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Abstract

We studied the limits of estimability of stochastic versions of the Gompertz model of

density dependent population growth when the models are expanded to include an envi-

ronmental covariate. The stochastic versions were the Gompertz model with process noise

(GPN) and the Gompertz state space model (GSS) containing both process noise and obser-

vation error. Simulation trials and maximum likelihood estimates of the parameter values

show that when sample size is low (n=10) the addition of the covariate in the GPN model

causes estimability to break down, but the GPN model performs adequately for longer time

series. In most cases studied, the GSS model with a covariate has extremely high estimate

variance, estimates often covering the entire range of possible values of the parameter of

interest. These results represent severe limitations to the use of covariates with the GPN

and GSS models and do not bode well for larger state space and other hierarchical models

used in modern statistics.
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CHAPTER 1

Introduction

Density dependence has been extremely important in ecology since its proposal as a

population growth mechanism (for reviews, see Bellows 1981, Fowler 1987, Bjørnstad and

Grenfell 2001). Density dependence models have been used as management aids for integral

tasks such as predicting chances of population extinction (for example, Krkošek et al. 2007).

Model complexity has slowly increased over the decades. Adding stochasticity due to envi-

ronmental effects or individual variation led to a multitude of growth models (for example,

Dennis and Taper 1994, Ives et al. 2003, Turchin 2003) that have been used extensively. To

more accurately represent real-world population growth and surveying methodology, obser-

vation error has also been added to the models. Such models that include observation error

as well as process noise are known as state space models (de Valpine 2002, de Valpine and

Hastings 2002, Clark and Bjørnsted 2004, Dennis et al. 2006).

The addition of covariates to models has also been very instrumental in ecological mod-

eling, especially in support of management decisions. Covariates can include climate or

habitat changes, other species, or any other important effect to the population of interest.

They are commonly used in model selection proceedures to determine what environmental

effects are most integral to population dynamics and survival. Covariates have proved useful

for model selection in studies as diverse as elk calf mortality (Singer et al. 1997), spotted

owl recovery (Franklin et al. 2000), kit fox survival chances (Dennis and Otten 2000), mule

deer population trends (Peek et al. 2002), and probabilities of survival in various salmonid

species (McClure et al. 2003).

Complex models come at a cost, however. While neglecting model observation error

has been shown to have its own price in biased estimates (Shenk 1998, Holmes 2001, De

Valpine and Hastings 2002, Freckleton 2006) and increased Type 1 errors in hypothesis test-

ing (Freckleton 2006), state space models appear to be approaching the limits of estimability

(Dennis et al. 2006, Knape 2008, White 2012). Adding covariates to a model already at the
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edge of estimability has not been researched and may be suspect.

Here, we add a covariate to the Gompertz process noise (GPN) and Gompertz state

space (GSS) models developed by Dennis et al. (2006), creating the Gompertz process noise

with covariate (GPNc) and Gompertz state space with covariate (GSSc) models. Using

simulation and maximum likelihood estimation on the GPNc and GSSc, we attempt to find

whether estimation for the models breaks down. The simulation results presented here reveal

constraints on estimability of model parameters that should be taken into account when the

models are used for describing ecological data.



3
CHAPTER 2

Methods

2.1 Model form and notation

The models used in this report are founded on the Gompertz density dependence model.

The Gompertz model has often been used for population abundance modeling. We used

both the GPN and GSS models, as defined in Dennis et al (2006). The GPN is a discrete

time model with the following form:

Nt = Nt−1 exp (a+ b lnNt−1 + Et) (2.1)

Here, Nt is the population size at time t. The constants a and b are defined below. The

error term, or process noise, at time t is Et and is distributed normally with a mean of 0

and variance σ2 (written Et ∼ N (0, σ2)). To make calculations easier, we take the natural

log of the equation to find:

Xt = Xt−1 + a+ bXt−1 + Et = a+ cXt−1 + Et (2.2)

where Xt = lnNt and c = b+ 1. The stationary mean and variance of Xt are functions of a,

c, and σ2:

E(X∞) =
a

1− c
(2.3)

V(X∞) =
σ2

1− c2
(2.4)

For all models used, −1 < c < 1 and a > 0. The parameter c can be viewed as an in-

verse mesure of the strength of density dependence in the model, or the speed with which

logarithmic population size Xt reaches its stationary distribution. As c approaches 1, the sta-

tionary mean becomes undefined and we consider the population to be density independent

(exponential growth).
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The GSS model, as defined by Dennis et al. (2006), adds an observation error term to the

GPS to account for imperfect sampling. Let Yt be the log observed or estimated population

size at time t. The GSS model defines Yt by:

Yt = Xt + Ft (2.5)

where the observation error at time t, Ft ∼ N (0, τ 2). On the original scale of population

size Nt, Ft follows a lognormal distribution. A lognormal observation error distribution is

ecologically realistic (Dennis et al. 2006).

We expand the GPN and the GSS models to include an environmental covariate in

the following way. We redefine a using the covariate term, under the assumption that an

environmental change would likely change the location of the stationary mean. Thus, we

substitute exp (β0 +
∑p

i=1 βiWi,t) for a, where any number of covariates can be added with

any time lag (t, t− 1, . . .) deemed ecologically important. Here, β0 takes the basic definition

of a previously, while βi describes the influence of the ith covariate, Wi,t. Thus,

Xt = exp (β0 +

p∑
i=1

βiWi,t) + cXt−1 + Et (2.6)

for the GPNc, and

Yt = Xt + Ft (2.7)

for the GSSc, as previously.

2.2 Likelihood function

The time series data are population abundances. These are log-transformed to find Xt or

Yt, depending on whether the abundances are censused or estimated. Data on covariates are

added to the model as Wi,t quantities. We assume that the data arise from either model as

described by equations 2.6 and 2.7 and are sampled from a population undergoing density
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dependent growth.

In order to find estimates for the parameters β0, β1, c, σ
2, τ 2, likelihood functions are

necessary. The likelihood functions take different forms for the GPNc and the GSSc models.

The GPN is an autoregressive time series model of order 1 [AR(1) process], meaning

that each observation is dependent only on the previous time period’s observation. As the

stochasticity of the model is found in the normally distributed process noise, the autoregres-

sive function for Xt itself comes from the normal distribution. It has an expected value of

a− cXt−1 and variance σ2. In the GPNc, a is replaced by exp (β0 +
∑p

i=1 βiWi,t) so

Xt | Xt−1 ∼ N

(
exp (β0 +

p∑
i=1

βiWi,t)− cXt−1, σ
2

)
(2.8)

As shown by Dennis et al. (2006), the GSS model does not have a simple autoregressive

form. Yt comes from a normal distribution, but due to the combination of process and

observation noise, depends on Yt−1, Yt−2, . . . , Y0.

Yt | Yt−1, Yt−2, . . . , Y0 ∼ N (mt, v
2
t ) (2.9)

The mean and variance are found recursively by Kalman iteration (Dennis et al. 2006). For

the GSSc model, the Kalman iterations take the form,

mt = exp (β0 +

p∑
i=1

βiWi,t) + c

[
mt−1 +

v2t−1 − τ 2

v2t−1
(yt−1 −mt−1)

]
(2.10)

v2t−1 = c2
v2t−1 − τ 2

v2t−1
+ σ2 + τ 2 (2.11)

When the population counts come from the stationary distribution, as was the case in this

study, the recursion is started at the stationary mean and variance: m0 = exp (β0 + βiWi,t)/(1−

c) and v20 = [σ2/(1− c2)] + τ 2. For other cases and derivations, see Dennis et al. (2006).

The one-step probability distribution functions for the GPNc and GSSc models respec-
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tively become

f(xt | xt−1) = (σ22π)−1/2 exp

{
− [xt−1 − exp (β0 +

∑p
i=1 βiWi,t)− cxt−1]2

2σ2

}
(2.12)

f(yt | yt−1, yt−2, . . . , y0) = (v2t 2π)−1/2 exp

[
−(yt −mt)

2

2v2t

]
. (2.13)

Y0 is also normally distributed with pdf

f(y0) = (v202π)−1/2 exp

[
−(y0 −m0)

2

2v20

]
(2.14)

The likelihood functions for the GPNc and GSSc models are the joint pdfs:

L(x | β0, βi, c, σ2) =
n∏

t=1

(σ22π)−1/2 exp

{
− [xt−1 − exp (β0 +

∑p
i=1 βiWi,t)− cxt−1]2

2σ2

}
(2.15)

L(y | β0, βi, c, σ2, τ 2) = (v202π)−1/2 exp

[
−(y0 −m0)

2

2v20

] n−1∏
t=1

(v2t 2π)−1/2 exp

[
−(yt −mt)

2

2v2t

]
(2.16)

To perform maximum likelihood estimation, the log likelihood is used.

