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Abstract 

 

Dennis, Kemp, and Beckwith (1986) developed a model describing the stochastic,  

temperature-dependent development of insect life stages in the field. The model predicts 

the proportion of insects in a population that are in a given life stage at a given time. The 

model is based on a logistic probability distribution where maximum likelihood (ML) is 

used to compute parameter estimates. This paper explores the estimability of parameters 

within this model. Parametric bootstrap confidence intervals for parameters and functions 

of the parameters were studied for efficacy. Limitations due to low sample sizes were also 

studied. The ML parameter and function of the parameters bootstrap sampling distributions 

indicate can be described well with a large sample multivariate normal distribution. 

Confidence intervals also followed the prescribed coverage rate and are adequate with this 

model. Lower sample sizes had lower bootstrap confidence interval coverage rates, but 

converged quickly to 95% as sample size increased. Results from this paper should be of 

interest to insect-pest managers and researchers who model development of insects, plants, 

and animals. Examples of these techniques are presented using data from the western 

spruce budworm, Choristoneura occidentalis, rangeland grasshopper species M. 

sanguinipes and the almond tree P. dulcis.  
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Chapter 1 Introduction 

 

1.1 Introduction 

The ability to forecast the occurrence of development stages of organisms is 

important for integrated pest management and the planning of agricultural events. For 

example, economic losses in agriculture or forestry are often attributable to specific 

development stages of given insect populations (Dennis et al 1986). Additionally, the pest 

organisms may respond differently to control measures applied to different development 

stages. Hence, understanding and predicting growth stage occurances is important.  

Osawa et al. (1983) first presented a phenology model describing the development 

of balsam fir, Abies balamea. His model was unique in that it incorporated an 

environmental factor, temperature, into a model for development stages through time. The 

model describes the stochastic, temperature-dependent development of balsam fir buds 

stages in the field by predicting the proportion of fir buds in a population that are in a 

given life stage at specified times. Later, a simpler version of this phenology model was 

developed by Dennis, Kemp, and Beckwith in 1986 and applied to the western spruce 

budworm Choristoneura occidentalis. Other useful tools were developed related to this 

model that are of interest to practitioners such as: estimating the time to reach the 

maximum proportion of insects in a given growth stage, or finding the time at which a 

predetermined proportion of insects have reached a specified growth stage or beyond 

(Dennis and Kemp 1988).  While other phenology models have been develped, including 

the Bayesian model introduced in Knape and De Valpine (2016) with shrimp brine data, 

they can be complex. The Dennis-Kemp model, however, provides a simpler alternative.  

The D-K phenology model has been used in a variety of applications, including 

western spruce budworms (Kemp et al. 1986), rangeland grasshoppers (Kemp and Osanger 

1986), glassy winged sharpshooter bugs (Castle et al. 2005), white spruce (Volney and 

Cerezke 1991), and snail passage in the gut of rainbow trout (Bruce et al. 2009).  

The data required for the Dennis-Kemp model are an example of specialized count 

data that often occur in ecological problems. The phenology data set is represented in a 

𝑞 × 𝑟 table for counts of the number of organisms in stage 𝑗 (𝑗 = 1, 2, … , 𝑟) recorded in 

samples taken at cumulative degree day times 𝑡𝑖 (𝑖 = 1, 2, … , 𝑞). Frequently, the 
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individuals in each row (i.e. each sampling time) are aggregated to within only a few of the 

possible growth stages. The table of counts typically contains many zeros, sometimes 

occurring in more than half the table cells, even when the numbers of individuals in each 

sample is quite large. As a result of the data sparsity, there is potential for the breakdown 

of traditional statistical procedures for parameter estimation and subsequent model 

evaluation.  Among various parameter estimability problems that could arise are:  (1) 

multiple local maxima in the likelihood function, leading to sensitivity of model-fitting 

calculations to initial parameter values, (2) ridge-shaped likelihood function, in which two 

or more parameters are difficult to estimate separately, (3) failure of the large-sample 

normal approximations for maximum likelihood (ML) estimates, such as described in 

Dennis and Kemp 1988, resulting in biased estimates and confidence intervals with poor 

coverage properties.   

While the Dennis-Kemp model has been used in a variety of applications, the 

estimability of the parameters and functions of the parameters has not been closely studied. 

Additionally, the statistical properties of the estimates and the quality of the statistical 

inference procedures described in Dennis and Kemp (1988) have not been evaluated. The 

objective of this research is to evaluate the quality of the asymptotic confidence interval for 

parameters and functions of the parameters. The adequate sample size needed for 

satisfactory estimability was also evaluated.  

 

 

 

 

 

 

 

 

 

 

 



 
3 

 
Chapter 2 Model and Methods 

 

2.1  Model Description 

The Dennis-Kemp phenology model describes the temperature-dependent, 

stochastic development of organism life stages. While development is a continuous process 

where the organism accumulates development through time, the growth stages are recorded 

as visible categorizations made by observers. For modeling purposes, it is assumed that a 

given insect can be categorized into one of r mutually exclusive and sequential 

development stages.  

Because the model represents a stochastic process, the probability distribution for 

the amount of development an organism has accumulated at time t changes over time. Let 

𝑋(𝑡) be the amount of development accumulated at time t. In a previous phenology model, 

proposed by Osawa et al (1983), the 𝑋(𝑡) were assumed to follow a normal distribution. 

