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ABSTRACT 

Logistic regression is often used to predict the probability of an event, but it assumes 

perfect test sensitivity and specificity.  However, most tests are not perfectly sensitive and 

specific.  The prediction interval is an estimate of the interval in which the future 

observations will fall, and it can be applied to study the impact of imperfect test. 

Logistic regression is applied to the study of invasive species, such as New Zealand 

mudsnails, which will potentially harm biodiversity and affect biotic homogenization.   

In this study, we investigate how risk prediction in logistic regression on New Zealand 

mudsnail is affected by imperfect tests, using a Bayesian approach.  The results show that the 

changes of mean sensitivity clearly affect the prediction interval width at a low temperature, 

but the effects of changes of mean specificity and the weights of prior distributions of 

sensitivity and specificity were less clear at both temperatures examined. 
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CHAPTER 1. INTRODUCTION 

1.1 Logistic Regression 

The general linear model works well for many continuous response variables. 

However, it is not appropriate for a categorical response variable such as a binary response 

variable.  With respect to the categorical response variable, logistic regression is a good 

option.  Formally, the logistic regression model is 

 

  0 1 1ln( ) log ...
1

k k

p x
L o x x

p x
       


                                  (1) 

Where ln( )o is binary and represent the event of interest (response), coded as 0/1 for failure/ 

success, and 

p is the proportion of successes,  

o is the odds of the event,  

L is the ln (odds of event),  

ix  are the independent variables,  

0  is the intercept and i is the slope coefficient (i.e., the expected change in ln( )o

relative to one unit change in ix ). 

The predicted probability of the logistic regression for a given x value is  
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                                               (2) 

In our study, we are interested in using the prediction interval around  p x . 

Logistic regression is often used to predict the probability of an event, but typically 

assumes a test of perfect sensitivity and specificity.  However, the data often come from 

different sources or may be collected by using different sampling tools or methods for 
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measurement.  In addition, the data may come from diagnostic tests that are assumed to be 

perfect (Williams and Moffitt, 2010).  In fact, measurements in studies often suffer from both 

imperfect sensitivity and specificity.  In this study, we are going to use the Bayesian 

approach to study the impacts of imperfect tests which can be shown by examining prediction 

interval width with different Bayesian prior distributions. 

1.2 Background of New Zealand Mudsnail 

The pioneering topic of recent global ecology—biological invasions occur when 

organisms come to live in the wrong place, including invasions by animals, plants, fungi, and 

bacteria (Simberloff and Rejmanek, 2011).  In the early 20
th

 century, people introduced 

non-native species to the western societies as resources.  Today, some of the exotic species 

are assets for their aesthetic properties or economic value. However, as the introduction of 

non-native species increased in the 20
th

 century, biologists had evidence to show the threat of 

invasive species on native species and ecosystems and human well-being.  When it comes to 

the impacts of invasive species, scientists detected that it is uncertain and often delayed.  For 

example, among known aquatic species introduced to six European countries, at least 69% 

have ecological impacts (Simberloff, Martin and el., 2011).  However, these percentages are 

underestimated since some impacts are slight or inaccessible and can only be measured after 

intensive study.  In addition, there were unsuspected effects of invasive species on 

communities and ecosystems.  For example, certain invasive plants can transform 

ecosystems both above and below ground.  To take actions to minimize the negative impacts 

of invasive species, there are a range of actions we can take, such as prevention, eradication, 

and long-term management (Simberloff, Martin, 2011). 

The New Zealand mudsnail, Potamopyrgus antipodarum, is a very small freshwater 

snail with a gill and an operculum, an aquatic gastropod mollusk in the family Hydrobiidae, it 

has a dextral with right-handed coiling, and elongated shell with 7-8 whorls separated by deep 

grooves (USGS, 2012).  Then, subsequent investigations have documented a rapid spread of 

it to the Madison River near the boundary of Yellowstone National Park, Firehole and Iower 
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Gibbon rivers.  One reason for considering the New Zealand mudsnail to be a nuisance is 

that the snail has the ability to reproduce quickly and mass in high densities.  When they 

become as dense as one- half million per meter square, they will impact the food chain of 

native trout and alter the physical characteristics of streams,  where the West is known for 

great trout fishing.  Another reason is its ability to survive in variable conditions.  The 

mudsnails are able to survive in desiccation, a variety of temperature regimes, and are small 

enough that many types of water users could inadvertently be the mechanism for interbasin 

transfer of this nuisance species.  In addition, the snail’s asexual reproduction causes great 

concern. 

 

Figure 1. Potamopyrgus antipodarum HUC Distribution Map 

Biological invasion, such as invasion of New Zealand mudsnail affects rivers and 

streams in the United States, and has negative impact on bio-systems, which will potentially 

harm biodiversity and simultaneously raise concern about biotic homogenization (McKinney 

and Lockwood, 1999).   Invasive species may cause a decrease in ecological quality because 

of the changes in biological, chemical and physical properties of ecosystems (Elliot, 2003).  In 

addition, biological invasion not only causes the decrease in ecological quality, but also leads to 

problems like economic loss, facilities harm and resource unbalance (Mann and Hanna, 2010). 
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Therefore, the evaluation and prevention of the effects of biological invasion has 

become a priority for researchers. In recent years, several papers have developed statistical 

methods to improve the understanding of specific biological invasions, such as aquatic 

biological invasion (Moffitt et al. 2012).  In this study, researchers found that near and just 

below freezing water temperatures in localized reaches of the watershed were related to 

reduced populations or lack of detection. And distributions observed in winter were associated 

with regions of groundwater releases, or downstream of impoundments in the watershed. They 

speculate that the population has remained restricted because of thermal conditions.  

However, these relationships can be changed with watershed alterations or global climate 

change.   

1.3 Importance of the Problem 

Although the existence of imperfect sensitivity and specificity are widely known, the 

impacts of imperfect sensitivity and specificity on event prediction have rarely been studied.  

In addition, biological invasion may cause problems like unbalanced biodiversity, disordered 

ecosystems, economic loss, and facility harm. Therefore, it is necessary to study the influence 

of biological invasion when the sensitivity and specificity of the diagnostic tests used are 

imperfect.  To study the influence of imperfect tests, we vary parameter prior distributions 

and examine those changes to prediction interval width using a Bayesian approach.  

1.4 Objectives 

The objectives of this paper are to: 1) describe statistical methods to estimate the probability of 

detecting biological invasion with imperfect diagnostic tests using covariate information. 2) 

under two scenarios, study how the prediction interval for event probabilities change when 

prior information changes. 
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1.5 Organization of the thesis 

The remainder of this thesis is organized as follows.  Chapter two provides a review 

of past efforts and application of Bayesian approach with imperfect tests.  Chapter three 

provides the model and the methodology of Bayesian approach.  Chapter four describes the 

data and source and the statistical model, which is used to implement the data analysis.  

Chapter five presents the results derived from the analysis.  Chapter six provides concluding 

remarks. 

  



 

 
 

6 

CHAPTER 2. LITERATURE REVIEW 

2.1 Bayesian Approach and Imperfect Tests 

Sensitivity and specificity are two statistical measures of binary classification tests. 

