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Abstract 

 

 The health of freshwater systems has been in decline and human activities have been 

known to be the cause of the degradation of freshwater quality. To maintain our freshwater 

resources, watershed health assessment efforts are needed. To retain consistency and 

comparability between watersheds health assessments, construction of a Watershed Health 

Index (WHI) is an effective method to assess and compare watershed health. Several state 

agencies around the U.S. have developed WHIs to assess watershed health within their state. 

In this study, we aimed to develop a WHI for Washington State with past watershed data 

through data-based approaches. We used the metrics B-IBI as response variables and the 

watershed health indicators as the predictor variables in Partial Least Square (PLS) 

regression and Boosted Regression Tree (BRT) to generate relative influences of each 

indicator on the variability of B-IBI, and compiled the relative influences into weight factors 

to calculate the final WHI. The results showed low R2 (between 0.05 to 0.30) for the PLS 

regressions, and the two methods (BRT and PLS) resulted in different weight factors in the 

WHI. We suspect that the data structure and sample size may have contributed to the low R2, 

since most samples were non-continuous measurements of watershed indicators, or 

“snapshots”, which may capture extreme events that may not represent the actual health 

condition of the watersheds. 
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Chapter 1: Introduction 

 

1.1. Problem Statement 

 

Freshwater resources are crucial to humans and terrestrial life; we depend heavily on 

the ecosystem services provided by freshwater systems (Revenga, 2000). The health of 

freshwater systems has been in decline, and human activities have been known to cause 

degradation of freshwater quality, with stream systems within watersheds being the most 

vulnerable to urban development and agricultural activities (Allan, 2004; Hascic and Wu, 

2006). Freshwater resources around the world are experiencing accelerated decline in quality 

and quantity, raising the concerns of freshwater availability (Wetzel, 1992). Previous studies 

using satellite imagery identified shifts in global water storage due to human impact and 

global warming, predicting potential freshwater resource insecurity (Rodell, 2018). By 2050, 

a population shift of 3 billion into urban areas is predicted, which would drastically increase 

water demand and put current urban water supply under immense pressure (Robert, 2011). In 

addition to water demand, contamination of freshwater sources and destruction of watersheds 

can also lead to the lack of freshwater availability. Contaminated water sources tend to 

require a much longer time period for cleaning and restoration, suggesting preservation 

would be far more beneficial and economical than remediation (Peters and Meybeck, 2000).  

Watersheds impacted by human activities tend to experience symptoms such as 

altered water chemistry, physical habitat degradation, and reshaped biotic communities 

(Walsh et al, 2005). Alteration of habitats resulted by human activities, including 

modification of landscapes and vegetations in watersheds, not only alters the water quality, 

but also alters the hydrology of the systems (Peters and Meybeck, 2000). For instance, 
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increased impervious surface cover tends to generate higher runoffs and reduce water storage 

during precipitation events (Shuster, 2005), thus increasing the risk of flooding and other 

hydrological concerns. 

Governments around the world realize the importance of freshwater resource 

preservation and have implemented programs to reduce human impact. The U.S. 

Environmental Protection Agency (U.S. EPA) required states to adopt water quality standards 

that were used to assess water systems depending on the designated use as required by the 

Clean Water Act of 1972 (U.S. EPA, 2013). Sites that performed poorly would receive 

special attention from the state agencies and potentially require restoration to meet the water 

quality standards. EPA also suggested states to implement a form of watershed health 

assessment framework to monitor the health of watersheds (U.S. EPA, 2012). Preserving and 

maintaining the health of current watershed and freshwater systems is becoming critical to 

the well-being of current and future human society. Monitoring and management of these 

systems plays an important role in maintaining water quality and the integrity of our water 

resources.  

To better manage freshwater resources, it is crucial to understand and identify 

indicators of environmental health. Environmental health indicators are measurements that 

signal the health of ecosystems and are often used for assessing health of environmental 

systems without the need of measuring all aspects of complex systems (Rice, 2003). A useful 

environmental health indicator needs to be measurable, quantifiable, understandable and 

linkable to environmental system health (IMR, 2004). Management of freshwater system 

health requires understanding indicators of environmental health and using the indicators for 

watershed health assessment. For instance, benthic community diversity is a common 

candidate as a stream health indicator, due to the benthic community’s sensitivity to 
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environmental change within freshwater systems (Wetzel, 2001). When encountering 

environmental stress, benthic macroinvertebrate communities tend to experience diversity 

loss and tolerant species domination (Dudgeon et al., 2006). Benthic macroinvertebrates 

serve as a major food source for other vertebrates in streams, thus heavily influencing the 

health of other organisms in the system as well (Rosenberg and Resh, 1993). Implementing 

important indicators into an assessment framework to assess watershed health is crucial, as a 

good assessment framework can allow us to better understand watersheds and allows us to 

act as needed to protect the integrity of our freshwater systems. 

Watershed health indicators can be categorized in many ways. Washington State 

used three major categories for indicators that describe watershed health: physical habitat, 

water chemistry, and biological indicators (Larson et al., 2019). As presented in Figure 1, 

individual watershed health indicators are divided into the three major categories and each 

indicator can influence the overall health of the watershed. 
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Figure 1. The conceptual figure of the components that contribute to watershed health. 

Individual watershed health indicators within the three categories ultimately influence the 

overall health of the watershed. 

 

1.2. Purpose of Study 

 

 The purpose of this study is to explore the existing frameworks for assessing 

watershed health and introduce a more data-driven watershed health assessment tool for the 

State of Washington. The goal of my research is to develop a watershed health index that 

minimizes human bias and heavily relies on data analysis to construct the structure of the 

index. We will examine the methods and procedure of watershed health assessment 

frameworks constructed by the Environmental Protection Agency (EPA) and several state 

agencies that implemented watershed health assessments. We will attempt to use different 

data analytic methods to construct the watershed health index for comparison, and to 
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understand what is needed to improve the accuracy of our watershed health index for future 

iterations. 

 

1.3. Understanding Watershed Health Assessments 

 

Watershed based monitoring and assessment is known to be a good method for 

understanding freshwater quality and other environmental health factors, as watershed health 

reflects the overall health of complex systems within the watershed (Momenian et al., 2018). 

The health of watershed is known to represent ecological system functions within the 

watershed, which is a good measurement of ecosystem function and environmental 

conditions. By measuring watershed health, we would also get an insight on freshwater 

quality and the general health of the system. Therefore, developing a watershed health 

assessment tool can help with the management of freshwater systems by providing 

watershed-scale health assessment that can be used to make management decisions within the 

watershed. Watershed health assessment has gained popularity among ecologists and 

management agencies due to the inclusion of various ecological attributes in the integrated 

assessment (Hoque et al., 2012). However, developing a universally applicable watershed 

health assessment is extremely difficult due to the complex environmental factors that are 

region-specific, which may require individual assessment metrics for every geographical area 

(Tirkey et al., 2013). Due to this reason, individual states would need to have a watershed 

health assessment tool for their own geographical region. 

However, budget and resource constraints are challenges for local agencies to collect 

data for broader monitoring of watershed health (Larson et al., 2019). Furthermore, there are 

no standard criteria for evaluating watershed health to allow for comparison of health 
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between different watersheds (Fleming, 1999). The purpose of a watershed health assessment 

would be to collect only the data that reflects watershed health, which would allow for a 

more efficient use of agency resources and easier assessments. Producing health assessment 

results that are comparable between watersheds can also simplify and reduce resource needs 

for agencies when trying to do watershed health assessments. To address the issue of 

watershed health comparability, a watershed health assessment would need to be capable of 

generating results that allows for comparison between watersheds within a state.  
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Chapter 2: Review of Watershed Health Indices 

 

2.1.1. Overview of Watershed Health Assessment 

 

The assessment of watershed health requires a comparable, and consistent metric 

that summarizes the health condition of the watershed. An inclusive index system would be a 

great approach to retain consistency and comparability of watershed health assessments. An 

inclusive index for watershed health assessment was commonly known as a Watershed 

Health Index (WHI). Construction of a WHI is an effective method to assess and compare 

watershed health (Ahn and Kim, 2017). A WHI is an assessment score aggregated from a 

compilation of measurable, comparable, and consistent ecological information that 

summarizes the primary attributes of a watershed’s health condition (U.S. EPA, 2012). 
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Figure 2. The conceptual figure of the WHI structure proposed by U.S. EPA, the 

main WHI consists of 6 sub-indices with health scores that are aggregated to produce a health 

score for the main WHI. 

 

 The United States Environmental Protection Agency (U.S. EPA) provided guidelines 

on the construction of a WHI, which included six essential ecological attributes for watershed 

health assessment: landscape condition, habitat, hydrology, geomorphology, water quality, 

and biological condition (U.S. EPA, 2012). The EPA suggested that ecological indicators in 

each attribute should be used to develop a sub-index per attribute, and the six sub-indices 

would be combined to produce a comprehensive watershed health index score. The index 

values were relative and not absolute, meaning that the index proposed by the U.S. EPA was 

only to be used for comparisons between watersheds but not treated as an absolute health 
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score (U.S. EPA, 2012). 

 The guidelines provided by the U.S. EPA may not all be applicable to every region 

and state. Therefore, the development of a WHI should consider the area to be assessed and 

use data within the area for analysis. To better understand the methods used in developing a 

WHI, past efforts on WHI development by state agencies needs to be reviewed. By 

understanding past approaches we will learn insights on the advantages and disadvantages of 

past methods. The main questions to address are: (1) what are the critical 

ecological/environmental indicators to be included in the analysis, (2) what it the general 

structure of a WHI, (3) what are the best data exploration approaches, and (4) what are the 

capabilities and limitations of a WHI.  

 

2.1.2 WHI review: Minnesota State  

 

The Minnesota Department of Natural Resource implemented the Watershed Health 

Assessment Framework (WHAF) to assess health of watersheds within the State of 

Minnesota. In WHAF, there were five sub-indices that would each assess and produce a 

sub-index score for an ecological attribute of the watershed, and the 5 attributes implemented 

as sub-indices were taken from the ecological attributes suggested by the U.S. EPA. The five 

attributes include biology, connectivity, geomorphology, hydrology, and water quality. The 

sub-index scores is be compiled to generate a watershed health score for the watershed, 

scaled from 0 to 100 with 100 being the healthiest (Minnesota DNR). The main approach for 

aggregating sub-indices scores into the main index score was to produce a mean score by 

taking the average of the sub-index scores. 
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Figure 3. The conceptual figure of the main WHI structure in WHAF, the main WHI 

consists of 5 sub-indices with health scores that are aggregated to produce a health score for 

the main WHI. 

 

The biological sub-index was broken into four components with each generating 

component scores: terrestrial habitat quality, stream species quality, animal species richness, 

and at-risk animal species richness. The terrestrial habitat quality component was generated 

based on five ecosystem-specific habitat models. The stream species quality component 

considered three metrics, the Index of Biotic Integrity for fish, aquatic macroinvertebrates, 

and mussels, which were indices generated by the Minnesota Department of Natural 

Resources and Minnesota Pollution Control Agency. The animal species richness component 

and at-risk animal species richness component were generated by using previous statewide 

survey data, where the mean watershed values for each species group were calculated and 
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used as a comparison value to score every watershed (Minnesota DNR). 