The normal distribution and the integral must be evaluated through numerical integration 

or other methods (Dennis et al 1986). An alternative distribution is based on the logistic 

curve with probability density function (PDF): 

𝑓(𝑥, 𝑡) = exp (
𝑥−𝑡

√𝑣𝑡
) {√𝑣𝑡 [1 + exp (

𝑥−𝑡

√𝑣𝑡
)]
2

}⁄       [1] 

where 𝑣 is a positive constant and a function of time. This distribution has a mean of t and 

variance (𝜋2 3⁄ )𝑣𝑡.  Dennis et al 1986 modifed this distribution such that the mean and 

variance of the distribution increase linearly with t. The logistic cumulative distribution 

function (CDF) is given by: 

Pr[𝑋(𝑡) ≤ 𝑥] =  ∫ 𝑓(𝑢, 𝑡)𝑑𝑢 =  1 {1 + exp [− (
𝑥−𝑡

√𝑣𝑡
)]}⁄

𝑥

−∞
.    [2] 

This form of the logistic curve is easier to compute and analyze than the normal 

alternative of Osawa. Additionally, the logistic distribution has heavier tail probabilities 

than the normal, and thus is able to account for extra variability often present in biological 

data. Previous research has shown that the logistic distribution provides almost identical 

results to the normal probability function (Dennis et al 1986).  

Let 𝑋(𝑡) be be a random variable representing the continuous level of development 

level for a randomly selected organism at time t, where t is measured in thermal time such 

as degree days (cumulative DD). Typically, the exact 𝑋(𝑡) value is unobservable. The 



 
4 

 
process, however, can be categorized into observable units. If the stochastic process begins 

with the insect in a given life stage at 𝑡 = 0,  as t progresses, the organism will sequentially 

pass through different life stages. Let 𝑎𝑗 , 𝑗 = 1,… , 𝑟 − 1 be  the amount of development in 

DD necessary for an organism to attain the (𝑗 + 1)st stage. That is, the 𝑎𝑗 values are the 

DD values separating the r stages: 

Stage 1:  𝑋(𝑡) ≤  𝑎1 

Stage 2:  𝑎1  < 𝑋(𝑡) ≤  𝑎2 

⋮ 

Stage 𝑟 − 1:  𝑎𝑟−2  < 𝑋(𝑡) ≤  𝑎𝑟−1 

Stage 𝑟:  𝑎𝑟−1 < 𝑋(𝑡) . 

Let random variable 𝑌(𝑡) be the categorized growth stage of a randomly sampled 

member of the population at time t, where the possible values for 𝑌(𝑡) are the discrete 

values {1, 2, …, r}. Given the correspondence between 𝑋(𝑡) and 𝑌(𝑡),  if 𝑋(𝑡) has not yet 

attained 𝑎𝑗, then 𝑌(𝑡) has not yet advanced beyond stage j. From Eq. 2, the probability that 

𝑋(𝑡) has not yet attained signpost 𝑎𝑗  is the area of the logistic density curve below 𝑎𝑗 at 

time t: 

Pr[𝑋(𝑡) ≤ 𝑎𝑗] =  Pr[𝑌(𝑡) ≤ 𝑗] =  {

0, 𝑗 = 0 (𝑎0 ≡ −∞);

{1 + exp[−(𝑎𝑗 − 𝑡) √𝑣𝑡⁄ ]}
−1
,  𝑗 = 1,  … ,  𝑟 − 1

1,  𝑗 = 𝑟 (𝑎𝑟 ≡ +∞)

 [3]  

The event that 𝑎𝑗−1 < 𝑋(𝑡) < 𝑎𝑗 is equivalent to the event that the organism is in stage j, 

or 𝑌(𝑡) = 𝑗. For completeness, 𝑎0 and 𝑎𝑟 are respectively defined to be −∞ and +∞ so 

that the sum of the expected probabilities is equal to 1.  

 The expected probability that the organism is in stage j at time t, Pr( 𝑌(𝑡) = 𝑗) =

 𝑝𝑗(𝑡), is the area between 𝑎𝑗−1 and 𝑎𝑗 and is obtained from Eq. 3 as Pr[𝑌(𝑡) ≤ 𝑗] −

Pr[𝑌(𝑡) ≤ 𝑗 − 1]. Following this, and accounting for end points, the model of Dennis et al 

(1986) takes 𝑝𝑗(𝑡) to be given by: 

𝑝𝑗(𝑡) =

 

{
 
 

 
 {1 + exp[−(𝑎𝑗 − 𝑡) √𝑣𝑡⁄ ]}

−1
, 𝑗 = 1

{1 + exp[−(𝑎𝑗 − 𝑡) √𝑣𝑡⁄ ]}
−1
− {1 + exp[−(𝑎𝑗−1 − 𝑡) √𝑣𝑡⁄ ]}

−1
, 𝑗 = 2, … , 𝑟 − 1

1 − {1 + exp[−(𝑎𝑟−1 − 𝑡) √𝑣𝑡⁄ ]}
−1
, 𝑗 = 𝑟

    [4] 
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The quantity 𝑎𝑗 can be interpreted as the time t at which half the population is in 

stage j or below: Pr[𝑌(𝑎𝑗) ≤ 𝑗] = Pr[𝑌(𝑎𝑗) > 𝑗] = 1/2. As the organisms progress 

through the different stages, there will be variability in the rates of progress, and thus 

variability in the amounts of progress through time. The parameter, v, measures this 

variability. The quantities 𝑎1, 𝑎2, … , 𝑎𝑟−1 and 𝑣 are unknown parameter values estimated 

from the data and can be written as the column vector, θ: 

𝜽 =  [ 𝑎1, 𝑎2, … , 𝑎𝑟−1, 𝑣]′. 

