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Abstract 

Predicting the timing of phenological events is important in agriculture, especially 

high revenue products.  A project sponsored by USDA-ARS had the objective of adapting a 

previously developed model for estimating proportions of insects in different development 

stages as a function of temperature (degree) and time (days) for predicting bloom in almond 

orchards.  Data for the model normally form a two-way table of counts, with rows 

corresponding to sample proportions of different development stages, and columns to 

sampling times. The data from the almond growers, however, proved problematic in that the 

percentages of trees in development stages were recorded but not the counts.  Maximum 

likelihood estimation of model parameters was possible, but the variances of the estimates 

depend on sample size. This thesis reports a technique developed to estimate sample sizes of 

multinomial and product multinomial models with known proportions when empirical 

proportions are available but not the counts (sample size). 
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Chapter 1 

Introduction 

1.1 Overview 

Prediction of the timing of developmental stages of plants and insects is important in 

agricultural management. "Phenology," or the timing of development stages, is a complex 

process depending on many factors such as weather and time  [1]. According to the United 

States Department of Agriculture, the 2018-2019 U.S. wheat crop is projected at 1,821 

million bushels, a 5 percent increase from previous year.  The average projected farm price 

is between $4.50 and $5.50 per bushel [2].  Actual yields for an individual farmer will 

depend on the collective management actions taken by the farmer for pest control, 

pollination, and soil fertility.  Such actions can vary greatly in effectiveness depending on 

the development stage of the crop and/or pest.  It is, therefore important to improve methods 

of forecasting the phenology of plants as well as insect pests.  

Dennis et al. [1] developed a model to predict proportions of insects in different 

development stages as a function of accumulated degree-days (DD). The data for the model 

is a two-way table of counts, with each row giving the counts of different development 

stages recorded in a sample of insects taken at a particular time.  The model, known in the 

literature as the Dennis-Kemp model, specifies logistic functions for how the stage 

proportions change through time [3].  The functions contain unknown parameters requiring 

statistical estimation.  The likelihood function is product-multinomial, each multinomial 

corresponding to one row of the data table. Various statistical inferences for the model have 

been presented (Dennis et al. 1986, Dennis and Kemp 1988) based on standard asymptotic 

theory for multinomial models (e.g. Bishop et al,1975) [4].   



 

 

 

2 
 

 

This project was motivated by a non-standard phenology data set that was collected 

by the California almond industry. Of critical importance in almond growing is the 

scheduling of placement of honeybees for pollination.  The almond trees go through 

different phenological stages during a growing season, and the bees must be brought in at 

the onset of flowering for optimal production. There was a USDA-ARS project implemented 

to adapt the Dennis-Kemp phenology model for use by almond growers.  Phenology data on 

almond trees had been collected by the almond growers over many years.  However, the data 

proved to have a serious shortcoming: the two-way tables contained percentages rather than 

counts (each row adding to 100), and, to make things worse, the sample sizes corresponding 

to the row percents were not recorded. The question arose:  can the sample sizes be 

estimated? Theoretically there is information about sample sizes in percent-only data, in that 

in a multinomial model the magnitude of the departures of empirical proportions from the 

modeled proportions, that is, the variability in the data, depends on sample size.  It became 

apparent from the literature that the estimation of sample size in multinomial models with 

data on proportions but not counts had not been studied. Development of a model for sample 

size estimation when only the proportions are known will allow for expansion of estimation 

of variability of forecasting plant and insect phenology, not only to the data with known 

counts.    

1.2 Previous Work 

"Estimation of sample size in multinomial models" has many different meanings and 

contexts.  Outlined here are some of the questions that have been previously addressed under 

that broad banner.  Some of the questions involve survey design, that is, determination of 

how large a sample is needed to achieve some inferential goal.  Other questions involve the 
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sample size being unknown due to one or more missing counts, as in mark-recapture models 

(in which the count of animals not trapped is missing).   

