Stocking rate was manipulated by 

maintaining the number of cattle and varying the length of time in each paddock. Very high 

was 5 days, high was 4 days, medium was 3 days and low was 2 days of grazing. We also 

had a no grazing paddock. Based on the number of cattle present, this was equivalent to 50, 

40, 30, 20 and 0 Animal Unit Months (AUMs) or 1.25, 1, 0.75, 0.5, and 0 AUM*ha-1, 

respectively. Within each block, paddocks were grazed sequentially from south to north.  

Across the experimental paddocks, a total of 64 grazing intensity/vegetation sampling sites (4 

per paddock) were located using a spatially-balanced random stratified design (Stevens and 

Olsen, 2004). Strata were defined using the relative difference of pre- and post-grazing 

modelled biomass during the summer of 2018 as measured by Landsat 8 ETM+ biomass 

models described by (Jansen et al., 2016). Relative difference was calculated using the change 

in modelled biomass prior to and immediately following removal of cows from the pasture. 

Relative difference was summarized to 30-m pixels and was categorized into equal-sized 

quantiles representing high, medium-high, medium-low and low grazing intensity. 

2.3 Field Data Collection 

At each sampling site, grazing intensity was measured using three methods: frequency of 

grazed plants, heights of grazed and ungrazed grasses (i.e., height-weight method) and 

landscape appearance. Measurements were taken 14 to 28 days following the removal of 

cattle. When collecting field data in each paddock field observers did not have knowledge of 

which grazing treatment level was used. At each sampling location, measurements were taken 

along three 25-m transects placed parallel to each other running towards a randomly selected 

azimuth. Transects were spaced 10-meters apart (Figure 2.2) with a small buffer area for a 

total sampling area of ~ 30 by 30 meters.  
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Figure 2.2 – Sampling site and transect lay-out. Line-point intercept and height-weight measurements 
were collected along three parallel transects spaced 10-meters apart. Landscape appearance was 
collected at six subplots at the start and end of each transect and clipped paired plots were located in 
between the first and second transects.  
 

Line-point Intercept:  

Foliar cover and proportion of grazed plants were measured using the line-point intercept (LPI) 

method as defined by Herrick et al. (2017). LPI observations occurred every 0.5 meters along 

each transect for a total of 150 points per plot, and plant intercepts were determined using a 

gimbaled laser pointer. LPI intercepts (i.e., ‘hits’) were counted when the laser intercepted any 

rooted plant material and all plant species intercepting the laser were recorded at each 

observation. In addition, individual plants were categorized as grazed or ungrazed based on 

visual signs of grazing of the plant part intercepting the laser. Presence of plant litter and the 

type of ground cover (bare soil, rock fragments, plant bases or non-vascular plants/biological 

crust) were also recorded at each observation. Two grazing intensity indicators were calculated 

from LPI: proportion of key species grazed and cover of grazed plants. Cover of grazed plants 

was calculated as the proportion of LPI intercepts which included a grazed plant. Proportion of 

key species grazed was calculated as the cover of grazed plants divided by the cover of key 

forage species within the same sampling site. 

Height-Weight: 
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Heights of key forage grasses were measured at 75 subplots along the 3 transects (i.e., every 

meter along each transect). At each subplot, the closest key forage species was measured to 

the nearest cm and classified as grazed or ungrazed, according to the interagency technical 

reference on utilization studies (Bureau of Land Management, 1999). Key forage species were 

Idaho fescue (Festuca idahoensis), bluebunch wheatgrass (Pseudoroegneria spicata), 

Sandberg’s bluegrass (Poa secunda) and prairie junegrass (Koeleria spicata). Average 

ungrazed key forage species heights were calculated for each plot and used in variance 

decomposition models (described below). 

Utilization of key forage species was calculated using height to weight relationships determined 

by species for the study area by collecting and weighing key forage grasses according to 

interagency technical reference on utilization studies (Bureau of Land Management, 1999) and 

Sprinkle et al. (personal communication). Logarithmic models were fit to these data to predict 

percent weight removed from percent height removed. Height removed from grazed plants 

was calculated using mean ungrazed heights grouped by species and growth form (with and 

without culms). Ungrazed average heights were calculated using at least 20 ungrazed plants 

found within the same sampling site or within the same paddock and ecological site. In the rare 

situation when grazed height was taller than the mean ungrazed height, utilization was 

recorded as zero. 

Height-weight relationships were determined for Block A and Block D separately in order to 

account for any differences in environmental conditions and phenology. However, there were 

an insufficient number of mature plants to create separate curves for Sandberg’s bluegrass 

and prairie junegrass and so a single curve was created for all blocks. While separate 

observations were made for culmed and un-culmed plants for each species, height-weight 

relationships were similar between the two growth forms and so all observations were grouped 

into a single model, except in the case of bluebunch wheatgrass which showed a distinctly 

different height-weight curve in culmed plants in Block D and so separate curves were created.  

Landscape Appearance:  

Landscape appearance classes were determined for six subplots located across the sampling 

site according to interagency technical reference on utilization studies (Bureau of Land 

Management, 1999). This technique relies upon observing the extent and intensity of grazing 

based on knowledge of grazing behavior, forage preference, grass growth forms and 

phenology. Classifications are made using observations of the relative use of low and high 
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value forage species, the presence of current year’s culms, and the extent or patchiness of 

grazed areas (Table 2.1). Landscape appearance subplots were a 5-m radius semicircle 

centered at the beginning and end of each transect (Figure 2.2). 

Table 2.1 - Seven classes of utilization used in the landscape appearance method including descriptive 
guide (Bureau of Land Management, 1999). 

  

 

Grazing Exclosure Paired plots: 

Within each paddock, two randomly selected sampling sites contained paired plots with 

grazing exclosures for a total of 32 paired plots. Paired plots included two 75 by 75-cm subplots 

one of which was excluded from grazing with a metal framed cage (Figure 2.3). Actual 

sampling location was buffered inside the frames by 50-cm to prevent confounding factors due 

to alterations in microclimate and/or wildlife influences (Figure 2.3). Due to potential influences 

from wildlife or cattle, the caged ungrazed subplot was located ~30-meters from its paired 

grazing sampling site where other field data was collected. The uncaged subplot was located 

Class % Utilization Description

None 0-5% The rangeland shows no evidence of grazing use or negligible use.

Slight 6-20%

The rangeland has the appearance of very light grazing.  The herbaceous 

forage plants may be topped or slightly used.  Current seedstalks and 

young plants are little disturbed.

Light 21-40%

The rangeland may be topped, skimmed, or grazed in patches.  The low 

value herbaceous plants are ungrazed and 60 to 80 percent of the number 

of current seedstalks of herbaceous plants remain intact.  Most young 

plants are undamaged.

Moderate 41-60%

The rangeland appears entirely covered as uniformly as natural features 

and facilities will allow. Fifteen to 25 percent of the number of current 

seedstalks of herbaceous species remain intact.  No more than 10 

percent of the number of low-value herbaceous forage plants are utilized. 

(Moderate use does not imply proper use.)

Heavy 61-80%

The rangeland has the appearance of complete search. Herbaceous 

species are almost completely utilized, with less than 10 percent of the 

current seedstalks remaining. Shoots of rhizomatous grasses are missing. 

More than 10 percent of the number of low-value herbaceous forage 

plants have been utilized.

Severe 81-94 %

The rangeland has a mown appearance and there are indications of 

repeated coverage. There is no evidence of reproduction or current 

seedstalks of herbaceous species.  Herbaceous forage species are 

completely utilized.  The remaining stubble of preferred grasses is grazed 

to the soil surface.