2.3 Simulations

We conducted simulations of time series data using both the GPNc and GSSc using

a single covariate to evaluate estimability of the models in the simplest case. Each set

contained 1000 simulated time series. Maximum likelihood estimates for all parameters were

obtained for each simulated time series and results were plotted. The plots were used to

analyze estimability for each situation simulated.

R version 3.2.2 was used for all simulations and optimizations. We used the Nelder-Mead

algorithm in the optim() function for maximum likelihood estimation. A seed of 100 was

used for each set of 1000 simulations. The single covariate for each model was randomly
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generated from a standard normal distribution. Values for the β0 and β1 parameters were

found using the equation for the stationary mean given the simulated starting population

size and strength of covariate influence. Environmental error (GPNc, GSSc) and observation

error (GSSc only except in specific cases) were included in each simulated time series as

per Equations 2.2 and 2.5. Code used for β0 and β1 solutions, simulation, and maximum

likelihood estimation can be found in Appendix A.

Maximum likelihood estimates of all parameters in the GPNc model were found from

time series data simulated with only process noise (GPN model). The GPNc model was

also used on data simulated with observation error to determine levels of bias and variance

inflation when using a covariate in the model. For the GSSc model, data with observation

error was also used to find maximum likelihood estimates of all parameters.

Default values for the simulations are as follows. Data are simulated with a starting

population size of 1000. Covariate influence of 1 standard deviation change in covariate

resulting in a 20% increase in population size (resulting in a β0 value of 0.026) is used.

The default c value is −0.5. σ2 and τ 2 values are both 0.5. Each parameter was adjusted

individually from these defaults to determine its effect on estimability.

For reasons of space in this paper, c is our main parameter of interest. The parameter

c, as the strength of density dependence, is critical to predicting underlying dynamical

behavior important to policy and managment. Other parameters are also important. For

instance, probabilistic properties of the population, such as the chances of recovery or the

risks of quasi-extinction, revolve on the estimability of σ2. We show such additional results

in Appendix B.
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CHAPTER 3

Results

3.1 Gompertz process noise with covariate simulations

As the value of c changes through −.9,−.5, 0, .5, and .9, we observe no substantial

difference in the ability of the GPNc to estimate the parameters (Figure 3.1). There is no

noticeable difference in variance associated with a changing value of c. However, when c = .9,

there is some bias as the mean simulation estimated value is 0.737. There is also some bias

when c = −.9, showing a mean value of −0.828. The bias might be due to being near the

edge of supported c values, artificially creating a situation where the means are unlikely to

be correct due to the truncation of simulated c estimates at −1 and 1.

Using the values of c shown above but changing the sample size (time series length) to

10 results in more variance and bias in all cases of c (Figure 3.2). In many cases there are

estimates ranging over the complete space of −1.0 to 1.0, indicating questionable estima-

bility. As sample size becomes small the model is less capable of accurately estimating the

parameters.

Changing the influence strength of the covariate shows that as strength of influence in-

creases, whether positive or negative, there is less variance. We simulated a 50% increase/de-

crease in population carrying capacity for a single standard deviation change in covariate

strength as well as a 20% increase/decrease. Both 50% cases appear to have about the same

variance. The 20% cases also appear very similar but have a very slightly higher variance

than the 50% cases. In all cases, however, the simulations converge about the true value

of c = −.5, indicating no estimability or bias issues in the GPNc model due to changing

influence of the covariate.

Decreasing the size of the population does not appear to affect the variance or accuracy

of the simulated estimates. Using population sizes of 100 and 1000, we find that in both

cases, the estimates converge on the true value of c = −.5, indicating that the model is
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equally useful for either population size.

3.2 Gompertz process noise with covariate including observation

error simulations

Data were simulated with observation error and parameter estimates were found using the

GPNc model, though it does not include a term for observation error. We expect increased

bias as the unmodeled observation error increases. We see in Figure 3.3, where the unmodeled

observation error has increased from 0.05 to 0.5 in 0.05 increments, that bias does increase.

There is also a slight increase in variance of the estimates with increasing observation error,

but the increased variance is observed mostly in the tails of the estimate distributions.

Because management decisions often involve more than an estimate of the strength of

density dependence, we include graphs of how changing observation error affects other pa-

rameters and at different values of c in Appendix B.

3.3 Gompertz state space with covariate simulations

Estimation results for the GSSc with a single covariate are much more problematic

than seen with the GPNc. We begin to see the problems when the values of c are increased

with a time series of length 30 (Figure 3.4). In every situation except c = −.5, there are

estimates that span the entire support set of c, showing severe lack of estimability. When c

is positive, there is almost no precision in the estimates. In fact, when c = .5, the estimates

have a mean of −0.354 and median of −0.508, almost exactly the opposite of the true value

of c. Histograms of the changing values of c have been included in addition to the usual

box plots in order to show the patterns of estimate results (Figure 3.5). As indicated by the

histograms, the optimization routine appears to have become caught in the local maxima at

extreme values of c shown by Dennis et al (2006).

As the length of the time series decreases we find that, unlike with the GPNc, estimability
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problems do not overall become more pronounced (Figure 3.6). In all cases, estimates cover

the most of the range of c. Even in the best case, when c = −.9, 95% of observations cover

the interval (−0.996,−0.102), nearly half of all possible values. There is an increasingly high

amount of bias as c increases. When c is non-negative, the estimates appear to nearly reverse

in signage, as seen when n = 30.

Even when the length of the time series is increased to 100, estimability problems are

unresolved (Figure 3.7). Positive values of c continue to show huge bias, other than in the

c = 0.9 case. That c = 0.9 shows less bias is likely due to the extreme value effect shown

in Figure 3.5. When c is close to 1, the optimization routine becomes more often caught in

these local maxima, bringing more estimates closer to 0.9. Variance is very large throughout

and worse when c is positive.

The effect of changing the influence of the covariate from an increase/decrease of 20%

to an increase/decrease of 50% is, similar to the GPNc model, very minimal in terms of

the accuracy of the resulting estimates. While the increase/decrease of 50% appears have

slightly less variance, it is perhaps more noteworthy that it seems to also have slightly less

bias.

Estimates show very similar variance in population sizes of 100 and 1000. The estimate

distributions seem to have longer tails in the smaller population size but slightly more bias

in the larger population size.

Because observation error is modeled in the GSSc, we do not expect any difference in bias

or variance as observation error is increased. However, Figure 3.8 shows that as observation

error increases from 0.05 to 0.5 in .05 increments the bias in c estimates actually decreases.

There is pronounced bias in the case of low observation error. Variability is high through all

levels of τ 2 and estimates are unlikely to be very trustworthy. Variance appears to increase

with increased observation error, but the appearance may be due more to the truncation of

c at −1.0 and bias changes than any true increase in variance.

As with the GPNc results, we have included graphs of how changing observation error
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affects other parameters and at different values of c in Appendix B.

Figure 3.1: Using the GPNc, as c increases from −.9 to .9, there is no appreciable difference
in the variance of the simulated estimates of c, though some bias is seen in the −.9 and .9
results.
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Figure 3.2: When the time series length drops to 10 using the GPNc, there are more estima-
bility issues with the GPNc. There is increased bias and variance as well as cases where c
estimates cover a large portion of the supported values of c.

Figure 3.3: When unmodeled observation error is added to the GPNc with c = −0.5 in 0.05
increments from 0.05 to 0.5, we see increasing bias in the c estimates. Variance remains
similar throughout.
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Figure 3.4: Changing values of c in the GSSc model show estimability problems. The model
does not appear to be capable of estimating all parameters adequately, except perhaps in
the cases of c = −.9 and c = −.5 (a and b).