 

2.2  Parameter Estimation  

 The data for the model consist of a sample of organisms at fixed times 𝑡1, 𝑡2, …, 

𝑡𝑞. At each time 𝑡𝑖, the number of organisms in stage j is recorded. The count in stage j at 

time i is denoted as 𝑦𝑖𝑗 assumed to be random variates from a multinomial distribution 

with 𝑗 = 1 to 𝑟 categories. The sample size at each time is 𝑛𝑖 = ∑ 𝑦𝑖𝑗𝑗 . The joint 

distribution of the random variables 𝑌𝑖1, 𝑌𝑖2, …, 𝑌𝑖𝑟 is multinomial with sample size 𝑛𝑖 and 

respective probabilities 𝑝1(𝑡𝑖), 𝑝2(𝑡𝑖), …, 𝑝𝑟(𝑡𝑖), where the probabilities are a result of Eq. 

4, i.e. [𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑟] ~ multinomial(𝑛𝑖 , 𝑝1(𝑡𝑖), 𝑝2(𝑡𝑖), … , 𝑝𝑟(𝑡𝑖)).  

 Assuming independent sampling, the likelihood function is a product of the 

respective multinomial probabilities evaluated at the count values from the samples: 

𝐿(𝑎1, 𝑎2, … , 𝑎𝑟−1, 𝑣) =  ∏
𝑛𝑖!

𝑦𝑖1!𝑦𝑖2!…𝑦𝑖𝑟!

𝑞
𝑖=1 [𝑝1(𝑡𝑖)]

𝑦𝑖1[𝑝2(𝑡𝑖)]
𝑦𝑖2… [𝑝𝑟(𝑡𝑖)]

𝑦𝑖𝑟.  [5] 

Log-likelihood is used more often for ease of calculation in parameter estimation. Then, 

the log-likelihood is: 

log 𝐿(𝑎1, 𝑎2, … , 𝑎𝑟−1, 𝑣) =  log 𝐶 +  ∑ ∑ 𝑦𝑖𝑗 log 𝑝𝑗(𝑡𝑖)
𝑟
𝑗=1

𝑞
𝑖=1     [6] 

where 𝐶 = ∏𝑛𝑖! [(𝑦𝑖1!)(𝑦𝑖2!)… (𝑦𝑖2!)]⁄  is a combinatorial constant that does not contain 

parameter values. The maximum likelihood (ML) estimates of the unknown parameters are 

the values of 𝑎1, 𝑎2, …, 𝑎𝑟−1, and 𝑣 which jointly maximize the log-likelihood function of 

the data.  The column vector of ML estimates are denoted as: 𝜃 =  [�̂�1, �̂�2, … , �̂�𝑟−1, 𝑣]′. 

The function can be maximized with numerical optimization, including the Nelder-

Mead or Broyden-Fletcher-Goldfar-Shanno algorithms, within the optim() function in R 

(Venables and Ripley 2002) or the fminsearch() function in MATLAB (Lagarias et al. 
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1998). Alternatively, Jenrich and Moore (1975) showed that maximizing L or log L 

provides equivalent results to performing an iteratively reweighted least squares 

regression. In a nonlinear regression solution, the 𝑦𝑖𝑗 values would be used as observations 

on the dependent variable as a function of 𝑛𝑖𝑝𝑖𝑗 values, with weights (𝑛𝑗𝑝𝑖𝑗)
−1

 computed 

at each iteration. 

For large samples (Dennis and Kemp 1988), ML estimates have many desirable 

statistical properties, among them a large-sample multivariate normal distribution: 

�̂� 
𝑑
→  multivariate normal(𝜽,  ∑(𝜽)),       [8] 

where 
𝑑
→ denotes convergence in distribution as sample size becomes large, and ∑(𝜽) is an 

𝑟 × 𝑟 variance-covariance matrix (the inverse of a matrix, the “information matrix,” 

obtained as expected values of the matrix of negative second derivatives of the log-

likelihood function) with elements that are functions of θ (Bishop et al. 1975).  

 

2.3  Picking Initial Values 

 Initial values must be chosen in order to use the numerical optimization algorithms 

to calculate the parameter estimates. Careful selection of initial values will allow for the 

best results from the optimization and will help avoid false solutions from of local maxima 

in the likelihood function (Irvine 2011).  The parameters have biological interpretations 

that aid in selecting the initial values. From Eq. 4, the parameter 𝑎𝑗 is the value of t at 

which 𝑃𝑟[𝑌(𝑡) ≤ 𝑗] = 1/2, or the time at which half the population are in stage j or 

below. This time for stage j can be approximated by calculating the cumulative row 

proportions of the data matrix (𝑞 × 𝑟 matrix of counts) then finding the row (denoted as 

row k) where the cumulative proportions for stage j changes from less than 1/2 to greater 

than 1/2. An initial value for 𝑎𝑗 can then be taken as 𝑡𝑘.  

Once all 𝑎𝑗 are chosen, then the initial value of 𝑣, 𝑣𝑖, can be estimated from one of 

the samples as the sample variance of the frequency distribution of development times in 

that ith sample as: 

𝑣𝑖 = (
3

𝜋2𝑡𝑖
)∑ 𝑦𝑖𝑗 (𝑚𝑗 − �̅�𝑖)

2
(𝑛𝑖)⁄𝑟

𝑗=1  .      [9] 
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Here, 𝑚1 = (𝑎𝑗 − 𝑎𝑗−1) 2⁄  is the midpoint of the interval (𝑎𝑗−1, 𝑎𝑗), with 𝑚𝑗 = 𝑎1 −

(𝑎2 − 𝑎1) 2⁄  and 𝑚𝑟 = 𝑎𝑟−1 + (𝑎𝑟−1 − 𝑎𝑟−2) 2⁄ , and �̅�𝑖 = ∑ 𝑦𝑖𝑗𝑚𝑗 𝑛𝑖⁄𝑟
𝑗=1  being the 

weighted mean of the 𝑚𝑗 values using the counts from sample i. The sample i chosen to 

calculate the initial v value should be one where the development stages are spread out. 