Sensitivity measures the proportion of positives which are correctly identified; specificity 

identifies the proportion of negatives which are correctly measured. A perfect predictor is 

perfectly sensitive and specific (Ott and Longnecker, 2001).  However, most tests are not 

perfectly sensitive and specific. In addition, problems like limited numbers of observation and 

different experimental procedures with imperfect sensitivity and specificity lead to further 

imprecision of studies (Williams and Moffitt, 2010). 

A standard assumption of logistic regression is that the outcomes are measured 

properly, and the assumption of a perfect diagnostic tests is correct, so that sensitivity and 

specificity equal one.  But outcomes from laboratory or field studies, such as invasive 

species, are usually imperfect. 

To identify the impacts of imperfect sensitivity and specificity, some statistical 

methods and studies had been developed to analyze the imperfect tests for specific topics like 

wildlife disease prevalence.  Williams and Moffitt (2010) conducted a study on estimating 

disease prevalence from imperfect diagnostic tests with data from different pool sizes by using 

a Bayesian approach to examine the posterior distribution of prevalence, sensitivity, and 

specificity. The results show that the estimates adjust for imperfect tests, which is more 

efficient than estimates assuming perfect tests. 

The Bayesian approach depends on a subjective definition of probability compared to 

the approach relying on the frequency definition of probability.  

𝑓(𝜃|𝑥) ∝ 𝑓(𝜃)𝑓(𝑥|𝜃)                                                  (3) 
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The left-hand side of (3) is the posterior density 𝑓(𝜃|𝑥), whereas on the right-hand 

side is the product of prior density 𝑓(𝜃) and the probability distribution for the data 𝑓(𝑥|𝜃), 

conditional on the parameter 𝜃. 

 

Figure 2. Explanation of Bayesian Approach 

Figure 2 illustrates the use of Bayesian approach.  The solid line is the prior 

distribution, the dashed line is the likelihood, and the posterior distribution is the dot-dashed 

line.  

General Ideas of Bayesian Inference are: the posterior distribution combines the 

information in both the prior distribution and the likelihood; it is a compromise between the 

values that are supported by the prior and by the data separately; the posterior is generally 

more similar to, and is centered nearer to the center of, the stronger information source 

(Hagan, 1996). 

Past studies tried to use external estimates of sensitivity and specificity into the 

likelihood for logistic regression.  However, the limitation of this method is that it treated 

sensitivity and specificity as fixed.  In order to fix this limitation, Tu, et al (1999) developed 

a Bayesian model to allow the uncertainty of test parameters.  Focusing on application of 

simple Bayesian methods for binomial regression analysis of risk factor studies with imperfect 

outcome measurement, McInturff et al (2004) used WinBUGS and conditional means priors to 
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allow for inclusion of prior data and expert opinion in the estimation of odds ratios, 

probabilities, risk ratios, risk differences, and diagnostic test sensitivity and specificity.  The 

simple method of obtaining Bayes factors for link selection is presented.  And the regression 

coefficient estimates are shown to change noticeably when prior and imperfect sensitivity and 

specificity are incorporated into the model.  Even though studies and methods on imperfect 

test sensitivity and specificity have been devised, the impacts of imperfect testing on 

monitoring events have rarely been studied. 

2.2 Invasive Species and Its Impact 

Shimberloff (1996) gives the geography of invasive species in his study, to show that 

not all states are affected equally.  Among the most affected states are Hawaii and Florida. 

The impacts of invasive species include ecosystem modification, resource competition, 

aggression and its analogs, predation, herbivory (Simberloff 2010).  He pointed out that the 

best thing to do with the invasive species is to keep them out to establish their own population, 

and another way is find and eradicate them to keep their population at low levels.  

Meinesz (2003) pointed out that introduced species have invaded natural habitats to 

harm one or more native species, not to say the economic consequences of varying degree, 

including loss of recreation and tourism, such as invasions threaten biodiversity in those 

habitats. At first, the invasive species will maintain itself in a limited range of habitats without 

spreading and without upsetting the equilibrium of the ecosystem. At the second level, they 

spread to the detriment of one or a few natives, and it thus threatens native biodiversity. At the 

third level, the invasive species turns dominant and alters the entire ecosystem. At the fourth 

level, the invasive species affect several ecosystems, thus threatening an even larger swath of 

biodiversity. 

Britton and Pegg (2010) pointed out that surveillance programs are developed to 

minimize the opportunities to develop from initial introductions via early detection. These 

methods are dependent on surveillance methods being able to detect species at low levels of 
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abundance to avoid false- negative recordings through imperfect detection.  The data 

indicates that small pest fishes such as P. parva may be inclined to imperfect detection when 

at low densities and this is consistent with other invasive species.  In addition, Britton and 

Pegg indicated the importance of designing surveillance programs with known statistical 

power to control conservation resource expenditure and optimize management outcomes. 

2.3 New Zealand Mudsnails 

When it comes to the effects of New Zealand mudsnails, Evans and Buffalo (2011) found 

that the invasive New Zealand mudsnail has largely been studied as a consumer of periphyton, 

algae and diatoms.  Kolosovich (2012) studied the short-time survival and potential grazing 

effects of the New Zealand mudsnail in the Truckee River and Lake Tahoe.  As a result, snail 

survivorship in the Truckee River ranged from 50-85 percent across treatments and snail 

survivorship ranged from 5-40 percent in the Lake Tahoe. They suggested that the Truckee 

River is more vulnerable to establishment by New Zealand mudsnails than Lake Tahoe. 

Bennett (2011) found that the snail densities fluctuated between very low in the winter to 

relatively high during spring and summer months.  In addition, field and laboratory 

experiments allowed them to examine the effects of abiotic factors on New Zealand mudsnail 

and the impacts of New Zealand mudsnail on stream algal assemblages, invertebrates, and 

Western Toad tadpoles.  They found that the New Zealand mudsnail reduces the growth and 

survival of native taxa by changing the abundance and composition of their shared food 

resource, benthic algae.  

Moffitt and James (2011) investigated the distribution and seasonal dynamics of the snail 

population in the Silver Creek watershed in Idaho for two years, and they found that density 

of New Zealand mudsnail was highest during summer months, but the distribution was patchy.  

Furthermore, they found that near-to-below freezing winter water temperatures in the 

watershed increased the mortality and extirpation of colony.  
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Moffitt (2012) studied the invasion of New Zealand mudsnails, in the Silver Creek 

watershed in Idaho, related to the water temperature.  The results show that thermal 

conditions restricted the population. 

Stockton and Moffitt(2011) pointed out that New Zealand mudsnails will flourish 

within and surrounding aquatic facilities due to their constant temperature and flow and 

enhanced nutritional resources. In addition, various ways can be used in and surrounding 

facilities to determine the risk of invasion, including hydrocyclone filtration, mixed-cell 

rearing units, depuration strategies, and barriers. 
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CHAPTER 3. METHODOLOGY  

Here we introduce the Bayesian formulation of the logistic regression model, and 

discuss how we studied the width of certain prediction intervals as the prior information for 

sensitivity and specificity are varied. 