Figure 3.5: Changing values of c in the GSSc model show estimability problems. The model
does not appear to be capable of estimating all parameters adequately, except perhaps in
the cases of c = −.9 and c = −.5 (a and b). Histograms show the pattern of estimation
problems.
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Figure 3.6: When the length of the time series using the GSSc model is reduced to 10,
estimability problems are clear, growing more pronounced as c increases. When c is non-
negative, estimates cover most of the range of c and bias becomes pronounced enough that
any estimate achieved is all but meaningless.

Figure 3.7: When the length of the time series using the GSSc model is increased to 100,
estimability problems are still clear, growing overall more pronounced as c increases. When c
is non-negative, estimates cover most of the range of c and bias becomes pronounced enough
that any estimate achieved is all but meaningless.
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Figure 3.8: As observation error is added to the GSSc when c = −.5 in 0.05 increments
from 0.05 to 0.5, there are extreme estimates of c throughout, along with decreasing bias
and increasing variance as τ 2 increases.
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CHAPTER 4

Discussion

The simulation results show that adding a covariate to the stochastic versions of the

Gompertz model can lead to problems in estimability. It is worth noting that this covari-

ate adds only one parameter to the estimability study conducted by White et al. (2012).

In the case of the GPNc, estimability problems can be solved with a larger sample size,

though achieving a sample size much greater than 10 can be difficult in many ecological

applications. For the GSSc, where the estimability problems are particularly severe, there

is no clear solution. Presumably, the addition of the covariate has created a model with too

many parameters. As sample sizes up to 100 continued to exhibit estimability problems, we

conclude that the problems are likely model based rather than due to a lack of data.

Potential methods of dealing with the estimability problems presented in this paper were

not specifically addressed in this study. One method includes dropping parameters when they

are not of direct interest. For example, zeroing out the intercept parameter beta0 simplifies

the model, possibly making it more viable to add a covariate. Similarly, if one is not directly

concerned with whether the population is undergoing density dependent growth, one might

chose to use a model that does not include the density dependence term (Holmes 2007).

Replicated sampling has shown to have increased power in some circumstances (Dennis et al.

2010, See and Holmes, 2015) and may be a useful option to improve estimates. Alternatively,

Hostetler and Chandler (2015) have proposed a different set of models and tests that appear

to have improved estimability.

Models with density dependence should only be used with populations that appear to

exhibit fairly strong density dependence. We chose to use c = −.5 as our default parameter

for simulations because it is the value of c that behaves best in most circumstances. In

situations where the population is starting much lower than the carrying capacity and going

through clear logistic growth, the model may behave better, but that case is not investigated

here. When a population starts out at or around carrying capacity, we recommend that
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the user check that there is a clear return after each departure from carrying capacity to

determine whether density dependent growth is the likely growth mechanism.

Using more representative starting values for the optimization routine can help with

convergence, although such starting values will not address estimability. For all maximum

likelihood estimates in this study, the same starting values were used for the optimization

routine. In modeling real populations, a researcher should use starting values as close as

possible to the real parameter values. Using values close to the real ones helps prevent the

routine from getting caught in local maxima that may not be the global estimate. When

one can estimate starting values that are more likely to be similar to parameter values using

the sampled time series, one should do so.

Because the GSSc performs so poorly, a researcher might choose to instead use the GPNc

and leave observation error unmodeled. In cases where the observation error is small, using

the GPNc may be a valid option (Figure 3) as bias is relatively small in these cases. However,

we see that bias increased for all parameters as unmodeled observation error increases (Ap-

pendix B). In most cases, so do estimate distribution variances. The most dramatic case of

increased bias is the estimate for σ2. When one is, for example, modeling the probability of

population extinction, a highly biased σ2 may be unacceptable. Finding confidence intervals,

whether through bootstrapping or MCMC using data cloning (as described by Ponciano et

al. 2009), should assist the researcher in determining how precise the results might be.

Additional covariates are likely to compound the problems shown here. Modern models

can include dozens, if not hundreds, of covariates and should be used with extreme caution.

Any maximum likelihood optimization routine is likely to give the user an estimate for

each parameter, but it is difficult to know if the estimates thus obtained represent the real

population dynamics. Bayesian statistics, with its flexibility and prevalence in heirarchical

modeling, may seem to be a solution. However, analyzing using Bayesian techniques when

there are estimability problems will likely result in getting back the priors rather than any

meaningful posterior parameter distributions. Neither additional covariates nor Bayesian
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techniques were directly investigated here, however.

When creating a new model or investigating an existing model, a researcher should be

aware of ”red flags” that indicate possible estimability problems. Confidence intervals that

are wider than expected may indicate such a problem. Profile likelihood plots that are either

ridge-shaped or jagged and/or multimodal should prompt further investigation. While some

packages exist to create profile plots for simple and common models in R, for complex models

the researcher will likely have to code them. Appendix C.1 contains an example of profile plot

code fitting the GSSc model to real data from the Peek et al. (2002) mule deer study. This

study is also used to show an example of profile plots show potential estimability problems.

Were a researcher to get similar plots, further examination of the model is recommended.

Estimability can be evaluated using a simulation study similar to the one presented here or

using data cloning, as described by Lele et al. (2010).

This report indicates that caution should be used with large heirarchical models in gen-

eral. We only examined one model, with two variants, among the many in use. Modern

computing power has allowed incredibly complex models, held back only by the time a re-

searcher is willing to allot to the computation. This increased computation seems a blessing,

but our simulations show that the ability to compute estimates for highly complex models

should be approached very carefully. Other large state space and hierarchical models might

be equally at risk for estimability problems. Certainly, more research is needed to determine

the points at which other models break down. We see nothing intrinsic to Gompertz models

that makes them susceptible to estimability problems and expect such problems to pervade

more complex models of other forms.
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[18] Krkošsek, M., J. S. Ford, A. Morton, S. Lele, R. A. Myers, and M. A. Lewis. 2007.

Declining wild salmon populations in relation to parasites from farm salmon. Science

318:1772-1775.

[19] Lele, S. R., K. Nadeem, and B. Schmuland. 2010. Estimability and Likelihood Inference

for Generalized Linear Mixed Models Using Data Cloning. Journal of the American

Statistical Association 105:1617-1625.



21

[20] McClure, M. M., E. E. Holmes, B. L. Sanderson, and C. E. Jordan. 2003. A large-scale,

multispecies status, assessment: Anadromous salmonids in the Columbia River Basin.

Ecological Applications 13:964-989.

[21] Peek, J. M., B. Dennis, and T. Hershey. 2002. Predicting population trends of mule

deer. Journal of Wildlife Management 66:729-736.

[22] Ponciano, J. M., M. L. Taper, B. Dennis, and S. R. Lele. 2009. Hierarchical models in

ecology: confidence intervals, hypothesis testing, and model selection using data cloning.

Ecology 90:356-362.

[23] See, K. E., and E. E. Holmes. 2015. Reducing bias and improving precision in species

extinction forecasts. Ecological Applications 25:1157-1165.

[24] Shenk, T. M., G. C. White, and K. P. Burnham. 1998. Sampling-variance effects on

detecting density dependence from temporal trends in natural populations. Ecological

Monographs 68:445-463.

[25] Singer, F. J., A. Harting, K. K. Symonds, and M. B. Coughenour. 1997. Density de-

pendence, compensation, and environmental effects on elk calf mortality in Yellowstone

National Park. Journal of Wildlife Management 61:12-25.

[26] Turchin, P. 2003. Complex population dynamics: a theoretical/ empirical synthesis.

Princeton University Press, Princeton, New Jersey, USA.

[27] White, K., B. Dennis, P. Joyce, and D. Scarnecchia. 2012. Estimability of parameters

in time series population abundance models assessed using data cloning. University of

Idaho, Moscow, Idaho, USA.



22

Appendix A: R Code

R code for finding the solutions for β0 and β1, simulations, and estimation are included

here.