Another strategy is to calculate an initial v value for every row of data using Eq. 8 and use 

the average of the values as the initial value for numerical optimization.  

 

2.4  Functions of the parameters 

2.4.1 Peak Time 

Peak time at each stage during each state occurs at the maximum of 𝑝𝑗(𝑡) for j=2, 

3, …, r-1. The first and last stages are monotone functions of t that do not peak. Numerical 

maximization can be used on 𝑝𝑗(𝑡) to find peak time from Eq. 4.  

 

2.4.2 Time at which 100ξ% of plants have attained stage j 

Another function of the model parameters is the time in which a chosen proportion, 

say ξ, of organisms have attained the jth stage or beyond. The time τ at which 100ξ% of 

the organisms have attained the jth stage or beyond is the solution to 

𝜉 = 1 − {1 + exp [−(𝑎𝑗−1 − 𝜏)/√𝑣𝜏]}
−1

.      [10] 

This equation can be solved for τ (Kemp and Dennis 1991): 

𝜏 =  𝑎𝑗−1 + 
𝑣

2
[log (

1−𝜉

𝜉
)]
2

− 
1

2
log (

1−𝜉

𝜉
)√𝑣 {4𝑎𝑗−1 +  𝑣 [log (

1−𝜉

𝜉
)]
2

}, ξ < 0.5  [11] 

𝜏 =  𝑎𝑗−1 + 
𝑣

2
[log (

1−𝜉

𝜉
)]
2

+ 
1

2
log (

1−𝜉

𝜉
)√𝑣 {4𝑎𝑗−1 +  𝑣 [log (

1−𝜉

𝜉
)]
2

}, ξ > 0.5 [12] 

When ξ=0.5, τ = 𝑎𝑗−1 by definition of 𝑎𝑗−1. If one is interested in the last stage, then the 

time τ 100ξ% of the organisms have reached last stage is given by Eq. 11 or Eq. 12 with 

𝑎𝑗−1 replaced by 𝑎𝑟−1. 

 

2.5  Simulation Methods 

 The bootstrap method is a computationally intensive method to assess the accuracy 

of statistical estimates through resampling the sample data. It is a procedure that uses the 
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data to estimate the model that gave rise to the data, followed by using the estimated model 

to simulate the sampling distribution of the parameter estimates. The method is useful for 

determining the shape, bias, and spread of the sampling distribution. Bootstrapping has two 

approaches: parametric and nonparametric sampling. The parametric bootstrap generates 

data from a parametric model �̂� estimated from the sample data. Under the nonparametric 

bootstrap, data is not generated from a parametric model; it instead resamples from a 

nonparametric model estimate such as the empirical distribution function.  

Bootstrapping also is a useful tool for constructing confidence intervals (Efron and 

Tibshirani 1993) and an alternative to complex or intractable analytical solutions. 

Bootstrap confidence intervals tend to have coverage rates close to the claimed 

100(1 − 𝛼)% rate (Pawitan 2001). The percentile interval is an effective technique to 

construct the bootstrap confidence interval. Let �̂�𝑖 be the cumulative distribution function 

of 𝜃𝑖 . Then the 1 − 𝛼 percentile interval is defined by the 𝛼 2⁄  and 1 − 𝛼 2⁄  percentiles 

from �̂�𝑖: 

[𝜃𝑙𝑜, 𝜃𝑢𝑝] = [�̂�𝑖
−1(𝛼 2⁄ ), �̂�𝑖

−1(1 − 𝛼 2⁄ )]       [13] 

which, by definition, can be rewritten as 

[𝜃𝑙𝑜, 𝜃𝑢𝑝] = [𝜃𝑖
(𝛼 2⁄ )

, 𝜃𝑖
(1−𝛼 2⁄ )

].        [14] 

If the distribution of 𝜃𝑖  is approximately normal, then the percentile intervals and the 

confidence intervals derived from the standard normal distribution will produce similar 

results (Efron and Tishirani 1993).  

 A Monte Carlo simulation was used to evaluate the coverage rate of the bootstrap 

confidence interval. Monte Carlo simulations utilize simulated data, rather than empirical 

data to investigate the behavior of a statistic. The main principle behind the simulation is 

that the behavior and distribution of the statistic can be studied by the empirical process of 

drawing random samples (Mooney 1997). The basic Monte Carlo procedure, described by 

Mooney 1997, is to (1) specifiy ‘psuedo-population’ to generate random samples of data, 

(2) sample data from the pseudo-population, (3) calculate the statistics from the data 

computed in Step 2, (4) repeat Step 2 and 3 for a given number of trials, and (5) construct 

the Monte Carlo estimate of the sampling distributions for the statistics calculated in Step 

3.  
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The Monte Carlo procedure can provide insight into the statistic’s sampling 

distribution and assess the quality of inferential methods. The procedure can evaluate the 

quality of the bootstrap confidence interval and its coverage probability for parameters and 

functions of the parameters. The observed claimed rate should converge to the true 1 − 𝛼 

coverage probability if the objective is a 100(1 − 𝛼)% confidence interval. Comparison of 

the claimed rate to the observed rate provides a quantitative validation of the bootstrap 

method to compute the confidence intervals (Van den Boogaard and Hall 2004).  

 A process to evaluate the coverage probability of the parametric bootstrap 

confidence interval with the phenology data and methods is as follows:  

1. Select a set of ‘true’ parameter values for the parametric model to serve as the 

reference. Here, the ML estimates of  𝜽 = [ 𝑎1, 𝑎2, … , 𝑎𝑟−1, 𝑣]′, found from 

applying the D-K model to an observed data set, and the empirical sample times 

will serve as the references. The later constructed confidence intervals will indicate 

if the parameter reference values are contained within the interval or not. 