3.1 The Logistic Regression Model 

Applying the method from McInturff et al (2004), we use a dichotomous test to detect 

the risk of invasive species 𝐷.  Let the variable 𝑧 to indicate the truth, where 𝑧 = 1 

indicates 𝐷 is present.  Furthermore, let variable 𝑦 denotes the test results, where 𝑦 = 1 

indicates that 𝐷 is detected and 𝑦 = 0 otherwise.  They define sensitivity and specificity 

as 𝜂 = Pr(𝑦 = 1|𝑧 = 1) and   Pr 0 0y z   respectively. For the individual with 

covariate information 𝑥, a binomial regression model will be applied to model the probability 

that an individual risk,    Pr 1|
jx jp z x   . We know, 

 
j

'

j

x '

j

exp(x β)
p β =

(1+exp(x β))
                                                 (4) 

where 𝛽 is a vector of regression coefficients in the logistic regression.  To be more general, 

𝑔(𝜋𝑥) = 𝑥′𝛽 or 𝜋𝑥 = 𝑔−1(𝑥′𝛽) for the monotone link function 𝑔(∙) in the generalized 

linear model (GLM).  

Thus, a positive test result for an individual with covariate information x has the 

probability  

     x x xq =Pr y=1|x =p ηβ β+(1-p )(1-λ)                                    (5) 

From the data, we observe (𝑦𝑗, 𝑥𝑗) with 𝑗 = 1,2, … , 𝑛, where 𝑦𝑗 is the diagnostic test 

outcome and 𝑥𝑗 denotes row vector of covariate information for the jth individual in 

independent sample of size n.  To simplify, we assume 𝑦𝑗|𝑥𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞𝑗) with the 

probability of success from (4) and    Pr 1|
jx j jp z x   .  For convenience, let 𝑋 denote 
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the usual 𝑛 × 𝑘 regression covariate matrix, and 𝑌 = {𝑦𝑗; 𝑗 = 1,2, … , 𝑛}′. Then the likelihood 

function is the product of probabilities given in (1), 

  

           

j

j
j

j j j j

x

yn 1-y

x x x x

j=1

L y,x|p β ,η,λ =

p β η+ 1-p β 1-λ p β 1-η + 1-p β λ   
   

                    (6) 

 In our study, we assumed independent beta priors for sensitivity and specificity.  

Therefore, the joint posterior is  

         p β,η,λ|x,y L x,y|β,η,λ p β p η p λ                                  (7) 

Where      , ,p p p    are the prior densities for parameters , ,   . 

It is possible to use Gibbs sampling to sample from it.  WinBUGS was designed to do 

Gibbs sampling.  Spiegelhalter and Thomas (2003) gave more details about WinBUGS in the 

WinBUGS User Manual. 

Gibbs sampling entails Monte Carlo sampling from each variable which has been 

modelled, conditional on all other variables and the data in some order.  After a ‘burn-in’ 

phase, the samples will generally be from the joint posterior distribution.   

Convergence diagnostics are available in WinBUGS.  It is standard to simply monitor 

and to look for white noise and no trend in those plots as evidence of convergence. 

To better understand the impacts from the imperfect tests, we studied prediction 

interval widths in this study.  To study the prediction interval width of our model with 

changes of the beta distribution priors for   and  , an efficient way to vary the range of 

priors on the prediction interval is the Central Composite Design. 

3.2 Central Composite Design (CCD)   

In a given model with “n” parameters, there are three types of points in the CCD: 

1. Axial points: the design will have 2*n axial points. 

2. Factorial or Cube points: which contain n2 cube points from a full factorial 

design. 
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3. Center points: there are usually multiple points, and two central points are 

applied in our study. 

The pictorial representation of the central composite design is shown in Figure 3 

(Kuehl, 1999). 

 

Figure 3. Central Composite Design for Two Factors and Three Factors 

In our model, we have four parameters, the mean of the prior distribution of sensitivity, 

the mean of the prior distribution of specificity, the weight of the prior for sensitivity, and the 

weight of the prior for specificity. In our study, n=4, thus we have 2*n=2*4= 8 axial points, 

n 42 2 16  factorial points, and two center points. 

Regarding to our data set, the initial prior distributions, and weight for sensitivity and 

specificity are shown in Table 1 below: 

 Factorial Center Axial 

Mean Se 0.85±0.07 0.85 0.85±0.14 

Mean Sp 0.85±0.07 0.85 0.85±0.14 

Se Weight 70±30 70 70±60 

Sp Weight 70±30 70 70±60 

Table 1. Initial Priors of Data Set 

Given the weights and the initial priors listed above, we obtain the values of 

parameters of sensitivity and specificity, and plug them into the likelihood function of 
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WinBUGS to get the prediction interval width.  We can get   and   by the following 

two equations:
α

mean value of se/sp=
α+β

, and weight of se/sp=α+β . 

Given the data from a central composite design, a second order regression model can 

be built to understand the effect of model parameters.  A response surface of a regression 

model helps us understand the model. 

The response surface lets the researcher visually study the response in a region of 

interesting factor levels and to estimate the effect of the treatment factors on the response 

variable.  The response surfaces can also be applied to investigate the interaction of factors 

on the response variable, for example, the interplay between sensitivity and specificity prior 

distributions. The response can be represented graphically, either in the three-dimensional 

space or as contour plots that help visualize the shape of the response surface. Contours are 

curves of constant response drawn in the x, y plane keeping all other variables fixed. Each 

contour corresponds to a particular height of the response surface.  A central composite 

design (CCD) is the most commonly used response surface methodology (RSM) design, and 

RSM is often used for the study of quadratic effects of factors. 

3.3 Data Source 

The data in our study contains 400 simulated observations, and we are interested in the 

low temperature (45 degrees Fahrenheit) and high temperature (75 degrees Fahrenheit) since 

these two degrees are the two extremes of the living temperature. 
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CHAPTER 4. DATA ANALYSIS AND RESULTS 

In this study, we used the logistic regression model in OpenBUGS.  Details of our 

OpenBUGS program code are provided in the appendix. 

To better compare and recognize the risk of an event with imperfect test measurements, 

the first step of our study was to run the logistic regression to obtain the maximum likelihood 

estimates model for our simulated invasive species data.  Also, OpenBUGS provided 

estimates for logistic model by assuming perfect tests.  To capture the impacts of imperfect 

sensitivity and specificity, models with imperfect tests will be run. 

To show the logistic relationship between temperature and the existence of New 

Zealand mudsnails, we use Figure 4.  From the graph, we can find that as the temperature 

increases, the existence of New Zealand mudsnails decreases.  

 

Figure 4. Logistic Regression for Simulated New Zealand Mudsnails Data 
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Based on the logistic regression from R, we have 
 

 
i

i

i

p x
log =1.6671-0.0535x

1-p x
, from 

which we have p(45)=0.32 , and p(75)=0.088 . 

The fitted logistic model based on the result from OpenBugs is  

 

 
 i

i

i

p x
log =-1.371-0.05331 x -x

1-p x
                                            (8) 

Based on the equation, we have p(45) 0.99 , and p(75) 0.12 . 

After we extended Table 1 to 26 combinations of parameters of sensitivity and 

specificity, we used these values with OpenBugs to get distributions of predicted values under 

low (45 degrees Fahrenheit) and high (75 degrees Fahrenheit ) temperatures, and we selected 

the 2.5% and 97.5% percentiles.  The difference between the 2.5% and 97.5% percentiles 

gives the value of the prediction interval width under the low or the high temperature degrees.  