Appendix A.1. Solving for β0 and β1

### So l v ing f o r va l u e s o f be ta1 and be ta0 ###

# To so l v e f o r va lue o f be ta1 when 1 standard d e v i a t i on inc rea se

# cr ea t e s a 25% increa se in mean popu la t i on us ing the equat ion f o r

# the s t a t i ona r y mean with co va r i a t e term s u b s t i t u t e d .

# We are l oo k in g at a popu la t i on wi th s i z e n and assuming n i s the

# mean o f the s t a t i ona r y d i s t r i b u t i o n .

# E(n i n f )=a/(1−c )

# a=exp ( be ta0+beta1∗w) where w va l u e s are s tandard i z ed such

# tha t w bar=0.

# At the mean o f w, a=exp ( be ta0 ) , so be ta0=l o g (a )

# I f we are l o o k in g f o r the e f f e c t o f a one standard d e v i a t i on

# change o f w t ha t produces some percentage change in the

# mean popu la t i on s i z e ( e . g . from a s t a r t i n g va lue o f 1000 ,

# we expec t a 20% change in popu la t i on s i z e , so the new

# expec ted popu la t i on s i z e i s 1200) , the mean o f w becomes 1 ,

# so a new=exp ( be ta0+beta1 ) .

# User de f ined s e c t i on :

k=1000 # se t mean popu la t i on va lue

knew= 1200 # se t new va lue o f popu la t i on a f t e r e f f e c t o f c o va r i a t e
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cc=−0.5 # se t va lue o f c o f i n t e r e s t

xbar=log ( k ) ; aa=xbar∗(1−cc ) ; beta0=log ( aa )

xnew=log (knew ) ; beta1=log (xnew∗(1−cc ))−beta0

# pr in t r e s u l t s :

beta0

beta1

Appendix A.2. Simulating Datasets

### Scr i p t to s imu la t e time s e r i e s data f o r the GPNc and GSSc ###

# This code a l l ows the user to c r ea t e any number (km) o f

# s imu la t i on s o f any time s e r i e s l e n g t h ( k ) by en t e r ing va l u e s o f

# c , beta0 , beta1 , sigma sq , and tau sq as de f ined by the user . To

# use data from the GPNc, s imply use data crea t ed in the

# x sim matrix . To use the data from the GSSc , use data crea t ed

# in the y sim matrix .

## User de f ined s e c t i on : ##

k=10 # User de f ined # of time s e r i e s o b s e r va t i on s

km=1000 # User de f ined number o f s imu la t i on s

cc sim=−0.9 # User de f ined va lue o f c

beta0 sim =2.574499 # User de f ined va lue o f be ta 0

beta1 sim =0.02605144 # User de f ined va lue o f be ta 1
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sigmasq sim=.5 # User de f ined va lue o f sigma squared

tausq sim=.5 # User de f ined va lue o f tau squared

pop=1000 # User de f ined s t a r t i n g popu la t i on s i z e

## Simulat ion s e c t i on : ##

# Simulate time s e r i e s from given cova r i a t e/parameter va l u e s wi th

# s t a r t i n g popu la t i on s i z e o f pop .

set . seed (100)

q=k−1 # Number o f time changes

c o v a r i a t e=rnorm(q) # Simula t ing co va r i a t e from standard normal

x sim matrix=matrix (1 ,nrow=km, ncol=k )

y sim matrix=matrix (1 ,nrow=km, ncol=k )

x sim matrix [ , 1 ]= log ( pop )

y sim matrix [ , 1 ]= x sim matrix [ , 1 ]+rnorm(km, 0 , sqrt ( tausq sim ) )

for ( t in 1 :q){

x sim matrix [ , t+1]=exp( beta0 sim+beta1 sim∗ c o v a r i a t e [ t ] )

+cc sim∗x sim matrix [ , t ]+rnorm(km, 0 , sqrt ( sigmasq sim ) )

y sim matrix [ , t+1]=x sim matrix [ , t+1]

+rnorm(km, 0 , sqrt ( tausq sim ) )

}

Appendix A.3. Finding MLEs of Simulated Data

### Scr i p t to f i nd Maximum Lik e l i h ood Est imates ###

### of Simulated Data f o r GPNc and GSSc ###

# This code a l l ows the user to f i nd the maximum l i k e l i h o o d
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# es t ima t e s o f data s imu la ted us ing s c r i p t to s imu la t e time s e r i e s

# data . I t w i l l r e s u l t in a matrix o f MLEs where each row i s the

# beta0 , beta1 , c , sigma sq , and tau sq MLE fo l l owed by the

# l i k e l i h o o d f o r the corresponding time s e r i e s from the

# s imu la ted data .

# To ge t GPNc r e s u l t s , use the f i r s t s e t o f code w i th in the

# es t ima t ion s e c t i on .

# To ge t GSSc r e s u l t s , use the second s e t o f code w i th in the

# es t imt i on s e c t i on .

# To f i nd GPNc with unmodeled ob s e r va t i on error , use

# y sim matrix data from the s c r i p t to s imu la t e time s e r i e s

# data but GPNc code be low .

## User de f ined s e c t i on : ##

# Set f i l e to save s imu la t i on r e s u l t s to i f d e s i r ed :

sink ( ” . . . ” )

# Set i n i t i a l v a l u e s o f parameters f o r op t im i za t i on rou t ine ( e i t h e r

# near r e a l v a l u e s f o r data where approximate r e a l v a l u e s may be

# known or at a d i s t ance to check f o r e s t im a b i l i t y i s s u e s )

beta0 0=1 # User de f ined i n i t i a l va lue o f be ta0

beta1 0=.1 # User de f ined i n i t i a l va lue o f be ta1

cc 0=.1 # User de f ined i n i t i a l va lue o f c

sigmasq 0=1 # User de f ined i n i t i a l va lue o f sigma squared

tausq 0=1 # User de f ined i n i t i a l va lue o f tau squared

## Estimation s e c t i on : ##

# To f i nd MLE es t ima t e s f o r the GPNc, use t h i s code and r e s u l t s
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# sec t i on :

resultsGPNC=matrix (1 ,nrow=km, ncol=5)

l i k e l i h o o d=function ( theta , x ){

x=x sim

beta0=theta [ 1 ]

beta1=theta [ 2 ]

cc=2∗exp(−exp( theta [3 ] ) )−1

ssq=exp( theta [ 4 ] )

vv=ssq/(1−cc ˆ2)

l p d f=vector (mode=”numeric ” , k )

m=exp( beta0+beta1 )/(1−cc )

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv)−((x [1]−m[ 1 ] ) ˆ 2 /(2∗vv ) )

for ( t in 1 :q){

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( s sq )−((x [ t+1]

−exp( beta0+beta1∗ c o v a r i a t e [ t ])− cc∗x [ t ] ) ˆ 2 /(2∗ s sq ) )

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

for ( i in 1 :km){

x sim=x sim matrix [ i , ]

ml sim=optim(par=c ( beta0 0 , beta1 0 , cc 0 , sigmasq 0) ,

l i k e l i h o o d ,NULL, method=” Nelder−Mead” )

resultsGPNc [ i , ]= c (ml sim$par [ 1 ] , ml sim$par [ 2 ] ,

2∗exp(−exp(ml sim$par [ 3 ] ) ) −1 ,

exp(ml sim$par [ 4 ] ) , −ml sim$va l )

}
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resultsGPNc

beta0 ml sim=resultsGPNc [ , 1 ]

beta1 ml sim=resultsGPNc [ , 2 ]

cc ml sim=resultsGPNc [ , 3 ]

sigmasq ml sim=resultsGPNc [ , 4 ]

l o g l i k e ml sim=resultsGPNc [ , 5 ]

# To f i nd MLE es t ima t e s f o r the GSSc , use t h i s code and r e s u l t s

# s e c t i on :

resu l t sGSSc=matrix (1 ,nrow=km, ncol=5)

l i k e l i h o o d=function ( theta , y ){

y=y sim

beta0=theta [ 1 ]

beta1=theta [ 2 ]

cc=2∗exp(−exp( theta [3 ] ) )−1

ssq=exp( theta [ 4 ] )

t sq=exp( theta [ 5 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗ c o v a r i a t e [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗ c o v a r i a t e [ t ] )

+cc∗(m[ t ]+(( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq
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l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

for ( i in 1 :km){

y sim=y sim matrix [ i , ]

ml sim=optim(par=c ( beta0 0 , beta1 0 , cc 0 , sigmasq 0 , tausq 0) ,

l i k e l i h o o d ,NULL, method=” Nelder−Mead” )

resu l t sGSSc [ i , ]= c (ml sim$par [ 1 ] , ml sim$par [ 2 ] ,

2∗exp(−exp(ml sim$par [ 3 ] ) ) −1 ,

exp(ml sim$par [ 4 ] ) , exp(ml sim$par [ 5 ] ) )

}

resu l t sGSSc

beta0 ml sim=resu l tsGSSc [ , 1 ] ; beta1 ml sim=resu l tsGSSc [ , 2 ]

cc ml sim=resu l tsGSSc [ , 3 ] ; s igmasq ml sim=resu l t sGSSc [ , 4 ]

tausq ml sim=resu l tsGSSc [ , 5 ]
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Appendix B: Additional Figures

We have included additional figures not included in the main body of the manuscript

for any researchers wishing for more information about what happens in certain situations,

especially in the case of increasing observation error while modeling with both the GPNc

and GSSc.