The connectivity sub-index included three components: terrestrial habitat connectivity, 

aquatic connectivity, and riparian connectivity. The terrestrial habitat connectivity component 

assessed the total habitat/connector area divided by the watershed, the patches of habitat and 

connections were generated by a habitat quality model. The aquatic connectivity component 

was derived by calculating the density of structures, including dams, culverts, and bridges, 

within the total length of the affected streams/rivers in the watershed. Riparian connectivity 

component was calculated by finding the percent agriculture and developed land area cover 

within 200 meters of the total riparian area (Minnesota DNR). 

The geomorphology sub-index considered four components: soil erosion 

susceptibility, pollution sensitivity of near-surface material, climate water balance, and steep 

slope near streams. The soil erosion susceptibility component combined soil erodibility 

(K-factor) with a slope factor to produce a slope-scaled K-factor for each land area. The 

K-factors were averaged for each watershed to produce a linear scale for scoring. The 

pollution sensitivity of near-surface material component was calculated based on a pollution 

sensitivity model that was developed by the Minnesota Department of Natural Resource. The 

climate water balance component was produced by using the calculated water balance based 

on normal annual precipitation and evapotranspiration rates for Minnesota generated by local, 

quality-verified, weather sites (Minnesota DNR). 

The hydrology sub-index had five components: perennial cover, impervious cover, 

water withdrawal, hydrologic storage, and flow variability. The percent perennial cover in the 

watershed was used directly as the perennial cover index score. Perennial cover was derived 

from a previous dataset from the Multi-Resolution Land Cover Consortium, and the land 

cover classes considered to be perennial were forest, shrub, grassland, pasture, and woody 
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wetlands. The impervious cover index was calculated based on the total impervious area 

cover of the watershed. The imperviousness was determined by using satellite images, and 

the threshold for index score calculation was 4% based on previous studies. The water 

withdrawal index was generated based on the total permitted withdrawal from surface water 

and groundwater. The hydrologic storage index took two factors into account: water storage 

from lost wetland and water storage loss from altered watercourses. The water storage loss 

from pre-settlement to current was used to calculate an index score for hydrologic storage. 

The flow variability index was calculated using 33 Indicators of Hydrologic Alteration 

variables estimated from mean daily discharge data collected by USGS (Minnesota DNR). 

The water quality component included three sub-categories: non-point source, 

localized pollution source, and assessments. The non-point source index was generated based 

on two metrics, the chemical application rates to agricultural lands and previous data on 

fertilizer and pesticides from the National Agricultural Statistic Service. The localized 

pollution source index took six point-sources into account: registered animal feedlots, 

potential contaminant sites, superfund sites, wastewater treatment plants, open pit mines, and 

septic systems. The assessment index was generated by calculating the total percentage of 

water systems that meet the EPA water quality standard for aquatic life, aquatic consumption, 

and aquatic recreation (Minnesota DNR).  

The WHI of Minnesota was designed for simplified assessment of various ecological 

attributes of the watershed and for better understand the issues needing to be addressed. 

According to the Minnesota DNR, the purpose of developing the WHAF was to aid 

management decisions. The goal was to allow easier identification of factors that could 

change natural system response, which would be much quicker and less resource-consuming 

when directly addressing the main cause of the problem. The potential issue of the WHAF 



13 

 

 

was that by taking the average of sub-index scores to produce a final index score, it assumed 

all the ecological indicators had equal influence on watershed health. This method ignored 

the possibility of ecological indicators having varied influence on watershed health and did 

not assign weighing factors for producing the final WHI score. 

 

2.1.3 WHI review: Oregon State 

 

In the Pacific Northwest, the city of Portland provided a watershed health index 

(WSHI) for five watersheds within the Portland city limits. It was described as a 

semi-quantitative tool to indicate condition changes in watersheds, and a translation of 

ecological data to information that can be more readily understood by the general public 

(City of Portland, 2019). The WSHI was also designed to highlight potential problematic 

sites and allow management teams to shift focus on sites that required the most attention. 

Another goal of the WSHI was to monitor watershed health changes over the short and long 

term. The index incorporated indicators from four types of ecological attributes: hydrology, 

water quality (water chemistry), physical habitat, and biological communities (City of 

Portland, 2019).  
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Figure 4. The conceptual figure of the main WHI structure in WSHI, the main WHI 

consists of 4 sub-indices with health scores that are aggregated to produce a health score for 

the main WHI. 

 

Hydrological indicators factored in Effective Impervious Area (EIA) and Stream 

connectivity (% of piped streams), the purpose was to account for change in hydrology 

caused by man-made infrastructures and environmental alterations. Water indicators factor in 

nutrients ammonia-nitrogen, dissolved copper, dissolved oxygen, E. coli (individuals/100mL), 

water temperature, total mercury, total phosphorus, and total suspended solids. The water 

indicators could specify the potential source and type of pollution in the water systems. 

Physical habitat indicators factor in bank and flood plain conditions, riparian integrity, 

shallow water refugia and large woody debris count, substrate composition, and stream 
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accessibility. Biological indicators factor in terrestrial communities (birds), aquatic 

communities (fish), and aquatic macroinvertebrate communities. Biological indicators were 

assessed with the Predictive Assessment Tool for Orgeon (PREDATOR), a predictive model 

that would be able to predict the occurrence probability of a taxa at a test site at a specific 

time (City of Portland, 2019).  

The limitation for the WSHI scores generated for individual watersheds was that 

scores were not designed to be comparable between watersheds, but for monitoring change in 

condition over time for the same watershed (City of Portland, 2019). The WSHI was also 

limited to assessing streams and creeks, not larger rivers. The reason being that the data and 

model used for assessing larger waterbodies was different and current models may not be 

effective. 

 

2.1.4. WHI review: State of California 

 

 The State of California developed an integrated watershed health assessment 

framework to identify and characterize the relative health of watersheds within the state (US 

EPA, 2012). Three major index categories were created to aggregate 23 indicators that 

characterize the health of watersheds: Watershed Condition, Stream Health, and Watershed 

Vulnerability (US EPA, 2012).  
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Figure 5. The conceptual figure of the main WHI structure in the integrated 

watershed health assessment framework, the main WHI consists of 3 sub-indices with health 

scores that are aggregated to produce a health score for the main WHI. 

 

The watershed condition index included three sub-indices, relative watershed 

condition index, natural watershed condition index, and the anthropogenic watershed 

condition index. The three sub-indices accounted for percent natural land cover, percent 

intact active river area, sedimentation risk, percent artificial drainage area, dam storage ratio 

and road crossing density (US EPA, 2012). The stream health sub-index included four 

components: the relative stream health index, physical and biological habitat index, water 

quality index, and the instream biological condition index. Within the four components, 

indicators included were the California Rapid Assessment Method (CRAM) habitat 
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assessment score, physical habitat assessment score, stream conductivity, stream nitrate 

concentration, stream turbidity, and California Stream Condition Index (CSCI) biological 

assessment score (US EPA, 2012). The watershed vulnerability sub-index encompassed five 

components: relative watershed vulnerability index, climate change vulnerability index, land 

cover vulnerability index, water use vulnerability index, and fire vulnerability index. The five 

sub-indices aggregated 11 indicators: projected change in precipitation, projected change in 

mean temperature, projected change in minimum temperature, projected change in maximum 

temperature, projected change in baseflow, projected change in snowpack, projected change 

in surface runoff, projected land cover change, water demand, projected change in wildfire 

severity, and fire regime condition class (US EPA, 2012).  

 

2.2.1. Index structure and contents of WHI 

 

While the U.S. EPA provided guidelines for the indicators to be included when 

developing a WHI, the examples from MN, OR and CA show that they are not strictly 

adhered to. The six ecological attributes mentioned in U.S. EPA’s guidelines only provide a 

direction on what to monitor and did not include specific indicators to be included in the 6 

ecological attributes; the decision was left to the state agencies to decide the ecological 

indicators to be included in the WHI.  
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Table 1. Summary of the sub-indices in the WHI of the three states (MN, OR, and CA).  

WHAF - MN Biology Connectivity Geomorphology Hydrology 
Water 

Quality 

WSHI - OR 
Biological 

Community 

Physical 

Habitat 
Hydrology 

Water 

Quality 
 

IWAF - CA 
Watershed 

Condition 

Stream 

Health 

Watershed 

Vulnerability 
  

 

 The structures of WHIs reviewed indicated that the main index structure includes 

multiple sub-indices, with each of the sub-indices representing one type of ecological 

attribute or water quality factor. The common approach is to aggregate individual health 

indicators into sub-indices by compiling the indicators using conversion factors determined 

from past studies (Minnesota DNR), then sub-indices are manipulated to create the 

comprehensive index score. The purpose of using sub-indices to represent ecological 

attributes or water quality factor is to gather all possible information from every aspect of the 

watershed to create a comprehensive health assessment of the watershed.  

 The WHIs in Table 1 all appear to include indicators within three categories: 

physical habitat, biological condition, and water quality. Indicators of physical habitat is 

known to influence the living conditions of organisms within the watershed, and poor 

physical habitat conditions can result in reduced ecosystem services (Maddock, 2001). 

Biological indicators are commonly used as a measurement of environmental degradation 

and human impact, as some stream organisms are sensitive to changes in the surrounding 

environment (Tanaka et al., 2016). Water quality indicators can describe the overall condition 

of water systems within the watersheds and can be used to specify the impact of human 

activity in the surroundings (Mimikou et al., 2000).  



19 

 

 

The common indicators selected for biological health is the benthic community 

structure, which indicates the significance of benthic community structure on watershed 

health (Maddock, 2001). The benthic community structures are measured with Benthic Index 

of Biological Integrity (B-IBI), with each state using different B-IBI calibrated for the local 

environment. Area calibrated B-IBI better represents the biological health of stream systems 

and allow researchers to standardize assessments within the specified region (WA DNRP, 

2014). Common water quality indicators included in the three WHIs measure water 

conditions and chemical concentrations, including conductivity, dissolved oxygen level, pH, 

water temperature, Phosphorus concentration, and Nitrogen concentration. Indicators such as, 

conductivity, dissolved oxygen level, water temperature, and pH, have heavy influences on 

the health of biota in the water, which is crucial for watershed health (Tanaka et al., 2016). 

Indicators that represent chemical concentrations, such as P concentration and N 

concentration, can describe anthropogenic input of nutrients and help with watershed 

management effort (Hascic and Wu, 2006). 

 

2.2.2. Potential disadvantages of previous WHIs 

 

 WHI of Minnesota state and the City of Portland compiles the final WHI by taking 

the average of sub-index scores, which assumes all sub-indices have the same weight factor 

that makes up the final WHI score. The potential issue with such a method is that it does not 

account for potential differences in contributions different environmental indicators may 

have on watershed health. The more ideal approach is to create sub-indices and main index 

weight factors through the analysis of local watershed health data, which allows the data to 

provide unbiased objective information on the contribution of different watershed health 
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indicators on the health of the watershed.  

