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Abstract 

The overall safety and reliability of critical systems may be improved if interfaces can be 

tailored to the current cognitive states of their operators. For this to be realized, online 

measures of cognitive workload need to be developed. This dissertation proposes that 

cognitive measures based on physiological indicators provides the most potential in real world 

environments where task performance is difficult to quantify and operators may not be able to 

periodically self-report their workload. Here, the primary aim is the development and 

evaluation of algorithms for identifying cognitive workload from multiple relatively 

unobtrusive physiological measures using wavelet decomposition and machine learning. To 

support his primary aim, a tracking task was developed that allowed workload difficulty to be 

subtly and continuously manipulated in a systematic fashion. This manipulation was validated 

against subjective ratings of workload as well as with a secondary random number generation 

task. After establishing a means of controlling workload difficulty pupil diameter, skin 

conductance, heart rate, and heart rate variability were recorded and used in conjunction with 

machine learning to build classifiers of workload difficulty.  Applying discrete wavelet 

decomposition to physiological measures and training classifiers to specific individuals yielded 

algorithms that could classify workload difficulty and derivative workload difficulty with 

enough accuracy to support practical applications (> 90% accuracies).  
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 Introduction and Background Chapter 1:

When human decisions affect the operation of critical systems, such as nuclear reactors, a 

small but non-trivial potential for disaster exists. Such disasters are often termed low-probability 

high-consequence events (Ellingwood & Wen, 2005). In our modern society the potential benefits of 

critical systems are arguably deemed to outweigh the associated risks (Komiyama & Kraines, 

2008). Nuclear power increases our autonomy and reduces our carbon-footprint, space exploration 

expands our knowledge. However, tragic incidents like the collapse of the Tacoma Narrows Bridge, 

the 2010 British Petroleum oil spill, the Fukushima Daiichi nuclear incident, and the explosion of 

the space shuttle Challenger demonstrate that extreme caution must be taken at every step in the 

design, operation, and maintenance of critical systems. The repercussions of such failures have 

immediate and enduring consequences.    

The recent Fukushima Daiichi nuclear incident in Japan is on par with the Chernobyl 

incident of 1986 that littered 6.7 metric tons of radioactive material over 200,000 square 

kilometers. Twenty-five years after the incident there are still over 3,500 known radioactive 

hotspots. The remediation is expected to continue for at least another 50 years (Peplow, 2011). 

Unfortunately the problem is complicated by the fact that radioactive material can be moved by 

wind and precipitation. While diffusion can help, weather patterns often result in dangerously high 

levels of radiation in isolated regions relatively far from the sites of origin. Detecting contamination 

is complicated by the fact that the material is invisible to the naked eye and odorless. Material that 

finds its way into the soil must also be treated quickly to avoid ground water contamination. These 

contaminated areas surrounding Chernobyl have documented a ten-fold increase in thyroidal 

cancer rates (Peplow, 2011). Such nuclear incidents also have long-lasting psychological effects. To 

this day managing exposure to radiation is a normal affair for Belarusian families. Children are 

socialized at an early age to the concept of radiation and their exposure is carefully monitored in a 
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manner similar to how one would keep track of a child’s height and weight.  As outsiders, we can 

only imagine the added stress living in such an environment would present.   

Unfortunately, current global energy consumption begets increasingly complex 

technologies needed to obtain and use natural resources. For instance, if oil consumption continues 

unimpeded oil reserves will almost certainly be depleted by the end of the 21st century. By 2050 the 

global population is expected to reach 9 billion. Because of this population growth and the 

combined effect of globalization, fossil fuel consumption is as high as ever (Komiyama & Kraines, 

2008). Forty years ago finding and obtaining oil was relatively easy. As these ancient reserves are 

depleted the logistics of finding and safely obtaining the oil become much more difficult. Deep sea 

drilling is one consequence of this fact. Incidents like the Deepwater Horizon oil spill, which has 

been attributed to lax adherence to safety standards on the part of British Petroleum, Halliburton, 

and Transocean, show that complacency is not an option (Drilling, 2011).  

Some may wonder if the benefits from technologies like deep sea drilling and nuclear power 

are worth the risks. From the dawn of civilization humans have used technology, and from that time 

technological innovation has been a constant unyielding force. Human innovation is derived from 

our intelligence and is as essential to being human as walking on two feet and possessing opposable 

thumbs. Yet the context of our current situation leads one to wonder about human life at the turn of 

the 22nd century. Komiyama and Kraines (2008, p. VIII) put it thusly: 

It cannot be denied that the twin titans of science and technology have given human beings 

the potential to destroy ourselves. But if we develop science and technology wisely, we can 

use them to create a sustainable environment supporting a comfortable lifestyle in a clean 

and beautiful planet that humanity can enjoy for generations to come. Therefore, we need to 

make the correct choices concerning the direction of technology, and these choices can be 

made and implemented only through the consensus of society. There has never been a time 

when a good relationship between society and technology has been more important.  

Perhaps the key insight Komiyama and Kraines are making is that technology should be viewed 

with ambivalence. Technology in and of itself is not good or bad. A second lesson to be learned from 

our history of technology is that human and machine must function synergistically.  
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Often, when one hears of complex technology the visceral reaction is negative. Every 

participant of the digital era knows how infuriating technology can be. Norman (2011) argues that 

it is not complexity that causes problems, but rather the frustration and complications caused by 

technology. Norman points out that in many regards humans have a natural attraction for 

observing and understanding complexity. Science, visual art, music and sports may all be products 

of this drive. In Norman’s framework simplicity is not diametrically opposed to complexity. 

Complexity describes the state of the world; simplicity describes a state of the mind. Complexity 

reflects the intricacies between the operations of a system. Confusion and frustration result when 

humans are not able to form a mental model of a system. Confusion and frustration should be 

viewed as the enemy, not complexity. Increasing the complexity of a system may even serve to 

alleviate confusion and frustration at the cost of making it more difficult to engineer.  

The law of conservation of complexity, or Tesler’s law (Tesler & Saffer., 2007), states that 

“Every application must have an inherent amount of irreducible complexity. The only question is 

who will have to deal with it.” For example early motorcycles required not only familiarity with 

operation of an internal combustion engine, but with the particular machine as well. To start the 

engine one must first make sure the motorcycle is in neutral, set the throttle position, set the choke, 

then manually retard the timing. Next the rider must use the kickstarter to position the piston at the 

beginning of its intake stroke by listening for the tell-tale sound of air escaping from the exhaust 

valve. Finally the rider could attempt to kickstart the engine and carefully close the choke and 

advance the timing as the machine warmed up to operating temperature. To make matters even 

more confusing the appropriate settings for the throttle, choke, and timing depended on the 

ambient temperature as well as the operating temperature of the machine. Poor selection would 

result in the machine not starting with the possibility of the engine backfiring and thrusting the 

kickstarter directly into the operator’s shin. Crawford (2009) describes these early motorcycles as 

“more convenient than a horse, but surely not by much.” Really early machines even required using 
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a hand operated pump to intermittently lubricate the inner workings of the crankcase. Neglecting 

to do so would destroy the engine. In contrast modern motorcycles and automobiles have 

automated starting systems that check to make sure the vehicle is out of gear (in park, or at least 

the clutch is disengaged), adjust the amount of fuel and air entering the engine, precisely control 

the ignition of the air and fuel, and even turn over the engine.  

Today, talk of such systems actually seems mudane, and this is the point. Vehicles today are 

much more complex than vehicles of the past. These new vehicles all come with vacuum systems, 

electronic ignition systems, electronic fuel injection systems, mechanical pumps, solenoids, 

compressors, electric motors, computers and the multitude of sensors that go along with them. A 

modern automobile for instance, may contain over 30 computers requiring as many as 100 million 

lines of code (Motavalli, 2010). Despite their increased complexity modern vehicles are safer and 

easier to operate from the perspective of drivers. First adopters of motorcycles with mechanical 

fuel pumps were likely hesitant to relinquish control to one of the most important aspects of the 

machines operation. At first they probably paid close attention to every nuance of the machine in an 

effort to evaluate the competency of the innovative device. To assuage rider anxieties oil pressure 

gauges would be installed to allow riders to validate the systems performance at a glance. Overtime 

riders would slowly begin to trust and even prefer mechanical oil pumps to the manual hand 

operated pumps of the past.  

While additional system complexity makes systems as a whole become much more complex, 

appropriately implemented abstraction and hierarchical layering of technology can actually reduce 

the complexity that any single human has to manage. For example, a word processor end-user need 

not know how to develop applications, an application developer need not know the instruction set 

of the underlying hardware, an OS developer need not know how circuit gates function, and so on. 

Ideally, at each level of the hierarchy the complexity that any particular engineer, or team of 

engineers, need to deal with should be manageable even though the systems as a whole are much 
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more complex. A layer of abstraction may be dependent on the reliability of lower levels of 

abstraction, but theory and experience have shown that nearly defect-free technological systems 

can be implemented (Gertman & Blackman, 1994). Because technology is so reliable the largest 

source of unreliability is more often than not the human component. 

Incorporating the human component into the design of a system is by far the greatest 

challenge.  In 1988 the newly developed Airbus A320 was heralded as a revolution in aircraft 

automation and safety. The plane featured advanced cockpit instrumentation, fly-by-wire controls 

and a flight-protection system that modulated control inputs based on the aircrafts current speed 

and altitude as well as the aircraft’s aerodynamic properties to prevent the plane from crashing or 

overstressing the airframe (Casey, 1998).  

On June 26, 1988 a new A320, under control of Captain Michel Asseline, was scheduled to 

make a low-speed low-altitude flyover at an airshow in Mulhouse Habsheim, France. Shortly after 

takeoff the flight-protection, autothrottle and alpha floor systems were all intentionally disengaged, 

if they were left running the plane would never let the crew conduct the relatively risky maneuver. 

On the approach the crew had difficulty visually identifying the Mulhouse Habshiem airfield and 

consequently had to descend at a rather steep glideslope. To accommodate the descent the A320 

engines were set to idle. As the aircraft loomed over the airfield it began to lose speed without the 

flight crew’s recognition. When this fateful fact finally came to their attention the plane was 100 

feet above the ground with an airspeed of only 132 knots. The captain quickly pitched the plane 

upward and engaged the throttle but the idle speed of the turbines delayed the onset of thrust. By 

the time the engines began to wind-up the plane was 30 feet above the ground and the massive 

twin turbines only served to engorge large amounts of debris before the plane burst into flames. All 

told, three passengers died, and 50 were injured. In the aftermath, the lack or planning, late 

identification of the airfield, pomp and circumstance of the event, as well as the presence of 

attractive female guests on the flight deck were deemed contributing factors to the final outcome. 
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The primary fault of the incident was placed primarily on the Captain’s overconfidence in the flight 

performance of the A320.  Casey (1998, pp. 104-105) puts it thusly: 

Instead of treating the flight protection system like the safety guardrail on a winding 

mountain road, he employed it to define the limits of aircraft flight. It was as if he used the 

guardrail to negotiate the curve, not treating it as a protective barrier placed there in the 

event that he lost control. He had turned the flight protection system off for the maneuver 

and thereby had to fly by the standard rules of flight – something for which he may not have 

been entirely prepared. 

In hindsight, it is easy to identify the series of mistakes made by the flight crew in the final moments 

before the crash. However, during those moments it is also important to remember that the crew 

was overtasked and likely impaired by stress.   

The AirBus incident demonstrates that developing human and machine systems entails 

more than just developing robust technological systems. The humans that operate those systems 

have their own set of constraints. Compared to computers, humans are prone to errors of logic, 

perceptual illusions, vigilance decrements, cognitive tunneling, along with dozens of other 

impairments. Despite our shortcomings humans are still vital to many aspects of operating critical 

systems due to their ability recognize patterns, diagnose faults, and quickly generate and 

implement remediations (Boring & Kelly, 2008). In critical systems human error is the most 

significant contributor to the reliability of a system (Gertman & Blackman, 1994). Critical systems 

can be made safer by understanding human error and by designing systems to better accommodate 

their human operators. The emerging field of augmented cognition proposes that human machine 

interaction can be improved by making the machines able to recognize the internal states of the 

operator and adapt the presentation of information or the internal processes of the system to better 

suit the needs of the operator as well as external demands or system limitations. Augmented 

cognition systems are still in early stages of development. To use information pertaining to the 

mental states of operators those mental states must first be assessed. The efforts of this dissertation 
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focus on how cognitive workload can be quantified from physiological measures. Once, mental 

states can be reliably and accurately measured they must be used effectively by the critical systems.  

With complex and safety critical systems the human operators are paradoxically essential to 

operation, yet simultaneously the largest contributor to the overall reliability of the system (Boring 

& Kelly, 2008; Gertman & Blackman, 1994). By understanding human cognition and utilizing on-line 

metrics of cognitive workload to tailor in real-time the human machine interfaces, potential exists 

to increase the overall reliability and safety of processes where there is a potential for high-

consequence low-probability events.  

Humans sensory data processing is not only bottom-up, but also top-down as the processes 

depend on expectations set by prior experiences and mental representations formed through prior 

experience (Kahneman, 1973).  These top-down mechanisms make humans highly adaptable 

(compared to their current silicon counterparts) and excel at recognizing complex patterns. 

Humans also have unique disadvantages. Humans are easily overburdened with too much 

information, are poor at multitasking, prone to lapses of logic, and can be severally affected by 

stress and fatigue. A more in-depth account of these short-comings can be found in Chapter 2 of this 

dissertation. 

By incorporating cognition into machine human interfaces systems can maximize human 

advantages will minimizing human weaknesses. If systems can identify when there operators are 

overburdened they can adapt to compensate by reducing the workload of the operator. For 

example, an augmented cognition system for air traffic controllers could automatically hand over 

planes to other controllers when cognitive workload indicators suggest a controller is 

overburdened. Or a system may adapt the presentation of information to the specific 

circumstances. For example, in process control a single failure may produce a cascade of alarms. 

Operators must maintain awareness of critical operational states while attempting to diagnose the 

root cause. In situations where operators are overburdened, increasing the saliency of the most 
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probable causes of failure may aid operators. While this mitigation may help operators diagnose the 

critical problem, it may also lead to loss of overall situational awareness if operators neglect critical 

non-salient indicators. Thus, in many circumstances the best way for a machine to interact with the 

operator is dependent on not only the state of the system, but the state of the operator. It follows 

that in order to most effectively interact with operators a system needs to be aware of the cognitive 

workload of its operators. 

Here I propose that physiological indicators of cognitive workload may be the best solution. 

There are several ways of measuring cognitive workload, but many are ill-suited to real-time 

complex tasks where performance criteria is hard to quantify and humans are unable to report or 

unaware of their cognitive state. Next I discuss physiological measurement technologies and why 

the focus here is on simple and inexpensive physiological technologies like pupil diameter, skin 

conductance, and heart rate variability. To process the physiological signals a variety of approaches 

have been attempted. Here I am interested in using wavelet decomposition and machine learning to 

increase the overall efficacy and reliability of physiologically based workload measures.   

Previous research has established that autonomic nervous system activity elicits 

physiological responses in pupil diameter, skin conductance, and heart rate variability (see section 

2.2.4 for a full review and citations). In my first attempt (Experiment 5.1) at assessing mental 

workload from physiological measures I was most concerned with maintaining ecological validity. 

To this end, I used a simple process control simulator (DURESS) where participants manipulated 

the flow of water through a network of pumps, valves, aquifers, and heaters. I attempted to 

manipulate task difficulty through component failures at specified times. Offline I examined short-

time Fourier transforms (STFT) of skin conductance (SC) and pupil diameter (PD). This provided 

some indications that the spectra of physiological measures are correlated with workload (see 

Chapter 5.1). Unfortunately, the failures in the control plant often went unnoticed by participants 

which would consequentially have a null effect on workload.  
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In the second experiment (Experiment 5.2) I decided to forgo ecological validity and 

maximize the salience of workload changes by using a continuous dual axes pursuit tracking task. 

To manipulate difficulty the control mappings reversed at periodic intervals. To objectively 

compare the Fourier components principle component analysis (PCA) was employed. Principle 

component analysis is a method for reducing the dimensionality of data. PCA is a method of 

determining a new orthogonal basis for a set of data such that the variance is captured maximally 

by a reduced set of components (see Section 3.1.9). Out of the six participants only one showed 

statistically reliable differences between the normal and reversed control mapping conditions. Part 

of this null effect can be attributed to the unexpected ability of some of the participants to 

immediately adapt to the reversed mapping. The classification analysis was also constrained by the 

inherent fixed time frequency resolution of STFT and assumptions of linearity in the classification.  

The third experiment (Experiment 5.3) followed in the direction of Marshall (2000; 2002; 

2007) and used wavelet analysis to decompose the physiological measures in both time and 

frequency. In contrast to STFT, wavelet decomposition provides optimized temporal localization 

across the frequencies under examination (see Section 3.3.4 & 3.4).  With DFT and short time DFT 

the frequency bins are linearly spaced.  In contrast the frequency bands are logarithmically spaced 

with discrete wavelet decomposition. The logarithmic spacing is often a more natural mapping to 

phenomena. My effort differs from Marshall in how I classify the resulting wavelet components. 

Here I use a machine learning technique known as Genetic Programming (GP) to identify models 

which can relate the physiological signals to performance error and task difficulty.  

In computer science genetic programming has been shown to be a versatile tool for complex 

problems with large multidimensional parameter spaces. In the augmented cognition domain it has 

seen surprisingly little use.  Genetic Programming is an iterative machine learning technique that is 

well suited for optimizing non-linear problem spaces with high dimensionality (see Machine 

Learning).  It accomplishes this feat by first generating a population of random solutions.  Better 
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solutions are selected and recombined in the hope of generating even better solutions.  At each 

iteration, the worst solutions are thrown away to maintain a constant population size from 

generation to generation.  After hundreds and sometimes thousands of generations the solutions 

improve.  This process of selecting and combining fit solutions essentially reduces and focuses the 

problem space the algorithm must search through.  Because the search is not comprehensive there 

is no guarantee GP will find always find the optimal solution.  However, in many of the domains 

which employ GP performing a comprehensive sweep of the problem space is not feasible and GP is 

capable of producing solutions comparable to with human experts and rivaling other machine 

learning techniques (Eiben & Smith, 2003). 

We believe GP is well suited for augmented cognition because of its extensibility. GP can 

easily be applied to different physiological signals, multiple physiological signals, or non-

physiological signals. GP does not make any intrinsic assumptions between how the physiological 

parameters relate to the underlying constructs. In sum, there are three important differences 

between the Preliminary Experiment 3 and previous work.  First, this study uses both raw time 

series and wavelet analysis of multiple physiological measures (SC and PD) to predict performance 

and task workload, which I expect should be more predictive than PD signals alone because the 

redundant measures may better differentiate signal from noise. It is also likely that PD and SC carry 

non-redundant information that is related to workload as correlations between physiological 

measures are often low (Kahneman, 1973).  Second, the wavelet components were estimated as 

continuous variables rather than processed into binary variables as described by Marshall.  Third, 

this study compared two modeling approaches based on the raw time series data and wavelet-

estimated power spectrum: a traditional linear regression/discriminate analysis approach and a 

genetic programming (GP) approach. The results from Experiment 3 suggests that wavelet 

decomposition is an effective means of extracting time frequency information from physiological 

signals and that non-linear classification algorithms are essential to utilize the time frequency 
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information inherent in these physiological signals. I have also shown that GP is capable of 

integrating information from pupil diameter (PD) and skin conductance (SC) into an assessment of 

workload during a discrete manual tracking task.  

The incorporation of a verbal random number generation task provides evidence that both 

discrete and continuous tracking involve central executive processes (Experiments 5.4-5.7). This 

suggests that despite the lack of face validity to process control tasks, manual tracking tasks load 

some of the same cognitive resources involved with process control.  

For a physiological measure to be useful to process control operations it must be predictive. 

A system that only has the ability to identify workload after task performance completely degrades 

is of limited practical utility. Previous experiments have attempted to classify workload after gross 

changes in task difficulty (Experiments 5.1-5.3). Abruptly changing task difficulty makes it easier to 

identify physiological changes but makes it difficult to form a predictive measure of workload. 

Experiment 5.4 switched to a compensatory (closed-loop) tracking task based off of the critical 

instability task (McDonnell & Jex, 1967; McRuer & Graham, 1965). This allowed for gradual changes 

in task difficulty. Task performance was found to be monotonically linked to workload.   Results 

suggest that predictive measures of workload and subsequently task performance can be formed 

from physiological measures. Random forests were able to classify both the magnitude and 

derivative of a workload input signal with significant accuracy (> 90% in many cases).  

Contrary to initial hypotheses the incorporation of additional physiological measures (heart 

rate variability, respiration) did not significantly improve the efficacy of workload estimates 

obtained via machine learning techniques. Previous evidence has observed physiological measures 

often have low correlations with one another (Kahneman, 1973). This suggests that they may 

provide non-redundant information pertaining to mental workload. Similar to previous studies, 

experiment 5.8 found only moderate (0.2-0.5) and statistically reliably correlations between HRV, 
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PD and SC. Despite the absence of strong correlations, suggesting linearly non-redundant 

information, including more variables did not reliably improve the efficacy of workload estimates. 

Taken together, this body of evidence suggests that pupil diameter and skin conductance 

signals carry information relevant to cognitive workload. Information relevant to cognitive 

workload can be extracted in a timely fashion and could be potentially in mitigating the potential of 

low-probability high-consequence events.  
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 Neuropsychology of Cognitive Workload Chapter 2:

2.1 Theoretical Foundations 

The key to developing synergistic human and machine interaction is in understanding 

human cognitive processes and limitations, and then designing machine systems to work 

synergistically with those strengths and weaknesses. However, this is easier said than done because 

despite decades of research a unified construct of cognitive workload is still elusive (Moray, 1988). 

On the surface the concept seems relatively straight forward. Cognitive workload should simply 

convey the cognitive effort a person devotes to a task or tasks. Below the surface is where 

complexities arise. With physical tasks the problem of calculating physical workload has been 

solved long ago. One just needs to calculate the force required to move an object with a known mass 

over a given distance from point A to point B. In the psychological domain quantifying the cognitive 

equivalent has been more problematic. If we examine the myth of Sisyphus it should be clear that 

the torturous element is not the physical strain of moving a large boulder up a hill, but rather the 

monotony and frustration caused by watching it roll back down and having to push it up again for 

all eternity. How can one to quantify such anguish, and how can one design tasks antithetical to the 

task imposed on Sisyphus? These are the challenges presented to cognitive scientists and human 

factors practitioners. The field of Augmented Cognition proposes that if cognitive states can be 

identified, then systems can adapt to better suit an operator by off-loading tasks or altering how 

information is presented. The crucial component becomes defining and identifying cognitive 

workload. 

To be practically applicable, a measure of cognitive workload should ideally be highly 

diagnostic, sensitive, and reliable. However, it should be noted, that in many circumstances even 

crude measures can be viable. For example, several automotive manufacturers have developed 

systems that monitor driver drowsiness and trigger auditory and verbal alerts when drivers 

become fatigued (Barr, Howarth, Popkin, & Carroll, 2005; Barr, Popkin, & Howarth, 2009). 
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Identifying whether a person is awake or nearly asleep is an extremely insensitive measure of 

alertness, yet such systems could substantially reduce the over 50,000 annual crashes due to 

drowsiness/fatigue (NHTSA, 1997). While performing mentally engaging tasks our autonomic 

nervous system is constantly regulating our generalized arousal. Evolutionary psychologists 

Cosmides and Tooby (1997, p. 85) argue that “our modern skulls house a stone age mind” and our 

actions are still highly influenced by instinctive tendencies. Even when we face modern problems 

our innate responses are formed by rather primitive autonomic midbrain activity. Furthermore, 

most of the processing which occurs in the mind is hidden from our explicit awareness. This is why 

gross changes, like the fact that we might be falling asleep, may go unnoticed. Human and machine 

interfaces can be in improved if cognitive workload can be reliably assessed.  

There are three basic approaches to assessing cognitive workload. Workload can be 

measured subjectively through self-reports, but in practical settings, having workers periodically 

report their workload is potentially distracting and therefore ill-suited. The second approach is to 

measure a worker’s performance. In practical settings this is problematic because performance is 

often multidimensional and difficult to define. Secondly, performance may be monotonically related 

to difficulty, but may not be sufficiently sensitive if operators are able to maintain high performance 

until they are completely overwhelmed. Lastly, workload can be assessed using physiological  

signals. Stress, fatigue, drowsiness, and cognitive processing all have underlying physiological 

mechanisms. These mechanisms leave their signatures in easily monitored physiological signals 

like skin conductance and pupil diameter. The problem is that those signatures are embedded in 

layers of noise from other physiological mechanisms that may or may not be related to cognitive 

workload.  Developing measures of cognitive workload based on physiological indicators requires 

developing a theoretical understanding of underlying components (frustration, time pressure, fear, 

anguish, etc.) as well as a theoretical understanding of the mechanisms that implement cognitive 

workload. Traditionally the study of cognitive science is a study of functionalism. Functionalism, as 
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a philosophy of mind, is not overly concerned with explaining psychological phenomena 

mechanistically. Functionalism describes a phenomena in terms of abstract psychological 

constructs like memory and intelligence instead of describing the cause and effect interaction of 

physical components. The approach segregates the functions of the mind from the physical 

implementation of the functions. Prior to the cognitive revolution using such abstract psychological 

constructs was heavily discouraged. Chomsky’s 1959 work is often cited as delivering the death 

blow to behavioralism (Chomsky, 1959). He argued that incorporating constructs could explain 

phenomena of verbal behavior that could not be easily explained otherwise. For example, a theory 

of language based purely on behavioralism cannot adequately explain how young children can 

understand and produce sentences they have never encountered. The use of constructs has 

undoubtedly increased the power and sophistication of psychological theories but it is important to 

not become entrenched in functionalism.  

 Functionalism can describe how a phenomenon operates but cannot address what 

produces the phenomenon. It is only in the last 20 years or so that neuroscience has freed cognitive 

science from functionalism (Parasuraman & Rizzo, 2008). The emerging field of cognitive 

neuroscience emphasizes both mechanistic and functional descriptions. It is not only important to 

functionally describe psychological phenomena, but to identify the underlying neural substrates 

responsible for those functions. On one side of the equation we have cognitive models with 

tentative constructs and tentative interactions amongst constructs. On the other side of the 

equation we would like to have a fine-grained neurophysiologic map of what is occurring in 

conjunction with every thought and action,  but in reality we only have the reflections and shadows 

of neural activity provided by the various brain imaging technologies. Within 

neuroergonomics/Augmented Cognition the current approach to bridging the gap is to divide the 

problem based on the various technologies. Methods using EEG (electroencephalogram)  fall into 

one sub-domain, while methods using transcranial Doppler sonography fall into another. As 
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discussed below EGG has good temporal resolution but poor spatial resolution. The signals 

recorded by EGG represent the activity of large groups of neurons. On the other hand, transcranial 

Doppler sonography measures blood flow velocity in vessels feeding the brain. It might be more apt 

to say that brain imaging technologies record artifacts of neural activity. Because all current 

technologies are all rather crude in at least one regard (see review) using a single measure is akin 

to reconciling the structure of a three dimensional object from a single perspective through an 

aberrated lens.  

This problem is essentially epistemological. How can we know our representation of an 

object, the human brain, reflects its true nature, or is it even possible to know the true nature of an 

object based solely on the structural and physiological artifacts? Philosophy of science would 

suggest that we can’t know the objects true nature but through experimentation we can at least 

come up with a model that approximates the pattern of empirically observed relationships. At best 

we can find links between tentative constructs and artifacts of neural activity. When both sides of 

the equation are treated as containing unknowns it is difficult to find anything worthwhile. Even 

though the construct of cognitive workload and models of cognitive processing are by no means 

definitive or well established the functional theories of workload are more advanced than the 

mechanistic. For this reason it makes more sense to treat existing constructs as axiomatic 

within the experimental framework. This allows cognitive workload to be operationally 

defined by established tasks and validated using established behavioral measures and 

secondary tasks. Of course, as any disciple of science knows, the absence of evidence is not the 

evidence of absence. Failing to find links between cognitive workload and artifacts of neural activity 

could mean the physiological measures were invalid, the constructs were incorrect, the techniques 

used to establish the links were not powerful enough, the effect size was too small to find reliable 

differences, or a combination of these factors. At this time, the best we can do is to find 

physiological correlates to psychological constructs.  
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Neuroscience has a decent understanding of how a few neurons communicate with one 

another, but the sheer interconnectedness of the 100 billion or so neurons in a typical human brain 

has left many of its intracies obscured. The current approach is slightly more sophisticated than 

using a multimeter to naively probe a broken transistor radio. With a bit of patience even someone 

with only a bit of experience with electronics might be able grossly segregate the components of the 

radio into functional groups: power supply, radio receiver, amplifier, etcetera. After these 

functional divisions have been identified one could begin diagnostically testing their operational 

model and perhaps fix the radio given the right tools, spare components, lots of patience, and a bit 

of luck.  

Manipulating a radio’s controls while monitoring the multimeter provide empirical 

evidence related to the mechanistic operation of the radio. The task of identifying cognitive states 

from physiological measures is not too different from this analogy. The tasks required that 

participants and the obtained physiological measurements relate to the mechanistic operation of 

human cognition. One only needs to define the possible inputs to the model and how the output of 

the model relates to the performance (fitness) of the model. Genetic programming simultaneously 

compares a population of hundreds of thousands of competing models selecting the ones that best 

fit the data. Genetic programming implemented in this manner may reveal functional homologs to 

internal processes. Genetic programming is discussed in detail in Chapter 4. This chapter continues 

by elaborating on the theoretical construct of cognitive workload (Section 2.2), the practical 

application domains of cognitive workload measures (Section 2.3), and state of physiological 

measurement technologies (Section 2.4).  
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2.2 Cognitive Workload Theory and Application 

 Defining Cognitive Workload.  (Kahneman, 1973) describes workload as demand 2.2.1

imposed on an operator and draws an analogy with an electrical circuit. In this analogy the operator 

is a power supply with finite capacity. The task is analogous to an electrical load presented to the 

power supply. With electrical circuits and human operators overload occurs when the load exceeds 

the capacity of the supply. In human terms overload means the task demands more cognitive 

resources than the operator can supply. Gopher and Donchin (1986) extend this analogy by 

pointing out that the current flowing through the load is an interaction between the supplied 

voltage and the impedance of the load as described by Ohm’s law. One cannot determine the 

current flowing through the circuit without knowing both. In an analogous manner workload 

reflects an interaction between the operator and the task. Some operators may have the equivalent 

of higher supply voltage reducing the relative amount of effort required to perform a given task. 

We can extend Kahneman’s electrical analogy even further by introducing the concept of 

impedance. Impedance describes how resistance varies with respect to frequency in alternating 

current (AC) circuits. In AC circuits electrical loads are not purely resistive because they may 

present parallel capacitance and inductance to the supply. Capacitive loads present falling 

impedance with increasing frequency, and inductive loads present falling impedance with 

decreasing frequency. The resulting load is time varying and is described by the impedance curve of 

the load. In an analogous manner the load presented by a task cannot be fully described by a single 

scalar value. Tasks present varying demands on separate cognitive resources.  

Wicken’s multiple resource theory (MRT) expands upon work by Kantowitz and Knight 

(1976) and Navon and Gopher (1979). It conceptualizes cognitive resources along three 

dimensions. The first dimension divides resources into perception, processing, and response stages. 

The second divides resources into visual, auditory, tactile, and olfactory modalities. The third 

dimension divides resources into spatial or verbal codes (Wickens, 2002).  Humans are capable of 
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simultaneously performing some tasks presented to separate modalities with virtually no 

decrements in performance compared to performing the tasks alone. This suggests that they are 

effectively utilizing independent resources. However, in other scenarios tasks presented to 

independent modalities do show reduced performance.  

Driving an automobile requires visual perception, spatial processing, and motor responses, 

while talking on a cell phone requires auditory perception, verbal processing, and verbal responses. 

A theory based on multiple resource theory would predict that these two tasks should not interfere 

with one another. Contrary to MRT a growing corpus of research has shown that cell phone usage 

significantly degrades driving performance (Strayer & Johnston, 2001; Strayer, Drews, & Johnston, 

2003; McCarley, Vais, Pringle, Kamer, Irwin, & Strayer, 2004; Just, Keller, & Cynkar, 2008). Just and 

Carpenter (1992; 1993) have developed a capacity theory of mental resources where 

psychologically defined concepts of executive functioning, visual processing and so on are linked to 

cortical regions. The measured neural activation in these regions signifies how the mental 

resources are utilized. Simplistically it can be conceptualized by assigning cortical regions to the 

mental resources outlined by MRT. Just, Keller, and Cynkar  (2008) recorded fMRI contrasts 

comparing activation between performing a simulated driving task and simultaneously performing 

the simulated driving task along with an auditory comprehension task (listen to verbal statements 

and non-verbally report whether they are true or false). As one would expect language regions 

show increased activation when both tasks were performed. Surprisingly, fMRI revealed no 

differences in the amount of executive activation and showed decreased activation in spatial and 

visual regions when the participants were performing both tasks.  

This suggests that even though the tasks theoretically load different resources a central 

executive might limit how these resources can be utilized when both tasks are presented. The 

central executive is a construct first proposed by Baddeley and Hitch (1974) and builds on work by 

Broadbent (1958) . The central executive is one of three subcomponents of a model of working 
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memory. The other two components are the phonological loop and the visuo-spatial sketchpad. The 

central executive serves to direct attention to salient sensations, interpret perceptual information 

from the various modalities and to coordinate actions. For the first 20 years research efforts 

focused primarily on understanding the phonological loop and the visuo-spatial sketchpad. The 

central executive was viewed as a homunculus of sorts. It was an abstraction that served a variety 

of functions but was not well understood (Baddeley, 1996). Baddeley contends that regardless of 

whether the central executive is a single coordinated system or a collection of largely autonomous 

processes the concept aids in developing a functional understanding of working memory. 

Furthermore, once all the functions of the homunculus are understood it is no longer a homunculus. 

The central executive is more of an umbrella to classify a set of problems. Many executive functions 

are carried out or dependent on the frontal lobes (Shallice, 1982; 1988) but the functional to 

anatomic mappings are not always straight-forward.  A single dysfunction may be the result of 

damage to multiple anatomical regions. To add further perplexity, patients may have damage to the 

same anatomical region but show different functional deficients (Baddely & Wilson, 1988).  

Unlike controlled laboratory experiments, real world work environments are almost always 

multimodal, have extraneous sources of noise, changing performance criteria as situations evolve, 

and shifting task concurrency. In the power supply metaphor these factors influence the load 

impedance presented to a power supply. Whether the supply can meet the demand depends on the 

load impedance as well as the source impedance of the supply. Ideally the source impedance should 

be much lower than the load impedance. If the load is held constant the power transfer becomes 

less and less efficient as the source impedance increases. The central executive could be regarded 

as a collection of functions that dynamically modulates the source impedance dependence on the 

output impedance and internal states. The underlying mechanisms of how the central executive 

accomplishes this are not entirely understood, but evidence suggests that multiple resource theory 

alone is insufficient to explain workload and performance with all concurrent tasks.  
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Now that the construct of cognitive workload has been introduced, it is appropriate to 

review how it has been assessed. 

 Behavioral measures of workload. Behavioral measures of workload refer to 2.2.2

measures that utilize task performance. The previous method of quantifying driving errors while 

simultaneously talking on a cellphone is an example of a behavioral measure of workload. 

Behavioral measures can be subdivided into primary and secondary task measures. Primary task 

performance could be system errors, data entry speed, driving deviations, etc. They have the benefit 

of being straight forward and in many situations having high face validity. The downside to primary 

task measures is that in the “underload” region they may exhibit little variability (insensitive). In 

other words performance may be very good until the performer is overloaded at which point 

performance “falls off a cliff” (Kahneman, 1973).  

Secondary task measures were designed to address the underload shortcoming of using 

primary task performance. When an operator performs two tasks simultaneously performance on 

the second task can be used to measure the residual capacity not used by the first (Kahneman, 

1973; Navon & Gopher, 1979). One of the intriguing phenomena leading to multiple resource theory 

is that some concurrently presented tasks can share available resources with little or no 

interference (Wickens, 2002). However, even in controlled laboratory settings the use of secondary 

tasks can be complicated with how the performance goals are specified or with the particular tasks 

chosen (Moray, 1988).  In many practical applications tasks are not explicitly defined, or many tasks 

may be performed simultaneously which makes using behavioral measures difficult if not 

impossible. For example, consider a grocery store cashier. One may assess performance by the 

number of times per minute the cashier can scan, or the number of transactions per hour a cashier 

can perform, but these measures may be inversely correlated to how pleasant a cashier is to the 

customers they serve.  
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 Subjective measures of workload.  Subjective measures most closely follow 2.2.3

workload theory and regard workload as being multidimensional. They assess workload by 

presenting operators with self-report questionnaires. The National Aeronautics and Space 

Administration - Task Load Index (NASA-TLX) is a workload assessment tool that breaks workload 

into six subscales identified by Hart and Staveland (1988). These six dimensions are: mental 

demands, physical demands, temporal demands, own performance, effort, and frustration. These six 

dimensions are designed to account for individual differences. Some may not find a task loading if it 

does not have a physical component. Some individuals become frustrated easier than others 

(Moray, 1988). Likewise, the Subjective Workload Assessment Technique (SWAT) breaks workload 

into similar subscales of time load, mental effort, and stress.  Subjective measures have the benefits 

of being easy to derive and good sensitivity to changes in workload.  

Unlike behavioral and physiological measures subjective measures can be subject to bias 

and require the rater to report honestly. Other disadvantages of subjective measures are that 

“online” measures intrude on the operator’s primary task and “offline” measures only provide 

workload information after the task has already been completed. An additional problem with 

subjective measures is they rely on introspection. Humans may be aware of what they are doing, 

but may not be aware of how they are doing it. Milner and Goodale (2006) proposed the two-

stream hypothesis for visual processing. According to this hypothesis the ventral stream is 

responsible for “what” while the dorsal pathway is responsible for “how.”  Actions often run 

autonomously without cognitive intervention. The reader might have had the experience of looking 

through their rear view mirror to wonder if they just ran a red light, or perhaps found themselves 

parked in their driveway instead of at the grocery store. Because we are not aware of how we are 

doing something, we may not be able to accurately report workload. 

 Physiological measures of workload.  Another factor to consider is how generalized 2.2.4

arousal modulates the availability of cognitive resources. The Yerkes-Dodson Law (Yerkes & 
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Dodson, 1908) describes an inverted-U relationship between arousal and performance. Peak 

performance occurs at moderate levels of arousal. Low levels of arousal lead to boredom and 

frustration. High levels lead to anxiety and exhaustion. Optimum performance occurs in between 

these extremes. The optimal amount of arousal may differ from individual to individual.  These 

stressors cause the autonomic nervous system to increase generalized arousal. In highly stressful 

situations an autonomic nervous system response physically and psychologically prepares one for 

action. This is colloquially known as the “fight-or-flight” response. The fight-or-flight response is 

elicited by the autonomic nervous system (ANS).  

The ANS has two antagonistic sub-systems that work in concert with one another to 

unconsciously control a variety of physiological functions. The sympathetic sub-system activates 

blood flow to the muscles and heart. Simultaneously, the parasympathetic sub-system inhibits 

blood flow to internal organs and the gastrointestinal system. While this psychobiological response 

might be helpful for tasks of a physical nature, like running from a large predator, it can have 

negative repercussions when threats are non-physical (Lundberg, 1993).  Previous research has 

shown that army recruits under high levels of stress showed decreased problem solving 

performance as well as decreased working memory (Capretta & Berkun, 1962; Berkun, 1964). 

Work by Porcelli and Delgado (2009) suggests that even acute stress induced risk reflection in 

financial decision making. Risk reflection is a phenomenon where choice criterions become more 

conservative when choosing between potential gains and more risky when choosing between 

potential losses. Decision making research has also shown that participants consider far less 

information and use strategies that more heavily weight negative information when under time 

pressure (Svenson & Maule, 1993). Several strategies can be used to combat poor decision making 

under stress. 

Extensive training and/or experience can be helpful in developing automaticity for complex 

procedures. Experts are also better at identifying the most critical details to a problem and 
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generating working solutions (Klein, Orasanu, Calderwood, & Zsambok, 1993).  However, experts 

are also described as overconfident in their abilities (Ericsson, Charness, Feltovich, & Hoffman, 

2006). A second short coming of training and experience is that even the most extensive training is 

limited to a miniscule fraction of a multitude of possible faults that can occur within a complex 

system. Real world problems are not restricted to the limited set of training scenarios presented to 

human operators. To quote Murphy “what can go wrong, will go wrong.”  To overcome this 

shortcoming a second, albeit more complicated approach, is to develop technologies which can 

assess an operator’s cognitive state and use that additional information to support operator 

decisions, optimize human performance, and reduce human error even during novel situations.  

 Conclusions. One might initially assume that behavioral, subjective and physiological 2.2.5

measures presented here all reflect the same underlying construct of workload, but these measures 

often only weakly correlate with one another. For a skilled operator behavioral measures may 

change very little despite the operator’s subjective and physiological workload ratings increasing. 

While behavioral, subjective, and physiological workload measures may all be monotonic the 

relationships between them are not necessarily linear (Kahneman, 1973). The most appropriate 

type of measure depends heavily on one’s goals and contextual constraints.   

In real workplace settings task goals are often not explicitly defined as they might change 

with situational circumstances. For example, in the early stages of a building fire the appropriate 

course of action might be to extinguish the fire. If the fire grows the appropriate course of action 

becomes evacuating occupants and to not wasting resources on containing the blaze. In dynamic 

real world settings defining the task, let alone task error, is not possible this makes using behavioral 

measures of workload infeasible. Subjective measures of workload would require operators be 

cognizant of their current workload being too great and hampering their decision making in order 

to make the decision to reduce their workload. This is problematic for the obvious reason.  This 

leaves physiological measures of workload. For these reasons Augmented Cognition has placed a 
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strong emphasis on developing reliable instantaneous measures of human workload based on 

physiological measures (O’Neill, 2006).  As a broad generalization, the most successful techniques 

thus far have employed measures which directly monitor brain activity, like EEG and fNIR 

(functional near-infrared imaging).  Other simpler, less expensive, and less obtrusive physiological 

measures such as pupil diameter (PD), galvanic skin conductance (SC), and heart rate variability 

(HRV) have shown promise but have not yet shown the same reliability as EEG and fNIR. The intent 

of this study is to examine the efficacy of using multiple physiological measures (SC, PD, and HRV) 

to measure mental workload for augmented cognition systems. Within the field of augmented 

cognition finding reliable, sensitive, instantaneous, and diagnostic measures of mental workload is 

the primary hurdle.  

A quality of measure of workload needs to satisfy several requirements. It should be 

reliable, or exhibit relatively low variability relative to its range. The measure should ideally be 

highly sensitive, or able to distinguish small differences in workload. The measure should be 

instantaneous, or able to identify changes in mental workload shortly after they change. Lastly, 

measures should be diagnostic, or capable of identifying the utilization of several underlying 

psychological constructs (attention, memory, etc.).   

The ideal physiological indicator should be able to resolve not only gross changes in 

workload (rest vs. active), but fine changes as well. Physiological workload measures should also 

generalize between different types of tasks (physically demanding vs. mentally demanding), 

individuals, and sub-populations (novice vs. expert).  

Developing cognitive workload estimates based on physiological measures has two primary 

technological challenges. The first is to develop technology that can record physiological data. The 

ideal device should have excellent spatial and temporal resolution, require minimal power, be 

robust to noise, unobtrusive (does not interfere with the task), mobile, and cost next to nothing. Of 

course the ideal device has yet to be realized. The most successful techniques have utilized 
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measures which directly monitor brain activity like continuous electroencephalography (EEG), 

event related potentials (ERPs) from EEG, and functional near-infrared imaging (fNIR) (St. John, 

Kobus, Morrison, & Schmorrow, 2004).  Despite initial shortcomings research into less intrusive, 

less costly measures like pupil diameter and skin conductance continue.  The second technological 

challenge is devising signal processing techniques to extract the requisite information from the raw 

signals. Advances in signal processing techniques are likely to increase the efficacy of pupil 

diameter and skin conductance. 

2.3 Practical Uses of Physiological Signals in Human Machine Interfaces  

While humans are not the only creatures that utilize tools, we are among a small set of 

creatures that do. Many argue that tool use is intrinsic to what it means to be human. From the 

dawn of human tool usage to the near present, what we conceptualize as tools are static and 

mechanical. A tool is a hammer, or a drill press, or a computer. The human interacts with the 

environment through the tool, but the relationship between the user and the tool is typically not 

viewed as reciprocal. If a machinist catches their glove in a drill press, the drill press is unaware and 

uncaring of the soft flesh that lies within.  It is only recently that technology has begun developing 

systems and interfaces that can monitor users and utilize that information to control how the 

systems functions and interact with their users.  For example, the SleepCycle alarm clock uses a 

phone’s accelerometer to gauge a user’s sleep patterns (typically ~90 minute periodic). The phone 

wakes them up when it senses they are in the lightest sleep phase (Gavon, 2010). Nest thermostat 

can learn the schedule of its occupants and adapt its programming to keep them comfortable, while 

saving energy when a space is unoccupied (Pogue, 2011). SawStop table saws can differentiate 

between wood and flesh and prevent serious injury by stopping their blades within 10 ms 

(Newsome, 2007).  A cabinet manufacturer remarks “The accidents are usually caused by human 
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error, but this saw grants you forgiveness.”   These examples are simple, yet the value is clear. 

Accommodating technological systems can offer benefits in comfort, efficiency, and safety.   

For years human factors engineering has touted that “a machine should be fit to the human 

and not human to machine.”  Traditionally this has meant designing machines so that they are easy 

to use. This is an essential first step, but untapped potential lies in taking this tenet of human 

factors more literally. Machines that can act as if they are aware of our behaviors, intentions, and 

emotional states will likely serve us better than technological automatons, acting on their own will.  

In order for our technological counterparts to act as if they are aware of our cognitive states 

they must have data to base their awareness on. This is where physiological measures come into 

play. The mind and body are two sides of the same coin. While we don’t fully understand the mind it 

is mechanistically linked to our physiology. Therefore, changes of the mind and physiological 

changes are one and the same.  

At present, the implications of such technological vigilance are uncertain. How willing are 

humans to participate in being constantly monitored? Transhumanists think that in the future, 

humans may control machines by thought alone and machines may to present information to users 

via direct neural links (Hughes, 2004). Invasive brain computer interfaces (BCI) have already been 

demonstrated that can enable locked-in individuals to communicate (Birbaumer, 2006). The 

question is whether we could, but whether we should. This could be a dissertation unto itself and 

will not be fully explored. In the same breathe, not elaborating at all maybe altogether ethically 

irresponsible.  

Philosopher Phillip Kitcher suggests that contrary to traditional notions, science is not value 

free. Many view science as free and pure form of inquiry completely independent of moral, social, 

political and religious values. Kitcher suggests this idealistic view of science is a myth. Kitcher has a 

fairly detailed and elaborate argument, but the gist is that science rarely falls into nice clean 

categories distinguishing “basic” research from “applied” research from “engineering.” The 
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boundaries are messy and a consequence of this is that pure motivations for Truth are difficult to 

substantiate. Real motivations may be also be financially motivated (personal or otherwise) or 

motivated by a desire for recognition, societal influences, or other tainted sources. Scientists are 

humans and as such cannot fully disentangle their scientific pursuits from their daily lives. Science 

values empiricism and disconfirmation. But when sufficient evidence is lacking, scientists have a 

tendency to fail back on subjective judgments for drawing interpretations (Kitcher, 2003).  

If a science is not value free, what is the role of science in a democratic society? What are 

the responsibilities of practicing scientists? In later chapters, Kitcher delves into these questions. 

One of his suggestions is that part of a scientist’s duty is to evaluate the potential ramifications of 

their research and that those ramifications should even influence whether a particular line of 

research should be pursued. Arguable, no one understands those implications better than the 

scientist. If they act as if they are displaced from that responsibility such questions may never be 

posed, let alone answered. The good news is our future as humans or cyborgs is being discussed. 

The bad news is it is being discussed on the periphery. If we hold strong to our traditional notion of 

value free science and leave the discussion of values to bio-ethicists we may find their conclusions 

to not be representative of our own. By that time, the tail may have wagged the dog.  Innovations 

that seem beneficial and innocuous now may lead to capabilities we may not have envisioned.  

Before ending this discussion, I suggest that it may be unwise to summarily dismiss the 

potential future where brain computer interfaces are ubiquitous and our consciousness has 

transcended its present form. Such notions seem so far-fetched, that they are out of the realm of 

possibility. But, maybe that is a false intuition. Computational innovation tends to follow 

exponential trends. Thirty years ago how many among us would have predicted the computational 

power and capabilities of our smartphones, let alone the rate of smartphone adoption. Estimates 

place smartphone adoption at ten times the pace of early personal computer adoption. In China, 

year-over-year adoption exceeds 400% (Miot, 2012).  This argument could be taken further by 
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quantitatively assessing trends, systematically examining the technological hurdles, and forming 

predictive models. Even without such elaboration, the point can be made, that even if we can’t know 

for certain what will happen in 30 years, we should not be passive to what could happen in 3 years, 

and what might happen in 30 years. 

In the preface to this dissertation, I suggested that technology is not good or bad. Likewise, 

potential technology is should be viewed with ambivalence.  With this in mind, we should return to 

introducing the domains simultaneously tackling the practical uses of physiological measures. 

These domains are intradisciplinary to the cognitive science, but have slightly different approaches, 

foundational bases, and user populations.  The demarcations between these fields of Augmented 

Cognition, Neuroengineering, Adaptive Automation, and Human Reliability are often blurred. 

Wittgenstein recognized that categorical classifications based on a strict adherence to a set 

of common features often fails.  (Wittgenstein, 1953/2001) argued (posthumously) that in natural 

language categorical descriptions are more akin to family resemblances. If a father has a double 

chin it is necessary for his son to also have one in order for them to “look alike.”  Here the reader 

should think of the distinctions between these fields as one of family resemblance and not of 

adherence to a strict feature set. As these fields and technologies develop it is likely that the 

distinctions between them will become even more blurred.  The analysis given here is intended to 

give a broad overview and provide context for how the computational approaches examined here 

fit into the big picture.  

 Neuroengineering.   (Parasuraman & Rizzo, 2008) describe neuroengineering as 2.3.1

developing Brain Computer Interfaces (BCIs) or other less-invasive channels for monitoring brain 

signals for human interaction with both the natural and the human-made environment.  

Information can be used to control a machine. For example signals from the pre-motor and motor 

cortex can be used to control a computer cursor and allow a person who is “locked-in” to 

communicate. Similarly BCIs can be used to control a prosthetic limb. BCI also applies to cases 
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where signals are sent to the brain to alter one’s perceptions. Cochlear implants can restore hearing 

by directly stimulating the auditory nerve. Technologies which might be able to restore vision by 

directly stimulating the primary visual cortex are in their early phases. The devices listed above are 

often referred to as “therapy” technologies because they exist to restore missing function.  

Other technologies generally known as “enhancements” propose giving humans abilities like 

direct knowledge and skill acquisition, displaced consciousness, and superhuman intelligence. The 

time scale of these enhancements is highly speculative along with the ethical implications such 

technologies.  Current neuroergonomics research primarily focuses on clinical therapy 

technologies.  Neuroergonomics relies strongly on the physiological mechanisms which drive 

human perception and cognition. In clinical applications the risks presented by invasive 

physiological monitoring devices is outweighed by the potential benefits they can provide to the 

patients. As these technologies become more reliable and safer they will likely see use in non-

clinical applications like augmented cognition. 

 Augmented Cognition. Augmented cognition refers to technologies that improve 2.3.2

upon human perceptual limitations or enhance cognitive capabilities. Human cognitive capabilities 

differ from individual to individual and are dynamic as they are influenced by stress and fatigue. 

Augmented cognition proposes that human machine interfaces should be adaptable to the changing 

capabilities and limitations of the user (St. John, et al., 2004). Traditional interface design focuses on 

designing interfaces to match human capabilities. Interaction design is usually specific to a 

particular task or problem, and the solutions obtained through task analysis, prototyping, and 

optimization may not generalize to other tasks. In contrast to traditional interface design, 

augmented cognition focuses on technologies that will improve upon specific cognitive limitations 

(Pavel, Wang, & Li, 2002). For example, searching for the letter “L” amongst a field with rotated and 

mirrored distracters requires a serial search (Figure 2.3.1). Pavel, Wang, and Li (2002) 

demonstrated that reducing the contrast of areas that have been fixated upon can improve the time  
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Figure 2.3.1 Example of a search task. The goal is to find the letter L. Reducing the contrast of 
areas that have been fixated upon can improve the time required to find the 
target. 
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required to find a target when many distracters were present (30 distractor condition).  Reducing 

the contrast of objects helped participants keep track of the objects that had already been 

examined. A second approach is to use real-time cognitive state detectors to adapt the interface of a 

system to better suit a user (Young, Clegg, & Smith, 2004). One of the challenges is with devising the 

cognitive state detectors, but figuring out how to implement the cognitive state information also 

presents challenges. Open-loop tasks may become unstable when feedback is added. Qualitatively, 

this is especially true when things update too quickly. In the long-term some envision “human-

computer dyads” as achieving magnitude order increases in cognitive abilities (Schmorrow & 

McBride, 2004). 

 Adaptive Automation.  Automation refers to technologies which displace human 2.3.3

decision making and control with a computational and/or mechanical system.  Many automated 

systems effectively reduce human workload and require limited supervision or intervention.  For 

example, most drivers take it for granted that their car is capable of shifting itself.  However, when 

automation fails or when it is difficult to control the results can be devastating.  Degani (2004) 

attributes the June 30, 1994 crash of an Airbus A330 during flight testing in large part to a failure of 

the autopilot system to fully and appropriately engage.  Shortly after takeoff the autopilot system 

failed to take into account the fact that one engine was intentionally disabled to simulated an 

engine failure.  The plane continued to climb while losing airspeed and eventually stalled killing the 

three crew and four passengers on board.  This illustrates that in certain cases automation can 

ironically increase risk and human workload.  To be effective the user and the system must function 

synergistically.   

Adaptive automation refers to such systems in which both the user and the system can 

initiate changes in the level of automation.  The challenge of adaptive automation is identifying the 

appropriate level of automation for given circumstances and how to change the level of automation 

to facilitate operator performance, maximize system safety, and maximize system productivity.  
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Traditionally adaptive automation has had a strong basis on system theory, theoretical models of 

human performance, and usability techniques. In some context identifying when an automated 

system should take over is relatively straight forward. For example, if a pilot passes out due to 

extreme g-forces having the plane stabilize itself and not crash into the ground is a perfectly 

reasonable course of action  (Scerbo, 1996). Often times, deciding what an automated system 

should do is not so clear. In recent years adaptive automation begun looking at psychophysiological 

measures to trigger changes in the state of automation. Here adaptive automation clearly overlaps 

with augmented cognition. The primary distinction is that augmented cognition technologies most 

always utilize physiological measures. Adaptive automation may be based on other diagnostic 

measures such as critical environmental events, operator performance measurements, operator 

modeling, or hybrid methods (Parasuraman, Bahri, Deaton, Morrison, & Barnes, 1992).  

 Human Reliability. Catastrophic failures can often be attributed to both 2.3.4

technological/environmental and human error. Human reliability analysis is the science of 

qualitatively and quantitatively identifying the human contribution to risk in human machine 

systems and reducing overall risk (Boring & Kelly, 2008). In recent years the concept of human 

error has been evolving. The traditional view held that complex systems were assumed to be 

inherently reliable and safe. Mishap arises when humans undermine systems due to their 

incompetence in understanding the system.  The new view recognizes that when mishap occurs, the 

human assessments and actions might have made sense in the moment.  

The logical fallacy of hindsight bias may cause us to think that the outcome was more 

predictable in the moment than it actually was. In the new view, human errors are a sign of deeper 

trouble. The goal should be to identify the circumstances surrounding the decisions and correct the 

organization to support safety (Dekker, 2006). Technological systems must take into account that 

people do not communicate perfectly, are prone to distraction, illogical decision making, and 

complacency. Despite their shortcomings, humans are still an essential component to safely 
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operating complex systems. Automated systems work well when they encounter situations that 

they are familiar with, but they can be wholly unreliable when they encounter unfamiliar situations. 

In such situations human supervision is not only preferred, but necessary.  Even if automated 

systems can correctly identify the root cause of a malfunction, human operators are still imperative 

to decide the best solutions given the constraints of the scenario. In the old view technology was 

considered sufficient if it provided all the relevant information to operators. The new view 

recognizes that the information’s format and presentation matters.  