Appendix B.1. GPNc Figures

GPNc Simulation Results without Observation Error:

Fig B.1.1 As the influence of the covariate changes from a -50% stationary mean population
change with a single standard deviation change in the covariate to a -20% change, a 20%
change, and a 50% change, there is convergence around the true value of c.
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Fig
B.1.2. As the population size changes from 100 to 1000, we find no clear distinction in vari-
ance or ability of the model to converge on the actual value of c. Both converge well.
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GPNc Simulation Results with Unmodeled Observation Error:

Fig
B.1.3. When unmodeled observation error is added to the GPNc withc = −0.9 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias and variance in the β0 estimates.
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Fig
B.1.4. When unmodeled observation error is added to the GPNc withc = −0.9 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias and variance in the β1 estimates.
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Fig
B.1.5. When unmodeled observation error is added to the GPNc with c = −0.9 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias and variance in the c estimates.
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Fig
B.1.6. When unmodeled observation error is added to the GPNc with c = −0.9 in 0.05 in-
crements from 0.05 to 0.5, we see greatly increasing bias and variance in the σ2 estimates.
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Fig
B.1.7. When unmodeled observation error is added to the GPNc with c = −0.5 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias and variance in the β0 estimates.
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Fig
B.1.8. When unmodeled observation error is added to the GPNc with c = −0.5 in 0.05 incre-
ments from 0.05 to 0.5, we see increasing variance in the β1 estimates, though less increasing
bias than in other circumstances.
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Fig
B.1.9. When unmodeled observation error is added to the GPNc with c = −0.5 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias in the c estimates. Variance remains similar
throughout.
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Fig
B.1.10. When unmodeled observation error is added to the GPNc with c = −0.5 in 0.05
increments from 0.05 to 0.5, we see increasing bias and variance in the σ2 estimates.
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Fig
B.1.11. When unmodeled observation error is added to the GPNc with c = 0 in 0.05 incre-
ments from 0.05 to 0.5, we see no bias and the same variance through estimates of β0. The
case where c = 0 is clearly the best-case scenario for situations with unmodeled observation
error.
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Fig
B.1.12. When unmodeled observation error is added to the GPNc with c = 0 in 0.05 incre-
ments from 0.05 to 0.5, we see no bias and only slightly increasing variance through estimates
of β1. The case where c = 0 is clearly the best-case scenario for situations with unmodeled
observation error.
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Fig
B.1.13. When unmodeled observation error is added to the GPNc with c = 0 in 0.05 incre-
ments from 0.05 to 0.5, we see no bias and no change in variance through estimates of c. The
case where c = 0 is clearly the best-case scenario for situations with unmodeled observation
error.
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Fig
B.1.14. When unmodeled observation error is added to the GPNc with c = 0 in 0.05 in-
crements from 0.05 to 0.5, we see greatly increasing bias and variance through estimates of
σ2. The case where c = 0 is clearly the best-case scenario for situations with unmodeled
observation error as ssq has taken most of the additional error.
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Fig
B.1.15. When unmodeled observation error is added to the GPNc with c = 0.5 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias in the beta0 estimates. Variance remains
about the same throughout.
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Fig
B.1.16. When unmodeled observation error is added to the GPNc with c = 0.5 in 0.05 in-
crements from 0.05 to 0.5, we see minimal bias and no real change in variance in the β1
estimates.
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Fig
B.1.17. When unmodeled observation error is added to the GPNc with c = 0.5 in 0.05 incre-
ments from 0.05 to 0.5, we see increasing bias, though similar variance, in the c estimates.
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Fig
B.1.18. When unmodeled observation error is added to the GPNc with c = 0.5 in 0.05 in-
crements from 0.05 to 0.5, we see increasing bias and variance in the σ2 estimates.

Graphs for β0, β1, and σ2 estimates with unmodeled observation error when c = .9 are

not shown here because they include many extreme values. When c = .9, the GPNc model

should not be used. A graph for c, below, is shown as reference for the large estimability

problems.
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Fig
B.1.19. When unmodeled observation error is added to the GPNc with c = 0.9 in 0.05 in-
crements from 0.05 to 0.5, we see greatly increasing bias and variance in the c estimates.
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Appendix B.2. GSSc Figures

GSSc Simulation Results:

Fig B.2.1. Changing the influence of a single standard deviation change of the covariate
shows that there is slightly less variance as well as less bias as influence increases in absolute
value..
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Fig B.2.2. Changing the stationary mean of the population results in similar variance of the
estimates, but more extreme values in the smaller population size. However, there is slightly
more bias in the larger population size.
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Fig B.2.3. As observation error is added to the GSSc when c = −.9 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of c throughout, though there is relatively little bias.
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Fig B.2.4. As observation error is added to the GSSc when c = −.9 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of σ2 throughout, though there is relatively little
bias.
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Fig B.2.5.(a) As observation error is added to the GSSc when c = −.5 in 0.05 increments
from 0.05 to 0.5, we see such extreme estimates for β0 that the majority of estimates are all
but hidden. The real value of β0 here is 2.34, but estimates range all the way down to nearly
-40.
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Fig B.2.5.(b) A “magnified” version of Fig B.2.5.(a). As observation error is added to the
GSSc when c = −.5 in 0.05 increments from 0.05 to 0.5, we see such extreme estimates for
β0 that in order to see how estimates relate to the real value, we had to cut off the graph at
1.0. Even excluding the extreme values, we see quite a bit of bias and increasing variance in
our β0 estimates.
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Fig B.2.6.(a) As observation error is added to the GSSc when c = −.5 in 0.05 increments
from 0.05 to 0.5, we see such extreme estimates for β1 that the majority of estimates are all
but hidden. The real value of β1 here is 0.03, but estimates range all the way from nearly 3
to nearly -5.
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Fig B.2.6.(b) A “magnified” version of Fig B.2.6.(a). As observation error is added to the
GSSc when c = −.5 in 0.05 increments from 0.05 to 0.5, we see such extreme estimates for
β1 that in order to see how estimates relate to the real value, we had to cut off the graph at
0.2 and -0.2. Excluding the extreme values, we do not see much bias and increasing variance
in our β1 estimates.
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Fig B.2.7. As observation error is added to the GSSc when c = −.5 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of c throughout, along with, interestingly, decreasing
bias and increasing variance.
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Fig B.2.8. As observation error is added to the GSSc when c = −.5 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of σ2 throughout, ranging all the way up to nearly
3, along with slightly decreasing bias and increasing variance.
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Fig B.2.9. As observation error is added to the GSSc when c = 0 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of c throughout, along with decreasing though very
pronounced bias and increasing variance. Estimates range over the entire parameter space
of c as observation error increases.
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Fig B.2.10. As observation error is added to the GSSc when c = 0 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of σ2 throughout, ranging all the way up to nearly
2.5, along with slightly decreasing, though pronounced, bias and increasing variance.
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Fig B.2.11. As observation error is added to the GSSc when c = .5 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of c throughout, along with decreasing though very
pronounced bias. Estimates appear to be converging at nearly the reverse of the true value
(-.5 rather than the true value of .5). Estimates range over the entire parameter space of c
throughout.
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Fig B.2.12. As observation error is added to the GSSc when c = .5 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of σ2 throughout, ranging all the way up to nearly
3, along with pronounced bias and increasing variance.
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Fig B.2.13. As observation error is added to the GSSc when c = .9 in 0.05 increments from
0.05 to 0.5, there are extreme estimates of c throughout, though interestingly the bias is
much less pronounced than in other values of c. Estimates range over the entire parameter
space of c throughout to such an extreme degree that any confidence interval built using
these estimates would likely include the entire parameter space of c.
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Fig B.2.14. Changing the values of c from −0.9to0.9 using the GSSc with a time series
length of 60 does not appear to help estimability problems. There is still a great deal of
bias, especially when c > 0, and very large amounts of variability.
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Appendix C: Mule Deer Data Example