The parameters, and the corresponding prediction interval width are listed in the Table 2 

below. 

To understand the impacts of changes on the priors on prediction interval width, we 

fitted a best multiple linear regression model based on the values of mean sensitivity, mean 

specificity, their weights, and the prediction interval widths shown in Table 2.  The general 

regression models under 45 and 75 degrees Fahrenheit were  

0 1 2 3 4

2 2 2 2

5 6 7 8

9 10

11 12

13 14

width = b + b mean_se+ b mean_sp+ b se_weight+ b sp_weight

+ b meanse + b meansp + b seweight + b spweight

+ b mean_se*mean_sp+ b mean_se*seweight

+ b mean_se*spweight+ b mean_sp*seweight

+ b mean_sp*spweight+ b seweight*spweight+ e

              (9) 

In our study, we used best subset model selection to find the best fitted model. We 

selected the best multiple linear regression by SAS.  The results are as follows: 

Under 45 degrees Fahrenheit, the best model is  

45

2 2 2

w =-28.34+23.3mean_se+48.97mean_sp+0.005086se_weight

-15.77meanse -28.88meansp -0.000043seweight
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2R =0.9216.with                                                     (10) 

Under 75 degrees Fahrenheit, we did a Box-Cox transformation to the prediction 

interval width with a natural logarithm, and then the model is 

75

2 2

2

lnw =-231.7+360mean_se+109.3mean_sp+0.3649se_weight

-0.2078sp_weight-116.8meanse -14.84meansp

-0.0009443seweight -0.01442meanse*meansp

-0.02404meanse*se_weight+0.2343meansp*sp_weight

        

2R =0.9396.with                                                     (11) 
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Mean se Mean sp Se weight Sp weight Width 45 Width75 

0.85 0.85 70 70 0.99470  0.00690  

0.85 0.85 70 70 0.99470  0.00690  

0.78 0.78 40 40 1.00000  0.00004  

0.78 0.78 100 40 1.00000  0.00029  

0.78 0.78 40 100 1.00000  0.00000  

0.78 0.78 100 100 1.00000  0.00006  

0.78 0.92 40 40 1.00000  0.00531  

0.78 0.92 100 40 1.00000  0.01431  

0.78 0.92 40 100 0.99974  0.00747  

0.78 0.92 100 100 0.99978  0.03081  

0.92 0.78 40 40 0.42700  0.00534  

0.92 0.78 40 100 0.38040  0.00184  

0.92 0.78 100 40 0.40450  0.00469  

0.92 0.78 100 100 0.36350  0.00135  

0.92 0.92 40 40 0.44220  0.05653  

0.92 0.92 100 40 0.44717  0.04924  

0.92 0.92 40 100 0.45231  0.05161  

0.92 0.92 100 100 0.40147  0.06312  

0.99 0.85 70 70 0.39790  0.01794  

0.71 0.85 70 70 1.00000  0.00002  

0.85 0.99 70 70 0.34660  0.19958  

0.85 0.71 70 70 0.53730  0.00038  

0.85 0.85 10 70 1.00000  0.00001  

0.85 0.85 130 70 0.70640  0.00587  

0.85 0.85 70 10 0.98700  0.01077  

0.85 0.85 70 130 0.99810  0.00683  

Table 2. Combinations of Sensitivity, Specificity, Prediction Interval and Their 

Weights 

From the above table, we see that at 45 degrees the prediction interval width decreased 

significantly when the mean value of sensitivity increases from 0.85 to 0.99, where the 

prediction interval width decreases to 0.01794.  Furthermore, the prediction interval width 

under 45 degrees Fahrenheit with the changes in the mean value of specificity fluctuated, so 

there is less evidence to show that the priors of specificity will affect the prediction interval.  

In addition, we cannot find similar changes with respect to the increase in the mean value of 

specificity.  The increases in weights for sensitivity did not reduce the prediction interval 
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width under 45 degrees Fahrenheit, and the weights of specificity were not included in our 

model based on (6).  Thus, changes in the priors of sensitivity help to decrease the prediction 

interval width, but the effects of mean specificity and the weight of sensitivity was not clear. 

In addition, under 75 degrees Fahrenheit, it is hard to detect the influence from either 

sensitivity or the specificity or their weights. 

To visually examine how the changes of sensitivity and specificity affect the prediction 

width, we use values from Table 1 to graph the mean value of sensitivity, specificity or the 

weights with respect to the widths.  We also used contour plots.  The two variables (X and 

Y) in the contour plots are for mean value of sensitivity and specificity.  The third variable (Z) 

is the predicted value in our model with changes of sensitivity and specificity.  And the 

contour plot helps to answer the following question: how does the variable Z change as the 

function of the X and Y.  It helps us to understand how our predicted interval width changes 

as the changes of mean sensitivity and mean specificity. 

4.1 Model for x =45 Degrees Fahrenheit 

At 45 degrees Fahrenheit, we examined how prediction interval width changes with 

mean values of sensitivity or specificity.  And from (10), we know the significant terms are 

mean sensitivity, mean specificity, their weights, the second order terms of sensitivity, 

specificity, and the weight of sensitivity.  Figure 5 shows the changes of prediction interval 

width under the changes of mean value of sensitivity. 
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Figure 5. Plot of Prediction Interval Width under the Change of Mean value of 

sensitivity at 45 Fahrenheit 

From the above graph, we can see that the prediction interval width decreases as the 

mean value of sensitivity increases to 1, which means the prediction width tends to be smaller 

as the mean value of sensitivity converges to 1, the perfect sensitivity.  

Furthermore, we cannot detect the same pattern when the independent variables are 

mean value of specificity or the weight of the sensitivity prior distribution.  Figure 6 shows 

how the width changes with mean specificity. 
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Figure 6. Plot of Width under the Changes of Mean Value of Specificity at 45 

Fahrenheit 

In the above plot, when the mean value of specificity ranges from 0.75 to 0.95, we 

cannot find a decreasing trend for the width.  In addition, when mean value of specificity is 

low as 0.7, the width is not high, but between 0.75 and 0.95, the width is often higher.  These 

results show there is less clear trend of the width of prediction under the changes in mean 

specificity.  It may be caused by the interaction of independent variables since the fitted 

model in (10) has second order terms. 

In addition, a similar pattern is seen for the width as the sensitivity weight increases in 

Figure 7 below, which may also be affected by the interaction between the independent 

variables. 
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Figure 7. Plot of Width under the Changes of Specificity Weight at 45 Fahrenheit 

To better understand the effects of sensitivity and specificity, we used contour plots in 

our study with combinations of sensitivity, specificity, and their weights as shown in Table 2. 

  Figure 8 shows how the width changes with mean sensitivity and mean specificity 

when the sensitivity weight equals 40.  
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Figure 8. Contour Plot at 45 Degree with Sensitivity Weight =40 

We see that it is a mound shaped distribution.  The increase in the mean value of 

sensitivity decreases the prediction interval width under the setting where sensitivity weight 

equals 40.  Thus, we see how the sensitivity has an impact on the prediction width. 
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Figure 9. Contour Plot at 45 Degree with Sensitivity Weight =100 

In Figure 9, we see that the increases in the mean value of sensitivity will also decrease 

the prediction interval width under the condition that sensitivity weight equals 100.  For 

example, when the sensitivity increases from 0.78 to 0.92, the prediction width decreases from 

1 to 0.38. Thus, when specific sensitivity weight equals 100, we can see the influence of mean 

sensitivity to the prediction width. 