 The watershed health indicators selected for watershed health assessment in the 

three WHIs varies from continuous numerical data to categorical data collected through 

human judgement. While numerical data is a direct measurement of an indicator, categorical 

data collected through human judgement can result in biased data that may not best represent 

the actual conditions of the watersheds. To increase the accuracy of WHI, it is best to avoid 

human subjectivity by using a data-driven approach. 
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Chapter 3: Development of a Watershed Health Index for Washington State 

 

3.1. Introduction 

 

3.1.1 A Data Driven WHI for Washington State 

 

 The health condition of watersheds is a critical factor in a properly functioning 

ecosystem, both natural and anthropogenic activities heavily depend on a functioning 

watershed to provide ecosystem services (Hazbavi et al., 2016). Lack of understanding and 

care on watershed health can result in both environmental disaster and socioeconomical 

issues, which is why watershed health, known as the holistic condition of freshwater 

ecosystems within a watershed, is critical in maintaining the delicate balance of nature 

(Mirchi et al. 2009; U.S. EPA, 2012). Watershed characteristics often vary widely depending 

on the physical location of the sites, making it difficult to create generalized evaluation 

methods for watershed health for the entire United States (U.S. EPA, 2013).  

Watershed health monitoring has been an ongoing effort in Washington State, but it 

currently does not have a watershed health index. However, Washington State does have a 

watershed health monitoring program that aims to track trends and consistently monitor 

watershed health conditions. The Washington State Department of Ecology (WA DoE) 

recently conducted a statewide stream macroinvertebrate bioassessment to assess the 

environmental stressors that influence the biological integrity of the stream systems and 

found 60% of stream stretches to be in poor biological condition (Larson et al., 2019). The 

benthic macroinvertebrate community integrity is commonly used as an indicator for stream 

health (Wetzel, 2001), thus the statewide stream macroinvertebrate assessment results are 
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concerning and have implications for declining freshwater quality and the health of the 

watersheds in the state. 

 The WA state agencies have put in effort to better understand watershed health and 

freshwater systems. The statewide bioassessment assessed stream health by associating risk 

factors of health indicators to the Benthic Index of Biotic Integrity, or B-IBI (Larson et al., 

2019), which solely assessed the biological health of the stream systems and not all aspects 

of watershed health. While the B-IBI is a good indicator for stream health, watershed health 

assessments need the inclusion of more environmental attributes, such as physical habitat and 

water chemistry, because of the complexity of freshwater systems. The database from 

Washington State’s watershed health monitoring effort includes data from stream biological, 

physical and chemical attributes, thus making it possible to assess watershed health with 

appropriate methods. 

 To develop a WHI for Washington State, past monitoring data would be required 

for analysis to better understand the relationship between the ecological indicators and 

watershed health. WA DoE allocated resources to monitor watersheds within the state and 

created a database with watershed data for approximately a decade. The data was previously 

used to conduct a statewide stream macroinvertebrate bioassessment but not actively used for 

developing a watershed health index at this point. The goal of this study is to use the 

available data from WA DoE’s database to develop a WHI for Washington State. 

Development of a WHI for Washington state using B-IBI and historical water quality data 

provides an opportunity to apply newly developed data science tools. 

To utilize new data science tools for our WHI, we will need understand the general 

structure for constructing a WHI. Developing a watershed health index would require the use 

of an existing stream health indicator as a reference for the health of the stream systems. One 
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of the indicators most used for stream health nationwide would be the assessment of benthic 

macroinvertebrate communities in the streams (Wetzel, 2001). For Washington State, the 

Benthic Index of Biological Integrity (B-IBI) is a multi-metric index that is commonly used 

to assess the benthic macroinvertebrate communities (Larson et at., 2019). The B-IBI index is 

made up of 10 metrics: Total taxa richness, Ephemeroptera taxa richness, Plecoptera taxa 

richness, Trichoptera taxa richness, long-lived taxa, intolerant taxa, percent tolerant 

individual, clinger taxa, percent predator individuals, and percent dominance. 

Finally, we need to use modern tools to analyze the data. When analyzing a large 

dataset with multiple variables, dimensionality may be an issue when trying to understand 

relationships between variables. To reduce dimensionality of the dataset while minimizing 

loss of information, unsupervised machine learning, such as principal component analysis 

(PCA), can be used to understand water quality data (Karim and Taha, 2003). Unsupervised 

learning, such as PCA, aims to infer the original structure of the dataset; this allows for the 

understanding of relationships between variables without prior knowledge of the outcome. 

Another approach is using Supervised learning, such as Partial least square regression (PLS), 

are analytic tools that is capable of incorporating large datasets when understanding 

relationships in water quality data. PLS is a multivariate regression analysis that overcomes 

the problem of dimensionality in large multi-variable datasets (Khatri et al., 2020). 

Supervised learning requires prior knowledge of the outcome, in this case a known stream 

health index, to estimate the relationship between predictor variables and the outcome. Since 

this study would be using Benthic Index of Biological Integrety (B-IBI) as a reference for 

stream health condition, using supervised learning methods, such as PLS, would show how 

well the response variables are predicted by the predictor variables. Another supervised 

learning method used in watershed health and ecology studies is the Boosted Regression Tree 
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(BRT), as it has multiple advantages over linear regression (U.S. EPA, 2012). The BRT is 

capable of predicting most types of data, including numerical and categorical; BRT is 

insensitive to potential outliers in the dataset, allowing for easy data processing; BRT does 

not assume linear relationships, and capable of accounting for non-linear relationships 

between predictor and response variables.  

 The goal of this study is to create a WHI for Washington State that can assess 

watershed health with environmental indicators that are measurable, while including 

indicators that are not used in other health indices such as biological integrity indices and 

water quality indices. This would allow for parallel assessments of watershed health with 

different indices and help better understand the health condition of the watersheds. Unlike 

past examples where sub-indices included subjectively determined weighting factors, we aim 

to create an objective method of determining weighting factors using the available datasets 

and analytic tools. Eliminating subjective decisions can minimize human bias and allow the 

data to express the relationships between variables. 

 

3.2. Materials and Methods 

 

WA DoE’s watershed monitoring effort included collecting stream and river samples 

from 8 regions in the state since 2009. The monitoring objective was to characterize the 

biological, chemical and habitat condition of the streams and rivers, which would project an 

overall health condition of watersheds. The data collection was completed within a day, 

meaning that the data was a “snapshot” of the condition of the watersheds, and not 

continuously monitored data. The data can be divided into 3 attributes: biological, chemical, 

and physical habitat.  
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Biological habitat included benthic macroinvertebrate counts and vertebrate counts. 

Benthic macroinvertebrates were identified with taxon levels (family, genus, species) and life 

stage (larva, adult). Vertebrates were identified with scientific names, common names, and 

life stages (juvenile, adult, unknown) as well. 

 Water chemistry included conductivity, pH, dissolved oxygen amount and 

percentage, water temperature, turbidity. Water chemistry was measured once early in the day 

and once more later in the day for every site. Sediment chemistry included inorganic (Cu, Pb, 

Zn, N, P) and organic compound concentrations. 

Physical habitat included large woody debris, human influence, riparian zones, 

substrate composition and fish cover. Large woody debris counts were categorized by 

diameter and length. Human influence data identified land use (buildings, clearing, paths, 

landfills, mining activities, park/lawn, paved roadway/railway, pipes, trails, and wall/dam) 

near the sample site. Riparian zone data identified vegetation coverage of canopy, understory, 

and ground cover. Fish cover data recorded the percentage water surface coverage of 

different cover type (artificial structures, boulders, woody debris, bryophytes, filamentous 

algae, live trees, macrophytes, overhanging vegetation, undercut banks).  

 The database included 1467 data collection entries, with around 500 individual sites 

that were visited one to three times throughout the ten or more years. Approximately 460 

entries had incomplete datasets, 25 entries had no benthic macroinvertebrate data and 72 

entries only included benthic macroinvertebrate data. The data collection was a joint effort 

between seven agencies and organizations, and a Standard Operating Procedure (SOP) was 

followed during all the data collection events. However, selection of data was decided by 

individual agencies and organizations, thus some collection events did not include all data 
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assigned in the SOP. Selection of data was based on the ability of the entity to process 

samples and the availability of resources. 

 

3.2.1. Indicator selection 

 

Development of a watershed health index requires selection of environmental 

indicators for data exploration and analysis. The U.S. Environmental Protection Agency (U.S. 

EPA) guidelines suggest indicators from six essential ecological attributes for watershed 

health assessment: landscape condition, habitat, hydrology, geomorphology, water quality, 

and biological condition (U.S. EPA, 2012). However, the U.S. EPA does not specify specific 

indicators to be included in a WHI, and to include all possible environmental indicators 

within the six ecological attributes requires large monitoring efforts that may not be 

achievable depending on budget and resource availability. For example, WHIs developed by 

the City of Portland and the state of Minnesota each selected environmental indicators based 

on the need determined by the local agencies, and not strictly by the U.S. EPA’s 

recommendation. In this study, we focused on selecting environmental indicators available in 

the WHMweb database held by the Washington State Department of Ecology. We selected 

indicators that consisted continuous numerical variables and avoided categorical data. Extra 

environmental variables, annual precipitation and annual traffic count, were added through 

the use of ArcGIS. 

 

3.2.2 Data Processing 

  

 Since this study aims to use a data-driven approach to create a WHI that could best 
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describe the relationship between watershed health and ecological indicators, we need to 

eliminate ecological data that was recorded based on human judgement. Upon examination 

of the data collection SOP for the dataset provided by Washington Department of Ecology, 

we noticed that the collection of categorical data requires the data collectors to make 

judgement calls based on observations. Before proceeding to the analysis, modification to the 

dataset is needed to only include direct measurements that did not involve any human-based 

judgements, such as the chemical concentrations in sampled streams.  

Continuous numerical environmental indicator data was extracted from the 

WHMweb for processing, categorical data was not included in the extracted dataset to 

minimize human bias. A major limitation in the WHMweb data is that not all indicators were 

sampled for every data collection event, resulting in partially missing data within the dataset. 

Some multivariate analysis models, such as Partial Least Square regression, requires the 

input of a complete dataset and missing data was not acceptable as it would not allow proper 

functioning of the models (Wan et al.. 2020). Imputed averages were used to fill in missing 

values thereby addressing the issue with missing data. Imputed averages should not influence 

the overall distribution of the data and allows for the use of multivariate analysis on the 

dataset.  

 

3.2.3 Data Exploration: 

 

 The dataset includes over 1000 entries and 24 categories, which has high 

dimensionality and requires dimension reduction to understand. This study uses machine 

learning to perform dimension reduction techniques to find relationships between watershed 

health and the health indicators. We used an unsupervised learning approach to assess initial 
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relationship by running Principal Component Analysis (PCA), a routine used to reduce the 

dataset into a two-dimensional plot. The PCA provides loadings and a biplot that allows 

visualization of the relationships of health indicators while minimizing bias since PCA is an 

unsupervised learning method.  