We have included an example of using the GSSc with a real dataset to show how to

recognize potential estimability problems in the data. Complete code, including that for

creating profile likelihood plots, is shown below:

Appendix C.1. GSSc with Mule Deer Data Code

##### How To Check f o r E s t ima b i l i t y Problems Example : #####

##### GSSc with Mule Deer Data (Peek e t a l . 2002) #####

# Program to c a l c u l a t e the ML es t ima t e s o f the GSS model proposed

# by Dennis e t a l in the paper ”Est imat ing Denisty Dependence ,

# Process Noise , and Observat ion Error” ( Eco l o g i c a l Monographs ,

# 2006) , wi th c o va r i a t e s and f i nd p r o f i l e l i k e l i h o o d p l o t s .

# f ( y [ t ] | y [ 0 ] , y [ 1 ] , . . . , y [ t−1])=(v [ t ]ˆ2∗2∗p i )ˆ(−1/2)∗

# exp(−(y [ t ]−m[ t ] )ˆ2/2∗v [ t ] ˆ2 )

# where mt=a+c (m( t−1)+((v ( t−1)ˆ2− tao ˆ2)/( v ( t −1)ˆ2))∗( y ( t−1)−m( t−1))

# and v t=cˆ2∗ ( ( v ( t−1)ˆ2− tao ˆ2)/v ( t −1)ˆ2)∗ taoˆ2+sigmaˆ2+tao ˆ2

# For s t a t i ona r y d i s t r i b u t i o n :

# m0=a/(1−c )

# v0ˆ2=(sigmaˆ2/(1−cˆ2))+ tao ˆ2
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# For nons ta t ionary d i s t r i b u t i o n :

# m0=x0

# v0ˆ2=tao ˆ2

# Using i n d i v i d u a l log−l i k e h ood s and summing , each

# lo g f ( y [ t ] | y [ t −1] , y [ t −2 ] , . . . y [0]=

# −.5∗ l o g (2∗p i )−.5∗ l o g ( v [ t ]ˆ2]−( y [ t ]−m[ t ] )ˆ2/(2∗v [ t ] ˆ2 )

# With c o va r i a t e s :

# f ( y [ t ] | y [ 0 ] , y [ 1 ] , . . . , y [ t −1]) i s the same as above , but

# m[ t ]=exp ( be ta0+beta1∗W1+beta2∗W2+...+ betap∗Wp)+c∗(m[ t−1]

# +((v [ t−1]ˆ2− tao ˆ2)/v [ t −1]ˆ2)∗( y [ t−1]−m[ t −1])

# v [ t ]=cˆ2∗ ( ( v [ t−1]ˆ2− tao ˆ2)/v [ t −1]ˆ2)∗ taoˆ2+sigmaˆ2+tao ˆ2

# where p i s the number o f c o v a r i a t e s

# c must be between −1 and 1

# ssq must be > 0

# t s q must be > 0

# data from Peek e t a l . (XXX)

year =1964:1989

n=c ( 8 7 . 9 , 8 6 . 5 , 7 6 . 1 , 6 5 . 1 , 4 7 . 6 , 5 1 . 4 , 3 0 . 2 , 3 4 . 2 , 3 3 . 6 , 1 7 . 1 , 1 4 . 2 , 1 6 . 4 ,

2 8 . 1 , 2 8 . 7 , 3 3 . 3 , 2 4 . 8 , 3 4 . 3 , 2 3 . 5 , 2 1 . 8 , 2 2 . 2 , 2 8 . 2 , 2 3 . 2 , 1 7 . 1 , 1 5 )

canopy=c ( 27 , 29 , 31 , 33 , 35 , 37 , 39 , 41 , 43 , 45 , 46 , 48 . 5 , 51 , 52 . 5 , 56 , 58 . 5 , 61 ,

6 3 . 5 , 6 6 , 6 8 . 5 , 6 9 , 7 1 . 5 , 7 3 , 7 4 . 5 , 7 6 )

f o r age=c ( 1 1 . 4 3 , 1 0 . 4 2 , 9 . 5 5 , 8 . 8 1 , 8 . 1 8 , 7 . 6 4 , 7 . 1 8 , 6 . 7 8 , 6 . 4 4 , 6 . 1 4 , 6 . 0 1 ,
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5 , 5 . 7 3 , 5 . 3 7 , 5 . 1 4 , 5 , 4 . 8 9 , 4 . 3 8 , 4 . 7 3 , 4 . 6 7 , 4 . 6 5 , 4 . 6 , 4 . 5 8 , 4 . 5 6 , 4 . 5 4 )

a p r i l=c (−0.964 ,1.482 ,−0.554 ,1.161 ,−1.107 ,−0.607 ,−0.893 ,−0.517 ,

−0 .304 ,−1 .125 ,0 .232 ,−0 .25 ,−1 .214 ,−1 .25 ,1 .642 ,1 .071 ,0 .032 ,0 .411 ,

−0.25 ,1 .161 ,0 .554 ,−0.893 ,−1.125 ,0 .339)

june=c (0 .833 ,0 .417 ,0 .645 , −0 .667 ,1 .542 , −1 .083 ,0 .146 , −0 .354 , −1 .479 ,

−1.375 ,0 .5 ,−0.917 ,1 .813 ,−0.208 ,−0.979 ,0 .125 ,−1.125 ,1 .708 ,−0.75 ,

0 .042 ,−0.083 ,−0.333 ,0 .625 ,−1.063)

august=c (2 .581 ,1 .068 ,−0.77 ,1 .527 ,−0.77 ,−0.77 ,−0.541 ,−0.649 ,−0.716 ,

−0.432 ,−0.189 ,2 .905 ,−0.554 ,−0.081 ,0 .621 ,−0.77 ,−0.77 ,0 .068 ,0 .203 ,

1.324 ,−0.676 ,−0.73 ,−0.77 ,−0.189)

october=c (−1.206 ,−0.945 ,−0.137 ,−0.123 ,1 .548 ,1 ,−0.247 ,0 .808 ,1 .219 ,

−0.548 ,1 .055 ,−1.082 ,−0.712 ,−1.26 ,2 .753 ,−0.589 ,0 .452 ,0 .562 ,

−0.206 ,1 .384 ,−0.082 ,−1.192 ,−1.26 ,0.233)

december=c (−0.492 ,0.411 ,−0.579 ,−0.315 ,1.234 ,−0.406 ,−0.31 ,−0.228 ,

−0.036 ,−0.193 ,−0.614 ,−1.036 ,0 .569 ,4 .858 ,−0.492 ,−0.234 ,1 .832 ,

0 .452 ,1 .802 ,−0.487 ,−0.772 ,0 .893 ,−0.523 ,−0.929)

q=length (n)−1

k=length (n)

l i k e l i h o o d=function ( theta , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )
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beta5=(theta [ 6 ] )

beta6=(theta [ 7 ] )

beta7=(theta [ 8 ] )

cc=2∗exp(−exp( theta [9 ] ) )−1

ssq=exp( theta [ 1 0 ] )

t sq=exp( theta [ 1 1 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}
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# To enter s t a r t i n g va l u e s in t o optim , need to conver t to t h e t a