Eichenberger et al. [5] developed a model for sample size determination in survey 

design for groups that might be not detected by the sample. They formulated a technique for 

determining the smallest sample size necessary to ensure that a group is represented in the 

sample with probability of at least 1  . In the multinomial phenology models, the group 

probabilities change through time.  However, the Eichenberger et al. method nonetheless 

could prove useful for designing phenology field studies when the focus is on one particular 

row (time) of counts. 

 Thompson [6] proposed a method of selecting the smallest sample size n  for a 

random sample from population with known multinomial proportions 
jp , 1,2,...,j r , such 

that the probability will be at least 1  that all estimated proportions 1 2, ,..., rp p p will 

simultaneously be within specified distances of true population proportions. Chosen 

distances require some prior knowledge about the population of interest. Although 

Thompson’s model does not apply to a product multinomial, it could be adapted for a 

particular sampling time of interest in a phenology study.    

Otis et al. [7] summarized and improved earlier work from the 1950s of population 

size estimation for mark-recapture in a closed population model. In a population of size N , 

for a total of q  sampling times, 1,2,...,i q , on each sampling occasion there are 2 possible 

outcomes; an individual is either captured or not captured. There are 2q
 possible capture 

histories, 1,2,..., 2qj  . For the number of individuals captured at ith sampling time 
jy , the 

number of individuals not captured in the experiment is: 
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1

1

t

t j

i

n n y




  . (1) 

The last count is missing from the data, posing an estimation problem that is equivalent to 

having a missing sample size n .  Mark-recapture differs from the problem investigated here 

in that actual counts are available in mark-recapture data (just not all of them). 

1.3 Thesis Objective 

This project proposes and evaluates a method to estimate sample size n  for a 

multinomial model when the empirical proportions are known but not the counts. Sample 

size estimation is obtained by the method of moments approach, using the relationship of 

multinomial counts with the chi-squared distribution.  Confidence intervals for n  are 

developed as well.  In chapter 2, a simplified version of the problem is studied: estimation of 

the sample size n  in a single multinomial model, when the empirical proportions, but not 

the counts, are available. An estimate is developed and circumstances are described for 

when the estimate will work well. In chapter 3 the full problem raised by the nonavailability 

of counts in phenology data is tackled. Specifically, the problem of inference for the Dennis 

et al. [1] phenology model when the empirical proportions, but not the counts, is 

investigated. . Chapter 3 proposes rules for pooling sparse cells in datasets when the method 

described method in chapter 2 fails.  The data from Blue Diamond® Growers Nonpareil 

almonds [8] serve to illustrate the concepts.   
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Chapter 2 

Estimation of n  with Known Proportions 

2.1  Purpose 

This section describes a proposed method for estimating the unknown sample count 

n  for a multinomial model with r  possible outcomes, 1,2,...,j r , with known 

probabilities 1 2, ,..., rp p p .  The count data  1 2, , , ry y y  along with the sample size n  are 

assumed missing, but data in the form of empirical sample proportions 1 2, ,..., rp p p , where 

/j jp y n  , are available.   

2.2  The Method 

Here is proposed a method to estimate sample size ( )n  using a moment estimate 

based on a chi-squared goodness-of-fit statistic. The purpose of developing the method was 

to study such estimation in a simple setting before adapting it to  a more complex problem 

described in the next chapter [1]. As well, this chapter explores and maps out the scenarios 

for which the chi-squared estimate of sample size performs well.   

Two multinomial goodness-of-fit tests, one based on Pearson’s 
2 and one based on 

the log-likelihood ratio 
2G , are described.  The statistical properties of the two tests are 

compared in terms of performance when the sample counts are low. Next a moment estimate 

of sample size n  is derived based on Pearson’s 
2  statistic for use when the data consist 

only of sample proportions. Then improvements in the sample size estimate are discussed; in 

particular a bias correction is derived. The bias correction improves performance of a 

100(1 ) % confidence interval for n  . 
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2.3  Chi-squared 

The Pearson goodness-of-fit statistic for a single multinomial with known group 

proportions 1p , 2p , …, rp   is given by 

 
2

2

1

r
j j

j j

y np

np

 
  
 
 

 . (2) 

The Pearson statistic can be rewritten by factoring n  out, thereby expressing the 

statistic in terms of known sample proportions and empirical proportions: 

 
2

2 2

1

r
j j

j j

p p
n nD

p

 
   
 
 

 , (3) 

where the multiplier of n  is a statistic 
2D  giving the deviance of the empirical proportions 

from the model proportions. As n  becomes large, the sampling distribution of the Pearson 

statistic asymptotically approaches a chi-squared distribution with 1r   degrees of freedom. 