Additionally, multiple sample sizes 𝑛1, 𝑛2, … , 𝑛𝑞 can be selected for evaluation.   

2. Simulate 𝐵1 = 1000 product-multinomial data sets assuming the parameters 

estimates 𝜃, written as 𝒙∗ = (𝒙1
∗ , 𝒙2

∗ , … , 𝒙1000
∗ ) from the reference D-K model. Fit 

the D-K model to each of the simulated product-multinomial data sets using ML 

estimation, resulting in 1000 sets of ML parameter estimates �̂�𝑖 =

 [�̂�1, �̂�2, … , �̂�𝑟−1, 𝑣]′. In this estimation series, the original sample sizes and 

sampling times should be used.  

3. Simulate 𝐵2 = 1000 product-multinomial data sets, written as 𝒛𝑖
∗ =

(𝒛1
∗ , 𝒛2

∗ , … , 𝒛1000
∗ ) from each set of the parameter estimates �̂�𝑖 =

 [�̂�1, �̂�2, … , �̂�𝑟−1, 𝑣]′, using reference sample sizes and times. Re-fit the D-K model 

to each bootstrap data set in 𝒛𝒊
∗, obtaining 1000 bootstrap ML estimates for each �̂�𝑖 

parameter vector.  Construct a 100(1 − 𝛼)% bootstrap confidence interval from 

the 1000 bootstrap ML estimates for each parameter. If evaluating the bootstrap 

confidence interval for functions of the parameters, then the peak times and τ 

should be evaluated for each 𝒛𝑖
∗.  
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4. The above process has yielded 1000 confidence intervals for each �̂�𝑖. Obtain the 

proportion of the confidence intervals for each parameter that contains the ‘true’ 

reference parameter value. The proportion obtained is the estimated coverage rate 

for the bootstrap confidence interval.    

 

2.6  Sample size needed for adequate results 

 Estimability and the bootstrap confidence interval were also evaluated for varying 

sample sizes. The sample sizes were gradually increased until the coverage rate was 

approximately 95% for all parameter confidence intervals. The empirical 𝑝𝑗(𝑡) were used 

to construct the table of counts at each 𝑡𝑖 with the varying sample sizes. Sample sizes 

evaluated included 𝑛𝑖 = 10, 20,… , 100. For each sampling time, 𝑛𝑖 was kept the same.  

 

2.7  Data 

Data from three different sources were used in this paper as sources of reference 

values for parameters. Each of the data sets are product-multinomial count datasets, 

explained in a previous section, with samples taken at several DD times.  The data are 

phenology count data. The number of organisms in each stage 𝑗 = (1, 2, … , 𝑟) are collected 

at each time 𝑡𝑖. However, the data sets contain mostly zeros at each time point. Each data 

set is a sparse table involving a different species with varying number of stages and 

sampling times 𝑡𝑖. This will allow us to study parameter estimability and assess the model 

in a variety of settings and applications encountered in the literature. The following count 

data sets can be found in Appendix 1. 

The first dataset used is the western spruce budworm, Choristoneura occidentalis, 

is described in Kemp et al. (1986). This represents the development of a western spruce 

budworm population. The seven development stages are five instars (instar II-instar VI) 

pupa, and adult. Samples were drawn at 12 different DD times. 

The second dataset is described in Kemp and Osanger (1986) and represents the 

development of rangeland grasshoppers in Montana, specifically the Melanoplus 

sanguinipes. The stages of interest were five instars (instar I-instar V) and adult stage. 

Samples were drawn at 15 DD times.  
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Finally,  phenology data for the almond tree, Prunus dulcis, was extracted from the 

Blue Diamond Growers website. The stages contained in the model are dormant bud, green 

tip, pink bud, popcorn, bloom, petal fall, and jacket and are collected at 25 different DD 

times. However, the Blue Diamond Grower data did not specify the sample size 𝑛𝑖 at each 

DD time the data was collected and only provided the percentage of trees in each stage. 

For analysis purposes, it was assumed 𝑛𝑖 = 100 for each time 𝑡𝑖. 
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Chapter 3 Results 

3.1 C. occidentalis  

Using ML parameter estimates (Table 3-1), the model-estimated proportion of 

insects in development stage j, 𝑝𝑗(𝑡), was plotted as a function of 𝑡 in DD. The actual data 

was compared with the model predictions for instars II-VI, pupae, and adults (Fig. 3-1). 

The estimated model conformed well to the actual observations at each life stage.  

 

3.1.1 Parameter Bootstrap Confidence Interval Evaluation 

The percentage of confidence intervals that captured the parameter estimates from 

the fitted model are approximately 95%, as per the claimed rate (Table 3-2). The exception 

is the quantity v. The coverage for v was consistently lower than 95%. Histograms of the 

bootstrap samples for the ML estimations were produced with the sample’s corresponding 

normal curve (Fig. 3-2). The histograms conform to the normal curve and do not deviate 

far from the curve’s estimates and are notably normal. The normal distribution was created 

using the sample mean and standard deviation calculated from the bootstrap sample. 

 

3.1.2 Functions of the Parameters Bootstrap Confidence Interval Evaluation 

Estimates for peak time were found (Table 3-3). The coverage rates for peak time 

are all near 95% (Table 3-4). Histograms of the bootstrap sample for the peak times were 

produced with the sample’s corresponding normal curve, which calculated using the mean 

and standard deviation of the estimated bootstrap sample (Fig. 3-3). The histograms follow 

the shape of the normal curve well for each peak time.  

 Estimates for τ were found (Table 3-5). The value for τ was arbitrarily chosen to be  

ξ = .1 in stage 6, or the pupa stage. The coverage rates are approximately 95% (Table 3-5).  