# va lu e s

# For the purpose o f p r a c t i c e problem , us ing c a l c u l a t e d va l u e s from

# example in 2006 paper (a=0.3929 , c=0.7934 , s s q =0.09726 ,

# t s q =0.2315)

beta0 0=0

beta1 0=−0.1

beta2 0=−0.1

beta3 0=0

beta4 0=0.1

beta5 0=0.2

beta6 0=0

beta7 0=0.1

c0 =0.8

ssq0 =0.1

tsq0 =0.2

# Optimize f o r ML es t ima t e s

ml=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

l i k e l i h o o d ,NULL, method=” Nelder−Mead” )

r e s u l t s=c (ml$par [ 1 ] , ml$par [ 2 ] , ml$par [ 3 ] , ml$par [ 4 ] , ml$par [ 5 ] ,

ml$par [ 6 ] , ml$par [ 7 ] , ml$par [ 8 ] , 2∗exp(−exp(ml$par [ 9 ] ) ) −1 ,

exp(ml$par [ 1 0 ] ) , exp(ml$par [ 11 ] ) ,−ml$va l )

beta0 . ml=r e s u l t s [ 1 ]

beta1 . ml=r e s u l t s [ 2 ]
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beta2 . ml=r e s u l t s [ 3 ]

beta3 . ml=r e s u l t s [ 4 ]

beta4 . ml=r e s u l t s [ 5 ]

beta5 . ml=r e s u l t s [ 6 ]

beta6 . ml=r e s u l t s [ 7 ]

beta7 . ml=r e s u l t s [ 8 ]

c . ml=r e s u l t s [ 9 ]

sigmasq . ml=r e s u l t s [ 1 0 ]

taosq . ml=r e s u l t s [ 1 1 ]

l o g l i k e . ml=r e s u l t s [ 1 2 ]

# User s e t s parameter i n t e r v a l s f o r p r o f i l e p l o t s and t o t a l

# number o f h o r i z o n t a l a x i s increments here .

beta0 lo =−0.2; # Low va lue o f ” be ta0 ”

beta0h i =0.2 ; # High va lue o f ” be ta0 ” , e t c .

beta1 lo =−0.2; beta1h i =0.2 ; be ta2 lo =−0.2; beta2h i =0.2 ;

be ta3 lo =−0.2; beta3h i =0.2 ; be ta4 lo =−0.2; beta4h i =0.2 ;

be ta5 lo =−0.2; beta5h i =0.2 ; be ta6 lo =−0.2; beta6h i =0.2 ;

be ta7 lo =−0.2; beta7h i =0.2 ; c c l o =0.1 ; c ch i =.98;

s s q l o =0.01; s s q h i =0.4 ; t s q l o =0.1; t s q h i =0.3 ;

n inc s =100; # Number o f increments f o r the p r o f i l e p l o t s .

l ibrary (MASS) ; # loads mi sce l l aneous f unc t i on s ( ginv , e t c . ) .

# Se t s parameter va l u e s f o r p r o f i l e l i k e l i h o o d s .

beta0va l s=seq ( beta0 lo , beta0hi ,by=(( beta0hi−beta0 lo )/n incs ) )



70

be ta1va l s=seq ( beta1 lo , beta1hi ,by=(( beta1hi−beta1 lo )/n incs ) )

be ta2va l s=seq ( beta2 lo , beta2hi ,by=(( beta2hi−beta2 lo )/n incs ) )

be ta3va l s=seq ( beta3 lo , beta3hi ,by=(( beta3hi−beta3 lo )/n incs ) )

be ta4va l s=seq ( beta4 lo , beta4hi ,by=(( beta4hi−beta4 lo )/n incs ) )

be ta5va l s=seq ( beta5 lo , beta5hi ,by=(( beta5hi−beta5 lo )/n incs ) )

be ta6va l s=seq ( beta6 lo , beta6hi ,by=(( beta6hi−beta6 lo )/n incs ) )

be ta7va l s=seq ( beta7 lo , beta7hi ,by=(( beta7hi−beta7 lo )/n incs ) )

c c v a l s=seq ( cc lo , cchi ,by=(( cchi−c c l o )/n incs ) )

s s q v a l s=seq ( s sq lo , s sqh i ,by=(( ssqh i−s s q l o )/n incs ) )

t s q v a l s=seq ( t sq l o , t sqh i ,by=(( tsqh i−t s q l o )/n incs ) )

# These v e c t o r s w i l l e v e n t u a l l y ho ld the p r o f i l e s .

prof i le . beta0=beta0va l s

prof i le . beta1=beta1va l s

prof i le . beta2=beta2va l s

prof i le . beta3=beta3va l s

prof i le . beta4=beta4va l s

prof i le . beta5=beta5va l s

prof i le . beta6=beta6va l s

prof i le . beta7=beta7va l s

prof i le . cc=c c v a l s

prof i le . s sq=s s q v a l s

prof i le . t sq=t s q v a l s

# Log− l i k e l i h o o d s f o r p r o f i l e s : f i r s t the parameter ”a” i s

# f i x ed , then ”c” i s f i x ed , and so on .
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# ”beta0 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta0 . ml=function ( theta , parval , y ){

y=log (n)

beta0=parva l

beta1=(theta [ 1 ] )

beta2=(theta [ 2 ] )

beta3=(theta [ 3 ] )

beta4=(theta [ 4 ] )

beta5=(theta [ 5 ] )

beta6=(theta [ 6 ] )

beta7=(theta [ 7 ] )

cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )
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vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”beta1 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta1 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=parva l

beta2=(theta [ 2 ] )

beta3=(theta [ 3 ] )

beta4=(theta [ 4 ] )

beta5=(theta [ 5 ] )

beta6=(theta [ 6 ] )

beta7=(theta [ 7 ] )

cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+
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beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”beta2 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta2 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=parva l

beta3=(theta [ 3 ] )

beta4=(theta [ 4 ] )

beta5=(theta [ 5 ] )

beta6=(theta [ 6 ] )

beta7=(theta [ 7 ] )

cc=2∗exp(−exp( theta [8 ] ) )−1
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ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”beta3 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta3 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )
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beta2=(theta [ 3 ] )

beta3=parva l

beta4=(theta [ 4 ] )

beta5=(theta [ 5 ] )

beta6=(theta [ 6 ] )

beta7=(theta [ 7 ] )

cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )
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return ( l o g l i k e )

}

# ”beta4 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta4 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=parva l

beta5=(theta [ 5 ] )

beta6=(theta [ 6 ] )

beta7=(theta [ 7 ] )

cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+
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beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”beta5 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta5 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )

beta5=parva l

beta6=(theta [ 6 ] )

beta7=(theta [ 7 ] )

cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+
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beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”beta6 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta6 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )

beta5=(theta [ 6 ] )

beta6=parva l

beta7=(theta [ 7 ] )
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cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”beta7 ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . beta7 . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )
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beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )

beta5=(theta [ 6 ] )

beta6=(theta [ 7 ] )

beta7=parva l

cc=2∗exp(−exp( theta [8 ] ) )−1

ssq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}
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l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”c” i s a vec t o r o f f i x e d va l u e s

n e g l o g l i k e . c . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )

beta5=(theta [ 6 ] )

beta6=(theta [ 7 ] )

beta7=(theta [ 8 ] )

cc=parva l

s sq=exp( theta [ 9 ] )

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+
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beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”sigma−squared ” i s a vec t o r o f f i x e d va l u e s .

n e g l o g l i k e . s sq . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )

beta5=(theta [ 6 ] )

beta6=(theta [ 7 ] )

beta7=(theta [ 8 ] )

cc=2∗exp(−exp( theta [9 ] ) )−1

ssq=parva l

t sq=exp( theta [ 1 0 ] )

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )
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m[1]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

# ”tau−squared ” i s a vec t o r o f f i x e d va l u e s

n e g l o g l i k e . t sq . ml=function ( theta , parval , y ){

y=log (n)

beta0=(theta [ 1 ] )

beta1=(theta [ 2 ] )

beta2=(theta [ 3 ] )

beta3=(theta [ 4 ] )

beta4=(theta [ 5 ] )

beta5=(theta [ 6 ] )

beta6=(theta [ 7 ] )
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beta7=(theta [ 8 ] )

cc=2∗exp(−exp( theta [9 ] ) )−1

ssq=exp( theta [ 1 0 ] )

t sq=parva l

vv=vector (mode=”numeric ” , k )

m=vector (mode=”numeric ” , k )

l p d f=vector (mode=”numeric ” , k )

m[1 ]=exp( beta0+beta1∗canopy [1 ]+ beta2∗ f o r age [1 ]+ beta3∗ a p r i l [1 ]+

beta4∗ june [1 ]+ beta5∗august [1 ]+ beta6∗october [1 ]+

beta7∗december [ 1 ] ) /

(1−cc )

vv [1 ]=( ssq/(1−cc ˆ2))+ tsq

l p d f [1]=− .5∗log (2∗pi )−.5∗log ( vv [1 ] ) − ( ( y [1]−m[ 1 ] ) ˆ 2 /(2∗vv [ 1 ] ) )

for ( t in 1 :q){

m[ t+1]=exp( beta0+beta1∗canopy [ t+1]+beta2∗ f o r age [ t+1]+

beta3∗ a p r i l [ t+1]+beta4∗ june [ t+1]+beta5∗august [ t+1]+

beta6∗october [ t+1]+beta7∗december [ t+1])+ cc∗(m[ t ]+

( ( vv [ t ]− t sq )/vv [ t ] ) ∗( y [ t ]−m[ t ] ) )

vv [ t+1]=cc ˆ2∗ ( ( vv [ t ]− t sq )/vv [ t ] ) ∗ t sq+ssq+tsq

l p d f [ t+1]=−.5∗log (2∗pi )−.5∗log ( vv [ t +1])−((y [ t+1]−m[ t +1])ˆ2/

(2∗vv [ t +1]))