Total 95-100 % 
The rangeland appears to have been completely utilized. More than 50 

percent of the low-value herbaceous  plants have been utilized.
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within the sample site area (Figure 2.2). Plant material within each subplot was identified to 

species and then clipped and weighed in the field. A portion of clipped material from each 

species per paddock was collected for oven drying to determine appropriate wet-to-dry weight 

conversions. Careful consideration was made to locate paired grazed and ungrazed subplots 

in similar soils, microclimates, plant communities and topography to reduce confounding 

effects of differential plant growth between them. 

Technique Training: 

Data were collected by five dedicated technicians with three additional observers who assisted 

occasionally. In general, observers had a low level of experience conducting grazing intensity 

and vegetation monitoring (<1 year) prior to the study except for the crew lead and several of 

the occasional observers (between 5-10 years of experience each). As well as a week-long 

period of learning each of the field techniques prior to data collection, all observers (with 

exceptions noted below) conducted training exercises together on each of the field methods 

once every 2 weeks (3 instances in total). For line point intercept, grass heights and landscape 

appearance, training involved measuring the same subplots or transect until all observers were 

consistent with each other. Discrepancies between observers were discussed in order to clarify 

protocols and plots were repeated if observers recorded indicator estimates which differed by 

5% from the crew average. Two observers were not able to attend all these training exercises, 

and this was noted during the data analysis. 

2.3 Landscape Appearance Calibration  

Within each paddock, sample sites were randomly assigned one of four calibration methods 

for implementing the landscape appearance protocol such that each treatment level within 

each block had a mixture of all four calibration methods. The calibration methods are based 

around calculating a quantitative estimate of utilization prior to assessing the landscape 

appearance. The calibration methods were: 

For plots with caged and uncaged paired plots: 

1. Visual calibration – Landscape appearance was collected following LPI but prior to 

height-weight data collection and clipping the paired plots. Landscape appearance was 

collected by a different observer to height-weight measurement without discussion of 

utilization estimates. An estimate of the proportion of grazed plants was calculated in 

the field in order to inform the landscape appearance assessment. 
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2. Paired plot calibration – The plot was clipped, weighed and a wet-weight utilization 

measurement was calculated using the difference between both paired plots prior to 

estimating landscape appearance. 

For plots without cages: 

3. Height-weight calibration – Landscape appearance was collected following height 

measurements and prior to LPI. An estimate of utilization using the height-weight 

method and height-weight curves was calculated prior to estimating landscape 

appearance. 

4. No calibration – Landscape appearance was conducted prior to all other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 GPS Collar Deployment 

GPS collars were deployed prior to grazing the study paddocks on June 14, 2019 and recorded 

location at 10-minute intervals for the duration of the 8-week study. Cattle herd size was 299 
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plot 

Grazed 

Ungrazed 

Figure 2.3 – Subplot design for paired plot method. Ungrazed subplots were prohibited from grazing 
with 1.5-m tall metal hog panels secured with t-posts. 
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head made up of yearling heifers intermixed with cow-calf pairs. A total of 52 low-cost GPS 

collars (Karl and Sprinkle 2019) were spread throughout the herd. Twenty-six collars were 

placed on yearling heifers and 26 collars on cow-calf pairs, assuming the two groups may 

exhibit different distribution patterns.  

GPS Data Screening:  

Erroneous GPS location values were filtered to eliminate points outside the experimental 

pasture boundaries similar to methods described by Knight et al. (2018). These erroneous data 

points accounted for less than 5% of the total GPS locations collected. Point locations were 

resampled to 10-minute interval tracks with a resampling tolerance of 2-minutes to account for 

lags in GPS location measurement. Tracks were then converted into steps for each individual 

cow using the “adehabitatLT” package in R (Calenge et al., 2019) where steps describe the 

change in direction and the velocity between subsequent locations every 10 minutes (Figure 

2.4). Points were further refined by removing steps that showed cows moving faster than 1.2 

m/s to reduce error caused by inaccurate GPS location measurement and remove instances 

where cows are running: Cattle moving faster than 1.2 m/s (based on mean walking speed of 

Bos taurus, Chapinal et al. 2011) were assumed to be travelling and therefore not grazing. 

Lastly, data were filtered to account for variable battery life of collars. For example, locations 

in block A were filtered to contain only data from collars which survived the entire grazing time 

throughout block A. This maximized the number of locations for data analysis while preventing 

bias between different treatment levels due to failing batteries.  
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Figure 2.4 - At each step, the distance (dt) and turning angles (α and β) between two GPS locations 
(collected 10 minutes apart) were calculated using the adehabitatLT package on cran (Calenge et al. 
2019). Cattle travel velocity can then be calculated to filter erroneous GPS records. 
 

Grazing Intensity Rasters: 

Once erroneous values were removed, GPS points were rasterized at a resolution of 30-m 

(0.09 ha). This resolution was chosen in order to maintain consistency with the Landsat 8 grid 

used for the sampling design. Each pixel in the raster image was assigned the count of how 

many GPS points it contained. Rasters were then standardized to reflect the number of collars 

operational at that time compared to the total number of cattle present to account for collar 

battery failure, similar to methods used by Kawamura et al., (2005). For example, GPS points 

from within a paddock with 10 collars and 100 animals were weighted twice as much as points 

from a paddock with 20 collars and 100 animals. Thus, sample sites could be compared to 

collar data across the entire study area without bias due to failed collars. 

For the filtered raster, GPS points were filtered further to remove points where cattle were not 

likely to be actively grazing. Firstly, points were removed in which cattle were stationary for 10 

minutes or more. Cattle were classified as stationary when properly functioning collars 

recorded at least 2 GPS locations within 10 minutes that were less than 1-m apart. In these 

instances, the cattle were assumed to be drinking or resting. Similarly, points between dusk 
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and dawn were removed (11pm and 4am) because cattle tend to show far less grazing 

behavior during these hours (Kilgour, 2012). 

To examine how fine-scale variation in grazing intensity contributed to variation in grazing 

measurements, GPS collar data were also summarized to 5-m resolution (0.0025 ha) rasters. 

Variation in grazing intensity within each plot (sampling site) area was quantified using the 

standard deviation of these fine-scale rasters and added as an independent variable in the 

best subset regression models.  

Each of the different rasters was compared to sample site measurements to assess how well 

each form of GPS filtering compared to field-based methods for estimating utilization using 

simple linear and quantile regression. This was done by extracting the raster values found in 

each sampling area (Figure 2.2) and calculating an average raster value within this area. Each 

measurement method was compared to the grazing intensity rasters at the plot, paddock, and 

study area scales. Comparisons involved simple linear regression and calculation of 

Spearman’s rank correlation.  

2.5 Data Analysis 

Evaluation of Field Techniques:  

Several statistical methods were employed to assess the sensitivity, precision, and accuracy 

of the four different techniques for measuring grazing intensity as well as determine the 

dominant sources of error within estimates. We defined sensitivity as the ability to detect 

differences in grazing intensity, we defined precision as the amount of spread (i.e., variance) 

of estimates at specific scales, and we defined accuracy as the correlation to actual cattle 

use measured both spatially and temporally using GPS data. 

Data were analyzed with the study’s randomized block design to examine the power of each 

field technique to detect differences between grazing treatments. Blocks were used to control 

for any differential effects from the grazing timing/sequence and plant phenology. Analysis of 

variance (ANOVA) models were used to evaluate the numerical measurements: frequency of 

grazed plants, height-weight method, and paired plot method. The two paddocks which 

diverged from the randomized grazing treatment levels and had a “Very High” treatment level 

and an additional “Low” treatment were removed from the ANOVA models to maintain 

consistency in treatment levels. Because the landscape appearance data was semi-ordinal, 

a model was constructed using non-parametric methods. Landscape appearance values 

were also converted to median utilization values for their class (Table 2.1) and modelled with 
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an ANOVA. All models were evaluated in their ability to detect different levels of grazing by 

reporting model coefficients and p-values for a global F test to detect difference between 

grazing treatments. Post hoc tests including Tukey’s HSD and protected Fisher’s exact tests 

were conducted to test pairwise differences between each grazing treatment. 