 

 

Figure 6. Machine learning logic tree that guides researchers to select appropriate analysis 

methods during data processing (Hui, 2020) 

 

To further explore the dataset, we need to maintain the dimensionality of the dataset 

to avoid loss of information, we also need to assign a response variable to associate the 

stream health indicators to watershed health. According to Figure 6, datasets with numeric 

variables with response variables require the use of supervised learning, such as Partial Least 

Square Regression (PLS) and Boosted Regression Tree (BRT). PLS is known as a robust tool 

for multivariable statistical data analysis in water quality studies, isolating issues such as 
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collinearity and autocorrelation (Khatri et al., 2020). BRT is used in previous construction of 

watershed health assessment frameworks in California, it can process all data types and it is 

insensitive to outliers or incomplete datasets (U.S. EPA, 2012).  

We included more watershed health indicators into the construction of our WHI, 

data from external sources was included in the analysis. Two indicators, annual precipitation 

and traffic count, were extracted from ArcGIS using the maps provided by Washington State 

Department of Transportation. GPS coordinates from the DoE dataset were extracted and 

imported into ArcGIS to locate all sampled sites, data maps were laid over and additional 

data was obtained by interpolating between available data points on the GIS maps. 

 

Principal Component Analysis 

 

 We used python to standardize the dataset and input the dataset into the Principal 

Component Analysis model. The input variables were total taxa richness , Ephemeroptera 

taxa richness, Plecoptera taxa richness, Trichoptera taxa richness, long-lived taxa, intolerant 

taxa, percent tolerant individual, clinger taxa, percent predator individuals, and percent 

dominance, conductivity (µS/cm), total P (µg/L), water temperature (°C), dissolved O2 

(mg/L), suspended solid (mg/L), pH, total N (µg/L), Flow (cfs), percent fine sediments (%),  

coordinate index calculated by multiplying Latitude by Longitude that can represent 

individual locations with a unique numerical value, annual traffic count (passes/yr), annual 

precipitation (in).  

 

3.2.4 Designing the general structure of the WHI 
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 The U.S. Environmental Protection Agency (US EPA) suggests creating a WHI 

structure consisting of sub-indices that describe different ecological attributes (U.S. EPA, 

2012). Existing WHI structures in other states, such as Minnesota State, linked corresponding 

environmental indicators to the individual sub-indices to output sub-index scores, and the 

sub-index scores are manipulated by a pre-determined equation to calculate the final WHI 

index score (WA DNRP, 2014). We will be creating our WHI based on a similar structure 

suggested by the U.S. EPA, with one main index comprising of multiple sub-indices that 

represent different aspect of stream health and linking watershed health indicators to each 

sub-indices. The conceptual structure of the WHI is shown in Figure 7. The main Watershed 

Health Index score is a compilation of multiple sub-index scores, and every sub-index is a 

compilation score of individual watershed health indicator measurements evaluated through 

previous studies. We will use analytic tools to determine the influence of watershed health 

indicator measurements on the variability of sub-index scores, which will determine the 

relative influence of each watershed health indicator on the variability of each sub-index. 
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Figure 7. Conceptual figure of the general structure of the WHI. The main WHI 

consists of a summarized score of the multiple sub-indices. The relative influences of 

watershed health indicators on the variability of sub-indices are determined with analytic 

tools. Similarly, the relative influences of sub-indices on the variability of the main index are 

also determined with the same analytic tools. 

 

We used the Benthic Index of Biointegrity (B-IBI) as the health metric for 

measuring the health of streams sampled in the dataset. The B-IBI contained ten metrics, 

each metric describes the health condition of a specific group of benthic macroinvertebrates 

that can indicate different types of human disturbance (Wetzel, 2001). The ten metrics in 

B-IBI were each used as a sub-index during the WHI development since each metric 

included a portion of the information on the biological health of the evaluated stream (WA 

DNRP, 2014). The B-IBI is used as the watershed health metric for developing our WHI, 

which dictates that our WHI will have a similar structure as the B-IBI. The final WHI 
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comprises ten sub-indices that correspond to the ten metrics within the B-IBI. To determine 

the correlation between the B-IBI and the ten metrics, the B-IBI was disbanded into the ten 

metrics and investigated. The conceptual pipeline is displayed in Figure 8. The relative 

influence of the B-IBI metrics on B-IBI score and the relative influence of watershed health 

indicators on individual B-IBI metrics were determined through the use of supervised 

learning methods, Partial Least Square regression and Boosted Regression Tree. The relative 

influences are then used to convert individual watershed health indicators into a main index 

score. 

 

 

Figure 8. Conceptual pipeline of creating and using our WHI. The correlation 

between B-IBI score and individual metrics, and the correlation between individual metrics 

and watershed health indicators are determined by PLS and BRT analysis. Main WHI score is 

calculated by using relative influences as conversion factors between indicators and the main 

index.  
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3.2.5 Creating the WHI structure with Boosted Regression Tree 

 

 To determine the relationship between the B-IBI and its ten individual metrics, the 

B-IBI was entered as the response variable and the ten individual metrics were entered as the 

predictor variables in the Boosted Regression Tree (BRT) model. The BRT model output 

reports the relative influence of the ten individual metrics on B-IBI, with a maximum 

possible relative influence of 100%. The relative influences of the ten metrics were used as 

the weight factors for the ten corresponding sub-indices that made up the final WHI. Linking 

the stream health indicators to the sub-indices was the next crucial step. 

  The stream health indicators were entered into the BRT model as the predictor 

variables and each of the ten B-IBI metrics were entered as the response variable separately, 

which resulted in ten BRT model results. The relative influences of the stream health 

indicators on the ten individual B-IBI metrics from the BRT models were used as weight 

factors to convert the stream health indicators into the ten sub-index scores. The WHI 

structure created with BRT present a percentage relationship between the individual 

watershed health indicators and final WHI score 

 

3.2.6 Creating WHI structure with Partial Least Square regression 

 

PLS regressions was performed with B-IBI as the response variable, and each of the 

ten B-IBI metrics as the predictor variables, which resulted in ten PLS regressions. The 

explained variances of variables by PLS-components from each of the ten PLS regressions 

were generated and were summed up to make up a total explained variance for the ten PLS 

regressions. The individual explained varianc es of each of the ten regressions were divided 
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by the total explained variance to generate the percent influence of each metric on the B-IBI. 

The calculated percent influence was used as the weight factors for the WHI sub-indices to 

calculate the final WHI, and the main structure of the final WHI consisted of 10 sub-indices 

that added up to 1. 

The next step was to correlate the stream health indicators with the 10 individual 

B-IBI metrics, which corresponded to the ten sub-indices. To determine the relationship 

between each B-IBI metric and the stream health indicators, PLS regressions were performed. 

Each of the B-IBI metrics were used, individually in separate PLS regressions, as the 

response variables and the stream health indicators were used as the predictor variables, 

which resulted in ten PLS regressions. Similar to the generation of the main WHI structure, 

the explained variance of variables by PLS components were summed up to a total explained 

variance, and the explained variance of each stream health indicators was divided by the total 

explained variance, to generate the percent influence of each stream health indicators on the 

sub-indices. The calculated percent influence was used as weights to convert the stream 

health indicators into the final sub-indices scores. The WHI structure created with PLS 

present a percentage relationship between the individual watershed health indicators and final 

WHI score 

 

3.2.7. Conversion of sample data to health scores 

 

 Sample data of the individual watershed health indicators will need an initial 

assessment to be converted into indicator health scores before being entered into the WHI 

assessment. To create the initial assessment system, we will isolate sample sites with B-IBI 

higher than 75% from the full dataset as the healthy group. Other sample sites with B-IBI 
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lower than 75% are considered not healthy enough and will be excluded for this section. The 

means and standard deviations of the individual watershed health indicator are calculated. 

The calculated means of the watershed health indicators in the healthy group are used as the 

100% thresholds for converting watershed health indicator data into indicator health scores, 

and deviations from the 100% thresholds of 2 standard deviation will result in scores of 0%. 

The means and standard deviations of watershed health indicators in the healthy group will 

be used to linearly scale the initial assessment scoring system as shown in Figure 9. The 

threshold for good condition will be at 50% and higher, or 1 standard deviation or less from 

the mean. Any indicator measurement that deviates more than 2 standard deviations from the 

mean will be considered in poor condition and receive a score of 0%. 

 

 

Figure 9. Illustration of the linear scoring scale of the initial conversion of watershed health 

indicator data to indicator health score. 

 

3.3. Results 

 

3.3.1 Unsupervised Learning: Principal Component Analysis 

 

 Results from PCA indicated that Principal Component 1 (PC1) and Principal 

Component 2 (PC2) explained 27.47% and 9.67% of the variance in the dataset, respectively. 
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Loadings of each stream health indicator on PC1 and PC2 is presented in Table 2, the PCA 

plot and graphical presentation of the loadings are presented in Figure 10. There was no 

major clustering identified in the PCA plot, samples were scattered across the plot. 

 

Table 2. PCA Loadings of each stream health indicator variable on PC1 and PC2. 

Variable 
Principal Component 

1 

Principal Component 

2 

Total Taxa Richness (total) -0.5885 -0.3425 

Ephemeroptera Richness (may) -0.7523 0.0220 

Plecoptera Richness (stone) -0.7896 -0.0115 

Caddisfly Richness (caddis) -0.7012 -0.3467 

Long-lived Richness (long) -0.6903 -0.3100 

Intolerant Richness (intolerant) -0.8004 -0.0023 

Clinger Richness (clinger) -0.7486 -0.4200 

Predator Percent (perc_pred) -0.1973 0.1343 

Tolerant Percent (perc_tol) 0.3430 -0.0377 

Percent Dominant (perc_dom) 0.4805 0.2269 

Conductivity 0.5426 -0.3772 

Total Phosphorus (total P) 0.4460 -0.1972 

Water Temperature (water 

temp) 
0.4431 -0.2606 

Dissolved Oxygen -0.3925 -0.0477 

Suspended Solids 0.2025 0.1198 

pH 0.1755 -0.5898 

Total Nitrogen 0.4010 -0.2423 

Stream Flow (flow) 0.0361 -0.0693 

Percent Fine Sediments (% fine) 0.3315 -0.3102 

Traffic Count 

Annual Precipitation 

0.805 

-0.3137 

0.1441 

0.6557 

Lattitude x Longitude -0.2182 0.6174 
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a.  

b. 

 

Figure 10. (a) PCA biplot, with principal component 1 on the x axis and principal component 

2 on the y axis. (b) Loadings plot of each stream health indicator variables, as presented in 
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table 1. 

 

 The B-IBI metrics showed strong correlation with dissolved oxygen level and 

suspended solids, other stream health indicators did not show a strong correlation with the 

B-IBI metrics, especially for flow and pH. One of the B-IBI metric, Percent predator, showed 

a weak correlation with most stream health indicators. Annual precipitation and location 

(Lat.Long) showed strong correlation with most of the stream health indicators, with the 

exception of dissolved oxygen level and suspended solids. Flow had very minimal impact on 

all other variables. 