Histograms of the bootstrap sample for the τ estimation with the sample’s corresponding 

normal curve indicate normality in the sampling distribution (Figure 3-4). 

 

3.2 M. sanguinipes 

Using ML parameter estimates (Table 3-1), the model-estimated proportion of insects in 

development stage j, 𝑝𝑗(𝑡), was plotted as a function of 𝑡 in DD. The actual data was 
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compared with the model predictions for instars I-VI and adult (Fig 3-1). Model estimates 

conformed to the actual observations at each life stage. Stages instar II, instar III, and instar 

IV had notably lower proportions of insects than other stages.  

 

3.2.1 Parameter Bootstrap Confidence Interval Evaluation 

The percentage of confidence intervals that captured the parameter estimates from 

the fitted model are approximately 95%, as per the claimed rate (Table 3-2). The exception 

is the quantity v. The coverage probability for v lower than 95%. Histograms of the 

bootstrap samples for the ML estimations were produced with the sample’s corresponding 

normal curve (Fig. 3-5). The histograms conform to the normal curve and do not deviate 

far from the curve’s estimates and are notably normal. The normal distribution was created 

using the sample mean and standard deviation calculated from the bootstrap sample. 

 

3.2.2  Functions of the Parameters Bootstrap Confidence Interval Evaluation 

Estimates for peak time were found (Table 3-3). The coverage rates for peak time 

are all near 95% (Table 3-5). Histograms of the bootstrap sample for the ML estimations 

were produced with the sample’s corresponding normal curve, which calculated using the 

mean and standard deviation of the bootstrap sample (Fig. 3-6). The histograms follow the 

shape of the normal curve well for each peak time.  

 Estimates for τ were found (Table 3-5). The value for τ was arbitrarily chosen to be  

ξ = .75 in stage 3, or the instar IV stage. The coverage rates are approximately 95% (Table 

3-5).  Histograms of the bootstrap sampling distribution for the τ with the sample’s 

corresponding normal curve indicate normality in the sampling distribution (Figure 3-7). 

 

3.3 P. dulcis  

Using ML parameter estimates (Table 3-1), the model-estimated proportion of trees 

in development stage j, 𝑝𝑗(𝑡), was plotted as a function of 𝑡 in DD. The actual data was 

compared with the model predictions for dormant bud, green tip, pink bud, popcorn, 

bloom, petal fall, and jacket (Fig 3-1). Model estimates conformed to the actual 
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observations at each life stage. Stages 4 and 5 had notably lower proportions of trees than 

the other stages.  

 

3.3.1  Parameter Bootstrap Confidence Interval Evaluation 

The percentage of confidence intervals that captured the parameter estimates from 

the fitted model are approximately 95%, as per the claimed rate (Table 3-2). The exception 

is the quantity v. The coverage probability for v was consistently lower than 95%. 

Histograms of the bootstrap samples for the ML estimations were produced with the 

sample’s corresponding normal curve (Fig. 3-8). The histograms conform to the normal 

curve and do not deviate far from the curve’s estimates and are notably normal. However, 

the bootstrap sampling distribution for 𝑎1 did have low extreme values. The normal 

distribution was created using the sample mean and standard deviation calculated from the 

bootstrap sample. 

 

3.3.2  Functions of the Parameters Bootstrap Confidence Interval Evaluation 

Estimates for peak time were found (Table 3-3). The coverage rates for peak time 

are all near 95% (Table 3-3). Histograms of the bootstrap sample for the ML estimations 

were produced with the sample’s corresponding normal curve, which calculated using the 

mean and standard deviation of the bootstrap sample (Fig. 3-9). The histograms follow the 

shape of the normal curve for each peak time.  

 Estimates for τ were found (Table 3-5). The value for τ was arbitrarily chosen to be  

ξ = .10 in stage 5, or the bloom stage. The coverage rates are approximately 95% (Table 3-

5).  Histograms of the bootstrap sample for the τ estimation with the sample’s 

corresponding normal curve indicate normality in the sampling distribution (Figure 3-10). 

 

3.4 Sample Size Evaluation 

 The C. occidentalis data was used to evaluate the bootstrap confidence interval at 

differing sample sizes (Table 3-6). The coverage rates coverged quickly to approximately 

95% for stage signposts 𝑎1, 𝑎2, … , 𝑎6 at 𝑛𝑖 = 20. The coverage rate for 𝑣 steadily increases 

until approximately 𝑛𝑖 = 50. However, the coverage probably does not converge to 95% 
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with the tested sample sizes; it consistently revolves around 92-93% for sample sizes of 

𝑛𝑖 = 50 or greater.  
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Figure 3- 1: Comparison of raw data (plotted points) with the fitted Dennis-Kemp model 

for the population in each life stage as a function of cumulative DD, along with 

phenological ML estimates. 
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Table 3- 1: Maximum likelihood parameter estimates for each species 

population (𝑎𝑗 in DD, 𝑣 in growth/DD). 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑣 

C. occidentalis 120.04 204.67 264.59 341.29 464.78 595.71 1.41 

M. sanguinipes 90.88 119.25 259.77 314.94 395.82 - 3.57 

P. dulcis 477.34 676.09 801.93 821.16 957.44 989.95 1.31 

Note: A ‘-‘ indicates that stage is not measured for that population.  

 

Table 3- 2: Coverage percentages for ML parameter estimate bootstrap 

confidence intervals. 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑣 

C. occidentalis 94.4% 93.5% 96.1% 94.4% 96.1% 94.3% 92.6% 

M. sanguinipes 95.3% 94.7% 95.9% 95.5% 94.2% - 92.2% 

P. dulcis 91.9% 94.4% 94.5% 93.9% 94.0% 94.5% 93.6% 

Note: A ‘-‘ indicates that stage is not measured for that population and results were not calculated.  