Variance Decomposition of Field Techniques: 

Multiple regression and model selection methods were used to evaluate the relative 

importance of various covariates for explaining variation in each of the field-based methods, 

following approaches from Hudak et al. (2006) and Jansen et al (2016). This included using 

stepwise selection using Akaike Information Criterion (AIC) and best subset regression using 

bootstrapping with replacement. Linear models initially contained all relevant covariates 

including sampling site level variables: cover of different plant functional groups, litter amount, 

and total foliar cover from line-point intercept, mean ungrazed grass heights, observer identity, 

and calibration method. Broader level variables were also included such as observer 

experience - calculated in days since learning the techniques, grazing treatment level, and 

block. Finally, two sampling site metrics derived from the GPS locations were included. These 

were the mean GPS location count from the filtered raster (described below) at 30-m resolution 

and the standard deviation of location counts within the sampling site area at 5-m resolution. 

These two metrics represent both the total grazing intensity as well as the fine-scale variation 

of grazing intensity at each sampling site. In order to reduce multicollinearity, models with any 

covariates with Generalized Variance Inflation Factors (GVIF) greater than 10 were removed 

(Friendly and Kwan, 2009). 

For each grazing intensity field method, a ‘full’ model containing all covariates and an intercept 

was created using the ‘lm’ function in R. Stepwise selection using the full model was then used 

to find the optimum number of explanatory variables using the ‘stepAIC’ function in the ‘MASS’ 

package in R. Starting with the simplest possible model both forward and backward stepwise 

selection using corrected AIC (AICc) was then used to assess which covariates helped to 

explain variation in utilization estimates. AICc was used for selection due to its ability to 

penalize more complex models with small to medium sized datasets (N/p < 40) (Hurvich and 

Tasi, 1989). 

Following this, best-subset regression from the ‘leaps’ package in R was performed using the 

optimum variable number from stepwise selection as a limit (Hudak et al., 2006). Best-subset 

models were created using bootstrapping with replacement to assess model stability and 
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variation in covariate inclusion rates. The number of covariates in the best model was chosen 

based on Mallows’ cp and the covariate choice was based on the highest inclusion rates from 

500 bootstrap simulations. 

Evaluating Calibration Methods: 

ANOVA models and Friedman’s tests using the randomized block design were used to test 

differences in landscape appearance grazing estimates between the different calibration 

methods. Similarly, Spearman’s rank correlation coefficients were calculated between 

landscape appearance estimates, estimates from other field techniques and the GPS-based 

grazing intensity for each of the separate calibration methods. Significance in Spearman’s rank 

correlation differences and 90% confidence intervals were approximated by calculating z-

scores (Myers and Sirois, 2006). 

 

3. Results 

3.1 Evaluation of Field Techniques 

Detecting treatment effects 

Utilization as estimated from the height-weight, LPI, and landscape appearance methods 

produced a significant ANOVA result when comparing different grazing treatments and blocks 

(global F-tests from the randomized block ANOVA were significant with p < 0.005). Post-hoc 

comparisons (Tukey’s HSD and Fisher’s exact tests) showed significant differences between 

all grazed and ungrazed paddocks for all methods except paired plots (p < 0.005). 

Differences between the three levels of grazing were more difficult to detect. No differences 

were detected between treatments with the height-weight method or the proportion of key 

species grazed from LPI. Filtering height-weight data by individual key species did not improve 

the power to detect treatment differences. A post-hoc Tukey’s HSD test revealed a slight 

sensitivity to differentiating between the low and high treatments with the cover of grazed plants 

from the LPI method (p = 0.092). 

The landscape appearance data were first analyzed as categorical data comparing counts of 

each of the landscape appearance classes between all four grazing treatments. A global chi-

squared test showed a significant difference in utilization estimates across all four treatment 

levels (p < 0.001). Fisher’s exact tests between individual treatment combinations were all 
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significantly different: between control and low (p<0.005), low and medium (p < 0.005) and 

medium and high (p < 0.048).  

Using the landscape appearance utilization class midpoints, the ANOVA to detect the 

difference between treatments using the block design was significant (p < 0.001). Post hoc 

Tukey’s HSD test showed similar patterns as with the categorical data, however, there were 

no differences between medium and low treatments (p = 0.670). There were significant 

differences between the high grazing treatment and low treatment (p =0.002) as well as 

between the high and medium treatments (p = 0.003). 

  

 

Figure 2.5 - Mean utilization and 90% confidence intervals across all sample sites for five different 
measurement techniques. All techniques except for the paired plots could differentiate between grazed 
and ungrazed pastures. Estimates from height-weight measurements were not able to differentiate 
between the three different levels of grazing intensity. Cover of grazed plants from LPI and landscape 
appearance both showed significant differences between the low and the high treatments.  
 

The paired-plot method showed no ability to detect grazing differences. A global F-test based 

on the randomized block ANOVA showed no significant treatment effect (p = 0.241). Paired 

plot estimates showed very large variation within the same treatment areas even within control 

paddocks (Figure 2.5).  
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Across almost all field techniques (except for paired plots) there were increases in the mean 

estimates between the low, medium, and high grazing treatments, but the confidence intervals 

were too wide to conclude these differences were significant.  

Investigating Precision with Variance Decomposition  

Differences among observers were the main drivers of variation among plots for the landscape 

appearance, proportion of key species grazed, and height-weight methods but not for the 

paired-plot and percent of grazed plants from LPI methods (Table 2.2). In particular, landscape 

appearance had one observer with consistently lower estimates compared to the crew lead. 

Similarly, two observers consistently estimated higher and lower proportion of grazed key 

species from LPI when compared with the crew lead. These two observers were also the only 

two LPI observers who did not complete the training exercises with the crew for the LPI method 

at the start of the sampling period (observer 2 and 5 from Table 2.2).  

Calibration type did not help to explain variation except in the height-weight model which 

showed slightly lower estimates of weight removed when using visual, height-weight and 

paired plot methods as calibration. In other words, when no calibration was used (i.e., when 

landscape appearance was estimated first), grazing intensity estimates from height-weight 

method were higher. However, these differences were small (differences of 1.5-3% use). 

Grazing treatment helped improve model fit for landscape appearance and LPI estimates with 

significant differences between grazed treatments and ungrazed control sites (Table 2.2). 

Grazing treatment did not help improve model fit for the height-weight and paired plot methods.  

All models were sensitive to changes in site plant community characteristics such as total foliar 

cover, annual grass cover, and herbaceous litter (i.e., detached plant material) amount. 

Landscape appearance, height-weight and paired plot estimates were all negatively correlated 

with total foliar cover, estimates from LPI were positively correlated to annual grass cover, and 

height-weight had a negative relationship with litter and a positive relationship with perennial 

forb cover. The paired-plot method illustrated this effect most strongly. For example, paired 

plots showed a decrease in utilization of 2.3% with each 1% in total foliar cover (all other 

variables remaining equal).  

Estimates of grazing intensity from landscape appearance and grass heights varied between 

experimental blocks. Landscape appearance showed consistently higher estimates of grazing 

intensity in the final three blocks compared to the first block. On the other hand, estimates from 
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height-weight became progressively higher from Block A to Block D (i.e., utilization estimates 

increased over time).  