2.4  Log-Likelihood Ratio 

The log-likelihood ratio statistic 
2G , where  

2

1 1

2 log 2 log
r r

j j

j j

j jj j

p p
G n p n p

p p 

   
        

   
   (4) 

tests the goodness-of-fit of a model. The statistic is also known as 2 log   [9] where   is 

the likelihood ratio: 

1 2

1 2

1 2

1 2

1 2

1 2

!
...

! !... !

!
...

! !... !

r

r

y y y

r

r

y y y

r

r

n
p p p

y y y

n
p p p

y y y

 
 
 

 
 
 
 

. (5) 
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When 0jp  , log 0
j

j

j

p
p

p

 
  

 

 by l’Hôpital’s rule. The cell probabilities 1 2, ,..., rp p p  are 

described by the model 0H . Under model 1H  cell probabilities are unconstrained except for 

1

1
r

j

j

p


 . When 0H  is true and n  is large, 2 log   and Pearson’s statistic are 

asymptotically equivalent. The Taylor series expansion 
( )

0
0

0

( )
( )

!

i
k

k

f x
x x

k





 
 

 
 , of the 

function  

0

( ) log
y

f y y
y

 
  

 
 about 0y  is:  

   
2

0 0

0

1 1
( ) ...

2
f y y y y y

y
     . (6) 

The Taylor series approximation
jp applied to 

2G  then yields 

 
 

2

2

1 1

2
r r

j j

j j

j j j

p p
G n p p n

p 

 
   
 
 

  , (7) 

and by the cancellation of the differences between 
jp  and 

jp  [10], we have 

 
2

2

1

r
j j

j j

p p
G n

p

 
 
 
 

 . (8) 

2.5 Method of Moments 

A method of moments estimate of the unknown parameter n  is constructed by 

setting 
2  equal to its expected value, the degrees of freedom 1r  . The moment estimate 

of n  follows from algebraic solution and is 
2E( )  divided by the deviance statistic: 
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2

1r
N

D


 . (9) 

The estimate increases as the deviance from chi-squared distribution decreases.  Thus, the 

variability of the empirical proportions around the model proportions contains information 

for estimating n . The Pearson statistic was chosen for the basis of estimating n  rather than 

the likelihood ratio statistic because the Pearson statistic is known to have superior 

asymptotic properties, such as for sparse tables [11].  

2.6  Gamma-Chi-squared Relationship 

For the purpose of evaluating the sampling distribution of N , we rewrite it as 

  21 /N n r   , where 
2  chi-squared( 1r  ).  A chi-squared random variable divided 

by a constant has a gamma distribution, and so n  is seen to be the reciprocal of a gamma 

random variable.  

Suppose the random variable V  has a gamma( ,  ) distribution.  The moment 

generating function of V  is  

 ( ) E sV

Vm s e
s






 
   

 
, (10) 

and the probability density function is 

  1

( )
Vf v e


 




 


, (11) 

where   and   are positive parameters. 

[12]. The chi-squared( 1r  ) distribution of 
2  is a special case of a gamma distribution 

[12], with 
1

2

r



  and 1/ 2  .   