 

 

Table 3- 3: Estimates of peak times in each stage for each species 

in degree days. 

 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

C. occidentalis 160.11 232.91 301.15 400.76 528.06 

M. sanguinipes 101.38 183.95 285.06 352.98 - 

P. dulcis 574.22 737.29 810.23 887.58 972.37 

Note: A ‘-‘ indicates that stage is not measured for that population. 
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Table 3- 4: Coverage percentages for peak time in each stage. 

 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

C. occidentalis 94.0% 94.6% 95.8% 95.8% 94.7% 

M. sanguinipes 95.0% 94.6% 95.3% 95.8% - 

P. dulcis 92.3% 94.5% 94.2% 94.6% 94.7% 

Note: A ‘-‘ indicates that stage is not measured for that population and results were not 

calculated. 

 

Table 3- 5: τ estimates in degree days and corresponding coverage percentages for each 

species. 

 
 τ Coverage Probabiltiy 

C. occidentalis* 535.30 94.0% 

M. sanguinipes** 73.13 93.9% 

P. dulcis*** 733.91 93.9% 
* τ was measured at ξ = 0.1 in stage 6, or pupa. 

** τ was measured at ξ = 0.75 in stage 3, or instar III. 

*** τ was measured at ξ = 0.1 in stage 5, or bloom.  
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Figure 3- 2: Histograms of C. occidentalis parameter bootstrap distributions with a normal 

distribution constructed using the distribution’s mean and standard deviation. ML 

estimates are added as reference. 
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Figure 3- 3: Histograms of C. occidentalis peak time bootstrap distributions with a normal 

distribution constructed using the distribution’s mean and standard deviation. 
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Figure 3- 4: Histograms of C. occidentalis τ bootstrap distribution with a normal 

distribution constructed using the distribution’s mean and standard deviation. 
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Figure 3- 5: Histograms of M. sanguinipes  parameter bootstrap distributions with a normal 

distribution constructed using the distribution’s mean and standard deviation. ML 

estimates are added as a reference. 
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Figure 3- 6: Histograms of M. sanguinipes  peak time bootstrap distributions with a normal 

distribution constructed using the distribution’s mean and standard deviation. 
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Figure 3- 7: Histogram of M. sanguinipes τ bootstrap distribution with a normal 

distribution constructed using the distribution’s mean and standard deviation. 
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Figure 3- 8: Histograms of P. dulcis parameter bootstrap distributions with a normal 

distribution constructed using the distribution’s mean and standard deviation. ML 

estimates are added as a reference. 
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Figure 3- 9: Histograms of P. dulcis peak time bootstrap distributions with a normal 

distribution constructed using the distribution’s mean and standard deviation. 
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Figure 3- 10: Histogram of P. dulcis τ bootstrap distribution with a normal distribution 

constructed using the distribution’s mean and standard deviation. 
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Table 3- 6: Coverage percentages for C. occidentalis at varying sample sizes. 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑣 

𝑛𝑖 = 10 93.9% 95.7% 92.5% 93.4% 93.5% 93.3% 80.1% 

𝑛𝑖 = 20 94.2% 96.0% 95.9% 94.6% 94.9% 93.8% 86.1% 

𝑛𝑖 = 30 95.0% 95.2% 94.5% 95.3% 95.3% 94.9% 90.1% 

𝑛𝑖 = 40 95.5% 95.6% 94.4% 94.7% 94.2% 95.7% 90.1% 

𝑛𝑖 = 50 94.1% 95.5% 94.5% 94.9% 93.5% 94.4% 92.0% 

𝑛𝑖 = 60 95.0% 94.2% 94.9% 93.5% 94.3% 93.5% 91.7% 

𝑛𝑖 = 70 96.7% 94.9% 94.8% 93.2% 95.3% 94.1% 94.2% 

𝑛𝑖 = 80 94.0% 93.9% 92.9% 95.1% 95.3% 92.8% 92.7% 

𝑛𝑖 = 90 95.4% 95.6% 93.9% 96.4% 93.5% 93.5% 93.3% 

𝑛𝑖 = 100 94.5% 96.0% 94.5% 94.8% 96.0% 94.7% 92.4% 
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Chapter 4 Discussion 

 

4.1 Discussion 

 

The Dennis-Kemp phenology model used here worked well with sparse datasets. 

The model and the maximum likelihood procedures accurately describe the time-dependent 

life stage data of insects and trees. The parameters and functions of the parameters have 

excellent estimability. The histograms of the bootstrap sampling distributions indicate that 

the ML parameter vector estimates can be described well with a large sample multivariate 

normal distribution described in Dennis and Kemp 1988. The coverage properties of the 

bootstrap confidence intervals were also acceptable. The observed coverage probability 

was mostly consistent with the claimed 95% rate. However, the estimation of 𝑣 is more 

variable versus the other parameters. No evidence was found of multiple modes during ML 

estimation. Likely, the multiple modes, when they occur, are an artifact of the Nelder-

Mead algorithm rather than an estimability issue arising from the data, discussed by Irvine 

(2011). Potentially, if the data table is sufficiently sparse that certain development stages 

are representaly poorly or not at all, multimodality or other estimability problems could 

arise.  