The strength of relationships between field techniques differed between differed levels of 

grazing. Correlations between utilization estimates tended to be highest within the high grazing 

treatment, and there was more variability in the medium and low treatments (Figure 2.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6 – Pairwise correlation coefficients between different grazing intensity techniques at four 
different stocking rates when summarized to the 30 by 30-m sampling site level. LA = landscape 
appearance, HW – height weight, GC = cover of grazed plants, KS = proportion of key species grazed, 
PP = paired grazed and ungrazed plots. Techniques showed the strongest correlations with each other 
at the lowest grazing treatment.  
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Table 2.2 – Model statistics and coefficient estimates for best subset regression models explaining 
variation within each of the field-based techniques. Only variables with significant (p < 0.1) effect sizes 
are shown. All variables in the final models had generalized variance inflation factors (GVIF) <10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landscape 

Appearance
Grazed Cover

Key Species 

Grazed

Height 

Weight

Paired 

Plots

Number of Variables 9 11 6 10 8

Adjusted R2 0.76 0.61 0.64 0.73 0.52

AICc 476.64 434.21 529.97 278.20 278.96

Model P-value 1.93E-10 2.05E-07 1.81E-10 2.56E-10 0.02147

Observer LA 1 -11.34*** -4.01. - -1.34. NS

Observer LA 2 NS NS - -1.42. NS

Observer LA 3 NS NS - -1.99* NS

Observer HW 1 NS - - -2.36** -

Observer LPI 2 NS NS 15.06** - NS

Observer LPI 3 NS NS NS - NS

Observer LPI 4 18.26** NS NS - NS

Observer LPI 5 NS NS -14.39** - -

Calibration Visual - - - -2.89*** -

Calibration Height - - - -2.09** -

Calibration Paired plot - - - -1.53* -

Annual Grass - 0.17** 0.29** - -

Litter - - NS -0.12* -

Perennial Forb - - - 0.054** -

Perennial Grass - 0.24** - - NS

Rock - - - - -3.49.

Total Foliar Cover -0.28* - - -0.11** -2.31**

Block B 11.50*** NS - 2.01* NS

Block C 9.08** NS - 3.02*** -17.32.

Block D 8.39* NS - 6.58*** NS

High Grazing 19.32*** 15.11*** 34.63*** - -

Medium Grazing 11.97** 14.30*** 29.99*** - -

Low Grazing 10.66** 9.04** 18.50** - -

Ungrazed Grass Heights - - - -0.16* -

Raster Std Dev NS - - - -

Grazing Intensity Raster NS 0.0071* 0.01. 0.0021** -0.027.

“NS” – variable present in model but non-significant, “***” – p <0.001, “**” – p <0.01, “*” – p 
<0.05, “.” – p <0.1, “-“ – variable not present in model 
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3.2 Calibrating Landscape Appearance with other Techniques 

At the sampling site scale, the mean midpoints calculated from landscape appearance were 

positively correlated with the utilization estimates from LPI and height-weight measurements 

and poorly related to estimates from paired plots.  

The relationships between landscape appearance and the other techniques were strengthened 

when using their respective calibration methods and were weakest when using calibration from 

a different method (Table 2.3). For example, sample sites using LPI as a calibration method 

showed a high correlation with landscape appearance for both cover of grazed plants and 

proportion of key species grazed (ρ = 0.79 and 0.87, respectively) but poor correlation with 

estimates from the height-weight method (ρ = 0.19). This was also true for height-weight 

calibration where the correlation between landscape appearance and height-weight estimates 

(ρ = 0.85) was significantly higher than when calibrating with LPI or without calibration.  

Table 2.3 – Spearman’s rank correlation between landscape appearance midpoints, the four other field-
based techniques and remotely sensed grazing intensity. Correlation was compared across sample 
sites with different calibration methods. The GPS-based grazing intensity estimates are from unfiltered 
GPS locations summarized to 30-m resolution. Matching pairs of superscript letters indicate a significant 
difference with α = 0.1  

 

 

3.3 Comparing Field Techniques to GPS Collar Data 

From the three grazing-intensity rasters (Figure 2.9) created from the cattle locations, the 

filtered raster had the strongest relationship in field-based estimates of grazing intensity for all 

methods except height-weight, although the basic raster performed similarly (Table 2.4). 

 

Calibration Method Grazed cover
Key species 

grazed
Height-weight Paired plots

Grazing Intensity 

from GPS

1. Line-point intercept 0.79 0.87 0.19
ab

-0.33 0.62

2. Paired plots 0.77 0.73 0.72
a

0.22 0.80

3. Height-weight 0.58 0.76 0.85
b

NA 0.86
f

4. None 0.73 0.78 0.64 NA 0.61
f

Spearman's rank correlation between landscape appearance midpoints
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Table 2.4 – Pearson correlation coefficient values for the three grazing intensity rasters and each field 
technique at the plot scale. The basic and filtered rasters (both at 30-m resolution) showed similar 
relationships to the field estimates. In general, the fine raster (5-m resolution) had significantly different 
correlation than the other two rasters except for % cover of grazed plants. 

 

 

 

 

 

 

Field techniques showed significant positive relationships to GPS-derived grazing intensity 

(with α = 0.1), except for estimates from paired plots which showed no relationship. Landscape 

appearance class midpoints showed the closest fit to the GPS-derived grazing intensity (ρ = 

0.65 for the filtered raster) and this was true across all three raster types. The correlation of 

landscape appearance to the raster data also varied significantly between different calibration 

methods. Landscape appearance estimates which used the height-weight calibration had the 

highest correlation between GPS-derived estimates (ρ = 0.86, Table 2.3). This was significantly 

higher than estimates collected without calibration. 

Table 2.5 – Quantile regression of field estimates and the filtered raster showing slope coefficients and 
p-values for the 10th, 50th and 90th percentiles for field-based utilization estimates. Landscape 
appearance was the only method which had estimates with significant positive relationships at all three 
percentiles. 

 

 

Quantile regression showed the relationship between field-based estimates and actual cattle 

locations was variable across different levels of grazing intensity (Table 2.5, Figure 2.7). This 

was the case with proportion of both LPI indicators and height-weight estimates, which had 

consistently lower estimates than shown with the raster data. On the other hand, landscape 

appearance estimates had a relatively consistent relationship with the grazing intensity rasters 

at all recorded levels of utilization.  

Slope p-value Slope p-value Slope p-value

Landscape Appearance 0.378 0.000 1.088 0.000 1.069 0.043

Height-weight 0.037 0.000 0.112 0.002 0.310 0.164

Paired Plots 0.000 1.000 -0.419 0.351 -0.824 0.507

% Cover of Grazed Plants 0.167 0.000 0.473 0.000 0.406 0.454

% Cover of Grazed Key Species 0.380 0.001 0.974 0.000 0.874 0.378

10th percentile 50th percentile 90th percentile
Field Techniques

Basic Filtered Fine

Landscape Appearance 0.64885 0.65422 0.56745

Height-weight 0.35071 0.31623 0.14142

Paired Plots 0.12247 0.13038 0.17321

% Cover of Grazed Plants 0.45277 0.46583 0.44159

% Cover of Grazed Key Species 0.39623 0.41952 0.34641

Field Techniques
Grazing Intensity Rasters
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Figure 2.7 – Comparing five different field-based estimates of utilization with GPS-derived grazing 
intensity based on actual cattle locations at the sampling site scale. The GPS grazing intensity 
represents the number of cattle locations (once filtered for stationary cattle and daytime GPS points) 
found within the 30-m pixel surrounding each sampling site. All variables were fit with a simple linear 
model (solid line) and quantile regression (dash lines) at the 10th, 50th and 90th quantiles. Adjusted R2 
values are reported from the simple linear regression models. Average mid-point values from the 
landscape appearance method showed the strongest relationship with GPS-based grazing intensity 
(adjusted R2 = 0.4276). The 90th percentile regression lines from height-weight and proportion of key 
species grazed showed very poor relationships with raster data.  
 