 

3.3.2 Supervised Learning: Boosted Regression Tree 

 

 BRT results of using B-IBI as response variable and the ten B-IBI metrics as 

predictor variables is shown on Figure 11. The relative influence of intolerant taxa was the 

highest at 33.52% and the lowest relative influence was the percent tolerant individual at 

2.12%. Clinger taxa had the second highest relative influence at 14.82% and the relative 

influence of other metrics were all below 10%. 
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Figure 11. Result of Boosted Regression Tree (BRT) expressing the relative influence of 

individual B-IBI metrics on B-IBI in percentage, with all relative influence adding up to 

100%. 

 

The second part of the BRT analysis consisted of ten BRT results using the 

individual B-IBI metrics as response variables and the stream health indicators as the 

predictor variables. The relative influences of location of sample site (Lat.Long) and 

suspended solids on Total taxa richness were the highest at 13.56% and 13.22%, respectively, 

and the lowest relative influence was annual precipitation at 3.25%. Conductivity had the 

second highest relative influence at 12.88% and the relative influence of other stream health 

indicators were all below 10%. The relative influences of water temperature on 

Ephemeroptera richness was the highest at 30.01%, and the lowest relative influence was 

suspended solids at 2.15%. Location (Lat.Long) had the second highest relative influence at 

12.48% but much lower than that of water temperature. The relative influence of conductivity 
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had the most impact on Plecoptera taxa richness at 18.19%, water temperature was close 

behind with a relative influence of 15.70%; annual precipitation was the lowest at 1.26% 

relative influence. The highest influence on Trichoptera taxa richness was dissolved oxygen 

level and conductivity, at 13.47% and 12.39% respectively; annual precipitation had the 

lowest relative influence at 2.35%. Long-lived taxa seemed to be influenced by location 

(13.68%), flow (12.03%) and conductivity (11.12%) the most and least influenced by annual 

precipitation at 1.71%. The intolerant taxa was most influenced by water temperature with a 

relative influence of 20.54% and least influenced by annual precipitation at 2.04%. Stream 

flow had the most influence on clinger taxa richness at 15.67% and annual precipitation had 

the least influence on clinger taxa richness at 2.19%. Percent predator individuals was most 

influenced by stream flow at 19.73% and least influenced by annual precipitation at 2.14%. 

Conductivity had the highest relative influence on percent tolerant individual at 18.60% and 

annual precipitation had the least influence at 1.19% (Figure 6). Percent dominance was most 

influenced by location, stream flow and dissolved oxygen level at 13.32%, 11.25% and 

11.21% respectively; annual precipitation had the least influence on percent dominance at 

1.86% (Figure 12). 
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Figure 12. Result of Boosted Regression Tree (BRT) expressing the relative 

influence of stream health indicators on individual B-IBI metrics in percentage, with all 

relative influence adding up to 100%. Each of the two bars represented the top two relative 

influence of stream health indicator on each B-IBI metric of Total taxa richness, 

Ephemeroptera taxa richness, Plecoptera taxa richness, Trichoptera taxa richness, long-lived 

taxa, intolerant taxa, clinger taxa richness, percent predator individuals, percent tolerant 

individual, and percent dominance. Bottom bar of each category represents the highest 

relative influence and the top bar represents the second highest relative influence. 

 

There were five indicators that frequently showed high influence, above 10% 

relative influence, on the ten B-IBI metrics: location, stream flow, dissolved oxygen level, 

conductivity and water temperature. Annual precipitation had the least relative influence on 

most B-IBI metrics, with relative influence percentage frequently below 3%. 
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3.3 Supervised Learning: Partial Least Square Regression 

 

 The first part of the Partial Least Square regression analysis involved using B-IBI 

metrics as predictor variables and B-IBI as the response variable. Percent predator and 

clinger taxa richness had the most influence on B-IBI at 13.47% and 12.87% respectively, 

and percent tolerant individual had the lowest relative influence at 4.7% (Figure 13). Overall, 

the relative influence of the B-IBI metrics were mostly even at around 10% with the 

exception of the aformentioned metrics showing more extreme percentages. 

 

 

Figure 13. Result of Partial Least Square regression (PLS) expressing the relative influence 

of individual B-IBI metrics on B-IBI in percentage, with all relative influence adding up to 

100%. 

 The second part of the PLS analysis used watershed health indicators as predictor 

variables and the ten individual B-IBI metrics as the response variables. In Figure 14(a), the 

relative influences of dissoveled oxygen level and conductivity on Total taxa richness were 

the highest at 12.50% and 12.57%, respectively, and the lowest relative influence was stream 
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flow at 1.18%. The relative influences of water temperature and annual precipitation on 

Ephemeroptera richness was the highest at 13.74% and 12.14%, and the lowest relative 

influence was stream flow at 3.71% (Figure 14(b)). The relative influence of water pH had 

the most impact on Plecoptera taxa richness at 12.00%, and annual precipitation was close 

behind with a relative influence of 11.64%; stream flow was the lowest at 1.62% relative 

influence (Figure 14(c)). The highest influence on Trichoptera taxa richness was conductivity 

at 12.49%, and stream flow had the lowest relative influence at 0.75% (Figure 14(d)). 

Long-lived taxa seemed to be influenced by annual precipitation (13.07%) the most and least 

influenced by stream flow at 5.20% (Figure 14(e)). The intolerant taxa was most influenced 

by water temperature 13.43% and least influenced by stream flow at 2.36% (Figure 14(f)). 

Conductivity had the most influence on clinger taxa richness at 13.18% and stream flow had 

the least influence on clinger taxa richness at 1.51% (Figure 14(g)). Percent predator 

individuals was most influenced by water temperature at 14.80% and least influenced by 

traffic count and stream flow at 3.81% and 3.52% respectively (Figure 14(h)). Location had 

the highest relative influence on percent tolerant individual at 13.62% and suspended solids 

had the least influence at 2.45% (Figure 14(i)). Percent dominance was most influenced by 

conductivity at 13.00%, and stream flow had the least influence on percent dominance at 

0.52% (Figure 14(j)). 
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a. b.  

c. d.  

e. f.  
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g.  h.  

i. j.  

Figure 14. Result of Partial Least Square regression (PLS) expressing the relative 

influence of stream health indicators on individual B-IBI metrics in percentage, with all 

relative influence adding up to 100%. Each plot represented the relative influence of stream 

health indicator on one B-IBI metric, with (a) Total taxa richness, (b) Ephemeroptera taxa 

richness, (c) Plecoptera taxa richness, (d) Trichoptera taxa richness, (e) long-lived taxa, (f) 

intolerant taxa, (g) clinger taxa richness, (h) percent predator individuals, (i) percent tolerant 

individual, and (j) percent dominance. 

 

 

3.3.4 Compiling WHI with BRT 
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 The relationship between the WHI sub-indices and final WHI is presented in Table 3, 

each sub-index has a percent influence on the final WHI score. The intolerant species 

richness index has the highest influence at 30.50% and percent tolerant taxa index has the 

least influence on the final WHI at 2.14%. 

 

Table 3. Percent influence of WHI sub-indices on final WHI score. 

Sub-index total May stone caddis longlive intol clinger %pred %tol %dom 

% influence 9.30% 7.44% 6.99% 4.96% 9.33% 30.50% 15.89% 7.16% 2.14% 6.24% 

 

Table 4. Percent influence of individual indicators on WHI sub-indices. 

Sub-index conductivity Total P 

Water 

Temp 

Dis O2 

Sus 

solid 

pH Total N Flow %fine traffic precip latxlong 

total 14.41% 6.23% 4.58% 7.92% 14.19% 7.97% 5.40% 9.32% 6.69% 7.34% 3.35% 12.59% 

may 9.28% 4.71% 30.50% 5.64% 2.39% 5.31% 12.10% 6.91% 4.80% 2.70% 2.41% 12.20% 

stone 17.87% 12.23% 15.65% 5.59% 2.89% 5.21% 13.39% 7.59% 4.34% 4.14% 1.31% 9.72% 

caddis 11.93% 8.11% 7.23% 12.35% 7.14% 8.18% 10.10% 9.12% 6.01% 6.83% 2.13% 10.81% 

longlive 10.25% 7.72% 10.99% 8.04% 5.89% 8.17% 7.74% 12.22% 6.32% 7.32% 1.64% 13.65% 

intol 9.93% 13.28% 20.61% 5.59% 2.56% 6.36% 15.85% 6.72% 4.56% 6.12% 2.00% 4.79% 

clinger 11.26% 6.21% 7.15% 9.82% 8.83% 8.05% 7.62% 14.62% 7.33% 6.55% 1.92% 10.58% 

%pred 9.01% 10.97% 13.05% 5.60% 2.03% 7.16% 7.05% 23.60% 2.57% 5.63% 2.54% 10.73% 

%tol 18.84% 9.56% 9.12% 5.07% 9.50% 10.68% 6.67% 3.48% 5.10% 7.82% 1.13% 12.97% 

%dom 10.04% 8.48% 9.37% 11.27% 9.17% 4.90% 6.95% 10.43% 6.65% 7.11% 1.92% 13.65% 

 

In Table 4, the percemt influence of individual health indicators on each sub-index is 

presented. The percent influence of individual indicators adds up to 100% in each sub-index 

category. Precipitation has the least influence on the sub-indices overall, having the lowest 

percent influence on 9 out of the 10 sub-indices.  
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Table 5. Calculated percent influence of individual indicators on final WHI. 

Indicators conductivity 

Total 

P 

Water 

Temp 

Dis 

O2 

Sus 

solid 

pH Total N Flow %fine traffic precip latxlong 

% 

influence 

11.32% 9.46% 14.31% 7.39% 5.71% 6.93% 10.69% 10.29% 5.43% 6.12% 2.08% 9.61% 

 

Table 5 represents the percent influence of health indicators on final WHI score, 

result of compiling table 3 and table 4. Precipitation has the least influence on the final WHI 

at 2.08%, which is around 3% difference from the next lowest influencer. 

 

3.3.5 Compiling WHI with PLS 

  

 The relationship between the WHI sub-indices and final WHI is presented in Table 6, 

each sub-index has a percent influence on the final WHI score. The percent predator index 

has the highest influence at 13.48% and percent tolerant taxa index has the least influence on 

the final WHI at 4.72%. 

 

Table 6. Percent influence of WHI sub-indices on final WHI score. 

Sub-index total May stone caddis longlive intol clinger %pred %tol %dom 

% influence 9.45% 12.75% 9.41% 10.41% 10.24% 9.80% 12.87% 13.48% 4.72% 6.88% 

 

 Table 6 presents the percent influence of individual health indicators on each 

sub-index. The percent influence of individual indicators adds up to 100% in each sub-index 

category. Flow has the least influence on the sub-indices overall, having the lowest percent 

influence on 9 out of the 10 sub-indices.  
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Table 7. Percent influence of individual indicators on WHI sub-indices. 