4.2 Model for x =75 Degrees Fahrenheit 

At 75 degrees Fahrenheit from (11), we know that mean sensitivity, mean specificity, 

sensitivity weight, and specificity weight are all significant.  In the following plots, we are 

going to study the relationship of these variables and the prediction interval width. 
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Figure 10 is a plot of width with respect to the mean sensitivity, and at the low 

sensitivity, such as 0.72, the width was the lowest, but when the mean value of sensitivity goes 

to higher values such as 0.85, the width fluctuates in a low level until the mean sensitivity is 

0.95.  When the mean value of sensitivity gets near 1, the prediction interval width does not 

change much. 

 

Figure 10. Plot of Prediction Interval Width under the Changes of Mean 

Sensitivity at 75 Fahrenheit 
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Figure 11 is a plot of prediction interval width with respect to the mean specificity, and 

at low sensitivity, such as 0.72, the width was the lowest, but the prediction width increases as 

specificity increases, which is different from our expectation that the width will decrease as 

the specificity goes to 1. 

 

Figure 11. Plot of Prediction Interval Width under the Changes of Mean 

Specificity at 75 Fahrenheit 
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In Figures 12 and 13, the plots of prediction interval widths versus prior weights of 

sensitivity and specificity, and no clear trend in prediction interval width is seen as the weights 

of sensitivity and specificity increase.  When the weights equal 40 or 100, we see the widths 

are all at or below 0.05, thus we cannot see obvious decreasing trend of the widths.  The 

reason for the nondecreasing trend may also be caused by the interaction between independent 

variables. 

 

Figure 12. Plot of Prediction Interval Width under the Changes of Sensitivity 

Weight at 75 Fahrenheit 
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Figure 13. Plot of Prediction Interval Width under the Changes of Specificity 

Weight at 75 Fahrenheit 

We now study contour plots at the high temperature, with different weights (40 or 100) 

of sensitivity and specificity : 

With the weights of sensitivity and specificity are equal 40, we detect a mound shape 

of the width and also the curvature of the peak towards the left.  For instance, when the mean 

value of specificity increases from 0.78 to 0.92, the width increases from 0.0004 to 0.00531.  

When the mean value of sensitivity increases from 0.78 to 0.92, the width increases from 

0.0004 to 0.00534.  In addition, when both of the sensitivity and specificity increase to 0.92, 

the prediction interval width also increased to 0.057, but the peak of the mound towards left as 

shown in Figure 14. The curvature may be caused mean sensitivity, mean specificity, and the 

weight of the prior distributions for sensitivity and specificity. 
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Figure 14. Contour Plot at 75 Degree with Sensitivity Weight =40, Specificity 

Weight=40 

In Figure 15, it is seen that when the sensitivity and specificity increase, the prediction 

interval width increase and then decrease, and it also shows a curvature towards left at the 

right part of the graph of the width.  For instance, when the mean value of specificity 

increases from 0.78 to 0.92, the width increases from 0.0000 to 0.00747.  When the mean 

mean value of sensitivity increases from 0.78 to 0.92, the width increases from 0.0004 to 

0.00184.  In addition, when both of the sensitivity and specificity increased to 0.92, the 

prediction width also increased to 0.05661.  Thus, the influence of sensitivity and specificity 

on the prediction interval width can be detected as shown in Figure 15. 
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Figure 15. Contour Plot at 75 Degree with Sensitivity Weight =40, Specificity 

Weight=100 

From Figure 16, we also see that when both of the sensitivity and specificity increase, 

the prediction interval width increases and then decreases, and it also shows curvature at the 

top of the plot.  Also, the curvature may also be the result of second order terms in (11) and 

their interactions.  
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Figure 16. Contour Plot at 75 Degree with Sensitivity Weight =100, Specificity 

Weight=40 

 

Figure 17. Contour Plot at 75 Degree with Sensitivity Weight =100, Specificity 

Weight=100 
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 In Figure 17, it is seen that when the sensitivity and specificity increase, the 

prediction width increase and then decrease with a curvature leading to a peak at the top.  For 

instance, when the mean value of specificity increases from 0.78 to 0.92, the width increases 

from 0.0006 to 0.03081.  When the mean value of sensitivity increases from 0.78 to 0.92, the 

width increases from 0.0004 to 0.00135.  In addition, when both of the sensitivity and 

specificity increase to 0.92, the prediction width also increases to 0.06312. 
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CHAPTER 5. CONCLUSIONS 

Logistic regression is a common statistical method used in studying an event.  The 

assumption of a perfect test is that sensitivity and specificity are perfect.  Unfortunately, 

perfect sensitivity and specificity is typically unrealistic since such occurrence is rare in nature.  

Many reasons will cause the imperfect tests which include the imperfect sensitivity and 

specificity, such as difference in designing the experiment or the difference in the number of 

observations.  To better capture the effects of imperfect tests on monitoring the invasive 

species, we applied a Bayesian approach, multiple linear regression, the CCD, and the contour 

plots in our study. 

In this study, we have found that there is an association between the prevalence 

posterior distribution and the prior distributions of the sensitivity and specificity.  From the 

fitted models and the plots for the prediction interval width with changes in priors, the results 

of our study have shown that more certainty will be detected in the prevalence prediction 

interval width as the mean value of sensitivity increases to 1 or 100% which means the perfect 

tests.  However, there is no evidence to show that the same effects happened on the 

prediction interval width regarding to the changes in the mean value of specificity.  In 

addition, we have also conducted the tests on changes the weights of our prior distributions.  

But the results showed that the bigger the weights of sensitivity and specificity, the smaller 

were the prevalence interval width. 

To better indicate how the changes in the prior distribution on the prediction interval, 

we conducted a central composite design and also examined contour plots with different 

combinations of priors of mean sensitivity and mean specificity and their weights.  From the 

contour plots, we showed the results from our predicted model and the plots for prediction 

interval width with respect to the changes in the priors.  In all of these results, the increases 

in the mean value of sensitivity lead to the decreases in the prediction interval width.  
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However, changes in the mean value of specificity and weights of sensitivity and specificity 

do not clearly reduce the value of the prediction interval width. 

To better explain the results, we consider the interaction between the independent 

variables which may affect the effects of specificity and their weights on the prediction 

interval width, which also caused the curvature in the contour plot.  

At 45 degrees Fahrenheit, without the limitation on the dependent variable (existence 

of mudsnails), the contour plots better show how the changes of sensitivity and specificity on 

the prediction interval widths under different widths.   