 All fields discussed in this section are important to the theory, implementation, and actual 

use of human machine interfaces using physiological signals. The following section will review the 

current state of technology used to record physiological signals.  

2.4 Current and Future Physiological Measurement Technologies 

 The domains discussed in the previous section rely on neuroimaging and physiological 

monitoring technologies to provide information relevant to neuroanatomy and neurophysiology. 

These technologies serve two critical roles. First, they are tools which aid in increasing our 

empirical knowledge of the brain and for testing theoretical models simulating the brain. Secondly, 

and more obviously, these measures provide the signals for which human machine interfaces use to 

interact with the natural and human-made environment. These technologies have a wide array of 

strengths and shortcomings when it comes to their spatial resolution, temporal resolution, signal-

to-noise characteristics, invasiveness, obtrusiveness, and cost (Parasuraman & Rizzo, 2008). To 

date an ideal device for making physiological measurements does not exist. For clinical applications 

such as brain computer interfaces (BCIs) used to restore the function of limbs, control prosthetics, 

or restore communication the risks and costs associated with invasive and costly devices such as 

electrocortigraphy (ECoG) may be justified (Kotchetkov, Hwang, Appelboom, Kellner, & Connolly, 

2010). Within other domains, like augmented cognition, less invasive and less costly technologies 
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like pupil diameter, skin conductance, and HRV are better suited. The following section describes 

the relative strengths and weaknesses of existing measurement technologies. 

 Functional Magnetic Resonance Imaging (fMRI).  fMRI has high (good) spatial 2.4.1

resolution of less than one millimeter. fMRI has low (poor) temporal resolution on the order of .5 to 

2 seconds. By scanning a localized area at a higher rate the temporal resolution can be improved to 

100 ms (Sabatinelli, Lang, Bradley, Costa, & Keil, 2009) but even this improved scanning rate is still 

one to two orders of magnitude slower than ECoG and EEG.  fMRI devices are also not mobile, costly 

to obtain, and costly to run. The primary advantage of fMRI is that it provides both three-

dimensional structural and functional information. Structure and function can be obtained for both 

cortical and sub-cortical regions.  

An fMRI machine consists of a large  superconducting magnet. A superconducting magnet is 

similar to an electromagnet with the primary exception being they are cooled with liquid helium to 

a temperature of 4.2 Kelvin. At this temperature the niobium-titanium coil has no electrical 

resistance which means no energy is lost to heat and large amounts of current can be applied to the 

magnet. Conventional electromagnets would have to be much larger and the electricity required to 

power them would make fMRIs prohibitively expensive The superconducting magnet is typically 

between 1.5 to 3 Tesla. For comparison a typical refrigerator magnet is about 1/1000 of a Tesla. A 

second coil called a gradient coil creates a well controlled magnetic field within the imaging plane. 

When tissue is placed within this plane polarized molecules stop spinning and align with the 

magnetic field. When the tissue is pulsed with an RF coil these molecules quickly resonate before 

re-orienting with the magnetic field. Different types of molecules (water, fats, etc.) will resonant in 

ways which makes it possible to obtain structural information (Hornak, 2010).  

Functional information is obtained analyzing the resonances of oxygen carrying hemoglobin 

molecules.  Oxygenated-hemoglobin shows a slightly different resonance after it becomes 

deoxygenated. Increases in neural activity are correlated with increased metabolic activity. For 
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reasons that are not completely known the amount of oxygenated blood supplied to active areas 

actually exceeds demand. This increased ratio of oxygenated hemoglobin to deoxygenated 

hemoglobin is detectable and referred to as the blood oxygenation level dependent (BOLD) effect 

(Parasuraman & Rizzo, 2008). The unique structural and functional imaging capabilities of fMRI 

imaging make it an invaluable tool for scientific research. However the high costs and sheer size 

make it poorly suited for implementing human machine interfaces.  

 Electroencephalography (EEG). EEG is popular for both research and development 2.4.2

of BCIs as well as for assessing mental workload because it has very good temporal resolution (0.1 

ms is not uncommon), non-invasiveness, established, and affordability. The primary drawbacks of 

EEG are its susceptible to noise and its poor spatial resolution. The use of high density arrays with 

multidimensional analysis have greatly improved the spatial resolution of EEG (Weis, Romer, 

Haardt, Jannek, & Husar, 2009; Sajda, Muller, & Shenoy, 2008), but noise is still problematic.  

EEG uses electrodes placed on the scalp to detect small changes in electrical potential 

caused by the summation of synchronous activity of large neuronal populations. Before EEG can 

record these signals they must first pass through the skull which attenuates the signal. EEG must 

also contend with noise from eye movements, muscles, electrodes, line power, and nearby 

equipment which further degrades the signal-to-noise ratio (SNR; Parasuraman & Rizzo, 2008). 

In theoretical research and clinical applications noise can be compensated by multiple 

stimuli exposures and averaging multiple recordings to uncover event-related potentials (ERPs) in 

the time-domain (Gazzaniga, Ivry, & Mangun, 2002). In real-world applications high levels of noise 

and insufficient information regarding stimulus onsets make using ERPs impractical (Huang, T.-P., 

& Makeig, 2007).  At present EEG research requires EEG experts to sort measurements from 

artifacts. Most efforts to use EEG for human machine interfaces use time-frequency based methods 

such as short time Fourier transform (see section 2.3) or wavelets (see section 2.5). With these 
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methods workload has been associated with increased frontal midline theta activity in conjunction 

with increased parietal midline alpha activity (Parasuraman & Rizzo, 2008).  

EEG measurement must also contend with what has come to be known as the inverse 

problem. The electrical currents which are measured on the scalp originate from within the 

cranium. The inverse problem describes identifying the source of these currents from scalp 

measurements. Helmholtz in the late 19th century solved the forward solution: the location of a 

single electrical event or locations of multiple electrical events within a homogenous conducting 

medium will reliably produce the same pattern on the surface of a sphere. However, given a surface 

pattern an infinite number of inverse solutions exist. The approach to the inverse problem is to 

attempt to optimize solutions based on parsimony by first modeling single electrical events. If a 

single event cannot be found to emulate the observed pattern then two electrical points are 

modeled, and so on. As the reader is probably aware, at any given time multiple brain locations are 

likely to be active (Gazzaniga, Ivry, & Mangun, 2002). For human machine interfaces machine 

learning algorithms can work around the inverse problem. Algorithms need only to identify 

patterns from the measured signals. Sourcing the activity to particular locations may reduce the 

complexity of the problem, but is not strictly necessary. In other research settings, such as 

identifying epileptogenic zones, the inverse problem becomes extremely important. 

Electrocorticography or ECoG is similar to EEG except that electrodes are placed within the 

cranium. This does not eliminate the inverse problem but does greatly reduce localization errors 

(Zhang, van Drongelen, Kohrman, & He, 2008). ECoG is discussed in more detail in the following 

section. 

 Electrocorticography (ECoG).  ECoG uses electrode arrays placed directly on the 2.4.3

neocortex or on the dura mater. The best performing BCIs use dense ECoG arrays of more than 100 

electrodes. With monkeys this type of setup has reached an information rate of 6.5 bits per second. 

This information rate is roughly equivalent to typing 15 words per minute (Santhanam, Ryu, Yu, 
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Afshar, & Shenoy, 2006). Contemporary technologies using EEG can only achieve 5-10 characters 

per minute. With ECoG rates of 10 bits per second are expected in the near future (Linderman, et al., 

2008). Because of the limitations associated with EEG the future of reliable and autonomous BCIs 

for clinical applications rest with ECoG.  For adaptive systems utilizing measures of mental 

workload the information rate requirements are much smaller.  

BCIs with EEG will undoubtedly show further progress but are unlikely to match the 

performance of ECoG systems (Lotto, Congedo, Lecuyer, Lamarche, & Arnaldi, 2007). The primary 

shortcoming of ECoG is its invasiveness. Current ECoG systems require transcutaneous connectors 

to power and transfer data from electrode arrays. Besides being highly susceptible to infection this 

also limits the functional lifetime of an ECoG implant to one year (Linderman, et al., 2008).  The 

solution is to develop implantable prosthetic processors (IPP) that can be powered through 

induction in the same manner current cochlear implants are powered.  

The primary challenge with creating an IPP is to keep the power dissipation to within 80 

mW/cm2 to reduce the risk of damaging brain tissue. The IPP will have specialized circuitry for 

sensing, digitizing, spike sorting, decoding, and transmitting data. The rationale for performing the 

signal processing within the IPP is to reduce amount of information the IPP must transfer 

wirelessly to reduce power dissipation. The factors affecting signal quality are fairly well 

understood. The amounts of power required by each stage of the IPP are within feasible tolerances. 

The neuroengineers proposing these IPP suggest that the hardware challenges are actually less 

problematic than the software challenges and larger performance gains can be made on the 

software side (Linderman, et al., 2008).  These IPPs may eventually see use in non-clinical 

applications related to augmented cognition, adaptive automation, and human reliability but not in 

the near future.  Besides the hardware obstacles there are still many software obstacles to 

overcome. 



39 

Current BCIs are only operated for short sessions. Before every session the BCIs must be 

trained. Some of the training parameters are only stable for a couple of hours. Software need to 

become more robust by being capable of continuously adapt to changing neuronal patterns. 

Performance gains can also be made by making the software context dependent. For example, 

prosthetic limbs should behave differently when the patient is asleep versus when they are awake. 

Research into context sensitive BCIs is just getting started (Linderman, et al., 2008).  

 Functional Near-Infrared Imaging (fNIR).  fNIR uses an array of sensors to detect 2.4.4

light scattering caused by oxygenated hemoglobin supplying blood vessels. fNIR has much better 

spatial resolution, about 1 cm, compared to EEG but has poorer temporal resolution on the order of 

10ms. Another important distinction is that fNIR can only monitor localized cortical changes where 

EEG arrays can cover the entire scalp. Compared to existing technologies fNIR is still in its infancy 

(Parasuraman & Rizzo, 2008).  However within the domain of Augmented Cognition fNIR has seen 

more success. St. John et al. (2004) conducted a review of DARPA funded augmented cognition 

projects and identified fNIR as one of the more promising and reliable techniques of assessing 

cognitive workload. 

 Transcranial Doppler Sonography (TCD).  TCD is a non-invasive relatively 2.4.5

inexpensive technology which uses ultrasound to monitor the velocity of blood flowing through 

cerebral arteries. Ultrasonic frequencies do not readily penetrate the cranium which makes some 

individuals with cranial anomalies difficult to measure. TCD was initially developed to diagnosis 

subarachnoid hemorrhages. Its use has been adapted to human machine interfaces by monitoring 

blood flow velocities through the main stem intracranial arteries. Faster velocities over baseline are 

indicative of greater metabolic activity in to the corresponding cortical hemisphere. Davies and 

Parasuraman (1982)  found that TCD could detect increased workload elicited by a vigilance task. 

Shaw, Guagliardo, de Visser, and Parasuraman (2010) found TCD was not especially sensitive or 
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instantaneous.   

 Pupil Diameter (PD).  The pupil is innervated by both the sympathetic and 2.4.6

parasympathetic nervous systems and is influenced by mental concentration, anxiety, attention, 

motivation, emotional excitement, lighting, respiratory, and blood pressure fluctuations (Just, 

Carpenter, & Miyake, 2003). PD has been linked to differences in difficulty of tasks including 

sentence processing, mental calculations and user interface evaluation (Murata & Iwase, 2000; Just 

& Carpenter, 1993; Nakayama & Shimizu, 2004; Nakayama & Katsukura, 2007). While these 

measures have shown signs of promise, they generally have smaller effect sizes and are less reliable 

between individuals than EEG and fNIR (St. John et al., 2004). Despite these shortcomings PD and 

SC should not be completely dismissed. Compared to EEG and fNIR they are generally less costly, 

more portable, and less obtrusive.  

Pupil diameter measurements focus a camera on the eye. Because the cornea is highly 

reflective to infrared light most systems use an infrared illuminator to increase the contrast of the 

pupil relative to the iris. Besides developing the actual equipment to record physiological signals a 

second technological challenge is to devise algorithms to process these raw sensor signals and 

integrate it into automated systems (St. John et al., 2004). Previous studies have applied spectral 

analysis to PD to predict workload with some success. Nakayama and Shimizu (2002; 2004) found 

the power spectrum density of PD between 0.1- 0.5 Hz (Hertz, cycles per second) and 1.6 -3.5 Hz to 

increase with difficult mental arithmetic. Murata and Iwase (2000) only examined spectral density 

under 0.6 Hz with the Sternberg memory search task and found that power in this band decreased 

with the number of elements in the search task. While the presence of this spectral signature is 

intriguing, Nakayama and Shimizu did not provide an instantaneous measure of workload. 

Marshall’s Index of Cognitive Activity, or ICA, (2000; 2002; 2007)  uses wavelet 

decomposition to estimate the PD power spectrum for measuring real-time cognitive activity.  This 

approach uses thresholds to convert the real valued wavelet components to a bit depth of 1. 
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Converting the wavelets to 1-bit resolution reduces noise but is also likely to remove information 

relevant to cognitive workload. Workload classification is then based on either summing the 

processed wavelet components contained in the binary vectors, or applying linear discriminant 

analysis or neural network estimation to all or part of the vectors of binary wavelet components.  

 Skin Conductance (SC, also known as galvanic skin resistance, GSR).  As 2.4.7

scientifically minded readers you may already know that electrical resistance is the reciprocal of 

electrical conductance. Regardless of what the parameter is called the changes result from the 

psychogalvanic reflex response in which the palmar and plantar eccrine sweat glands fill with a 

solution primarily comprised of water and NaCl in response to stress (Harrison, Boyce, Loughnan, 

Dargaville, Storm, & Johnston, 2006; Jacobs, et al., 2001). GSR is perhaps most noted for its role in a 

lie detector (polygraph). In an experimental study conducted during real police interrogations GSR 

was significantly better than chance with a fairly standard card test procedure. In the card test the 

suspect was shown a card with a number between 1 and 6, they were then instructed to answer 

“no” to all of the following questions and asked  “did you choose card number {1, 2, 3, 4, 5, 6}.” GSR 

alone was able to detect the correct card in 35 of 62 suspects, which works out to be more than 

three times better than chance (Kugelmass, Lieblich, Ben-ishai, Opatowski, & Kaplan, 1968). In the 

context of criminal procedures this is certainly not beyond a reasonable doubt, but out of context 

implies at least some validity for the ability of GSR to actually measure stress.  

In an observational study examining preoperative stress, skin conductance was highly 

correlated with blood pressure, epinephrine and norepinephrine levels (Storm, Myre, Rostrup, 

Stokland, Lien, & Ræder, 2002). Eccrine sweat glands are also capable of reabsorbing NaCl to 

reduce salt loss. The psychogalvanic reflex is mediated by the sympathetic division of the 

autonomic nervous system. When the eccrine glands fill electrical conductivity on the skin 

increases, and when eccrine glands reabsorb NaCl there is a corresponding decrease in 

conductivity. Skin Conductance or GSR measurement devices usually have two electrodes which are 
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placed a short distance apart either on the palm or on the index and middle finger. A small amount 

of DC voltage is applied across the electrodes and the current between them is measured. Skin 

conductance can then be calculated by simply dividing the measured current by the applied voltage 

(Ohm’s law defines the relationship between current, voltage, and resistance; conductance is the 

inverse of resistance).  

Skin conductance signals can be analyzed in a variety of ways. The simplest is to simply 

calculate mean conductance over a given epoch. This method is known as the tonic response or the 

skin conductance level (SCL; tonic is more commonly found in the older literature). A second 

method examines the phasic response (or skin conductance response, SCR), a transient increase 

which quickly returns to a baseline state. Harding and Punzo (1971) used a stimulus response task 

where the number of distracters was manipulated to increase the uncertainty of responding. Some 

trials required motor responses to targets while other trials required only paying attention to the 

presentation. Harding and Punzo found that both tonic and phasic responses were higher when 

trials required motor responses. They also found that phasic responses were highly affected by the 

uncertainty manipulation.  

More current research suggests that tonic and phasic responses dissociate between activity 

in the orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC) and activity in striate 

and extrastriate cortices, anterior cingulate and insular cortices, thalamus, hypothalamus and 

lateral regions of prefrontal cortex (Nagai, Critchley, Featherstone, Trimble, & Dolan, 2004). This 

suggests that tonic response is associated with general arousal where the phasic response is 

associated with task dependent emotional processing and resource overload.  Figner and Murphy 

(2010) suggest that phasic responses are often times anticipatory, although they may be 

interoceptively (relating to stimuli within the participant) or exteroceptively (relating to stimuli 

outside the participant) rooted. Positive emotions may also cause phasic responses but not 

necessitate concern for operator intervention. These sorts of issues make distinguishing whether a 
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response genuinely reflects stress difficult. Also, measuring tonic responses is complicated by the 

fact that eccrine glands will also secrete as a thermoregulation mechanism regardless of whether a 

stress inducing stimuli is present (Grimnes, 1982). Skin conductance measures also show large 

individual variability caused by physiological differences in the density of eccrine sweat glands, 

gender differences, differences between extroverts and introvert (Orme-Johnson, 1979).  

 Heart Rate Variability (HRV)  As the name implies HRV reflects the standard 2.4.8

deviation about the mean heart rate. HRV is measured using an electrocardiogram which detects 

electrical fluctuations reflecting heart muscle activity.  During each heart beat the muscle cells build 

up an electrical charge followed by a depolarizing response and corresponding contraction. In   

the electrocardiogram this rhythm is elucidated by the P, Q, R, S, and T phases. The R phase shows a 

sharp transient response reflecting the depolarization and is most easily detectable. The R-R 

interval is used to calculate heart rate (HR) in beats per minute (bpm; see Figure 2.4.1). Heart rate is 

heavily influenced by breathing. Heart rate increases during inspiration, and decreases during 

expiration. Although the mechanisms are not understood in their entirety HRV also reflects cardiac 

autonomic activity (Billman, 2011). Then HRV can be calculated as the variability about the HR 

(Murai, Hayashi, Nagata, & Inokuchi, 2003).  

In the frequency domain heart rate variability can be grossly divided into low frequency and 

high frequency components. Low frequency activity (<  0.1 Hz) may or may not reflect sympathetic 

nervous system activity. Some studies have shown increases in low frequency activity while other 

studies have shown no change or even decreases in conjunction with sympathetic activity. Houle 

and Billman (1999) theorize that low frequency activity reflects a complex interaction of 

sympathetic and parasympathetic activity. High frequency (> 0.2 Hz) content is viewed as a reliable 

indicator of parasympathetic efferent activity (Houle & Billman, 1999; Guger, Leeb, Pfurtcheller, 

Antley, Garau, & al., 2004; Wiederhold, Davis, & Wiederhold, 1998). 
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Figure 2.4.1 Depiction of a normal sinus rhythm ECG trace.The fluctuations in the trace represent 

sequences in the heart beat cycle. HRV is calculated on the timing 

between R peaks (the RR interval). 
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Backs (1995) found that mean heart rate as well as HRV shows reliable correlations 

between gross changes in difficulty although it did not provide enough resolution to distinguish 

between fine changes in task difficulty. Fournier, Wilson, and Swain (1999) found HR and HRV to be 

more sensitive to task difficulty. They found significant differences between single and multiple-

task conditions as well as between multiple-task low and high conditions, as well as between 

medium and high conditions. In their study HRV lacked the sensitivity to distinguish between low 

and medium multiple-task conditions. HRV is complicated by noise from respiration causing 

fluctuations with each and every breath (respiratory sinus arrhythmia). HRV is also susceptible to 

heart rate fluctuations caused by changes in environmental conditions and physical exertion. 

Individual differences also contribute to HRV. Increased low frequency HRV correlates with 

cardiovascular disease (Guger, et al. 2004). The measure remains attractive because of its low cost, 

unobtrusiveness, and robustness to external noise. 

2.5 Conclusions 

 Here I am particularly interested in using pupil diameter, skin conductance, and heart rate 

variability for assessing mental workload. These measures are all relatively inexpensive, relatively 

unobtrusive, and can be used simultaneously without causing interference with one another. Most 

importantly these measures are all currently at our disposal. As previously stated the primary aim 

of this study is to examine whether specialized algorithms designed to make use of multiple 

measures and compensate for individual differences can provide greater reliability and sensitivity.  

The pace of technological advancement is ferocious and future technology will undoubtedly offer 

faster, smaller, cheaper, less noisy physiological measurement devices. The computational 

techniques I use here are designed to evolve and make the most of the information available to 

them to process, analyze, and interpret physiological signals. As such they are extensible to other 



46 

measures. The measure I have chosen to use here are convenient, but I believe enough precedent 

has been established to use them as a valid test bed for our primary aim.  

Machine learning refers to a corpus of techniques which allow computer systems to 

recognize patterns in data. Recognizing patterns from physiological signals can be troublesome for 

a variety of reasons. The number of input signals can quickly grow, and the relationship between 

the input variables and the desired output are likely non-linear because the processes which 

generate them are non-linear. If we recall our discussion on stress individuals may show large 

differences in their reactions and performance when presented with identical scenarios. The BCI 

research has shown that physiological responses of individuals vary from day to day. To combat 

these problems I employ a machine learning technique known as genetic programming. To increase 

the efficacy of genetic programming I first apply wavelet transformation to the physiological 

variables. As previously discussed frequency content to sympathetic and parasympathetic activity 

are often localized to different frequency bands. Wavelet transformation can discriminate between 

these bands while maintaining the temporal resolution needed for making instantaneous measure 

of mental workload.  

The following chapters provide introductions to wavelet transformation and genetic 

programming. Then three preliminary experiments are presented. The first two are far from 

definitive but they provide a record of our rationale and progress. Experiment 3 shows some 

efficacy of wavelet decomposition in conjunction with genetic programming to function as a lagging 

indicator of performance. In real world situations, indicators of mental workload need to lead or 

predict changes in performance. An experiment is proposed which tests the ability of wavelet 

transformation and genetic programming to function as a leading indicator of performance.  
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 Spectral Analysis Chapter 3:

3.1 Preface 

This document aims to provide an accessible introduction to the “nuts and bolts” of spectral 

analysis and wavelets. Unlike most introductions to the topic, it is intended for an interdisciplinary 

audience. The introduction here attempts to build the reader’s mathematical intuition (conceptual) 

instead of focusing on mathematical formalism and rigor (mechanics). This approach may differ 

from what readers are familiar with. 

 To understand the current state of math education one must look to the post WWI (World 

War I) Bourbaki mathematicians. The Bourbaki were a young group of French mathematicians who 

published numerous works under the pen name “Nicholas Bourbaki.” The Bourbaki can be credited 

for providing the mathematical style we are accustomed to today. The Bourbaki stressed a formal 

“definition-proof-theorem” format where mathematical proofs which begin by declaring definitions 

followed by several lemmas (intermediary proofs) until the solution is reached. The definitions and 

lemmas must all correspond to a set of axioms or self-evident statements. For instance, in Euclidean 

geometry one axiom is that two parallel lines on a plane will never intersect. However, non-

Euclidean geometries may not include this axiom. If every step is well established based on the 

chosen axioms, definitions, and lemmas the proof is rigorous (Wells, 2007). Most of us probably 

take it for granted that the theorems contained within our mathematical texts contain this level of 

rigor but historically this has not always been true (Munson, 2010). Prior to the Bourbaki, many 

mathematics followed in the intuitional tradition embraced by many including Henri Poincaré. 

Instead of simply working solutions forward from mathematical definitions and lemmas, Poincaré 

would also work backwards from his intuitions. Poincaré describes his creative process in 

Foundations of Science (1913/2012, p. 387): 

For fifteen days I strove to prove that there could not be any functions like those I have 

since called Fuchsian functions. I was then very ignorant; every day I seated myself at my 
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work table, stayed an hour or two, tried a great number of combinations and reached no 

results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas 

rose in crowds; I felt them collide until pairs interlocked, so to speak., making a stable 

combination. By the next morning I had established the existence of a class of Fuchsian 

functions, those which came from the hypergeometric series; I had only to write out the 

results, which took but a few hours. 

Then I wanted to represent these functions by the quotient of two series; this idea was 

perfectly conscious and deliberate, the analogy with elliptic functions guided me. I asked 

myself what properties these series must have if they existed, and I succeeded without 

difficulty in forming the series I have called theta-Fuchsian. 

Just at this time I left Caen, where I was then living, to go on a geologic excursion under the 

auspices of the school of mines. The changes of travel made me forget my mathematical 

work. Having reached Coutances, we entered an omnibus to go some place or other. At the 

moment when I put my foot on the step the idea came to me, without anything in my former 

thoughts seeming to have paved the way for it, that the transformations I had used to define 

the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify 

the idea; I should not have had time, as upon taking my seat in the omnibus, I went on with 

a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for 

conscience' sake, I verified the result at my leisure. (Poincaré, 1908). 

Poincaré’s work is often criticized for lacking rigor, and rightly so. Many of his papers are filled with 

sloppy, incomplete, or non-existent proofs. Over the years some of these proofs have been 

explicated, but many have turned out to be plain wrong. Poincaré recognized the necessity of rigor 

in mathematics generally, but was not overly concerned with rigor with his own work. In Poincaré’s 

work the detail of his intermediary proofs reflect the amount of confidence he had in those 

particular intuitions. Once Poincaré was intrinsically satisfied he had solved a problem he put it 

aside and went looking for the next problem. In Poincaré’s view too much rigor and formalism just 

results in restraining intuition (McLarty, 1997).  

The Bourbaki mathematicians detested Poincaré’s use of intuition and sloppy style. In some 

regards, modern mathematics should be grateful to the Bourbaki. They established mathematical 

structures based on sets for defining collections of objects (subsets, sets of subsets), as well as 

operations and relations between objects. These mother structures of algebraic, topological, and 

order are irreducible and independent of the chosen system of axioms (Wells, 2007). However, in 
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hindsight it seems only rationale to question whether abandoning mathematical intuition 

altogether is wise. Poincaré argued that if all of mathematics was required to be rigorous and 

formal then no math existed before the 1820s. Perhaps then, abandoning mathematical intuition is 

a case of throwing the baby out with the bathwater. Rigor and formalism are necessary for 

establishing theorems, but not necessarily for discovering them, and most certainly not for 

presenting them. 

A repercussion of the Bourbaki is that mathematical documents have a tendency to make 

perfect sense if you already know what they mean to begin with, but almost no sense if you are 

unacquainted with the topics. There are several reasons for this. First off mathematics is about 

abstraction and generalization. The power of mathematics is in its ability to be applied to different 

datasets and different problems. The mathematics does not care whether they are looking at 

seismological data, cosmological data, or physiological data. The downside to this abstraction is that 

it can be difficult for non-mathematicians to get a firm grasp of what the mathematics mean when 

no concrete examples are provided. Another reason mathematics is inaccessible is because 

mathematics is a very precise language. Math is about finding invariance – things that remain 

unchanged in the midst of change – and the conditions which guarantee they don’t change. The 

consequence is that mathematical theorems read like a laundry lists of conditions, lemmas, and 

properties.  

In contrast, here we try to acquaint the reader without drowning them in mathematical 

formalism. Here I may describe a concept approximately before trying to describe it precisely. We 

also make use of footnotes to point out notation the reader might not be familiar with, or to explain 

things that might not be obvious. We can also make use of visual examples and illustrations 

wherever possible and attempt to use the language of math to support and analyze the visual 

examples. Where proofs are included we try to make them as intuitive and easy to follow as 

possible. Some proofs are disregarded all together but referenced by name for those who wish to 
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look into them, and some longer proofs, which are deemed to have substantial importance, are 

included but mostly for the sake of completeness. Where possible we try to point out insights which 

tie together mathematical topics which are usually treated separately. 

Those of us in applied fields of study want to solve problems not necessarily discover 

theorems. Carl Sagan said “If you want to make an apple pie from scratch, you must first create the 

universe.”  So it is with analytical techniques. When we use an analysis of variance to test whether 

conditions are statistically different from one another or apply a Fast Fourier transform algorithm 

to a time varying signal we are relying on a universe of axioms, lemmas, and theorems we may or 

may not be aware of. In many instances, some ignorance is understandable; we can’t be expected to 

understand the universe before running a t-test, but perhaps one of the consequences is relying on 

analytical techniques as opposed to the mathematics underlying the techniques. To illustrate in joke 

form (Quintopia, 2007):  

A mathematician, physicist, and an engineer are asked to find the volume of a red sphere. 

The mathematician looks at the sphere and then measures the circumference and then 

divides by 2 to calculate the radius and then performs a triple integral to find the volume.  

The physicist looks at the sphere and then gets a graduated cylinder and fills it part way 

with water. She then submerges the sphere in the water and states that the volume of the 

sphere is equal to the displacement of the water. The engineer takes the sphere and starts 

look at it all over, making sure that he sees the whole surface of the sphere. Then he pulls 

out a book of tables and starts flipping through it. He starts to get nervous as he nears the 

end of the book. When he finishes with the book, he pulls out another book of tables and 

keeps flipping through it. When he finishes with his second book he asks "Hey, do any of you 

have tables for red spheres?" In frustration he decides "Aw, never mind, I've got a red cube 

table, I'll just approximate it to that."  

The point of the joke is not to poke fun at engineers. After all this is in many aspects an applied 

endeavor as much as anything else. The point is to illustrate a trend towards taking technique X 

applying it to measure Y and publishing the results of the endeavor, then taking technique X’ and 

applying to Y and publishing the endeavor, ad nauseam.  One only needs to look to the title of this 

very document. Topically, this strategy does seem to yield progress, but what are we really doing? 

Engineer A. R. Dykes (1946) description of structural engineering might provide some insight: 
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Structural engineering is the art of modeling materials we do not wholly understand into 

shapes we cannot precisely analyze so as to withstand forces we cannot properly assess in 

such a way that the public at large has no reason to suspect the extent of our ignorance. 

The description alludes to the fact that in applied settings we often need to deal with large amounts 

of uncertainty. Different fields have different techniques for dealing with uncertainty. Physicists try 

and reduce uncertainty by controlling the environment. Mathematicians have the luxury of 

abstraction. In engineering we need tools that are flexible, but we should not fall into the trap of 

over relying on the tools while forgetting the fundamentals.  Available computational tools 

automate aspects of data pre-processing, reduction, and analysis. This automation can be 

misguided. Exploiting their powers requires only a superficial understanding of their processes. By 

understanding the mathematics behind these tools we may be able to accomplish our goals more 

simply or perhaps more effectively.  

3.2 Introduction 

Psychology provides theoretical considerations for defining what mental workload is. Our 

review of human workload suggests that physiological measures capture relevant information 

pertaining to workload, although it is still unclear exactly how those measures predict workload. By 

tackling the mathematical foundations beyond traditional techniques of collecting time-frequency 

information from physiological we can likely devise simpler, more robust, more effective 

techniques tailored to the data under evaluation. Machine learning algorithms are still needed to fill 

the gap between mapping signal features to mental workload. If the quality of the input data is 

improved the accuracy and reliability of machine learning algorithms, like genetic programming, is 

likely to increase.  

So far we have reviewed the necessity of extracting workload measures from physiological 

signals. We have also reviewed physiological signals of interest. As previously discussed our 

physiology utilizes complementary feedback mechanisms with oscillatory characteristics. Here we 
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turn our attention to how we can extract the spectral information contained within physiological 

measures. The majority of spectral analysis can be traced to Joseph Fourier’s 1807 discovery of 

Fourier Series – a means of representing periodic signals as infinite series of cosine and sine 

functions (Weisstein, Fourier Series, 2011).  

Much of the mathematical advancements in the subsequent 200 years have been built on 

Fourier’s original ideas. Fourier transforms allow us to represent time varying signals as frequency 

varying signals. In the real world many signals are non-ergodic (non-stationary) meaning their 

frequency characteristics are not stable over time.  With such signals it is useful to be able to 

characterize signals in both time and frequency.  This is possible with short-time Fourier 

transforms (STFT, moving window Fourier transforms) is a suboptimal as we will soon see. Moving 

window Fourier transforms (STFT) provide fixed time and frequency resolution. The size of the 

window dictates both the time and the frequency resolution. The uncertainty principle prohibits 

localizing signals in both time and frequency. Longer windows yield better frequency resolution but 

poorer time resolution. Shorter windows yield better time resolution but poorer frequency 

resolution. Secondly, discrete Fourier transforms are also suboptimal because they linearly divide 

frequency when logarithmic divisions are often a more natural fit for real signals.  

It is only in the past 30 years or so that wavelet transforms have offered an optimized 

approach to extracting both time and frequency information from signals by scaling kernel 

functions to the frequencies they are examining. This provides an optimal compromise between 

time and frequency resolution. Discrete wavelet transforms provide orthogonal frequency bands 

with logarithmic spacing. Understanding conceptually what wavelet decomposition does is not 

overly difficult, but an understanding of how wavelet decomposition works and why it works 

requires some dedication and some mathematical formalization.  
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3.3 Vector Spaces  

Before we introduce vector spaces let’s begin with something we should all have some 

familiarity with: the real number line. The real number line extends from    to  .1 It contains 

integers (numbers: …, -2, -1, 0, 1, 2, …), rational numbers (numbers that can be defined as fractions: 

 

 
 
 

 
 
 

 
  ), and irrational numbers (numbers that cannot be expressed by fractions: pi, e, √ ). In 

mathematical notation real numbers are often denoted as  . In practical terms the significance of 

real numbers is that we can use them to measure physical quantities.  Measurement is possible 

because   is a basic algebraic structure known as a field.   

The field of real numbers is mathematically complete and ordered. Completeness essentially 

means that   has infinite precision. If we only had whole numbers we would not be able to take the 

average of 1, 4, and 5 because 10/3 is not a whole number. The whole number line does not provide 

enough precision to capture 3-1/3. In a similar manner the set of rational numbers does not have 

enough precision to capture √ .  Completeness is described by saying that   contains all limits. 

Irrational numbers, like √ , can be describes as limits of Cauchy Sequences. The second property of 

order means that the elements can be arranged in magnitude. The consequences of these properties  

mean that for scalars a, b, and c in   we can use these familiar operations: 

           Community 

  (   )  (   )     Associativity 

  (  )  (  )       Inversivity 

 (   )          Distributivity 

     ,         Identity 

Vector spaces extend these properties and operations of real numbers to multiple dimensions. 

                                                             
1   The concept of Infinity (∞) is one that is often misunderstood. ∞ is not a number but a process that is 

formally unbound.  The concept was originally proposed by Cantor (1887). The “∞” symbol is used in two 
ways 1) to represent a magnitude which either increases above all limits or decreases to an arbitrary 

smallness but always remains finite (e.g. the sequence: 
 

 
 
 

 
, 
 

 
, …), or 2) as a limit point such that any point 

lying “in finite distance” from it has the same behavior as the limit point. 
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 Definition of a Vector Space.  While the real numbers work great for single 3.3.1

dimensional concepts like length and mass, the complexity of most problems often require 

representing them with more than a single dimension. For example, the Earth is a three 

dimensional spherical object but the scale is so large that it appears flat from our terrestrial 

perspective. We could apply a three dimensional Cartesian coordinate system to reference the 

location of objects on the surface using three parameters, but we instead we often project the 

sphere onto a plane which allows us to represent the spatial relationships between physical objects 

on planar surface. When we project small areas of the globe onto a Euclidean plane the distortion 

caused by the projection is minimal relative to the represented area. This mathematical 

deconstruction is known as a Riemannian manifold and allows one to treat the curvature of the 

Earth as a Euclidean plane.  

The practical implication of a map is that we can look at a map and figure out how to get 

from point A to point B based on the spatial arrangement of landmarks on the map, we can use 

scale to estimate the distance between objects because we know the shortest distance between two 

points is a straight line. We can measure the distance between two points using the Pythagorean 

theorem. We might take these properties for granted, but here we wish to point out that these 

affordances are they are endowed from the fact that Euclidean space is generalized from the real 

number line to higher dimensions. A point on a plane can be referenced by two scalar coordinates x 

(left to right) and a y (up and down). These scalars can be expressed as a vector    (   ). A vector 

is basically a list of coordinates. In the Euclidean plane vectors will always have two dimensions. In 

three-dimensional space a vector will have three coordinates. For example,    (     ). Like 

scalars, vectors can be together added together. For vectors:   (          ) and   

(          ): 

    (          )  (          )  (                   ) 

They can also be multiplied by scalars: 
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      (          )  (             )  

where   denotes scalar multiplication. With vector addition and scalar multiplication we can define 

a vector space as a set of vectors that abide by the following rules of community, associativity, 

inversivity, distributivity, and identity. For vectors x, y, and z and scalars a, b, and c: 

           Community 

  (   )  (   )    Additive Associativity 

(  )     (   )  Multiplicative Associativity 

  (  )  (  )       Inversivity 

  (   )           Scalar Distributivity 

 (   )            Vector Distributivity 

        Additive Identity 

         Multiplicative Identity 

Other vector operations exist but are not necessary to include in the definition of a vector space; we 

will hold off discussing them until they become relevant.  

Vector spaces can also extend to higher dimensions. For instance a Euclidean   vector space could 

be defined with the basis   (     ),   (     ), and   (     ). Vector spaces may also have non-

geometric analogues. For example, suppose we wanted to track the progress of 100 runners over a 

10 kilometer course. We could construct a      vector space where each index separately tracks 

the distance each runner has traveled. Since the location of any given runner does not depend on 

any of the other runners the 100 dimensions are linearly independent of one another. This vector 

space would be called a 100-tuple vector space. Vectors may also be continuous.  
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Figure 3.3.1 Geometric Interpretation of the Dot Product. The dot product between two vectors x 
and y relates to the angle between them through the law of cosines.
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 Basis Vectors.  A two-dimensional vector space of real numbers may be denoted as 3.3.2

  . Within this system we can define two vectors. The first is   (   ) and begins at the origin and 

extends along the positive x-axis one unit. The second is   (   ) and also begins at the origin, but 

extends one unit along the positive y-axis. These vectors i and j are called unit vectors because they 

have a magnitude (length) of 1.  The set of vectors       can be called a basis for    since they span 

   and are linearly independent to one another.2 

The spanning property means that any point in    can be specified as a linear combination of i and 

j. For example a vector          .  Furthermore, any choice of scalars a and b will result in a 

vector that is contained in   . The linear independence property means that scalars a and b are 

independent of one another. With the basis vectors defined parallel to the Cartesian axes linear 

independence means a point can move parallel to the x-axis without changing its distance from the 

y-axis, and a point can move parallel to the y-axis without changing its distance from the x-axis .  

The set of vectors       can be called orthonormal vectors because they are basis vectors 

which are also unit vectors. Within   an infinite number of alternative bases can be defined. For 

instance we can rotate the vectors i and j by 45° in the clockwise direction. Our new vectors 

denoted as     (√  ⁄  √  ⁄ ) and    (√  ⁄    √  ⁄ ) would also be a valid basis for   . This 

basis would also be considered orthonormal.  

3.1.3 The dot product.  We previously mentioned that basis vectors are linearly 

independent if they are perpendicular to one another. We can also test the linear independence of 

vectors by looking at their dot product. The dot product of two vectors     (          ) and 

  (          ) is defined as, 

 
    ∑    

 

   

                    . 

                                                             
2  The brackets are used to refer to a mathematical collection of objects called a set. The objects within the set 

are called elements.  The cardinality of a set measures the total number of elements in a set. 
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The concept of a dot product is generalized to continuous complex functions in the following 

sections and becomes essential to spectral analysis. Here we present these concepts in 2 and 3 

dimensional Euclidean space which makes it easier to explain and illustrate. The reader should 

keep in mind that although the content presented here may seem like a distraction in the larger 

context it is rather crucial.   

The length, magnitude, or norm of a vector x is denoted as ‖ ‖ and defined as, 

 ‖ ‖  √     

[Technically not all vector spaces calculate length in this manner.  This formula for length holds in 

Euclidean space and other Lebesgue spaces (   spaces) where    .  For this reason the definition 

shown above is also known as the Euclidean norm. Understanding this technicality is not important 

to the concepts at hand but is mentioned for completeness.] 

In Euclidean geometry the dot product of   and   is related to the angle between the vectors θ and 

the magnitudes of the vectors through, 

     ‖ ‖‖ ‖    (θ) . 

Figure 3.3.1 graphically depicts the geometric relationship between x, y and θ  To prove this we can 

use the law of Cosines. The law of Cosines                (θ) relates the lengths of the sides 

of a triangle a, b, c to the angle θ opposite side c. 

The origin, point x, and point y specify a triangle. The angle at the origin’s corner is given by 

θ. The length of the side opposite θ is ‖   ‖ (see Section 2.2.8.1-2 on metric and normed spaces). 

When we apply the law of cosines: 

‖   ‖  ‖ ‖  ‖ ‖   ‖ ‖‖ ‖    (θ) 

(   )  (   )            ‖ ‖‖ ‖   (θ) 

                             ‖ ‖‖ ‖    (θ) 

          ‖ ‖‖ ‖    (θ) 

    ‖ ‖‖ ‖    (θ) 
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With some algebraic manipulation, 

 θ       (
   

‖ ‖‖ ‖
)   . 

The Cauchy Schwartz inequality proves that, 

 |   |  ‖ ‖‖ ‖  

and guarantees that the argument will always be bounded between the interval       .3   

When we calculate the angle between our orthonormal basis vectors i and j we can see that 

the argument for the inverse cosine function becomes 0 because     is 0 and both i and j are unit 

vectors.  The inverse cosine of 0 is     or 90° which agrees with our geometric interpretation of the 

basis vectors being perpendicular. We can interpret this result by stating that if the dot product of 

two vectors is zero those vectors are linearly independent from one another. When we check our 

rotated basis vectors    (√  ⁄  √  ⁄ ) and    (√  ⁄    √  ⁄ ) we see that: 

      
√ 

 
(
√ 

 
)  

√ 

 
( 

√ 

 
)  

 

 
 
 

 
                        y              

When vectors have more than two dimensions the geometric interpretation of the dot product still 

applies. In higher dimensions two vectors will always define a plane and θ will relate to that plane.  

 Vector Subspaces.  Another interesting and often useful property of vector spaces is 3.3.3

that they may contain subspaces. A subspace is a set of vectors that is closed under addition and 

scalar multiplication. The subset S is considered a subspace of      if the following  hold: 

(1) The zero vector 0 is an element of S 

(2) If vectors u and v are elements of S, then u + v is an element of S  

(3) If vector v ϵ S and c is a scalar, then cv is an element of S 

For example,   contains subspaces defined by basis        , all lines that run through the origin, all 

planes that run through the origin, and the set   is a subspace of itself. Now that we have 

presented a basic overview of vector spaces let’s return to the intertwined spirals problem. 
                                                             
3  This is important because       is only defined between       . 
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 The Complex Plane.  In section 2.1 we presented the intertwined spirals problem 3.3.4

and discussed how switching from Cartesian coordinates to Polar coordinates significantly reduces 

the difficulty of the problem for machine learning algorithms. When we use Polar coordinates 

instead of Cartesian coordinates we are really using an alternative basis in the    vector space. The 

polar coordinate system uses two parameters. The parameter   specifies the radial distance from 

the origin, and the second parameter θ specifies the angle in the counterclockwise direction from 

the x-axis. The polar basis         can be defined in terms of the Cartesian unit vectors i and j as 

follows: 

         (θ)     (θ)  

       (θ)     (θ)  

The vector    is referred to as the radial vector and the vector    is referred to as the traverse or 

angular vector. A second advantage of the polar coordinate representation is that along with 

complex number theory it lends itself to describing polar coordinates. To begin this discussion let 

us first introduce complex numbers. A complex number is a number with a real and imaginary part.  

Complex numbers are usually expressed in the form       , where   and   are real numbers and  

the   term represents √   such that      ,      , and     .  If we recall from trigonometry, 

these complex numbers represent angles on the complex plane containing the unit circle.  In many 

ways the complex plane is isomorphic to    vector space but it is not identical to   . To understand 

how they differ let us first define a    vector space     with basis matrices of: 

    [
  
  

],       [
  
  

], 

    [
  
  

],  and      [
  
  

]. 

The basis vectors shown here meet the linear independence and spanning properties for a vector 

space. Now we can introduce a two-dimensional subspace   within     defined by the basis 

matrices 
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   [
  
  

]   and     [
   
  

]. 

Here we see that the complex plane is a two-dimensional subspace of the four-dimensional vector 

space    . 

[
   
  

]          

In our more familiar complex notation: 

            . 

We can see that that       identity still holds by applying product multiplication to Im: 

   [
   
  

]  [
   
  

]  [
   
   

]     .  

We can move on to show the multiplication of two complex numbers         and         

(       )(       )                            

 (     )   (     )  . 

Because the product of two complex numbers can always be expressed as proportions of Re and Im 

we can say that the subspace   is closed under matrix multiplication. Geometrically this is 

analogous to saying that the product of two complex numbers will always remain on the complex 

two-dimensional plane within the 4-dimensional     vector space. Thorugh similar exercises    can 

be shown to be closed to divison, addition, and subtraction. In addition   also meets the additive 

identity property and the multiplicative identity property. Because    has these properties    is also 

an algebraic field. The closed topology of the field   guarantees that any polynomial equation of 

degree     has a sum total of   real and imaginary roots. This is known as the fundamental 

theorem of algebra. In this context, we can see that the natural habitat for polynomial functions is 

 .  

 The length of a complex number is found using the modulus or complex norm. For a 

complex number        the modulus is denoted as | | and defined as: 
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 | |  √     . 

 Polar Coordinates.  Many problems such as calculating the distance between two 3.3.5

points are well suited for Cartesian coordinates. Other problems may better lend themselves to a 

polar coordinate system. In machine learning there is well known binary classification benchmark 

known as the intertwined spirals problem. The goal of the intertwined spirals problem is to build a 

classifier which given a set of points can identify whether they belong to either spiral A or spiral B 

(Chalup & Wiklendt 2007; see Figure 3.3.2). When learning algorithms are trained using points 

defined by their Cartesian coordinates learning progresses much slower and is generally less 

accurate compared to when the same algorithms are trained using the same points but given polar 

coordinates. Complex numbers can be transformed into polar coordinates through the following 

identities: 

           ( )      ( )  3.3.1 

where, 

   is the angle 

   is the magnitude 

        

  √(    )(    )  √      

   (  )  
 

 
 ,    (  )  

 

 
 ,    (  )  

 

 
 

Using polar coordinates simplifies the multiplying and dividing of vectors.  In polar form the 

product is derived by simply multiplying the magnitudes and summing the angles. Division 

accomplished by dividing the magnitudes and subtracting the denominator’s angle from the 

numerator’s angle. While some tasks are easier to accomplish with polar coordinates some 

operations, such as representing signals, transforming signals, and solving differential equations, 
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Figure 3.3.2 Illustration of the intertwined spirals problem.  A classifier to distinguish a point as 
belonging to spiral A (blue) or to spiral B (yellow). 
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to the use of Euler’s Formula will be presented in section 3.4.1.1 

 Function Spaces. So far our attention has been focused on finite dimensional vector 3.3.6

spaces. For Newtonian physics three dimensional Euclidean space is a powerful tool. However, 

Euclidean space is ill-suited for working with time-varying signals. A key concept to understanding 

spectral analysis is that the basis for a vector space does not have to be a set of finite dimensional 

vectors. A basis can also be a set of functions. For example in Fourier analysis a basis will always 

consists of sine and cosine functions at different frequencies.  

When a basis is a collection of functions the basis is used to define functions. In these cases a 

vector space is a function space (Weisstein, Function Space, 2011). The function space provides the 

same concepts of closure and spanning as their vector space equivalents. In spectral analysis we 

have an underlying assumption that signals possess periodic characteristics that can be described 

by variations of amplitude and phase across an infinite number of frequencies. To deal with the 

theoretical implications of infinite dimensional function spaces we need to have infinite bases with 

infinite number of elements. Discrete decompositions will always have bases with a finite number 

of elements.  

 Abstract Vector/Function Spaces.  To work with these theoretical concepts we have 3.3.7

a variety of abstract vector spaces. These vector spaces share a great deal of overlap, but the idea 

behind having so many classifications of vector spaces is that they provide slightly different utilities 

due to the fact that the rigidity of the classification requirements trades off with increasing 

mathematical structure. One of the most important abstract vector spaces for Fourier analysis and 

wavelet analysis is Hilbert space.  

A rather dry mathematics joke with its origins traced to the halls of MIT goes something like 

this (Weisstein, Hilbert Space, 2011): 

“Do you know Hilbert?” 
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“No” 

“Then, what are you doing in his space?” 

(laughter should result) 

The “humor” of the joke is that Euclidean space is a Hilbert space. Figure 3.3.3 presents a Venn 

diagram illustrating the hierarchy of abstract vector spaces in relation to Euclidean space. The 

importance of Hilbert space is that it generalizes the dot product to higher dimension vector spaces 

including infinite vector spaces. The inner product can be real or complex. The utility of Hilbert 

spaces is the additional structure they provide to these more abstract inner product spaces 

(Weisstein, Inner Product Space, 2011). Hilbert spaces also generalize the Euclidean distance 

metric to abstract vector spaces, and Hilbert spaces are complete.  They also come with 

orthonormal basis which are extremely useful when decomposing signals into their constituent 

frequency components. To begin a more technical presentation of Hilbert spaces we first introduce 

metric spaces and work our way up through the hierarchy presented in the Figure 3.3.3 Euler 

diagram.4  

 Metric space.  We begin our discussion by looking at metric spaces. A metric space is 3.3.8

a real or complex vector space with a distance function (Weisstein, Metric Space, 2011). The 

distance function d(   ) measures the distance between elements   and y. The distance 

function must satisfy the following four properties for a vector space   and 

elements               : 

  (   )   (   )  Symmetry 

 (   )                  Non-negativity 

 (   )                 Identity 

 (   )   (   )   (   )  The Triangle Inequality  

                                                             
4  Euler diagrams are similar to Venn diagrams in that they depict relationships between sets. Euler diagrams 

are less restrictive because empty sets do not need to be explicitly represented. 
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Figure 3.3.3 Hierarchy of abstract vector spaces. This Euler diagram conveys the humor of the 
joke from section. It also attempts to illustrate the relationships between various 
vector spaces.  
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For example a distance function satisfying these requirements could be defined as: 

 (   )  {

          

         
 

In most situations this distance function would not be terribly useful, but it would satisfy the 

distance metric requirement of a metric space. Next, we introduce normed spaces. All normed 

spaces are metric spaces but not all metric spaces are normed. 

3.3.8.1 Normed space.  A normed space is a real or complex vector space with a norm 

function (Weisstein, Normed Space, 2011). For a vector space V, elements x, y in V, and scalar c in   

or   the norm function ‖ ‖ must satisfy the following properties: 

‖ ‖          x      

‖  ‖  | |‖ ‖    

‖   ‖  ‖ ‖  ‖ ‖ 

All normed spaces are metric spaces because a distance function is associated with their 

norm. For elements x, y in V the distance function of a normed space is defined as: 

 (   )   ‖   ‖. 

Recall from section 2.2.3 the Euclidean norm was defined as:  

‖ ‖  √   . 

For two points    (     ) and    (     ) in the Euclidean plane we can see that the distance 

between them is: 

 (     )  ‖      ‖ 

 ‖(           )‖ 

 √(           )  (           ) 

 √(     )
  (     )

  

a distance formula that we should all be familiar with.  

3.3.8.2 Banach space. A Banach space is a complete normed space (Moslehian, Rowland, & 
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Weisstein, 2011). Earlier, we discussed what completeness is in the context of real numbers. Here 

we elaborate on the concept by defining a complete space as one that is square-integratable or 

quadratically integratable. A continuous function  ( ) is square-integratable if: 

∫| ( )| 
 

  

      

If a finite dimensional vector space has a norm then completeness can be proved through Cauchy 

sequences. So any finite dimensional normed vector space is also a Banach space. This brings us one 

abstract space away from getting to Hilbert space. Next up are Lesbesgue spaces.  

3.3.8.3 Lesbesgue spaces (   spaces). Lesbesgue spaces are complete normed spaces where 

the norm is generalized from Euclidean space (Rowland, Lp-space, 2011). Recall that for finite 

vector x in Euclidean space the Euclidean norm is: 

‖ ‖  √   
  . 

Showing how the norm is generalized to Lesbesgue spaces is perhaps easier done by showing than 

explaining. Finite Lesbesgue spaces are denoted as    and the norm belongs to the family of 

functions given by: 

‖ ‖  √   
 

     for       .  

When     the space can be called    and the norm is equivalent to the Euclidean norm.  

It follows that the distance metric for finite vectors x and y is given by: 

  (   )  ‖    ‖  √(    )  (    )
 

     for      .    

As with Banach spaces in the finite case completeness can be proved through Cauchy sequences. 

For continuous cases, Lesbesgue spaces are denoted as   . Continuous Lesbesgue spaces generalize 

the square-integratable requirement presented in the Banach space section (on page 67)  to ensure 

they converge: 

∫| ( )| 
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Assuming the above is true the norm for an as    space is defined as: 

‖ ( )‖  ( ∫| ( )|
 

 

  

  )

 
 

 

The Riesz–Fischer theorem satisfies the completeness requirement for    spaces. In mathematics 

we may refer to the Euclidean plane as   (  ) or refer to the complex plane as   ( ). Phew, we 

have finally made it to Hilbert spaces. 

3.3.8.4 Inner product space and Hilbert space. Since we have gone through the trouble of 

reviewing abstract vector spaces we can now define a Hilbert space as a complete normed vector 

space with a norm induced by the inner product (Weisstein, Function Space; Normed Space, 2011).  

As previously mentioned inner product spaces generalize the dot product to higher dimensional 

finite vector spaces and continuous vector spaces. Inner product spaces are function maps which 

take two vectors as arguments whose output can be in   or  . The   case is more straightforward 

and is in many ways isomorphic to the dot product presented earlier. The primary difference being 

the norm  ‖ ‖  √    is not a required property of an inner product space. For a real vector space 

  and vectors          and scalar      the inner product is defined as a real function 

〈   〉       such that: 

 〈   〉  〈   〉 

〈    〉  〈    〉   〈   〉 

〈     〉  〈     〉  〈   〉  〈   〉 

〈   〉             

〈   〉             .5 

 When   is a complex vector space and 〈   〉       things get a little more complicated. 

Consider the following for      when V is complex.: 

                                                             
5  The symbol   means “element of.” The notation 〈   〉       means the inner product of x and y is 

given by 〈   〉 and the function is a map which takes two elements from real vector spaces and has a real 
output. 
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  〈     〉   〈    〉    〈   〉   〈   〉    

Obviously, we have a contradiction here. The inner product cannot be both less than AND greater 

than 0. To resolve the contradiction we can take the conjugate of the second argument before 

calculating the products. This is known as the Hermitian Inner Product (Rowland, Hermitian Inner 

Product, 2011).  For finite complex vectors z and w: 

〈   〉  ∑    ̅̅ ̅

 

  

When   is a complex vector space for vectors          and scalar        the inner product is 

defined as a real function 〈   〉       such that: 

 (1) 〈   〉  〈   〉̅̅ ̅̅ ̅̅ ̅ 

(2) 〈    〉   〈   〉 

(3) 〈    〉   ̅〈   〉 

(4) 〈     〉  〈     〉  〈   〉  〈   〉 

(5) 〈   〉             

(6) 〈   〉             .6 

From the Property (2) we can see that the Hermitian inner product is linear in its first argument 

and from Property (3) we can see it is antilinear with its second argument. By definition this means 

the complex inner product is sesquilinear. Because the real inner product, shown above, is linear 

for both its first and second arguments it is by definition bilinear form. The increased complexity of 

the operation is a tradeoff for maintaining the Properties (5) and (6). 

Using the Hermitian inner product defined above we can check to see if our contradiction is 

resolved: 

  〈     〉   〈    〉     〈   〉     〈   〉  〈   〉 

                                                             
6  Mathematicians and Engineers usually take the complex conjugate of the second argument. Physicists 

prefer to take the complex conjugate of the first argument. The properties presented above only apply 
when the second argument is conjugated. We will stick to this assumption throughout the text. 
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[ The complex conjugate of j is –j. Since       it follows that       which resolves the 

contradiction. ] 

 The complex inner product properties presented above apply equally well regardless of 

whether the vectors are finite or continuous. The inner product of continuous complex functions 

 ( ) and  ( ) with infinite bounds is 

〈   〉  ∫   ( ) ( )

 

  

    

The bounds on continuous inner product spaces are not required to be infinite. For example The 

inner product of continuous complex functions  ( ) and  ( ) could also have finite bounds  

〈   〉  ∫   ( ) ( )  

 

 

 

or more generically defined as 

〈   〉  ∫   ( ) ( )  

 

 

  

The inner product will converge if  ( ) and  ( ) are square integratable due to the Cauchy-

Schwartz inequality for integrals (Daubechies, 1992) 

|∫   ( ) ( )  

 

 

|  (∫|  ( )|  

 

 

)

   

(∫|  ( )|  

 

 

)

   

 

Hilbert spaces do many things. For starters, they allow us to represent time varying signals as 

complex valued frequency varying signals. Hilbert spaces along with frame theory provide methods 

for arbitrarily reducing or increasing the dimensionality of data in useful ways. Frame theory also 

provides an interesting way of thinking about vector space basis. 