Sub-index conductivity Total P 

Water 

Temp 

Dis O2 

Sus 

solid 

pH Total N Flow %fine traffic precip latxlong 

total 12.50% 9.93% 6.78% 12.57% 8.00% 11.20% 7.15% 1.18% 6.79% 4.89% 10.43% 8.60% 

may 9.53% 9.44% 13.74% 9.87% 5.91% 10.33% 4.46% 3.71% 6.45% 6.19% 12.15% 9.02% 

stone 10.96% 8.41% 10.00% 8.95% 4.44% 11.99% 4.75% 1.62% 7.04% 10.47% 11.63% 9.72% 

caddis 12.49% 8.87% 4.49% 11.64% 4.26% 11.43% 7.84% 0.75% 5.27% 9.39% 12.20% 11.37% 

longlive 10.03% 7.95% 6.88% 9.22% 4.09% 11.26% 6.44% 5.20% 6.56% 9.60% 13.07% 9.70% 

intol 11.11% 9.14% 13.44% 10.41% 4.57% 11.64% 4.24% 2.36% 6.74% 6.12% 11.13% 9.09% 

clinger 13.18% 8.57% 8.81% 12.01% 4.19% 11.07% 9.57% 1.51% 4.89% 3.27% 12.36% 10.57% 

%pred 10.14% 9.20% 14.80% 12.83% 4.49% 12.53% 5.09% 3.52% 6.32% 3.81% 9.33% 7.93% 

%tol 9.93% 7.62% 4.70% 8.73% 2.45% 10.89% 10.11% 3.56% 8.53% 7.61% 12.26% 13.62% 

%dom 13.00% 10.02% 9.41% 11.22% 5.69% 10.78% 6.48% 0.52% 5.69% 5.50% 11.39% 10.30% 

  

Results of Table 6 and Table 7 combined to make up the percent influence of health 

indicators on final WHI score, as shown in Table 5. Flow has the least influence on the final 

WHI at 2.45%, much lower than other indicators included in the study. 

 

Table 8. Calculated percent influence of individual indicators on final WHI. 

Indicators conductivity 

Total 

P 

 

Water 

Temp 

Dis O2 

Sus 

solid 

pH 

Total 

N 

 Flow %fine traffic precip latxlong 

% 

influence 

11.27% 8.96% 

 

9.82% 10.92% 4.89% 11.36% 6.42% 

 

2.45% 6.28% 6.47% 11.54% 9.73% 

 

3.3.6. Conversion of sample data to health score 

 

 The final step of constructing the WHI structures is to convert sampled watershed 

health indicator data into a health score for the individual indicators. The means, standard 

deviations, and the coefficient of variation of watershed health indicators of sites with B-IBI 
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higher than 75% (healthy group) are calculated and shown in Table 9.  

 

Table 9. The mean, standard deviation (SD) and the coefficient of variation (CV) of 

watershed health indicators calculated from the healthy group (sites with B-IBI > 75%). This 

table will be used to scale indicator samples to an indicator health score. 

  Conductivity 

Total 

P 

Water 

Temp 

Dissolved 

O2 

Suspended 

Solid 

pH 

Total 

N 

Flow 

% 

Fine 

latxlong 

Traffic 

Count 

Annual 

precipitation 

Mean 102.38 0.0197 11.92 9.70 3.29 7.53 0.10 2.79 40.73 5706.40 4908.44 0.38 

SD 84.30 0.0173 2.52 0.69 5.31 0.44 0.10 3.32 22.35 83.28 7812.40 0.36 

CV 0.82 0.88 0.21 0.07 1.61 0.06 1.01 1.19 0.55 0.01 1.59 0.95 

 

 To convert the sampled indicator data collected from data sample sites, the means of 

each indicator are used as the 100% score thresholds, variation of more than 2 standard 

deviation from the mean results in a 0% score, and any variation less than 2 standard 

deviation from the mean will be scored linearly between 0% to 100%. As physical 

measurements of the indicators included cannot be lower than 0, the range for scaling cannot 

be less than 0. For instance, when scaling for traffic count, the range for scaling would be 0 

passes/yr to 20532 passes/yr. Since 0 passes/yr is within 1 standard deviation, any sites with 

less than 4908 passes/yr (mean) will receive at least a 50% or higher score and considered to 

be in good condition. 

The coefficient of variation of conductivity, total phosphorus, suspended solid, total 

nitrogen, stream flow, traffic count and annual precipitation was close or over 1.00, 

indicating high variance in the data. Indicators such as water temperature, dissolved oxygen, 

pH, percent fine sediments, and coordinate index (Lat x Long) had low coefficient of 

variation. 
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3.4. Discussion 

 

3.4.1 Outcome of Study 

  

The WHIs constructed in this study is meant to provide a data-based approach for 

watershed health assessment in the State of Washington, potentially providing local agencies 

a method that requires less resources for evaluation of local watersheds. We were able to 

construct WHIs using two models, the PLS and BRT model. While the WHIs presented 

different results, both models were able to identify important indicators that influence 

watershed health (IMR, 2004). The result from PLS in Table 10 shows that conductivity, 

dissolved oxygen, pH and annual precipitation to be the large influencers in watershed health. 

The WHI structure created with BRT, as shown in Table 10, indicated that conductivity and 

water temperature to be the larger drivers in watershed health. Both methods pointed to 

conductivity as the common indicator that has a high influence on watershed health, as 

conductivity is the only indicator that received a relative influence of more than 10% in both 

methods. Conductivity in stream water is known to be a strong indicator of external 

disturbance such as pollution, which may be the reason why both models captured 

conductivity as one of the large watershed health influencers (U.S. EPA, 2013). Dissolved 

oxygen, pH, and water temperature are all indicators that are also known to be influencers of 

freshwater system health (Walsh et al, 2001). In the Pacific Northwest, dissolved oxygen and 

water temperature heavily influence the recovery of the Pacific Salmon population 

(Oncorhynchus genus), which is a crucial part of the aquatic ecosystem (citation). The PLS 
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and BRT models were able to recognize the critical indicators from the variance of the 

dataset. 

The conversion for converting indicator measurement to indicator health score in 

section 3.3.6 (Table 9.) also presented interesting results. Indicators with low coefficient of 

variation in the conversion system seemed to be indicators that are sensitive to drastic 

changes, such as water temperature, dissolved oxygen, pH, and percent fine sediments. For 

instance, the scale of the conversion system for water pH was between pH 6.65 and pH 8.41 

with pH 7.53 at 100% score, indicating a small range of variation. In healthy stream systems, 

the pH of water is unlikely to deviate much from pH 7 (Wetzel, 2001), which is a 

characteristic captured by the conversion system. The same conclusion could be drawn for 

other indicators as the conversion system was able to capture the indicators’ sensitivity to 

changes. 

 

Table 10. Comparison of percent influence of watershed health indicators on final WHI score 

between PLS and BRT. 

Method conductivity 

Total 

P 

Water 

Temp 

Dissolved 

O2 

Sus 

solid 

pH Total N Flow %fine traffic precip latxlong 

PLS 11.27% 8.96% 9.82% 10.92% 4.89% 11.36% 6.42% 2.45% 6.28% 6.47% 11.54% 9.73% 

BRT 11.32% 9.46% 14.31% 7.39% 5.71% 6.93% 10.69% 10.29% 5.43% 6.12% 2.08% 9.61% 

 

While the PLS and BRT models captured the big drivers of watershed health, the 

WHI compiled with the two models (Table 10) resulted in different weight factors of 

individual indicators on the WHIs. The two models process the dataset in different ways (U.S. 

EPA, 2013; Khatri et al., 2020), which likely produced different results. Stream flow 
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performed poorly as an indicator of watershed health in the PLS model, while having a 

relatively high influence in the BRT model. On the other hand, precipitation performed 

poorly in the BRT model but performed considerably better in the PLS model (2.08% in BRT 

and 11.54% in PLS). Our results showed that water temperature (BRT) and several water 

chemistry indicators (PLS) seemed to be larger influencers on the biological health of 

watershed. In BRT, precipitation data extracted from an external source seemed to perform 

poorly compared to other indicators.  

With the WHI structures constructed, we randomly selected several sites and input 

the sampled data into our WHI structures to observe the outcome of our WHI compared to 

B-IBI. Our WHIs assess watershed health based on water quality related indicators, whereas 

the B-IBI score is a biological health assessment (Larson et al., 2019). From Table 11, we 

observed that the WHI scores and B-IBI scores show similar trend, sites with high B-IBI 

score received high WHI scores and vice versa. However, the B-IBI and WHI scores are not 

directly correlated to each other. We also noticed that the WHIs do not present extreme scores 

such as 0% or 100. This indicates that our WHIs and B-IBI are assessing different aspects of 

watershed health. While the B-IBI was used as the response variable for watershed health in 

our WHI creation process, the comparison between B-IBI and WHI results show that our 

WHIs are capable of capturing watershed health information that is not captured in B-IBI. 

 

Table 11. Result of WHI score by entering site data back into WHI structures with PLS and 

BRT. Sites were randomly selected from original dataset. 

Random Site 1 2 3 4 5 6 

IBI Score 99.20% 98.79% 96.34% 21.56% 0.00% 5.03% 

WHI score (PLS) 77.92% 85.12% 82.19% 19.02% 10.57% 23.41% 

WHI score (BRT) 80.47% 82.34% 88.76% 10.81% 11.49% 9.07% 
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To further verify the functionality of the WHI structures, we repeated the process of 

creating the WHI structures with two sets of sample data extracted from the original dataset. 

The sample data with B-IBI scores higher than 75% and lower than 25% was separated into 

two sets of dataset for analysis. The radar graph in Figure 15 presents the WHI structures 

constructed in PLS with the separated datasets and the full dataset. The separated datasets 

resulted in a more similar WHI structure compared to the WHI structure from the original 

dataset. 

 

 

Figure 15. Radar graph of WHI structures (in relative influence) created with 

original dataset (blue), dataset with B-IBI scores higher than 75% (black), and dataset with 

B-IBI scores lower than 25% (red). 

 

Constructing a WHI is a process of simplifying an extremely complex system in 

hopes of accurately predicting watershed health while minimizing resource use, which raises 

the potential of uncertainty. Our findings on large drivers of watershed health resulting from 

both the PLS and BRT models were not consistent with the findings by WADoE’s previous 
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relative risk assessment, which showed that percent fine sediment to be the biggest driver of 

stream biological health (Larson et al., 2019). The R2 of most PLS regressions ranged from 

0.05 to 0.30, which indicated that the models only captured a small portion of the variation in 

the dataset. There are several factors that potentially raised the uncertainty in the regressions, 

and some improvements can be made to reduce uncertainty in future studies.  

The first potential factor is that the dataset from WA DoE was not complete, with 

some sample sites missing measurements for multiple indicators. While multivariate analyses 

can be powerful at handling large datasets, many multivariate analyses require complete 

numerical datasets (Khatri et al., 2020). There are methods to fill in missing data with 

imputation or interpolation (Wan et al.. 2020). However, the process of manipulating the 

dataset, while common, can result in higher uncertainties in methods such as PLS (Hao, 

2020). For instance, the PLS regression (with B-IBI as the response variable, and B-IBI 

metrics as predictor variables) results presented in Table 12 shows that the dataset with a 

B-IBI score more than 75% and the dataset with B-IBI less than 25% show a different 

structure from the structure of original dataset. This should not be the case as the B-IBI is 

calculated from its metrics with predetermined equations and should have the same structure. 