However, at 75 degrees Fahrenheit, the contour plot was curved towards left at the 

peak since the limit on the value of dependent variable caused by the high temperature.  Thus, 

the contour plots at 45 degrees Fahrenheit is more effective and easier to explain the changes 

of prediction interval widths caused by the changes in the mean sensitivity, mean specificity 

and their weights.  However, the contour plot curvature at 75 degrees Fahrenheit leads to 

more difficulty in explaining the changes of mean sensitivity, mean specificity, and their 

weights. 
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APPENDIX A 

WinBUGS Code 
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model 

   { 

      for (i in 1:200)  

        { 

         y[i] ~ dbern(q[i]) 

         q[i] <- Se*(Pi[i]) + (1-Sp)*(1-Pi[i]) 

         logit(Pi[i]) <- alpha + beta*(x[i] - mean(x[])) 

         phat[i] <- exp(alpha + beta*(x[i] - mean(x[])))/(1 + exp(alpha + beta*(x[i] - 

mean(x[])))) 

        } 

      Se ~ dbeta(99, 1)  

      Sp ~ dbeta(99, 1) 

      alpha ~ dnorm(0, 0.0001) 

      beta ~ dnorm(0, 0.0001) 

phat40 <-  exp(alpha + beta*(40- mean(x[])))/(1 + exp(alpha + beta*(40- mean(x[])))) 

phat45<-  exp(alpha + beta*(45 - mean(x[])))/(1 + exp(alpha + beta*(45- mean(x[])))) 

phat50<-  exp(alpha + beta*(50- mean(x[])))/(1 + exp(alpha + beta*(50- mean(x[])))) 

phat55 <-  exp(alpha + beta*(55 - mean(x[])))/(1 + exp(alpha + beta*(55- mean(x[])))) 

phat60  <- exp(alpha + beta*(60 - mean(x[])))/(1 + exp(alpha + beta*(60- mean(x[])))) 

phat65  <-  exp(alpha + beta*(65 - mean(x[])))/(1 + exp(alpha + beta*(65 - mean(x[])))) 

phat70  <-  exp(alpha + beta*(70 - mean(x[])))/(1 + exp(alpha + beta*(70 - mean(x[])))) 

phat75  <-  exp(alpha + beta*(75- mean(x[])))/(1 + exp(alpha + beta*(75- mean(x[])))) 

phat80<-  exp(alpha + beta*(80 - mean(x[])))/(1 + exp(alpha + beta*(80- mean(x[])))) 

   } 

 

list(x = c(56.9,45.9,49.6,77.8,65.8,53.0,63.0,56.7,64.7,57.1,47.3,74.7,68.7,64.8,64.8, 

58.1,54.5,78.9,42.0,54.0,52.5,69.0,55.7,52.2,49.9,50.4,44.6,40.3,73.6,42.8, 

63.1,45.9,51.8,52.5,53.4,58.6,44.0,55.4,62.5,73.8,69.0,45.5,77.8,59.9,72.7, 

66.4,51.0,78.6,42.2,69.1,48.0,48.9,51.8,79.1,59.4,79.3,44.5,65.3,76.2,43.1, 

47.5,75.3,65.4,59.5,49.0,50.5,73.2,61.3,75.6,46.4,58.0,60.2,49.2,58.4,75.1, 

60.5,48.8,50.0,77.5,60.8,66.3,56.8,53.3,57.1,60.5,43.5,43.5,71.1,57.3,79.6, 

43.2,50.9,58.9,41.9,68.6,45.7,41.7,64.1,73.2,73.8,52.3,50.0,57.9,45.8,40.0, 

52.8,74.5,47.0,43.6,61.4,72.2,42.9,47.9,79.8,59.8,60.5,77.7,53.2,40.7,63.9, 

55.0,65.6,44.0,55.5,72.3,60.3,79.6,60.5,79.9,56.0,50.4,60.4,57.3,50.4,76.4, 

74.7,41.8,44.4,55.1,68.7,75.2,65.3,43.4,47.0,71.3,50.3,42.6,62.7,53.2,41.3, 

59.1,58.1,75.6,62.6,71.8,57.6,47.7,55.9,58.6,79.9,50.2,62.8,62.1,51.4,50.0, 

67.6,72.7,54.7,42.2,58.0,55.8,44.5,73.3,53.3,41.6,61.9,74.8,74.3,69.3,58.8, 

67.4,77.9,74.7,44.2,44.5,64.9,72.6,45.3,63.9,54.8,77.3,53.3,50.3,60.7,70.3, 

60.4,79.0,75.0,61.7,61.0), 

 

y = c(1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0, 
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0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,0,1,0, 

0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0,0, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 

# initial values 

list(alpha=.0,beta=.0,Se=.9999,Sp=.9999) 

 

  



 

 
 

40 

APPENDIX B 

Model Selection Code 
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SAS code for finding the best regression model: 

data paper; 

input mean_se mean_sp se_weight sp_weight width_45 width_75; 

lnwidth_75=log(width_75); 

cards; 

0.85 0.85 70 70 0.9947 0.006903 

0.85 0.85 70 70 0.9947 0.006903 

0.78 0.78 40 40 1 0.00003626 

0.78 0.78 100 40 1 0.0002881 

0.78 0.78 40 100 1 0.000002375 

0.78 0.78 100 100 1 0.00005969 

0.78 0.92 40 40 1 0.005313 

0.78 0.92 100 40 0.999999463 0.01431 

0.78 0.92 40 100 0.9997375 0.007469 

0.78 0.92 100 100 0.9997778 0.03081 

0.92 0.78 40 40 0.427 0.005338 

0.92 0.78 40 100 0.3804 0.001838 

0.92 0.78 100 40 0.4045 0.004685 

0.92 0.78 100 100 0.3635 0.001353 

0.92 0.92 40 40 0.4422 0.05653 

0.92 0.92 100 40 0.44717 0.04924 

0.92 0.92 40 100 0.45231 0.05161 

0.92 0.92 100 100 0.40147 0.06312 

0.99 0.85 70 70 0.3979 0.01794 

0.71 0.85 70 70 0.999999776 0.00002416 

0.85 0.99 70 70 0.3466 0.19957807 

0.85 0.71 70 70 0.5373 0.0003782 

0.85 0.85 10 70 1 0.000008073 

0.85 0.85 130 70 0.7064 0.005871 

0.85 0.85 70 10 0.987 0.01077 

0.85 0.85 70 130 0.9981 0.006834 

run; 

 

/*program of width under temp 45 degree*/ 

proc glm data = paper ; 

model width_45 = mean_se mean_sp se_weight sp_weight mean_se*mean_se 

mean_sp*mean_sp se_weight*se_weight sp_weight*sp_weight mean_se*mean_sp 

mean_se*se_weight mean_se*sp_weight mean_sp*se_weight mean_sp*sp_weight 

se_weight*sp_weight; 

output out = rpaper p = pred r = res ; 

run; 

 proc plot data = rpaper vpercent = 70 ; 

 plot res*pred  ; 

 proc capability noprint data = rpaper lineprinter ; 

 var res ; 

 qqplot res /normal(mu = est sigma = est symbol='.') square  ; 
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 run ; 

  /*adjust model 1 under temp 45 degree*/ 

 proc glm data=paper; 

model width_45 = mean_se mean_sp se_weight sp_weight mean_se*mean_se 

mean_sp*mean_sp se_weight*se_weight sp_weight*sp_weight; 

output out = rpaper1 p = pred1 r = res1 ; 

run; 

proc plot data = rpaper1 vpercent = 70 ; 

plot res1*pred1  ; 

proc capability noprint data = rpaper1 lineprinter ; 

var res1 ; 

     qqplot res1 /normal(mu = est sigma = est symbol='.') square  ; 

run ; 