}

l o g l i k e=−sum( l p d f )

return ( l o g l i k e )

}

for ( i i in 1 : ( n inc s +1))
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{

# Ca l cu l a t e p r o f i l e f o r ” be ta0 ” .

GSSbeta0=optim(par=c ( beta1 0 , beta2 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta0 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta0va l s [ i i ] )

prof i le . beta0 [ i i ]=−GSSbeta0$value

# Ca l cu l a t e p r o f i l e f o r ” be ta1 ” .

GSSbeta1=optim(par=c ( beta0 0 , beta2 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta1 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta1va l s [ i i ] )

prof i le . beta1 [ i i ]=−GSSbeta1$value

# Ca l cu l a t e p r o f i l e f o r ” be ta2 ” .

GSSbeta2=optim(par=c ( beta0 0 , beta1 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta2 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta2va l s [ i i ] )

prof i le . beta2 [ i i ]=−GSSbeta2$value

# Ca l cu l a t e p r o f i l e f o r ” be ta3 ” .

GSSbeta3=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta3 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta3va l s [ i i ] )
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prof i le . beta3 [ i i ]=−GSSbeta3$value

# Ca l cu l a t e p r o f i l e f o r ” be ta4 ” .

GSSbeta4=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta4 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta4va l s [ i i ] )

prof i le . beta4 [ i i ]=−GSSbeta4$value

# Ca l cu l a t e p r o f i l e f o r ” be ta5 ” .

GSSbeta5=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta5 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta5va l s [ i i ] )

prof i le . beta5 [ i i ]=−GSSbeta5$value

# Ca l cu l a t e p r o f i l e f o r ” be ta6 ” .

GSSbeta6=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 ,

beta5 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta6 . ml ,NULL, method=” Nelder−Mead” ,

parva l=beta6va l s [ i i ] )

prof i le . beta6 [ i i ]=−GSSbeta6$value

# Ca l cu l a t e p r o f i l e f o r ” be ta7 ” .

GSSbeta7=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 ,

beta5 0 , beta6 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) , log ( tsq0 ) ) ,

n e g l o g l i k e . beta7 . ml ,NULL, method=” Nelder−Mead” ,
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parva l=beta7va l s [ i i ] )

prof i le . beta7 [ i i ]=−GSSbeta7$value

# Ca l cu l a t e p r o f i l e f o r ”c ” .

GSScc=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log ( ssq0 ) , log ( tsq0 ) ) , n e g l o g l i k e . c . ml ,NULL,

method=” Nelder−Mead” , parva l=c c v a l s [ i i ] )

prof i le . cc [ i i ]=−GSScc$value

# Ca l cu l a t e p r o f i l e f o r ” s sq ” .

GSSssq=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( tsq0 ) ) ,

n e g l o g l i k e . s sq . ml ,NULL, method=” Nelder−Mead” , parva l=s s q v a l s [ i i ] )

prof i le . s sq [ i i ]=−GSSssq$value

# Ca l cu l a t e p r o f i l e f o r ” t s q ” .

GSStsq=optim(par=c ( beta0 0 , beta1 0 , beta2 0 , beta3 0 , beta4 0 , beta5 0 ,

beta6 0 , beta7 0 , log(−log ( ( c0+1)/ 2 ) ) , log ( ssq0 ) ) ,

n e g l o g l i k e . t sq . ml ,NULL, method=” Nelder−Mead” , parva l=t s q v a l s [ i i ] )

prof i le . t sq [ i i ]=−GSStsq$value

}

# Sets h i g h e s t p r o f i l e va lue at zero .

prof i le . beta0=prof i le . beta0−max( prof i le . beta0 )

prof i le . beta1=prof i le . beta1−max( prof i le . beta1 )

prof i le . beta2=prof i le . beta2−max( prof i le . beta2 )

prof i le . beta3=prof i le . beta3−max( prof i le . beta3 )
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prof i le . beta4=prof i le . beta4−max( prof i le . beta4 )

prof i le . beta5=prof i le . beta5−max( prof i le . beta5 )

prof i le . beta6=prof i le . beta6−max( prof i le . beta6 )

prof i le . beta7=prof i le . beta7−max( prof i le . beta7 )

prof i le . cc=prof i le . cc−max( prof i le . cc )

prof i le . s sq=prof i le . ssq−max( prof i le . s sq )

prof i le . t sq=prof i le . tsq−max( prof i le . t sq )

# Pro f i l e s p l o t t e d here .

par ( cex . lab =1.5 , cex . axis =1.5 , lwd=2)

layout (matrix ( 1 : 6 , 3 , 2 ) )

plot ( beta0va l s , prof i le . beta0 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta0 ) )

plot ( beta2va l s , prof i le . beta2 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta2 ) )

plot ( beta4va l s , prof i le . beta4 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta4 ) )

plot ( beta1va l s , prof i le . beta1 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta1 ) )

plot ( beta3va l s , prof i le . beta3 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta3 ) )

plot ( beta5va l s , prof i le . beta5 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta5 ) )

par ( cex . lab =1.5 , cex . axis =1.5 , lwd=2)

layout (matrix ( 1 : 6 , 3 , 2 ) )

plot ( beta6va l s , prof i le . beta6 , type=” l ” , l t y =1, ylab=” log l i k e ” ,



89

xlab=expression ( beta6 ) )

plot ( ccva l s , prof i le . cc , type=” l ” , l t y =1, ylab=” l o g l i k e ” ,

xlab=expression ( c ) )

plot ( t sqva l s , prof i le . tsq , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( tau ˆ2))

plot ( beta7va l s , prof i le . beta7 , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( beta7 ) )

plot ( s sqva l s , prof i le . ssq , type=” l ” , l t y =1, ylab=” log l i k e ” ,

xlab=expression ( sigma ˆ2))

# Print r e s u l t s

beta0 . ml

beta1 . ml

beta2 . ml

beta3 . ml

beta4 . ml

beta5 . ml

beta6 . ml

beta7 . ml

c . ml

sigmasq . ml

taosq . ml

l o g l i k e . ml

Appendix C.2. Profile Likelihood Plots Examination

When we look at the profile likelihood plots created using the code in Appendix C.1, it

is clear that something unexpected is occuring (Figure C.2.1 and C.2.2). Plots do not show
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smooth unimodal curves as anticipated. Estimability problems are recognizable in profile

likelihood plots by either ridge shaped curves or jagged, multimodal curves, as seen below.

After determining that estimability is a problem with the 7 covariates included in the

mule deer data, we examined the data with a single covariate (canopy) and recreated the

associated profile plots using modified code from Appendix C.1 (Figure C.2.3). Even with

a single covariate, profile plots are clearly showing potential estimability problems. At this

point, a simulation study such as that conducted in this study should be conducted to

determine limits of estimability of the model.
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Fig C.2.1. Profile likelihood plots of the first 6 parameters of the GSSc with 7 covariates

from the mule deer data show unexpected behavior. Jagged, multimodal curves with no

clear maximum value indicate possible estimability problems that should be investigated.
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Fig C.2.2. Profile likelihood plots of the last 5 parameters of the GSSc with 7 covariates

from the mule deer data show unexpected behavior. Jagged, multimodal curves with no

clear maximum value indicate possible estimability problems that should be investigated.
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Fig C.2.3. Profile likelihood plots of the GSSc with only the first covariate from the mule

deer data continue to show unexpected behavior. Jagged, multimodal curves with no clear

maximum value indicate possible estimability problems that should be investigated.