We realized that the two datasets separated from the original dataset (the dataset with B-IBI 

higher than 75% and the dataset with B-IBI lower than 25%) did not include sample sites 

without B-IBI measurements, as the two separated datasets were separated by B-IBI 

measurement (B-IBI higher than 75% and lower than 25%) and sample sites without B-IBI 

measurements were not included. On the other hand, the original dataset contained imputed 

averages that replaced missing measurements for the possibility to be entered in a PLS 

regression model, which included all sample sites. Results in Table 12 shows that the two 

separated datasets had identical structures while the original dataset containing imputed 
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averages showed a different structure. The PLS model differentiated the datasets without 

imputed data from the dataset with imputed data. 

 

Table 12. The relative influence of B-IBI metrics on B-IBI scores resulted from PLS 

regression with original dataset, dataset with IBI > 75%, and dataset with IBI < 25%. 

Dataset total May stone caddis longlive intol clinger %pred %tol %dom 

Original dataset 9.45% 12.75% 9.41% 10.41% 10.24% 9.80% 12.87% 13.48% 4.72% 6.88% 

Dataset with IBI 

>75% 7.23% 14.79% 5.68% 16.28% 7.04% 9.07% 15.52% 13.03% 3.64% 7.68% 

Dataset with IBI 

< 25% 7.23% 14.79% 5.68% 16.28% 7.04% 9.07% 15.52% 13.03% 3.64% 7.68% 

 

A challenge we faced during data analysis was the utilization of categorical data. 

The original dataset from the WADoE includes categorical data but is not used in the analysis 

of this study. The major limitation is that many multivariate analyses, such as the PLS model, 

can only take in continuous numerical data. Without a systematic method of converting 

categorical data into continuous numerical data, it is not possible to input such data into 

models like PLS (Hao, 2020). Another limitation of including categorical data is potentially 

introducing bias into the data during sample collection, such as judgement calls made by 

sampling personnel. The purpose of this study is to use a data-driven method that can 

eliminate as much human bias as possible, meaning that biased categorical data is not ideal 

for our purposes. To minimize human bias, it is best to avoid inclusion of categorical data 

and design data collection methods that maximize collection of continuous numerical data.  

Another limitation with the dataset used in this study is that the data is collected in 

single collection events, rather than collected through data stations that monitor indicators 
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continuously. Single collection events create a “snapshot” of the indicators, but it may not 

fully represent the current condition of the watershed. The “snapshot” data used in this study 

also lacks in quantity compared to datasets generated by data stations. This may explain the 

low influence of flow on final WHI in our results, as the sample may have captured extreme 

events that may not have been a good representation for the sites. While continuous data 

collection may require more resources to accomplish, it is the more ideal source of reliable 

large datasets. In future data collections for WHI construction, it would be best to include as 

much continuous numerical data as possible to increase accuracy of WHI scores.  

We were able to fulfill our goal of creating a WHI for the State of Washington by 

using a data-driven approach, allowing the variation in datasets to describe the characteristics 

of water systems in the state. However, much is left to be explored as our analysis only 

explained a small portion of the variation in the data (R2 of 0.05 to 0.30 in the PLS models). 

To maximize the extraction of information from the datasets, future studies will need to tailor 

data collection methods to the analytic tools accordingly. It is also crucial to explore new 

analytic tools for conducting watershed health related research, as new methods such as 

machine learning can potentially extract more information out of large datasets and help 

researchers understand the complex relationships between different systems in a watershed. 
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Chapter 4. Conclusion 

 

 Construction of WHI requires a large dataset of watershed health indicators that 

have minimum bias. Previous WHIs included indicators from at least 3 ecological attributes 

which encompassed a wide variety of watershed health indicators to aid in better watershed 

health assessment. However, there were assumptions made that may have unintentionally 

introduced bias. One assumption was that all sub-indices have equal influences on the final 

WHI score, which may not be true. Another assumption was that judgement-based data 

collection does not introduce bias and alter the study outcome. To minimize bias, the two 

assumptions made by previous WHIs must be addressed. 

This study aimed to use a data-driven approach to create a WHI, with a goal of 

constructing an assessment system that can provide easier evaluation of watershed health in 

Washington State while minimizing potential bias. To minimize human bias, the data set was 

modified to only include direct measurements that did not involve any human-based 

judgments, such as the chemical concentration in sampled streams, before inputting the 

dataset into the statistical tools. Our analysis incorporated two multivariate analyses, the 

Partial Least Square Regression and Boosted Regression Tree, which provided us an insight 

into the ability of both methods when handling watershed health indicator data. The dataset 

included twelve variables for 1000+ sample events, resulting in high dimensionality of the 

dataset that required the use of analytic tools capable of dimension reduction. Multivariate 

analyses are known for their ability to overcome the problem of dimensionality in large 

multi-variable datasets (Khatri et al., 2020), which is the reason we chose to use multivariate 

models to explore our dataset. During data exploration, we used PCA biplot to get a glance of 

the dataset before moving onto supervised learning. The PCA biplot (Figure 10a.) presented 
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relationships supported by current knowledge on benthic communities, such as positive 

relationship between B-IBI metric and dissolved oxygen level (Wetzel, 2001). Supervised 

learning models, such as PLS regression and BRT, provided us the ability to find 

relationships within large datasets that represent complex systems. We were able to construct 

a WHI based on the relationship between watershed health indicators and the health of the 

watersheds, which allowed us to simplify extremely complex watershed systems in order to 

evaluate watershed health. While some multivariate analytic methods are powerful, it is 

crucial to understand the data input requirements for each method. For instance, PLS 

regression and PCA have very low tolerance for incomplete datasets (Wan et al.. 2020), 

which can be difficult to use when there is missing data. Newer multivariate models, such as 

BRT, can tolerate a wide range of data type, including numerical and categorical (U.S. EPA, 

2012). BRT is also insensitive to potential outliers or missing data in the dataset, and it does 

not assume linear relationships, making it capable of accounting for non-linear relationships 

between predictor and response variables (U.S. EPA, 2012). The ability to analyze 

categorical data can be a great advantage when working with environmental datasets, as 

complex systems such as watersheds cannot be measured only with numerical values. 

We realized that the construction of WHI required a large dataset with continuous data 

and the inclusion of many watershed health indicator variables. During data exploration, we 

noticed that the data sampling events captured only a single moment of the conditions, or a 

“snapshot” of the indicators, which may not fully represent the actual condition of the 

sampled site. The “snapshot” data also lacks in quantity compared to datasets generated by 

data stations, where continuous, high quantity datasets are generated. While budget and 

resource limitations may constrain an organization from collecting more data, collaboration 

between different databases may potentially make up for the lack of data quantity and quality. 
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We were able to import external data from ArcGIS to build on top of our dataset for analysis, 

which may be a solution for increasing data quantity and quality. Maximizing the number of 

input variables during data exploration may also help with understanding the relationship 

between indicators and watershed health. Multivariate analytic tools are meant for handling 

high dimensionality datasets, which gives us the opportunity to explore the potential of using 

a wide variety of environmental variables. In this study, the watershed health indicator 

selection was limited by the availability of environmental variables in our dataset. However, 

future studies can potentially explore the use of other environmental variables, not used in 

this study, as watershed health indicators for constructing WHIs. 

Utilization of complex analytic tools was crucial to the process of WHI construction, as 

we needed to process large datasets with high dimensionality. While multivariate analysis 

models used in this study were complex, we were able to use these models without much 

difficulty as easily accessible open-source software allowed us to integrate complex 

statistical models smoothly. Utilizing open-source tools can drastically reduce the time and 

resource needed to explore and manipulate datasets, which can aid agencies and scholars to 

process large datasets in a more efficient manner. Technological advancements are 

exponentially raising our ability to process datasets, which can potentially allow researchers 

to “digest” more datasets and extract relevant information. During data exploration, Self 

Organizing Maps (SOM) was explored as an option to create WHI. SOM is a new 

unsupervised learning using artificial neural network and has great potential for dimension 

reduction in large datasets. Machine learning and multivariate models can have great 

potential when constructing a WHI, with the assumption that the models are used 

appropriately. Prior statistical knowledge is an important factor when utilizing powerful 

statistical models, since without proper understanding, the outcome of the analysis will have 
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minimal meaning. On the other hand, researchers also need to have prior knowledge or 

background information on the dataset being processed to appropriately extract information 

from the data. When handling environmental data, background knowledge on data is 

important as it could help data scientists spot potential trends or correlations during data 

processing. No prior background knowledge on the dataset can potentially result in lost of 

information, even when the appropriate analysis methods are used. Handling watershed data 

requires background knowledge on freshwater system as prior knowledge can help with 

maximizing efficiency and accuracy of data processing. 
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Appendix A: PLS regression for samples with B-IBI > 75 

 

IBI Metrics conductivity Total P 
Water 

Temp 
Dis O2 

Sus 

solid 
pH Total N Flow %fine traffic precip latxlong 

total 8.12% 9.44% 8.70% 8.40% 7.96% 10.99% 7.21% 6.78% 8.07% 10.60% 3.31% 10.46% 

may 9.77% 8.60% 10.64% 11.10% 2.01% 10.25% 8.83% 6.78% 7.79% 10.80% 3.34% 10.00% 

stone 9.74% 8.92% 1.46% 10.23% 2.55% 13.04% 10.21% 2.64% 7.31% 12.82% 8.70% 12.32% 

caddis 10.64% 7.26% 2.76% 7.44% 8.26% 12.10% 4.20% 12.08% 7.95% 12.20% 5.42% 9.62% 

longlive 10.55% 9.11% 8.71% 5.86% 7.85% 10.14% 6.89% 3.63% 9.63% 13.12% 3.00% 11.44% 

intol 8.33% 10.20% 7.60% 6.41% 3.36% 11.15% 4.77% 11.54% 6.55% 10.56% 9.26% 10.23% 

clinger 7.64% 8.02% 3.36% 9.95% 6.20% 11.20% 9.76% 9.37% 8.01% 11.11% 3.39% 11.82% 

%pred 11.15% 10.55% 6.46% 8.43% 4.01% 11.45% 8.56% 7.63% 8.19% 9.93% 2.82% 10.75% 

%tol 10.84% 8.02% 4.65% 10.10% 1.52% 11.22% 13.37% 0.96% 7.67% 11.72% 8.44% 11.44% 

%dom 7.90% 10.66% 8.11% 11.00% 5.13% 12.35% 7.71% 6.74% 8.57% 9.25% 2.34% 10.17% 
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Appendix B: PLS regression for samples with B-IBI < 25 

 