Field-based metrics were also compared to the GPS-derived grazing intensity at the paddock 

level (Figure 2.8). Mean utilization for each method was calculated from all sample sites within 

each paddock and then compared to the sum of the GPS-derived grazing intensity within that 

paddock. This was limited to looking at the filtered raster only since this fit the field-based 

methods best at the sampling site scale. At the paddock scale, landscape appearance showed 

the strongest correlation to GPS-grazing intensity (adjusted R2=0.755) followed by LPI 

estimates (adjusted R2 = 0.584 and 0.551) and then grass heights (adjusted R2=0.250). Paired 

plots showed no relationship (adjusted R2=-0.124, p = 0.860). 
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Figure 2.8 - Comparing field-based estimates to GPS-derived grazing intensity at the paddock level. 
Points represent mean values summarized to each 40-ha paddock. The x axis is the sum of all GPS 
locations recorded in each paddock weighted to reflect the number of GPS collars used. Simple linear 
regression models were fit for each technique (blue line). 
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Figure 2.9 – Three grazing intensity rasters from cattle locations recorded by GPS collars every 10 
minutes from block A of the Zumwalt study area: a) The basic raster created using all GPS points at 30-
m resolution; b) The filtered raster with only daytime points (between 4am -11pm) and stationary cattle 
removed at 30-m resolution; and c) The 5-m raster created using the filtered GPS points to look at fine-
scale variation. Pixel values represent the count of cattle GPS locations recorded once GPS data were 
filtered for errors and standardized to reflect GPS battery failure.  
 

4. Discussion 

A good monitoring method for the effects of livestock grazing should be able to detect 

differences in the effects of grazing over time and space, accurately reflect stocking rates as 

well as spatial distribution of use, and be objective (i.e., easily repeatable and not influenced 

by differences in an observer’s experience or training). 

We compared the utility of five grazing intensity monitoring methods according to the following 

descending order of importance: 1) sensitivity, 2) accuracy, and 3) precision. Sensitivity was 

evaluated by describing the ability of each utilization method to detect differences between 
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four different stocking rates. Accuracy was evaluated as the ability of field methods to reflect 

the distribution, variation, and amount of actual cattle resource use across the landscape using 

GPS locations. We also looked at ways to improve this accuracy using calibration methods. 

Precision was assessed by quantifying the amount of variation within methods caused by 

‘nuisance’ variables such as observer traits, and differences in plant communities. Precision 

was also assessed by looking at correspondence to other methods. Using this framework can 

increase understanding of the relative strengths and weaknesses of each method to better 

choose the most appropriate method for each situation.  

4.1 Sensitivity to Different Grazing Levels 

Estimates of grazing intensity from height-weight, LPI, and landscape appearance methods 

were able to detect the difference between grazed and ungrazed sampling sites. However, this 

was not the case with the paired-plot measurements which showed little difference between 

all four stocking rates when summarized at the treatment level. This was also reflected in the 

linear model between paired plot estimates and GPS-derived grazing intensity which showed 

no significant relationship with paired-plot estimates at the site or paddock scale.  

While paired plots can be an objective way to isolate the effects of grazing in homogenously 

grazed areas, relying on such small sampling areas in heterogeneous areas makes utilization 

estimates vulnerable to sampling error. In our case, it is unlikely that a single uncaged clipped 

plot was able to fully represent the grazing intensity for each 0.09-ha sampling site. One 

potential explanation for this is the large amount of spatial variation in both grazing intensity 

and plant community composition and cover within plots and paddocks in the study area. This 

spatial variation in grazing intensity was present even at the highest stocking rate treatment as 

seen in the grazing intensity raster images (Figure 2.9). 

Several improvements could be made to the design of the paired-plot method that could 

address these issues. First, larger sample sizes could better reflect the heterogeneity within 

the paddocks. This could include using multiple uncaged plots for each caged plot to better 

capture the patchy nature of grazing events and provide a quantitative estimate of variation at 

each sampling site (see Bureau of Land Management, 1999). Increasing the size of clipped 

areas could represent spatial variation in both plant communities and grazing. However, it is 

also important to consider the practical implications involved with increased sampling: the time 

and cost of establishing, clipping, and weighing additional plots could be prohibitive.  
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Another consideration for improving the performance of the paired plot method could be using 

a higher-resolution sampling design that better reflects the fine-scale heterogeneity in grazing 

intensity and plant community composition. The 30-m resolution used for the stratified random 

sample design may be appropriate for the higher sample sizes of the landscape appearance, 

LPI, and height-weight methods but may have been too coarse to accurately place the small 

50 x 50-cm paired plots. In a study within the same Zumwalt prairie study area, Jansen et al., 

(2019) provided evidence that resolutions of 1- to 8-m may be more suitable for detecting 

changes in grazing effects. Therefore, using a probabilistic sample design that incorporates 

higher resolution satellite imagery (i.e., <10-m) or lidar data may help capture variation with 

field-based methods without compromising sampling efficiency. 

Paired plots also showed the highest estimates of utilization from the control paddocks 

(22±18% weight removed). The relatively high mean and wide confidence intervals from paired 

plot estimates in the control paddocks point to issues unrelated to grazing. While there was 

grazing by elk (Cervus canadensis) within the control paddocks (based on anecdotal 

observations), all other field techniques showed almost negligible amounts of utilization in the 

control paddocks (<5%). Therefore, differences between caged and uncaged subplots in 

control paddocks likely stemmed from differences in plant species composition and cover. 

While care was taken to visually match paired subplots, this was difficult in early spring when 

plants were senescent or dormant. Matching plots may be improved by establishing paired plot 

locations during the preceding growing season or with the assistance of site-specific vegetation 

maps or remotely sensed data (e.g., ground-based lidar or drone imagery). 

Landscape appearance was the only technique that was able to detect differences among the 

three different stocking rates (at α = 0.05); although, cover of grazed plants from LPI was able 

to detect a difference between the high and low grazing treatments at α = 0.1. Summarizing 

the landscape appearance data as a categorical variable was more sensitive to changes in 

grazing compared to averaging grazing class midpoint values. While landscape appearance 

estimates were similar to the proportion of key forage species grazed, the latter method was 

less sensitive to changes in grazing intensity. This similarity was likely due to the phrasing of 

the landscape appearance class descriptions which focus largely on the “percent of current 

year’s seed stalks utilized” which made it essentially a visual estimate of the proportion of 

forage species grazed.  

A key consideration when interpreting these results is the use of the quantitative calibration 

techniques. Three quarters of the landscape appearance sampling areas used a second 
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technique to guide or calibrate the visual estimation, and it is possible that these combinations 

of techniques helped to improve the sensitivity of the landscape appearance method to detect 

differences in grazing. In comparison, all other techniques relied solely on a single source for 

their measurements (i.e., they did not employ an explicit pre-measurement calibration 

technique). At the least, using the other methods as calibration techniques for the landscape 

appearance method allowed observers to spend more time at each sampling site and become 

more familiar with the plant community and grazing patterns present which may have improved 

detection of visual signs of grazing.  

Another consideration for the landscape appearance method was our implementation of plot-

based landscape appearance using a stratified random spatially-balanced sampling design 

which differed from typical uses of the method which are designed around systematically 

walking long transects across entire pastures and stopping periodically to estimate utilization 

(Bureau of Land Management, 1999).  From our results though, there may be specific benefits 

of using the landscape appearance method within a probabilistic plot-based design. Focusing 

on discrete sampling locations that fall within relatively homogenous areas of grazing (i.e., 

stratum) could increase reliability of the data. Observers can gain better familiarity with each 

sample area and are not basing observations on relative difference to adjacent sites along 

systematically placed transects.  

Except for landscape appearance and proportion of key species grazed, there were significant 

differences between estimates of grazing intensity at the paddock scale depending on the 

technique used. For example, within the high-grazing treatment (40 AUMs) across all blocks, 

landscape appearance (36.2% use) closely reflected proportion of key species grazed (36.1% 

grazed), whereas cover of grazed plants was 15.7%, and height-weight estimates were 2.9%. 

Based on annual production estimates from this study area by Damiran et al., (2007) these 

differences equated to a range of 817 – 1224 kg/ha of annual production remaining following 

grazing. Such a wide range of estimates suggests technique choice can be a vital factor when 

considering field-based utilization estimates, particularly when used in the context of changing 

grazing management or attempting to understand the effects of cattle on ecological processes.  