 Introduction to Frame Theory. Frames are generalized bases to sets of vectors in 3.3.9

Hilbert space that span the vector space but are not necessarily linearly independent. This implies 
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that all bases are frames but not all frames are bases. Frames were originally defined by (Duffin & 

Schaefer, 1952) to decompose non-harmonic Fourier series. Daubechies, Grossman and Meyer 

(1986) related frames to wavelets, and Daubechies (1990; 1992) continued the formalization of 

frames. Previously when we presented bases we said that  (   ) (   )   is a basis for   (  ). The 

vectors span    (  ) and are linearly independent. The set of vectors  {(   ) (   ) (√  ⁄  √  ⁄ ) } 

would constitute a frame for    (  ) but not a basis. The frame vectors spans   (  ) but the 

vectors are not linearly independent from one another. The first and second elements are 

orthogonal to one another, but the inner product of the first and third is non-zero, and the inner 

product of the second and third is also non-zero. With the intertwined spirals problem we 

explained why it can be helpful to transform a vector from one basis to another. Frames provide a 

similar utility by allowing us to transform from one frame to another and providing conditions 

ensuring stable reconstruction from one frame to another.  

Frames are extremely versatile in terms of application. To give a few examples, Support 

Vector Machines (SVMs) use frames to project data into higher dimensions. Data that may be non-

linear in two dimensional feature space (a space is defined not necessarily by time or frequency but 

by characteristic features of the data) for instance may be linear in higher dimensional feature 

spaces. This is often referred to as the “Kernel Trick.” A second application of frames is Principle 

Component Analysis (PCA). Principle component analysis is a method for reducing the 

dimensionality of data. PCA is a method of determining a new orthogonal basis for a set of data such 

that the variance is captured by the components (basis vectors) in an ordered fashion. With PCA the 

first component will predict the most variability and the following components will capture 

descending amounts of variability.  When given high dimensionality data sets with large amounts of 

noise PCA may be able to capture a large portion of the variability with only a handful of the 

original components. With spectral analysis frame theory allows us to interpolate the spectra 

between frequency bins with discrete time Fourier transformation. The continuous short-time 
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Fourier transform and the continuous wavelet transform use frames to approximate the spectra 

over bounded intervals. Discrete wavelet transforms use frames to ensure stable reconstruction. 

Keep in mind these examples are just provided to highlight the utility of frames. At this juncture the 

reader isn’t expected to understand the examples in great detail; they are merely to give the reader 

an idea of where we are headed.  

3.3.9.1 Precisely what is a frame?  To explain frame theory it is helpful to have some 

familiarity with mathematical transformations and experience working with inner product spaces. 

If the reader is unfamiliar with these concepts they are encouraged to read through sections 2.3 – 

2.3.3. Recall that the Fourier series allows us to represent a time varying signal  ( ) in a Hilbert 

space   as a sum of complex sinusoidal basis functions and scalar coefficients (assuming we define 

the basis to match the domain of the function and the function is square-integratable). The basis of 

these components are in the form given by  

   {                   } 

and a set of scalar coefficients defined by the inner product space of   with the basis functions in    

, 

   ∫ ( )     〈    〉  

This allows us to represent   as 

 ( )  ∑〈    〉  
 

  

Now we propose that the basis    could be given by given by a number of possible 

orthogonal basis functions or even properly chosen non-orthogonal sets of functions. For all 

possible  functions         ( )  and a set of functions    a frame can be defined such that  

 ‖ ‖  ∑|〈    〉|
 

 

  ‖ ‖  



74 

where A and B are scalars and           These constants are called the lower and upper 

frame bounds respectively. When    is the Fourier basis, {                   }, or any orthonormal 

basis A and B will both equal 1. Additionally, we know that when    is the Fourier basis it is 

possible to perfectly reconstruct  . But what about when    is not a basis? Often times it is not 

possible or not desirable for    to be orthogonal. In these cases how can we know whether it is 

possible to reconstruct  ? And if it is possible, how? The simple answer is that if    meets the frame 

condition then it is possible to reconstruct  . The details in understanding how this is possible are 

not overly difficult, but upon first encounter the understanding how the details fit together is a little 

confusing. Here we will begin with a  some theory. 

3.3.9.2 The Analysis and Synthesis Operators.  When we transform a function we map the 

function to an inner product space. The map operation is called the Bessel map or analysis operator 

and using function notation is denoted as7,  

       ( ) 

       〈    〉    
  

With the Bessel map the first line means that we are declaring a function    that has a Hilbert space 

input domain and has a discrete Lesbesgue-2 space target codomain. The second line defines the 

domain as a function f  and specifies the codomain as the inner product space of f and the set of 

functions in   .  

When we take the inverse transform we have a second operator known as the pre-frame operator 

or synthesis operator. The synthesis operator is, 

    ( )    

                                                             
7  This notation describes functions or operators. For example the function  ( )     would be expressed as, 

       (declares the domain of the input as the field of real numbers and specifies the output 

codomain as the field of real numbers) 

       (maps the domain   to   ) 
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       ∑    
 

 

In frame theory when       we call the frame a 1-tight frame or a Parseval frame. A Parseval 

frame is a normalized frame. All orthonormal bases are Parseval frames but not all Parseval frames 

are orthonormal bases (Weisstein, Parseval's Theorem, 2011). From what we already know about 

orthonormal bases we can express   as: 

       

         ’  apparent why this is true, consider the Fourier series. Give the proper domain and basis 

this restates the Fourier series.  

 

The frame can be expressed in matrix form where each vector is a row,  

[

  
  

√  ⁄ √  ⁄
] 

This is matrix representation is also known as the frame operator.  
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3.4 Fourier Analysis 

We begin this section by asking “What is a periodic signal?” A periodic signal is one that 

repeats itself over time. The length of time before it repeats is called its period. So in mathematical 

notation we can define a function  ( ) periodic if a T exists such that  (   )   ( )            For 

example, the function  ( )     (   ) is periodic when          : 

  ( )    (       ).   

    (   )      (  (       )) 

   (   )      (          )  

   (   )      (      ) 

As a corollary to our definition of a periodic function we can define an aperiodic function if a T does 

not exists such that  (   )   ( )            For example the Dirac delta function defined as: 

 ( )  { 
          
              

 

is obviously aperiodic. Through the course of this section we will show that any signal, whether 

period or aperiodic, can be represented as a linear combination of periodic signals. In 1807 

F u    ’       v  y                k       F u              sentially provides an algorithm for 

representing periodic functions as an infinite sum of sine and cosine functions. Breaking up a 

function into simpler terms can in many cases yield closed form analytic solutions. 

 Introduction to the Fourier Series. Fourier series decompose functions which are 3.4.1

periodic over the domain       . For example let’s consider the square wave defined by : 

  ( )  {
  
  
           
               

  

 when  (    )   ( ) . 

 
3.4.1 

The square wave function, or any function  ( ) with a domain bounded by       , can be 

represented using the trigonometric Fourier Series (Weisstein, 2011): 
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 ( )  

  
 
 ∑      (  )       (  ) 

 

   

 3.4.2 

where, 

   
 

 
∫  ( )  
 

  

 

   
 

 
∫  ( )   (  )  
 

  

 

 
   

 

 
∫  ( )   (  )  
 

  

 
.8 

 

The n parameter iterates through   (the set of all integers). As n increases the summation yields 

better and better approximations of the original function.  The    coefficient provides a constant 

offset to the series representation. The coefficients    and    weight the    (  ) and    (  ) 

functions within the summation. One of the handy things about Fourier series is that we can solve 

the integrals to hopefully find a less cumbersome representation for the coefficients. Remember, 

these techniques were invented long before the advent of computers. Nowadays if we can specify 

an equation a computer can solve it, but when everything was done with pencil and paper reducing 

the amount of work one has to do is critical. When we solve the integrals9 defining   ,    and    for 

the square-wave function defined in Equation 3.4.1 we see that: 

   
 

 
∫    
 

  

 
 

 
∫    
 

 

   
 

 
    

   
 

 
∫     (  )  
 

  

 
 

 
∫     (  )  
 

 

   
   (  )

  
 

                                                             
8  In some disciplines  ( ) is also denoted as  ( ). I find this adds confusion because it makes the coefficients 

seem like they should be recursive. Here I use  ( ) to refer to the original time signal and use  ( ) to refer 
to the Fourier series representation. The reader should keep in mind the Fourier series completely 
represents  ( )  so  ( )   ( ). 

9  We are treating the integrals piecewise. When we integrate from     to 0 we substitute 0 for  ( ) (since 
 ( ) is 0 over this domain). Likewise, when we integrate over 0 to   we substitute 1 for  ( ). The Fourier 

series can decompose any piecewise periodic function (on the interval –   to   ) in this manner. Readers 
who aren’t particularly fond of finding integrals by hand should be aware of WolframAlpha.com.  Example 
syntax: “integrate sin(n x) dx, 0<x<pi” 
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∫     (  )  
 

  

 
 

 
∫     (  )  
 

 

   
     (  )

  
 

Since these coefficients are inside the summation we can think of them as functions of n. Let’s see 

what happens to the coefficients of the first example as n increases. 

      ( )  ⁄    

      (  )   ⁄    

      (  )   ⁄    

      (  )   ⁄    

  

   (     (  ))  ⁄      

   (     (  ))   ⁄    

   (     (  ))   ⁄       

   (     (  ))   ⁄    

   (     (  ))   ⁄       

   (     (  ))   ⁄    

   (     (  ))   ⁄       

  

So we can see through induction that the    coefficients always become zero becomes sin(x) always 

crosses the x-axis at each pi interval. The    coefficients are always zero when n is even and become 

     when n is odd. With this information in hand we can redefine    and    as: 

     

   {
       v  

   ⁄         
 

Now when we plug these into  ( ) we see the equation is greatly simplified: 

 ( )  
 

 
 ∑

 

  
   (  )

 

            

   

Figure 3.4.1 plots the first 16 approximations of  ( ). As the reader can see even after only a 

handful of iterations the function is a visually close approximation to the original function.  At 

present this is not much more than a parlor trick. Upcoming sections will discuss why and how it   
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Figure 3.4.1 Fourier series approximations of a square wave. 
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actually works in more detail. 

3.4.1.1 Euler’s Formula.  Euler’s formula which describes a relation between the 

trigonometric functions and the complex natural logarithm. Euler’s formula states that for and real 

value  , 

        ( )        ( ). 

Various proofs of this relationship are possible. One of the more popular shows that the power 

series of     matches the Taylor series of    ( )        ( ). First let us define the power series for 

   as: 

     
 

  
 
  

  
 
  

  
   ∑

  

  

 

   

 

Now we can substitute    for  : 

      
(  )

  
 
(  ) 

  
 
(  ) 

  
 
(  ) 

  
 
(  ) 

  
 
(  ) 

  
 
(  ) 

  
   

Recall that: 

     ,      ,      ,      ,  

     ,      ,      ,      ,… 

So the power series can be simplified to: 

      
  

  
 
  

  
 
   

  
 
  

  
 
   

  
 
  

  
 
   

  
   

Now we can group the j terms together and group the non j terms together: 

    (  
  

  
 
  

  
 
  

  
  )   (

 

  
 
  

  
 
  

  
 
  

  
  ) 

From here we can recognize the power series for cos(x) and for sin(x) in the respective parentheses 

and the series can be expressed as: 

       ( )        ( ) 
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Equation 3.3.1 defined how a vector can be defined as a complex number or an angle and 

magnitude. The identity can be extended to: 

          ( )      ( )       

This representation of a complex number is known as a phase vector (complex phasor, or 

phasor). Recall from above    denotes the magnitude, and   specifies the phase in radians from the 

positive real axis in the clockwise direction. With the phasor notation trigonometric problems can 

be solved using algebra of exponents. 

3.4.1.2 Phase Vectors (Phasors).  In the previous section we showed how Euler’s formula 

could be derived from the    power series by substituting    for  .  It is often more convenient to 

think about time varying signals in terms of their frequency (  ) in cycles per second. By 

substituting        for   we can express sinusoidal waves, with frequency specified by   , as 

functions of time (t): 

            (     )       (     ) 

If     is substituted for   a second relation is found: 

            (     )       (     ) 

With these two formulas and some algebraic manipulation the following identities can be obtained: 

 
   (     )  

       

 
 
        

 
     

 

3.4.3 
 

 
 

   (     )  
         

 
 
        

 
 

3.4.4 
 

To understand what is going on here let us examine the phasors associated with the function  

    (   ).  From the equation we can see the wave has an amplitude of 2 and a frequency of 1 Hz.  

These values simplify the first term to      and the second term to       . On the complex plane the 

first phasor will follow the unit circle on the complex plane in the counter-clockwise (CCW) 

direction. The second phasor follows the unit circle in the clockwise (CW) direction. Because       
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Figure 3.4.2 The j-operator. The j-operator. shifts a vector or a function by 90° counterclockwise in 

the complex plane. Karl Gauss called the j-operator “the shadow of shadows.” 

 

Real Axis

Imaginary

Axis

4+j0

j(4+j0)=0+j4

j2(4+j )    j0

j3(4+j0)=0-j4
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in the phasors will each travel around the unit circle one time every second. As these 
phasors travel around the unit circle their vector sums are such that the imagery parts 
cancel one another and the real parts sum such that the real parts equal     (   ). 
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Figure 3.4.3 2cos(2πt) can be represented by the sum of two phasors: ej2πt (blue trace) and e-j2πt 
(green trace). In the imaginary axis the phasors are anti-phase and cancel one 
another when summed (the dotted traces are all on the imaginary plane), while the 
real axis the phasors are in phase and when summed compose 2cos(2πt). 
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Figure 3.4.4 2sin(2πt) can be represented as the difference between phasors: jej2πt (blue trace) 
and je-j2πt (green trace) The leading j terms rotate the phasors 90° counter-
clockwise about the unit circle . In the imagery plane the phasors are identical so 
their difference is 0. In the real plane the difference between the phasors reaches a 
maximum when t = 0.5 and 1.5 (1/4  and 3/4 of the sine’s period). 
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 See Figure 3.4.2.10 

 Now let us examine the phasors associated with     (   ) (Equation 3.4.4). From the 

identity above we can see that the phasors become        and       . We can also see that instead 

of summing the second phasor is subtracted from the first. The j term is known as the j-operator. 

Say we have a complex number       . When we multiply c by j the result result is 0 + j4. When 

we multiply c by    the result is -4 + j0 because   =-1. When we multiply c by    the result is 0 – 4j, 

and lastly c times     brings us back to c (see Figure 3.4.3). On the complex plane we can see that 

multiplying a phasor by j rotates the phasor by 90° in the CCW direction. This is the j-operator 

(Lyons, 2008). Through Euler’s formula we can also see that since     ⁄     (
 

 
)      (

 

 
)    

  multiplying a phasor by     ⁄  has the same effect. Figure 3.4.4 depicts the phasors associated with 

    (   ) The j-operators cause the imaginary parts to remain equivalent over time while the 

difference between the real parts equal     (   ).  Now that we have an idea of how phasors can 

represent harmonic signals we can begin to examine how the Fourier transformation extracts the 

frequency content from a time-varying signal.  

3.4.1.3 The Exponential Fourier Series.  Now that we have some experience working with 

phasors we can represented the trigonometric Fourier Series presented in Equation 3.4.2 as: 

 
 ( )  

 

 
∑    

   

 

    

 

 

3.4.5 

where,  

 
   

 

 
∫  ( )       
 

  

 
. 

                                                             
10  These phasor representations are not universally appealing. They are a bit easier to decipher when viewed 

interactively and one can orbit the axes to perceive the depth relations of the spirals. 
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Figure 3.4.3 2cos(2πt) can be represented by the sum of two phasors: ej2πt (blue trace) and e-j2πt 
(green trace). In the imaginary axis the phasors are anti-phase and cancel one 
another when summed (the dotted traces are all on the imaginary plane), while the 
real axis the phasors are in phase and when summed compose 2cos(2πt). 
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Figure 3.4.4 2sin(2πt) can be represented as the difference between phasors: jej2πt (blue trace) and 
je-j2πt (green trace) The leading j terms rotate the phasors 90° counter-clockwise 
about the unit circle . In the imagery plane the phasors are identical so their 
difference is 0. In the real plane the difference between the phasors reaches a 
maximum when t = 0.5 and 1.5 (1/4  and 3/4 of the sine’s period). 
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How wonderfully succinct! This is possible by taking advantage of symmetries of cosine and sine: 

    ( )      (  ) 

   (  )      ( ) . 

These identities reveal symmetry of the coefficients of the trigonometric Fourier Series: 

   
 

 
∫  ( )    (  )   
 

  

 
 

 
∫  ( )   (   )  
 

  

     

   
 

 
∫  ( )   (  )  
 

  

 
 

 
∫   ( )   (   )   
 

  

     

        

Our goal is to replace    (  ) and    (  ) with     .  If we define the Fourier coefficients as a 

complex scalar  

           

 
 

 
∫  ( )   (  )  
 

  

  
 

 
∫  ( )   (  )  
 

  

 

 
 

 
∫  ( )    (  )      (  )   
 

  

 

Euler’s tells us that    (  )      (  )        so after substitution 

   
 

 
∫  ( )       
 

  

  

The symmetries of cosine and sine are still embedded in this coefficient. The consequence is      is 

identical to the complex conjugate of    

    
 

 
∫  ( )   (  )   
 

  

 
 

 
∫  ( )      
 

  

     

Now let’s see what happens when we expand the Exponential Fourier Series (Equation 3.4.5) 

 ( )  
 

 
[(   

 )  (   
      

   )  (   
       

    )   ] 
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When we substitute in for our   ,    and     for our c coefficients and expand only (   
      

   ) 

we can obtain the Trigonometric Fourier Series: 

 ( )  
 

 
[(  )  ((      ) 

   (      ) 
   )   ] 

 
 

 
[(  )  (   

       
      

        
   )   ] 

 
 

 
[(  )  (  ( 

       )    (  
        ))   ] 

 
 

 
[(  )  (   (

   

 
 
    

 
)     (

     

 
 
    

 
))   ] 

Here we can recognize Euler’s formulas for cosine and sine, and after substitution we have: 

 ( )  (
  
 
)  (     ( )       ( ))  (     (  )       (  ))     

The reader should be able to finish the induction from here if they still need more convincing.  

 The  
 

 
  term from outside the summation to inside   . It makes the presentation a little nicer 

and is more consistent with existing definitions. 

 ( )  ∑    
    

 

    

              
 

  
∫  ( )       
 

  

  

3.4.1.4 The Complex Fourier Coefficients Define a Hilbert Space.  If the reader will recall the 

inner product of continuous complex functions  ( ) and  ( ) is defined as 

〈   〉  ∫   ( ) ( )

 

 

  

If the inner product space is complete and normed such that  ‖ ‖  √〈   〉 the inner product space 

is a Hilbert space. With a little imagination we can see that the    formula from the exponential 

Fourier series closely resembles our continuous inner product definition. In fact,    

actually defines an inner product space. To make it a little more obvious let’s define a function 
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        .11 

This allows us to define what was previously    as an inner product space 

〈    〉  
 

  
∫  ( )    
 

  

  

and the Fourier series becomes 

 ( )  ∑ 〈    〉  

 

    

  

Let’s step back and think through what is happening here. While it might not be 

immediately apparent, the inner product between 〈    〉 is expressing the amount of similarity 

between  ( ) and a complex sinusoid with a frequency of n.12  Therefore, the space of all the inner 

products, the Hilbert space, 〈    〉 reflects the amount of similarity between  ( ) at all frequencies 

in  . The inner product is transforming  ( ) from the time domain to the frequency domain. The 

Hilbert space represents  ( ) in the frequency domain. To re-state this idea we can say that the 

inner product encodes  ( ) as a Hilbert space. When the Fourier series calculates 〈    〉   it is 

decoding the Hilbert space’ frequency domain representation back to a time domain 

representation. 

3.4.1.5 Parseval’s Identity. Parseval’s Identity shows that the sum of the squared coefficients 

of the Fourier series is equal to the integral of  ( ) squared (Weisstein, 2011f), 

∑ |  |
 

 

    

 
 

  
∫ | ( )|   
 

  

  

The implication of Parseval’s Identity is that the amount of energy in the signal is maintained from 

one representation to the other in a manner that guarantees reproducibility. 

3.4.1.6 The Fourier Coefficients have an Orthonormal Basis. One of the key concepts that 

makes the Fourier series work is that the    terms are orthogonal to one another. If they were not 

                                                             
11  The complex conjugate of    is        
12  This idea is elaborated on in future sections. 
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orthogonal it would imply that frequencies in  ( ) exist that are dependent on other frequencies in 

 ( ) and we would not be able to treat them as independent sinusoids. We can define the basis as a 

set  

       
                   .  

To show that these are indeed a basis we need to show that each element is orthogonal to all 

elements of the set except themselves over         . Recall that two vectors are orthogonal to one 

another if their inner product is zero: 

          〈   〉   . 

Since there are an infinite number of vectors it really isn’t possible to check all 
  

  (   ) 
 

combinations. Instead we can show that 〈     〉    for any n and m in   as long as    . 

〈     〉  
 

  
∫       
 

  

 
 

  
∫            
 

  

 
 

  
∫  (   )    
 

  

 

Whenever     the difference between n and m will always be an integer since   is closed on 

addition (adding and subtracting integers will always result in another integer). We can define this 

difference as      . The consequence of this closure is that  

〈     〉  
 

  
∫       
 

  

        k     

Why? 

When          the complex phasor goes through exactly 1 cycle over           

When          the complex phasor goes through exactly 2 cycles over           

When          the complex phasor goes through exactly 3 cycles over           

  

As long as the phasor goes through full cycles over the bounds of the integral the real and imaginary 

positive parts will cancel out the real and imaginary negative parts and the integral results in 0.  

N      ’                   when    . In this case the inner product does not equal zero 

because: 
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∫       
 

  

 
 

  
∫     
 

  

 
 

  
      

Since 〈     〉    for any n and m in   as long as     and we can conclude the elements of B are 

indeed orthogonal to one another. 

 Now we can go on to show that they are all unit vectors (vectors with a length of 1). In 

Hilbert space the length of a vector   is given by its norm √〈   〉. We just showed that the inner 

product of    with itself is 1 (this is what happens when    ) and √    so we can conclude the 

elements of B are indeed unit vectors, and B  is therefore not only a basis it is an orthonormal basis 

for the Hilbert space. The basis B we have been discussing is one of many possible bases for the 

Fourier series. Alternative bases can be obtained by changing how the inner product is defined. For 

instance, we could define the inner product as 

〈    〉  
 

  
∫  ( )    
  

 

         {    
                  }                 

Or we could also define the inner product as 

〈    〉  ∫  ( )    
 

 

                          {    
                    }               

Or we can generalize this by defining the inner product in terms of the period length T 

〈    〉  
 

 
∫  ( )    

 
 

 
 
 

           {    
      ⁄                }               

The point of being able to modify the period is that we can make it fit the time units we want to use. 

We could have T equal 1 second, or have T equal one year. We can make the Fourier series fit what 

we are interested in instead of having to think in terms of radians. To conclude our discussion of 

Fourier series I shall point out that Fourier series are intended to examine Periodic signals. What if 

     v    g                             g                 k   g   b           bu        ’  k        

time interval they are periodic over? As we will soon see the Fourier transform will address these 

questions.  
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 Introduction to the Fourier Transform.  The Fourier transform is in many ways 3.4.2

similar to the exponential Fourier series. The importance of the Fourier transform is that it is able 

to fully represent any aperiodic or periodic signal as an infinite sum of sinusoidal functions. In the 

previous section we demonstrated how we could modify the Fourier series to suit the periodicity of 

the signals we are interested in representing. The Fourier transform essentially assumes the time 

domain has no periodicity. In the conclusion of the previous section we showed that the Fourier 

coefficients can be generalized over any period length T, 

〈    〉  
 

 
∫  ( )     

 
 

 
 
 

  

The Fourier transform generalizes the Fourier coefficient definition by taking the limit of T to 

infinity. With the Fourier series the  
 

 
 term ensures the basis functions have unit length. But, the 

      
 

 
  is 0 which makes the inner product terribly uninformative.  To resolve this limit 

mathematical analysis13 is required. 

 Suppose    
  

 
.  

The difference between harmonic frequencies can then be defined as,  

   = (   )         . 

Substituting into the basis gives, 

    
              . 

Now, as T becomes large    becomes a differential separator,  

     d . 

 

                                                             
13  Analysis is a branch of mathematics that concerns itself with transfinite operations and involves 

procedures of making successive approximations. Without analysis,   tends to “break the field.” The 
branch was developed largely in response to Berkeley’s 1734 work “The Analyst: A Discourse Addressed 
to an Infidel Mathematician.” The “infidel” in question was Edmund Halley who is credited for calculating 
the orbit of the Halley comet. Berkeley objected to the use of use of 0 ÷ 0 used in Newton’s limit argument. 
Mathematics was forced to invent Analysis in order to save Newton’s Calculus. This took a little over a 100 
years to fully address Berkeley’s objection (Wells, Personal Communication, 2012). 
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Furthermore,  

 

 
 
  
  

 
  

  
  

  

  
     

〈    〉  
 

 
∫  ( )          

 
 

 
 
 

 

Let      . Then 

〈    〉   
 

 
∫  ( )      

 
 

 
 
 

 

and 

  〈    〉   ∫  ( )       

 
 

 
 
 

  ∫  ( )       
 

  

         

The Fourier transform merely replaces 〈    〉 by   〈    〉 as      and         as     . 

The analysis demonstrates that the basis length appropriate for differential frequency spacings is 

  〈    〉 because as    , 〈    〉    but   〈    〉   . Therefore, the Fourier transform 

merely becomes another form of basis function expression that is analytic for    . 

 The Fourier transform can then be defined as, 

 ( )  ∫  ( )     
 

  

    

The parameter   in angular frequency (specified in radians/unit time). The relation between 

angular frequency (cycles/unit time) is       where   is ordinary frequency. The function   ( ) 

is our original time-varying function. The function   ( ) is our frequency-varying function. The 

term       is a phasor describing a complex sinusoid of frequency  .  The integral is over    to   

with respect to t.  Since the       corkscrews over all of time the function  ( ) must have finite 

energy in order for the integral to converge. That is to say: 

∫| ( )| 
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3.4.2.1 Fourier Transform has a Complete Basis. The fact that the Fourier transform is 

unbounded means the basis must be able to span all possible functions definable over          

(or more simply    ). To be able to do this the basis set must be able to specify all cosine and sine 

waves with infinite precision. In other words the basis must be mathematically complete. The basis 

for the Fourier transform is given by, 

   {                   }        . 

At this point the reader is probably wondering how can functions which are nearly identical to one 

another be orthogonal to one another? The insight is in understanding that the integral defining the 

inner product is infinite. Two complex exponentials     and                                   won’t 

be orthogonal to one another if the inner product integral is bounded about zero, but if the inner 

product integral is unbounded they in fact are orthogonal as they drift out of phase over infinite 

time in both directions (see Figure 3.4.5).  

3.4.2.2 The Inverse Fourier Transform. A consequence of having a complete basis set is that 

recovering the original function  ( ) requires integration. What was formally the Fourier series 

summation becomes the inverse Fourier transform, 

 ( )  
 

  
∫  ( )    
 

  

    

Scaling the integral by 
 

  
 maintains the power in the original signal.  The Fourier transform 

presented above is non-unitary. Unitary transforms normalize the output such that it contains 

power equal to that of the input. The Fourier transform and its inverse could be presented as 

unitary transforms by applying a scaling factor (the term outside the integral) of 
 

√  
 to both 

transform and inverse transform. 14 

  

                                                             
14 Here we present the non-unitary transform because as we will see the discrete Fourier transform is usually 
presented as non-unitary which makes essentially almost all fast Fourier transform algorithms non-unitary.  
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Figure 3.4.5 The Fourier transform has a complete basis space. Basis functions may look similar 
about 0 but drift out of phase as they approach   . 
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3.4.2.3 Plancherel’s Theorem.  Plancherel’s theorem holds that the integral of the square of 

the  ( ) is equal to the integral of the square of x( ) (Weisstein, Plancherel's Theorem, 2011) 

[ After norming non-unitary transformations of course. ], 

∫| ( )|      ∫|x( )|     

The has similar implications as Parseval’s identity for the Fourier series in that the total amount of 

energy across the time domain is equal to the total energy across the spectral domain. This is also 

referred to as Rayleigh’s energy theorem (Rayleigh, 1889). Now that we have the introduction out 

of the way we can start looking at what exactly is occurring when a function is multiplied by a 

complex sinusoid and integrated. 

3.4.2.4 Illustrating the real and imaginary parts of the transform.  It is often common practice 

to drop the bounds when they extend from over    to   and it reduces the visual clutter so we will 

follow this convention where it aids the presentation.  

Using Euler’s Formula the complex integral can be broken into two definite integrals: 

 ( )  ∫ ( )         

 ∫ ( )    (  )       (  )    

 ∫ ( )    (  )     ∫ ( )    (  )    

From this we can see that the Fourier transform returns a complex number. The integral with the 

cosine function calculates the real part and the integral with the sine function calculates the 

imaginary part. The magnitudes of the complex number reflect the degrees of similarity 

between  ( ) and the frequency   . A concrete example at this point might shed some light on 

what is occurring.  

To give a visual representation to what the Fourier Transform is doing we first need a function of 

time. So we begin by defining   ( )     (     )    
 
.  The cosine function oscillates with an 
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amplitude of 1 at a frequency of 3 Hertz. The exponential portion just provides a time window that 

ramps the function up and then ramps the function down over a couple of seconds.  ( ) is depicted 

as Panel A of Figure 3.4.6. From here we can calculate the product of  ( )    (  ) and the product 

of  ( )    (  ) for     . Panel B displays the real portion of  (  ).  If we mentally integrate over 

the product represented by the magenta area it should be clear that the value is positive. The non-

zero value indicates that the function  ( ) correlates with    (   ) which make intuitive sense. 

Panel C displays the imaginary portion of  (  ).  Now if we mentally integrate the product the 

portions below zero cancel one another out and the integral is close to zero. Now let’s see what 

happens when       . Figure 3.4.7 depicts this case and we can see that both the real and 

imaginary integrals are close to zero in this case. To make the point that the real and imaginary 

portions represent a complex signal Figure 3.4.8 depicts  (  ) in the three-dimensions (real, 

imaginary, time). The information contained in this figure is essentially the same as the information 

in Figure 3.4.6, it just makes it easier to visualize the complex path over time. The trace in the real 

plane is the purple area in the 2nd panel of Figure 3.4.6, and the trace in the imaginary plane is the 

purple area in the bottom panel. If we So far we have only examined positive frequencies. Fourier 

Transform can also be examined at negative frequencies.  

3.4.2.5 What happens when   is negative?  Earlier we showed how Euler’s identity 

   (     ) consists of two phasors. One circles about the complex plane in the CW direction while 

the other circles CCW. The reader should recall that the imaginary parts cancel while the real parts 

sum. With the Fourier transform the sign of the frequency term   dictates the direction of the 

phasor as it rotates about the unit circle. When    is positive the phasor is       and circles in the 

CW direction. When    is negative the phasor becomes      and circles in the CCW direction. What 

happens to the real and imaginary components of the Fourier Transform when   is negative? To 

answer this we can address the integrals separately. If reader’s are intimately familiar with their 

trigonometric identities the answer might reveal itself. Those that need a refresher should now 



100 

refer to Figure 2.3.1 and Figure 3.4.9.  

If we look at the real part we see that because    (  )     ( ) the real portion of the 

Fourier Transform does not change. However the sign of the imaginary portion changes because 

   (  )      ( ). Let’s look at the complex phasors associated with the Fourier Transform of 

 ( )     (   )    
 
 when      and      . In Figure 3.4.10 we can see that the real portion 

of the innerproduct remains identical while the imaginary portion is inverted. The interpretation is 

that   ( ) is equally similar at a frequency of    as it is at    . In the imaginary plane the similarity 

is opposite at negative frequencies, but the about of similarity (the integrals of the traces on the 

imaginary plane) are the same. If the reader is not yet convinced we can make this inversion less 

subtle by redefining  ( )     (   )    
 
. This is depicted in Figure 3.4.11. In this case the real 

portions of the inner procuct at both negative and positive frequencies are identical. However the 

imaginary ports are different. When   is negative, the imaginary portion becomes inverted. If one 

were to integrate the blue and green traces they would find  ( ) is equally similar in magnitude at 

   as it is at    .  

This operation exactly describes complex conjugation.  For a complex         the 

complex conjugate is  ̅      .  The Fourier Transform of a purely real signal is Hermitian 

(See Section 3.3.8.4). A Hermitian form or symmetric sequilinear form is one in where (  )  

 ( )̅̅ ̅̅ ̅̅ , which is exactly what we what we just demonstrated, essentially that  (  )   ( )̅̅ ̅̅ ̅̅ ̅. The   
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Figure 3.4.6 Panel A displays our original function x(t) of time. Panel B depicts the product 
between our original function and cos(6πt). If the purple area representing product is 
integrated the value is non-zero indicating the original function and cos(6πt) are 
similar. Panel C depicts the product between the original function and sin(6πt). In this 
case the integral is close to zero indicating sin(6πt) is not similar to x(t) 
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Figure 3.4.7 The real and imaginary components of X(1.3πt). We can see the compared to 
cos(6.0πt) and sin(6.0πt), x(t) does not share much similarity with cos(1.3πt) and 
sin(1.3πt). 
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Figure 3.4.8 This graph depicts X(6πt) as a complex phasor. The real and imaginary portions are 
projected as the dashed and dotted-and-dashed lines. 
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Figure 3.4.9 Complex numbers can be transformed into polar coordinates. 
Using the following identities: 
          ( )      ( )  

where, 

   is the angle 

   is the magnitude 

        

  √(    )(    )  √      

   (  )  
 

 
 ,    (  )  

 

 
 ,    (  )  

 

 
 

 
When r is fixed at 1 we can see that    ( ) reflects the real portion of    b while 
   ( ) reflects the imaginary portion of     b. 

 

Real Axis

Imaginary

Axis

a-jb

 r  = 1

- 

a+jb

sin( )

sin(- )

cos( )

cos(- )

cos( )     =     cos(  )
   (   )        ( )
cos 2( ) + sin2 ( ) = 12
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Figure 3.4.10 Fourier transform symmetry of a enveloped cosine function. Complex representations 

of the innerproduct between x(t) and        when      (blue) and when       

(green). We can see that the real portion is identical (because    (  )     ( )), 

while the imaginary portion becomes mirrored (because     (  )      ( )). The 

implication is that x(t) is identically similar in the real domain at frequencies of    

and    . In the imaginary domain x(t) is equally similar, or apply disimiliar, in 

magnitude at    and     but in an opposite fashion. 
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Figure 3.4.11 Fourier transform symmetry of a enveloped sine function. Complex representations of 
the innerproduct between x(t) and e^(-jωt)  when ɷ=6π (blue) and when ɷ=-6π 
(green).Once again the real portions are identical, while the imaginary portions are 
inverted. 
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Figure 3.4.12 Even and odd symmetry. The function in the middle panel has even symmetry, 
 ( )    (  ). The function in the bottom panel has odd symmetry,  ( )     ( ) . 
The function in the top panel is neither even or odd, but can decomposed into even 
and odd functions. 
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reader should take a moment to digest this insight and then think about what happens when the 

original signal,  ( ), is Hermitian.  

3.4.2.6 Accounting for Even and Odd Symmetry in x(t).  In the examples so far  ( ) has 

always been real-valued so  ( ) meets the requirement for being Hermitian when  (  )   ( ). 

Visually this just implies  ( ) has even symmetry about time 0 (see Figure 3.4.12).  Let’s look at our 

original Fourier Transform equation: 

 ( )  ∫  ( )     
 

  

   

Since  ( ) has even symmetry we can change the lower bound to 0 if we account for the cases 

where t makes the phasor positive: 

 ( )  ∫[ ( )       ( )    ]

 

 

   

 ( )  ∫  ( )[          ]

 

 

   

 ( )

 
 ∫  ( ) [

     

 
 
    

 
]

 

 

   

The terms in the square brackets should look familiar. They are exactly Euler’s formula for the 

cosine function. So: 

 ( )   ∫  ( )    (  )

 

 

         ( )   (  ) 

When  ( ) has even symmetry the imaginary portion of the transform completely drops out and 

 ( ) is real. This is what we observed when  ( )     (     )    
 
. Now let’s examine 

analytically what happens when  ( ) has odd symmetry. That is to say when  (  )    ( ). In a 

fashion similar to above we can change the lower bound to 0 if we account for the cases where t 

makes the phasor positive and makes  ( ) negative: 
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 ( )  ∫[ ( )       ( )    ]

 

 

   

 ( )  ∫  ( )[          ]

 

 

   

 ( )

  
 ∫  ( ) [

     

  
 
    

  
]

 

 

   

Now the terms in the square brackets are exactly Euler’s formula for the sine function. So:  

 ( )    ∫  ( )    (  )

 

 

         (  )    ( ) 

In this case we can see that when  ( ) has odd symmetry the real portion of the transform drops 

out and  ( ) is completely imaginary. And this is what we observed when  ( )     (  

   )    
 
.  Now obviously not all real functions will be purely even or purely odd but all functions 

can be expressed as a linear combination of even functions and odd functions. This allows any 

function to be expressed as the sum of an even function and an odd function (Smith, 2007).  

 ( )  
 ( )

 
 
 (  )

 
 
 (  )

 
 
 ( )

 
 

Notice the middle terms cancel and the outer terms sum to  ( ). 

 ( )  (
 ( )

 
 
 (  )

 
)  (

 ( )

 
 
 (  )

 
) 

  ( )  
 

 
( ( )   (  )) 

  ( )  
 

 
( ( )   (  )) 

 ( )    ( )    ( ) 

For example the polynomial  ( )                   can be decomposed to 

  ( )   
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  ( )    
     . 

Figure 3.4.11Figure 3.4.12 plots  ( ) and its decomposed even and odd functions. This is what 

Euler’s Formula is doing. Cosine is an even function, while sine is an odd function. We could plug 

     into the above formulas for   ( ) and    ( ) we will arrive directly at the Euler’s phasor 

representations for cosine and sine respectively. If we express  ( ) as a sum of even and odd 

functions the Fourier Transform becomes: 

 ( )  ∫   ( )    ( )    (  )     ∫   ( )    ( )    (  )    

 ∫  ( )    (  )    ∫  ( )    (  )    

  ∫  ( )    (  )     ∫  ( )    (  )    

We have previous shown that ∫  ( )    (  )      and that ∫  ( )    (  )      so the 

transform can be simplified to: 

 ( )  ∫  ( )    (  )      ∫   ( )    (  )    

When  ( )is purely real the even symmetry of  ( ) translates to the real axis while the odd 

symmetry of   ( ) translates to the imaginary axis. All the examples we have provided so far used 

real valued functions of  ( ). What happens when  ( ) is purely imaginary?  

3.4.2.7 What happens when x(t) is purely imaginary? Now we can briefly address what 

happens when  ( ) is imaginary. To conceptualize  ( ) as imaginary we need only to multiply  ( ) 

by j.  Doing so results in the Fourier Transform becoming: 

 ( )  ∫       ( )    (  )     ∫       ( )    (  )    

  ∫      ( )    (  )     
 ∫     ( )    (  )    

  ∫      ( )    (  )    ∫      ( )    (  )       

       ( )      ( )        g    y 
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 The        function returns the imaginary portion of a complex scalar as a real scalar. For    b in 

  the function is defined as,  

      b  b. 

In a similar vein the function        returns the real portion of a complex scalar as a real scalar such 

that, 

      b   . 

When the argument given        or        is a complex vector the functions can be defined as 

follows: 

   (    b      b        b )  (b  b    b ), 

   (    b      b        b )  (          ).  

When we treat the imaginary functions   ( )      ( ) as if they were real we can better illustrate 

the directions of the complex components. This shows that when  ( ) is imaginary the even portion 

of the transform is imaginary and the odd portion becomes real and is inverted. When   is negative 

the Fourier transform becomes: 

 (     )    ∫      ( )    (| | )    ∫      ( )    (| | )    

       ( )      ( )        g    y  

because    (  )      ( ) and     (  )       ( ). From these identities we can infer that 

when  ( ) is imaginary the Fourier transform is anti-Hermitian. An anti-Hermitian, skew-

Hermitian, or antisymmetric sequilinear form is one where  (  )    ( )̅̅ ̅̅ ̅̅ ̅̅ ̅. By this we mean that 

the real part is inverted while the imaginary portion remains the same.  

3.4.2.8 What happens when x(t) is complex? So far we have looked at input functions that 

have been completely real or completely imaginary. What happens when the signals have both real 

and imaginary components? Many real-world applications are treated as complex signals and 

benefit from the analytical tools provided by Fourier Analysis. These include but are not limited to 

radar, digital and analog communication systems, coherent pulse measurement systems, antenna 
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beamforming, and so on (Lyons, 2008). In these applications the real and imaginary transforms 

might have specific purposes. Quadrature amplitude modulation (QAM) provides distinct channels 

for communicating information on the real and imaginary axes.  

Furthermore complex signals often need to be analyzed at both positive and negative 

frequencies because their positive and negative spectra do not share the redundancy inherent in 

real or imaginary signals. To illustrate this point let’s examine the transform of  ( )           
 
 

when      and      .  From Figure 3.4.13  we can see that  (  ) is approximately 0 + j0 

while the  ( ) has a positive real portion and no imaginary portion. We can verify this analytically 

by substituting          
 
 in for  ( ) in the Fourier Transform equation: 

 (  )  ∫         
 
          

 ∫
         

 

     
   

 ∫    
 
   

      

The real component is 1 and the imaginary component is 0. Now when we examine the Fourier 

transform at a negative frequency of -6   we obtain: 

 (   )  ∫         
 
         

 ∫          
 
   

 ∫    (     )    

      

In this case the real portion is zero and the imaginary portion is also zero. This can be visually 

verified in  Figure 3.4.13. 
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Figure 3.4.13 Fourier transform symmetry of a complex function. Plot depicts Fourier Transform of 
an enveloped phasor at frequencies of   and -  .When   is positive the phasors x(t) 
and       rotate in the opposite direction. When   is negative they rotate in the same 
direction. 

At     ,     ( )                
 
               (blue) 

At      ,     ( )                
 
                      (green) 
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It is nice to see that these integrals agree with our graphical interpretation, but they don’t really 

reveal what is going on here in an obvious manner (at least to novice eyes). To understand what is 

happening let’s look at complex signals of the form: 

 ( )                            

       x                   u   g Eu   ’  F   u                

 ( )     (   )       (   )        (   )       (   )  

    (   )       (   )       (   )      (   ) 

    (   )      (   )        (   )     (   )  

In this form we can see that a signal  ( ) can have both even and odd symmetry on the real axis and 

both even and odd symmetry on the complex axis. Before it was shown how a generic function 

could be represented by the sum of even and odd functions. We can now treat the real and 

imaginary components in a similar fashion: 

 ( )      ( )       ( )  

      ( )       ( )        ( )        ( )  

Next we can substitute these into the Fourier transform: 

 ( )  ∫      ( )       ( )        ( )        ( )     (  )    

  ∫      ( )       ( )        ( )        ( )     (  )    

After removing zero integrals and simplifying we obtain: 

 ( )  ∫     ( )    (  )    ∫       ( )    (  )    

  ∫     ( )    (  )     ∫       ( )    (  )    

 ∫     ( )    (  )    ∫      ( )    (  )    

  ∫      ( )    (  )     ∫     ( )    (  )    
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Now we can treat the result as piecewise to account for the Hermitian and anti-Hermitian 

symmetry about the real and imaginary axes respectively: 

 

 ( )  

{
 
 
 
 

 
 
 
 ∫     ( )    (  )    ∫      ( )    (  )   

  ∫      ( )    (  )     ∫     ( )    (  )                    
   

     ∫     ( )    (| | )    ∫      ( )    (| | )   

   ∫      ( )    (| | )     ∫     ( )    (| | )            
 

 3.4.6 

If the reader can understand this representation of the Fourier Transform and its rather intuitive 

derivation then the reader should have a grasp of all the topics discussed thus far. 

We should now turn our attention back to  ( )           
 
. Through some manipulation: 

 ( )      (   )      (   )     
 
 

    (   )     
 
     (   )     

 
 

      ( )        ( )  

where: 

     ( )     (   )  
     

     ( )     (   )  
     

In this instance      ( )  and      ( )  are both zero since this is necessary to specify  ( ). When 

we take the Fourier Transform at       the four definite integrals are reduced to two: 

 (  )   ∫     ( )    (   )    ∫      ( )    (   )    

  ∫   (   )     
 
   (   )    ∫   (   )     

 
   (   )    

 ∫    (   )     
 
   ∫    (   )     

 
   

 
 
(         )

 
 
(         )

 
 (         )       . 
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This result agrees with the integral we obtained by through exponential integration as well as with 

our visual interpretation. Now let’s see what happens when we compute the Fourier Transform at 

     .  

 (   )   ∫     ( )    (|   | )    ∫      ( )    (|   | )    

  ∫   (   )     
 
   (|   | )    ∫   (   )     

 
   (|   | )    

 ∫    (   )     
 
   ∫    (   )     

 
   

 
 
(         )

 
 
(         )

 
      . 

This also agrees with our previous result  obtained through exponential integration yet it is much 

easier to get an idea of why  (  ) is so different from  (   ). At first glance, decomposing 

complex signals into their real and imaginary parts as well as into their even and odd parts seems 

complicated but it yields greater insight into Fourier Transformation.  

The piecewise formulation of the Fourier Transform presented in Equation 3.4.6 

reveals the complex symmetry (pun intended) between even and odd functions, real and 

imaginary signal components, and positive and negative frequencies.  

 When  ( ) is purely real only the 1st and 4th terms remain and we can see  ( ) is 

Hermitian ->  (  )   ( )̅̅ ̅̅ ̅̅ ̅ 

 When  ( ) is purely imaginary only the 2nd and 3rd terms remain and we can see  ( ) is 

anti-Hermitian ->  (  )    ( )̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 When  ( ) is complex the real and imaginary and even odd symmetries can be easily 

accounted for by the piecewise representation 

 The symmetry explored here apply equally to the Fourier series 

So far we have been examining in minutia how the real and imaginary components of an input 

interact with the real and imaginary components of a basis function to form a complex scalar 
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output.  This understanding will come in handy when we start to look not just at single elements or 

pairs of elements within the inner product space, but examine the inner product space as a whole. It 

is the entirety of the inner product space which holds the spectral representation of   ( ). As we 

will soon see the discrete wavelet transform lends itself well to just this.  

 Introduction to the Discrete Fourier Transform.  Working directly with the Fourier 3.4.3

transform offers some analytic advantages due to the fact we can find closed form solutions, and 

gain insight through mathematical manipulation. However, in the real world empirically recorded 

signals will almost always be discretely sampled. In these cases the discrete Fourier transform 

(DFT) is the tool of choice for calculating the spectra of a discrete input. The transform is defined as 

   ∑    
        

   

   

           N     

The vector    is the original signal with   samples. The parameter k is our “time” parameter, it 

specifies    where    refers to the first sample and      refers to the last sample. The vector     is 

an inner product space holding the spectral representation of    . The n parameter specifies 

frequency, but how it specifies it will require some expounding. As presented above the transform 

is non-unitary and the corresponding inverse transform is 

   
 

N
∑    

       

   

   

           N     

We can see from the transform is non-unitary since the inverse carries the normalization factor of 

 

 
. The discrete Fourier transform shares the most likeness to the generalized Fourier series 

coefficients equation we presented as 

〈    〉  
 

 
∫  ( )    

 
 

 
 
 

           {    
      ⁄                }               

We can modify the domain to           
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〈    〉  
 

 
∫  ( )    
 

 

           {    
      ⁄                }               

The discrete Fourier transform can be derived from this definition of the Fourier series coefficients 

by treating  ( )as a discrete sequence of finite length. The DFT, like the Fourier series, treats the 

input signal as if it were periodic. When using the DFT it is important to remember that it always 

has the underlying assumption that the input sequence is periodic over its length. Discontinuities in 

the input signal result in spectral noise. These factors will be discussed in more detail. 

3.4.3.1 Fast Fourier Transform is the Discrete Fourier Transform.  The discrete Fourier 

transform may colloquially be referred to as the fast Fourier transform (FFT).15 The difference is 

purely algorithmic. The resulting coefficients from the FFT are identical to the slow version. The 

FFT is optimized for power of 2 sample sizes (2, 4, 8, 16, 32, …) although it can handle non-power of 

2 samples (usually by using zero-padding ). The discrete transform has  (  ) multiplication 

operations and  (  ) addition operations. The FFT has  (    g ( )) multiplication operations and 

 (    g ( )) addition operations (Smith, 2007).  

3.4.3.2 Basis Orthogonality.  The discrete Fourier transform has a finite sized basis with the 

number of basis functions being equal to the length of the input sequence. The basis defined as 

       
                 N     

〈     〉  ∑                 
   

   

 

 ∑      (   )  
   

   

 

 
       (   )

       (   )  
 

The last step uses the geometric series formula. When     the inner product is 0 numerator 

becomes zero, and the denominator is non-zero. Because the inner product is zero,    and    are 

                                                             
15  Strictly speaking this is describing the Cooley-Tukey algorithm. There are other FFT algorithms as well, 

but their scopes of application are quite narrow (Haynal & Haynal, 2011; Good, 1958).  
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orthogonal.  When     the inner product is becomes 〈     〉, which yields N. Despite having a 

finite sized basis sets the discrete wavelet transform is able to fully represent any discretely 

sampled finite signal. One may wonder “how is this possible?” The key lies in understanding that 

the bandwidth (frequency range) of a signal is intrinsically linked to its sampling rate through the 

Nyquist-Shannon sampling theorem. 

3.4.3.3 Nyquist-Shannon Sampling Theorem.  The Nyquist-Shannon sampling theorem 

provides rationale for how the discrete Fourier transform can have basis with finite cardinality. The 

theorem states (Shannon, 1949): 

If a function  ( ) contains no frequencies higher than W  hertz, then it is completely 

determined by giving its ordinates at a series of points spaced   (  ) seconds apart. 

S      ’     g           b g    by    u   g    u        ( ) and its Fourier transform   ( ) are 

bandlimited by a frequency    Hertz.  By bandlimited we mean that  ( )    when | |     

Because  ( ) and its Fourier transform   ( ) are bandlimited we can substitute the infinite bounds 

of the inverse Fourier transform with W , 

 ( )  
 

  
∫  ( )    
 

  

   

 
 

  
∫  ( )    
   

    

    

Shannon then proposes examining what happens to the signal every 
 

  
 seconds. We can do this by 

substituting  
 

  
 for t. [ n     ] 

 (
 

  
)  

 

  
∫  ( )   

 
  

   

    

    

On the right we can see the integral matches the generalized Fourier series expansion for the 

coefficients, 
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∫  ( )    

 
  

   

    

   

 
 

  
   (

 

  
)  

From this we can see that the   is proportional to the sample at  (
 

  
). When we plug the    

into the Fourier series, 

 ( )  ∑    
  

 
  

 

    

 

 
 

  
∑  (

 

  
)   

 
  

 

    

 

it becomes clear that the Fourier transform  ( ) is completely determined by the discrete samples 

of  (
 

  
).  

The corollary is that is discretely sampled signals are only able to accurately represent 

frequencies up to half of the sampling  rate. The limit is known as the Nyquist frequency 

(Blackledge, 2003) or the folding frequency and denoted   . It is called the folding frequency 

because high frequency content above    becomes reflected below    due to aliasing. For example, 

digital video discs (DVDs) have a sampling rate of 48.0 kHz which means it can represent signals up 

to 24.0 kHz. A frequency of 27.0 kHz would be aliased to 21.0 kHz. The discrete Fourier transform 

takes advantage of this aliasing to transform negative frequencies. 

3.4.3.4 Aliasing and Negative Frequencies.  The discrete Fourier transform takes advantage 

of the folding frequency to transform negative frequencies. When n is larger than N/2 the inner 

product is transforming the frequencies about       but at the same time it is transforming 

frequencies about –   (N   )  . Figure 3.4.14 depicts the basis functions when    . In each 

subplot the solid lines plot the    (     ) and    (     ). The dashed lines plot    (   (N  

 )  ) and    (   (N   )  ). The markers show how the aliasing caused by the discrete 
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sampling aligns the positive and negative frequencies. From the figure we can see that the basis 

functions are Hermitian. The real parts remain equivalent at negative and positive frequencies, but 

the imaginary parts are inverted.  

An analogy which might help understand how the negative frequencies are represented is 

to imagine looking up at a ceiling fan with one blade under a strobe light. The strobe is analogous to 

        z                  gy                  y      y          y         ’                          b  

light is the fan will appear stationary. Now imagine powering on the fan so its speed is relatively 

low compared to the speed of the strobe. Under this situation the direction and speed of its motion 

can be accurately resolved. This is the analogous to when     in Figure 3.4.14. As the fan speeds 

up its speed and direction become difficult to perceive when the frequency of the fan approaches 

half the frequency (full rotations per unit time) of the strobe (         ). When the fan’s 

frequency becomes greater than half the frequency of the strobe the fan will be perceived as 

moving in opposite direction from which it is actually moving(         ). When the fan’s 

frequency is equal to that of the strobe the fan will once again appear stationary (   ). The 

analogy illustrates the basic effect of how n causes negative frequencies to be aliased into the 

transform. A more literal analogy would be to imagine a ceiling fan with two blades at a right angle 

to one another. Instead of a strobe the fan blades would have lights that flash in synchronization on 

the tips of their blades, and instead of looking up at the fan you would be looking at the fan on edge.  

While the details on how the real and imaginary portions of the transform are calculated 

may differ between the continuous and discrete Fourier transforms the way those values are 

interpreted is similar; the discrete Fourier transform maintains the symmetry characteristics we 

have previously become familiar with. 
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Figure 3.4.14 The Nyquist or folding frequency of the discrete Fourier transform. The discrete 
Fourier transform takes advantage of the Nyquist Frequnecy or folding frequency 
defined by twice the sampling rate.  Signals above the nyquist frequency are mirrored 
and reflected as negative frequencies (Hermitian: the real parts stay the same the 
imginary parts are inverted). 
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3.4.3.5 Phase and Magnitude. When we examined the continuous Fourier transform our 

focus was directed at interpreting the real and imaginary components directly. The real and 

imaginary components can also be expressed in polar coordinates as magnitude and phase. 

Magnitude is given by the complex modulus; for a complex scalar        the complex modulus 

is defined as 

 | |  √     . 

The phase is a measure of the angle in from the positive real axis, and principle values are 

constrained to (      such that angles in the counter-clockwise direction are positive, and angles 

in the clockwise direction are negative. The two-argument arctangent function16 defined as  

     (   )  

{
 
 
 
 
 

 
 
 
 
                (

 

 
)    

         (
 

 
)        

       (
 

 
)        

    
 

 
                          

 
 

 
                          

                       

 

Empirically recorded signals will almost always yield both real and imaginary components, and the 

informative value of these components is related to their magnitudes and phases.17 Because the 

Fourier Transform of real valued functions is Hermitian the analysis of only positive frequencies is 

sufficient to characterize the functions.  

 Figure 3.4.15 through Figure 3.4.17 present discrete Fourier transforms of signals we have 

some familiarity with in terms of their real and imaginary components and magnitude and phases 

so the reader can integrate the concepts they have learned so far. Figure 3.4.15 presents the 

discrete Fourier transform of a pure cosine wave. The top panel presents the original sequence    . 