    /*adjust model 2 under temp 45 degree* by deleting spw*spw*/ 

proc glm data=paper; 

model width_45 = mean_se mean_sp se_weight sp_weight mean_se*mean_se 

mean_sp*mean_sp se_weight*se_weight; 

output out = rpaper11 p = pred11 r = res11 ; 

run; 

     proc plot data = rpaper11 vpercent = 70 ; 

plot res11*pred11  ; 

proc capability noprint data = rpaper11 lineprinter ; 

var res11 ; 

qqplot res11 /normal(mu = est sigma = est symbol='.') square  ; 

run ; 

   /*adjust model 3 under temp 45 degree* by deleting spw*spw*/ 

     proc glm data=paper; 

model width_45 = mean_se mean_sp se_weight mean_se*mean_se mean_sp*mean_sp 

se_weight*se_weight; 

output out = rpaper111 p = pred111 r = res111 ; 

run; 

proc plot data = rpaper111 vpercent = 70 ; 

plot res111*pred111  ; 

proc capability noprint data = rpaper111 lineprinter ; 

var res111 ; 

qqplot res111 /normal(mu = est sigma = est symbol='.') square  ; 

run ; 

/*program of width under 75 degree*/ 

proc glm data = paper ; 

model width_75 = mean_se mean_sp se_weight sp_weight mean_se*mean_se 

mean_sp*mean_sp se_weight*se_weight sp_weight*sp_weight mean_se*mean_sp 

mean_se*se_weight mean_se*sp_weight mean_sp*se_weight mean_sp*sp_weight 

se_weight*sp_weight; 

output out =rpaper2 p = pred2 r = res2 ; 

run; 

proc plot data = rpaper2 vpercent = 70 ; 
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plot res2*pred2  ; 

proc capability noprint data = rpaper2 lineprinter ; 

var res2 ; 

     qqplot res2 /normal(mu = est sigma = est symbol='.') square  ; 

run ; 

/*boxcox transformation of width under 75 degree*/ 

proc transreg data = paper ss2 plots = all; 

 model BoxCox(width_75 / lambda=-.4 to .4 by 0.02)  

             = identity(mean_se mean_sp se_weight sp_weight)/ pboxcoxtable ; 

   run; 

/*run under log(width_75)*/ 

proc glm data = paper ; 

model lnwidth_75 = mean_se mean_sp se_weight sp_weight mean_se*mean_se 

mean_sp*mean_sp se_weight*se_weight sp_weight*sp_weight mean_se*mean_sp 

mean_se*se_weight mean_se*sp_weight mean_sp*se_weight mean_sp*sp_weight 

se_weight*sp_weight; 

output out =rpaper3 p = pred3 r = res3 ; 

run; 

proc plot data = rpaper3 vpercent = 70 ; 

plot res3*pred3  ; 

proc capability noprint data = rpaper3 lineprinter ; 

     var res3 ; 

qqplot res3 /normal(mu = est sigma = est symbol='.') square  ; 

run ; 

  /*run under log(width_75) by deleting spw*spw, ,eanse*spw,meansp*sew, sew*spw*/ 

proc glm data = paper ; 

model lnwidth_75 = mean_se mean_sp se_weight sp_weight mean_se*mean_se 

mean_sp*mean_sp se_weight*se_weight  mean_se*mean_sp mean_se*se_weight 

mean_sp*sp_weight; 

     output out =rpaper33 p = pred33 r = res33 ; 

run; 

proc plot data = rpaper33 vpercent = 70 ; 

plot res33*pred33  ; 

proc capability noprint data = rpaper33 lineprinter ; 

  var res33 ; 

  qqplot res33 /normal(mu = est sigma = est symbol='.') square  ; 

  run ; 
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APPENDIX C 

Plot Generating Code 
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#generate leverage and outlier plots 

Q1<- read.table("F:/STAT Thesis/Code/leverage.txt", header=T) 

Q1  

 

meanse2 =(Q1$mean_se)^2 

meansp2=(Q1$mean_sp)^2 

seweight2=(Q1$se_weight)^2 

meansesp=(Q1$mean_se)*(Q1$mean_sp) 

meansesewei=(Q1$mean_se)*(Q1$se_weight) 

meanspspwei=(Q1$mean_sp)*(Q1$sp_weight) 

 

 

#fit the model under temp 45 

fit_45<-lm(width_45~mean_se + mean_sp + se_weight + meanse2 + meansp2 + 

seweight2,data=Q1) 

summary(fit_45) 

 

 

#find the studentized value 

rstudent(fit_45) 

studentizedres_45<-rstudent(fit_45) 

 

#find the yhat and fitted value 

ehat_45<-fit_45$residuals 

yhat_45<-Q1$width_45-ehat_45 

fitted(fit_45) 

fit.value_45<-fitted(fit_45) 

 

# get the hat value 

hat_45<-hatvalues(fit_45) 

hbar_45=mean(hat_45) 

hbar_45 

 

#plots 

plot(hat_45,studentizedres_45) 

abline(h=-2) 

abline(h=2) 

abline(v=2*hbar_45) 

abline(v=3*hbar_45) 

plot(fit.value_45,studentizedres_45) 

abline(h=0) 
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qqnorm(ehat_45,ylab="Residuals",xlab="Normal Quantile") 

qqline(ehat_45) 

 

#fit the model under temp 75 

fit_75<-lm(log(width_75)~mean_se + mean_sp + se_weight +sp_weight+ meanse2 + 

meansp2 + seweight2+meansesp+meansesewei+meanspspwei,data=Q1) 

summary(fit_75) 

 

 

#find the studentized value 

rstudent(fit_75) 

studentizedres_75<-rstudent(fit_75) 

 

#find the yhat and fitted value 

ehat_75<-fit_75$residuals 

yhat_75<-Q1$width_75-ehat_75 

fitted(fit_75) 

fit.value_75<-fitted(fit_75) 

 

# get the hat value 

hat_75<-hatvalues(fit_75) 

hbar_75=mean(hat_75) 

hbar_75 

 

#plots 

plot(hat_75,studentizedres_75) 

abline(h=-2) 

abline(h=2) 

abline(v=2*hbar_75) 

abline(v=3*hbar_75) 

plot(fit.value_75,studentizedres_75) 

abline(h=0) 

 

qqnorm(ehat_75,ylab="Residuals",xlab="Normal Quantile") 

qqline(ehat_75) 

 

##Generate plots for the raw data 

Q2<- read.table("F:/STAT Thesis/Data/raw data.txt", header=T) 

Q2 

#plots for Temp 45 
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plot(Q2$mean_Se, Q2$width_45,xlab="MeanSe",ylab="Width under 45 Fahrenheit") 

plot(Q2$mean_Sp, Q2$width_45,xlab="MeanSp",ylab="Width under 45 Fahrenheit") 

plot(Q2$Se_weight, Q2$width_45,,xlab="SeWeight",ylab="Width under 45 Fahrenheit") 

 