4.2 Comparing Field Estimates with GPS-Derived Grazing Intensity 

At both the sampling site scale (i.e. individual 0.09-ha sampling sites) and the paddock scale 

(i.e., four to five sampling sites within 40-ha), landscape appearance had the strongest 

relationship with GPS-derived grazing intensity compared to the four other field-based 

indicators of grazing intensity. The strength and slope of this relationship was consistent across 
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low, moderate, and high levels of utilization suggesting that the landscape appearance method 

was not dependent on a particular minimum or maximum level of grazing to provide reliable 

estimates. Landscape appearance also showed the closest relationship to the fine-scale raster 

suggesting it did well at representing fine-scale spatial patterns in grazing. 

Conversely, the more quantitative field techniques showed threshold effects in which the 

highest 10% of field-estimated values (i.e., 90th percentile) fit poorly with actual cattle locations. 

In the case of the LPI-derived indicators this suggested that high cover of grazed plants did 

not equate to high utilization. In other words, cattle can lightly forage on a large proportion of 

forage plants while still maintaining a large amount of biomass in the base of the plant. Thus, 

when evidence of grazing was common (greater than 20% cover of grazed plants or 50% of 

key forage species) the LPI-based techniques became saturated and could no longer detect 

changes in grazing intensity leading them to overestimate grazing intensity. Because forage 

availability has been shown to influence cattle behavior, such as bite rate and grazing time  

(Scarnecchia et al., 1985; Werner et al., 2019), these thresholds may be specific to areas 

similar to the Zumwalt prairie which have high cover and production of forage plants.  

Height-weight estimates also showed underestimation of use levels compared to other 

methods. This supports statements from Halstead et al., (2000) and McKinney, (1997) 

describing the tendency of ungulates to selectively graze only parts of a single plant. This may 

lead to issues in visually estimating the proportion of the plant (by weight) which has been 

removed which can lead to underestimation due the difficulty in estimating exponential height-

weight relationships.  

Across all techniques other than paired plots, accuracy increased as estimates were 

aggregated at the broader paddock scale (increases of adjusted R2 with grazing intensity 

rasters or between 15-41%). This reflects the benefits of scaling estimates to larger areas in 

combination with the stratified spatially balanced random sampling design. This sampling 

methodology using biomass models from Jansen et al., (2016) was able to capture the large 

amount of spatial variation in grazing intensity shown in the GPS data. This increase in 

accuracy is particularly pertinent because these are the scales at which management 

decisions are often made: including changes to the rate and timing of stocking. Having higher 

confidence in grazing intensity measurements at this scale then, can help improve sustainable 

livestock management. 

Calibration Techniques 
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Calibration by performing the height-weight method and calculating an in-field estimate of 

utilization prior to the landscape appearance technique resulted in a significant improvement 

in the relationship between landscape appearance utilization estimates and grazing intensity 

from actual cattle spatial use. This effect was seen across all sampling sites irrespective of 

observer experience or other factors. The higher correlation to GPS-based grazing intensity 

(i.e., accuracy) was seen in comparison to both no-calibration (i.e., landscape appearance was 

performed first) and calibration with line-point intercept. When using a calibration method, the 

observers spent more time at the sampling site before completing the landscape appearance 

method and became more familiar with the plant species and grazing patterns. This increased 

time at the site may have improved the observers’ ability to detect signs of grazing and thus 

more accurately estimate utilization classes with the landscape appearance method.  

However, sampling time may not have been the only influencing factor since there were large 

differences between LPI and height-weight methods as calibration. These two techniques take 

approximately the same amount of time to implement and require similar actions (i.e., 

inspection and measurement of plants throughout the sampling site). Thus, the increased 

accuracy of landscape appearance estimates was likely caused using in-field calculations of 

utilization from height-weight data. Despite its relatively poor relationship with the GPS grazing-

intensity rasters individually, the landscape appearance estimates calibrated with the height-

weight method produced the closest fit to the grazing rasters with a Spearman’s rank 

correlation of 0.86. This suggests that the landscape appearance method alone may be 

overestimating grazing intensity, but when calibrated with the height-weight method (which 

gave consistently lower utilization estimates), landscape appearance produced estimates that 

better reflected the actual cattle use of the landscape. This effect also held true in reverse. 

When landscape appearance was conducted prior to height-weight measurements, height-

weight measurements were higher (i.e., more similar to landscape appearance). 

Despite the different calibration methods having a significant effect on the relationship between 

landscape appearance and GPS grazing intensity, they were not selected as variables in the 

landscape appearance best-subset regression models. The fairly strict rules enforced for 

model selection, which aimed to limit overfitting and multicollinearity, were executed before 

calibration effects could be included. This model selection process indicated that other 

variables such as observer effects, grazing treatment, and plant community attributes 

explained more of the variation in landscape appearance data, but this result does not preclude 

a significant calibration method effect.  
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4.3 Precision and Bias of Field Techniques 

Across the techniques, variation in utilization estimates was largely explained by differences 

among observers, levels of utilization, and, to a lesser degree, differences in vegetation 

characteristics. Landscape appearance and proportion of key species from LPI showed the 

largest differences between observers, and these effect sizes tended to be large (Table 2.2). 

With respect to the LPI-based measurements, the two observers who had the largest 

differences from each other and the crew lead had either not taken part in the bi-weekly crew 

training exercise at the start of the sampling period or had never conducted the exercise with 

the entire crew. These training exercises involved all crew members observing the same LPI 

transect, discussing discrepancies and repeating observations if a single observer recorded 

an indicator value which differed more than 5% above or below the crew average. This process 

was intended to help crew members learn and practice the LPI technique and resolve any 

misunderstandings. Crew members missing out on this process could create a higher number 

of technique misinterpretations and thus differing estimates of grazing intensity.  

Another significant source of variation came from differences between blocks despite the 

blocks sharing the same grazing treatment levels and having similar plant communities and 

landforms. Timing of both grazing and sampling as well as the experience of the observers 

(i.e. their familiarity with the techniques and sampling area) could explain this variation. Both 

the landscape appearance and height-weight estimates showed an increase in utilization over 

time despite GPS-based grazing intensity showing similar levels of grazing between blocks. 

This could be a factor of increased awareness of observers to detect signs of grazing as they 

improve over time. 

Phenology and vigor of forage species may also have influenced utilization estimates over time 

particularly due to the below-average rainfall during the later weeks of the study period. Cattle 

have a proportionately greater effect on drought-affected plants (Souther et al., 2019) thus, 

differences in the resilience and vigor of forage plants may account for the observed increases 

in estimates of utilization over the duration of the study as vegetation dried out through the 

summer. This highlights the fact that the GPS-based grazing intensity estimates can only 

detect intensity of grazing (effectively fine scale, spatially explicit stocking rates) and do not 

necessarily reflect grazing severity – which is dependent on the health and vigor of forage 

species and site potential.  

Cover of grazed species from LPI was the least susceptible to observer-derived variation. Best 

subset regression models for this measurement technique did not show significant effects from 
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differences in observers suggesting a high level of precision and repeatability. This technique 

only relied on detecting signs of grazing on individual plants and differed from the other LPI-

based metric because it did not require any knowledge of plant species. Methods such as this 

which require less training or experience with grazing systems can be useful especially when 

considering the growing trend of citizen science in ecological data collection (Hochachka et al., 

2012; Kosmala et al., 2016). 

Grazing Treatments 

Grazing treatment levels were a large source of variability within the best subset models which 

was expected if the utilization techniques were effectively measuring changes in grazing 

intensity. However, differences in grazing treatment also affected variability in pairwise 

comparisons of techniques (Figure 2.6). Thus, the amount to which different techniques agreed 

or disagreed on their grazing intensity estimates changed based on the actual stocking rate. 