                                                             
16  Many computer implementations treat the      (   ) as 0 instead of undefined. These include 

Octave/Matlab, Numpy/Python, and C. 
17  With some practical applications it may be necessary to “unwrap” or recover phase information (by taking 

the 2 π complement of the phase) for discontinuities larger than π.  
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The 2nd and 3rd panels present the real and imaginary coefficients, and the 4th and 5th panels present 

the coefficients as magnitudes and phase. The x-axis on panels 2-5 represents the discretized basis 

function frequencies in terms of n. These are often called frequency bins. Figure 3.4.16 presents the 

Fourier transform of a complex sinusoid with a frequency of       .  As we would expect the 

sinusoid has a peak in the corresponding positive frequency but zero magnitude over the negative 

spectrum. Figure 3.4.17 presents the square wave function we previously represented as a Fourier 

series. The examples depicted in the figures mentioned above are commensurate with our 

theoretical understanding of spectral analysis. From the plots the reader should be able to grasp 

how the real and imaginary components can also be represented as magnitude and phase.  

3.4.3.6 Spectral Leakage. To be candid, the previous discrete Fourier transform examples 

are purposefully contrived. Often times the transforms are not as straightforward as these previous 

examples would suggest. Figure 3.4.18 depicts the discrete Fourier transform of    (       ).  

From the plot we can see that bins 7 and 8 reflect the energy of the cosine wave, but a significant 

amount of power is also present in adjacent bins. This phenomena is called spectral leakage and is 

consequence of the input sequence being finite and the sequence as a whole being treated as if it 

were periodic. From panel A we can see that the sine wave completes 7.5 cycles over the interval. 

The discontinuity of the half cycles is what generates the spectral leakage. Discontinuities contain 

broadband energy that gets distributed throughout the spectrum (Harris, 1978). In Figure 3.4.19 

we have shifted the input sequence so the end and beginning of the sequence wrap nicely and the 

discontinuity is in the middle. We can see the phases change to accommodate the shift but the 

magnitudes and spectral leakage are identical to Figure 3.4.18. To reduce spectral leakage one can 

apply a variety of techniques. If the input signal is influenced by a trend, the trend should be 

removed before applying DFT.  If the signal under examination is periodic examining an integer 

number of periods can reduce spectral leakage. Also analyzing longer intervals of time will reduce 

spectral leakage.    
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Figure 3.4.15 The discrete Fourier transform of a cosine wave. 
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 Figure 3.4.16 The discrete Fourier transform of a complex sinusoid. 
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Figure 3.4.17 The discrete Fourier transform of a square wave. 
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Figure 3.4.18 Spectral leakage. When the input sequence has energy at frequencies between bins 

the energy leaks into adjacent bins. This phenomena is called spectral leakage. 
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 Figure 3.4.19 The DFT treats input signal as if it were periodic. Discontinuities  between the end 
and beginning of the input sequence cause the spectral leakage. This plot shows that 
when the discontinuity is placed in the middle of the sequence the magnitude from the 
discrete Fourier transform remain identical. 
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Figure 3.4.20 Windowing and spectral leakage.  
Windowing the input sequence can control the spectral leakage but it trades off with 
reduced gain and lower frequency resolution. 
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Beyond these simple heuristics we must look to windowing. Window functions are what 

make the signals finite by controlling the interval of the signal that is being multiplied with the 

complex sinusoids. Although, we did not explicitly mention windowing the previous DFT examples 

have all employed rectangular windows defined as windows that are 1 inside the interval and zero 

outside the interval. Given a window sequence    the discrete Fourier transform can be defined as 

   ∑     
        

   

   

           N     

This equation makes the point that the DFT not only captures the spectrum of the input sequence 

but also the window. To understand spectral leakage we need to understand how these interact.  

To try and control the spectral leakage we can apply a window that ramps the signal up at 

the beginning and ramps the signal down at the end thereby reducing the discontinuity. Figure 

3.4.20 applies a Hamming window before performing the DFT (Hogwei, 2009).  As we can see from 

the magnitude panel the spectral leakage is greatly reduced (at least with a linear magnitude axis). 

The consequence, as we can also see from the Figure; is that amplitudes in bins 7 and 8 have less 

energy (46% less energy to be precise). In this particular example this is not problematic because 

the signal is virtually noise free. However, in circumstances with low signal to noise ratios this 

might be problematic. Window function choices are about compromise.  

3.4.3.7 Spectral Interpolation. To get a better look at the spectral leakage we can zero pad 

the original sequence and take the FFT to interpolate the frequency spectrum (the zero padding 

theorem). The result does not affect the spectral leakage, it merely gives us a better picture of the 

leakage (Smith, 2007). Zero padding is adding zeros to increase the length of the original sequence. 

Zero padding in this manner is equivalent to the discrete time Fourier transform (DTFT) of a finite 

sequence. The use of FFT is to make the interpolation computationally efficient. To avoid confusion 

let’s denote the length of the original sequence L instead of N. Then let’s denote the length after 

padding M. The DTFT is then defined as, 
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   ∑    
        

   

   

                

As before the  k variable indexes our sequence and n variable relates to the frequency. If the 

frequency was     
        with DFT it becomes      

         after zero padding. The DTFT, 

used in this manner, samples frequencies in between the basis functions of    but it does not 

increase the frequency resolution. Figure 3.4.21 depicts how the basis functions are interpolated 

when     and     . The following section uses DTFT (zero padding and FFT) to examine the 

spectral leakage of a rectangular window, a Hamming window, and a Blackman-Harris4 window. 

3.4.3.8 Window Functions. Here we take our discrete    (      N) waveform where N=128 

and applied windowing. After windowing we then applied zero padding so that the total length of 

the sequence was 4096. Then we applied FFT to interpolate the magnitude response. The top panel 

of Figure 3.4.22 depicts the original input cosine sequence. The 2nd panel shows the interpolated 

frequency response magnitudes in decibels (dB).18 The 3rd panel shows input sequence with a 

Hamming window applied. The discrete Hamming window with indexes of n and a length of N is 

defined as 

              (
   

   
)  

The 4th panel depicts the corresponding interpolated frequency magnitudes. The 5th and 6th panels 

show the same results with a discrete Blackman-Harris 4 window, a high dynamic range window, 

defined as, 

                                           (
   

   
) 

                     (
   

   
)                       (

   

   
) 

                       (
   

   
)                      (

   

   
)   

                                                             
18 Decibels is a base-10 logarithmic scale used to express the ratio between two values of a physical quantity. 
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Figure 3.4.21 DTFT basis functions with L = 9 and M = 15. 
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In the magnitude plots the peaks are called lobes. In each, the highest lobe corresponding to 

the cosine’s frequency is called the main lobe. All the other lobes are called side lobes. When 

frequency components fall between the lobes the magnitude estimate becomes biased downwards. 

This is called scalloping loss. When we compare across the three different window magnitudes we 

can see that the main lobe is the narrowest with the rectangular window, and is wider for the 

Hamming, and even wider for the Blackman-Harris 4. The width of the main lobe relates to the 

window’s frequency resolution. The rectangular window has the best frequency resolution, but it 

also has the poorest dynamic range. Take note that the range on the y-axis differs across the three 

magnitude plots.  

The dynamic range refers to the ability of the window to suppress noise. It is quantified by 

assessing the difference between the peak of the main lobe and the peak of adjacent nodes in 

decibels as well as by measuring the rate at which the side lobes roll-off with respect to frequency 

(dB/decade). The rectangular window might be better in situations where signal components have 

roughly equivalent amplitudes and are close in frequency. Figure 3.4.23 depicts the discrete Fourier 

transforms of a signal composed of two sinusoids separated by only 1.6 bins. The higher frequency 

component also has a .54 radian phase shift. From the plots we can see the rectangular window can 

distinguish between the peaks, but the Hamming and Blackman-Harris4 cannot.  

However, windows with high dynamic range are better when spectral components have 

disparate amplitudes and are not as close in frequency. Figure 3.4.24 we also have a signal 

composed of two sinusoids and random noise. One of the sinusoids has an amplitude of 1, and the 

second has an amplitude of .06 just slightly above the noise floor. In this the noise completely masks 

the second amplitude with the rectangular window. The Hamming and Blackman-Harris4 are able 

to detect it. Keep in mind the y-axes are scaled to reflect the dynamic range of the windows. The 

Blackman-Harris and Hamming have comparable performance when this is taken into 

consideration. 
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The Hamming and Hann windows are popular choices due to having “Goldilocks” characteristics: 

they have average dynamic range and average frequency resolution. The Gauss window is also 

popular due to having a shape parameter that can be tailored to the application. The Kaiser-Bessell 

window is designed to give an optimal mathematical tradeoff between frequency resolvability and 

main lobe width. There are literally dozens of windowing functions to choose from. Hogwei (2009) 

has published measurements for a collection of 55 windowing functions. Unfortunately, no single 

window function is clearly superior for every application.  In this section we have seen that the 

resulting spectra from discrete Fourier transform is not just dependent the complex sinusoidal 

basis functions. The choice of window, or more precisely, how the window is multiplied with the 

interval affects the resulting spectral estimates. We are “deep down the rabbit hole” and perhaps 

stepping back to gain some perspective will help. Our goal with DFT is to estimate the spectra of a 

signal. The problem is that whenever we examine signals of finite length we must take the 

transform of the signal multiplied by a window. With the DFT there is no way to separate the true 

spectra from the leakage. However, we can separate them analytically using the continuous Fourier 

transform.  

3.4.3.9 Convolution and the Convolution Theorem. Before we get to looking at analyzing the 

windowing using the continuous Fourier transform we first need to discuss convolution. 

Convolution is an operation between of two functions. One function is reflected (reversed) and slide 

as a function of the independent variable across the second function. While sliding the functions are 

multiplied and integrated with one another. The result reflects the degree of overlap between the 

two functions similar to how the inner product of the Fourier transform is a measure of similarity 

between the  ( ) with the complex sinusoid      . The convolution operator is usually the asterisk 

symbol. For two functions  ( ) and  ( ) the convolution operation is defined as 

(    )( )  ∫  (   ) ( )   
 

  

 ∫  (   ) ( )   
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Figure 3.4.22 Windowing and zero-padding.Windowed and zero padded input sequences reveal the 
interaction between the input sequence and windowing functions. y-axis units for 2nd 
,4th, and 6th panels are dB. 
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Figure 3.4.23 Low dynamic range windowing.When signals have components that are roughly 
equivalent amplitude and close in frequency windows with low dynamic range and 
high frequency resolution, like the rectangular window, are better at distinguishing 
spectral components. y-axis units for 2nd ,4th, and 6th panels are dB. 

 

 
  As   
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Figure 3.4.24 High dynamic range windowing. When signals have components that are disparate in 
amplitude and not extremely close in frequency windows with higher dynamic range 
and lower frequency resolution are better at distinguishing spectral components. y-
axis units for 2nd ,4th, and 6th panels are dB. 
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Convolution is related to the Fourier transform through the convolution theorem (Weisstein, 

Autocorrelation, 2011). The convolution theorem for two functions  ( ) and  ( ) and their 

respective transforms    ( )   and    ( )  states that the Fourier transform of  ( )   ( ) is 

equivalent to the products of their Fourier transforms, 

  (    )( )     ( )     ( ) . 

The meaningful implication of this result is that the convolution between of  ( ) and  ( ) can 

exploit the efficiency of FFT algorithms: 

(    )( )     {   ( )     ( ) }. 

The corollary is that the Fourier transform of two functions which have been multiplied in the time 

domain is equivalent to the convolution of their Fourier transforms in the frequency domain,  

   ( ) ( )     ( )      ( ) . 

This expression is of importance to our current goal.  

3.4.3.10 Analytic View of Spectral Leakage. Now we can get back to the task at hand by first 

defining the rectangular window function as 

 ( )  

{
 
 

 
     | |  

 

 
 

 

 
   | |  

 

 
 

    | |  
 

  

 

Using the convolution theorem we can represent the integration of    (   ) over a finite interval as 

 ( )  ∫   (   ) ( 
   )         

      (   )      ( 
   )  

where the    parameter is the frequency of the cosine function and the L parameter controls the 

size of the rectangular window. When    is an integer multiple of    we can set L to be integer 

multiples of   and the domain will be restricted to full periods of the    (   ). Now we need to find 

the transforms for    (   ) and  (    ). 
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Earlier we said that a function must be square integratable to be transformable. Now we are 

going to be make an exception to that rule so we can find the Fourier transform of    (   ). 

     (   )  ∫    (   )  
         

 ∫
       

 
 
        

 
         

 ∫
   (    ) 

 
 
   (    ) 

 
    

[  To go further we have to use one of the identities for the Dirac delta function  ( ),  

 (     )  ∫ 
  (     )      

Recall from section 2.3.3 that the Dirac delta is defined as  ( )  { 
          
              

 and has a defined 

integral of ∫ ( )        ] 

     (   )  
 

 
  (    )   (    )  

From this we can see that the Fourier transform of a cosine with a frequency    is an infinite 

impulse at     and a second impulse at   . Now to the rectangle function. 

   (    )  ∫ (    )         

 ∫         
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    (  )

 
 

Some readers may recognize this result as the sinc function. The Fourier transform of a window is 

called a Fourier kernel or a window kernel. The top panel of Figure 3.4.25 plots the window kernel 
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function where    . The middle panel plots the absolute value of the function, and the bottom 

panel plots the absolute value in decibels. See anything familiar? The decibel magnitudes have the 

exact same scallop structure we observed earlier using zero padding. The scallop losses occur 

where the sinc function has zero crossings. To provide further insight consider the sifting property 

of Dirac delta function  (   ) when it is convolved with a function  ( ) 

 ( )   (   )  ∫ (  ) (      )    

 ∫ (  ) (   (   ))           u           y         

  (   ) 
In our case this means that we can find the Fourier transform of 

     (   ) ( 
   )       (   )     ( 
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The interpretation of this result is that the Fourier transform of a bounded cosine function of 

frequency    is a sinc function that is dependent on the bounds centered about    . We can see 

what this looks like by setting       and setting L equal to integer multiples of    so the cosine 

function will always complete full periodic cycles over L. In Figure 3.4.26 we can see the results of 

these assumptions. From the plots we can see that as L increases the spectral leakage decreases and 

the results get closer to the true spectra of    (   )    

The result above only applies precisely to a pure cosine with a frequency of   and a 

rectangular window centered about zero, and extending by L in both positive and negative 

directions, but similar treatments could be performed with other signals and other windows. The 

general implications of such exercises would be that the window acts as a band pass filter.  
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Figure 3.4.25 Fourier transform of a rectangular window.The top panel plots the Fourier transform 

of a rectangular window: the sinc function. The middle panel shows the absolute 

value of a sinc function. The bottom panel plots the absolute value in decibels. 
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The main lobe corresponds to the pass band of the filter. Frequencies in the pass band are let 

through while frequencies outside of pass band are attenuated. When we discuss using different 

windows we are actually discussing using different filters. The rectangular window has the 

narrowest passband but rolls off the slowest. The Blackman-Harris4 has a wider pass band but rolls 

off much faster. The DFT approximates the true spectra of the input signal convolved with the 

window kernel. Further analysis also shows that the passband in the frequency domain decreases 

as the size of the window in the time domain increases. This generalizes to other windows. Figure 

3.4.27depicts how the passband of the Blackman-Harris4 decreases as the size of the window size 

increases. The consequence is that we cannot simply increase the sampling rate to increase the 

frequency resolution (assuming the sampling rate is sufficient for the bandwidth of the signal in the 

first place). The frequency resolution can only be increased from observing more periodic 

repetitions in the signal. Instead of merely talking about the theory we can show the theory. 

3.4.3.1 From Theory to Application.  We previously demonstrated in Figure 3.3.3.9 that when two 

spectral components are close to one another spectral leakage make them difficult if not impossible 

to distinguish. In the time domain the sinusoidal components had 7.5 and 9.1 cycles in 128 samples 

or 0.056 and 0.071 cycles/sample respectively. In the DFT the samples were separated by just 1.6 

frequency bins. With the rectangular window two distinct peaks were barely visible with 

interpolation. With the Hamming and Blackman-Harris4 windows the components were not 

distinguishable. If we let extend the time signal so it is four times the length (512 samples) and 

maintain the signals at their original frequencies (0.056 and 0.071 cycles/sample respectively) we 

see that the increased frequency resolution makes the components much easier to distinguish 

(Figure 3.4.28)  

 In Figure 3.4.24 we observed how the spectral leakage from windows with low dynamic 

range can completely bury a low amplitude component in the presence of noise. We can revisit this 

example and see how extending the signals duration improves the delectability of periodic low   
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Figure 3.4.26 Role of sample duration. As the number of cycles increase the spectral leakage 
decreases and the resulting transform more closely approximates the true spectra of 
the signal. 
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Figure 3.4.27 Frequency resolution and signal duration. Frequency resolution is linked to the 
signals duration, not the sampling rate of the signal. As a signals duration increases 
the frequency resolution of the window functions increases. [ Collecting data at a 
higher sampling rate or interpolating data does not increase frequency resolution. ] 
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amplitude components (see Figure 3.4.29). In circumstances where it is not possible, or not simple, 

to increase the duration of the signal under analysis the advantages shown here can still be 

exploited by windowing several  signals and appending so they overlap one another. This technique 

is known as Welch’s method. 

 Introduction to short-time Fourier transform.  All the Fourier methods have 3.4.4

presented so far have all assigned a single spectrum to the time interval under examination. In 

many instances the spectral characteristics of a signal may change over time. In these situations it 

can be informative to examine how the spectral characteristics changes over time. The short-time 

Fourier transformations (STFT) do just this by using a moving window to control the portion of the 

time signal that is transformed. Figure 3.4.30 presents a visual example known as a cumulative 

spectral decay (CSD) plot or waterfall plot, which uses discrete short-time Fourier transformation, 

to examine the resonance characteristics of a loudspeaker by taking windowed transformations of 

the loudspeaker’s impulse response. The DFT of the impulse response yields the frequency 

response of the loudspeaker.19 The plot frequency is on the x-axis, magnitude is on the y-axis, and 

the z-axis depicts time as the window moves forward over the impulse response. The fall in the 

back reflects the entire impulse response. As the falls move forward the impulse response is 

truncated and the loudspeaker’s resonances show up as ridges along the z-axis.  

3.4.4.1 Continuous STFT.  Short-time Fourier transformations come in continuous and 

discrete varieties. The continuous short-time Fourier transformation is a transform of two 

parameters   and  , 

 (   )  ∫  ( ) (   )     
 

  

    

  

                                                             
19 The loudspeaker under examination was designed, fabricated, and measured by the author. 
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Figure 3.4.28 High dynamic range windowing. When signals have components that are disparate in 

amplitude and not extremely close in frequency windows with higher dynamic range 

and lower frequency resolution are better at distinguishing spectral components. y-

axis units for 2nd ,4th, and 6th panels are dB. 
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Figure 3.4.29 Revisiting the high dynamic range example.Processing 4 times as much data also 
makes it much easier to detect a low amplitude signal in the presence of white noise. 
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Figure 3.4.30 A cumulative spectral decay (CSD) plot.By applying a moving windowed Fourier 
transform to the impulse response of a loudspeaker, the resonance characteristics can 
be examined. 
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As with the previous transformations the   variable specifies frequency. The function  ( ) 

is still the function of time that is being transformed. The  (   ) function is a window function. 

For the sake of completeness the inverse continuous short time Fourier transform is  

 ( ) (   )  
 

  
∫  (   )    
 

  

    

Continuous window functions have the same utility as the discrete windows we presented in 

section 2.3.3.8. They are intended to limit the time signal and reduce the discontinuity between the 

beginning and end of the signal. The primary difference is that the discrete windows are symmetric 

about N/2 while the continuous windows are symmetric about 0. The   variable is called the 

translation variable because it specifies how much the window should be translated. Figure 3.4.31 

depicts the how the window function translates over time and the function  ( ) is multiplied by the 

window function. In our earlier discussion of windowing we discovered longer windows yield 

better frequency resolution. With STFT this fact remains.  

Windows of longer duration will have less spectral leakage and better frequency resolution, 

but the increased frequency resolution is at the cost of time resolution. Likewise, short windows 

will have good time resolution, that is better precision in distinguishing changes in time, but poorer 

frequency resolution. Because the window duration sets the frequency and time resolution STFT is 

said to have fixed resolution. Figure 3.4.32 illustrates the tradeoff between time and frequency 

resolution as the window durations increase.  The top diagram depicts the resulting time and 

frequency resolution from having short windows. The time resolution is good, but the frequency 

resolution is poor. In contrast, when the windows are long the time resolution is poor, but the 

frequency resolution is good.  

In Figure 3.4.33 we applied STFTs with varying window sizes to a log sweep from 1 Hz to 10 

Hz over 100 seconds (    samples) so we can see the effects of fixed resolution. Hamming window 

lengths were varied at .39, .78, 1.56, 3.12, and 6.25 seconds (  ,   ,   ,   , and     samples   



151 

Figure 3.4.31 Short time Fourier transformation. By using a moving window the time interval 
exposed to transformation can be limited. 
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Figure 3.4.32 Trade-off between time and frequency resolution. Short time Fourier transforms have 
fixed time and frequency resolution dependent on the duration of the window. Short 
windows have good time resolution but poor frequency resolution. Long windows 
have poor time resolution but good frequency resolution. 
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Figure 3.4.33 STFTs of a logarithmic chirp at logarithmically increasing window sizes. 
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respectively).   In the color plots time is on the x-axis and frequency is on the y-axis and color 

indicates the decibel magnitude in time and frequency. Red values indicate higher magnitudes 

while blue indicates lower magnitudes. The In each subplot the grid or lattice structure is indicative 

of fixed resolution windowed Fourier transform techniques. [  Take note that not all the grid lines 

between time and frequency bins are plotted in some of the subplots. When the bins become small 

the grid lines make them difficult to interpret. The color gradients should be adequate to infer the 

presence of multiple bins.  ] With the shortest window  of 0.39 seconds we can see that the spectral 

leakage obscures the frequency information. In contrast the longest window of 12.5 seconds 

obscures changes in the time domain.   

3.4.4.2 The Uncertainty Principle.  The tradeoff between frequency and time resolution 

reflects Heisenberg’s uncertainty principle. The uncertainty principle is usually discussed in the 

context of quantum mechanics and expresses the inability to simultaneously determine pairs of  

physical properties with arbitrarily high precision. The classic example is resolving a particle’s 

position and its momentum. The more certainty we have in regard to one of those entities the less 

certainty we have in the other. In the above definition the term inability was used but the 

uncertainty is not related to the technical capabilities of the measurement devices; the uncertainty 

is related to the system under observation. Applied to spectral analysis the theorem states (Folland 

& Sitaram, 1997): 

A nonzero function and its Fourier transform cannot both be sharply localized.  

In Figure 3.4.33 we can see this uncertainty at work as precise time resolution yields poor time 

resolution and vice-versa.  The medium window sizes of 1.56 and 3.12 give the visually appearance 

of being a quality compromise but they could be better. From our experience with spectral leakage 

we know the raw window size isn’t as important as the window size relative to the frequencies under 

examination.  The inherent shortcoming of STFT is that it doesn’t take this into account. A more 

optimized approach to this problem is to scale the size of the windows to match the frequencies 
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under examination. This would be called a multi-resolution analysis. The uncertainty principle will 

never let us have arbitrarily good time and good frequency resolution, but Wavelets will at least 

provide a more optimized means of attaining both time and frequency resolution..  

In the previous section we presented the short comings of fixed resolution analysis. A 

clunky approach to multi-resolution analysis would be to perform multiple STFTs with various 

window sizes and take the high frequency information across time from the 0.39 window, the 

medium frequency information across time from the medium windows, and so on.  

The result of such an effort is depicted in Figure 3.4.34. In this figure we also included window sizes 

of 25 seconds and 50 seconds. Here we see a very different lattice structure. The low frequencies 

have long time windows with many frequency divisions, and as we move up in frequency the time 

windows become shorter and the frequency bins become wider. In this example the scaling in both 

the time and frequency domains is dyadic (based on doubling/ halving). Figure 3.4.35 depicts the 

dyadic time frequency lattice structure. In this figure we can see how the time windows halve as we 

move up in frequency and how the frequency windows halve as we move down in frequency. This 

in essence is multi-resolution wavelet transformations.  

3.4.4.1 STFT and Cross Correlation. We can get a better idea of how this works by tweaking 

the continuous short-time Fourier transform, 

 (   )  ∫  ( ) (   )     
 

  

    

With our current “mental model” of the continuous short time Fourier transform the window 

function constrains  ( ), and only the constrained portion is multiplied and integrated with respect 

to time.  Now instead of thinking of the window function constraining  ( ), think of the window 

constraining       . We can define this function as  

    ( )   (   )      

Figure 3.4.34 Multi resolution analysis with dyadic time frequency resolution. 
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This function is called an envelope function because it contains the complex sinusoidal components 

of      within the envelope of the  (   )  Figure 3.4.36 depicts     ( ) with a fixed window width 

of 1 second and   of 5, 10, and 20 Hz. These strange looking functions act like filters when they are 

shifted and multiplied across time varying functions. The filters will let frequencies close to   pass 

through will excluding other frequency components. With our newly defined function we  can 

express the continuous short-time Fourier transform as 

 (   )  ∫  ( )    ( )̅̅ ̅̅ ̅̅ ̅̅ ̅

 

  

    

In this context we can view the continuous STFT as the cross-correlation between     ( ) and  ( ). 

Because some reader’s may not be familiar with cross correlation we will briefly review the concept 

before elaborating on this idea. 

The cross-correlation is also known as the sliding dot-product or sliding inner product. The 

operation reflects the amount of similiarity between two functions as one is slide across the other. 

For two functions  ( ) and  ( ) the cross-correlation operation is defined as 

(   )( )  ∫  ( ) (   )   
 

  

  

It can also be expressed in terms of convolution as 

(   )( )   (  )   ( ) 

From the definitions we can see the distinction between cross-correlation and convolution is that in 

cross-convolution none of the functions are mirrored, instead the conjugate is taken of the first 

argument. The conjugation is needed for the same reason we discussed in regard to the Hermitian 

inner product. When either function  ( ) and  ( )are Hermitian, 

(   )( )  (   )( )  

In regard to continuous STFT the convolution and cross correlation between  ( ) and 

    ( )  yields identical results because the window functions have even symmetry about zero, the 
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resulting      functions will be Hermitian because the window envelope are filled by      which is 

Hermitian (the real part is a cosine wave, the imaginary part is a sine wave).  We can visualize this 

graphically in the      functions in Figure 3.4.36. Taking the complex conjugate inverts leaves the 

real part alone and inverts the imaginary part. Reversing      results in the same result as complex 

conjugation.  

To transition back to our task at hand Figure 3.4.37 depicts the cross correlation between a 

linear sweep between 1 and 10 Hz over 10 seconds and a Gaussian envelope with a duration of 1.25 

seconds filled with a complex sinusoid at 3 Hz. The peak of the cross correlation corresponds to the  

point in time that has the most amount of overlap similarity between the sweep and enveloped 

sinusoid. Keep in mind we are still under the umbrella of continuous STFT. We still have the same 

limitations associated with fixed window sizes. We are just taking a different approach to 

visualizing what the continuous STFT is doing. 
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Figure 3.4.35 Dyadic grid used for multi-resolution analysis. 

 

  



160 

Figure 3.4.36 Envelope functions of a fixed width filled with complex sinusoids.Sinusoids are at 
frequencies of 5, 10, and 20 Hz. 
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Figure 3.4.37 Cross correlation of a windowed complex sinusoid with a linear sweep. 
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3.5 Wavelet Analysis 

In the previous section it was demonstrated that STFT can be performed by windowing 

complex sinusoids and performing cross correlations. Here we show how wavelet analysis is a 

generalization of STFT. 

 What is a wavelet?  The Gaussian enveloped complex sinusoids we have been 3.5.1

examining are actually a special class of wavelets termed Morlet wavelets. Our goal with wavelet 

analysis is to optimize the size of the window relative to the frequencies under examination. The 

key insight of wavelet analysis is recognizing that this goal can be achieved by scaling the wavelet to 

set the pass band of the filter. The enveloped complex sinusoids in Figure 3.5.1 filter the same 

frequencies as their counterparts in Figure 3.4.36 but the scaling provides better time resolution at 

10 and 20 Hz. Instead of setting the duration of the window and manipulating   we manipulate 

both the duration and   by scaling the wavelet. Controlling the window and   insures that the 

window size relative to the frequencies under examination stays fixed.  

Morlet wavelets provide a natural transition from discussing Fourier transformations but 

there are in fact several dozen different types of wavelets and a literal infinite number waiting to be 

discovered. The Morlet wavelet is actually somewhat atypical in that it is a complex wavelet. Most 

of the wavelets we will encounter are real. Wavelet analysis has a variety of applications beyond 

spectral analysis from image compression to transmission of data over a bandlimited channel. Some 

wavelets are optimized for time or frequency resolution or dynamic range, while some are 

optimized for computational efficiency, while others are optimized for particular applications 

(Daubechies, 1992).  

A wavelet is a filter with some special characteristics. Wavelets are designated as  ( ). They 

are considered to be wavelets if they satisfy the admissibility criterion.  
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Figure 3.5.1 Envelope functions of varied width filled with complex sinusoids. 
Sinusoids are at frequencies of 5, 10, and 20 Hz. 
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The admissibility criterion is given by, 

∫
| ( )| 

| |
      

where  ( ) is the Fourier transform of  ( ) 

For the admissibility condition to hold | ( )|  must decay faster then    . This ensures the 

wavelet does not have infinite bandwidth. Secondly, for the admissibility condition to hold 

| ( )| 
|
   

  .  In the time domain this essentially means the average value of the wavelet is zero 

or that the positive area of the wavelet equals the negative area of the wavelet or∫ ( )    . This 

ensures that the wavelet’s bandwidth does not extend to zero, or that it is unbiased (no DC 

component, AC coupled). 

The admissibility condition ensures that the wavelet acts as a band-pass filter when it is 

convolved with a time-varying single. The frequencies which are allowed through the filter are 

referred to as the as the pass band, frequency band, or subspace. Unlike the Fourier Transform the 

basis functions can be non-sinusoidal. Non-sinusoidal kernels are optimized to provide better 

time/frequency localization and reduce redundancy.  In spectral analysis the advantages of 

sinusoidal basis functions are mostly analytic rather than practical. As previously demonstrated the 

analysis of sines and cosines is often aided by the fact that they can be represented and 

manipulated as complex exponentials through Euler’s formula. From a practical standpoint any 

wavelet kernel (whether sinusoidal or not, and by definition satisfying the admissibility criterion) 

can represent any signal with arbitrarily small precision. This is accomplished by scaling and 

translating the kernel to obtain an infinite number of subspaces or daughter wavelets:  

    ( )  
 

√ 
 (
   

 
) 
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where: 

   is the scale factor or dilation factor (replaces the  ) 

   is the translation factor   . 

Without the normalization factor 
 

√ 
 low frequency wavelets would become amplified. The 

normalization factor scales the amplitudes to reflect the power in the input signal.  

As you have probably noticed by now transformations usually come in continuous and 

discrete varieties. Wavelet analysis is no different. We will begin by discussing the continuous 

transformation and move on the discrete transformations. The discrete transforms come in two 

varieties: one is redundant (similar to the DTFT), while the second is non-redundant (like the DFT).   

 The continuous wavelet transform (CWT).  The CWT transforms a single valued 3.5.2

function of continuous time into a function of both continuous frequency and continuous time given 

by the vector space of     ( ).  The continuous wavelet transform is defined as: 

 (   )  ∫ ( )    ( )   

The transform is commonly represented in Hilbert space shorthand by 〈      〉.  As with the 

continous Fourier transform the CWT yields a lot of redundant information, but can be a powerful 

tool for time-frequency analysis. In Figure 3.5.2 magnitude estimates obtained from CWT with 

Morlet wavelets of our familiar logsweep between 1 to 10Hz. We can see from the figure that using 

scaling wavelets much better time-frequency compared to windowed Fourier transformations. In 

the digital age the CWT is of limited utility. With digital signals we would like to be able to calculate 

wavelet transformations more efficiently or to obtain coefficients that are orthogonal to one 

another. Discrete wavelet transformations fill these needs. They come in both redundant and non-

redundant varieties. 
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 The redundant discrete wavelet transform (DWT).  With the discrete 3.5.3

transformation the dilation and translation parameters only take discrete values. When the dilation 

is small the wavelet is scaled by small steps to cover high frequencies, and when the dilation is 

larger the translation increases to cover low frequencies. The wavelets are scaled according to, 

    ( )  
 

√  
 

 (
       

 

  
 

)  

A second disctinction worth mentioning is that with discrete wavelets the kernels are almost 

always real-valued. The tails of the Gaussian envelopes of complex-valued Morlet wavelets take a 

while to converge to zero. The consequence of this is that signals need to be fairly long relative to 

the windows to be reconstructable.  

 The non-redundant discrete wavelet transform (DWT).  By specially choosing the 3.5.4

  ,   
 
 and    parameters it is possible to form an orthonomal basis for    . To state this more 

simply, this means that any function with finite energy can be represented with arbitrarily good 

precision and zero redundancy. To see how this is accomplished we first apply a dyadic sampling 

scheme by scaling a mother wavelet by   and translating it by    : 

    ( )  
 

√  
 (

     

  
) 

The dyadic sampling is optimal because the Nyquist rate always cooresponds with the time variable 

for every frequency. Non-dyadic sampling schemes can also be used but dyadic sampling is by far 

the most common. Graphically this is depicted in Figure 3.5.3. Note that the translation factor scales 

with the dilation. In essence, the dyadic sampling assures that the time sampling is non-redundant. 

Next we turn our attention to the choosing a wavelet. The wavelet must be orthogonal to itself 

when it is scaled and translated. This condition can be stated as: 
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〈         〉  {
                   
              

 

Secondly we need the frame of wavelets to be a tight frame, 

 ‖ ‖  ∑|〈      〉|
 
 

   

 ‖ ‖                 

Recall a tight frame is when the lower and upper frame bounds are equal to one another. A tight 

frame behaves as if it were orthonormal. If the frame is also a Parseval frame (     ) then 

orthonormality is satisfied.  

 To demonstrate how any arbitrary continuous function can be approximated by a discrete 

wavelet let’s take a look at one of the simplest wavelets known as the Haar sequence or Haar 

wavelet. The sequence was discovered in 1909 before a formal definition of wavelets existed. The 

Haar wavelet is a very simple piecewise function, 

 ( )  {
          

           
           

 

Figure 3.5.4 depicts the Haar mother wavelet and an orthogonal scaled and translated daughter 

wavelet. From the figure the independence of the mother and daughter wavelets can be visually 

confirmed by observing how the daughter wavelet only varies only where the mother wavelet is 

fixed. Figure 5.5.4 depicts an arbitrary function  ( ) and the Haar wavelet approximations of 

increasing precision. The Figure only depicts 7 levels of precision, but is hopefully enough to at 

least give the basic idea of how the decomposition can represent any function with arbitrarily good 

precision if enough levels are used in the approximation. 
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Figure 3.5.2 Continuous Wavelet Transform of a logsweep from 1 to 10 Hz. 
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Figure 3.5.3 Cascade filter bank. Wavelet decomposition can be conceptualized and implemented 
as a cascaded filter bank yielding orthogonally bandpassed coefficients. 
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Figure 3.5.4 Haar Wavelet.Top panel depicts a mother Haar Wavelet. Even this simple piecewise 
function is capable of representing any continuous function with arbitrary precision. 
The bottom panel depicts a scaled and translated daughter wavelet that is 
orthogonal to the mother. 
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Figure 3.5.5 Discrete redundant wavelet decomposition with Haar wavelets. 
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Appendix 3.A Source Code for Chapter 3 plots 

3.A.1 Fourier series approximations of a square wave (Figure 2.3.1)  

""" 
Plots Fourier Series approximations of a square wave. 
 
Square Wave Function 
f(x) = sgn(sin(x)) 
 
Fourier Series Coefficients 
a0 = .5 
an = 0 
bn = (2./(pi*(n*2.-1.)))*sin((n*2.-1.)*x) 
""" 
 
import pylab 
from numpy import array,pi,linspace,mod,cos,sin,ones 
 
def if_else(a,c,d): 
    if a: return c 
    else: return d 
 
def sgn(x): 
    return [if_else(k<0.,0.,1.) for k in x] 
 
def square(x): 
    return sgn(sin(x)) 
 
N=16 # Specify the number of approximations 
x=linspace(-3*pi,3*pi,512) 
pylab.figure(figsize=(9,12)) 
 
for n in xrange(N): 
    if n==0 : y=ones(512)*.5 
    else: y+=(2./(pi*(n*2.-1.)))*sin((n*2.-1.)*x) 
    pylab.subplot(N,1,n+1) 
    pylab.plot(x,y) 
    pylab.plot(x,square(x),'k--') 
    pylab.text(-3*pi,.8,r'$n=%i$'%(if_else((n*2-1)<0,0,(n*2-1)))) 
    pylab.ylim([-.5,1.5]) 
    pylab.yticks([-0.,.5,1.],(r'$0.0$',r'$0.5$',r'$1.0$')) 
    pylab.xticks([]) 
     
pylab.xticks(linspace(-3*pi,3*pi,7),(r'$-3\pi$',r'$-2\pi$', 
                                     r'$-1\pi$', r'$0\pi$', 
                                     r'$1\pi$',r'$2\pi$', 
                                     r'$3\pi$')) 
 
pylab.savefig('square_fourier_series.png',dpi=300) 
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3.A.2 Phasor representation of 2cos(2πt) (Figure 2.3.1.1)  

"""3d plot of the phasor representation of cos(2pi t)""" 
 
import matplotlib as mpl 
from mpl_toolkits.mplot3d import Axes3D 
import numpy as np 
import matplotlib.pyplot as plt 
 
from numpy import pi 
 
fig = plt.figure(figsize=(12,9)) 
ax = fig.gca(projection='3d') 
 
t = np.linspace(0., 2., 100) 
re1 = np.cos(t*2.*pi) 
im1 = np.sin(t*2.*pi) 
 
re2 = np.cos(t*-2.*pi) 
im2 = np.sin(t*-2.*pi) 
 
# unit circle 
ax.plot(np.ones(50)*0.,re1[:50],im1[:50], c=(0.8, 0.8, 0.8)) 
 
# real plane shadows 
ax.plot(t, re1, np.ones(100)*-2.,'b', alpha=0.45) 
ax.plot(t, re2, np.ones(100)*-2.,'g', alpha=0.45) 
ax.plot(t, re1+re2, np.ones(100)*-2.,'k', alpha=0.6, 
        label=r'$Re\{e^{2\pi t} + e^{-j2\pi t}\}$') 
 
# imaginary plane shadows 
ax.plot(t, np.ones(100)*2., im1,'b--', alpha=0.45) 
ax.plot(t, np.ones(100)*2., im2,'g--', alpha=0.45) 
ax.plot(t, np.ones(100)*2., im1+im2, 'k--', alpha=0.6, 
        label=r'$Im\{e^{j2\pi t} + e^{-j2\pi t}\}$') 
         
# phasors 
ax.plot(t, re1, im1,'b', linewidth=2, label=r'$e^{j2\pi t}$') 
ax.plot(t, re2, im2,'g', linewidth=2, label=r'$e^{-j2\pi t}$') 
##ax.plot(t, re1+re2, im1+im2, c=(0.3, 0.3, 0.3), linewidth=2, label=r'$2 \cos(2\pi t)$') 
ax.legend() 
 
ax.set_ylim3d([-2.0,2.0]) 
ax.set_zlim3d([-2.0,2.0]) 
 
ax.set_title(r'$2 \cos(2\pi t) =  e^{j2\pi t} + e^{-j2\pi t}$') 
ax.set_xlabel('Time (s)') 
ax.set_ylabel('Real Axis') 
ax.set_zlabel('Imaginary Axis (j)') 
 
fig.savefig('cos(2pit).png',dpi=300) 
plt.close() 
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3.A.3 Phasor representation of 2sin(2πt) (Figure 2.3.1.3)  

"""3d plot of the phasor representation of sin(2pi t)""" 
 
import matplotlib as mpl 
from mpl_toolkits.mplot3d import Axes3D 
import numpy as np 
import matplotlib.pyplot as plt 
 
from numpy import pi 
 
fig = plt.figure(figsize=(12,9)) 
ax = fig.gca(projection='3d') 
 
t = np.linspace(0., 2., 100) 
re1 = np.cos(t*2.*pi) 
im1 = np.sin(t*2.*pi) 
 
re2 = np.cos(t*-2.*pi) 
im2 = np.sin(t*-2.*pi) 
 
# unit circle 
ax.plot(np.ones(50)*0.,re1[:50],im1[:50], c=(0.8, 0.8, 0.8)) 
 
# real plane shadows 
ax.plot(t, re1, np.ones(100)*-2.,'b', alpha=0.45) 
ax.plot(t, re2, np.ones(100)*-2.,'g', alpha=0.45) 
ax.plot(t, re1-re2, np.ones(100)*-2.,'k', alpha=0.6, 
        label=r'$Re\{je^{j2\pi t} - je^{-j2\pi t}\}$') 
 
# imaginary plane shadows 
ax.plot(t, np.ones(100)*2., im1,'b--', alpha=0.45) 
ax.plot(t, np.ones(100)*2., im2,'g--', alpha=0.45) 
ax.plot(t, np.ones(100)*2., im1-im2, 'k--', alpha=0.6, 
        label=r'$Im\{je^{j2\pi t} - je^{-j2\pi t}\}$') 
         
# phasors 
ax.plot(t, re1, im1,'b', linewidth=2, label=r'$je^{j2\pi t}$') 
ax.plot(t, re2, im2,'g', linewidth=2, label=r'$je^{-j2\pi t}$') 
##ax.plot(t, re1+re2, im1+im2, c=(0.3, 0.3, 0.3), linewidth=2, label=r'$2 \cos(2\pi t)$') 
ax.legend() 
 
ax.set_ylim3d([-2.0,2.0]) 
ax.set_zlim3d([-2.0,2.0]) 
 
ax.set_title(r'$2 \sin(2\pi t) =  je^{j2\pi t} - je^{-j2\pi t}$') 
ax.set_xlabel('Time (s)') 
ax.set_ylabel('Real Axis') 
ax.set_zlabel('Imaginary Axis (j)') 
 
fig.savefig('sin(2pit).png',dpi=300) 
plt.close() 
 
  



175 

3.A.4 Orthogonality of phasors over infinite bounds (Figure 2.3.2.1.1)  

"""plot depicting the orthogonality of cosines over time""" 
 
import pylab 
from numpy import cos, pi, linspace 
x=linspace(-50,50,500) 
y1=cos(x) 
y2=cos(x*1.03) 
 
pylab.figure() 
pylab.plot(x,y1) 
pylab.plot(x,y2) 
pylab.ylim([-1.25,1.25]) 
pylab.yticks(linspace(-1,1,5)) 
pylab.xlim([-50.,50.]) 
pylab.xticks([-50.,0.,50.], 
             (r'$-\infty \leftarrow$',r'$0$', 
              r'$\rightarrow \infty ;$')) 
pylab.savefig('orth_phasors.png',dpi=300) 
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3.A.5 Inner product line and fill plots (Figure 2.3.2.4.1-2)  

import pylab 
from numpy import pi,cos,sin,exp,linspace 
from scipy.integrate import quad 
 
f = lambda t: cos(6.*pi*t)*exp(-pi*t**2) 
t=linspace(-2.,2.,500) 
y=f(t) 
 
ws=[6.,1.3] 
for w in ws: 
    print 'making plot for %.1f'%w 
    re=y*cos(w*pi*t) 
    im=y*sin(w*pi*t) 
      
    re_int,re_err=quad(lambda x:f(x)*cos(w*pi*x),-2.,2.) 
    im_int,im_err=quad(lambda x:f(x)*sin(w*pi*x),-2.,2.) 
 
    pylab.figure(figsize=(16,12)) 
 
    pylab.subplot(311) 
    pylab.plot(t,y) 
    pylab.ylabel('x(t)') 
    pylab.title(r'$x(t) = \cos(6\pi t) e^{-\pi t^2}$') 
    pylab.xticks([]) 
    pylab.ylim([-1,1]) 
 
    pylab.subplot(312) 
    pylab.plot(t,y,label='$x(t)$') 
    pylab.plot(t,cos(w*pi*t),'r', 
               label='$\cos(%.1f\pi t)$'%w) 
    pylab.fill(t,re,'m',linewidth=0.,alpha=.6, 
               label='$x(t) \cos(%.1f\pi t)$'%w) 
    pylab.xticks([]) 
    pylab.ylim([-1,1]) 
    pylab.title(r'$Re\{X(%.1f\pi)\} = \int \,  x(t) \cos(%.1f\pi t) \,’ 
                 ‘\mathrm{d}t = %.2f$'%(w,w,re_int)) 
    pylab.legend() 
    pylab.ylabel('Real') 
 
    pylab.subplot(313) 
    pylab.plot(t,y,label='$x(t)$') 
    pylab.plot(t,sin(w*pi*t),'r', 
               label='$\sin(%.1f\pi t)$'%w) 
    pylab.fill(t,im,'m',linewidth=0.,alpha=.6, 
               label='$x(t) \sin(%.1f\pi t)$'%w) 
    pylab.ylim([-1,1]) 
    pylab.title(r'$Im\{X(%.1f\pi)\} = \int \, x(t) \sin(%.1f\pi t) \,’ 
                 ‘\mathrm{d}t = %.2f$'%(w,w,im_int)) 
    pylab.legend() 
    pylab.ylabel('Imaginary (j)') 
    pylab.xlabel('Time (s)') 
 
    pylab.savefig('cos(6pit)e^(t^2),w=%.1f.png'%w,dpi=150) 
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3.A.6 Inner product 3d plots (Figure 2.3.2.5.2-3, 2.3.2.7.1)  

import matplotlib as mpl 
from mpl_toolkits.mplot3d import Axes3D 
from numpy import pi, complex,exp,sin,cos,ones,real,imag,linspace 
import matplotlib.pyplot as plt 
 
j=complex(1j) 
pi=pi 
     
plots=[{'func':lambda t: exp(6.*j*pi*t)*exp(-pi*t**2), 
        'title': r'$x(t) = e^{j6\pi t} e^{-\pi t^2}$', 
        'w':'6', 
        'fname':'e(j6pit)e^(-pit^2),w=6.png'}, 
       {'func':lambda t: sin(6.*pi*t)*exp(-pi*t**2), 
        'title': r'$x(t) = \sin(6\pi t) e^{-\pi t^2}$', 
        'w':'6', 
        'fname':'sin(j6pit)e^(-pit^2),w=6.png'}, 
       {'func':lambda t: cos(6.*pi*t)*exp(-pi*t**2), 
        'title': r'$x(t) = \cos(6\pi t) e^{-\pi t^2}$', 
        'w':'6', 
        'fname': r'cos(j6pit)e^(-pit^2),w=6.png'}] 
 
for plot in plots: 
    f=plot['func'] 
    w=plot['w'] 
    wi='-%s'%w 
     
    t=linspace(-2.,2.,500) 
    y=f(t) 
 
    Fw=y*exp(-j*pi*float(w)*t) 
    Fwi=y*exp(-j*pi*float(wi)*t) 
 
    re=real(Fw) 
    im=imag(Fw) 
    rei=real(Fwi) 
    imi=imag(Fwi) 
 
    fig = plt.figure(figsize=(12,9)) 
    ax = fig.gca(projection='3d') 
 
    ax.plot(t, re, im,'b', linewidth=2, alpha=0.8, label=r'$x(t) e^{-j%s\pi t}$' %w) 
    ax.plot(t, re, ones(500)*-1.,'b', alpha=0.45)#, label=r'$re \{x(t, %s\pi)\}$'%w) 
    ax.plot(t, ones(500)*1., im,'b', alpha=0.45)#, label=r'$Im \{x(t, %s\pi)\}$'%w) 
 
    ax.plot(t, rei, imi,'g', linewidth=2, alpha=0.8, label=r'$x(t) e^{j%s\pi t}$' %w) 
    ax.plot(t, rei, ones(500)*-1.,'g', alpha=0.45)#, label=r'$Re \{x(t, %s\pi)\}$'%wi) 
    ax.plot(t, ones(500)*1., imi,'g', alpha=0.45)#, label=r'$Im \{x(t, %s\pi)\}$'%wi) 
 
    ax.legend() 
    ax.set_ylim3d([-1.,1.]) 
    ax.set_zlim3d([-1.,1.]) 
 
    ax.set_title(plot['title']) 
    ax.set_xlabel('Time (s)') 
    ax.set_ylabel('Real Axis') 
    ax.set_zlabel('Imaginary Axis (j)') 
 
    plt.savefig(plot['fname'],dpi=300) 
    plt.close() 
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3.A.7 Even odd function decomposition plot (Figure 2.3.2.6.1)  

"""Plots f(x)=x^4 - 5x^3 + x^2 + 10x - 10,  
   f_e(x), and f_o(x) of f(x)""" 
 
import pylab 
from numpy import linspace 
 
def f(x): 
    return x**4 - 5*x**3 + x**2 + 10*x - 10 
 
x=linspace(-5,5,100) 
 
pylab.figure(figsize=(9,12)) 
pylab.subplot(3,1,1) 
pylab.plot(x,f(x)) 
pylab.text(-4.5,-20,r'$f(x) = x^4 - 5x^3 + x^2 + 10x - 10$',fontsize=16) 
pylab.axvline(color='k') 
pylab.axhline(color='k') 
pylab.xlim([-5,5]) 
pylab.ylim([-30,30]) 
    
pylab.subplot(3,1,2) 
pylab.plot(x,f(x)+f(-x)) 
pylab.text(-4.5,-20,r'$f_e(x) = x^4 + x^2 - 10$',fontsize=16) 
pylab.axvline(color='k') 
pylab.axhline(color='k') 
pylab.xlim([-5,5]) 
pylab.ylim([-30,30]) 
 
pylab.subplot(3,1,3) 
pylab.plot(x,f(x)-f(-x)) 
pylab.text(-4.5,-20,r'$f_o(x) = 5x^3 + 10x$',fontsize=16) 
pylab.axvline(color='k') 
pylab.axhline(color='k') 
pylab.xlim([-5,5]) 
pylab.ylim([-30,30]) 
 
pylab.savefig('even_odd_poly.png',dpi=300) 
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3.A.8 Discrete Fourier basis functions plot (Figure 2.3.3.2.1, .7.1)  

"""Demonstrates how the aliasing of positive phasors > N/2 
reflect negaive basis function in the discrete Fourier 
transform""" 
 
import pylab 
from numpy import cos,sin,linspace,pi 
 
N=9. 
 
k=linspace(0,N-1,N) 
x=linspace(0,N-1,N*10) 
 
pylab.figure(figsize=(18,22)) 
for n in xrange(int(N)): 
     
    pylab.subplot(N,1,(n+N/2+1)%N) 
    pylab.title('n=%i,   N$-$n=%i'%(n,int(N-n))) 
    pylab.plot(x,cos(2*pi*x*n/N),alpha=.5, 
               label=r'$cos(2pi n/N)$') 
    pylab.scatter(k,cos(2*pi*k*n/N),linewidth=1.) 
 
 
    pylab.plot(x,sin(2*pi*x*n/N),'r',alpha=.5, 
               label=r'$j sin(2pi n/N)$') 
    pylab.scatter(k,sin(2*pi*k*n/N),color='r',marker='o',linewidth=1.) 
 
    pylab.plot(x,cos(2*pi*x*-(N-n)/N),'b--',alpha=.5, 
               label=r'$cos(-2pi (N-n)/N)$') 
    pylab.plot(x,sin(2*pi*x*-(N-n)/N),'r--',alpha=.5, 
               label=r'$j sin(-2pi (N-n)/N)$') 
     
    pylab.ylim([-1.3,1.3]) 
    pylab.yticks([-1.,0.,1.]) 
    pylab.xlim([-.5,N-.5]) 
    pylab.xticks([]) 
     
    if n==0: pylab.legend(loc=4)     
    if n==int(N/2): pylab.xticks(k) 
     
pylab.savefig('folding.png')  
 
M=15. 
L=9. 
 
k=linspace(0,L-1,L) 
x=linspace(0,L-1,L*10) 
 
pylab.figure(figsize=(16,30)) 
for n in xrange(int(M)): 
     
    pylab.subplot(M,1,(n+M/2+1)%M) 
##    pylab.subplot(N,1,n) 
    pylab.title('n=%i,   M$-$n=%i'%(n,int(M-n))) 
    pylab.plot(x,cos(2*pi*x*n/M),alpha=.5, 
               label=r'$\cos(2\pi n/M)$') 
    pylab.scatter(k,cos(2*pi*k*n/M),linewidth=1.) 
 
    pylab.plot(x,sin(2*pi*x*n/M),'r',alpha=.5, 
               label=r'$j \sin(2\pi n/M)$') 
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    pylab.scatter(k,sin(2*pi*k*n/M),color='r',marker='o',linewidth=1.) 
 
    pylab.plot(x,cos(2*pi*x*-(M-n)/M),'b--',alpha=.5, 
               label=r'$\cos(-2\pi (M-n)/M)$') 
    pylab.plot(x,sin(2*pi*x*-(M-n)/M),'r--',alpha=.5, 
               label=r'$j \sin(-2\pi (M-n)/M)$') 
     
    pylab.ylim([-1.3,1.3]) 
    pylab.yticks([-1.,0.,1.]) 
    pylab.xlim([-.5,L-.5]) 
    pylab.xticks([]) 
     
    if n==0: pylab.legend(loc=4)     
    if n==int(M/2): pylab.xticks(k) 
     
pylab.savefig('DTFT_folding.png') 
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3.A.9 Discrete Fourier transform examples  (Figure 2.3.3.2.1)  

from numpy import abs,angle,array,concatenate,pi,exp,\ 
                  linspace,log10,mod,cos,sin,ones,nonzero,\ 
                  zeros,real,imag,iscomplex,isreal 
from scipy import fft 
import numpy 
 
import matplotlib as mpl 
from mpl_toolkits.mplot3d import Axes3D 
import numpy as np 
import matplotlib.pyplot as plt 
from numpy.random import random 
import pylab 
from math import floor 
 
j=complex(1j) 
 
def square(X): 
    def f(x): 
        x=mod(x+pi,2.*pi)-pi 
        if x < 0. : return -1. 
        else      : return 1. 
    return [f(k) for k in x] 
 
def if_else(a,c,d): 
    if a: return c 
    else: return d 
 
def step(x): 
    y=zeros(N) 
    y[N/2-8:N/2+8]=ones(16) 
 
    return y 
 
def ticks2textuple(yticks): 
    return tuple([r'$%s$'%str(round(y,2)) for y in yticks]) 
 
N=128 
 
funcs=[{'x':linspace(-1.,1.,N), 
        'f':lambda x:exp(j*10*pi*x)*exp(-pi*x**2), 
        'title': r'$x_k = e^{-j10\pi k/N}e^{-\pi k^2/N}$', 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_exp10pi.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':square, 
        'title': r'$x_k = \mathrm{sgn}(\sin(6\pi k / N))$' 
        'ylim':[-1.5,1.5], 
        'yticks':[-1.5,-.75,-.5,0.,.75,1.5], 
        'fname':'DFT_square.png'}, 
       {'x':'', 
        'f':step, 
        'title': r'$x_k = \mathrm{rect} ( ( k - N/2)/ 16 )$', 
        'ylim':[-.3,.3], 
        'yticks':[-.3,-.15,0.,.15,.3], 
        'fname':'DFT_step.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:sin(9.*x), 
        'title':r'$x_k = \sin(54\pi k / N)$', 