#plots for Temp 75 

plot(Q2$mean_Se, Q2$width_75,xlab="MeanSe",ylab="Width under 75 Fahrenheit") 

plot(Q2$mean_Sp, Q2$width_75,xlab="MeanSp",ylab="Width under 75 Fahrenheit") 

plot(Q2$Se_weight, Q2$width_75,xlab="SeWeight",ylab="Width under 75 Fahrenheit") 

plot(Q2$Sp_weight, Q2$width_75,xlab="SpWeight",ylab="Width under 75 Fahrenheit") 

 

#Contour plots 

#under 45 degree with seweight=40 

meanse_40=seq(0.70,1,0.01) 

meansp_40=seq(0.70,1,0.01) 

 

model_40=function(a,b) 

 {yhat_40=(-2.834e+01)+ 

(2.330e+01)*a+(4.897e+01)*b+(5.086e-03)*40+(-1.577e+01)*(a^2)+ 

(-2.888e+01)*(b^2)+(-4.300e-05)*(40^2)} 

z40=outer(meanse_40, meansp_40 ,model_40) 

z40  

 

contour(meanse_40, meansp_40, z40, 

            nlevels=12, xlab = "Mean_Se", ylab = "Mean_Sp",main="Contour Plot Under 

45 Degree(Se_weight=40)") 

points(Q1$mean_se, Q1$mean_sp) 

text(Q1$mean_se, Q1$mean_sp,Q1$median_45,cex=.75,pos=3) 

text(Q1$mean_se, Q1$mean_sp,Q1$count_45,cex=.75,pos=1) 

 

 

 

#under 45 degree with seweight=100 

meanse_100=seq(0.70,1,0.01) 

meansp_100=seq(0.70,1,0.01) 

 

model_100=function(a,b) 

 {yhat_100=(-2.834e+01)+ 

(2.330e+01)*a+(4.897e+01)*b+(5.086e-03)*100+(-1.577e+01)*(a^2)+ 

(-2.888e+01)*(b^2)+(-4.300e-05)*(100^2)} 

z100=outer(meanse_100, meansp_100 ,model_100) 

z100 
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contour(meanse_100, meansp_100, z100, 

            nlevels=12,xlab = "Mean_Se", ylab = "Mean_Sp",main="Contour Plot Under 

45 Degree(Se_weight=100)") 

points(Q1$mean_se, Q1$mean_sp) 

text(Q1$mean_se, Q1$mean_sp,Q1$median_45,cex=.75,pos=3) 

text(Q1$mean_se, Q1$mean_sp,Q1$count_45,cex=.75,pos=1) 

 

 

 

#under 75 degree with seweight=40 spweight=40 

meanse_4040=seq(0.70,1,0.01) 

meansp_4040=seq(0.70,1,0.01) 

 

model_4040=function(a,b) 

 {yhat_4040=(-2.317e+02)+(3.600e+02)*a+(1.093e+02)*b+(3.649e-01)*40+(-2.078e-01)

*40+ 

(-1.168e+02)*(a^2)+(1.484e+01)*(b^2)+(-9.433e-04)*(40^2)+(-1.442e+02)*(a*b)+(-2.404e-0

1)*(a*40)+(2.343e-01)*(b*40)} 

z4040=outer(meanse_4040, meansp_4040 ,model_4040) 

z4040 

 

 

contour(meanse_4040, meansp_4040, z4040, 

            nlevels=12,xlab = "Mean_Se", ylab = "Mean_Sp",main="Contour Plot Under 

75 Degree(Se_weight=40,Sp_weight=40)") 

points(Q1$mean_se, Q1$mean_sp) 

text(Q1$mean_se, Q1$mean_sp,Q1$median_75,cex=.75,pos=3) 

text(Q1$mean_se, Q1$mean_sp,Q1$count_75,cex=.75,pos=1) 

 

 

#under 75 degree with seweight=40 spweight=100 

meanse_40100=seq(0.70,1,0.01) 

meansp_40100=seq(0.70,1,0.01) 

 

model_40100=function(a,b) 

 {yhat_40100=(-2.317e+02)+(3.600e+02)*a+(1.093e+02)*b+(3.649e-01)*40+(-2.078e-01

)*100+(-1.168e+02)*(a^2)+(1.484e+01)*(b^2)+(-9.433e-04)*(40^2)+(-1.442e+02)*(a*b)+(-2

.404e-01)*(a*40)+(2.343e-01)*(b*100)} 

z40100=outer(meanse_40100, meansp_40100 ,model_40100) 

z40100 
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contour(meanse_40100, meansp_40100, z40100, 

            nlevels=12,xlab = "Mean_Se", ylab = "Mean_Sp",main="Contour Plot Under 

75 Degree(Se_weight=40,Sp_weight=100)") 

text(Q1$mean_se, Q1$mean_sp,Q1$median_75,cex=.75,pos=3) 

text(Q1$mean_se, Q1$mean_sp,Q1$count_75,cex=.75,pos=1) 

 

 

#under 75 degree with seweight=100 spweight=40 

meanse_10040=seq(0.70,1,0.01) 

meansp_10040=seq(0.70,1,0.01) 

 

model_10040=function(a,b) 

 {yhat_10040=(-2.317e+02)+(3.600e+02)*a+(1.093e+02)*b+(3.649e-01)*100+(-2.078e-0

1)*40+(-1.168e+02)*(a^2)+(1.484e+01)*(b^2)+(-9.433e-04)*(100^2)+(-1.442e+02)*(a*b)+(-

2.404e-01)*(a*100)+(2.343e-01)*(b*40)} 

z10040=outer(meanse_10040, meansp_10040 ,model_10040) 

z10040 

 

contour(meanse_10040, meansp_10040, z10040, 

            nlevels=12,xlab = "Mean_Se", ylab = "Mean_Sp",main="Contour Plot Under 

75 Degree(Se_weight=100,Sp_weight=40)") 

points(Q1$mean_se, Q1$mean_sp) 

text(Q1$mean_se, Q1$mean_sp,Q1$median_75,cex=.75,pos=3) 

text(Q1$mean_se, Q1$mean_sp,Q1$count_75,cex=.75,pos=1) 

 

 

#under 75 degree with seweight=100 spweight=100 

meanse_100100=seq(0.70,1,0.01) 

meansp_100100=seq(0.70,1,0.01) 

 

model_100100=function(a,b) 

 {yhat_100100=(-2.317e+02)+(3.600e+02)*a+(1.093e+02)*b+(3.649e-01)*100+(-2.078e-

01)*100+(-1.168e+02)*(a^2)+(1.484e+01)*(b^2)+(-9.433e-04)*(100^2)+(-1.442e+02)*(a*b)

+(-2.404e-01)*(a*100)+(2.343e-01)*(b*100)} 

z100100=outer(meanse_100100, meansp_100100 ,model_100100) 

z100100 

 

contour(meanse_100100, meansp_100100, z100100, 

            nlevels=12,xlab = "Mean_Se", ylab = "Mean_Sp",main="Contour Plot Under 

75 Degree(Se_weight=100,Sp_weight=100)") 
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points(Q1$mean_se, Q1$mean_sp) 

text(Q1$mean_se, Q1$mean_sp,Q1$median_75,cex=.75,pos=3) 

text(Q1$mean_se, Q1$mean_sp,Q1$count_75,cex=.75,pos=1) 

 