Surprisingly, the highest correlation between estimates was found in the low treatment 

paddocks (20 AUMs). This may be related to the limitations in the LPI and height-weight 

methods at high utilization rates discussed above.  

This study aimed to assess how well each field technique could capture the differences in 

grazing intensity under four different stocking rates. While these treatment levels did differ in 

stocking rate – 0, 0.5, 0.75, and 1 (1.25 in one paddock) AUMha-1, they all represented 

relatively low stocking rates and did not cover a wide range of grazing intensity. For 

comparison, a recent study on the effects of ‘moderate’ grazing used a stocking rate of 2 

AUMha-1 (Milligan et al., 2019). This becomes more evident when the carrying capacity of the 

Zumwalt Prairie study area is considered. This area has higher cover and annual production 

(1261 ± 51 kg/ha during 2006) in comparison to many rangeland grazing systems in the 

western United States (Damiran et al., 2007). Thus, difficulties in detecting differences 

between these relatively low levels of grazing intensity is particularly challenging when using 

field techniques designed to be used in less productive systems.  

Comparing these methods at higher stocking rates may further elucidate the threshold 

limitations of the LPI and height-weight methods discussed above. If the LPI methods do 

indeed become saturated above a certain level of grazing, we would expect accuracy of these 

methods to decrease at very high stocking rates. On the other hand, accuracy of the height-

weight method may improve at higher stocking rates: as individual plants become more 



64 
 

uniformly grazed, measurement of the residual plant material becomes simpler and less 

subjective. 

4.4 Management Implications 

The first step for establishing a successful rangeland monitoring program should be developing 

specific, concise and quantifiable management goals and objectives (Karl et al., 2017; Vos et 

al., 2000). The most appropriate method for a given situation first depends on their ability to 

effectively inform these objectives in terms of sensitivity, accuracy, and precision. Secondly, 

method selection should reflect how a monitoring program is implemented and designed 

including consideration of observer experience and training. There is no silver bullet when it 

comes to field-based utilization monitoring methods. Accordingly, the use of multiple methods 

and indicators may be the best option to create resilience for effective rangeland management. 

In general, the plot-based landscape appearance method combined with quantitative 

calibration was the most sensitive to changes in grazing and most accurately reflected actual 

cattle use locations. However, landscape appearance was also the method most susceptible 

to imprecision related to differences in observers. This vulnerability could make it less suitable 

to applications involving lower-skilled observers especially in the absence of quantitative 

calibration. However, the malleability in the landscape appearance method may also mean 

estimates can be positively influenced by the recent experience of observers. Accuracy and 

precision of estimates may have high potential to benefit from increased training and 

quantitative calibration techniques. Landscape appearance estimates also showed consistent 

relationships with GPS-based grazing intensity estimates across multiple levels of grazing 

intensity. This suggests it may be an effective method to implement in systems that have a 

wide range of stocking rates.  

Alternatively, LPI-based methods showed less variance related to differences in observers and 

may be more appropriate for less skilled observers or for multi-scale projects conducted by 

observers with varying levels of training and expertise. This is particularly true of the grazed 

cover indicator which required only minimal training and botanical expertise. However, LPI 

indicators had weaker relationships with GPS-based grazing intensity and had only moderate 

levels of sensitivity to stocking rates employed in this study. There was also evidence that this 

method was less applicable to higher stocking rates, however this remains to be tested 

thoroughly. Nevertheless, the LPI methods is advantageous because it is easy to learn, 

quantifiable, and repeatable.  
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The paired plot method was not the most appropriate for monitoring spatially variable sites with 

low stocking rates in this study area. However, effective implementation of the paired plot 

method could be improved with probabilistic sample designs which accurately reflect spatial 

heterogeneity in both grazing intensity and plant community patterns. Since this method is time 

and labor intensive, maximizing the efficacy of the sample design could prevent the need for 

prohibitively large sample sizes.  

Regular implementation of crew training exercises was an effective method for creating 

confidence with method protocols and increasing utilization estimate consistency between 

observers. A key recommendation from this study would be increased training and practice of 

utilization methods which are specific to the levels and spatial patterns of grazing as well as 

the vegetation composition and plant phenological states present in the study area. 
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APPENDIX A: GPS Collar Pilot Study 

The goal of the pilot study was to test the accuracy and durability of the first version of the low-

cost GPS devices as described by Karl & Sprinkle (personal communication).  

Study Area: 

The GPS collars were deployed at one pasture within the Jim Sage study site of the Grouse 

and Grazing project in southern Idaho. The pasture was grazed in the spring of 2018 between 

May 5th and June 1st. The pasture is roughly 5km2 and is comprised of a big sagebrush steppe 

and grassland with pinyon-juniper woodland at higher elevations. Cows were able to freely 

roam over the entirety of the pasture which was bounded by fence-line on the east, north and 

south and a natural boundary characterized by steep slopes (>50%) on the west side.  

Data screening: 

Location and GPS signal quality were recorded at 5-minute intervals for the duration of the 

livestock grazing in the pastures. The GPS collars are designed to record observations to a 

micro SD card so that data persists in the event of collar malfunction or battery depletion. 

Following collar retrieval, the location data from each collar were screened to remove low-

quality GPS readings and then composited to a master distribution file for the study area. This 

included removing points with fixes on fewer than 3 satellites, data that were located outside 

of the study pasture, and data from collars which had faulty batteries (only lasted several days). 

This resulted in collar data from 21 individual cows with a total of 38,703 GPS locations.  

Data Analysis and Results: 

Due to their hierarchical nature the GPS location data was analyzed within a mixed modelling 

framework to assess cattle spatial distribution relative to environmental variables derived from 

satellite imagery including slope, Normalized Difference Vegetation Index (NDVI) and distance 

to water. A generalized linear model with a binomial response and logit link function was 

created in order to analyze spatial patterns of cattle use within the study pasture. NDVI, slope 

and distance to water all were significant predictors of cattle presence. Resampling of the 

location data from 5-minute time intervals to 10 and 15 minutes did not reduce the strength of 

the model significantly.  

Marginal and condition R2 values were calculated according to Nakagawa and Schielzeth, 

(2013). This test compares the amount of variation described by the fixed effect alone – the 

marginal R2 relative to the amount of variation caused by the random effect (individual cows) 
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– the conditional R2. The marginal R2 was significantly lower than the conditional R2 suggesting 

there was a large amount of variation between individual cows.  

Similarly, an intraclass correlation was calculated according to Zuur et al., (2009) to test the 

correlation of distribution patterns  between individual cows. This resulted in an intraclass 

correlation of 0.914, suggesting there was high similarity of habitat preference for individual 

cows.  

Conclusions: 

The results of the pilot study showed that the low-cost GPS collars could reliably collect GPS 

location data for analysis of cattle spatial distribution patterns with a certain amount of data 

filtering and quality control. There was considerable intra-class correlation i.e. locations from 

individual cattle are highly correlated with each other. This suggests that there is a high degree 

of redundancy in the amount of GPS locations collected per cow and that the study would 

benefit from a larger number of collars per herd. Similarly, it is likely that the 5-minute interval 

for GPS locations could be extended without losing any statistical inference. This could help 

preserve battery life and data storage space for future use if the collars. 