182 

        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_54sin.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:cos(72./6.*x), 
        'title':r'$x_k = \cos(72\pi k / N)$', 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_72cos.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:cos(116./6.*x), 
        'title':r'$x_k = \cos(116\pi k / N)$', 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_116cos.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:cos(144./6.*x), 
        'title': r'$x_k = \cos(144\pi k / N)$' 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_144cos.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:cos(144./6.*x)+cos(116./6.*x), 
        'title': r'$x_k = \cos(144\pi k / N)+\cos(116\pi k / N)$', 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_144_and116cos.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:cos(x), 
        'title': r'$x_k = \cos(6\pi k / N)$', 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_cos.png'}, 
       {'x':linspace(-3*pi,3*pi-.1,N), 
        'f':lambda x:cos(x)*j, 
        'title': r'$x_k = j \cos(6\pi k / N)$', 
        'ylim':[-1.25,1.25], 
        'yticks':[-1.,-.5,0.,.5,1.], 
        'fname':'DFT_jcos.png'}] 
 
for func in funcs: 
    print func['title'] 
    x,f,ylim,yticks=func['x'],func['f'],func['ylim'],func['yticks'] 
 
    print ticks2textuple(yticks) 
    y=f(x) 
    c=fft(y) 
    c=concatenate((c[N/2:],c[:N/2])) 
    c*=(2./N) 
    p=abs(c) 
    a=angle(c) 
     
    fig = plt.figure(figsize=(9,12)) 
    ax = fig.gca() 
     
    pylab.subplot(511) 
    if any(iscomplex(y)): 
        for n in xrange(N): 
            pylab.plot([n,n], [0.,imag(y[n])],'r') 
        pylab.scatter(array(range(N)),imag(y),color='r',edgecolor='k') 
    if len(nonzero(real(y).round(decimals=2))[0])>0: 
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        for n in xrange(N): 
            pylab.plot([n,n], [0.,y[n]],'b') 
        pylab.scatter(array(range(N)),real(y)) 
    pylab.ylim([-2.,2.]) 
    pylab.yticks([-2.,-1.,0.,1.,2.],ticks2textuple([-2.,-1.,0.,1.,2.])) 
    pylab.xlim([0-4,N+4]) 
    pylab.text(0.,1.2,func['title'],fontsize=18) 
    pylab.xticks(linspace(0,N,9)) 
    pylab.axhline(color='k') 
 
    pylab.subplot(512) 
    for n in xrange(N): 
        pylab.plot([n-N/2,n-N/2], [0.,real(c[n])],'b') 
         
    pylab.scatter(array(range(N))-float(N)/2.,real(c)) 
    pylab.ylim(ylim) 
    pylab.yticks(yticks,ticks2textuple(yticks)) 
    pylab.xlim([-N/2-4,N/2+4]) 
    pylab.text(-N/2,ylim[1]-(ylim[1]-ylim[0])*.25,r'$Re\{2 Xn / N\}$',fontsize=18) 
    pylab.xticks(linspace(-N/2,N/2,9)) 
    pylab.axhline(color='k') 
 
    pylab.subplot(513) 
    for n in xrange(N): 
        pylab.plot([n-N/2,n-N/2], [0.,imag(c[n])],'r') 
 
    pylab.scatter(array(range(N))-float(N)/2.,imag(c),color='r',edgecolor='k') 
    pylab.ylim(ylim) 
    pylab.yticks(yticks,ticks2textuple(yticks)) 
    pylab.xlim([-N/2-4,N/2+4]) 
    pylab.text(-N/2,ylim[1]-(ylim[1]-ylim[0])*.25,r'$Im\{2 Xn / N\}$',fontsize=18) 
    pylab.xticks(linspace(-N/2,N/2,9)) 
    pylab.axhline(color='k') 
 
    pylab.subplot(514) 
    for n in xrange(N): 
        pylab.plot([n-N/2,n-N/2], [0.,p[n]],'b') 
    pylab.scatter(array(range(N))-float(N)/2.,p) 
    pylab.ylim([-.075,ylim[1]-(ylim[1]-0.)*.1]) 
    halfticks=linspace(0.,yticks[-1],len(yticks)) 
    pylab.yticks(halfticks,ticks2textuple(halfticks)) 
    pylab.xlim([-N/2-4,N/2+4]) 
    pylab.text(-N/2,ylim[1]-(ylim[1]-0.)*.25,r'$|2 Xn / N|$',fontsize=18) 
    pylab.xticks(linspace(-N/2,N/2,9)) 
    pylab.axhline(color='k') 
 
    pylab.subplot(515) 
    for n in xrange(N): 
        pylab.plot([n-N/2,n-N/2], [0.,a[n]],'r') 
 
    pylab.scatter(array(range(N))-float(N)/2.,a,color='r',edgecolor='k') 
    pylab.ylim([-pi-pi/8,pi+pi/8]) 
    pylab.yticks([-pi,-pi/2,0,pi/2,pi], 
                 (r'$-\pi$', r'$-\pi/2$', r'$0$', r'$\pi/2$' , r'$\pi$')) 
    pylab.xlim([-N/2-4,N/2+4]) 
    pylab.text(-N/2,pi-pi/2,r'$ \angle Xn$',fontsize=18) 
    pylab.xticks(linspace(-N/2,N/2,9)) 
    pylab.axhline(color='k') 
     
    fig.savefig(func['fname'],dpi=150) 
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3.A.10 DTFT Interpolated Mags (Figure 2.3.3.8.1-3, 2.3.3.11.1-2)  

from numpy import array,cos,exp,linspace,complex,\ 
                  pi,zeros,log10,ones,concatenate,correlate 
from numpy.random import random 
from scipy import fft 
 
import pylab 
 
j=complex(1j) 
 
Ns=[128,512] # size of input sequence 
M=4096       # size after pad 
 
windows=[ 
         { 
          'w':lambda N:ones(N), 
          'title':r'$Rectangular \; Window$', 
          'dyn_range':60 
         }, 
         { 
          'w':lambda N:0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)), 
          'title':r'$Hamming \; Window$', 
          'dyn_range':80 
         }, 
         { 
          'w':lambda N:0.3232153788877343 \ 
              -0.4714921439576260*cos(2*pi/(N-1)*array(range(N))) \ 
              +0.1755341299601972*cos(4*pi/(N-1)*array(range(N))) \ 
              -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N))) \ 
              +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))), 
          'title':r'$Blackman-Harris \; 4 \; Window$', 
          'dyn_range':150 
         } 
        ] 
 
functions=[ 
           { 
            'f':lambda x:cos(2.*pi*7.5*x/128), 
            'title':r'$x_k = \cos(2\pi k 7.5 / 128)$', 
            'fname':'7.5cos_windows.png' 
           }, 
           { 
            'f':lambda x:cos(2.*pi*7.5*x/128)+cos(2.*pi*9.1*x/128+.54), 
            'title':r'$x_k = \cos(2\pi k 7.5 / 128)+ ' 
                     '\cos(2\pi k 9.1 / 128+.54)$', 
            'fname':'7.5cos_windows_eq_mag.png' 
           }, 
           { 
            'f':lambda x:cos(2.*pi*7.5*x/128) \ 
                    +.06*cos(2.*pi*15.1*x/128+1.93) \ 
                    +(random(len(x))-0.5)*.28, 
            'title':r'$x_k = \cos(2\pi k 7.5 / 128)+ ' 
                     '.06\cos(2\pi k 15.1 / 128+1.93)+noise$', 
            'fname':'7.5cos_windows_dis_mag.png' 
           }, 
           { 
            'f':lambda x:cos(2.*pi*7.5*x/128) \ 
                    +.06*cos(2.*pi*15.1*x/128+1.93), 
            'title':r'$x_k = \cos(2\pi k 7.5 / 128)+ ' 
                    '.06\cos(2\pi k 15.1 / 128+1.93)$', 
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            'fname':'7.5cos_windows_dis_mag_nonoise.png' 
           } 
          ] 
 
for N in Ns: 
    pad=M-N # size of pad 
     
    for function in functions: 
        print function['title'] 
        x=linspace(0.,N-1,N) 
        f=function['f'] 
         
        fig = pylab.figure(figsize=(9,12)) 
        num_plots=len(windows)*2 
        onplot=1 
 
        for window in windows: 
            print '\t',window['title'] 
            w=window['w'] 
            y=w(N)*f(x) 
             
            c=fft(concatenate((y,zeros(pad)))) 
            p=20.*log10(abs(c)) 
            p-=max(p) 
             
            pylab.subplot(num_plots,1,onplot) 
            if onplot==1: 
                pylab.title(function['title'],fontsize=18) 
 
            for n in xrange(N): 
                pylab.plot([n,n], [0.,y[n]],'b') 
 
            if N<=128: 
                pylab.scatter(array(range(N)),y) 
            pylab.ylim([-2.,2.]) 
            pylab.yticks([-2.,-1.,0.,1.,2.]) 
            pylab.xlim([0-4,N+4]) 
            pylab.text(0.,1.2,window['title'],fontsize=18) 
            pylab.xticks(linspace(0,N,9)) 
            pylab.axhline(color='k') 
 
            onplot+=1 
             
            pylab.subplot(num_plots,1,onplot) 
            for n in xrange(32*(M/128)): 
                pylab.plot([128*n/float(M),128*n/float(M)], 
                           [-window['dyn_range'],p[n]],'b') 
            pylab.ylim([-window['dyn_range'],5.]) 
            pylab.xlim([0,31.5]) 
 
            onplot+=1 
             
        fig.savefig('DFT_N=%i,'%N+function['fname'],dpi=150) 
    ##    fig.savefig('PSD'+function['fname'],dpi=150) 
 
        pylab.clf(); pylab.cla(); pylab.close(); del fig 
 
        print 
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3.A.11 Sinc function, abs(sinc), 20log10(sinc) (Figure 2.3.3.10.1) 

 
from numpy import array,cos,sin,linspace,pi,complex,logspace,log10 
 
import pylab 
 
def ticks2textuple(yticks): 
    return tuple([r'$%s$'%str(round(y,2)) for y in yticks]) 
 
sinc=lambda w,N :sin(pi*N*w)/(pi*w) 
 
x=linspace(-pi*4,pi*4,2**14) 
y=sinc(x,1) 
 
pylab.figure(figsize=(8,10)) 
pylab.subplot(3,1,1) 
pylab.plot(x,y) 
pylab.axhline(color='k') 
ymin,ymax=pylab.ylim() 
pylab.text(-3.8*pi,ymax-(ymax-ymin)*.05, 
           r'$\frac{\sin(\pi t)}{\pi t}$', 
           fontsize=18) 
pylab.xlim([-4*pi,4*pi]) 
pylab.xticks(linspace(-4*pi,4*pi,5),('','','','','')) 
yticks=pylab.yticks()[0] 
pylab.yticks(yticks,ticks2textuple(yticks)) 
 
pylab.subplot(3,1,2) 
pylab.plot(x,abs(y)) 
ymin,ymax=pylab.ylim() 
pylab.text(-3.8*pi,ymax-(ymax-ymin)*.15, 
           r'$\left| \frac{\sin(\pi t)}{\pi t} \right|$', 
           fontsize=18) 
pylab.xlim([-3.8*pi,4*pi]) 
pylab.xticks(linspace(-4*pi,4*pi,5),('','','','','')) 
yticks=pylab.yticks()[0] 
pylab.yticks(yticks,ticks2textuple(yticks)) 
 
pylab.subplot(3,1,3) 
pylab.xlim([-4*pi,4*pi]) 
pylab.plot(x,20*log10(abs(y))) 
pylab.ylim(ymin=-60.) 
ymin,ymax=pylab.ylim() 
pylab.text(-3.8*pi,ymax-(ymax-ymin)*.15, 
           r'$\mathrm{20log_{10}} \left| \frac{\sin(\pi t)}{\pi t} \right|$', 
           fontsize=18) 
pylab.xticks(linspace(-4*pi,4*pi,5), 
             (r'$-4\pi$',r'$-2\pi$',r'$0$',r'$2\pi$',r'$4\pi$')) 
yticks=pylab.yticks()[0] 
pylab.yticks(yticks,ticks2textuple(yticks)) 
 
pylab.savefig('sinc_function.png',dpi=150) 
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3.A.12  Continuous Fourier Transform of windowed Cosine (2.3.3.10.2) 

 
from numpy import array,cos,sin,linspace,pi,complex,logspace,log10 
 
import pylab 
 
x=linspace(-2.25,2.25,2**14) 
 
f=lambda w,N : sin(pi*N*(w-1))/(w-1)+sin(pi*N*(w+1))/(w+1) 
onplot=1 
ylim=array([-2.,10.]) 
 
pylab.figure(figsize=(8,10)) 
for i in [2,4,8,16,32,64,128,256,512]: 
    print i 
    pylab.subplot(9,1,onplot) 
    pylab.plot(x,f(x,i)) 
    pylab.xlim([-2.25,2.25]) 
    ymin,ymax=pylab.ylim() 
    pylab.yticks([ymin,ymax],(r'$%i$'%int(ymin),r'$%i$'%int(ymax))) 
    pylab.xticks([-2,-1,0,1,2],('','','','','')) 
    pylab.text(-2.2,ymax*.6, 
               '$F\{ \cos(2 \pi t) \Pi (%i \pi t) \}$'%i,fontsize=11) 
     
    onplot+=1 
    ylim*=2 
 
pylab.xticks([-2,-1,0,1,2],(r'$-2$',r'$-1$',r'$0$',r'$1$',r'$2$')) 
pylab.savefig('continuous_cosine_by_period.png',dpi=150) 
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3.A.13 Blackman-Harris4 Frequency Resolution  (Figure 2.3.3.10.3)   

import pylab 
from numpy import pi,ones,zeros,linspace,log10,imag,real,concatenate,cos,array 
from scipy import fft 
 
M=8192 
 
w=lambda N:0.3232153788877343  
          -0.4714921439576260*cos(2*pi/(N-1)*array(range(N)))  
          +0.1755341299601972*cos(4*pi/(N-1)*array(range(N)))  
          -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N)))  
          +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))) 
 
pylab.figure() 
onplot=1 
for i in range(1,9): 
    print i 
     
    N=128*i 
    pad=M-N 
    c=fft(concatenate((w(N),zeros(pad)))) 
    c=concatenate((c[-2*(M/128):],c[:-2*(M/128)])) 
    pylab.plot(linspace(-2.,8.,10*(M/128)), 
               20*log10(abs(c)[:10*(M/128)]), 
               alpha=.8,label='N=%i'%N) 
 
    onplot+=1 
 
pylab.xticks(linspace(-2,8,11)) 
pylab.legend() 
pylab.title('Zoom View of Blackman-Harris4 Window DFT Magnitudes') 
pylab.xlabel('Magnitude (dB)') 
pylab.xlabel('DFT Frequency Bin Relative to N = 128') 
pylab.savefig('blackman_harris4_mags.png',dpi=150) 
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3.A.14 Example of window translation (Figure 2.3.4.1) 

import pylab 
from numpy.random import random 
from numpy import linspace, sin,pi,cos,array 
 
def ticks2textuple(ticks,precision=2): 
    return tuple([r'$%s$'%str(round(tk,precision)) for tk in ticks]) 
 
blackman_harris4 = lambda N: 0.3232153788877343 \ 
              -0.4714921439576260*cos(2*pi/(N-1)*array(range(N))) \ 
              +0.1755341299601972*cos(4*pi/(N-1)*array(range(N))) \ 
              -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N))) \ 
              +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))) 
 
x=linspace(-6*pi,6*pi,12000) 
 
y=.2*sin(.245*x+random()*2*pi) + \ 
  .2*sin(.434*x+random()*2*pi) + \ 
  .2*sin(.745*x+random()*2*pi) + \ 
  .2*sin(1.53*x+random()*2*pi) + \ 
  .2*sin(2.73*x+random()*2*pi) + \ 
  .2*sin(3.30*x+random()*2*pi) + \ 
  .2*sin(5.60*x+random()*2*pi)+ \ 
  .2*sin(9.10*x+random()*2*pi) 
 
w=blackman_harris4(4000) 
 
pylab.figure(figsize=(10,8)) 
pylab.plot(x,y,'b', alpha=.3,label=r'$x(t)$') 
 
pylab.plot(linspace(-2*pi,2*pi,4000), 
           w,'r--',alpha=.8,label=r'$w(t)$') 
pylab.plot(linspace(-2*pi,2*pi,4000), 
           w*y[4000:8000],'r',alpha=.8,label=r'$x(t)w(t)$') 
pylab.axvline(0., color='k') 
 
pylab.plot(linspace(0,4*pi,4000), 
           w,'m--',alpha=.8,label=r'$w(t-t_0)$') 
pylab.plot(linspace(0,4*pi,4000), 
           w*y[6000:10000],'m',alpha=.8,label=r'$x(t)w(t-t_0)$') 
pylab.axvline(2*pi,color='k') 
 
pylab.axhline(color='k',linewidth=2.) 
 
pylab.xlim([-4*pi,6*pi]) 
ticks=linspace(-6*pi,6*pi,7) 
pylab.xticks(linspace(-4*pi,6*pi,6), 
             (r'',r'',r'$0$',r'$t_0$',r'',r'$t \; \rightarrow$'), 
             fontsize=16) 
 
pylab.ylim([-1.25,1.25]) 
ticks=linspace(-1,1,5) 
pylab.yticks(ticks,ticks2textuple(ticks,precision=2), fontsize=16) 
 
pylab.legend(loc='upper left') 
pylab.savefig('STFT_windowing.png') 
pylab.close() 
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3.A.15 Fixed-resolution lattice structure (Figure 2.3.4.1)  

 
import pylab 
from numpy import array,ones,linspace 
 
N=2**14 
ns=[128,1024] 
titles={1024:'Good Frequency Resolution, but Poor Time Resolution', 
         128:'Poor Frequency Resolution, but Good Time Resolution'} 
 
pylab.figure(figsize=(12,12)) 
numplots=len(ns) 
 
for i,n in enumerate(ns): 
    pylab.subplot(numplots,1,i+1) 
 
    step=n 
    s0=n/2 
    X,T,F=[],[],[] 
    j=0 
    while s0 <= N-(n/2): 
        X.append(ones(n/2)) 
        T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
        F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
        s0+=step 
        j+=1 
 
    # Work around to very very annoying pylab idiosyncracy 
    # (I would call it a bug, but it probably makes sense to someone.) 
    # These don't actually get plotted. The pcolor plots are one column 
    # short if we don't append these. 
    X.append(ones(n/2)) 
    T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
    F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
 
    T,F,X=array(T),array(F),array(X) 
    pylab.pcolor(T,F,X,alpha=0.) 
     
    for t in T[:,0]: 
        pylab.axvline(t,color='k')             
 
    for f in F[0,:]: 
        pylab.axhline(f,color='k') 
             
    pylab.xticks([]) 
    pylab.ylim([0.,10.24/2.]) 
    pylab.xlim([0.,50.]) 
    pylab.yticks([]) 
 
    pylab.title(titles[n],fontname='Times New Roman') 
    pylab.ylabel(r'$Frequency \; (Hz)$') 
    pylab.xlabel(r'$Time \; (seconds)$') 
     
pylab.savefig('STFT_of_sweep_grid.png', dpi=150) 
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3.A.16 Fixed-resolution log chirp decomposition (Figure 2.3.4.2)  

 
import pylab 
from numpy import array,logspace, linspace, \ 
     log10, log, pi, sin,abs,zeros,ones,cos,exp 
from scipy import fft 
from scipy.signal.waveforms import chirp 
from matplotlib.colors import LogNorm 
 
from numpy.random import normal 
 
def if_else(a,b,c): 
    if a: return b 
    return c 
 
def ticks2textuple(ticks,precision=2): 
    return tuple([r'$%s$'%str(round(tk,precision)) for tk in ticks]) 
 
rect = lambda N : ones(N) 
hamming = lambda N : 0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)) 
blackman_harris4 = lambda N: 0.3232153788877343 \ 
              -0.4714921439576260*cos(2*pi/(N-1)*array(range(N))) \ 
              +0.1755341299601972*cos(4*pi/(N-1)*array(range(N))) \ 
              -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N))) \ 
              +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))) 
 
N=2**14 
ns=[64,128,256,512,1024,2048] 
numplots=len(ns)+1 
 
t = linspace(0,100, N) 
x=chirp(t, f0 = 1., t1 = 100., f1 = 10., method = 'log') 
 
pylab.figure(figsize=(9,12)) 
pylab.subplot(numplots,1,1) 
pylab.plot(t,x) 
xticks=linspace(0.,100.,11) 
pylab.xticks(xticks,['' for i in xrange(12)]) 
pylab.ylim([-1.25,1.25]) 
pylab.yticks([-1,-.5,0,.5,1.], 
             ticks2textuple([-1,-.5,0,.5,1.])) 
pylab.title(r'$x(t) = logsweep \; from \; 1Hz \; to \; 10Hz$') 
 
for i,n in enumerate(ns): 
    w=hamming(n) 
    pylab.subplot(numplots,1,i+2) 
 
    step=n 
    s0=n/2 
    X,T,F=[],[],[] 
    j=0 
    while s0 <= N-(n/2): 
        X.append(abs(fft(w*x[s0-n/2:s0+n/2]))[:n/2]) 
        X[-1]=[if_else(v<1e-5,1e-5,v)for v in X[-1]] 
 
        T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
 
        print s0+n/2,j*(100./(N/n)) 
        F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
        s0+=step 
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        j+=1 
 
    # Work around to very very annoying pylab idiosyncracy 
    # (I would call it a bug, but it probably makes sense to someone.) 
    # These don't actually get plotted. The pcolor plots are one column 
    # short if we don't append these. 
    X.append(ones(n/2)) 
    T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
    F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
     
    X,T,F=array(X),array(T),array(F) 
    pylab.pcolor(T,F,X, norm=LogNorm(vmin=X.min(), vmax=X.max())) 
 
 
    for t in T[:,0]: 
        if len(T[:,0])<=256: 
            pylab.axvline(t,color='k')             
     
    for f in F[0,:]: 
        if len(F[0,:])<=128: 
            pylab.axhline(f,color='k') 
             
    pylab.xticks(xticks,['' for i in xrange(12)]) 
    pylab.ylim([0.,10.24]) 
    pylab.yticks([0,2.5,5.,7.5,10.], 
             ticks2textuple([0,2.5,5.,7.5,10.])) 
 
    pylab.title(r'$%.2f s \; Hamming \; Window$'%(100.*n/float(N))) 
    pylab.ylabel(r'$Frequency \; (Hz)$') 
 
 
pylab.xticks(xticks,ticks2textuple(xticks)) 
pylab.xlabel(r'$Time \; (seconds)$') 
pylab.savefig('STFT_of_sweep.png', dpi=150) 
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3.A.17 Multi-resolution log chirp decomposition (Figure 2.3.4.3) 

 
import pylab 
from numpy import array,logspace, linspace,log10, log, pi, sin,abs,zeros,ones,cos,exp 
from scipy import fft 
from scipy.signal.waveforms import chirp 
from matplotlib.colors import LogNorm 
 
from numpy.random import normal 
 
def if_else(a,b,c): 
    if a: return b 
    return c 
 
def ticks2textuple(ticks,precision=2): 
    return tuple([r'$%s$'%str(round(tk,precision)) for tk in ticks]) 
 
rect = lambda N : ones(N) 
hamming = lambda N : 0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)) 
blackman_harris4 = lambda N: 0.3232153788877343 \ 
              -0.4714921439576260*cos(2*pi/(N-1)*array(range(N))) \ 
              +0.1755341299601972*cos(4*pi/(N-1)*array(range(N))) \ 
              -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N))) \ 
              +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))) 
 
N=2**14 
ns=[64,128,256,512,1024,2048,4096,8192] 
numplots=len(ns)+2 
 
t = linspace(0,100, N) 
 
x=chirp(t, f0 = 1., t1 = 100., f1 = 10., method = 'log') 
 
pylab.figure(figsize=(9,9)) 
pylab.subplot(numplots,1,1) 
pylab.plot(t,x) 
xticks=linspace(0.,100.,11) 
pylab.xticks(xticks,['' for i in xrange(12)]) 
pylab.ylim([-1.25,1.25]) 
pylab.yticks([-1,0,1],ticks2textuple([-1,0,1])) 
pylab.title(r'$x(t) = logsweep \; from \; 1Hz \; to \; 10Hz$') 
 
pylab.subplot(numplots,1,2,frame_on=False,aspect='equal') 
pylab.xticks([]) 
pylab.yticks([]) 
 
ylim=array([10.24*(float(len(ns)-1)/float(len(ns))),10.24]) 
yticks=linspace(0.,10.,21) 
print yticks 
 
pylab.subplots_adjust(hspace=0.0)  
for i,n in enumerate(ns): 
    w=hamming(n) 
    pylab.subplot(numplots,1,i+3) 
 
    step=n 
    s0=n/2 
    X,T,F=[],[],[] 
    j=0 
    while s0 <= N-(n/2): 
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        X.append(abs(fft(w*x[s0-n/2:s0+n/2]))[:n/2]) 
        X[-1]=[if_else(v<1e-5,1e-5,v)for v in X[-1]] 
        T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
        F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
        s0+=step 
        j+=1 
 
    # Work around to very VERY annoying pylab idiosyncracy 
    # (I would call it a bug, but it probably makes sense to someone.) 
    # These don't actually get plotted. The pcolor plots are one column 
    # short if we don't append these. 
    X.append(ones(n/2)) 
    T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
    F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
     
    X,T,F=array(X),array(T),array(F) 
 
    pylab.pcolor(T,F,X, norm=LogNorm(vmin=X.min(), vmax=X.max())) 
 
    for t in T[:,0]: 
        if len(T[:,0])<=256: 
            pylab.axvline(t,color='k')             
     
    for f in F[0,:]: 
        if len(F[0,:])<=512: 
            pylab.axhline(f,color='k') 
 
    print F[0,:] 
    pylab.xticks(xticks,['' for i in xrange(12)]) 
    pylab.ylim(ylim) 
    ticks=[t for t in yticks if t<ylim[-1] and t>ylim[0]] 
    pylab.yticks(ticks,ticks2textuple(ticks)) 
 
    if n==ns[int(len(ns)/2.)]: 
        pylab.ylabel(r'$Frequency \; (Hz)$')     
 
    ylim-=10.24*(1./float(len(ns))) 
 
pylab.xticks(xticks,ticks2textuple(xticks)) 
pylab.xlabel(r'$Time \; (seconds)$') 
pylab.savefig('STFT_of_sweep_wavelet.png', dpi=150) 
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3.A.18 Multi-resolution lattice structure (Figure 2.3.4.4)  

 
import pylab 
from numpy import array,ones,linspace 
 
N=2**14 
ns=[128,256,512,1024,2048] 
numplots=len(ns) 
 
pylab.figure(figsize=(12,12)) 
 
ylim=array([10.24*6./8.,10.24*7./8.]) 
 
pylab.subplots_adjust(hspace=0.0)  
for i,n in enumerate(ns): 
    pylab.subplot(numplots,1,i+1) 
 
    step=n 
    s0=n/2 
    X,T,F=[],[],[] 
    j=0 
    while s0 <= N-(n/2): 
        X.append(ones(n/2)) 
        T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
        F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
        s0+=step 
        j+=1 
 
    # Work around to very VERY annoying pylab idiosyncracy 
    # (I would call it a bug, but it probably makes sense to someone.) 
    # These don't actually get plotted. The pcolor plots are one column 
    # short if we don't append these. 
    X.append(ones(n/2)) 
    T.append([j*(100./(N/n)) for i in xrange(n/2)]) 
    F.append(array((N/100.*linspace(0,n/2-1,n/2)/n))) 
     
    X,T,F=array(X),array(T),array(F) 
 
    for t in T[:,0]: 
        pylab.axvline(t,color='k')             
 
    for f in F[0,:]: 
        pylab.axhline(f,color='k') 
 
    if n==512: 
        pylab.ylabel(r'$Frequency \; (Hz)$') 
     
    pylab.ylim(ylim) 
    pylab.yticks([]) 
    pylab.xlim([0.,50.]) 
    pylab.xticks([]) 
     
    ylim-=10.24*1./8. 
 
pylab.xlabel(r'$Time \; (seconds)$') 
pylab.savefig('FourierWavelet_of_sweep_wavelet_grid.png', dpi=150) 
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3.A.19 Example Window Envelopes (Figure 2.3.1.1)  

 
import pylab 
 
from numpy import array,pi,exp,linspace,real,imag,cos 
 
j=1j 
 
N=4096 
t_0=-.5 
t_end=.5 
 
hamming = lambda N : 0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)) 
 
def g(n,w, sr=N/(t_end-t_0), window=hamming): 
    m=w*(float(n)/sr) 
    return window(n)*exp(j*2.*pi*(array(range(n))-n/2.)*m/n) 
 
nws=[(N,5.),(N,10.),(N,20.)] 
numplots=len(nws) 
tau=.15 
 
pylab.figure(figsize=(6,8)) 
 
for i,(n,w) in enumerate(nws): 
    pylab.subplot(numplots,1,i+1, frameon=False) 
    pylab.plot(linspace(-.5+tau,.5+tau,N),real(g(n,w)), 
               'b',label=r'$Re\{g_{\tau,\omega}(t)\}$') 
    pylab.plot(linspace(-.5+tau,.5+tau,N),imag(g(n,w)), 
               'r',label=r'$Im\{g_{\tau,\omega}(t)\}$') 
    pylab.text(tau+.05,1.2,r'$\omega=%.0f\;Hz$'%w) 
     
    pylab.axvline(0,color='k') 
    pylab.axhline(0,color='k') 
 
     
    pylab.axvline(tau,color='k', linestyle='--') 
    pylab.axvline(-.5+tau,color='k', linestyle='--') 
    pylab.axvline(.5+tau,color='k', linestyle='--') 
    pylab.ylim([-1.5,1.5]) 
    pylab.yticks([]) 
    pylab.xlim([tau-1.5,tau+1.]) 
    pylab.xticks([-.5+tau,tau,.5+tau], 
                 (r'$\tau-0.5$',r'$\tau$',r'$\tau+0.5$')) 
    pylab.text(tau+.8,0.05, 
               r'$t \; \rightarrow$') 
 
    if i==0: pylab.legend(loc=(0.,.6)) 
 
pylab.savefig('fixed_width_envelopes.png',dpi=150) 
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3.A.20  Cross correlation with linear sweep plot (Figure 2.3.2.1)  

 
import pylab 
from numpy import array,logspace, linspace, \ 
     log10,log,pi, sin,abs,zeros,ones,cos,exp,\ 
     real,imag,concatenate,conjugate,correlate,arange 
from scipy import fft,ifft 
from scipy.signal.waveforms import chirp 
from matplotlib.colors import LogNorm 
 
from numpy.random import normal 
 
j=1j 
 
def if_else(a,b,c): 
    if a: return b 
    return c 
 
def ticks2textuple(ticks,precision=2): 
    return tuple([r'$%s$'%str(round(tk,precision)) for tk in ticks]) 
 
def cross_correlate(g,h): 
    """g and h should both be even. len(h)>len(g)""" 
    M=len(h) 
    _h=concatenate((h[::-1],h,h[::-1])) 
    m=len(_h) 
    sym_pad_l=(len(_h)-len(g))/2 
    g=concatenate((zeros(sym_pad_l),g,zeros(sym_pad_l))) 
    cc=ifft(fft(conjugate(g))*fft(_h)) 
##    cc=ifft(fft(g*-1.)*fft(h)) 
     
    return concatenate((cc[sym_pad_l:],cc[:sym_pad_l])) 
 
def gauss(N,sd=0.5): 
    n=array(range(N)) 
    return exp(-.5*((n-(N-1.)/2.)/(sd*(N-1.)/2.))**2) 
 
rect = lambda N : ones(N) 
hamming = lambda N : 0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)) 
blackman_harris4 = lambda N: 0.3232153788877343                     \ 
              -0.4714921439576260*cos(2*pi/(N-1)*array(range(N)))   \ 
              +0.1755341299601972*cos(4*pi/(N-1)*array(range(N)))   \ 
              -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N))) \ 
              +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))) 
 
N=2**14 
t_end=10. 
 
def g(n,w, sr=N/t_end, window=gauss): 
    m=w*(float(n)/sr) 
    return window(n)*exp(j*2.*pi*(array(range(n))-n/2.)*m/n) 
 
t = linspace(0,t_end, N) 
x=chirp(t, f0 = 1., t1 = t_end, f1 = 10.) 
frq=3. 
 
n,w=2048,frq 
 
pylab.figure() 
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pylab.subplot(1,1,1) 
pylab.plot(t,x,'m', alpha=.3, label=r'$x(t)$') 
 
g_nw=g(n,w) 
cc=cross_correlate(g_nw,x) 
 
pylab.plot(t[:n]+7.00,real(g_nw)-8.0,'b', alpha=.5) 
pylab.plot(t[:n]+7.00,imag(g_nw)-8.0,'r', alpha=.5) 
pylab.text(5.75,-5.00,r'$Gaussian\; Window$') 
pylab.text(6.00,-6.10,r'$duration=1.25 s$') 
pylab.text(6.00,-7.10,r'$\omega=3 Hz$') 
 
pylab.plot(t,real(cc[len(t):2*len(t)])*(float(n)**-.5), 
           'b', alpha=.5, label=r'$Re\{(x\star g_{\tau,\omega})(t)\}$') 
pylab.plot(t,imag(cc[len(t):2*len(t)])*(float(n)**-.5), 
           'r', alpha=.5, label=r'$Im\{(x\star g_{\tau,\omega})(t)\}$') 
pylab.plot(t,abs(cc[len(t):2*len(t)])*(float(n)**-.5), 
           'k', alpha=.5, label=r'$|(x\star g_{\tau,\omega})(t)|$') 
 
pylab.legend() 
 
yticks=pylab.yticks()[0] 
pylab.yticks(yticks,ticks2textuple(yticks)) 
 
xticks=pylab.xticks()[0] 
pylab.xticks(xticks,ticks2textuple(xticks)) 
 
pylab.title(r'$x(t)= linear \; sweep \; from \; 1Hz \; to \; 10Hz\;^\dag$') 
pylab.text(5.5,-14.,r'$\dag \; sweep \; is \; symmetrically \; padded$') 
pylab.xlabel(r'$Time \; (seconds)$') 
pylab.savefig('cross_correlation_simple_sym_padding.png',dpi=150) 
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3.A.21  Varied Width Window Envelopes (Figure 2.3.1.3)  

 

import pylab 
 
from numpy import array,pi,exp,linspace,real,imag,cos 
 
j=1j 
 
N=4096 
t_0=-.5 
t_end=.5 
 
hamming = lambda N : 0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)) 
 
def g(n,w, sr=N/(t_end-t_0), window=hamming): 
    m=w*(float(n)/sr) 
    return window(n)*exp(j*2.*pi*(array(range(n))-n/2.)*m/n) 
 
nws=[(N,5.),(N/2,10.),(N/4,20.)] 
numplots=len(nws) 
tau=.15 
 
pylab.figure(figsize=(6,8)) 
 
for i,(n,w) in enumerate(nws): 
    pylab.subplot(numplots,1,i+1, frameon=False) 
    pylab.plot(linspace(-.5*(n/float(N))+tau, 
                         .5*(n/float(N))+tau,n), 
               real(g(n,w)), 
               'b',alpha=.6, 
               label=r'$Re\{g_{\tau,\omega}(t)\}$') 
    pylab.plot(linspace(-.5*(n/float(N))+tau, 
                         .5*(n/float(N))+tau,n), 
               imag(g(n,w)), 
               'r',alpha=.6, 
               label=r'$Im\{g_{\tau,\omega}(t)\}$') 
    if n==N: 
        pylab.text(tau+.05,1.2,r'$\omega=%.0f\;Hz$'%w) 
    else: 
        pylab.text(.5*(n/float(N))+tau+.05,1.2, 
                   r'$\omega=%.0f\;Hz$'%w) 
         
    pylab.axvline(0,color='k') 
    pylab.axhline(0,color='k') 
     
    pylab.axvline(tau,color='k', 
                  linestyle='--') 
    pylab.axvline(-.5*(n/float(N))+tau,color='k', 
                  linestyle='--') 
    pylab.axvline(.5*(n/float(N))+tau,color='k', 
                  linestyle='--') 
    pylab.ylim([-1.5,1.5]) 
    pylab.yticks([]) 
    pylab.xlim([tau-1.5,tau+1.]) 
    pylab.xticks([-.5*(n/float(N))+tau, 
                  tau, 
                  .5*(n/float(N))+tau], 
                 (r'$\tau-%.1f \;$'%(.5*(n/float(N))), 
                  r'$\tau$', 
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                  r'$\; \tau+%.1f$'%(.5*(n/float(N))))) 
    pylab.text(tau+.8,0.05, 
               r'$t \; \rightarrow$') 
 
    if i==0: pylab.legend(loc=(0.,.6)) 
 
pylab.savefig('multi_width_envelopes.png',dpi=150) 
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3.A.22 Continous Wavelet Transform of logsweep (Figure 2.3.3.1) 

 
cwt_logsweep.py 
 
# cwt_logsweep.py 
import pylab 
from numpy import array,logspace, linspace,log10, log, \ 
     pi, sin,abs,zeros,ones,cos,exp,mean 
from scipy import fft 
from scipy.signal.waveforms import chirp 
from matplotlib.colors import LogNorm 
 
from numpy.random import normal 
 
def if_else(a,b,c): 
    if a: return b 
    return c 
 
def ticks2textuple(ticks,precision=2): 
    return tuple([r'$%s$'%str(round(tk,precision)) for tk in ticks]) 
 
rect = lambda N : ones(N) 
hamming = lambda N : 0.54 - 0.46*cos((2*pi*array(range(N)))/(N-1)) 
blackman_harris4 = lambda N: 0.3232153788877343 \ 
              -0.4714921439576260*cos(2*pi/(N-1)*array(range(N))) \ 
              +0.1755341299601972*cos(4*pi/(N-1)*array(range(N))) \ 
              -2.849699010614994e-2*cos(6*pi/(N-1)*array(range(N))) \ 
              +1.261357088292677e-3*cos(8*pi/(N-1)*array(range(N))) 
 
def downsample(vector, factor): 
    """ 
    downsample(vector, factor): 
        Downsample (by averaging) a vector by an integer factor. 
    """ 
    if (len(vector) % factor): 
        print "Length of 'vector' %i is not divisible by 'factor'=%d!" \ 
              % (len(vector),factor) 
        return 0 
    vector.shape = (len(vector)/factor, factor) 
    return mean(vector, axis=1) 
 
N=2**14 
ns=[64,128,256,512,1024,2048,4096,8192] 
numplots=len(ns)+1 
 
t_end=100. 
t = linspace(0,t_end, N) 
x=chirp(t, f0 = 1., t1 = t_end, f1 = 10., method = 'log') 
fs=N/100. 
freqs=linspace(1./t_end,fs/2.,N) 
 
##import matplotlib.pyplot as plt 
import pycwt 
import numpy as np 
 
freqs=linspace(10./128.,10.,128) 
 
print len(t),len(freqs) 
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fc=6.4 
r=pycwt.cwt_f(x,freqs,fs,pycwt.Morlet(fc)) 
rr=r.real**2+r.imag**2 
print rr.shape 
d_rr=[] 
for rr_ in rr: 
    d_rr.append(downsample(rr_,16)) 
d_rr=array(d_rr) 
 
T,F = pylab.meshgrid(downsample(t[::],16), freqs) 
print d_rr.shape,T.shape,F.shape 
 
pylab.figure(figsize=(9,12)) 
pylab.subplot(2,1,1) 
pylab.plot(t,x) 
xticks=linspace(0.,100.,11) 
pylab.xticks(xticks,['' for i in xrange(12)]) 
##pylab.xlim(99,100) 
pylab.ylim([-1.25,1.25]) 
pylab.yticks([-1,-.5,0,.5,1.], 
             ticks2textuple([-1,-.5,0,.5,1.])) 
pylab.title(r'$x(t) = logsweep \; from \; 1Hz \; to \; 10Hz$') 
 
pylab.subplot(2,1,2) 
pylab.pcolor(T,F,d_rr,shading='flat') 
 
pylab.xticks(xticks,ticks2textuple(xticks)) 
yticks=pylab.yticks()[0] 
pylab.yticks(yticks,ticks2textuple(yticks)) 
 
pylab.title(r'$Continuous Wavelet Transform$') 
pylab.ylabel(r'$Frequency \; (Hz)$') 
pylab.xlabel(r'$Time \; (seconds)$') 
 
pylab.savefig('cwt_of_sweep_wavelet.png', dpi=150) 
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pycwt.py 
 
# from http://pypi.python.org/pypi/swan 
# 
# author: Alexey Brazhe <brazhe at gmail com> 
# 
# redistributed under GNU General public license (GPL) 
# 
# Continuous wavelet transfrom via Fourier transform 
# Collection of routines for wavelet transform via FFT algorithm 
 
 
#-- Some naming and other conventions -- 
# use f instead of omega wherever rational/possible 
# *_ft means Fourier transform 
 
#-- Some references -- 
# [1] Mallat, S.  A wavelet tour of signal processing 
# [2] Addison, Paul S. The illustrated wavelet transform handbook 
 
import numpy 
from numpy.fft import fft, ifft, fftfreq 
 
#try: 
#    from scipy.special import gamma 
#except: 
 
 
 
pi = numpy.pi 
 
class DOG: 
    """Derivative of Gaussian, general form""" 
    # Incomplete, as the general form of the mother wavelet 
    # would require symbolic differentiation. 
    # Should be enough for the CWT computation, though 
 
    def __init__(self, m = 1.): 
        self.order = m 
        self.fc = (m+.5)**.5 / (2*pi) 
     
    def psi_ft(self, f): 
        c = 1j**self.order / numpy.sqrt(gamma(self.order + .5)) #normalization 
        w = 2*pi*f 
        return c * w**self.order * numpy.exp(-.5*w**2) 
 
class Mexican_hat: 
    def __init__(self, sigma = 1.0): 
        self.sigma = sigma 
        self.fc = .5 * 2.5**.5 / pi 
    def psi_ft(self, f): 
        """Fourier transform of the Mexican hat wavelet""" 
        c = numpy.sqrt(8./3.) * pi**.25 * self.sigma**2.5  
        wsq = (2. * pi * f)**2. 
        return -c * wsq * numpy.exp(-.5 * wsq * self.sigma**2.) 
    def psi(self, tau): 
        """Mexian hat wavelet as described in [1]""" 
        xsq = (tau / self.sigma)**2. 
        # normalization constant from [1] 
        c = 2 * pi**-.25 / numpy.sqrt(3 * self.sigma)  
        return c * (1 - xsq) * numpy.exp(-.5 * xsq) 



204 

    def set_f0(self, f0): 
        pass 
 
class Morlet: 
    def __init__(self, f0 = 1.5): 
        self.set_f0(f0) 
    def psi_ft(self, f): 
        """ 
        Fourier transform of the approximate Morlet wavelet 
        f0 should be more than 0.8 for this function to be correct. 
        """ 
        return (pi**-.25) * (2.**.5) * \ 
               numpy.exp(-.5 * (2. * pi * (f - self.fc))**2.) 
    def set_f0(self, f0): 
        self.f0 = f0 
        self.fc = f0 
 
 
def cwt_a(signal, scales, sampling_scale = 1.0, wavelet=Mexican_hat()): 
    """ Continuous wavelet transform via fft. Scales version.  """ 
    # FFT of the signal 
    signal_ft = fft(signal) 
 
    # create the matrix beforehand 
    W = numpy.zeros((len(scales), len(signal)),'complex') 
 
    # FFT frequencies 
    ftfreqs = fftfreq(len(signal), sampling_scale)        
 
    # Now fill in the matrix 
    for n,s in enumerate(scales): 
        psi_ft_bar = numpy.conjugate(wavelet.psi_ft(s * ftfreqs)) 
        W[n,:] = (s**.5) * ifft(signal_ft * psi_ft_bar) 
    return W 
 
 
def cwt_f(signal, freqs, Fs=1.0, wavelet = Morlet()): 
    """Continuous wavelet transform -- frequencies version""" 
    scales = wavelet.fc/freqs 
    dt = 1./Fs 
    return cwt_a(signal, scales, dt, wavelet) 
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3.A.23  Haar Wavelet (Figure 2.4.2) 

 
import numpy as np 
import pylab 
import math 
 
pylab.figure(figsize=(6,8)) 
pylab.subplots_adjust(bottom=.05, top=.95, hspace=.1) 
 
# non-scaled and non-translated 
pylab.subplot(2,1,1) 
pylab.plot([-0.5, 0.0], [ 0.0,  0.0], 'b') 
pylab.plot([ 0.0, 0.5], [ 1.0,  1.0], 'b') 
pylab.plot([ 0.5, 1.0], [-1.0, -1.0], 'b') 
pylab.plot([ 1.0, 1.5], [ 0.0,  0.0], 'b') 
pylab.plot([ 0.0, 0.0], [ 0.0,  1.0], 'b--') 
pylab.plot([ 0.5, 0.5], [-1.0,  1.0], 'b--') 
pylab.plot([ 1.0, 1.0], [-1.0,  0.0], 'b--') 
pylab.scatter([0.0, 0.5, 1.0], [1.0, -1.0,  0.0], s=30., 
              marker='o', edgecolor='b', facecolor='b') 
pylab.scatter([0.0, 0.5, 1.0], [0.0,  1.0, -1.0], s=30., 
              marker='o', edgecolor='b', facecolor='w', zorder=3) 
 
pylab.ylim([-2.25, 2.25]) 
pylab.xticks(np.linspace(0,1,3), 
             [r'' for x in np.linspace(0,1,3)]) 
pylab.yticks(np.linspace(-2,2,5), 
             [r'$%.1f$'%x for x in np.linspace(-2,2,5)]) 
pylab.title(r'$s=1.0, \; \tau=1.0$') 
 
# scaled and translated 
pylab.subplot(2,1,2) 
pylab.plot([-0.5, 0.5], [ 0.0,  0.0], 'b') 
pylab.plot([ 0.5, 0.75], [ math.sqrt(2),  math.sqrt(2)], 'b') 
pylab.plot([ 0.75, 1.0], [-math.sqrt(2), -math.sqrt(2)], 'b') 
pylab.plot([ 1.0, 1.5], [ 0.0,  0.0], 'b') 
pylab.plot([ 0.5, 0.5], [ 0.0,  math.sqrt(2)], 'b--') 
pylab.plot([ 0.75, 0.75], [-math.sqrt(2),  math.sqrt(2)], 'b--') 
pylab.plot([ 1.0, 1.0], [-math.sqrt(2),  0.0], 'b--') 
pylab.scatter([0.5, 0.75, 1.0], [math.sqrt(2), -math.sqrt(2),  0.0], s=30., 
              marker='o', edgecolor='b', facecolor='b') 
pylab.scatter([0.5, 0.75, 1.0], [0.0,  math.sqrt(2), -math.sqrt(2)], s=30., 
              marker='o', edgecolor='b', facecolor='w', zorder=3) 
 
pylab.ylim([-2.25, 2.25]) 
pylab.xticks(np.linspace(0,1,3), 
             [r'$%.1f$'%x for x in np.linspace(0,1,3)]) 
pylab.yticks(np.linspace(-2,2,5), 
             [r'$%.1f$'%x for x in np.linspace(-2,2,5)]) 
pylab.title(r'$s=2.0, \; \tau=0.5$') 
 
# save and close 
pylab.savefig('haar_simple_w_orthogonal.png', dpi=300) 
pylab.close() 
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3.A.24  Haar Wavelet (Figure 2.4.3) 

import sys 
if sys.version_info[0] == 2: 
    _strobj = basestring 
elif sys.version_info[0] == 3: 
    _strobj = str 
 
import pylab 
from numpy.random import random 
from numpy import linspace, sin,pi,cos,array 
 
import pywt 
 
def flatten(x): 
    """_flatten(sequence) -> list 
 
    Returns a single, flat list which contains all elements retrieved 
    from the sequence and all recursively contained sub-sequences 
    (iterables). 
 
    Examples: 
    >>> [1, 2, [3,4], (5,6)] 
    [1, 2, [3, 4], (5, 6)] 
    >>> _flatten([[[1,2,3], (42,None)], [4,5], [6], 7, MyVector(8,9,10)]) 
    [1, 2, 3, 42, None, 4, 5, 6, 7, 8, 9, 10]""" 
 
    result = [] 
    for el in x: 
        #if isinstance(el, (list, tuple)): 
        if hasattr(el, "__iter__") and not isinstance(el, _strobj): 
            result.extend(flatten(el)) 
        else: 
            result.append(el) 
    return result 
 
n=128 
x=linspace(-6*pi,6*pi,n) 
phases = random(8) 
 
f = lambda x : .2*sin(.245*x+phases[0]*2*pi) + \ 
               .2*sin(.434*x+phases[1]*2*pi) + \ 
               .2*sin(.745*x+phases[2]*2*pi) + \ 
               .2*sin(1.53*x+phases[3]*2*pi) + \ 
               .2*sin(2.73*x+phases[4]*2*pi) + \ 
               .2*sin(3.30*x+phases[5]*2*pi) + \ 
               .2*sin(5.60*x+phases[6]*2*pi) + \ 
               .2*sin(9.10*x+phases[7]*2*pi) 
 
y = f(x) 
 
coeffs = pywt.wavedec(y, 'haar') 
cA = coeffs[0] 
cDs = coeffs[1:] 
 
for c in coeffs: 
    print(len(c)) 
 
pylab.figure(figsize=(9,12)) 
pylab.subplots_adjust(bottom=.05, top=.95, hspace=.6) 
yticks = [-2,-1,0,1,2] 
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pylab.subplot(len(coeffs),1,1) 
pylab.plot(linspace(0,1,n*10), f(linspace(-6*pi,6*pi,n*10))) 
pylab.xlim([0,1]) 
pylab.xticks([0,.25,.5,.75,1], [r'$%.2f$'%x for x in [0,.25,.5,.75,1]]) 
pylab.ylim([-2.25, 2.25]) 
pylab.yticks(yticks, [r'$%i$'%x for x in yticks]) 
pylab.title(r'$f(x)$') 
 
c_ = [] 
for i,cD in enumerate(coeffs): 
    c_.append(cD) 
    pylab.subplot(len(coeffs),1,i+1) 
    if i > 0: 
        r = pywt.waverec(c_,'haar')     
        pylab.plot(flatten([[v,v] for v in range(len(r)+1)])[1:-1], 
                   flatten([[v,v] for v in r]), 'b') 
        pylab.xlim([0,len(r)]) 
        if len(r) == 2: 
            xticks = [0,1,2] 
        else: 
            xticks = linspace(0,len(r),5) 
        pylab.xticks(xticks, [r'$%i$'%x for x in xticks])     
        pylab.ylim([-2.25, 2.25]) 
        pylab.yticks(yticks, [r'$%i$'%x for x in yticks]) 
        pylab.title(r'$\mathrm{Level} \, %i \, \mathrm{approximation}$'%(i)) 
     
pylab.savefig('haar_dwt.png') 
pylab.close() 
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 Machine Learning Chapter 4:

Physiological signals contain information relevant to cognitive workload (see Chapter 2). 

However, these signals contain large amounts of noise and are often non-linearly correlated with 

workload estimates.  Much is unknown about how exactly physiological measures represent 

cognitive states.  One possibility for identifying how they relate is to use machine learning 

techniques. Machine learning is a sub-domain of artificial intelligence related to developing and 

understanding algorithms that learn the characteristics in a dataset without having to explicitly 

program the characteristics in advance (Samuel, 1959). The aim here is to provide an introduction 

to machine learning to a naïve audience.  

Machine learning algorithms can be generally classified into three categories based on the 

information provided to the algorithm during training. Supervised learners are given training data 

with the desired output.  Reinforcement learners are given the training data, but instead of being 

given the correct output they are just given quantitative feedback regarding the efficacy of an 

output leading to a desired state. Lastly, unsupervised learners are just given data and are left to 

their own devices to figure out relationships in the data (clustering) or how actions map to changes 

in their environments (Russell & Norvig, 2003).  

The type of learner used often depends on the particular problem and the available 

information. If an artificial agent is being constructed to replace a subject matter expertise and the 

correct output for a set of inputs is known then a supervised learner can be used. In other 

circumstances one might not know the correct output, but can determine whether a given output 

leads to making the problem better or making the problem worse (Russell & Norvig, 2003). For 

example, if a car driving agent crashes we can tell the agent they did something wrong without 

knowing exactly what they should have done differently. In contexts where one wishes to identify 

hidden structures in datasets or develop theoretical understanding of processes unsupervised 

learners may be appropriate. 
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One of the interesting lessons of machine learning has been that no known technique has 

shown to be superior in every circumstance. Much of the science of artificial intelligence is 

developing a theoretical understanding of constraints that yield optimal performance.  Here it is 

important to define optimal as referring to finding the best solution and not how long it takes to 

find a solution (Russell & Norvig, 2003). As the theoretical underpinnings of various machine 

learning techniques improves the attributes that make a problem difficult will hopefully be able to 

formalize. While there is a trend to develop more general problem solvers that do not require 

tailoring to the specific circumstances,  it is sometimes only possible to say technique X with 

parameters A, B, and C performed better than technique Y with parameters D and E on problem Z 

(Eiben & Smith, 2003).  

In addition to performance, the time and space complexity of various techniques is also 

important to consider.  The time complexity of an algorithm describes the number iterations 

required to solve a problem as a function of the number inputs. The space complexity of an 

algorithm describes the amount of information that needs to be stored while the algorithm is 

running. With some problems finding an okay solution in a reasonable amount of time is better than 

waiting a really long time for the best solution. Problems often exhibit tradeoffs between space and 

time complexity. Space complexity is often more of a limiting factor than time complexity. Giving an 

algorithm a magnitude order more time is often feasible. Waiting days for solutions rather than 

minutes may be acceptable whereas adding a magnitude order more memory to a system is cost 

prohibitive (Russell & Norvig, 2003).  

When encountering new problems, it is likely not possible to know what technique will 

have the best performance.  In such cases, the best route may be to implement and compare a 

variety of approaches.  Some approaches are simple while others can be quite complicated. Some 

may have low time and space complexity, while others have high time, high space, or high time and 
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space complexity.  Sections of this chapter will be devoted to various techniques. Before we get to 

the details it might be helpful to briefly introduce these techniques.  

4.1 Linear discriminant analysis 

One of the most basic, and more common, approaches is linear discriminate analysis (LDA). 

LDA weights and sums variables to form predictions, the magnitudes of the weights are indicative 

their importance in the model.  As the name implies the classification is linear. More sophisticated 

algorithms may offer better performance but tradeoff in complexity and human interpretability. For 

example Algorithms like random-forests and symbolic regression build decision-trees that due to 

their size and complexity can be difficult for humans to interpret. Large branches of the decision 

trees may offer no real value to the outcome or evaluate to a constant. Secondly, any advantage 

offered by non-linear classifiers can only be identified through comparison to linear classifiers. To 

illustrate the problem consider the following function: 

 (   )                  (     )              (     ) 

Multiple regression could capture the intercept and linear contribution of x and y but will fail to 

capture the cyclical contributions of the trigonometric terms. Over a restricted domain (for 

arguments sake   (   )   (   )) this is especially problematic as the cyclical components 

contribute to the majority of the functions variability. In contrast a symbolic regressor with 

trigonometric non-terminals would be capable of capturing the full variability of the model.   

 A related approach is to try and make difficult problems linearly separable by projecting the 

predictor variables into higher dimensional spaces. Support Vector Machines  (SVM) function as 

such. The support vectors are vectors that optimally segregate training case from one another.  

Decomposing a time signal into time-frequency components, also serves to project a predictor 

variables onto higher dimensional spaces. With SVM the basis is dependent on the criterion 

variable, with wavelets the basis is independent from the criterion. 
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4.2  Decision Trees 

 A decision tree is a simple yet highly effective algorithm for making a decision given 

categorical or continuous attributes or for classifying attributes. Decision trees can also be used to 

learn continuous functions. Their moniker is indicative of how various properties of attributes are 

represented as branches. A decision is formed by evaluating the root attribute and following the 

succeeding branches until a determination is made. One of the niceties of decision trees is that their 

representations can be quite natural for humans to follow (at least when they are not too big). 

Several methods exist to train decision trees. The method most commonly associated with decision 

trees is based on information theory. The root attribute is selected as the attribute that best 

segregates training cases and subsequent branches are selected in a similar manner. The 

information theoretic approach is considered greedy in that it does not look more than one step 

ahead and is consequently non-optimal. Even though there is no guarantee of optimal the heuristic 

has shown to be empirically useful. One of the weaknesses of decision trees is that they can be 

prone to overfitting with noisy datasets and datasets with several irrelevant attributes. Branches 

based on irrelevant attributes will be added to the tree to classify all the cases in the training data 

regardless of how well they generalize. Significance testing is often used to try and sort out 

meaningful attributes from irrelevant attributes (χ2 pruning). 

4.3 Adaboost 

 A decision tree generated using an information theoretic approach can be conceptualized as 

one of many possible hypotheses. The accuracy of an outcome rests solely on that single hypothesis. 

Ensemble learners attempt to develop multiple hypotheses that operate in conjunction with one 

another. The combined decision of a group of ensemble learners is often better than any single 

estimate. The notion is similar to “the wisdom of the crowds” phenomena first observed by Galton 

in 1907. Galton asked a group of nearly 800 experts and non-experts to guess the weight of a 
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slaughtered and dressed oxen. Although individual estimates were often far off the mark the 

median of the estimates was remarkably close to the actual weight (1198 lb. actual; 1207 lb. 

median) (Galton, 1907).  Adaboost or Adaptive Boosting refers to a meta-algorithm for training an 

ensemble learner. The creators of Adaboost, (Freund & Schapire, 1999; Freund, 1995), present 

Adaboost using a rather intriguing horse racing analogy. Imagine a Gambler wishes to construct a 

computer program that can predict the fastest horse. The Gambler proceeds by asking his fellow 

Gamblers what sort of rules-of-thumb they use and comes up with a list of possible criteria like the 

horse that has recently won the most number of races, or the horse with the most favored odds. 