IBI Metrics conductivity Total P 
Water 

Temp 
Dis O2 

Sus 

solid 
pH Total N Flow %fine traffic precip latxlong 

total 10.69% 9.44% 10.20% 8.75% 9.07% 11.03% 8.57% 10.41% 1.64% 5.94% 5.60% 8.54% 

may 10.97% 11.16% 5.18% 5.60% 7.47% 10.46% 7.76% 10.43% 4.10% 11.67% 5.50% 9.64% 

stone 9.04% 14.00% 3.22% 4.40% 11.81% 10.17% 10.92% 10.16% 5.02% 7.71% 4.21% 9.27% 

caddis 5.99% 8.08% 13.03% 8.81% 10.07% 8.83% 3.85% 11.92% 3.53% 6.29% 8.48% 11.06% 

longlive 9.45% 11.58% 8.50% 11.52% 7.46% 9.38% 3.15% 10.49% 3.79% 13.18% 4.78% 6.66% 

intol 10.83% 9.84% 9.22% 11.47% 10.75% 11.45% 7.19% 6.68% 2.40% 5.61% 6.44% 8.06% 

clinger 10.84% 3.39% 14.12% 11.47% 2.28% 13.00% 5.94% 11.84% 2.27% 11.24% 9.54% 4.00% 

%pred 9.91% 8.60% 11.19% 11.63% 6.31% 9.89% 10.96% 10.64% 2.94% 3.87% 5.79% 8.21% 

%tol 9.73% 11.21% 10.12% 9.36% 12.16% 10.77% 7.37% 2.23% 4.19% 4.09% 9.58% 9.12% 

%dom 11.61% 9.50% 9.12% 9.17% 6.03% 9.98% 3.60% 2.64% 7.03% 11.82% 9.81% 9.62% 
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Appendix C: Python Code for Data Extraction 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import glob 

 

biodata = pd.read_csv(‘#source folder#¥¥Bio data in ORDER1.csv', index_col = None) 

bioID = pd.read_csv('#source folder#¥¥bio genus id.csv', index_col = None) 

 

j = [] 

totalscore = [0] 

stonecount = [0] 

maycount = [0] 

caddiscount = [0] 

i3 = [] #for naming final macro counts 

macrocount = [] 

 

for i in enumerate(biodata["Site_ID"]) : 

    i1 = i[0] 

    i2 = i[1] 

    if i2 == j : 

        taxalev = biodata.iloc[i1]["Result_Taxon_Level"] 

        if taxalev == "GENUS" : 

            name = biodata.iloc[i1]["Scientific_Name"] 

            for x1 in enumerate(bioID["Genus"]): 

                idnum = x1[0] 

                idname = x1[1] 

                if idname == name : 

                    idorder = bioID.iloc[idnum]["Order"] 

                    if idorder == "Plecoptera" : 

                        singlecount = biodata.iloc[i1]["Result_Value"] 

                        stonecount = stonecount + singlecount 

                    if idorder == "Ephemeroptera" : 

                        singlecount = biodata.iloc[i1]["Result_Value"] 



70 

 

 

 

                        maycount = maycount + singlecount 

                    if idorder == "Trichoptera" : 

                        singlecount = biodata.iloc[i1]["Result_Value"] 

                        caddiscount = caddiscount + singlecount 

    else : 

        sitecount = [i3, stonecount, maycount, caddiscount] 

        macrocount.append(sitecount) 

        stonecount = [0] 

        maycount = [0] 

        caddiscount = [0]       

    j = i2 

    i3 = i[1] 

 

pd.DataFrame(macrocount) 

 

chemdata = pd.read_csv('#source folder#¥¥Chem data.csv', index_col = None) 

 

j = [] 

chemcompile = [] 

i3 = [] #for naming final macro counts 

conduc = 0 

totalP = 0 

watertemp = 0 

disso2 = 0 

suspsolid = 0 

phvalue = 0 

totalN = 0 

 

 

for i in enumerate(chemdata["Data_Collection_Event"]) : 

    i1 = i[0] 

    i2 = i[1] 

    if i2 == j : 

        chempara = chemdata.iloc[i1]["Parameter_Name"] 

        chemresult = chemdata.iloc[i1]["Result_Value"] 
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        if chempara == "Conductivity" : 

            if chemresult > 300 : 

                conduc = 1 

            if chemresult <= 300 and chemresult >= 200: 

                conduc = 2 

            if chemresult < 200 : 

                conduc = 3 

        if chempara == "Total Phosphorus" : 

            if chemresult > 0.036 : 

                totalP = 1 

            if chemresult <= 0.036 and chemresult >= 0.014: 

                totalP = 2 

            if chemresult < 0.014 : 

                totalP = 3 

        if chempara == "Temperature, Water" : 

            if chemresult > 20 : 

                watertemp = 1 

            if chemresult <= 20 and chemresult >= 12: 

                watertemp = 2 

            if chemresult < 12 : 

                watertemp = 3 

        if chempara == "Dissolved Oxygen" : 

            if chemresult > 7 : 

                disso2 = 1 

            if chemresult <= 7 and chemresult >= 10 : 

                disso2 = 2 

            if chemresult < 10 : 

                disso2 = 3 

        if chempara == "Total Suspended Solids" : 

            if chemresult > 44 : 

                suspsolid = 1 

            if chemresult <= 44 and chemresult >= 2 : 

                suspsolid = 2 

            if chemresult < 2 : 

                suspsolid = 3 



72 

 

 

 

        if chempara == "pH" : 

            if chemresult < 6.5 or chemresult > 8.5 : 

                phvalue = 1 

            if chemresult < 7.0 or chemresult > 7.5  : 

                phvalue = 2 

            if chemresult >=7.0 and chemresult <= 7.5 : 

                phvalue = 3 

        if chempara == "Total Persulfate Nitrogen" : 

            if chemresult > 0.462  : 

                totalN = 1 

            if chemresult <= 0.462 and chemresult >= 0.131  : 

                totalN = 2 

            if chemresult < 0.131 : 

                totalN = 3 

         

    else : 

        sitedata = [i3, conduc, totalP, watertemp, disso2, suspsolid, phvalue, totalN]  

        chemcompile.append(sitedata) 

        conduc = 0 

        totalP = 0 

        watertemp = 0 

        disso2 = 0 

        suspsolid = 0 

        phvalue = 0 

        totalN = 0 

 

    j = i2 

    i3 = i[1] 

 

chemcompile_df = pd.DataFrame(chemcompile, columns = ['id', 'Conductivity', 'Total P', 

'Water Temp', 'Dissolved O2','Suspended Solid','pH','Total N']) 
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Appendix D: Python code for data normalization and missing data imputation 

 

dataset = pd.read_csv('#source folder#¥¥extracted_dataset.csv', index_col = 0) 

y = dataset.values 

x = SimpleImputer(missing_values=np.nan, strategy='mean') 

x.fit(y) 

newdata = x.transform(y) 

x = newdata 

x = StandardScaler().fit_transform(x) 

np.mean(x),np.std(x) 

feat_cols=['total','may','stone','caddis','longlive','intolerant','clinger','perc_pred','perc_tol','pe

rc_dom','Conductivity','TotalP','Water Temp','Dissolved O2','Suspended Solid','pH','Total 

N','Flow','% Fine','Traffic','Annual Precip','Lat.Long'] 

normalized_data = pd.DataFrame(x,columns=feat_cols) 
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Appendix E: R code for PLS analysis 

 

setwd("##root##/New data") 

getwd() 

data <-read.csv("Merged no outlier impute data.csv") 

library(plsdepot) 

set.seed(1000) 

 

## With IBI vs IBI metric 

xvar = data[c(2)] 

pls_model2= plsreg1(data[,3:12], xvar, comps=4, crosval = TRUE) 

plot(pls_model2) 

pls_model2$cor.xt 

pls_model2$x.loads 

pls_model2$expvar 

pls_model2$Q2 

pls_model2$Q2cum 

pls_model2$reg.coefs 

pls_model2$std.coefs 

pls_model2$R2Xy 

sum1 = sum(pls_model2$R2Xy[1:10,3]) 

IBIR2 = (pls_model2$R2Xy[1:10,3])/sum1 

pls_R2 = as.data.frame(pls_model2$expvar) 

plot(pls_R2$R2Ycum,xlab="# of components", ylab="R^2 Y cumulative") 

data_1 =  as.data.frame(t(pls_model2$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,11),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,11),data_3) 
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radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,11),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,11),data_5) 

radarchart(plotdata3) 

 

 

## With May 

pls_model = plsreg1(data[,13:24], data[,4,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

MayR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 
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## Total 

pls_model = plsreg1(data[,13:24], data[,3,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

TotalR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

 

 

 

## Stone 

pls_model = plsreg1(data[,13:24], data[,5,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 
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pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

StoneR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Caddis 

pls_model = plsreg1(data[,13:24], data[,6,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

CadR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 
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data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Longlive 

pls_model = plsreg1(data[,13:24], data[,7,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

longliveR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 
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radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Intolerant 

pls_model = plsreg1(data[,13:24], data[,8,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

intolR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 
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plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Clinger 

pls_model = plsreg1(data[,13:24], data[,9,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

clingerR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Percent Predator 

pls_model = plsreg1(data[,13:24], data[,10,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 
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pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

percpredR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Percent Tolerant 

pls_model = plsreg1(data[,13:24], data[,11,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

perctolR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 
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data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 

radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

## Percent Dominance 

pls_model = plsreg1(data[,13:24], data[,12,drop=FALSE], comps=5, crosval = TRUE) 

plot(pls_model) 

pls_model$cor.xyt 

pls_model$reg.coefs 

pls_model$R2Xy 

sum1 = sum(pls_model$R2Xy[1:12,5]) 

percdomR2 = (pls_model$R2Xy[1:12,5])/sum1 

data_1 =  as.data.frame(t(pls_model$R2Xy)) 

data_2 = data_1[1,] 

data_3 = data_1[2,] 

data_4 = data_1[3,] 

data_5 = data_1[4,] 

data_6 = data_1[5,] 

 

library(fmsb) 

plotmax = c(1,1,1,1,1,1,1,1,1,1,1,1,1) 

plotdata <- rbind(plotmax,rep(0,13),data_2) 
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radarchart(plotdata) 

plotdata1 <- rbind(plotmax,rep(0,13),data_3) 

radarchart(plotdata1) 

plotdata2 <- rbind(plotmax,rep(0,13),data_4) 

radarchart(plotdata2) 

plotdata3 <- rbind(plotmax,rep(0,13),data_5) 

radarchart(plotdata3) 

plotdata4 <- rbind(plotmax,rep(0,13),data_6) 

radarchart(plotdata4) 

 

 

 

 

 

 

 

 

 

Appendix F: R code for BRT analysis 

 

setwd("##root##/New data") 

getwd() 

data1 <-read.csv("processed data.csv") 

library(dismo) 

library(tidyverse) 

## IBI vs metrics 

BRT_model <- gbm.step(data = data1, gbm.x = 3:12, gbm.y= 2, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

BRT_1 = as.data.frame(t(summary(BRT_model))) 

BRT_result = BRT_1[2,] 

 

## total vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=3, family = "gaussian", 
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tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

## May vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=4, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##Stone vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=5, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##Caddis vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=6, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##longlive vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=7, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##intolerant vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=8, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##clinger vs indicators 
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BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=9, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##perc_pred vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=10, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##perc_tol vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=11, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 

 

##perc_dom vs indicators 

BRT_model <- gbm.step(data = data1, gbm.x = 13:24, gbm.y=12, family = "gaussian", 

tree.complexity = 5, learning.rate=0.01, bag.fraction = 0.5) 

names(BRT_model) 

summary(BRT_model) 