 The bootstrap confidence interval was also evaluated with different sample sizes to 

find the size n needed for each sample at time i to get adequate coverage rates with the C. 

occidentalis data. The ML estimates of  𝑎1,   𝑎2,  … , 𝑎𝑟−1 converge quickly to normality 

and the 95% coverage rate. However, v had lower coverage rates at smaller sample sizes. A 

sample size of approximately 𝑛𝑖 = 70 is suggested for reliable results. Collecting fewer 

organisms at sampling time 𝑡𝑖 will reduce the estimability of the parameters. 
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 Further sampling problems could arise regarding how often samples should be 

collected. Collecting fewer samples will result in limited information to accurately predict 

model parameters and construct confidence intervals. Additionally, estimability issues may 

aoccur as the algorithms may get stuck in local minima or maxima. It could also be more 

difficult to find ideal initial values. As such, they may be chosen poorly and would likely 

result in unsatisfactory ML estimates.  The number of times that samples are collected 

should be designed such that they record sufficient information on the changes over time in 

all the development stages. If a sufficient number of sampling times cannot be collected, 

researchers could potentially  consider pooling adjacent life stages into single operational 

stages for analysis.  

 This issue was found with the C. occidentalis data with varying values of sampling 

times 𝑡𝑖. The same stages were kept. The ML parameter estimates calculated from half the 

sampling times, 𝑞 = 6, resulted in estimations that biologically did not make sense (Table 

4-1). The 𝑞 = 8 sampling times resulted in ML estimates that could be used to evaluate 

estimability. However, the ML estimates were using the 𝑞 = 8 sampling times were 

consistently far lower than the ML estimates from the original data set.  Further work is 

needed in order to determine an appropriate number of sampling times for adequate 

estimability.  

Table 4- 1: ML estimates for varying amounts of sampling times t for comparison for C. 

occidentalis, where q denotes the number of sampling times. 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑣 

𝑞 = 6 66.4 104.45 325117.54 0 202.53 272.41 0.68 

𝑞 = 8 81.81 94.27 128.74 188.96 308.55 345.57 1.68 
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The Dennis-Kemp model does not explicitly incude several factors that may affect 

phenology. The model does not have terms to account for mortality differences in the 

stages or incorporate heterogeneity in development rates. Other covariates that may be 

included in the model might include temperature, location,  light, or any other variables 

hypothesized to affect phenology. Further work is needed to develop and incorporate the 

variables into the phenology model.  

 The Dennis-Kemp phonology model is recommended for use in areas such as 

ecology, rangeland management, agriculture or other applications where the specialized 

count data might occur.  The parameters in the Dennis-Kemp phenology model are well-

estimated with the sample sizes and sparse data tables encountered in published literature. 

The Dennis-Kemp model is a simpler model than many alternatives in the literature, and 

yet it provides satisfactory results and has decent estimability.  
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Appendix 1: Original Phenology Data 

 
 

 
 
 
 
 
 
 
 
 
 

Table A1- 1: Original data set with counts for C. occidentalis with stages and 

cumulative DD times recorded. 

 
Time 

(DD)/Stage 

Instar II Instar 

III 

Instar IV Instar V Instar VI Pupa Adult 

58 16 0 0 0 0 0 0 

82 10 0 0 0 0 0 0 

107 23 7 0 0 0 0 0 

155 3 44 0 0 0 0 0 

237 0 6 45 13 0 0 0 

307 0 2 9 48 15 0 0 

342 0 0 1 34 37 0 0 

388 0 0 1 10 87 5 0 

442 0 0 0 7 53 21 0 

518 0 0 0 0 20 65 1 

609 0 0 0 0 0 14 26 

685 0 0 0 0 0 0 42 
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Table A1- 2: Original data set with counts for M. sanguinipes with stages and 

cumulative DD times recorded. 

 
Time 

(DD)/Stage 

Instar I Instar II Instar III Instar IV Instar V Adults 

48.13 10 1 0 0 0 0 

82.38 82 33 17 0 0 0 

159.09 3 11 54 0 0 0 

354.08 0 0 5 13 35 11 

398.65 0 0 1 9 29 49 

447.79 0 0 0 1 13 80 

520.88 0 0 0 0 3 83 

566.16 0 0 0 1 8 116 

633.94 0 0 0 0 0 70 

672.78 0 0 0 0 0 143 

750.1 0 0 0 0 0 63 

792.09 0 0 0 0 0 83 

848.28 0 0 0 0 0 8 

852.93 0 0 0 0 0 18 

861.73 0 0 0 0 0 27 
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Table A1- 3: Original data set for P. dulcis with stages and cumulative DD times 

recorded. It is unknown if the cells are filled with counts or probabilities.  

 
Time (DD)/ 

Stage 

Dormant 

Bud 

Green 

Tip 

Pink 

Bud 

Popcorn Bloom Petal 

Fall 

Jacket 

593.24 0 97 3 0 0 0 0 

607.24 0 90 10 0 0 0 0 

619.97 0 87 13 0 0 0 0 

634.18 0 80 20 0 0 0 0 

647.08 0 75 25 0 0 0 0 

690.87 0 40 55 3 2 0 0 

714.87 0 25 63 7 5 0 0 

734.37 0 17 63 13 7 0 0 

760.37 0 13 60 15 12 0 0 

784.37 0 7 55 20 18 0 0 

863.37 0 0 10 20 60 8 2 

877.37 0 0 4 10 72 10 4 

894.37 0 0 3 7 72 10 8 

910.37 0 0 1 4 65 18 12 

969.37 0 0 0 1 55 18 26 

989.37 0 0 0 0 41 24 35 

1009.87 0 0 0 0 27 21 52 

1027.87 0 0 0 0 17 18 65 

1045.37 0 0 0 0 5 10 85 

1103.37 0 0 0 0 0 3 97 

1119.87 0 0 0 0 0 2 98 

1137.37 0 0 0 0 0 0 100 

1158.37 0 0 0 0 0 0 100 

1180.37 0 0 0 0 0 0 100 

1248.87 0 0 0 0 0 0 100 