Each criteria by itself is weak, it may be better than chance but would hardly make the Gambler rich 

and some of the rules-of-thumb are more accurate than others. However if the individual rules-of-

thumb are appropriately weighted and combined a fairly accurate classifier may be obtained. 

Adaboost is the component that figures out the appropriate weights. 

4.4 Random Forests 

 Random forests are another type of ensemble learner developed by Brieman and Cutler 

(Brieman, 2001; Liaw, 2013) and based on work by Ho (1995; 1998)(1995; 1998) and   Amit and 

Geman (1997). It incorporates bootstrap aggregation or bagging with ensemble learners each 

based on a random subset of features. Bagging resamples cases with replacement to reduce 

variance in training cases and reduce overfitting. The bagged samples are used to train a set of 

decision trees (hence the term random forest). Each tree is has a random subset of features. The 

number of features in this subset is treated as a tuning parameter and is typically small compared 

to the total number of features. As with decision trees the feature that best segregates the training 

set are choosen. The trees in the forest vote to form the overall classification. 
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Because biological signals often represent both linear and non-linear underlying processes 

symbolic regression may provide better performance compared to the traditional approach of 

linear discriminant analysis (LDA). 

4.5 Genetic Programming 

Playing off of the idiom “everything but the kitchen sink” genetic programming is perhaps 

most easily described as a “kitchen sink approach.”  It is capable of testing literally hundreds of 

thousands of models against one another in a matter of hours. This provides the benefit of not 

having to postulate relationships between variables based on theory. It is highly possible that it will 

create models which do not accurately model the process of human resource utilization, but still 

reliable predict workload at a structural level. Despite this caveat the models obtained from GP may 

also provide theoretical insight into cognitive workload. For example with early variations of ICA all 

pupil diameter wavelet components contributed equally to the final assessment of workload. The 

work by Nakayama and Shimizu (2002; 2004) and Nakayama & Katsukura (2007) suggests some of 

these components contain noise and not information related to mental workload. Genetic 

programming is capable of sorting out which wavelet components contain information relevant to 

workload and which components reflect noise. Wavelet coefficients that are used more often are 

likely to be more informative to cognitive workload.  

This chapter is intended to provide a conceptual overview of machine learning to a general 

audience. Specifics relevant to the exact implementations can be found in the experiment write-ups 

and Appendix A.  
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Appendix 4.A Genetic Programming Implementation Details 

4.A.1 Terminals and Non-Terminals  

 Symbolic regression represents programs as tree structures. The branches or non-

terminals belong to a set of mathematical operators. Here the non-terminal set consisted of 

addition (of 2 arity), subtraction (2), multiplication (2), division  (2), power (2), absolute value (2), 

square root (1), exponential (1), sin (1), cos (1), tan (1), and if-less-than (4). All operators were 

“protected” by checking to see if the operator overflowed, errored (divide by zero), or returned 

something other than a number. An overflow refers to when a number exceeds the range in which it 

can be represented by the IEEE 32 bit floating point standard. When any of the proceeding occurred 

the individual is given a fitness value of 1, which is the worst possible fitness value an individual 

can take with Keizer’s scaled squared error. This pressures the model to select individuals which at 

least evaluate, but has the disadvantage of eliminating more solutions that might be reasonable 

within restricted parameter spaces.  

The leaves of the tree structure are refered to as terminals. Here the terminal set consisted 

of scalars of pi, -100, -10, -1, 0, 1, 10, and 100; as well as the vectors holding raw skin conductance, 

raw pupil diameter, the 9 skin conductance wavelet coefficients, and the 9 pupil diameter 

coefficients.  
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4.A.2 ALPS-SS Algorithm 

The model can be grossly described as a steady-state age-layered population (ALPS) genetic 

program (Hornby, 2009). An age layered population sacrifices speed for “robustness.” The layers 

only allow individuals to compete with other individuals their layer and the layer younger than 

themselves. When individuals reach their maximum age they must have a better fitness than one of 

the individuals in the layer above them to move up. If they don’t then they are deleted making room 

for individuals to move up. Ideally, the “diversity” of the population stays high which allows for 

ALPS to search out multiple optima without quickly converging. Individuals in the bottom 

(youngest) layer are replaced by freshly generated random individuals whose age starts at 1. New 

individuals generated through crossover and/or mutation take the age of their youngest parent. 

The top layer has no maximum age and individuals stay until they are replaced by a better 

individual. Hornby suggests using a Fibonacci progression for defining maximum ages as well as the 

formula for calculating age. Hornby typically uses ten layers with 70 to 100 individuals.  

Implementing a steady-state ALPS surprising isn’t that much more difficult than 

implementing a vanilla GP algorithm. The pseudo-code below illustrates the basic flow of the 

algorithm. As the code suggests most of the work is actually accomplished elsewhere in the tree 

objects which support symbolic regression.  

function  TRYMOVEUP(layers, j, k) 

description: Tries to move the individual in layers[j][k] with an individual with poorer fitness in layers[j+1] if 

such an individual exists. Either way it deletes layers[j][k] before returning 

 

function  ALPS-SS() 

 local variables: layers, a list of lists containing the individuals in each age layer   

     num_layers, an integer specifying the number of layers in layers 

     imax, the number of iterations to evolve solution 

 

   layers ← initialize each layer with random individuals 

 

   i ← 0 

   while i < imax do 

 

    for  j = 0;  j < num_layers; j++ do 

     parent1 ← using tournament select from layers[j] ( and layers[j-1] if j != 0 ) 

     parent2 ← using tournament select from layers[j] ( and layers[j-1] if j != 0 ) 
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     new1, new2 ← CROSSOVER(parent1, parent2) 

     new1.MUTATE() 

     new2.MUTATE() 

     new1. SETFITNESS() 

     new2.SETFITNESS() 

     layers[j].REPLACEWORSTIND(new1) 

     layers[j].REPLACEWORSTIND(new2) 

 

     i ← i  + 1 

     for  k = 0;  k < LENGTH(layers[j]); k++ do 

      layers[j][k].UPDATEAGE() 

       

      if layers[j][k].TOOOLD() do 

       TRYMOVEUP(j, k)  

 

   return the best individual in layers 
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4.A.3 Initial Population 

The GP utilized a technique known as Age Layered Populations to increase the robustness of 

search and as a preventative measure against premature convergence (Hornby, 2009). Each initial 

population consisted of ten layers of 100 random “full” trees of depths of randomly selected depths 

of 3,  4, and 5. The term full describes trees in which all the terminals are at the maximum depth of 

the tree. They are built using the following class method: 

    def __full__(self,node, N): 
        if node.depth==N: 
            # randomly pick terminal 
            node.add_child(terminals[randint(len(terminals))]) 
        else: 
            # randomly pick non-terminal 
            operator,arity = nonterminals[randint(len(nonterminals))] 
            node.add_child(operator) 
            for i in range(arity): 
                self.__full__(node.children[-1],N) 
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4.A.4 Scaled Mean Squared Calculation 

The target values are normalized such that ∑   
   . Since    is upper bounded by  

 
∑   

  

(Keizer, 2004)after normalizing the new upper bound of the fitness measure becomes 1. The  

Because the upper bound is well defined it makes adding parsimony pressure much simpler. A 

parsimony penalty of .0005 per node was used for all simulations described in Experiment 3. 

 
def set_fitness(self, parsimony_penalty): 
        Y=self.evaluate()     # The predicted values 
        T=self.Targets        # The unscaled target values 
        N=self.N              # The length of Y, T, and t 
         
        t=deepcopy(T)         # The scaled target values 
        t-=numpy.mean(t)      # set mean(t) = 0 
        t=sqrt(N)*(t)/norm(t) # set sum(t**2) = N 
                           
        try: 
            if numpy.isnan(Y).any() or numpy.isinf(Y).any(): 
                raise Exception 
 
            y = Y-numpy.mean(Y) 
            v = 1./N*numpy.sum(y**2) 
            w = 1./math.sqrt(v) 
            r = 1./N*numpy.sum(y*w*t) 
             
            self.fitness = 1.-r**2+len(self)*parsimony_penalty 
 
        except: 
            self.fitness=1.+j*len(self)*parsimony_penalty  



219 

4.A.5 Crossover  

My crossover function applies “standard” node swapping using the 90/10 rule. The 90/10 

rule dictates that 90% of the time a non-terminal will be chosen for crossover and only 10% of the 

time a terminal will be chosen. This is accomplished by building a list of all the terminal nodes and a 

list of all the non-terminal nodes. From there selecting a random non-terminal with a probability of 

90% or a random terminal with a probability of 10% is straightforward. The “try” and “except” 

statements below are for the case when the tree contains no non-terminals which can occasionally 

occur with the grow mode.  

 
    def crossover(self,other): 
        # Make copies of self, and other 
        new1,new2=deepcopy(self),deepcopy(other) 
 
        # Select nodes for crossover using 90 / 10 rule 
        # each individual has a list of terminals and a 
        # list of non-terminals 
        try: 
            if random() < .9 : 
                node1 = new1.nonterms[randint(len(new1.nonterms))] 
            else: 
                node1 = new1.terms[randint(len(new1.terms))] 
        except: 
            node1 = new1.root 
 
        try: 
            if random() < .9: 
                node2 = new2.nonterms[randint(len(new2.nonterms))] 
            else: 
                node2 = new2.terms[randint(len(new2.terms))] 
        except: 
            node2 = new2.root 
 
        # Swap nodes 
        tmp1,tmp2 = deepcopy(node1),deepcopy(node2) 
 
        node1.data,node2.data = tmp2.data,tmp1.data 
        node1.children,node2.children = tmp2.children,tmp1.children 
 
        # rebuld terms and nonterms node lists 
        new1.build_typelists() 
        new2.build_typelists() 
 
        # return new individuals 
        return new1,new2 
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4.A.6 Mutation 

A simple point mutation is performed by first selecting a random node. If the randomly 

chosen node is a constant terminal (a scalar) mutation is performed with probability of .1 (10%). If 

the randomly chosen node is a non-terminal or a non-constant terminal (one of the data columns) 

then mutation is performed with a probability of .01 (1%). 

If a constant is selected for mutation the constant is mutated by a maximum of +/- 5% of its 

absolute value. If a non-constant terminal is selected it is swapped with different randomly selected 

non-constant terminal. If a non-terminal is chosen it is swapped with a different randomly selected 

non-terminal with the same arity.  

Since iflte (if-less-than-or-equal-to) is the only non-terminal with an arity of four iflte nodes 

are not selected for mutation. The mutation algorithm will reselect until a node not containing iflte 

is chosen. Future analyses will experiment with using other non-terminals of 4-arity (if greater 

than, if equal to, etc.). 

 

    def mutate(self, c_rate=.1, o_rate=.01): 
        # c_rate defines mutation rate for constants 
        # o_rate defines mutation rate for all other terminals 
        # and non-terminals 
         
        # Pick random node for crossover 
        nodelist = self.terms+self.nonterms 
        node = nodelist[randint(len(nodelist))] 
 
        while node.data=='iflte': 
            node = nodelist[randint(len(nodelist))] 
 
        if isfloat(node.data) and random() < c_rate: 
            # node is a constant scalar terminal 
            node.data=str(float(node.data)+random()-.5) 
             
        elif random() < o_rate: 
            arity1 = [op for (op,arity) in nonterminals if arity==1] 
            arity2 = [op for (op,arity) in nonterminals if arity==2] 
             
            if node.is_terminal(): 
                # node is non-constant terminal 
                node.data = ['Xs[%i]'%i for i,X in enumerate(Xs)  
                             if 'Xs[%i]'%i != node.data][randint(len(Xs)-1)] 
                 
            elif node.data in arity2: 
                # node is a non-terminal of arity 2 
                node.data = [op for op in arity2  
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                             if op != node.data][randint(len(arity2)-1)] 
                 
            elif node.data in arity1: 
                # node is a non-terminal of arity 1 
                node.data = [op for op in arity1  
                             if op != node.data][randint(len(arity1)-1)] 
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 Empirical Evaluation Chapter 5:

Having now reviewed the finer details of spectral analysis and genetic programming I now 

turn to the application of these techniques to assessing mental workload from physiological 

measures.  Here I present the results of series of seven experiments that tested the application of 

novel analytical tools for using physiological measures to assess mental workload in a variety of 

tasks.  Experiment 1 simulated a process control task in which faults were introduced to induce 

changes in task difficulty.  Experiment 2 examined a two-dimensional visual-manual compensatory 

tracking task which manipulated task difficulty by instantaneously and repeatedly reversing the 

directional mappings of the control.  Neither of these experiments produced conclusive results, 

however I include them here illustrate how the experimental manipulations for subsequent 

experiments evolved and  to provide the most accurate representation of the work. As skeptical 

evaluators it is appropriate to ask “Are the results obtained here a true reflection of the efficacy of 

workload measures, or are they an illusion based on the right combination of experimental 

parameters, participants, the evaluation methodology, and chance?”  By providing results from the 

earliest, and in hindsight, flawed empirical investigations I hope to help the reader answer this 

question for themselves and to learn from my mistakes.  Readers are welcome, and perhaps even 

encouraged, to start with Experiment 3: Pursuit Tracking  (Normal vs. Rotated). Experiments 1 and 

2 are less central to this dissertation. 

The tasks manipulations used in Experiments 3-7 benefitted from the lessons learned in 

Experiments 1-2.  Experiment 3 used a two-dimensional tracking task similar to Experiment 2, but 

manipulated task difficulty by instantaneously rotating the control mappings 90 degrees, rather 

than reversing them.  The results clearly demonstrated that analysis of pupil diameter and skin 

conductance with genetic programming techniques can produce sensitive workload indicators for 

large, instantaneous changes in task difficulty.  To determine whether these results generalize to 

less extreme and slower changes in task difficulty, Experiments 5-7 assessed these indicators in the 
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context of a critical instability tracking task (McDonnell & Jex, 1967; McRuer & Graham, 1965) 

whose difficulty could be varied continuously over time.  Experiments 5 and 6 aimed to validate the 

effect of my manipulation of task difficulty on mental workload, measured subjectively (Exp. 5) and 

using a secondary task (Exp. 6).  These experiments found a clear relationship between task 

difficulty and mental workload, assessed either subjectively or with a secondary task.  Based on this 

validation, Experiment 7 used the same critical instability task to examine whether physiological 

indicators are sensitive to subtle changes in task difficulty, and whether they might also serve as 

reliable leading indicators of poor task performance.  

5.1 Experiment 1: Process Control Simulator (DURESSJ) 

My first attempt at assessing workload from pupil diameter and skin conductance used a 

process-control simulation requiring the participants to monitor and manipulate a system of 

pumps, valves, and heaters to met changing flow and temperature demands (Lew, Dyre, Werner, 

Wotring, & Tran, 2008).  The process control task was chosen for its ecological validity to control 

monitoring tasks. At the time I was aware of Marshall’s work with wavelet decomposition, and 

analyzed the time frequency domain using short-time Fourier transformations with rectangular 

windowing.  

 Method 5.1.1

5.1.1.1 Participants. Four university students participated in this experiment.  All had 

normal or corrected to normal Snellen visual acuity (20/30 or better). Participant 1, one of the 

experimenters, had detailed knowledge of the experiments hypothesis and methods but did not 

know when the faults occured, while the others had only limited knowledge of the experimental 

measures and manipulations. All participants were ethically treated in accordance with 

experimental protocols approved by the University of Idaho’s Human Assurance Committee (see 

Appendices 5.1.A – 5.1.C). 
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5.1.1.2 Stimuli and Apparatus. Participants operated the DURESS process-control 

simulation  (Cosentino & Ross, 1999; Vincente & Pawlak, 1994). The simulator modeled a system of 

two pumps, eight valves, two aquifers, and two heaters. Water flowed from a common source 

through the pumps, valves, aquifers, and heaters to two outputs (see Figure 5.1.1The flow and 

temperature of these outputs changed throughout the duration of the trial. The participants were 

tasked with matching changing flow and temperature demands. To manipulate workload, each 

participant was given an identical set of plant failures and events at predefined instances (see Table 

5.1.1).  

The simulation was displayed on a 60 inch rear-projection monitor at a spatial resolution of 

1280 x 1024 and a temporal resolution of 60 Hz with a viewing angle of 45° X 33.75°. The display 

was presented in a darkened room with the participant sitting 1.5m from the display. The 

participants used a standard optical mouse with their right hand to control the elements of the 

DURESS simulation.  

A model ASL5000 head-mounted eye/head tracker was used to measure gaze direction, 

pupil diameter, and blink rate at 60 Hz (see Figure 5.1.2).  Skin conductance was measured at a 

temporal resolution of 256 Hz with a Thought Technologies ProComp5 Infiniti encoder using two 

finger-mounted sensors placed around the index and ring fingers of the left hand.  Participants 

were instructed to leave their left hand in a stationary position during the course of the trial.   

5.1.1.3 Procedure. Each participant received a short tutorial explaining goals, controls, and 

caveats of the DURESS program.  Participants were then given a 10-minute DURESS practice 

session with coaching from the experimenter without the eye/head tracking or SC monitor 

attached.   

After training, the eye/head tracker and GSR devices were mounted and calibrated to the 

individual.  The participants then operated and experienced the DURESS fault trial which ended 

after 15 minutes (900 s). All data analysis and visualization was performed using Python, with the   
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Figure 5.1.1 User Interface for the DURESS Simulator  
The participant is tasked with matching flow and temperature demands for two 
outputs as well as reservoir levels. PA and PB are pumps, VA, VB, VA1, VA2, VB1, and 
VB2 control the flow of water to the aquifers. Participants are instructed they should 
not let the aquifers run dry or overflow. VO1 and VO2 are used to set the flow to 
demand. H1 and H2 set the heater levels for the aquifers. The green regions show the 
operator the requested flow and temperature demand. 
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Figure 5.1.2 Participants wore the head-mounted eye tracker shown below. Due to the weight and 
design of the unit it becomes moderately uncomfortable after a period of about 20 
minutes. For this reason I tried to design all the experiments so that participants 
would not have to wear the tracker for longer than 20 minutes. 
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NumPy, matplotlib, and SciPy packages. Skin conductance, pupil diameter, and duress measures 

where linearly interpolated to a sampling rate of 60 Hz (the slowest of original sampling rates). 

Additionally, blinks were removed from the pupil diameter data by holding the last non-blink value 

during the duration of the blink, and data below three standard deviations of the mean where 

deemed as unreliable due to measurement error and removed (less than 0.1% of data, typically 

indicate a partially blink). More complex treatments of blinks exist but they typically do not 

significantly alter the power content below .5 Hz according to Nakayama and Shimizu (2004). 

Examining the data in the frequency domain provides a mechanism by which changes in 

physiological responses to events in a complex task can be estimated on all time scales at once, in 

effect a “brute force” approach to the problem of determining the appropriate time scale.  To do this 

I first transform short samples of the time-series measures into the frequency domain.  The time-

series “windows” defining these samples may overlap to provide a more continuous measure of the 

change in the spectral characteristics of the measures. 

SC and pupil diameter were decomposed using short time Fourier transform (STFT) with 

time windows of approximately 34 s (2048 samples) with each window overlapping its neighbor by 

50%. For each time slice the power spectrum was estimated using a fast Fourier transform (FFT) 

algorithm. Finally, spectrograms (plots depicting power amplitudes with color, time on the x-axis 

and frequency on the y-axis) were created.  The spectrographs make low frequency variations in 

the time domain easily distinguishable from noise. This treatment is especially useful for long trial 

durations (15 min.) where distinguishing nuances in time domain plots is not possible due to how 

the time axis gets compressed. For this experiment no inferential statistics were conducted. The 

plots were more or less visually correlated with the DURESS faults and performance error.  

  Results.  5.1.2

Figures 5.1.3.- 5.1.7. depict the physiological measures and performance of the four 

participants over time. For each the top of panel shows raw SC, and the third panel shows   
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Figure 5.1.3 Experiment 1, Participant 1. Physiological measures and performance of the four 
participants over time. For each the top of panel shows raw SC, and the third panel 
shows interpolated pupil diameter, and the vertical magenta lines of the bottom 
panel show when participants made changes to the DURESS simulation. 

 
  

Time(s) 
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Figure 5.1.4 Experiment 1, Participant 2. 

 
  

Time(s) 
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Figure 5.1.5 Experiment 1, Participant 3. 

 
  

Time(s) 
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Figure 5.1.6 Experiment 1, Participant 4. 

 
  

Time(s) 
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interpolated pupil diameter, and the vertical magenta lines of the bottom panel show when 

participants made changes to the DURESS simulation.  These interactions include setting heat levels 

or valve flows to new levels, and turning a pump on or off. The blue trend in the bottom panel 

depicts the average in actual out flow and demand. The red trend reflects the natural log of the 

actual temperature of the outflow from the demanded temperature.  In all panels the hashed 

vertical black lines show when the pre-specified DURESS faults occurred.  

 Conclusions and Discussion.  5.1.3

Inspection of the spectrographs reveals that visually-obvious increases in power across a 

fairly broad range of frequency occur commonly at the beginning of the trial while the participant is 

actively adjusting the simulator to achieve steady state and just after the DURESS fault events.  In 

contrast, during time-sequences with relatively little activity, the spectrograms appear dark blue, 

indicating very little change in the physiological measures.  Across several participants “hot spots” 

appeared shortly after DURESS fault events which I interpret as promising indications that these 

measures could prove to be a reliable and sensitive real-time indicators of mental workload and 

stress when analyzed using STFT. 

When interpreting the spectrographs it is important to note that fault events were often not 

noticed by participants. Faults did not trigger visual or auditory alarms; only the unresponsiveness 

of the flow and temperature states to system changes indicated system failures. Events potentially 

went unnoticed for several seconds or even minutes. I know when the events occur but not when 

the participants become cognitively aware of them. The spectrographs (2nd and 4th panels from the 

top) represent time (in seconds) on the x-axis and frequency (in Hz) on the y-axis.  Color is used to 

represent the power (in decibels) for each particular time and frequency sample.  Areas of high 

amplitude changes in the measures appear red, while areas of low amplitude appear dark blue.  

Intermediate amplitudes are represented along dichromatic continuum from red to blue.  
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Despite some compelling evidence that physiological measures do convey some degree of 

cognitive workload no truly reliable trends were found in this dataset. Sometimes it appears to 

have spectral power in the right places, but there are equally many (if not more) occasions where 

increased power should be visible (if the hypothesis is correct) and it is not visibly higher. As 

previously mentioned one of the major difficulties in interpreting this dataset is that participants 

did not always notice the fault events.. Faults did not trigger visual or auditory alarms; only the 

unresponsiveness of the flow and temperature states to system changes indicated system failures. 

Experiment 2 attempted to remedy this problem by using a task where changes in workload were 

more salient.   
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Table 5.1.1  

DURESS Fault Events 

 

Time (s) Event Description 

300  

420  

480  

720  

726  

732  

738  

741  

750  

756  

Flow rate in valve VA2 changes 

Demand change for upper reservoir 

Flow rate in valve VB1 changes 

Demand changes for upper reservoir 

Demand changes for lower reservoir 

Flow rate in VB2 changes 

Inflow of water to upper reservoir 

Outflow of water to lower reservoir 

Output valve outflow increases and inflow temperature changes 

Demand changes for lower reservoir and flow rate in valve VA2 changes 
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Appendix 5.1.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 60 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.1.B Debreifing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

INL Physiological Predictors of Workload 

Experiment 1 

 

Participant:____ 

Date:_________ 

 

1. Did you move your left hand during the course of the trial while the GSR was still hooked up? 

2.  How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

3. Did you notice that the controls changed part way through the trial? 

a. How many times? 

4. How difficult was the task when you first started? (1-10) 

5. How difficult were the normal vs. reversed controls? (1-10) 

6. How long did it take you to feel confident you were performing well at this task? 

a. Normal mappings 

b. Reversed mappings 
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7. How uncomfortable was the eye-tracker when you first started? (1-10) 

8. How uncomfortable was the eye-tracker when you finished? (1-10) 

9. Did you find the eye-tracker distracting from the task at hand? 

10. Do you think that fatigue played a role in your performance? 

a. How about fatigue from the eye-tracker? 

11. Did you have any eye-strain? 

Any additional comments 
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Appendix 5.1.C Human Assurances Approval 
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5.2 Experiment 2: Pursuit Tracking  (Normal vs. Reversed) 

Our second attempt (Lew, Dyre, Soule, Ragsdale, & Werner, 2010) tried to provide more 

obvious workload changes by using a dual-axis tracking task instead of a process-control 

simulation.  In this task participants used a joystick to control a cursor and follow a dot moving in a 

pseudo-random fashion. To manipulate task difficulty the control mappings were abruptly reversed 

during half way through the experimental trial.  The data analysis still used STFT but used Principle 

Component Analysis (PCA) and discriminant analysis to provide an objective means of 

discriminating workload. For the most part this experiment found inconclusive results due to an 

unforeseen problem with my manipulation of task difficulty, which though having an immediate 

and obvious change to system control, did not reliably affect task difficulty: not all participants 

found the reverse mappings more difficult, and in fact some found the “reverse” mappings to be 

easier than the “normal” mappings I include the experiment despite these inconclusive results 

because it provides context for my rationale in future experiments. 

 Method 5.2.1

5.2.1.1 Participants. Six university students participated in this experiment and were 

compensated with course credit.  All had normal or corrected to normal Snellen visual acuity 

(20/30 or better). All participants were naïve to the hypotheses of the experiment. All participants 

were ethically treated in accordance with experimental protocols approved by the University of 

Idaho’s Human Assurance Committee (see Appendices 5.2.A – 5.2.C). 

5.2.1.2 Stimuli and Apparatus. Participants tracked a balanced dot on a grey background 

moving in a pseudo random fashion with a black cursor. A balanced dot used as precaution against 

having pupil dilations due to luminance changes.  The balanced dot maintains equal-luminance with 

the background by having a small dot with high luminance surrounded by a larger dot with low 

luminance (See Figure 5.2.1).  The dot’s movement was determined by two sum-of-sine 

disturbances defining the x and y coordinate locations relative to the operator’s field of view. The 
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frequencies and amplitudes were set such that the full balanced dot would always stay within the 

screen, and tracking performance would be fairly good for most participants. The horizontal 

disturbance had prime frequencies of 0.027, 0.067, 0.125, 0.154, 0.176 Hz and respective 

displacement amplitudes of 11.2, 4.513, 2.419, 1.964, 1.718 degrees of visual angle. The vertical 

disturbance had prime frequencies of 0.039, 0.079, 0.131, 0.167, 0.197 Hz and respective 

displacement amplitudes of 7.754, 3.828, 2.308, 1.811, 1.535 degrees. Both the horizontal and 

vertical disturbances had random phases. 

Participants wore the head mounted eye tracker and skin conductance apparatus described 

in the previous in Experiment 1. Participants also viewed the same 60-inch rear projection monitor 

described in Experiment 1. There were two differences in apparatus from Experiment 1: 

participants used a gaming joystick instead of a mouse, and the displays were generated with 

ViEWER (Dyre, Grimes, & Lew, 2009) instead of DURESS. 

5.2.1.3 Procedure. Participants controlled the cursor using a right-hand joystick with first 

order control dynamics and a gain of 25° per second at maximum deflection. For the first ten 

minutes of the experiment the control mappings were “normal.” Normal meant moving the joystick 

forward moved the cursor up, moving the joystick backward moved the cursor down, moving the 

joystick right moved the cursor right, and moving the joystick left moved the cursor left. At the ten 

minute mark the control mappings “reversed” such that moving the joystick forward now moved 

the cursor down, moving the joystick left now moved the cursor right, and so forth (see Figure 

5.2.1). At the fifteen minute mark the control mappings reverted back to “normal” for the remaining 

five minutes of the trial. In total participants tracked the balanced dot for 20 minutes. The abrupt 

changes were hypothesized to elicit transient physiological responses, and the “reversed” mappings 

were hypothesized to cause lower performance (higher tracking error defined by the Euclidean 

distance between the center of the balanced dot and the cursor) and changes to physiological 

indicators reflecting increased workload.  
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Figure 5.2.1 Screenshot of tracking task.  Participants used a joystick to control the black cursor 
(crosshairs) shown below. The “balanced dot” shown to the left of the cursor moved 
about in a pseudo-random fashion. 
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Figure 5.2.2 Normal and reversed mappings.  Ten minutes into the trial the control mappings 
switched from “normal” to “rotated.” At the fifteen minute mark the 
control mappings abruptly switched back to “normal” for the 
remaining five minutes of the experiment. 
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 Results 5.2.2

The initial data processing proceeded as described in Experiment 1 with one notable 

exception. Eye blinks were interpolated with a 3rd order cubic spline before the trial was broken 

into 34 second segments with 50% overlap and FFT was applied. Figure 5.2.3 through Figure 5.2.8 

depict the physiological measures in both the time and frequency domain as well as tracking 

performance over time. A visual inspection of the plots reveals that the control mapping reversal at 

the 10 minute mark elicited large transient responses in 4 of the 6 participants. From the plots we 

can also see that skin conductance transients also occur spontaneously (participant 7 for instance).  

After the STFT, Principle Component Analysis (PCA) was independently applied to the GSR 

and pupil diameter Fourier components. PCA is an analysis technique which attempts to transform 

a number of correlated variables into a smaller number of uncorrelated variables called the 

principle components. The first principle component accounts for as much of the variability as 

possible, and each succeeding variable accounts for as much remaining variability as possible. The 

Modular Toolkit for Data Processing (MDP) for Python was used to obtain principle components for 

this analysis. For each measure the first 10 components determined by PCA were used to predict 

tracking error. The scatterplots in Figure 5.2.9 through Figure 5.2.14 depict the correlations 

between the principle components and the physiological measures. The top panels depict 

correlations for skin conductance components and the bottom panels depict correlations for pupil 

diameter. To assess the combined predictive power of multiple PCA components I ran 2 linear 

discrimant analyses (one for SC, and one for pupil diameter) per participant using the components 

as predictors and tracking error as the response variable. No family-wise error correction was 

applied. Of the 12 analyses only skin conductance with participant 2 was significantly related to 

tracking error F(10,58) = 2.42, p = 0.017, MSE = 12.305. Table 5.2.1 provides of full summary of 

these results. When viewed in context these results suggest that the transient skin conductance 

spike at the 10 minute mark corresponds to the tracking error transient after the 10 minute mark.   
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 Conclusions and Discussion.  5.2.3

 The observation that 4 of the 6 participants had transients in skin conductance when the 

mappings first changed is encouraging. Part of the problem with the discrimination analysis is that 

most of the participants performed the  tracking task well, even with the “reverse” control 

dynamics (see Figure 5.2.2). As a result, the tracking error distributions show extreme positive 

skew, reflecting a limited range of variation in task difficulty . A task that has a wider and perhaps 

more normally distributed range of task difficulty and error may be needed for physiological 

measures and principle component analysis to work reliably. Another problem is that stress 

induced by the mapping change (as observed by the raw skin conductance trends) seems to subside 

as participants become accustomed to the reversed mappings. My next experiment addressed these 

concerns by using normal and rotated mappings and increasing the frequency with which the 

mappings were switched.  I also introduce potentially more powerful analytical tools (wavelet 

decomposition and genetic programming) to predict tracking error and the control mapping state.  
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Table 5.2.1  
LDA results for SC and PD on Tracking Error 
 

Participant Phyiological 
Measure 

(dfsource , 
dferror) 

F p MSE 

2 Skin Conductance (10,58) 2.42 0.017 12.305 
 
 

Pupil Diameter (10,58) 0.64 0.777    0.414 

3 Skin Conductance (10,58) 0.33 0.969    5.750 
 
 

Pupil Diameter (10,58) 0.85 1.587    0.414 

5 Skin Conductance (10,58) 0.91 0.530    0.048 
 
 

Pupil Diameter (10,58) 1.45 0.071    0.071 

6 Skin Conductance (10,58) 0.35 0.962    1.780 
 
 

Pupil Diameter (10,58) 0.84 0.594    3.940 

7 Skin Conductance (10,58) 0.54 0.852    0.665 
 
 

Pupil Diameter (10,58) 1.35 0.225    1.471 

8 Skin Conductance (10,58) 0.69 0.721    0.955 
 Pupil Diameter (10,58) 0.65 0.765    0.894 
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Table 5.2.2  

LDA vs. Symbolic Regression on Tracking Error (r2) 

 
Participant 

LDA Symbolic Regression 

Best Training Best Test Best Training Best Test 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

0.273 

0.399 

0.415 

0.240 

0.397 

0.449 

0.307 

0.588 

0.276 

0.411 
 

0.115 

0.179 

0.069 

0.177 

0.019 

0.314 

0.089 

0.481 

0.175 

0.115 
 

0.680 

0.722 

0.617 

0.568 

0.567 

0.579 

0.705 

0.636 

0.527 

0.760 
 

0.119 

0.314 

0.187 

0.189 

0.181 

0.332 

0.104 

0.443 

0.160 

0.121 
 

Averages:    0.376    0.173    0.636    0.215 
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Figure 5.2.3 Experiment 2, Participant 2. 

 
  

Time (s) 
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Figure 5.2.4 Experiment 2, Participant 3. 

 
  

Time (s) 
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Figure 5.2.5 Experiment 2, Participant 5. 

 
  

Time (s) 
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Figure 5.2.6 Experiment 2, Participant 6. 

 
  

Time (s) 



251 

Figure 5.2.7 Experiment 2, Participant 7. 

 
  

Time (s) 
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Figure 5.2.8 Experiment 2, Participant 8. 

 
  

Time (s) 
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Figure 5.2.9 Experiment 2, Participant 2 PCA scatterplots. X-axis is dimensionless.  
Skin Conductance 

 
Pupil Diameter 
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Figure 5.2.10 Experiment 2, Participant 3 PCA scatterplots. X-axis is dimensionless. 
Skin Conductance 

 
Pupil Diameter 
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Figure 5.2.11 Experiment 2, Partipant 5 PCA scatterplots. X-axis is dimensionless. 
Skin Conductance 

 
Pupil Diameter  
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Figure 5.2.12 Experiment 2, Participant 6 PCA scatterplots. X-axis is dimensionless. 
Skin Conductance 

 
Pupil Diameter 

 
  



257 

Figure 5.2.13 Experiment 2, Participant 7 PCA scatterplots. X-axis is dimensionless. 
Skin Conductance 

 
Pupil Diameter 
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Figure 5.2.14 Experiment 2, Participant 8 PCA scatterplots. X-axis is dimensionless. 
Skin Conductance 

 
Pupil Diameter 
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Appendix 5.2.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 30 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.2.B Debriefing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

INL Physiological Predictors of Workload 

Experiment 3 

 

Participant:____ 

Date:_________ 

 

1. Did you move your left hand during the course of the trial while the GSR was still hooked up? 

2.  How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

b. Are you right or left handed? 

3. Did you notice that the controls changed throughout  the trial? 

a. How many times? 

4. How difficult was the task when you first started? (1-10) 

5. How difficult were the normal vs. reversed controls? (1-10) 

6. Did you feel that you had enough time to feel confident with:  

a. Normal mappings? 
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b. Rotated mappings? 

7. How uncomfortable was the eye-tracker when you first put it on? (1-10) 

8. How uncomfortable was the eye-tracker when you finished? (1-10) 

9. Did you find the eye-tracker distracting from the task at hand? 

10. Do you think that fatigue played a role in your performance? 

a. How about fatigue from the eye-tracker? 

11. Did you have any eye-strain, fatigue, blurred vision, problems focusing on the target, etc. ? 

Any additional comments 
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Appendix 5.2.C Human Assurances Approval 
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5.3 Experiment 3: Pursuit Tracking  (Normal vs. Rotated) 

The reversed control mappings used in Experiment 2 did not reliably manipulate task 

difficulty, which likely contributed to the experiment’s inconclusive results.  The aim of Experiment 

3 was to replicate Experiment 2 with a more reliable manipulation of task difficulty.  To that end, I 

pilot tested alternative difficulty manipulations, and found that rotating the control mappings 90 

degrees appeared to reliably reduce tracking performance.  In addition, tracking performance 

continued to be negatively impacted up to 5 minutes after the mappings were rotated.   Experiment 

3 was similar  to Experiment 2 with the exception of the manipulation of task difficulty, which 

replaced the reversed mappings with rotated mappings, and the control mappings switched every 

60 seconds for a total of seven transitions compared to the two transitions used in Experiment 2. 

To assess whether control mapping stated produced measurable differences in 

physiological signals wavelet decomposition was applied to skin conductance (SC) and pupil 

diameter (PD). Then Genetic programming (GP), a machine learning technique, was used to build 

models of tracking performance based on SC and PD as well as classifiers of the control mapping 

state.  The performance of Genetic Programming was compared to linear discriminant analysis 

(LDA). 

 Method 5.3.1

5.3.1.1 Participants. Ten University of Idaho students participated in this experiment.  All 

had normal or corrected to normal Snellen visual acuity (20/30 or better).  Participant 3 had 

limited knowledge of the hypotheses of the experiment; the remaining participants were naïve to 

the hypotheses of the experiment.  All participants were ethically treated in accordance with 

experimental protocols approved by the University of Idaho’s Human Assurance Committee (see 

Appendices 5.3.A – 5.3.C). 
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Figure 5.3.1 Normal vs. rotated mappings. Every 60 seconds for 480 seconds the control mappings 
switched from “normal” to “rotated.” 

 

“Normal” Control Mappings

“Rotated” Control Mappings
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5.3.1.2 Stimuli and Apparatus. As with the previous experiment task difficulty was 

manipulated using a pursuit tracking task in which participants tracked a balanced dot moving in a 

pseudo-random fashion with a black cursor superimposed on a gray background. However in this 

experiment the control mappings were rotated (see Figure 5.3.1) instead of reversed; and the 

mappings were changed several times throughout the trial. The abrupt changes in control 

mappings were hypothesized to elicit transient physiological responses, and the rotated mappings 

were hypothesized to cause lower performance (higher tracking error defined by the Euclidean 

distance between the center of the balanced dot and the cursor) and physiological indicators 

reflecting increased workload. 

The simulation was presented in the same darkened room with the same equipment 

previously described in the first two experiments. As with the previous experiments PD and SC 

were recorded while the participants performed the task. 

5.3.1.3 Procedure. Participants controlled the cursor using a right-hand joystick with first 

order control dynamics and a gain of 25° per second at maximum deflection. For the first minute of 

the experiment the control mappings were normal: moving the joystick forward moved the cursor 

up, moving the joystick backward moved the cursor down, moving the joystick right moved the 

cursor right, and moving the joystick left moved the cursor left. After 60 s the joystick control 

mappings were rotated abruptly 90° clockwise, such that moving the joystick forward-backward 

moved the cursor rightward-leftward, and moving the joystick leftward-right moved the cursor 

upward-downward. For the eight minute duration of the experiment the control dynamics were 

rotated from the normal orientation to 90 degrees, then back to normal, etc. every 60 seconds. 

Participants performed the tracking task for a total of eight minutes comprised of four minutes of 

pursuit tracking with the normal mappings  and for minutes of pursuit tracking with the rotated 

mappings. 
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 Tracking Error Models 5.3.2

5.3.2.1 Preprocessing. Offline the 480 second trial was divided into eight epochs of 60 

seconds each. Epochs 1, 3, 5, and 7 had the normal control mappings, and the remaining even 

epochs had the rotated mappings. Data analysis proceeded by smoothing the PD data using a third- 

order cubic spline, centering the data by subtracting the mean diameter, and then log transforming 

the result. Negative values were treated by log-transforming the absolute value and then 

multiplying by -1. Next, to prepare the data for wavelet analysis, SC and PD were linearly 

interpolated to a sampling rate of 34-1/3 Hz so that each 60 second epoch contained 2048 samples. 

A discrete wavelet transform (DWT) was applied to these 60 second epochs resulting in a 1024 

vector of detail coefficients and eight approximation coefficients (of lengths 512, 256, 128, 64, 32, 

16, 8, 8). Each of the approximation coefficients and smoothed tracking error were then stretched 

to a length of 1024 so they would be in a convenient representation for model fitting.  Models were 

fit to each participant’s data independently.  It is important to note that although these predictions 

were calculated offline subsequent to data collection, in principle, once a model is developed and 

trained, its predictions could be calculated in real-time by a modestly fast computer. Figures Figure 

5.3.2 - Figure 5.3.10 contain spectrograms (frequency by time) and phaseograms (phase by time) 

for pupil diameter of all ten participants. These are visual depictions of the data contained in the PD 

wavelet coefficients.  

5.3.2.2 Genetic Programming. An introduction to genetic programming (GP) can be found in 

Chapter 4.  The symbolic regressor GP model utilized a technique known as Age Layered 

Populations to increase the robustness of search and as a preventative measure against premature 

convergence (Hornby, 2009). Scaled symbolic error, as described by (Keizer, 2004), was used in 

place of root-mean-squared error to increase model performance. Scaled symbolic error allows the 

GP try and fit the fine changes of the fitness landscape, while leaving the gross fitting to a simple 

linear regression analysis.   
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Figure 5.3.2 Participant 1 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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Figure 5.3.3 Participant 2 raw pupil diameter, CWT scalogram, and CWT phaseogram.  
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Figure 5.3.4 Participant 3 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
 

 
.   
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Figure 5.3.5 Participant 4 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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Figure 5.3.6 Participant 5 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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Figure 5.3.7 Participant 5 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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Figure 5.3.8 Participant 7  raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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Figure 5.3.9 Participant 8 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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Figure 5.3.10 Participant 9 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
 

 
  



276 

Figure 5.3.11 Participant 10 raw pupil diameter, CWT scalogram, and CWT phaseogram. 
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With genetic programming models tend to grow as the programs evolve. Parsimony 

pressure was added as a preventative measure against code growth and also to try and force GP to 

yield smaller more succinct programs. Without some parsimony pressure programs will grow 

exponentially which can lead to potential memory paging or availability problems. 

The goodness of fit of model estimates were manually optimized through four design 

iterations. These iterations are summarized in Appendix 5.3.D.  A summary of final model 

parameters is provided in Table 5.3.1.  For each participant this regressor was ran eight times. 

5.3.2.3 Linear Discriminant Analysis. To compare the Iteration IV GP models to LDA, random 

subsets of 1024 random points were generated and regressed on the 20 variables available to the 

GP. For each participant LDA was run 100 times. On the test data, a paired samples t-test was used 

to compare the best r-squares for each participant found by GP to the best r-squares found by LDA. 

Comparisons were made on the best solutions because GP is conceptually more of a “shotgun” 

approach compared to LDA. The r-squared distributions obtained by multiple regression are 

normal with far less variability between runs which implies LDA is fairly robust to the subset of 

time points but this also results in its top performance being somewhat restricted. Due to the 

amount of randomness in GP there are no guarantees of converging on a “good” solution and in 

practice many mediocre and poor solutions often arise. Despite this fault, GP can sometimes come 

up with solutions that are several times better than average. Here I was interested in top 

performance rather than average performance. In a real world setting the training would most 

likely take place offline so time is not a critical factor and several potential solutions could be 

evaluated before they are put into practice. 

 Tracking Error Model Results 5.3.3

To verify that the rotated mappings did in fact hamper tracking performance (increase 

tracking error) a 2 x 4 Analysis of Variance (ANOVA) evaluated the effects of mapping (normal vs. 

rotated) and block (1-4) on mean tracking error.  As expected a significant main effect of mapping 
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was found [F(1, 9)=133.682, p<.001] indicating tracking error was higher under the rotated 

mappings (see Figure 5.3.12). In addition, a main effect of block [F(3,27)=9.247, p=.003, ε=0.559] as 

well as a mapping by block interaction [F(3, 27)=7.221, p=.007, ε=0.602] were found.  This 

interaction suggests that virtually no improvement in tracking performance occurs for the normal 

control mapping across the four blocks, but most participants improve by about 35% on average 

with the rotated mappings.  One exception was Participant 3, who showed about 6 degrees of mean 

error across all four blocks; the remaining 9 participants showed improvement from block 1 to 

block 4.  

A matched pairs t-test between the r-squared values obtained from the best training results 

from symbolic regression and LDA revealed that symbolic regression accounted for significantly 

more variability in the training set [t(9) = 6.450, p < 0.001]  On average GP accounted for 26% more 

variability (see Figure 5.3.13).  Essentially, the more flexible GP approach is able to account for 

nuances in the training data better than the more constrained linear approach.  A matched-pairs t-

test on the test epochs revealed that GP was able to significantly outperform multiple linear 

regression in predicting test performance by 4% [t(9) = 1.86,  p < 0.05]. 

 Control Mapping State Classification Models 5.3.4

5.3.4.1 Genetic Programming. When built as a classifier the GP previously described 

converges quickly and drastically over-fits the training data. Many programs were able to account 

for every single case of the training data. To deter over-fitting a steady-state symbolic regression 

without ALPS was used. The population size was set to 1,000, and each simulation was run through 

only 10,000 iterations. Since fitness reflects the goodness-of-fit for a randomly chosen 1024 subset 

of time points in the training set and does not necessarily summarize general performance to the 

training data or the testing data (see Figure 5.3.14), the “best” models for each run were selected by 

choosing the models which had high accuracy for both training and testing and were of human 

interpretable sizes. Selecting the “best” models was part science but admittedly part art.   
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Figure 5.3.12 Mapping by Block Interaction on mean tracking error. Plot depicts the mapping by 
block interaction over all ten participants. Error bars represent +/- one standard 
error of the marginal means. Tracking for the normal mapping does not improve 
from over the course of the experiment. Tracking for the rotated mapping is 
significantly higher over all four blocks (as implied by the error bars; no post hoc 
comparisons were made) but improves over the course of the experiment.  
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Figure 5.3.13 r-squares obtained from the training set and the test set. 

  
(a) Training Data (0-360 seconds) 

 
 

(a) Test Data (360-480 seconds) 
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Figure 5.3.14 Accuracy vs. Goodness-of-fit.The “best” model may not be the model with the highest 
fitness. Models with high fitness may perform worse on the testing data than models 
with lower fitness. 
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Since the testing data is used to select models (but not to train them) future studies plan on 

incorporating a second testing set to validate model performance before evaluating test 

predictions. Dividing the 480 second trial in to training (50%), validation (25%), and testing (25%) 

sets (as suggested by Marshall, 2007) did not provide enough data to effectively capture the models 

performance. Subsequent experiments will use longer trials to alleviate this problem. 

5.3.4.2 Linear Discriminant Analysis. To compare the performance of GP to more traditional 

techniques dichotomous Linear Discriminate Analysis (LDA) classifier were generated for each 

participant. The classifiers were trained using 1024 subsets from the training data in the manner 

described in the tracking model. 

 Control Mapping State Classification Model Results 5.3.5

Table 5.3.3 lists the classification accuracies for GP and LDA on the training and test data. 

On the training data LDA averaged 67.1% accuracy across participants compared to 80.6% with GP 

[t(9) = 3.06, p < 0.01]. On the testing data LDA averaged 62.5% compared to 77.2% [t(9) = 3.42, p < 

0.01]. It should also be noted that with LDA three of the participants are at chance levels with the 

training data, and four with the test data. In all but one case GP correctly classified the control 

mapping at least 2/3 of the time. 

 Conclusions and Discussion 5.3.6

To date, few researchers have employed GP within the domain of augmented cognition. The 

use of GP in Augmented Cognition is not unprecedented (Simoni, 2008), but is not common.  Here 

evidence has been provided that suggests symbolic regression can be used to predict human 

workload and can do so significantly better than simple linear techniques. On tracking error 

symbolic regression performed better with eight out of ten participants. When GP did worse on the 

test data it did so by 4% with participant 8 and 1.5% with participant 9 (see Table 5.3.3). This 

suggests that GP has more potential for improving results than for making them worse. Overall 
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performance is generally better even at the individual level. Furthermore, the predictions produced 

LDA are noisy and often have transients that are well outside the range of actual tracking error. In 

contrast, the predictions produces by GP are surprisingly well behaved (see Figure 5.3.15).   

Both symbolic regression and LDA commonly used some input vectors more than others. 

Almost all the models used the lowest two gsr coefficients (GSR_COEFF0, and 1) and the lowest two 

pupil diameter coefficients (PUP_COEFF0, and 1). The raw SC and pupil diameter values also 

contributed more to the final value. For some participants the faster pupil coefficients (5, 6, and 7) 

also contributed to the tracking error prediction. Figure 5.3.16 through Figure 5.3.25 compare the 

power spectral density of the participant’s pupil diameter between normal and rotated mappings. 

At this point not much has been done to optimize or examine the size of the solutions 

generated by symbolic regression. Although, it is worth pointing out that the over the course of the 

80 runs from Iteration IV the average solution size was 49 (including Keizer’s scaled symbolic 

coefficients and addition and multiplication terminals) nodes and the best test solutions have an 

average size of 45. In comparison, the multiple regression models would have an equivalent node 

size of 81 if represented as a tree structure which suggests that symbolic regression is not better 

just because it has more parameters. In the case of subject 8 the best symbolic regression model 

used only 13 nodes to predict 98.5% of the variability predicted by the 81 nodes of multiple 

regression (see Figure 5.3.26). The 13 node solution is: 

(+ (7.728) (* (0.460) (+ (+ (+ (+ (PUP_COEFF0) (PUP_RAW)) (PUP_RAW)) (PUP_RAW)) (PUP_RAW)))) 

While the performance of the GPs discussed here is noteworthy, even greater performance 

may be attainable through further application of GP theory and technique. For instance, applying 

cooperative co-evolution within multi-agent systems has been found to increase the performance of 

GP classifiers (Soule & Heckendorn, 2008). 
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Figure 5.3.15 GP vs. LDA tracking error predictions. The models in the above panels (top: multiple 
regression, bottom: symbolic regression) account for about the same amount of 
variability of tracking error, but as the reader can see the multiple regression 
predictions are noisy and not as bounded as the symbolic regression model. 
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Figure 5.3.16 Participant 1 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.17 Participant 2 normal versus rotated power spectral density.Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.18 Participant 3 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.19 Participant 4 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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 Figure 5.3.20 Participant 5 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.21 Participant 6 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.22 Participant 7 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.23 Participant 8 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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 Figure 5.3.24 Participant  9 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.25 Participant  10 normal versus rotated power spectral density. Bold traces represent 
averages across four blocks. The lighter traces represent spectra in each of the four 
blocks. 
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Figure 5.3.26 Tracking error predictions for Participant 8. Run 6 for participant 8 had a r2 for the 
training data of 0.491 and a r2 for the test data of 0.443 using only 2 physiological 
parameters and 13 nodes.  While this solution is atypically good it does illustrate the 
potential of symbolic regression. 

 

 
 

  

Time (s) 
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The r-squared values between the training and test data for GP suggest that the model 

might still be over fitting the test data. Future work should examine using smaller subsets or 

possible shorter runs to hedge over fitting. The fact that the multiple r-squared values for the test 

data is also lower (by about .1) than the training data also suggests that perhaps there are 

discrepancies in the physiological markers between 0 and 360 seconds and 360 and 480 seconds 

(see Figure 5.3.27).  Having more data to sample from would help remedy this problem. Future 

fitting should also try to have the participants go through an initial task training period before 

training data is collected. In this experiment participant’s 2, 4, and 10 have large transient in 

tracking error after the control mappings switch the first time at the 60 second mark but do not 

have errors of equal magnitude latter throughout the rest of the trial. Because the Keizer’s Scaled 

Error reflects the squared tracking error the model is severely penalized if it doesn’t predict from 

60 to 65 seconds, yet that time period only accounts for slightly more than 1% of the trial.  

5.3.6.1 Limitations. While this study demonstrates that GP modeling of PD and SC may be 

useful for estimating primary task performance and task difficulty, one important caveat is that my 

task, with its abrupt changes in control mappings, caused large changes in primary task 

performance coincident with changes in the physiological measures.  The purpose of AC is to be 

able to measure increases mental workload with physiological measures before primary task 

performance is affected.  The following proposed experiment is designed to assess the predictive 

utility of GP modeling of PD and SC with tasks in which cognitive demand changes more subtly so 

that changes in the physiological measures occur prior to changes in primary task performance. 

5.3.6.2 Methodological Considerations for Future Research. Here I am making the 

assumption that I can manipulate workload by manipulating the control dynamics of the tracking 

task and that those manipulations subsequently affect tracking performance. Experiment 3 serves 

as a proof-of-concept that the relevant information is contained   
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Figure 5.3.27 Tracking error predictions for Participant 5. The best performing prediction on the 
test data over 8 runs for participant 5 is shown above. The green line is showing the 
predicted tracking error from a single run values over the training data. The red line 
extrapolates the model to the test data. The training data fits well but does not 
generalize to the test data as evidenced by the portion between 120 and 180 seconds 
and the portion between 420 and 450 seconds. 
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within the physiological measures and that wavelet analysis with symbolic regression can resolve 

some of that information. While task performance is likely correlated with workload obtaining 

direct estimates of workload would be more useful to the implementation of augmented cognition 

systems. I hypothesize that physiological indications of workload might arise before decrements in 

task performance.  

5.3.6.3 Modeling Considerations for Future Research. Based on increased knowledge of the 

spectral analysis techniques discussed in Chapter 2 I have identified some analytic processes that 

may be improved upon. Marshalls’s  (2000, 2002, 2007) ICA uses non-redundant discrete wavelet 

transformation with Daubechies 4 real-valued wavelets. Because the resulting coefficients are real 

valued estimating the amount of power in the signal requires some sort of rectification of the 

resulting coefficients. Marshall’s ICA accomplishes this using thresholding. When complex valued 

wavelets are used power can be obtained much more simply by taking the complex modulus of the 

coefficients. Here I proposed using non-redundant discrete wavelet transformation with complex-

valued Morlet wavelets to obtain power spectral estimates.  

Secondly, I hypothesize that redundant transforms whose scales (bandwidths) are 

optimized by an evolutionary algorithm (EA) may improve the ability of GP to classify the resulting 

wavelet components. Previous work has shown large amounts of variability between individuals in 

the power spectrum distinguishing low and high workload conditions.  Allowing evolutionary 

algorithms to manipulate the scale of the wavelets might provide a means of tailoring filter banks to 

specific individuals.  

I also hypothesize that incorporating additional physiological measures may increase the 

efficacy of workload estimates obtained via GP. Empirically observed physiological measures often 

have low correlations with one another (Kahneman, 1973). This suggests that they may provide 

non-redundant information pertaining to mental workload. I am specifically interested in 

examining respiration and electrocardiogram measures.  



299 

Table 5.3.1  
Overview of GP Model Parameters 
 

Initial Individuals: “Full Method” with depth 4, 5, or 6 
Number of Layers: 10 
Individuals / Layer: 100 
Total Iterations: 270,000 
Age Calculation:   (                   )              

Max ages: Fibonacci: [5, 8, 13, 21, 34, 55, 89, 144, 233, ∞] 
Fitness: Scaled Symbolic Regression 
Crossover: 90/10 rule with “Standard” swapping 
Mutation: Point mutation, 10% for scalar constants,1% of non-scalar 

constants and non-terminals 
Parsimony Pressure: Fixed at                       (   ) where: 
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Table 5.3.2  
LDA vs. Symbolic Regression on Predicting Tracking Error (r2). 

 
Participant 

LDA Symbolic Regression 

Best Training Best Test Best Training Best Test 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

0.273 

0.399 

0.415 

0.240 

0.397 

0.449 

0.307 

0.588 

0.276 

0.411 
 

0.115 

0.179 

0.069 

0.177 

0.019 

0.314 

0.089 

0.481 

0.175 

0.115 
 

0.680 

0.722 

0.617 

0.568 

0.567 

0.579 

0.705 

0.636 

0.527 

0.760 
 

0.119 

0.314 

0.187 

0.189 

0.181 

0.332 

0.104 

0.443 

0.160 

0.121 
 

Averages:   0.376   0.173   0.636   0.215 
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Table 5.3.3  
LDA vs. Symbolic Regression on Classifying Mapping State  (classification accuracies) 

 
Participant 

LDA Symbolic Regression 

Best Training Best Test Best Training Best Test 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

67.6% 

74.3% 

80.9% 

56.2% 

65.6% 

50.0% 

50.1% 

92.5% 

50.1% 

83.4% 
 

80.4% 

62.0% 

49.1% 

53.3% 

69.8% 

49.8% 

50.0% 

97.5% 

50.2% 

63.2% 
 

80.3% 

70.8% 

86.1% 

69.6% 

81.0% 

87.6% 

70.7% 

93.1% 

84.0% 

81.1% 
 

79.3% 

62.5% 

68.8% 

73.4% 

81.3% 

86.0% 

72.0% 

93.1% 

80.7% 

75.0% 
 

Averages:    67.1%    62.5%    80.6%   77.2% 
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Appendix 5.3.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 30 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.3.B Debriefing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

INL Physiological Predictors of Workload 

Experiment 3 

 

Participant:____ 

Date:_________ 

 

1. Did you move your left hand during the course of the trial while the GSR was still hooked up? 

2.  How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

b. Are you right or left handed? 