GPS locations of cattle at the Jim Sage pilot study (right). Cattle locations can be screened 
for outliers and converted to a grazing intensity raster and compared to field-based data 
locations (left). 
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APPENDIX B: Height-Weight Curves 

 

 

 

 

 

Relationship between percent height 
removed and percent weight removed for 
each of the key forage species at the Zumwalt 
Prairie study site. Separate curves were 
made when there were significant differences 
in phenology and growth stages between 
block A and D. 
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APPENDIX C: Best-subset Regression - Bootstrap Inclusion Frequencies 

 

 

Number of Variables in Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GrazeType_High 0 26 53 70 79 80 83 84 85 83 84 83 82 80 79 80

Observer_LA_1 0 3 21 38 52 62 67 73 80 81 85 88 89 92 93 92

Block_B 0 0 1 4 15 29 39 53 56 57 60 59 64 65 66 69

% Foliar Cover 0 7 13 16 27 41 46 51 55 58 59 62 65 67 68 69

GrazeType_Medium 0 0 1 15 28 34 42 48 55 57 61 64 70 69 67 68

Observer_LPI_5 0 5 16 29 41 45 47 49 50 48 48 47 47 49 48 47

Fine scale grazing raster std dev 43 41 48 49 51 53 52 52 49 45 42 42 41 41 41 42

Observer_HW_3 0 0 0 2 5 11 26 37 48 58 65 68 73 74 76 76

Filtered grazing raster 45 51 50 48 46 45 46 45 46 49 50 53 56 57 57 59

Days of Experience 0 14 16 25 28 33 35 34 31 29 25 23 25 30 27 27

Calibration1_Visual 0 0 0 1 3 11 16 23 30 36 43 48 55 57 62 67

% Annual grass cover 0 4 5 6 12 18 20 24 30 34 40 45 51 55 59 64

GrazeType_Low 0 0 1 3 5 9 17 22 29 35 40 47 49 53 56 58

% Moss cover 0 0 5 7 9 13 17 20 26 33 38 44 47 51 54 59

% Cover of cattle feces 11 9 10 12 13 15 18 20 23 26 30 33 33 35 40 41

Observer_LA_2 0 0 0 0 2 4 8 12 20 31 37 45 54 58 64 67

Block_D 0 0 0 1 4 7 9 13 17 22 24 26 27 28 33 37

% Perennial grass cover 0 6 12 11 10 8 8 13 17 22 27 34 39 41 44 46

Observer_HW_1 0 0 1 4 7 10 13 16 16 19 19 21 20 23 27 29

Block_C 0 0 0 1 1 1 3 8 16 19 24 26 30 32 36 38

% Litter cover 0 0 1 2 5 7 10 12 15 18 22 29 32 37 41 44

% Perennial forb cover 0 9 21 28 27 22 20 17 14 15 19 23 23 26 29 34

Observer_LA_4 0 0 0 0 0 2 6 8 13 20 26 32 37 42 48 49

Observer_LPI_4 0 0 0 1 2 3 6 10 11 12 14 13 13 17 19 25

% Annual forb cover 0 0 0 1 2 5 7 9 11 12 16 15 16 19 22 24

Average ungrazed grass height 1 23 24 24 22 19 17 12 11 10 9 9 10 14 20 23

Calibration3_Height 0 0 0 0 1 3 6 9 10 14 15 18 19 21 24 30

Observer_LA_3 0 0 0 0 1 3 5 8 10 12 13 14 18 22 26 33

Observer_HW_2 0 0 0 0 0 1 2 5 5 5 9 11 14 16 19 23

Calibration_Paired plot 0 0 0 1 1 2 2 2 4 7 11 17 20 26 31 35

Observer_LPI_3 0 0 0 0 0 0 1 1 4 6 8 11 14 15 19 23

Observer_LPI_1 0 0 0 0 0 0 0 1 4 6 10 12 14 19 20 19

Observer_LPI_2 0 0 0 0 0 0 2 3 4 6 8 10 14 17 20 23

Observer_HW_4 0 0 0 0 1 1 3 3 3 6 8 12 15 21 24 28

% Rock cover 0 0 0 0 1 1 2 3 3 6 10 13 16 21 29 36

Observer_LA_6 0 0 0 0 0 0 0 0 0 2 3 4 7 9 12 15

Best subset bootstrap inclusion percent - Landscape 

Appearance



77 
 

 

 

 

 

Number of Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Graze Type Medium 0 2 27 77 86 90 92 92 95 95 95 95 95 95 95 95

Graze Type High 0 11 39 81 87 90 92 94 95 93 94 94 95 95 95 96

Observer LPI - 5 2 21 46 42 64 79 78 80 79 80 81 81 80 82 80 80

Annual Grass 1 42 35 10 18 27 42 55 70 77 78 82 84 86 90 92

Observer LPI - 3 0 1 6 51 68 70 64 59 61 59 59 58 62 61 60 59

Graze Type Low 0 0 9 65 74 72 64 59 58 59 61 62 65 64 69 71

Filtered GI Raster 20 35 26 10 12 17 26 38 46 49 55 63 64 66 67 69

Litter 0 0 1 2 6 10 15 27 40 46 52 57 60 64 71 74

Block C 0 1 3 3 11 26 28 32 34 38 45 44 50 53 57 58

Calibration 2.Paired.plot 0 0 1 1 3 11 22 29 32 38 43 48 51 54 58 59

Moss 0 0 4 2 5 7 13 20 28 32 36 36 40 41 44 48

Observer LA - 1 0 0 10 6 5 7 12 20 25 30 32 35 38 41 42 46

Observer HW - 5 0 1 0 0 0 3 7 15 21 31 34 39 41 45 49 53

Observer LA - 4 0 1 1 1 4 7 16 19 19 21 21 23 24 26 27 29

Observer LPI - 2 0 0 0 0 3 6 11 13 17 22 27 28 32 33 34 34

Rock 0 0 1 1 1 4 7 11 16 21 27 30 35 39 43 44

Cattle Feces 2 6 7 3 4 7 13 14 15 18 19 20 23 23 25 28

Observer LA - 3 0 0 1 1 1 3 6 10 13 20 22 26 30 31 34 38

Block D 0 0 0 1 1 1 3 8 13 16 18 23 24 29 32 33

St Dev GPS count 37 37 24 8 4 2 6 8 12 17 24 33 41 43 49 49

Block B 0 0 0 0 1 2 6 8 12 14 17 19 22 24 26 30

Total Foliar Cover 1 0 2 1 2 2 5 6 10 15 18 24 26 32 35 40

Calibration 3.Height 0 0 2 0 1 2 4 7 10 13 16 18 21 25 26 29

Observer LPI - 6 0 0 0 0 1 4 9 11 9 12 11 12 13 16 18 21

Observer HW - 4 0 3 12 9 5 5 6 6 8 9 12 15 15 18 22 25

Mean Ungrazed Grass Heights 34 24 28 15 18 25 19 14 8 7 9 10 15 21 24 30

Perennial Forb 0 4 4 4 5 7 9 10 8 10 12 16 21 24 32 39

Observer LPI - 4 0 0 0 0 0 1 3 4 7 9 10 14 16 20 27 31

Observer HW - 2 0 0 0 1 1 1 2 5 6 9 13 15 16 21 23 27

Perennial Grass 2 7 6 2 3 3 5 4 6 7 10 17 18 27 28 36

Annual Forb 0 0 0 0 2 4 8 7 6 7 10 11 14 17 20 20

Experience 0 4 2 1 2 1 2 2 5 6 9 12 18 20 23 26

Observer LA - 5 0 0 0 0 1 0 2 3 4 6 8 13 15 18 24 28

Observer HW - 3 0 0 1 1 1 1 1 4 4 5 8 10 14 16 18 21

Calibration 1.Visual 0 0 0 0 0 0 1 2 3 6 9 11 15 20 24 28

Observer LA - 7 0 0 0 0 0 1 2 3 3 3 5 6 7 11 10 12

Best Subset Inclusion Percent - Proportion of Key Species 

Grazed
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APPENDIX D: GPS Collar Location Counts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Count of GPS collar points within each paddock for weighted and unweighted points. There were fewer 
points over time as cattle moved from block A to B to C to D due to collar battery failure. Thus, number 
of points per paddock were weighted based on the number of active collars at the time. Thus, one GPS 
point in block D (12 active collars) had ~3 times higher weight than a point in block A (45 active collars). 
Weighting the points helped to increase evenness of grazing intensity rasters within the same grazing 
treatment between different blocks. 