3. Did you notice that the controls changed throughout  the trial? 

a. How many times? 

4. How difficult was the task when you first started? (1-10) 

5. How difficult were the normal vs. reversed controls? (1-10) 

6. Did you feel that you had enough time to feel confident with:  

a. Normal mappings? 
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b. Rotated mappings? 

7. How uncomfortable was the eye-tracker when you first put it on? (1-10) 

8. How uncomfortable was the eye-tracker when you finished? (1-10) 

9. Did you find the eye-tracker distracting from the task at hand? 

10. Do you think that fatigue played a role in your performance? 

a. How about fatigue from the eye-tracker? 

11. Did you have any eye-strain, fatigue, blurred vision, problems focusing on the target, etc. ? 

Any additional comments 
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Appendix 5.3.C Human Assurances Approval 

To:            Brian Dyre 
   Psychology & Communication Studies Department 

 University of Idaho  
 Moscow, Idaho 83844-3043 
  
From: Traci Craig 

 Chair, University of Idaho Institutional Review Board 
 University Research Office  
 Moscow, Idaho 83844-3010 
 
IRB No.: IRB00000843  

 
FWA: FWA00005639    
 
Date: October 23, 2009January 14, 2014 

 
Project: Second Year Extension:  “Perception and Control of Locomotion in Virtual Environments” 

(Protocol No. 07-115) Approved October 23, 2009  

 

On behalf of the Institutional Review Board at the University of Idaho, I am pleased to inform you 
that the second year extension of your proposal protocol for the above-named research project is 
approved as offering no significant risk to human subjects.  This extension of approval is valid for one 
year from the approval date listed above, after which it will require a new application if you intend 
to continue.   
 
Thank you for submitting your extension request. 
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Appendix 5.3.D Genetic Programming Goodness of Fit Development 

5.3.A.1 Iteration I. The first symbolic regressor used trials 1, 2, 5, and 6 as the training data 

with trials 3, 4, 7, and 8 as the test data. For each subject eight separate runs were performed with 

300,000 iterations. At each iteration, fitness was calculated using all 4096 data points of the 

training data. Eight runs were performed for each subject. Although GP did find solutions that fit the 

training data well (in some cases explaining over 60% of the variability of the training data), it 

tended to over fit models to and did not generalize well to the testing data (see Figure 5.3.28). 

shows the results of a typical run with over fitting. 

5.3.A.2 Iteration II. In an attempt to prevent over-fitting, the tracking data was first 

smoothed using a Hanning window of 256 (15 seconds). Then 256 random, non-consecutive,points  

in time were sampled and removed to serve as test data. The remaining 7936 time points were 

given to the model as training data, but at iteration only a subset was selected to evaluate fitness. 

Iteration II used a subset size of 256 points (3.22% of the avalaible training data). This size was 

found to prevent over fitting, but severely hampered the dynamics of the model predictions (see 

Figure 5.3.29).  The models basically predict the mean but do not capture any useful information. 

Eight runs were ran for subjects 1, 2, 3, 4, 8, and 10 which was enough to convince me it didn’t work 

well. 

5.3.A.3 Iteration III. In this Iteration the design and parameters remained the same as 

Iteration II. The only modification was that the subset size was increased to 2048 (25.8% of the 

available training data). This subset size did find solutions with good dynamic performance, but did 

show some signs of over fitting (see Figure 5.3.30). Internal review (with Dyre and Werner) 

suggested that the model should predict a prolonged period of time rather than randomly 

distributed points of time. The following Iteration IV model attempts to address these issues. 

5.3.A.4 Iteration IV. In this Iteration trials 1, 2, 3, 4, 5, and 6 were used as training data. 

Trials 7 and 8 were used as testing data. At each iteration a subset of 1024 random points (16.66% 
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of the available training data) were used to calculate fitness (see Figure 5.3.31). Eight runs were 

performed for each subject. The results from Iteration IV were compared to LDA. 
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Figure 5.3.28 Iteration I. Model depicts participant 5’s actual tracking error as the blue line in 
degrees (y-axis) by time in seconds (on the x-axis). The green line is showing the 
predicted tracking error from a single run values over the training data. The red line 
extrapolates the model to the test data. The training data fits well but does not 
generalize to the test data as evidenced by the portion between 120 and 180 seconds 
and the portion between 420 and 450 seconds. 

 

 
  

Time (s) 
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Figure 5.3.29 Iteration II. Like Figure 3.3 the blue line is showing actual tracking error over time. 
The green line is showing the predicted values from a single run of the Iteration  II 
model and the red dots are showing testing predictions from computed from values 
not in the training set. When the subset size is too small (256) the programs can 
identify the means, but fail to predict dynamic changes in tracking error. (Plot is 
showing actual tracking error, smoothed tracking error model was fit to smoothed 
tracking error) 
 

 
  

Time (s) 
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Figure 5.3.30 Iteration III. The blue line shows actual tracking error over time. The green line 
shows the predicted values from a single run and the red dots are showing testing 
predictions from computed from values not in the training set. The Iteration III model 
used here had random subset of 2048 time points was chosen at each iteration to 
calculate fitness. Here the fit is fairly good, but the red point below the green line at ~ 
205 seconds and the red point above the green line at ~ 460 seconds imply the model 
is slightly over fitting the training data. (Plot is showing actual tracking error, 
smoothed tracking error model was fit to smoothed tracking error). 
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Figure 5.3.31 Iteration IV. The Iteration IV model is the best prediction on the test data over 8 runs 
for participant 5’s as the red line. As with the previous graphs the blue line is showing 
smoothed  The training data fits well but does not generalize to the test data as 
evidenced by the portion between 120 and 180 seconds and the portion between 420 
and 450 seconds. 
 

 
 

  



312 

Appendix 5.3.E LDA Models of Tracking Error by Participant 

Subject 1 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-5.588 -2.347 -1.317  0.938 20.457  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -3.4976204  0.5353479  -6.533 6.82e-11 *** 
GSR_RAW      0.0039470  0.0157854   0.250  0.80256     
GSR_COEFF0  -0.0472236  0.0076868  -6.143 8.45e-10 *** 
GSR_COEFF1   0.2085829  0.0305603   6.825 9.40e-12 *** 
GSR_COEFF2  -0.0851984  0.0278178  -3.063  0.00220 **  
GSR_COEFF3  -0.2336022  0.0295385  -7.908 2.95e-15 *** 
GSR_COEFF4  -0.0447442  0.0318734  -1.404  0.16041     
GSR_COEFF5  -0.0047582  0.0338023  -0.141  0.88806     
GSR_COEFF6  -0.0107204  0.0310983  -0.345  0.73031     
GSR_COEFF7  -0.0068240  0.0280815  -0.243  0.80801     
PUP_RAW      0.0513158  0.0038789  13.229  < 2e-16 *** 
PUP_COEFF0   0.0062678  0.0003545  17.679  < 2e-16 *** 
PUP_COEFF1  -0.0002740  0.0007403  -0.370  0.71130     
PUP_COEFF2  -0.0151778  0.0012473 -12.169  < 2e-16 *** 
PUP_COEFF3  -0.0111247  0.0019176  -5.801 6.82e-09 *** 
PUP_COEFF4  -0.0075670  0.0025570  -2.959  0.00309 **  
PUP_COEFF5   0.0025790  0.0028912   0.892  0.37240     
PUP_COEFF6   0.0053456  0.0042938   1.245  0.21318     
PUP_COEFF7   0.0189606  0.0095999   1.975  0.04829 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 3.786 on 8173 degrees of freedom 
Multiple R-squared: 0.09282,    Adjusted R-squared: 0.09083  
F-statistic: 46.46 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 2 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-24.980  -3.705  -1.162   1.797  31.944  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -9.4926906  0.8920636 -10.641  < 2e-16 *** 
GSR_RAW      0.1287994  0.0220146   5.851 5.09e-09 *** 
GSR_COEFF0  -0.0675660  0.0037866 -17.843  < 2e-16 *** 
GSR_COEFF1   0.1534978  0.0175036   8.770  < 2e-16 *** 
GSR_COEFF2   0.1074249  0.0395299   2.718  0.00659 **  
GSR_COEFF3  -0.2053483  0.0471761  -4.353 1.36e-05 *** 
GSR_COEFF4   0.0346978  0.0455438   0.762  0.44617     
GSR_COEFF5   0.0231100  0.0485839   0.476  0.63432     
GSR_COEFF6   0.0405626  0.0441097   0.920  0.35782     
GSR_COEFF7  -0.0101404  0.0392371  -0.258  0.79607     
PUP_RAW      0.0715792  0.0074379   9.624  < 2e-16 *** 
PUP_COEFF0   0.0150976  0.0007587  19.900  < 2e-16 *** 
PUP_COEFF1  -0.0148982  0.0013418 -11.103  < 2e-16 *** 
PUP_COEFF2  -0.0197211  0.0020999  -9.391  < 2e-16 *** 
PUP_COEFF3   0.0027143  0.0028628   0.948  0.34309     
PUP_COEFF4   0.0302116  0.0047869   6.311 2.91e-10 *** 
PUP_COEFF5   0.0009610  0.0059669   0.161  0.87206     
PUP_COEFF6   0.0146284  0.0074879   1.954  0.05078 .   
PUP_COEFF7   0.0284381  0.0149764   1.899  0.05762 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 5.316 on 8173 degrees of freedom 
Multiple R-squared: 0.1608,     Adjusted R-squared: 0.1589  
F-statistic: 86.97 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 3 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-8.163 -2.697 -1.350  1.226 25.055  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.9601763  0.4873021  -4.023 5.81e-05 *** 
GSR_RAW     -0.0134113  0.0170959  -0.784 0.432787     
GSR_COEFF0  -0.0702055  0.0052090 -13.478  < 2e-16 *** 
GSR_COEFF1   0.1666719  0.0215943   7.718 1.32e-14 *** 
GSR_COEFF2  -0.0971365  0.0299156  -3.247 0.001171 **  
GSR_COEFF3  -0.1222133  0.0327593  -3.731 0.000192 *** 
GSR_COEFF4  -0.0407960  0.0350796  -1.163 0.244882     
GSR_COEFF5  -0.0313087  0.0370877  -0.844 0.398594     
GSR_COEFF6  -0.0189753  0.0340550  -0.557 0.577409     
GSR_COEFF7  -0.0013668  0.0306741  -0.045 0.964461     
PUP_RAW      0.0550566  0.0038758  14.205  < 2e-16 *** 
PUP_COEFF0   0.0046504  0.0003442  13.510  < 2e-16 *** 
PUP_COEFF1  -0.0036930  0.0005430  -6.802 1.11e-11 *** 
PUP_COEFF2  -0.0057787  0.0011365  -5.085 3.77e-07 *** 
PUP_COEFF3  -0.0032540  0.0020523  -1.586 0.112875     
PUP_COEFF4   0.0027213  0.0035376   0.769 0.441764     
PUP_COEFF5  -0.0165504  0.0048057  -3.444 0.000576 *** 
PUP_COEFF6   0.0204748  0.0061836   3.311 0.000933 *** 
PUP_COEFF7   0.0248225  0.0075447   3.290 0.001006 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 4.155 on 8173 degrees of freedom 
Multiple R-squared: 0.0746,     Adjusted R-squared: 0.07257  
F-statistic:  36.6 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 4 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-9.790 -3.890 -1.699  1.786 39.953  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.0795665  1.0904524  -0.990 0.322195     
GSR_RAW      0.0308272  0.0252794   1.219 0.222706     
GSR_COEFF0   0.0113635  0.0173577   0.655 0.512700     
GSR_COEFF1  -0.1102145  0.0453485  -2.430 0.015104 *   
GSR_COEFF2  -0.0933474  0.0480962  -1.941 0.052311 .   
GSR_COEFF3   0.0118849  0.0481525   0.247 0.805055     
GSR_COEFF4  -0.1193563  0.0515467  -2.316 0.020610 *   
GSR_COEFF5   0.0458219  0.0541614   0.846 0.397564     
GSR_COEFF6   0.0146020  0.0496950   0.294 0.768893     
GSR_COEFF7  -0.0046208  0.0447866  -0.103 0.917827     
PUP_RAW      0.0210188  0.0043795   4.799 1.62e-06 *** 
PUP_COEFF0   0.0088535  0.0004727  18.728  < 2e-16 *** 
PUP_COEFF1   0.0033996  0.0007129   4.769 1.88e-06 *** 
PUP_COEFF2   0.0075504  0.0010324   7.313 2.86e-13 *** 
PUP_COEFF3   0.0062854  0.0018135   3.466 0.000531 *** 
PUP_COEFF4   0.0189718  0.0031230   6.075 1.30e-09 *** 
PUP_COEFF5  -0.0008549  0.0039320  -0.217 0.827889     
PUP_COEFF6   0.0028020  0.0067800   0.413 0.679414     
PUP_COEFF7   0.0045826  0.0097565   0.470 0.638582     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 6.033 on 8173 degrees of freedom 
Multiple R-squared: 0.06078,    Adjusted R-squared: 0.05871  
F-statistic: 29.38 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 5 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-8.554 -3.262 -1.175  2.079 19.970  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  9.8931571  0.5458973  18.123  < 2e-16 *** 
GSR_RAW     -0.0149224  0.0183622  -0.813 0.416429     
GSR_COEFF0  -0.2708924  0.0122889 -22.044  < 2e-16 *** 
GSR_COEFF1   0.0941819  0.0282364   3.335 0.000855 *** 
GSR_COEFF2   0.0412410  0.0319700   1.290 0.197090     
GSR_COEFF3  -0.0484786  0.0345131  -1.405 0.160166     
GSR_COEFF4  -0.0906730  0.0371827  -2.439 0.014766 *   
GSR_COEFF5  -0.0380633  0.0392759  -0.969 0.332510     
GSR_COEFF6  -0.0241001  0.0360194  -0.669 0.503460     
GSR_COEFF7  -0.0023054  0.0324444  -0.071 0.943354     
PUP_RAW      0.0554238  0.0019806  27.984  < 2e-16 *** 
PUP_COEFF0   0.0042311  0.0001658  25.523  < 2e-16 *** 
PUP_COEFF1  -0.0028109  0.0003121  -9.006  < 2e-16 *** 
PUP_COEFF2  -0.0051059  0.0004899 -10.422  < 2e-16 *** 
PUP_COEFF3   0.0033019  0.0011252   2.935 0.003350 **  
PUP_COEFF4  -0.0061709  0.0018981  -3.251 0.001155 **  
PUP_COEFF5   0.0112832  0.0029548   3.819 0.000135 *** 
PUP_COEFF6  -0.0006015  0.0046704  -0.129 0.897532     
PUP_COEFF7   0.0294532  0.0069916   4.213 2.55e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 4.388 on 8173 degrees of freedom 
Multiple R-squared: 0.1989,     Adjusted R-squared: 0.1971  
F-statistic: 112.7 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 6 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-27.586  -4.107  -2.227   2.486  31.230  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -20.534064   0.995229 -20.633  < 2e-16 *** 
GSR_RAW       0.113220   0.026914   4.207 2.62e-05 *** 
GSR_COEFF0    0.131372   0.008744  15.024  < 2e-16 *** 
GSR_COEFF1    0.054608   0.024986   2.186   0.0289 *   
GSR_COEFF2    0.006776   0.045717   0.148   0.8822     
GSR_COEFF3   -0.018762   0.048315  -0.388   0.6978     
GSR_COEFF4   -0.046417   0.055438  -0.837   0.4025     
GSR_COEFF5    0.007745   0.058675   0.132   0.8950     
GSR_COEFF6    0.005190   0.053750   0.097   0.9231     
GSR_COEFF7   -0.029444   0.048398  -0.608   0.5430     
PUP_RAW       0.024624   0.004375   5.628 1.88e-08 *** 
PUP_COEFF0    0.015077   0.001017  14.823  < 2e-16 *** 
PUP_COEFF1   -0.009712   0.001372  -7.079 1.57e-12 *** 
PUP_COEFF2    0.004281   0.001824   2.347   0.0189 *   
PUP_COEFF3    0.008307   0.002134   3.893 9.99e-05 *** 
PUP_COEFF4   -0.002801   0.001894  -1.479   0.1393     
PUP_COEFF5   -0.004612   0.002069  -2.229   0.0258 *   
PUP_COEFF6   -0.004151   0.003288  -1.262   0.2068     
PUP_COEFF7    0.015364   0.006864   2.238   0.0252 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 6.467 on 8173 degrees of freedom 
Multiple R-squared: 0.09664,    Adjusted R-squared: 0.09465  
F-statistic: 48.57 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 7 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-6.984 -3.201 -1.953  1.340 28.629  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -6.180616   1.443957  -4.280 1.89e-05 *** 
GSR_RAW      0.024171   0.021062   1.148 0.251166     
GSR_COEFF0  -0.017692   0.016676  -1.061 0.288755     
GSR_COEFF1   0.122427   0.029902   4.094 4.28e-05 *** 
GSR_COEFF2   0.024022   0.036379   0.660 0.509073     
GSR_COEFF3  -0.139272   0.039181  -3.555 0.000381 *** 
GSR_COEFF4  -0.062012   0.042852  -1.447 0.147894     
GSR_COEFF5  -0.011003   0.045304  -0.243 0.808116     
GSR_COEFF6  -0.021822   0.041443  -0.527 0.598513     
GSR_COEFF7  -0.012050   0.037254  -0.323 0.746349     
PUP_RAW      0.052768   0.004649  11.349  < 2e-16 *** 
PUP_COEFF0   0.009329   0.000536  17.404  < 2e-16 *** 
PUP_COEFF1  -0.001557   0.001130  -1.378 0.168191     
PUP_COEFF2  -0.015645   0.001618  -9.672  < 2e-16 *** 
PUP_COEFF3  -0.012388   0.002898  -4.274 1.94e-05 *** 
PUP_COEFF4   0.008589   0.003780   2.272 0.023108 *   
PUP_COEFF5  -0.006216   0.004694  -1.324 0.185483     
PUP_COEFF6  -0.008524   0.005589  -1.525 0.127268     
PUP_COEFF7   0.019539   0.006109   3.199 0.001386 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 5.004 on 8173 degrees of freedom 
Multiple R-squared: 0.06306,    Adjusted R-squared: 0.06099  
F-statistic: 30.56 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 8 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-14.046  -4.729  -1.079   2.552  25.442  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.777e+01  7.010e-01 -25.341  < 2e-16 *** 
GSR_RAW      4.211e-02  2.726e-02   1.545  0.12249     
GSR_COEFF0  -1.563e-01  9.421e-03 -16.588  < 2e-16 *** 
GSR_COEFF1  -3.769e-02  4.201e-02  -0.897  0.36964     
GSR_COEFF2  -1.459e-01  4.740e-02  -3.078  0.00209 **  
GSR_COEFF3   2.337e-01  5.051e-02   4.626 3.78e-06 *** 
GSR_COEFF4   1.973e-02  5.570e-02   0.354  0.72316     
GSR_COEFF5   1.704e-02  5.869e-02   0.290  0.77160     
GSR_COEFF6   4.890e-04  5.365e-02   0.009  0.99273     
GSR_COEFF7  -9.481e-03  4.816e-02  -0.197  0.84394     
PUP_RAW      6.201e-02  4.114e-03  15.071  < 2e-16 *** 
PUP_COEFF0   2.463e-02  5.013e-04  49.126  < 2e-16 *** 
PUP_COEFF1   1.416e-02  7.822e-04  18.100  < 2e-16 *** 
PUP_COEFF2  -2.040e-03  1.201e-03  -1.698  0.08950 .   
PUP_COEFF3  -5.088e-03  1.718e-03  -2.962  0.00307 **  
PUP_COEFF4  -9.224e-03  2.182e-03  -4.228 2.38e-05 *** 
PUP_COEFF5  -2.458e-03  2.404e-03  -1.022  0.30670     
PUP_COEFF6   1.437e-02  3.489e-03   4.119 3.85e-05 *** 
PUP_COEFF7   2.350e-02  7.218e-03   3.256  0.00113 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 6.524 on 8173 degrees of freedom 
Multiple R-squared: 0.3195,     Adjusted R-squared: 0.318  
F-statistic: 213.2 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 9 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-7.346 -3.184 -1.356  2.017 23.083  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -6.9483964  0.7801850  -8.906  < 2e-16 *** 
GSR_RAW      0.0270299  0.0192516   1.404 0.160348     
GSR_COEFF0  -0.0487356  0.0052611  -9.263  < 2e-16 *** 
GSR_COEFF1   0.3437227  0.0241079  14.258  < 2e-16 *** 
GSR_COEFF2  -0.1286393  0.0359124  -3.582 0.000343 *** 
GSR_COEFF3  -0.1630407  0.0381332  -4.276 1.93e-05 *** 
GSR_COEFF4  -0.0521932  0.0398376  -1.310 0.190182     
GSR_COEFF5  -0.0301926  0.0418407  -0.722 0.470556     
GSR_COEFF6   0.0040968  0.0380832   0.108 0.914336     
GSR_COEFF7   0.0013190  0.0340449   0.039 0.969097     
PUP_RAW      0.0346666  0.0039832   8.703  < 2e-16 *** 
PUP_COEFF0   0.0124888  0.0005751  21.715  < 2e-16 *** 
PUP_COEFF1   0.0074621  0.0008634   8.643  < 2e-16 *** 
PUP_COEFF2   0.0035784  0.0012862   2.782 0.005413 **  
PUP_COEFF3   0.0165425  0.0021181   7.810 6.42e-15 *** 
PUP_COEFF4  -0.0182888  0.0023270  -7.859 4.35e-15 *** 
PUP_COEFF5   0.0014283  0.0030807   0.464 0.642923     
PUP_COEFF6  -0.0016439  0.0039018  -0.421 0.673542     
PUP_COEFF7  -0.0018306  0.0054879  -0.334 0.738720     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 4.587 on 8173 degrees of freedom 
Multiple R-squared: 0.1323,     Adjusted R-squared: 0.1304  
F-statistic: 69.21 on 18 and 8173 DF,  p-value: < 2.2e-16 
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Subject 10 
 
Call: 
lm(formula = TRK_ERR ~ GSR_RAW + GSR_COEFF0 + GSR_COEFF1 + GSR_COEFF2 +  
    GSR_COEFF3 + GSR_COEFF4 + GSR_COEFF5 + GSR_COEFF6 + GSR_COEFF7 +  
    PUP_RAW + PUP_COEFF0 + PUP_COEFF1 + PUP_COEFF2 + PUP_COEFF3 +  
    PUP_COEFF4 + PUP_COEFF5 + PUP_COEFF6 + PUP_COEFF7, data = mydata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-11.631  -4.102  -1.767   1.796  36.920  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -3.759e+01  1.259e+00 -29.848  < 2e-16 *** 
GSR_RAW     -2.860e-03  2.798e-02  -0.102   0.9186     
GSR_COEFF0   2.028e-01  1.722e-02  11.778  < 2e-16 *** 
GSR_COEFF1   3.207e-01  4.887e-02   6.561 5.65e-11 *** 
GSR_COEFF2  -1.306e-01  5.029e-02  -2.598   0.0094 **  
GSR_COEFF3  -2.771e-01  5.274e-02  -5.255 1.52e-07 *** 
GSR_COEFF4  -2.789e-01  5.740e-02  -4.859 1.20e-06 *** 
GSR_COEFF5   6.842e-03  6.036e-02   0.113   0.9097     
GSR_COEFF6  -2.608e-02  5.501e-02  -0.474   0.6355     
GSR_COEFF7  -2.168e-02  4.943e-02  -0.439   0.6610     
PUP_RAW      1.183e-01  8.495e-03  13.926  < 2e-16 *** 
PUP_COEFF0   3.209e-02  9.575e-04  33.514  < 2e-16 *** 
PUP_COEFF1  -5.862e-03  1.429e-03  -4.102 4.14e-05 *** 
PUP_COEFF2  -2.423e-03  2.120e-03  -1.142   0.2533     
PUP_COEFF3   2.968e-03  2.791e-03   1.064   0.2875     
PUP_COEFF4   3.717e-02  4.560e-03   8.152 4.11e-16 *** 
PUP_COEFF5  -4.271e-02  7.291e-03  -5.858 4.86e-09 *** 
PUP_COEFF6   2.300e-02  1.054e-02   2.182   0.0291 *   
PUP_COEFF7   3.607e-02  1.844e-02   1.957   0.0504 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 6.682 on 8173 degrees of freedom 
Multiple R-squared: 0.1699,     Adjusted R-squared: 0.1681  
F-statistic: 92.93 on 18 and 8173 DF,  p-value: < 2.2e-16 
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5.4 Experiment 4: Compensatory Tracking (Subjective Workload Validation) 

The previous experiment manipulated task difficulty in a manner that was overt to the 

participants. In real world settings workload often increases subtly. In such scenarios additional 

cognitive resources can be applied to compensate and task performance may remain high.  

Participants may not even be conscious of the task becoming more difficult. I speculate that under 

such circumstances physiological indicators may still reliable predict workload. To examine 

whether physiological measures can be used to detect increased workload before task performance 

degrades a method of subtly manipulating task difficulty is needed. This experiment will examine 

whether using a tracking task based on the critical instability task (McRuer & Graham, 1965; 

McDonnell & Jex, 1967) may fulfill this need.  

The critical-instability tracking task is a compensatory tracking task originally designed to 

study aircraft handling and psychomotor tracking. Pilots at the time needed to control unstable 

high speed aircraft and booster rockets and is based off of McRuer’s previous analytical work in this 

area. McRuer was first to describe a point of instability based on an effective time delay. The 

effective time delay reflects nervous system processing delays, muscular response lags, as well as 

system lags and high frequency leads. This allowed for the limits of human control to be precisely 

quantified. Here the intention is not to quantify the limits of human control, but to use the 

compensatory tracking task as a means of manipulating task difficulty in a manner that is less 

obvious to the participants.  

The key concept with a compensatory tracking task is the incorporation of a positive 

feedback loop from the system’s output to the controller’s input.  The gain of the feedback is 

increased as the target deviates from its ideal position. The compensatory task should allow 

workload to increase in a subtle manner unlike the previous experiments where the control 

mappings abruptly switched. Put simply, the task can be conceptualized as a task in which a 

participant balances an inverted pendulum. As the pendulum swings from vertical gravity provides 
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positive feedback pulling the pendulum from the desired position. Assuming the mass of the 

pendulum stays constant shorter lengths result in greater instability. Here the goal is to examine 

how the pendulum length relates to subjective difficulty. This experiment will also allow for some 

quantification of learning effects (how stable performance is over time), as well as inter-participant 

variability tracking performance. This experiment found that task performance and perceived 

difficulty are influenced by pendulum length in a predictable fashion, that satisfactory performance 

occurs nearly instantaneously, and task performance is highly correlated amongst participants over 

a wide range of difficulty settings. 

 Method 5.4.1

5.4.1.1 Participants. Ten participants with normal or corrected to normal Snellen visual 

acuity of 20/30 participated in this study.  All were naïve to the hypotheses of the experiment. All 

participants were ethically treated in accordance with experimental protocols approved by the 

University of Idaho’s Human Assurance Committee (see Appendices 5.4.A – 5.4.C). 

5.4.1.2 Stimuli and Apparatus. Participants performed a series of short 30 second single axis 

compensatory tracking task trials similar to the Critical Tracking Task (McRuer & Graham, 1965; 

McDonnell & Jex, 1967). The internal dynamics of the simulation modeled an inverted pendulum 

fixed to a stationary pivot point. User inputs applied torque to the arm of the pendulum. The 

difficulty of the tracking task was manipulated across trials by setting the pendulum’s length at 

eight equidistant levels in logspace between 0.060 and 2 meters (0.060, 0.099, 0.163, 0.270, 0.445, 

0.734, 1.212, 2.000 m).  The visually representation of the pendulum model emulated the visual 

appearance of the previous tracking experiments, even though the simulation dynamics differed 

substantially. Participants saw the same balanced dot on a grey screen as they saw before.  A fixed 

square annulus in the center of the screen replaced the user controlled crosshair cursor used in the 

previous experiment. The balanced dot’s position on the screen mapped to the angle of an inverted 
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pendulum such that when the pendulum was perfectly vertical the dot was centered in the square 

annulus. The pendulum’s angular deviations from center mapped linearly to the horizontal position 

on the screen such that a deviation of 90° corresponded to the edge of the screen. When the dot 

moved off the screen it was automatically reset at a randomly chosen position close to vertical. The 

dot’s position was fixed along the vertical axis, and the visual appearance of the dot remained 

invariant to the length of the pendulum.  

5.4.1.3 Procedure. As previously mentioned, the stability of an inverted pendulum is 

inversely related to its length (assuming fixed mass). Future experiments need to be able to 

precisely control the perceived difficulty of the task manipulating the length of the pendulum. To do 

this it is first necessary to relate pendulum length to subjective difficulty. This can and was 

accomplished through application of the Steven’s (1953; 1970) free-modulus method of magnitude 

estimation. Participants received ten block randomized presentations of the eight previously 

specified pendulum lengths for a total of 80 trials. After each trial they reported a numerical 

estimate of the perceived difficulty.  The free-modulus component refers an open ended response 

scale. That is participants were free to choose any positive value to relate the magnitude of their 

perceived difficulty.  In addition to collecting subjective difficulty ratings state variables were 

recorded such that root mean squared error (RMSE) of time series tracking performance could be 

calculated. 

 Results 5.4.2

5.4.2.1 Effects of length and block on subjective ratings and RMSE. Data analysis proceeded 

conducting omnibus ANOVAs for the subjective ratings and RMSEs across the eight levels of length 

and ten levels of block.  The ANOVAs used Greenhouse and Geisser’s correction for violations of 

sphericity (1958; 1959).  Additionally, the subjective ratings exhibited such gross violations in 

sphericity that a log10 transform was warranted (a constant of 1 was added before the log10 

transform; some participants reported the an occasional rating of zero).  As anticipated, the 



325 

ANOVAs found that length was negatively correlated with both measures. The subjective rating 

measure had a F(7,63) = 20.368, p = 0.001, ε = 0.152 and RMSE measure had a F(7,63) = 333.536, p 

< 0.001, ε = 0.148. These 8 x 10 (length x block) ANOVAs found no reliable main effects of block and 

no reliable interactions of length by block (see Table 5.4.1).  

To test for learning effects more directly 8 x 2 ANOVAs were conducted across all eight 

levels of length but only the first and last blocks. If learning is occurring the greatest disparities 

would be expected between the first and last blocks (discounting the role of fatigue, see discussion). 

Besides replicating the main effects of length, a moderate main effect of block was found for the 

subjective ratings measure (F(1,9) = 7.145, p = 0.025). The main effect of block on RMSE was not 

reliable nor were any length by block interactions for both measures (see Table 5.4.2). The 

marginal means of subjective ratings suggest that the task becomes subjectively easier as 

familiarity develops (see Figure 5.4.1). The RMSE results come with the caveat that observed power 

is grossly insufficient to eliminate the possibility of Type II error but given that effect size is small, 

as measured by η2 at only 0.01, the sample size would have to be increased to over 780 participants 

to obtain a power of 0.80. Such an endeavor would likely be a poor use of a finite subject pool when 

overall RMSE marginal means dropped from 18.212° (1.456) across the first block to 17.107° 

(1.321) across the last block. Across the different lengths the largest difference between blocks 

occurred at the second shortest length (0.099) with an observed improvement of 3.612° (32.658 to 

29.046°, see Figure 5.4.2). These results suggest that while the perceived difficulty of the task 

decreases with familiarity the actual proficiency is remarkable intuitive and stable. Participants 

seem to perform at asymptotic levels within moments of encountering the task. Reasons why this 

might be will be elucidated in the discussion.  
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Figure 5.4.1 The log transformed rating data.  Found main effects of length and block. Error bars 
reflect 95% confidence intervals. 
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Figure 5.4.2 The RMSE data found a main effect of length but not block. Error bars reflect 95% 
confidence intervals. 
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5.4.2.2 Magnitude Estimation. Pendulum length can be correlated to subjective ratings using 

magnitude estimation. This can be accomplished by minimizing the psychophysical transfer 

functions: 

  ( )      

where, 

             g   u              u u ’     g   

  is the power exponent dependent on the transfer function 

   is an arbitrary proportionality constant related to the scale of I 

      ’    y     g  z       b v   qu         S  v  ’             (1953; 1970). By assuming that 

each participant maintained a consistent internal rating system throughout the course of the 

experiment it is possible to assess intrasubject variability by finding k and a  parameters for each 

block and looking at the dispersion across blocks. The exponential parameter a  is the more 

important of the two. The k parameter is somewhat arbitrary as it relates to the particular metrics 

used in the simulation as well as the range chosen by individual participants. The a expresses the 

extent to which a stimulus is compressed or expanded. If a = 1 a stimulus is perceived linearly. For 

example, visual lengths are perceived linearly. When a > 1 response expansion occurs; that is the 

ratio of perceived change exceeds the ratio of physical change. Electric shocks for instance induce 

response expansion. When a < 1 response compression occurs; that is the ratio of perceived change 

is less than the ratio of physical change. Brightness exhibits response compression.  Figure 5.4.3 

depicts how the a parameter affects magnitude responses to a variety of physical stimuli. 

Typically with magnitude estimation the measurement scale of the physical stimulus and 

the reported magnitude estimates are positively correlated which makes the a values always 

positive. In this instance, pendulum length negatively correlates with subjective ratings and RMSE. 

This in turn makes the a values negative. Values with magnitudes < 1 still reflect response 

compression and values with magnitudes greater than 1 reflect response expansion. Table 5.4.3   
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Figure 5.4.3 Steven’s power law.  Describes how the magnitude physical stimuli are perceived by 
our senses. 
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reports the average a values for each participant across the ten blocks. The magnitudes across all 

participants are less than one indicating response compression. Less compression (values closer to 

-1) indicate that a participant is more sensitive at detecting differences in pendulum length.  Across 

participants the average power exponent is -                     ’   ub     v       g          u   

for 66% of the variability in pendulum length changes. A similar approach can be applied to predict 

RMSEs by pendulum length. The results of this endeavor are shown in Table 5.4.4 and are depicted 

in Figure 5.4.4 through Figure 5.4.13.  This data shows that task performance as measured by RMSE 

shows less response compression in predicting pendulum lengths (M = -0.467, SD = 0.058) 

compared to subjective ratings (M =  -0.338, SD = 0.202). An unpaired one-way t-test assuming 

unequal variance (Welch–Satterthwaite) comparing the average subjective rating power exponents 

to the average RMSE power exponents shows significance at p = .04, t(10) = 1.95. This suggests 

that task performance is a better predictor of the difficulty manipulation than subjective reports. 

The R 2 values obtained during the least-squares optimization procedure for calculating the power 

functions adds further support to this claim (t(11)=4.65, p < .001). RMSE could account for nearly 

82% of length variability compared to the 66% predicted by subjective ratings.  

5.4.2.3 Intrasubject and intersubject variability.  Part of the reason RMSE does so much 

better at predicting length is because the measure exhibits much less intrasubject dispersity across 

blocks. Table 5.4.3 and Table 5.4.4 list standard deviations of a as well as coefficient of variations of 

a. Standard deviation expresses dispersity in units of the original measure whereas the coefficient 

of variation is a normalized measured of dispersion obtained by taking the ratio of the standard 

deviation by the mean. The coefficients of variation across the a parameters for RMSE are on 

average less than half that of those observed for the subjective rating estimates (M=.129 compared 

to M=.273). A t-test also shows these to be reliably different (t(18)=4.58, p < .001). These 

measures of intrasubject variability reflect learning, fatigue, familiarity, adaptation, vigilance, and 

other cognitive processes as well as noise. In addition to quantifying intrasubject variability it is   
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Figure 5.4.4 Magnitude estimates for subjective ratings and RMSE for Participant 1. 
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Figure 5.4.5 Magnitude estimates for subjective ratings and RMSE for Participant 2. 
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Figure 5.4.6 Magnitude estimates for subjective ratings and RMSE for Participant 3. 
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Figure 5.4.7 Magnitude estimates for subjective ratings and RMSE for Participant 4. 
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Figure 5.4.8 Magnitude estimates for subjective ratings and RMSE for Participant 5. 
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Figure 5.4.9 Magnitude estimates for subjective ratings and RMSE for Participant 6. 
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Figure 5.4.10 Magnitude estimates for subjective ratings and RMSE for Participant 7. 
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Figure 5.4.11 Magnitude estimates for subjective ratings and RMSE for Participant 8. 
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Figure 5.4.12 Magnitude estimates for subjective ratings and RMSE for Participant 10. 
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Figure 5.4.13 Magnitude estimates for subjective ratings and RMSE for Participant 11. 
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also important to quantify variability between participants since human ensembles are often non-

ergodic. This claim suggests that the variability in a single subject over time may not be equal to the 

variability of a group of subjects at a single moment in time. 

 A       g       ub     v    b    y       g   y                  b   u                  ’  

internal rating scales are non-equivalent. Some restricted their responses between 1 and 10, while 

others choose values as high as 100. These differences in range should affect the k parameter but 

not the a parameter. Therefore, it is the variability of a that is of interest. The second concern is that 

the cognitive components that factor into intrasubject variability should be accounted for otherwise 

the measure would reflect total variability and not merely intersubject variability. The solution here 

is to collapse across blocks and build a unified model for each participant. The average a values 

reported in Table 5.4.5 could be interpreted as a block averaged estimate for each participant, but 

in the strictest sense it is more appropriate to first calculate medians for each participant at each 

length over the ten blocks and then use these medians to conduct a magnitude estimation for each 

participant (see Figure 5.4.14). The rationale being, participants may not necessarily have 

internalized their ratings as having an interval measurement scale. However, the instructions 

should ensure that they are at least using an ordinal scale where higher values reflect more 

workload. Medians are also more robust to the positive skew exhibited in the subjective rating 

responses.  

The a parameters based on the median ratings are reported in Table 5.4.5. In many cases 

they are close to those found through averaging (in Table 5.4.4) although there are cases that differ 

by more than 10%. From Table 5.4.5 it is evident that the coefficient of variation across participants 

for the a parameter is 0.589. This is more than double the average intrasubject variability found 

across blocks (0.273). RMSE intersubject variability was also assessed based on median values 

across blocks. This data suggests that intersubject and intrasubject variability do not substantially   
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Figure 5.4.14 Magnitude estimates collaborated across participants. Participant magnitude 
estimates are based on median subjective ratings and median RMSE. 
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differ (see Figure 5.4.14). The average intrasubject coefficient of variability across blocks is 0.129 

and the intersubject measures at 0.102. This suggests that while the internalized ratings scales vary 

more greatly between participants than within any given participant the variability tracking 

performance is surprisingly consistent between participants. 

5.4.2.4 Intersubject magnitude estimation model.  The end goal of this experiment is to 

identify a psychophysical transfer function that can be applied to a naïve subject pool. Although 

intersubject variability is more than double intrasubject variability a unified model should still be 

able to account for a large portion of subjective difficulty variability.  A unified model was fitted by 

taking the geometric mean of the participant’s medians across block. The geometric mean is used to 

combine data between participants since they have different internalized scales. Optimum k and a  

values were found to be 4.300 and -0.340 respectively. The model fit with an R2 = 0.865 and was 

statistically reliable with a F(1,6) = 9.274 and p = 0.023. 

5.4.2.5 Correlation between subjective difficulty and task performance.  In the previous 

discussion of workload it was noted that subjective, physiological, and performance measures of 

workload may not be highly correlated. To indulge scientific curiosity, magnitude estimation can be 

applied to assess how changes in RMSEs relate to subjective ratings. Figure 5.4.15 depicts the 

results by participant as well as an overall fit across participants. The coefficients and 

accompanying inferential statistics for these regressions are listed in Table 5.4.6. These results 

show that RMSE could only predict 28% of the variability for participant 2, but could predict almost 

80% for participant 4. On average, the individual models could account for 63% of the rating 

variability. Despite accounting for a good deal of variability of the ten individual models none were 

statistically reliable. An overall fit across participants was found by first normalizing the responses 

of each participant between 1 and 10 and then performing the least squares regression. The overall 

model could only account for 38% of the variability and was not statistically reliable (F(1, 798) = 

0.622, p = 0.431 ).   



344 

Figure 5.4.15 Correlations between subjective ratings and RMSE.  In logspace power functions 

appear linear. 
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 Conclusions and Discussion 5.4.3

 Task performance requires almost no training to reach asymptotic performance and the 

variability between participants was observed to be about equivalent to the variability within 

participants. The perceived difficulty over the first hour decreases slightly (from the first block to 

the tenth block) but gross changes in subjective difficulty were not observed at any given length.  

These results also suggest that in this context task performance is more sensitive than subjective 

reports at assessing task difficulty. The consistency in performance suggests that tracking ability is 

fairly uniform amongst the participant pool of young adults with normal vision and motor function. 

While these results are encouraging further work is needed before the physiological algorithms are 

applied to the compensatory tracking task.  

As the results indicate performance and subjective ratings are fairly uniform until a critical 

instability is reached and performance quickly degrades. Workload theory would explain this by 

postulating that up until the point of instability cognitive resources are not being fully utilized. This 

results in the subjective ratings of difficulty and task performance having low sensitivity through a 

wide range of lengths and is evident as the stimulus compression exhibited in the magnitude 

estimation analyses. This line of research is postulating that physiological measures may be more 

sensitive than performance and subjective measures through this range. Before examining this 

hypothesis it is logical to examine whether incorporating a secondary task is sensitive to changes in 

pendulum length where tracking performance and subjective ratings are rather insensitive.  
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Table 5.4.1  
Length (8) x Block (10) ANOVA results 
 on subjective difficulty ratings and RMSE 
 

Source 
dfsource, 

dferror F p MSE ε η
2
 

Obs. 

Power 

log10(ratings + 1)        

Length 7, 63 20.368 .001 .183 .152 0.532 0.850 

Block 9, 81 1.395 .260 .026 .396 0.007 0.128 

Length x 

Block 
63, 567 1.389 .244 .015 .083 0.027 1.000 

RMSE        

Length 7, 63 
333.53

6 
<.001 43.619 .149 5.094 1.000 

Block 9, 81 0.319 .757 34.343 .252 0.005 0.003 

Length x 

Block 
63, 567 1.042 .410 15.380 .105 0.051 1.000 
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Table 5.4.2   
Length (8) x Block (2) ANOVA results 
 on subjective difficulty ratings and RMSE 
 
 

Source 
dfsource, 

dferror F p MSE ε η
2
 

Obs. 

Power 

log10(ratings + 1)        

Length 7, 63 14.402 .001 .040 0.199 .429 0.957 

Block 1, 9 7.145 .025 .020 1.000 .015 0.208 

Length x 

Block 
7, 63 0.373 .787 .026 0.460 .007 0.998 

RMSE        

Length 7, 63 106.397 <.001 26.104 0.164 3.973 1.000 

Block 1, 9 2.347 .160 12.854 1.000 0.010 0.080 

Length x 

Block 
7, 63 0.545 .656 23.095 0.430 0.018 1.000 
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Table 5.4.3  
Magnitude estimation power exponents (a) for rating 
 
Participant Average(a) SD(a) CV(a) R2 

1 

2 

3 

4 

5 

6 

7 

8 

10 

11 
 

-0.120 

-0.139 

-0.224 

-0.803 

-0.354 

-0.515 

-0.247 

-0.405 

-0.261 

-0.311 
 

0.027 

0.047 

0.049 

0.158 

0.105 

0.201 

0.066 

0.094 

0.089 

0.070 
 

0.229 

0.335 

0.219 

0.197 

0.297 

0.391 

0.266 

0.232 

0.340 

0.226 
 

0.702 

0.438 

0.746 

0.680 

0.756 

0.553 

0.588 

0.700 

0.703 

0.721 
 

Average:    -0.338    0.091    0.273    0.659 
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Table 5.4.4  
Magnitude estimation results of the power exponent a for predictions of RMSE 
 
Participant Average(a) SD(a) CV(a) R2 
1 -0.341 3.029 0.387 0.632 

2 -0.486 2.142 0.705 2.387 
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Table 5.4.5  
Magnitude estimation results based on the median ratings values collapsed across block 
 

Participant k a R2 F p 
1 

2 

3 

4 

5 

6 

7 

8 

10 

 

11 
 

7.623 

9.907 

3.314 

3.907 

3.005 

5.507 

3.677 

1.905 

4.592 

4.152 
 

-0.113 

-0.154 

-0.223 

-0.798 

-0.415 

-0.517 

-0.255 

-0.358 

-0.257 

-0.314 
 

0.822 

0.857 

0.842 

0.783 

0.946 

0.659 

0.726 

0.718 

0.758 

0.893 
 

4.628 

5.990 

5.335 

3.610 

17.569 

1.930 

2.655 

2.547 

3.139 

8.331 

0.075 

0.050* 

0.060 

0.106 

0.006** 

0.214 

0.154 

0.162 

0.127 

0.028* 

Average: 4.759  -0.340    0.800   

Std. Dev. 2.377 0.200    

CV: 0.499 0.589    

*- reliable at p < .05, ** - reliable at p < .01. All F-tests had 1 and 6 degrees of freedom. 
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Table 5.4.6  
Magnitude estimation results based on the median RMSE values collapsed across block 
 
Participant k a R2 F p 

1 

2 

3 

4 

5 

6 

7 

8 

10 

11 
 

8.745 

11.283 

13.209 

7.838 

10.799 

8.850 

9.376 

5.826 

7.087 

7.960 

-0.520 

-0.462 

-0.366 

-0.502 

-0.463 

-0.475 

-0.482 

-0.537 

-0.525 

-0.518 
 

0.925 

0.909 

0.932 

0.862 

0.936 

0.862 

0.878 

0.834 

0.855 

0.884 
 

12.401 

9.936 

13.640 

6.243 

14.600 

6.243 

7.180 

5.032 

5.906 

7.588 

0.012* 

0.020* 

0.010** 

0.047* 

0.009** 

0.047* 

0.037* 

0.066 

0.051 

0.033* 

Average: 9.097  -0.485    0.888   

Std. Dev. 2.172 0.050    

CV: 0.239 0.102    

*- reliable at p < .05, ** - reliable at p < .01. All F-tests had 1 and 6 degrees of freedom. 
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Table 5.4.7  
Magnitude estimation results predicting subjective ratings based on RMSE 
 
Participant k a R2 F p 

1 

2 

3 

4 

5 

6 

7 

8 

10 

11 
 

4.841 

6.038 

0.948 

0.212 

0.661 

0.681 

1.280 

0.588 

2.041 

1.545 

0.218 

0.233 

0.513 

1.491 

0.680 

1.014 

0.495 

0.687 

0.435 

0.526 
 

0.681 

0.280 

0.646 

0.797 

0.646 

0.637 

0.655 

0.762 

0.537 

0.693 
 

2.135 

0.390 

1.824 

3.919 

1.825 

1.754 

1.900 

3.197 

1.162 

2.253 

0.148 

0.534 

0.181 

0.051 

0.181 

0.189 

0.172 

0.078 

0.284 

0.137 

Average: 1.884 0.629    0.633   

Std. Dev. 1.966 0.380 0.143   

*- reliable at p < .05, ** - reliable at p < .01. All F-tests had 1 and 78 degrees of freedom. 
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Appendix 5.4.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 60 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.4.B Debriefing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

Physiological Workload Measures 

Experiment 4a 

 

Participant:____ 

Date:_________ 

 

1. How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

b. Are you right or left handed? 

2. Are you male or female? 

3. Did you notice that some trials were more difficult than others? 

4. Did you feel fatigued by the end of the experiment? 

a. If yes: Did you feel like fatigue influenced your performance? 

5. Do you feel like your performance overall got better? 

6. Did you have any eye-strain, fatigue, blurred vision, problems focusing on the target, etc. ? 

Any additional comments 
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This experiment examines how varying parameters of the internal model of the dynamic system 
influences how difficult it is to control. This experiment also looks at how much your performance 
increases over time. These results are intended to help us manipulate task difficulty in future 
experiments. 
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Appendix 5.4.C Human Assurances Approval 
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5.5 Experiment 5: Compensatory Tracking with Random Number Generation 

The previous experiment demonstrated that task difficulty in a compensatory tracking task 

can be manipulated by changing the length of the pendulum in the underlying physical model. 

These changes affect subjective ratings and tracking performance and subjective ratings and 

tracking performance covary with one another, but subjective ratings and tracking performance 

have low sensitivity when workload is underloaded. In this study a secondary task is incorporated 

as a means of assessing residual cognitive resources at varying pendulum lengths. In theory, a 

properly designed and implemented secondary task should be able to measure changes in 

workload by requiring participants to work at capacity throughout the duration of the experiment. 

Secondary task performance should decrease as residual capacity from performing the primary 

task decreases. The secondary task is also likely to interfere with the primary task and result in 

lower primary task performance.  

In this experiment an externally guided (externally paced) verbal random number 

generation (RNG) task was incorporated. The RNG task requires participants to produce a random 

list of numbers from a finite set of digits. Superficially the task seems simple, but producing random 

sequences of digits or letters has been found to be taxing on cognitive resources. The rationale 

behind the task lies in Baddeley and Hitch’s (1974) functional model of working memory. The 

model postulates a central executive controls and regulates cognitive processes. The central 

executive interacts with modality specific short-term memory stores known as the phonological 

loop and the visual-spatial sketchpad (Beech, 1984; Logie, 1995). Baddeley (1996) points to 

generalized impairments in both long-term and working memory as well as verbal and spatial 

reasoning in patients with Alzheimer’s disease as evidence for the construct of a central executive. 

Using random sequence generation tasks are theorized to load the central executive. Robbins and 

others (1996) found that random letter generation interfered with selecting the appropriate chess 

move. Koike and other (2011) have used random number generation as a diagnostic for measuring 
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prefrontal cortex dysfunction. Generating random sequences requires storing recently elicited 

responses and suppressing automated sequences (Spatt, 1996).   

Other studies have incorporated random tapping to load central executive resources 

(Zelanznik, Spencer, & Ivry, 2002; Noordzij, van der Lubbe, Neggers, & Postma, 2004).  Compared to 

truly random sequences human responses are often more serialized. That is they show a tendency 

to count in ascending or descending order (e.g.: 6, 7, 8; 3, 2, 1). Responses also exhibit repetition 

avoidance. Computer generated random sequences generally show far more repetitions compared 

to their artificial counterparts. Lastly, humans have tend to cycle through the set of responses (e.g. 

drawing numbers out of a hat without replacement until that hat is empty, then putting all the 

numbers back in the hat and repeat). Norman and Shallice (1980) have proposed that a supervisory 

attentional system (part and parcel to the central executive) acts to suppress such habitual 

tendencies. In addition to increasing the non-randomness of sequences, increased workload also 

decreases the maximum generation rate (Baddeley, 1996).  Baddeley also reports that the 

cardinality of the response set is negatively correlated with the maximum generation rate. For 

example, generating random sequences with letters (A-Z) should yield a slower maximum 

generation rate compared to digits (0-9).  

Over the years a variety of secondary tasks have been developed to segregate hypothetical 

constructs. A task known as articulatory suppression in which participants repetitively vocalize an 

irrelevant phrase or word is thought to disrupt the phonological loop and severely disrupts the 

processing of visually presented words (Besner, 1987). Spatial tapping (manual tapping) tasks in 

which participants repetitively tap a fixed sequence of targets (usually arranged in a grid) are 

thought to disrupt the visual spatial sketchpad (Witt, Laird, & Meyerand, 2008). The critical 

tracking task used in the previous experiment likely has a visual spatial component, but it is also 

likely the task has central executive components. The system exhibits fairly complex dynamics not 

entirely unlike those found in process control tasks or driving. Petzoldt, Bär, and Krems (2009)  
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found that the critical tracking task could serve as a stand in for a “complex driving task” in the 

context of driver distraction. If the RNG does disrupt central executive resources and the RNG is 

found to interfere with the critical tracking task it would provide some evidence that the tracking 

task may generalize to process control settings (the ultimate aim) and the physiologically based 

measures of workload may also generalize. A secondary task that disrupts the visual-spatial 

sketchpad, such as spatial tapping, would likely interfere with the critical tracking task but would 

be speak less to the external validity of using the physiological workload measures in low-

probability high-consequence settings. 

 Method 5.5.1

5.5.1.1 Participants.  Twenty six participants with normal or corrected to normal Snellen 

visual acuity of 20/30 participated in this study.  All were naïve to the hypotheses of the 

experiment. All participants were ethically treated in accordance with experimental protocols 

approved by the University of Idaho’s Human Assurance Committee (see Appendices 5.5.A – 5.5.C). 

5.5.1.2 Stimuli and Apparatus.  The stimulus and apparatus remained largely identical to the 

previous experiment. A secondary random number generation task was incorporated into the 

critical tracking task described in the previous study. This was accomplished by providing an 

auditory pacing mechanism (metronome). During each trial a 100 ms pure tone of 880 Hz played at 

a rate of 60 beats per minute through headphones. A boom mic on the headset served to record the 

verbal responses of the participants for later transcription.  

5.5.1.3 Procedure.  Before simultaneously performing the random number generation task 

and critical tracking task participants learned these tasks independently.  To avoid systematic 

carryover effects half of the participants first completed 24 trials of the generating random 

numbers followed by 24 trials of tracking. The remaining participants first trained with the tracking 

task. All of the trials were 30 seconds in duration. After participants were familiarized with both 

tasks they completed three blocks where they simultaneously performed both tasks across the 
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eight pendulum lengths described in the previous study. Participants reported subjective difficulty 

ratings using the free modulus method for trials involving the continuous control task. Participants 

were mandated to take short breaks between the training sessions and before the dual task session 

to reduce carryover effects related to fatigue.  

 Results 5.5.2

5.5.2.1 Effects of task (single vs. dual) and length on RMSE.  The previous experiment 

examined the role of length on RMSE in fair amount of detail. The analysis presented here is 

primarily to examine the role of task.  Contrary to my hypothesis performing both tasks 

simultaneously does not appear to result in a significant decrement in tracking performance. A 2 x 8 

x 3 x 2 mixed analysis of variance (ANOVA) was conducted over the two levels of task (single, dual), 

eight pendulum lengths, three blocks, and gender (male, female; see Table 5.5.1 for summary).  

As anticipated, length accounts for the vast majority of the variability in RMSE. The analysis 

revealed a strong main effect of gender (F(1, 24) = 20.037, p < .001, MSE = 314.461) and a length by 

gender interaction (F(7, 168) = 13.972, p < .001, ε = 0.156, MSE = 35.68) indicating males overall 

have lower tracking error than females (16.86 vs. 17.524; see Figure 5.5.1). The pattern of means 

suggest that males are more affected by task than. To examine whether something systematic is at 

work with just the male participants a follow-up ANOVA with task, length, and block was conducted 

(see Table 5.5.1). This analysis found a main effect of task (F(1, 11) = 10.925,  p = .007, MSE = 

27.967) as well as a task by block interaction (F(2, 22) = 6.325, p < .012, ε = 0.801, MSE = 11.362). 

Closer examination indicates that tracking performance was actually worse when males performed 

the single task as opposed to the dual task. Interpretation must also reflect the fact that all 

participants encountered the single task trials before the dual task trials. With this in mind, the 

interaction is most likely due to a learning effect (see Figure 5.5.2). If performing both tasks 

simultaneously is taxing performance the effect is trivial in relation to the observed learning effect.  

  



361 

Figure 5.5.1 RMS tracking error by length, gender, and task. Analysis revealed a main effect of 
length, a main effect of gender and a gender by length interaction. When only males 
are examined there is a reliable main effect of task but it is carried by a training 
effect. See Figure 5.6.2.2.  

 

 

Length (m) Length (m) 
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Further restricting the analysis to only blocks two and three yields no reliable main effects 

or interactions involving task. 

5.5.2.2 Random number generation dependent variables. In the literature a variety of 

algorithms exist for assessing the randomness of human generated sequences (Rabinowitz, 1970; 

Knuth, 1981; Evans, 1978; Kendall & Smith, 1938; Greenwood, 1955; Ginsburg & Wiegersma, 

Response bias and the generation of random sequences, 1991; Jahanshahi, Profice, Brown, Ridding, 

Dirnberger, & Rothwell, 1998). Ginsburg and Karpiuk (1994) conducted a factor analysis of ten of 

the commonly used metrics and found three underlying orthogonal factors for cycling, seriation, 

and repetition. To maximize power while minimizing familywise error, the varimax factor loadings 

published by Ginsburg and Karpiuk (1994) were used to calculate factor scores using the ordinary 

least squares method. These factor scores were used to assess the randomness of the participants 

verbalized digit sequences. Even though the random number generation task was externally paced 

participants sometimes did not emit precisely 30 digits or not all responses were in the digit set 0-

9. Because making valid comparisons requires digit sequences of equivalent length all out of set 

responses were discarded, and sequences greater than 30 digits were truncated to 30 digits while 

sequences shorter than 30 digits were appended with digits randomly chosen with replacement 

from the digit set. After the factor scores were projected univariate analyses of variance were 

conducted. 

5.5.2.3 Factor I (Cycling). The cycling scores indicate that participants were overall less 

random in the dual task conditions than the single task conditions (F(1, 24) = 11.527, p = .002, MSE 

= 2.575; see  Figure 5.5.3; see Table 5.5.2). The analysis also found that males are less random 

compared to females (F(1, 24) = 5.297, p < .03, MSE = 14.04; see Figure 5.5.3). Although, the three 

way interaction between task, block, and length is not reliable the pattern of means could indicate 

that the factor scores for the dual task condition and block one exhibit a ceiling effect.   
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Figure 5.5.2 RMS tracking error by block, task, and gender. The task main effect for male 
participants is trumped by a task by block interaction most likely due to improvement 
performance due to learning.  

 

 

  

Block Block 
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Figure 5.5.3 Cycling by task and gender. The analysis of cycling factor scores found a reliable main 
effect of task as well as a main effect of gender.  
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During the first block that the dual task is encountered cycling increases dramatically across all 

eight lengths (See Figure 5.5.4). To examine whether the length variable had a reliable effect on 

cycling after participants have some time to stabilize, a second ANOVA was conducted for the dual 

task trials over blocks 2 and 3 (see Table 5.5.2). This analysis found a reliable main effect of length 

(F(7, 168) = 2.404, p = .043, ε= .687, MSE = .609; see Figure 5.5.5). Although, the effect size is small 

(partial η2 = .091), the pattern responses agree with the hypothesis that became responses should 

become less random at the more difficult tracking lengths. The follow-up analysis also found a main 

effect of block (F(1, 24) = 4.691, p = .04, MSE = .850). Responses were less random in the third block 

compared to the second block. 

5.5.2.4 Factor II (Seriation). The omnibus analysis of the seriation factor scores found a 

main effect of task  [F(1, 24) = 5.836,  p = .024, MSE = 1.632], as well as a main effect of block [F(2, 

48) = 5.864, ε = .840, p = .008, MSE = .697], and a task by block interaction [F(2, 48) = 4.361, ε = 

.983, p = .019, MSE = .778; see Figure 5.5.6]. See Table 5.5.3.The task by block interaction shows 

that responses were actually less random during the single task trials than the dual task trials. At 

first this is counterintuitive, but because all participants received the single task treatment first the 

most plausible explanation is that participants were self-monitoring and learned to reduce the 

amount of seriation in their responses by the time they encountered the dual task conditions. Self-

monitoring counting behavior (a component of seriation) is more feasible than monitoring cycling 

behavior. Perhaps most importantly, the analysis also found a task by length interaction [F(7, 168) 

= 3.151, p = .010, ε = .730, MSE = .505; see Figure 5.5.7]. A follow-up ANOVA on just the dual task 

trials over all three blocks found a reliable main effect of length [F(7, 168) = 3.863, p = .002, MSE = 

.537]. As with the previous measure the pattern supports the hypothesis that increased tracking 

difficulty degrades randomness. The effect size is comparably small (partial η2 = .139).  
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Figure 5.5.4 Cycling by Task, Block, and Length. 
 For the dual task conditions over the first block the cycling factor scores exhibit a ceiling 
effect.  
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Figure 5.5.5 Cycling by Length (Blocks 2 and 3, Dual task only). Main effect of length on cycling 
over blocks 2 and 3 and the dual task conditions. 
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Figure 5.5.6 Task by block interaction on the seriation factor scores. 
 

 
  Block 
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Figure 5.5.7 Task by length interaction on the seriation factor scores. 
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5.5.2.5 Factor III (Repetition). The analysis of repetition factor scores found a main effect of 

block [F(2, 48) = 4.003, p = .030, ε = .874, MSE = .679] and a surprising three way interaction 

between task, length, and gender [F(7, 168) = 3.408, p = .009, ε = .650, MSE = .346; see Figure 5.5.8]. 

When the analysis was restricted to just dual task trials the interaction between length and gender 

was also reliable [F(2, 48) = 2.978, p = .025, ε = .733, MSE = .492]. See Table 5.5.4. Because this 

interaction was so unexpected and difficult to interpret, a third ANOVA was conducted with only 

participants whose median factor scores were within 1 standard deviation of the overall median. 

This restriction excluded 3 participants in total. This analysis also found a reliable length by gender 

interaction is reliable [F(7, 147) = 2.808, p = .023, ε = .671, MSE = .391; see Figure 5.5.9]. The 

distinct peaks for males and females may be related to how the primary task is performed and 

perceived differently by the separate genders, but I am hesitate to speculate beyond that. 

 Conclusions and Discussion 5.5.3

 In this study simultaneously performing a critical tracking task and externally paced 

random number generation task caused small but reliable increases in the amount of cycling and 

seriating behavior. Tracking performance degraded when male participants performed both tasks 

but no reliable differences were found when both genders were assessed. Such gender differences 

are not unprecedented (Petzoldt, Bär, & Krems, 2009), but the rationale behind the differences is 

sparse. The effect may be partially due to gender differences with video games. According to  

Terlecki and others (2010) males play video games more often and spend more time playing games. 

Males and females also show distinct preferences for the types of games they play. They also found 

that males were more confident in their game playing abilities. They also note that a moderate 

cohort of woman play video games with regularity.    



371 

Figure 5.5.8 Repetition by task, length, and gender. 
Analysis of the repetition factor scores suggests a reliable 3 way interaction between task, 
length, and gender. 
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Figure 5.5.9 Repetition by length and gender. Analysis of the repetition factor scores still found a 
reliable length by gender interaction even with the outlier participants removed. 
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Table 5.5.1  
ANOVA results on RMS tracking error 

Source 
dfsource, 

dferror F p MSE ε G η
2
 

Obs. 

Power 

Males and 

Females 
  

 
  

  

Gender 1, 24 20.037 <.001 314.46 - 0.184 1.000 

Length 9, 81 647.114 <.001 35.68 .156 0.853 1.000 

Length x 

Gender 
7, 168 13.972 <.001 35.68 .083 0.027 1.000 

Task x 

Block 
2, 48 6.55 .008 16.61 .717 0.008 .263 

Males Only        

Task 1, 11 10.93 .007 27.97 1 0.027 0.257 

Length 7, 77 241.98 <.001 43.57 .151 6.407 1.000 

Task x 

Block 
2, 22 6.33 .012 11.36 .801 0.012 .246 

Length x 

Block 
63, 567 1.042 .410 15.380 .105 0.051 1.000 
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Table 5.5.2  
ANOVA results on Factor I (Cycling) RNG Performance 

Source 
dfsource, 

dferror F p MSE ε G η
2
 

Obs. 

Power 

All Blocks, 

Both Tasks 
  

 
  

  

Gender 1, 24 5.30 .030 14.00 - 0.062 .090 

Task 9, 24 11.53 .002 2.58 1 0.026 .999 

Blocks 2 & 3, 

Dual Task Only 
     

  

Length 7, 168 2.40 .043 .609 .687 0.025 .566 

Block 1, 24 4.70 .040 .850 1 0.010 .454 
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Table 5.5.3  
ANOVA results on Factor II (Seriation) RNG Performance 

Source 
dfsource, 

dferror F p MSE ε G η
2
 

Obs. 

Power 

Both Tasks        

Task 1, 24 5.84 .024 1.63 1 0.010 .899 

Block 2, 48 5.86 .008 0.70 .840 0.009 .751 

Task x 

Length 
7, 168 3.15 .010 0.51 .730 0.012 .988 

Task x 

Block 
2, 48 4.36 .019 0.78 .983 0.007 .998 

Dual Task Only        

Length 7, 168 3.86 .002 .709 .758 0.010 .856 
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Table 5.5.4  
ANOVA results on Factor III (Repetition) RNG Performance 

Source 
dfsource, 

dferror F p MSE ε G η
2
 

Obs. 

Power 

Both Tasks        

Block 2, 48 4.00 .030 0.679 .874 0.007 .668 

Task x 

Length x 

Gender 

7, 168 3.41 .009 0.346 .983 0.011 .989 

Dual Task Only        

Length x 

Gender 
7, 168 3.86 .002 .709 .758 0.010 .856 

Dual Task Only, 

Outliers 

Excluded 

     

  

Length x 

Gender 
7, 147 2.808 .023 .391 .758 0.010 .734 
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Appendix 5.5.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 60 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.5.B Debriefing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

Physiological Workload Measures 

Experiment 4b 

 

Participant:____ 

Date:_________ 

 

1. How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

b. Are you right or left handed? 

2. Are you male or female? 

3. Did you notice that some of the tracking trials were more difficult than others? 

4. Did you use any particular strategy to generate random numbers? 

5. Did you use any particular strategy to stabilize the dot? 

6. When performing both tasks did you prioritize one more than the other? 

7. Did you feel fatigued by the end of the experiment? 

a. If yes: Did you feel like fatigue influenced your performance? 
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8. Do you feel like performing both tasks was more difficult than performing the tasks 

independently? 

9. Did you have any eye-strain, fatigue, blurred vision, problems focusing on the target, etc. ? 

Any additional comments 

 

This experiment examines how varying parameters of the internal model of the dynamic system 
influences how difficult it is to control. When the system is more difficult to control your verbal 
responses are hypothesized to become less random. These results are intended to help us manipulate 
task difficulty in future experiments. 
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Appendix 5.5.C Human Assurances Approval 
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5.6 Experiment 6: Compensatory Tracking with continuously Varied Difficulty 

The previous experiment established that discretely varying the length of a simulated 

pendulum across short 30 second trials significantly affected tracking performance. The previous 

experiment also established that introducing random number generation as a secondary task 

produced subtle yet reliable degradations in random number generation performance. Here I 

examine whether these same degradations occur when pendulum length is manipulated in a 

continuous fashion.  With real-world tasks difficulty may change in a continuous fashion without 

clear demarcations between transitions. An ideal measure of cognitive workload should be able 

measure both the absolute cognitive workload as well as its derivative as this will allow for leading 

measures of workload. 

 Method 5.6.1

5.6.1.1 Participants.  Twenty three participants with normal or corrected to normal Snellen 

visual acuity of 20/30 participated in this study.  All were naïve to the hypotheses of the 

experiment. All participants were ethically treated in accordance with experimental protocols 

approved by the University of Idaho’s Human Assurance Committee (see Appendices 5.6.A – 5.6.C). 

5.6.1.2 Stimuli and Apparatus.  As with the previous experiment participants performed a 

critical tracking task. Here, we varied the length of the pendulum in a manner specifically designed 

to produce sinusoidal changes in subjective workload with a period of 120 seconds.  Pendulum 

lengths were chosen such that the amplitude of subjective workload varied between what most 

people would consider a moderate difficulty (a rating of 6) and what most people would consider 

very difficult (a rating of 11). This is possible by using the inter-participant magnitude estimation 

model obtained from Experiment 5.5 describing how the length of the pendulum correlates to 

subjective difficulty across participants. This can be more precisely expressed as a function of time, 

 ( )  
       

((     (  (
 

   
)       )(    )  )
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At its shortest (when (    )          ) the simulated pendulum is 0.085 meters in length. 

This is between the shortest and second shortest lengths used in Experiments 5.4 and 5.5. The 

pendulum at its longest is 0.506, which is just beyond the 5th length used in Experiments 5.4 and 

5.5. Graphically the length resembles an inverted cosine whose troughs have been widened (see 

bottom panel of Figure 5.6.1). Participants also performed the paced random number generation 

task previously described. 

5.6.1.3 Procedure.  The procedure was similar to the previous experiment. Before 

simultaneously performing the random number generation task and critical tracking task 

participants learned these tasks independently.  To avoid systematic carryover effects half of the 

participants first completed a ten minute trial of the generating random numbers followed by ten 

minute trial of tracking. The remaining participants trained with the tracking task first and then the 

random number generation task. After participants were familiarized with both tasks they 

completed a ten minute trial where they simultaneously performed both tasks. Participants were 

mandated to take short breaks between trials to reduce carryover effects related to fatigue.  

 Results 5.6.2

5.6.2.1 Effects of task (single vs. dual) on tracking performance.  The previous experiment 

conducted time series analyses comparing single and dual task tracking performance and failed to 

find any generalizable differences (males were better with the dual task, although participants 

always received the dual task treatment last). In this experiment the increased trial duration makes 

examining performance at the disturbance frequencies possible. In addition to countering the 

positive feedback effects of gravity, participants also had to manage a five component sum-of-sines 

disturbance with frequencies of 0.13, 0.21, 0.47, 1.13, and 1.93, and respective amplitudes if 30, 22, 

18, 12, and 6. When the Fourier components of pendulum angle at these frequencies are examined 

the four lower frequencies are unequivocally reduced in the dual task trials compared to the single 

task trials (4 paired t-tests all p-values < 1e-9; See Figure 5.6.2 and Table 5.6.1).   
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Figure 5.6.1 Subjective difficulty manipulation.  Top panel illustrates how subjective difficulty 
should change over time. The bottom panel depicts how pendulum length varied over 
time. 
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This suggests participants are better at nulling the disturbance, and agrees with the reduction in 

RMS error exhibited by the male participants in the previous study. At the highest disturbance 

frequency component there is a reversal. Power is reliably lower for the single task condition [t(20) 

= 10.78, p = 4e-10]. Examining the number of times the participants allow the target to move off-

screen (a measure of instability) reveals some insight. Twenty of 23 participants had the target 

move off screen more times in the dual task than the single task. With the single task the target 

moves off screen an average of 32.5 (SD = 45.7) times per trial, with the dual task the target moves 

off an average of 75.5 (70.6) times. When these frequency counts are subjected to a two-tailed 

independent samples t-test this difference is found to be reliable [t(34) = -2.35, p < 0.025]. Taken 

together this suggests that participants improve on the pursuit aspect of the task but are worse on 

the compensatory aspect of the task. Performing the dual task essentially limits the band that they 

can maintain stability. The fact that performance improves in one regard while it degrades in 

another may also explain the insensitivity of RMSE with task differences. 

5.6.2.2 Calculating running random number generation factor scores.  To examine whether 

randomness correlates with the continuously changing difficulty I computed running measures of 

randomness. This process first requires replacing the participants’ out of set responses (e.g. 10, 11, 

…) and filing in non-responses. For each participant this was accomplished by first removing out of 

set responses and non-responses and building a first order Markov model based on their remaining 

response. The Markov model was then used to fill in their remaining responses. Running measures 

of cycling, seriation, and repetition were then calculated using a moving window of 30 digits and 

the algorithms and factor loadings presented in the previous experiment. The measures that feed 

the factor loadings can be heavily influenced by small differences between sequences. To eliminate 

such biases, the running factor scores used in the subsequent analysis are averaged over 20 of runs. 

The resulting time-series measures are presented in Figure 5.6.3 and Figure 5.6.4. 
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Figure 5.6.2 Power spectral densities of pendulum angle by task. PSDs were obtained with a NFFT 
of 2^15 and a Blackman-Harris 4 window. Lower indicates better performance. 
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Figure 5.6.3 RNG performance over time for RNG only.The panels reflect RNG performance during 
the RNG only trial. The top panel reflects cycling performance, the middle panel 
reflects seriation, and the bottom panel reflects repetition. The green trace depicts 
how difficulty changed during the CTT only and dual task only trials. The factor 
scores should be uncorrelated to the green trace. 

 

 
  

Time 

 

 



387 

Figure 5.6.4 RNG performance over time for Dual only. The panels depict RNG performance during 
the dual task trial. The top panel reflects cycling performance, the middle panel 
reflects seriation, and the bottom panel reflects repetition. The green trace depicts 
how difficulty changed during the CTT only and dual task only trials. Seriation was 
reliably influenced by the changing tracking difficulty 
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5.6.2.3 Effects of task on random number generation performance.  To examine whether 

simultaneously performing the critical tracking task and random number generation task degraded 

the performance of random number generation the normalized power spectral density (NPSD) at 

0.0083 Hz (period of 120 seconds) was obtained using discrete time Fourier transformation. If the 

factor scores are positively or negatively correlated with the difficulty signal power at this 

frequency should increase. Across participants Factor I (cycling) had a 20% increase in power at 

0.0083 Hz but a one-tailed t-test failed to reject the null (t(44) = 1.279, p = .104). Factor II 

(seriation) had a 28% increase in power at 0.0083 and a one-tailed t-test found significance at 

.0498 (t(44) = 1.682). Factor III (repetition) scores increased by 4% and yielded a significance level 

of 0.386. When the Factor I and Factor II scores were combined using the Euclidean norm (treats 

components as orthogonal) a one-tailed t-test is significant at 0.0179 (t(44) = 2.165). The Euclidean 

norm treats the components as orthogonal and the result suggests that cycling and seriation are 

affected by the changing pendulum length. See Table 5.6.2. 

5.6.2.4 Phase of random number generation factor scores relative to subjective difficulty.  The 

NPSDs suggests that the changing difficulty influences random number generation but it does not 

tell us whether random number generation degradation is positively or negatively correlated to 

tracking difficulty. Examining the phase lag between the difficulty signal and the factor scores can 

provide this information. Because the random number generation reflects the randomness over a 

moving window of 30 s the factor scores should lag behind the difficulty signal by 15 s or pi/4 

radians. These phase lags relative to the difficulty signal with a 30 second rectangular window 

applied are depicted in Figure 5.6.5. In this figure negative phases indicate lags, and positive phases 

indicate leads. For the most part the phase data suggests RNG degradations are positively 

correlated with tracking difficulty. The phase leads in the data for some participants are a bit hard 

to explain. The participants could be anticipating the difficult part after they realize they are passed 

the easiest part, then when the tracking because extremely difficult they might give up and wait for   



389 

Figure 5.6.5 RNG factor phase analysis.  Histograms of phases at 0.0083 Hz relative to the 
windowed difficulty signal for the Factor I (top) and Factor II (bottom) RNG measures 
for the 23 participants. 

 

 
 

 
 
 

 

  

0

1

2

3

4

5

6

Fr
e

q
u

e
n

cy
 

Bin 

Histogram 

0
1
2
3
4
5
6
7
8

Fr
e

q
u

e
n

cy
 

Bin 

Histogram 



390 

it to become easy enough to control. The participants who are completely out of phase could 

indicate changes in strategy. For example, when the tracking becomes difficult a participant might 

reduce cycling but increase seriating, or vice versa. 

 Conclusions and Discussion. As expected, simultaneously performing the random 5.6.3

number generation task and compensatory tracking task caused systematic deficits in tracking 

performance. Simultaneously performing both tasks also increased seriation and cycling behavior 

of the randomly generated digit sequences. Collectively, experiments 5.4, 5.5, and 5.6 provide 

empirical evidence that subjective workload can be systematically manipulated by varying 

pendulum length, and that the task difficulty manipulation affects central executive processes. And 

further, that gradual cyclical changes in task difficulty/workload occurring over 30 s moving 

window can be measured using a RNG secondary task. No previous studies have been found that 

continuous measured task difficulty or continuous monitored cognitive workload. 

  



391 

Table 5.6.1  
Paired t-tests comparing single  vs. dual task tracking performance at the five disturbance frequencies 
 

 Task     Cohen’s 

Frequency CTT Dual t p df r d 

        
0.13 Hz 55.825 

(4.284) 
49.807 
(5.563) 

 

18.88 3.2e-14 20 .990 1.24 

0.21 Hz 52.113 
(3.866) 

45.973 
(4.674) 

 

27.93 1.7e-17 20 .990 1.47 

0.47 Hz 47.925 
(3.328) 

38.111 
(4.871) 

 

25.46 1e-16 20 .977 2.41 

1.13 Hz 35.183 
(2.997) 

27.124 
(5.769) 

 

11.73 2e-10 20 .935 1.80 

1.93 Hz 20.716 
(3.990) 

24.751 
(4.361) 

-10.78 8.8e-10 20 .919 -0.99 

 

Dependent variable is the power spectral density of pendulum angle at the frequency of interest. 

Lower power suggests participants are better at compensating for the disturbance.  
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Table 5.6.2  
Independent one-tail t-tests comparing RNG Factor score power at 0.0083 Hz 
 

 Task    Cohen’s 

Frequency RNG Dual t p df d 

       
Factor I 0.302 

 (0.179) 
0.363 

(0.142) 
 

1.28 .104 44 0.39 

Factor II 0.348 
(0.141) 

0.446 
(0.239) 

 

1.68 .050 44 0.51 

Factor III 0.317 
(0.157) 

0.330 
(0.150) 

 

0.29 .386 44 0.09 

L2( Factor I, 
        Factor II) 

0.485 
(0.169) 

0.604 
(0.203) 

 

2.17 .018 44 0.65 
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Appendix 5.5.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 60 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.5.B Debriefing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

Physiological Workload Measures 

Experiment 4b 

 

Participant:____ 

Date:_________ 

 

1. How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

b. Are you right or left handed? 

2. Are you male or female? 

3. Did you notice that some of the tracking trials were more difficult than others? 

4. Did you use any particular strategy to generate random numbers? 

5. Did you use any particular strategy to stabilize the dot? 

6. When performing both tasks did you prioritize one more than the other? 

7. Did you feel fatigued by the end of the experiment? 

a. If yes: Did you feel like fatigue influenced your performance? 
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8. Do you feel like performing both tasks was more difficult than performing the tasks 

independently? 

9. Did you have any eye-strain, fatigue, blurred vision, problems focusing on the target, etc. ? 

Any additional comments 

 

This experiment examines how varying parameters of the internal model of the dynamic system 
influences how difficult it is to control. When the system is more difficult to control your verbal 
responses are hypothesized to become less random. These results are intended to help us manipulate 
task difficulty in future experiments. 
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Appendix 5.5.C Human Assurances Approval 
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5.7 Experiment 7:  Compensatory Tracking with continuously Varied Difficulty and 

Physiological Data Collection 

The previous experiment provided empirical evidence that when participants are engaged 

in a tracking task in which difficulty varies cyclically and continuously, cyclical degradations in 

tracking performance and secondary task performance occur.  In Experiment 7 we will examine 

whether our suite of physiological measures and novel analytical techniques is also sensitive to 

cyclical and continuously-changing levels of task difficulty.  Importantly, we will examine whether 

these measures show promise as leading indicators of mental workload that can help predict 

degradations in task performance.   Using the same tracking task and manipulation of task difficulty 

as Experiment 6, this experiment also collected the physiological measures of pupil diameter, 

respiration, skin conductance, and heart rate variability. These measures were analyzed offline 

using a suite of novel learning algorithms to search for leading indicators of workload amount the 

physiological measures.  

Several hypotheses were examined in this experiment. Previous experiments have used 

Daubechies four tap discrete mother wavelet kernel. Here we examine if using a continuous Morlet 

wavelet to obtain amplitude and phase information aids the resulting accuracy of models. 

Calculating amplitudes and phases from continuous transforms is mathematically simpler than 

with discrete transforms. With complex transforms one only has to take the norm to obtain the 

power. Discrete transforms require a moving quadratic mean calculation. Hence, it is hypothesized 

that precomputing amplitudes and phases from Morlet transforms will improve performance. 

Secondly, a variety of non-linear machine learning algorithms are examined (GP, random 

forests, adaboost, SVM, and decision trees). Previously, I have shown that GP is superior LDA. LDA 

however lacks some of the sophistication of these other approaches. GP is expected to do well, but 

no other explicit hypotheses are made in this regard. 

Thirdly, the role of multiple physiological measures will be examined. My previous 

experiments have only used pupil diameter and skin conductance. Here HR/HRV is also recorded. 
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Although, much of the information is redundant with PD and SC it is expected to improve the 

accuracy of the resulting models. 

Fourthly, Models will attempt to use the physiological measures to classify the derivative 

task difficulty signal. Being able to identify derivative changes in cognitive workload is a necessary 

condition to developing predictive (leading) models of workload. 

Lastly, task performance will be analyzed. Task performance is expected to increase 

monotonically with task difficulty (e.i. pendulum length). Task performance is also hypothesized to 

lag the task difficulty manipulation. 

 Method 5.7.1

5.7.1.1 Participants.  Eight participants with normal or corrected to normal Snellen visual 

acuity of 20/30 participated in this study.  All were naïve to the hypotheses of the experiment. From 

those eight participants only five had fully intact datasets (tracking, PD, SC, respiration, HR/HRV) 

due to the technical difficulties associated with the physiological measurement equipment. All 

participants were ethically treated in accordance with experimental protocols approved by the 

University of Idaho’s Human Assurance Committee (see Appendices 5.7.A – 5.7.C). 

5.7.1.2 Stimuli and Apparatus.  As with the previous experiment participants performed a 

critical tracking task. Here the length of the pendulum was varied in a manner that should result in 

the subjective workload changing as a sinusoidal function with a period of 120 seconds.  

5.7.1.3 Procedure.  Because the previous experiment found significant individual 

differences in tracking ability participants completed three blocks of magnitude estimation trials at 

five discrete pendulum lengths ranging between 0.06 and 1.00m. The reported difficulty estimates 

were used to calibrate the second phase of the experiment. Table 5.7.2 provides a synopsis of the 

difficulty functions used across the eight participants. After participants completed the calibration 

trials they were given a short break of approximately five minutes before being setup with a ASL 

5000 head mounted eye tracker, Pro Comp Infiniti skin conductance monitor, Datalab 2000 
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respiration band and 3 lead EKG electrodes. Participants then completed a ten minute trial of 

compensatory tracking. Difficulty was manipulated sinusoidally with a period of 120 seconds and 

an amplitude spanning a subjective range each participant would considered 1 t0 6. 

 Results 5.7.2

5.7.2.1 Discrete versus complex wavelet kernels.  Previous wavelet approaches have used 

discrete kernels. These discrete kernels yield real-valued coefficients reflecting activity at 

orthogonal frequency bands. Complex wavelets yield complex-valued coefficients of activity. 

Assessing spectral power with complex wavelets is a matter of taking the L2-norm of the real and 

imaginary components. On the other hand, assessing the power of time-varying requires 

rectification and smoothing. For this reason it is hypothesized machine learning techniques may be 

aided by having the magnitude and phase angles from complex kernelled wavelets as opposed to 

discrete coefficients of discrete kernels. To test this hypothesis several supervised machine learning 

techniques were used to identify whether the sinusoidally varying workload signal was between 1 

and 3.5 or between 3.5 and 6. In total five machine learning techniques were compared: decision 

tree, adaboost, support vector machine (SVM), random forest, and symbolic regression with ALPS.  

A 2 x 5 (wavelet, machine learning) repeated measures ANOVA (with Greenhouse-Geisser 

correction) on ten-fold cross validation accuracies disconfirmed our hypothesis that complex 

wavelets improve classification accuracy. A main effect of wavelet [F(1, 4) = 41.051, p = .003,     = 

2.458,  observed power = 1.000 ] indicates that in fact the converse, that discrete wavelets provide 

superior classification accuracy, is more likely. Even though calculating spectral power is simpler 

with complex wavelet, the complex wavelets have more spectral leakage that might hamper 

classification. The main effect of technique [F(4, 16) = 74.279, p < .001, ε = 0.268,     =  6.988,  

observed power = 0.999] and interaction between wavelet kernel and technique [F(4, 16) = 41.758, 

p = .001, ε = 0.294,     = 2.458,  observed power = 0.833]were also found to be statistically reliable 

(see also Table 5.7.2). The two-way interaction is depicted in Figure 5.7.1 and Table 5.7.3. Best 
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performance was attained by random forests using discrete wavelet coefficients. Close behind was 

decision trees using discrete coefficients. A post-hoc Student-Newman-Keuls multiple comparisons 

analysis suggests this difference is not reliable. However the analysis did find that 35 of the 45 pairs 

are reliably different from one another. See Table 5.7.4  

Some of the machine learning techniques cope with amplitude and phase estimates derived 

from complex kernels better than others. Most notably, decision tree performance decreased by 

over 60% (.850 to .309) when the complex kernel was used. Other techniques were less hindered 

by the type of wavelet used. Up to this point impressive symbolic regression had been at the 

forefront of this discussion. Here random forests outshine symbolic regressors. This is likely due to 

the fact that random forests are an ensemble learner. They have several models which more or less 

vote to form a final decision. This might also explain why performance is so bad for the decision 

trees using complex coefficients despite the fact that random forests are essentially a collection of 

decision trees. The distinction is that the trees that do not improve performance are given little 

weight to the final estimates. 

5.7.2.2 Performance with multiple physiological measures.  A second set of random tree 

classifiers were used to systematically examine whether including skin conductance wavelet 

coefficients and heart rate variability increased the accuracy of classifier predictions. For each 

participant heart rate variability was assessed by first identifying R peaks with the hybrid complex 

wavelet detect scheme described by Fard, Moradi, and Tajvidi (2008). Heart rate (HR, a.k.a. pulse 

rate) and heart rate variability (HRV) were then calculated using a moving window of 15 seconds. 

In total four classifiers were developed for each participant. Every classifier was given the discrete 

pupil diameter wavelet coefficients while the inclusion of skins conductance and (HR/HRV) was 

factorially manipulated. A 2 x 2 ANOVA was performed on the resulting cross-validation accuracies. 

Only a reliable main effect of skin conductance was found  [F(1,4) = 15.629, p = 0.017 ,     =  2.720,  

observed power = 0.994].   
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Figure 5.7.1 Wavelet Kernel x Machine Learning Technique Interaction on cross validation 
accuracy of binary estimates. Interaction suggests that some techniques are hindered 
more by the complex coefficients than by the discrete coefficients. The error bars 
represent 95% confidence intervals. Post-hoc analysis suggests that decision tree-
discrete is not reliably different from random forest-discrete. 
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This main effect suggests that skin conductance does indeed improve classification accuracy (by 5% 

from 84.3 to 89.3%). The HR/HRV trend, while statistically inconclusive [F(1,4) = 5.653, p = 0.076 , 

    =  0.241,  observed power = 0.800], points towards HR/HRV actually having a detrimental 

effect on performance (see Table 5.7.5 for full ANOVA Summary). A Student-Newman-Keuls post-

hoc analysis suggests that the worse performing classifier (PD with HR/HRV) is reliably different 

from the best classifier (PD with SC) and the second best classifier (PD with SC and HR/HRV; see 

Figure 5.7.2 and Table 5.7.6). No other differences were deemed reliable at a Type I error rate of 

0.05. 

The results presented above strongly suggest that skin conductance aids mental workload 

classifications, and that the effect of HR/HRV is inconclusive. In chapter 2 I discussed how some 

believe low frequency HRV (<0.2 Hz) reflects sympathetic activity and higher level activity reflects 

parasympathetic activity (Houle & Billman, 1999; Guger, et al. 2004; Wiederhold, Davis, & 

Wiederhold, 1998).  To give HRV a second chance, low and high frequency activity was segregated 

with an 8th order Butterworth filter with a cutoff frequency of 0.2 Hz. This additional segregation 

did not make the results any more conclusive.  

Theoretically, all of the measures used here should be affected by sympathetic nervous 

system activity. Thus the measures are conceptualized as containing redundant information. The 

fact that HR/HRV might actually hamper performance indicates that the measures contain a great 

deal of noise.  To provide a better understanding of how pupil diameter, skin conductance, and 

heart rate variability are linearly related a correlational analysis was performed on the slowest two 

pupil diameter and skin conductance coefficients. A preliminary omnibus correlational analysis 

suggested that higher frequency correlations between different physiological measures were not 

meaningful. This also reduces the number of pairwise comparisons from 231 to 28. Due to the large 

number of cases (49920) resampling was used to randomly select 100 cases from each of the five 

participants.   
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Figure 5.7.2 Cross Validation Accuracies based on availability of SC and HR/HRV.Making HR/HRV 
data available to machine learning does not improve the accuracy of the resulting 
models.  
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The Larzelere and Mulaik step-down procedure was used to identify the reliability of the pairwise 

correlations. The analysis suggests that HRV is dominated by frequency content below 0.2 Hz (r = 

0.859, p = 7e-147). Heart rate was found to correlate with the slowest GSR coefficient (r = .451, p = 

1e-36). It also shows a reliable correlation of r = 0.451 (p = 2e-26) between the slowest SC 

coefficient and the slowest PD coefficient. Weak correlations (r values < 0.254) were also found 

between HRV and the slowest pupil diameter and skin conductance coefficients (see Table 5.7.7, 

and Figure 5.7.3).  

5.7.2.3 Classification of Workload Derivative.  Random Forests with PD and SC can classify 

the workload signal with close to 90% accuracy. If a person’s mental workload and the rate at 

which it is changing are known then first order predictions of future workload can be obtained. To 

identify whether it is possible to classify the derivative of the workload signal another set of 

optimization runs were used with random forests. Results found that random forests were able to 

classify the derivative signal with at least the same cross-validation accuracy with 4 of the 5 

participants (See Figure 5.7.4). This suggests that fairly accurate predictions of mental workload 

could be obtained from pupil diameter and skin conductance.  

5.7.2.4 RMS Tracking Error Analysis. To understand how tracking error is related to the task 

difficulty signal magnitude estimation was used to predict tracking error from difficulty. This was 

accomplished by first calculating RMS tracking error using a 13 second moving window. Then the 

trial was segregated into 46 epochs of 13 seconds each (epoch needs to be aperiodic of the 

sinusoidal disturbance to increase the variability of the aggregated difficulty means). This analysis 

found reliable correlations (at α=0.05) for 6 of the 7 participants (See Table 5.7.8). For 6 of the 7 

participants the regressions account for over 81% of the variability. The estimates suggest that 

tracking error is monotonically related to difficulty (see Figure 5.7.5). To be practical, a measure of 

workload should lead primary task performance. To examine whether the difficulty signal leads 

tracking error with this particular task discrete time Fourier transforms at 1/120 Hz were obtained   
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Figure 5.7.3 Correlations between PD, SC, and HR/HRV. Scatterplots between physiological 
measures and coefficients. HRV and HRV were low-transformed to reduce positive 
skew. 
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Figure 5.7.4 Cross-validation accuracies of random forests by participant at predicting workload 
and the derivative of workload 
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Figure 5.7.5 RMS Tracking Error by Participant. Tracking error is monotonically related to 
difficulty. 
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from the tracking error and difficulty signal. Phase lags and times could then be calculated between 

the two variables. The results of this analysis is in Table 5.7.9 and suggest that there is very little lag 

between task difficulty and primary task performance with this particular methodology. 

 Conclusions and Discussion 5.7.3

By continuously varying the length of the pendulum in the tracking task this experiment 

was able to manipulate task difficulty. These relatively subtle changes in workload were found to 

elicit changes in tracking performance and physiological measures. Physiological correlates of 

difficulty could be identified by using discrete wavelet transforms to decompose the physiological 

signals and applying machine learning. 

Contrary to my hypothesis including additional physiological measures did not significantly 

improve workload classification by the learning algorithms. Much of the information in HR/HRV 

signals is redundant with PD and SC. Additional measures also complicate the data collection. 

Applied systems would need to validate the quality of physiological systems and switch classifiers 

based on the available metrics.   

Most importantly, being able to quantify both workload magnitude and the derivative of 

workload suggests that predictive measures of workload can be obtained. These measures could 

potentially be used to augment human-machine interfaces to improve the overall safety and 

efficiency of human-machine systems. 
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Table 5.7.1  
Magnitude estimation parameters derived from discrete tracking trials. 
 
 Participant a k r2 F p  

1 -0.341 3.029 0.387 0.632 0.441 

2 -0.486 2.142 0.705 2.387 0.146 

3 -0.363 2.400 0.652 1.874 0.181 

4 -0.293 3.423 0.658 1.920 0.176 

5 -0.690 1.669 0.831 4.904 0.035 

6 -0.524 1.823 0.840 5.238 0.029 

7 -0.483 1.874 0.499 0.995 0.326 

8 -0.370 2.437 0.828 4.813 0.036  
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Table 5.7.2  
Wavelet Kernel x Machine Learning Technique Summary ANOVA Table 
 

Source df F p ε      observed power 

Wavelet 1, 4 41.051    .003 - 2.428 1.000  

Technique 4, 16 74.279 < .001 .268 2.428 0.999  

Wavelet x 4, 16 41.758    .001 .294 2.458 0.833  

Technique 
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Table 5.7.3  
Marginal Means for Wavelet Kernel by Machine Learning Technique 
 

Technique Wavelet Mean     Std. Error    95% Confidence Interval  
 
Adaboost          complex     0.363      0.027              0.309 - 0.416  

Adaboost          discrete    0.393      0.031              0.333 - 0.453  

Symbolic Regression      complex     0.544     0.025              0.495 - 0.594  

Symbolic Regression      discrete    0.576     0.012              0.553 - 0.599  

Decision tree     complex     0.309     0.025             0.260 - 0.358  

Decision tree     discrete    0.849      0.005             0.839 - 0.860  

Random Forest    complex     0.741      0.009              0.722 - 0.759  

Random Forest    discrete    0.900     0.001              0.898 - 0.903  

SVM               complex     0.324      0.015             0.294 - 0.353  

SVM              discrete    0.490      0.074              0.346 - 0.635 
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Table 5.7.4  
SNK: Step-down table of q-statistics 

 
Pair                           i     |diff|      q       range   df       p         
decision tree_complex vs. random forest_discrete      1  0.591    19.843   36    14      < .001  
random forest_discrete vs. svm_complex                2     0.577    19.346   35    14      < .001  
decision tree_complex vs. decision tree_discrete       3     0.540    18.131   34    14      < .001  
adaboost_complex vs. random forest_discrete           4     0.538    18.044   33    14      < .001  
decision tree_discrete vs. svm_complex                 5     0.526    17.635   32    14      < .001  
adaboost_discrete vs. random forest_discrete          6     0.507    17.017   31    14      < .001 
adaboost_complex vs. decision tree_discrete            7     0.487    16.333   30    14      < .001 
adaboost_discrete vs. decision tree_discrete           8     0.456    15.306   29    14      < .001    
decision tree_complex vs. random forest_complex      9     0.432    14.481   28    14      < .001    
random forest_complex vs. svm_complex                10     0.417    13.984   27    14      < .001    
random forest_discrete vs. svm_discrete              11     0.410    13.756   26    14      < .001    
adaboost_complex vs. random forest_complex           12     0.378    12.683   25    14      < .001    
decision tree_discrete vs. svm_discrete               13     0.359    12.045   24    14      < .001    
alps_complex vs. random forest_discrete              14     0.356    11.944   23    14      < .001    
adaboost_discrete vs. random forest_complex          15     0.347    11.656   22    14      < .001    
alps_discrete vs. random forest_discrete             16     0.325    10.891   21    14      < .001    
alps_complex vs. decision tree_discrete               17     0.305    10.233   20    14      < .001    
alps_discrete vs. decision tree_discrete              18     0.274     9.180     19   14      0.001  
alps_discrete vs. decision tree_complex               19     0.267     8.952     18    14      0.001  
alps_discrete vs. svm_complex                         20     0.252     8.455     17    14      0.002  
random forest_complex vs. svm_discrete               21     0.250     8.395     16   14      0.002  
alps_complex vs. decision tree_complex                22     0.235     7.898     15    14      0.004 
alps_complex vs. svm_complex                          23     0.221     7.402     14    14      0.006  
adaboost_complex vs. alps_discrete                    24     0.213     7.153     13    14      0.007  
alps_complex vs. random forest_complex               25     0.196     6.583     12    14      0.013  
adaboost_discrete vs. alps_discrete                   26     0.183     6.127     11    14      0.019  
adaboost_complex vs. alps_complex                     27     0.182     6.100     10    14      0.017 
decision tree_complex vs. svm_discrete                28     0.181     6.086     9    14      0.015 
svm_complex vs. svm_discrete                          29     0.167     5.590     8    14      0.023 
alps_discrete vs. random forest_complex              30     0.165     5.529     7    14      0.020  
random forest_complex vs. random forest_discrete 31     0.160     5.362     6    14      0.020 
adaboost_discrete vs. alps_complex                    32     0.151     5.073     5    14      0.021   
adaboost_complex vs. svm_discrete                     33     0.128     4.288     4    14      0.040   
decision tree_discrete vs. random forest_complex     34     0.109     3.650     3    14      0.053  
adaboost_discrete vs. svm_discrete                    35     0.097     3.261     2    14      0.037  
alps_discrete vs. svm_discrete                        36     0.085        -        -      -          -   
adaboost_discrete vs. decision tree_complex           37     0.084        -        -      -          -  
adaboost_discrete vs. svm_complex                     38     0.069        -        -      -          -  
alps_complex vs. svm_discrete                         39     0.054        -        -      -          -  
adaboost_complex vs. decision tree_complex            40     0.054        -        -      -          -  
decision tree_discrete vs. random forest_discrete    41     0.051        -        -      -          -  
adaboost_complex vs. svm_complex                      42     0.039        -        -      -          -  
alps_complex vs. alps_discrete                        43     0.031        -        -      -          -  
adaboost_complex vs. adaboost_discrete                44     0.031        -        -      -          -  
decision tree_complex vs. svm_complex                 45     0.015        -        -      -          -  
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Table 5.7.5  
Additional Physiological Measures Summary ANOVA Table 
 
Source df F p      observed power 

 

SC 1, 4 15.629    .017 2.720 0.994  

HR/HRV 1, 4   5.653    .076 0.241 0.800  

SC x 1, 4   4.630    .098 0.098 0.450  

HR/HRV  
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Table 5.7.6  
SNK: Step-down table of q-statistics 
  
Pair                           i     |diff|     q       range   df       p         
PD and HR/HRV vs. PD and SC        1     0.066    8.559       3    17    .001 

PD and HR/HRV vs. PD, HR/HRV and SC    2     0.060    7.849       2    17    .001    

pd vs. PD and SC            3     0.041       -        -     -           -      

pd vs. PD, HR/HRV and SC        4     0.036       -        -     -           - 

pd vs. PD and HR/HRV           5     0.025       -        -     -           - 

PD, HR/HRV and SC vs. PD and SC     6     0.005       -        -     -           -  
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Table 5.7.7  
Larzelere and Mulaik Significance Testing 
 
Pair               i     Correlation        p         alpha/(k-i+1)      

HRV vs. HRV0                  1          0.859   7e-147        0.002   

GSR_COEFF0 vs. HR            2          0.525     1e-36           0.002      

GSR_COEFF0 vs. PUP_COEFF0  3          0.451     2e-26           0.002      

HRV0 vs. HRV1                 4          0.316     5e-13           0.002     

HRV0 vs. PUP_COEFF0           5          0.254     9e-09           0.002     

HRV vs. PUP_COEFF0            6          0.240     5e-08           0.002     

GSR_COEFF0 vs. HRV0           7          0.228     2e-07           0.002      

GSR_COEFF0 vs. HRV            8          0.207     3e-06           0.002      

HRV vs. HRV1                  9          0.192     2e-05           0.003      

HR vs. PUP_COEFF0            10        0.168     2e-04           0.003      

PUP_COEFF0 vs. PUP_COEFF1 11      0.100         0.025           0.003         

GSR_COEFF0 vs. PUP_COEFF1  12        0.090         0.045           0.003         

HR vs. HRV1                  13        0.059         0.185           0.003         

HRV0 vs. PUP_COEFF1          14        0.054         0.230           0.003         

HRV1 vs. PUP_COEFF1          15        0.052         0.242           0.004         

HR vs. HRV                   16        0.046         0.308           0.004         

HR vs. PUP_COEFF1            17        0.044         0.328           0.004         

GSR_COEFF1 vs. PUP_COEFF0  18        0.041         0.358           0.005         

GSR_COEFF0 vs. GSR_COEFF1 19        0.036         0.425           0.005         

GSR_COEFF1 vs. PUP_COEFF1 20        0.031         0.483           0.006         

HRV1 vs. PUP_COEFF0          21       0.020         0.657           0.006         

GSR_COEFF1 vs. HRV1          22       0.020         0.659           0.007         

GSR_COEFF0 vs. HRV1          23       0.017         0.697           0.008         

HRV vs. PUP_COEFF1           24        0.016         0.716           0.010         

GSR_COEFF1 vs. HRV           25      0.013         0.772           0.013         

GSR_COEFF1 vs. HR            26       0.012         0.789           0.017         

HR vs. HRV0                  27       0.007         0.867           0.025         

GSR_COEFF1 vs. HRV0          28       0.002         0.956           0.050         
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Table 5.7.8  
Tracking Error by Difficulty Magnitude Estimate Results by Participant 
 
Participant df F p     MSE 

 

2 1, 45   7.176    .010 0.878 0.008  

3 1, 45   6.375    .015 0.864 0.004  

4 1, 45   4.545    .039 0.820 0.003  

5 1, 45   4.737    .035 0.826 0.005  

6 1, 45   4.206    .046 0.808 0.004  

7 1, 45   0.364    .549 0.267 0.048  

8 1, 45   5.259    .027 0.840 0.003 
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Table 5.7.9  
Primary Task Performance Lag by Participant 
 
Participant gain (dB)* lag (s)  

 

2 19.21     1.677      

3 16.96     4.258     

4 10.98     0.675     

5 16.12     0.156     

6 11.29     0.669     

7 23.01   11.836  

8   8.92     0.731  

 

* Gain calculated as      g   (
                  

                
) 

∤ Participant 7’s RMS tracking error did not reliable correlate with difficulty. Their calculated lag 

may be spurious. 
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Appendix 5.7.A Consent Form 

CONSENT FORM 

 

Idaho Visual Performance Laboratory 

Department of Psychology and Communication Studies 

College of Liberal Arts and Social Sciences 

University of Idaho 

Control of speed during altitude changes  

 

During this experiment you will be presented a display in a virtual environment. Various parameters of 

this display will be manipulated to examine stress and mental workload. In this experiment you will be 

asked to control movement in the virtual world using an input device such as a joystick.  

 

The data you provide will be kept anonymous. There will be absolutely no link between your identity and 

your particular set of data.  

 

Your participation will help increase knowledge of stress and mental workload. Subsequent to your 

participation the purpose and methods of the study will be described to you and questions about the study 

will be answered.  It is our sincere hope that you will learn something interesting about your visual 

system from this debriefing. 

 

The risks in this study are minimal, however displays simulating movement may on rare occasion cause 

motion sickness or eye fatigue in sensitive individuals. If at any time during the experiment you feel eye 

fatigue, dizziness, headache or nausea, please let the experimenter know immediately so that you can take 

a break before these symptoms become too intense. We endeavor to design our displays to minimize eye 

fatigue and motion sickness, and schedule periodic breaks to further reduce their occurrence.  As a result, 

these phenomena have not been a common problem in previous similar studies. 

 

Your participation will require 1 session of approximately 30 minutes.  You may withdraw from this 

study at anytime without penalty. You will receive partial credit for your time spent. However, please be 

aware that your data is useful to us only if you complete the experiment in its entirety. 

This research project has been approved by the University of Idaho Human Assurance Committee. As 

such, new information developed during the course of the research which may relate to your willingness 

to continue participation will be provided to you.  

 

Thank you for your participation 

 

Signature_______________________________________________ Date ____________ 

 

 

If you have further questions or encounter problems please contact:  

Dr. Brian P. Dyre 

(208) 885-6927 

bdyre@uidaho.edu 
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Appendix 5.7.B Debriefing Form 

Debriefing Form 

Department of Psychology and Communication Studies 

College of Letters, Arts, and Social Sciences 

INL Physiological Predictors of Workload 

Experiment 7 

 

Participant:____ 

Date:_________ 

 

1. Did you move your left hand during the course of the trial while the GSR was still hooked up? 

2.  How often do you play video games? 

a. What is your video game skill? (Bad, okay or good) 

b. Are you right or left handed? 

3. Do you identify yourself as male or female? 

4. During the second part did you notice that difficulty changed throughout  the trial? 

5. How uncomfortable was the eye-tracker when you first put it on? (1-10) 

6. How uncomfortable was the eye-tracker when you finished? (1-10) 

7. Did you find the eye-tracker distracting from the task at hand? 

8. Do you think that fatigue played a role in your performance? 
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a. How about fatigue from the eye-tracker? 

9. Did you have any eye-strain, fatigue, blurred vision, problems focusing on the target, etc. ? 

Any additional comments 
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Appendix 5.7.C Human Assurances Approval 
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 Conclusions Chapter 6:

The subject central to this dissertation pertains to measuring cognitive workload measures 

from physiological indicators. In time critical operations, such as process control, operators may 

not have time to report their subjective workload, or may not be explicitly aware of their mental 

states (see Chapter 2). Nuclear power plant operators often joke that operating a nuclear power 

plant is 99% sheer boredom interspersed with 1% sheer terror. When humans are under stress the 

autonomic nervous system initiates a fight or flight response. During the 99% of sheer boredom 

mild or even moderate stressors may increase arousal and aid decision making, but during the 1% 

of sheer terror too much stress may produce cognitive interference that may prevent operators 

from grasping the larger picture and selecting the appropriate actions even in situations where 

operators may be highly trained and normally competent (see Chapter 2). Despite these limitations, 

human operators play an essential and critical role to the overall reliability and functioning of plant 

operations.  

Being able to identify sensitive and diagnostic measures of mental workload is a complex 

challenge. Physiological measures are influenced by autonomic and environmental factors as well 

as cognitive workload. Physiological measures can also be influenced by a person’s overall health. 

The information we are actually interested in ends up buried and noise and obtaining usable 

measures requires a good deal of filtering and processing. In the beginning, the approaches used to 

decipher workload were rather naïve. The first experiment examined how pupil diameter and skin 

conductance magnitudes were affected by a series of faulted components while participants 

engaged in a simplistic process control task (DURESS).  This analysis was refined by applying short 

time Fourier transforms to the physiological signals and applying linear discriminate analysis. 

While the DURESS task offered external validity, the faulted components often went unnoticed. 

Unnoticed faults are unlikely to elicit changes in cognitive workload. This was remedied by using a 

pursuit control task. Rotating the control mappings was found to produce an immediate and salient 
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increase in tracking difficulty across participants. Evolutionary algorithms were able to use wavelet 

decomposed pupil diameter and skin conductance to classify the mapping state better than linear 

discriminate analysis.  

To systematically manipulate task difficulty a compensatory tracking task was developed. 

Experiment 5.4 validated that discrete changes in task difficulty caused systematic and reliable 

changes in subjective difficulty. Experiment 5.5 required participants to simultaneously performing 

a verbal random number generation task and compensatory. Previous research suggests that 

random number generation requires central executive processes to inhibit automated serialized 

responses (see Section 5.6); thus secondary task performance can be used as a measure of cognitive 

workload. As the compensatory became more unstable and consequently more difficult to track the 

generated sequence of digits became less random. Participants showed increased cycling and 

seriating behavior. This suggests that the compensatory tracking task loads central executive 

processes (critical for planning and decision making). Experiment 5.6 established that dual task 

performance decrements generalized to continuous changes in task difficulty. 

In the final experiment, evidence was found that both the magnitude and derivative of 

cognitive workload could be estimated with > 90% accuracy. This suggests that leading indicators 

of workload could be formed from relatively simply, potentially unobtrusive physiological 

measures. This holds significant practical relevance, as being able to identify cognitive workload 

when an operator is at a high risk of making a poor decision could offer magnitude orders of safety 

in operations were the human component is the primary source of risk.   

6.1 Empirical Contributions and Limitations 

Previous studies have demonstrated that secondary tasks can be used to measure residual 

cognitive ressources (Kahneman, 1973; Navon & Gopher, 1979; Moray, 1988). Dual task 

experiments using random number generation have shown that random number generation 

interfers with central executive processing (Zelanznik, Spencer, & Ivry, 2002; Noordzij, van der 
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Lubbe, Neggers, & Postma, 2004; Koike, Marumo, Kinou, Kawakubo, Rogers, & Kasai, 2011; Spatt, 

1996). No studies to date have examined the RNG in conjunction with critical tracking task. Here we 

demonstrated RNG randomness degraded as the difficult of the CTT was increased. This work was 

also able to use a moving window to produce a continuous measure of RNG randomness. This 

continuous measure was sensitive enough to detect slowing wavering changes in task difficulty. 

While the corpus of literature for subjective and task performance based measures of 

workload is large, the number of studies examining physiological based measures of workload is 

small. This work not only expands this body of knowledge, but substantiates it by linking it to both 

subjective ratings, and secondary task performance. 

Here physiological measures of workload were calculated offline. A logical next step would 

be to predict cognitive workload in real-time and use this measure to dynamically maximize 

primary task performance. The critical tracking task could be devised with a scoring system that 

rewarded small deviations and shorter pendulum lengths. An adaptive system would need to 

constantly monitor workload to keep the pendulum length at a point where the user can maintain 

control and maximize the rate the scoring accumulation rate.  

A second shortcoming is that primary performance does not significantly lag task difficulty 

with the CTT. This makes it difficult to assess whether physiological measures of workload can 

predict task performance. This could be due to the relatively quick time dynamics of the tracking 

task; with the CTT the system can become unstable in a fraction of a second and be can be stabilized 

in a matter of seconds. With process control tasks small deviations may take several minutes or 

even hours to accumulate. Returning to process control may yield leading indicators if the system 

dynamics are slower to evolve and a means of subtly manipulating task difficulty can be developed.  

On the empirical front, future work should focus on the diagnosticity of these measures. 

These measures may be influenced by not only cognitive workload but also arousal. These 

constructs are likely interdependent. The Yerkes-Dobson law describes how moderate levels of 
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arousal are necessary for optimal levels of performance (Yerkes & Dodson, 1908). When arousal is 

too high or too low cognitive resources cannot be efficiently allocated and performance suffers 

(Berkun, 1964; Capretta & Berkun, 1962; Lundberg, 1993; Porcelli & Delgado, 2009) .  While high 

levels of arousal may led to high workload, high arousal is not necessarily bad, and misclassifying 

arousal may lead to unintended consequences. To use a sports analogy we can think about the “in 

the zone” phenomena. While in the zone athletes are performing extremely well even though there 

arousal may be high. They are have the cognitive resources to keep up with task demands so their 

workload is at a nominal level. Mistaking arousal for high workload would be analogous to 

benching Michael Jordan while he is on a hot streak. From this illustration it should be clear why we 

should try to segregate arousal from workload. Because, the machine learning algorithms 

essentially fit the data to pre-specified examples it is possible that machine learning could be used 

to predict several psychological constructs. 

6.2 Analytical Contributions and Limitations 

The success here suggests that the application of machine learning is underutilized by 

cognitive science and perhaps essential to cutting edge science. It also demonstrates that less 

expensive/obtrusive physiological measures can be used to form measures of workload. 

While previous work has examined how pupil diameter is linked to cognitive workload 

(Nakayama & Katsukura, 2007; Nakayama & Shimizu, 2002) and has applied wavelet 

decomposition to pupil diameter (Marshall, 2000; 2002; 2007) the application of genetic 

programming and other machine learning techniques is novel. This work has found that machine 

learning is an effective tool to develop robust classifiers of cognitive workload. In particular, 

Brieman’s (2001) random forests and symbolic regression were particularly effective. 

The use of multiple measures is also novel. Current research tends to focus on a particular 

type of physiological measure (e.i. EGG, transcranial doppler, fNIR). Experiment 5.7 demonstrated 

that multiple measures can improve cross validation accuracies, but measures that are highly 
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redundant may actually hamper the resulting models.  

Random forests classifiers were found to best performance of the machine learning 

techniques tested. This may be attributed to random forests being ensemble learners. They have a 

“team” of models which “vote” to classify the input data. Other types of machine learning algorithms 

can be implemented as ensemble learners and may offer performance on par or superior to random 

forests. Readers should keep in mind that machine learning in this context should be considered a 

reverse engineering tool that allow us to decipher what information is carried by physiological 

signals and how it is represented. In the long-term, specific descriptions and models may be 

superior to these general problem solvers.  

Despite evidence that the critical tracking task loads central executive resources, these 

results may lack external validity to real world applications such as process control. In such settings 

operators may have to multitask while integrating information across multiple modalities while 

ignoring visual and auditory noise (visual clutter, alarms, communication amongst other operators, 

machines, etc.). The results here should be seen as establishing some of the first principles that may 

led towards integrated solutions.  
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