Let /Y V c , where ( 1)c n r  . The moment generating function of Y  is then: 
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 /( ) E sV c

Y V

s c
m s e m

c c s






  
     

   
. (12) 

The random variable Y  has a gamma( ,c  ) distribution, with the same shape parameter as 

V  but different rate parameter.  The expected value of its reciprocal is: 

1 1
E Ec

Y V

   
   

   
. (13) 

2.7 Bias Correction and Confidence Intervals 

We have established that the moment estimate of n   can be written as 1/N Y , 

where ~Y gamma
1 ( 1)

,
2 2

r n r  
 
 

.  A random variable from a gamma( , )    distribution 

has its expected value of its inverse 
1

V
defined as 

0

1
Vf d




 
 
 
  from the property of expected 

value [12]. In the case of gamma,  

   1 1

1

0

11
E

( ) ( ) 1
e d

V

 
 



  
 

   


  



  
   
   

 . (14) 

For a shape parameter 
1

2

r 
 and rate parameter 

( 1)

2

n r 
 the expected value of the reciprocal 

of Y  becomes 

 
1 ( 1) / 2 ( 1)

E E
1 ( 3)

1
2

n r n r
N

rY r

  
       

. 
(15) 

Thus, the moment estimate N  is biased low by a proportion 
 1

( 3)

r

r




. The bias is corrected 

by constructing a new moment estimate N :  
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2

( 3) ( 3)

( 1)

r r
N N

r D

 
 


. (16) 

Here 
2D  is the deviance of proportions given in equation (3) 

 A 100(1 ) % confidence interval for n  can be constructed from the relationship of 

the estimate N  with a chi-squared distribution.  We have 

2

( 3)n r
N





, (17) 

where 
2  has an asymptotic chi-squared( 1r  ) distribution.  Thus ( 3) /n r N   is a pivotal 

quantity. Given that 

 2 2 2

1 /2 /2 1P          , (18) 

an approximate 100(1 ) % confidence interval for n  can be written as 

2 2

1 /2 /2,
3 3

N N

r r

  
 
 

  
, (19) 

which is equivalent to 

2 2

1 /2 /2

2 2
,

D D

  
 
 
 

. (20) 

The smaller the deviance between the observed and expected proportions, the larger the 

estimate of sample size becomes. 

2.8  Convergence of Chi-squared 

One can estimate the minimum size of n  needed for the confidence interval 

coverage to still hold true. Here the confidence interval coverage is tested by performing a 

large number of simulations and counting the proportion of confidence intervals that include

n , and comparing that proportion to 1  . Because the point and interval estimates of n  
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were derived from the chi-squared goodness-of-fit statistic, we might expect the statistical 

properties of the estimates to depend heavily on the adequacy of the chi-squared 

approximation.  The conventional rules for the chi-squared statistic to asymptotically 

converge are for the expected counts 5j je np   for at least 80% of the cells and 1je   for 

all j  [13]. Another common, more conservative, approach is setting 5je   for all j  [12]. 

This leads to the conclusion that for higher probabilities smaller sample size is needed. 

Keeping variation in 
jp  constant, multinomial distributions with lower r  possible 

outcomes must have greater 
jp  for each j  for all probabilities to sum up to 1, and therefore 

smaller n  to satisfy the requirements. 

2.9 Results 

This simulation used true cell proportions 
j

p  , 1,2,...,j r  for 6r   with values of 

 1/12,2 /12,3 /12,2 /12,2 /12,2 /12p  , leaving n  to be estimated. The values of n   were 

set to 10, 50, 90 and 130. For each value of n , 
410  simulated samples 1 2, ,..., rY Y Y  were 

generated from a single multinomial distribution with probability mass function 

  1 2

1 1 2 2 1 2

1 2

!
P , ,..., ...

! !... !
ry y y

r r r

r

n
Y y Y y Y y p p p

y y y

 
     

 
. (21) 

Each simulated sample observed empirical proportions 
jp , 1,2,...,j r . The true and 

empirical proportions were then used to calculate point estimates (biased and unbiased) and 

95% confidence intervals according to the chi-squared-based results from sections 2.5 

through 2.7. The value of Pearson’s goodness-of-fit statistic was also recorded, in order to 

assess the chi-squared approximation (Table 2.1). The chi-squared plot in Figure 2.1 is 

useful for detecting possible outliers. The chi-squared statistics that deviated from the 
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linearity suggest that the statistic differs from the expected value. As n  increases, the 

simulated statistics tend to be closer to expected value of corresponding quantile. 

Table 2.1: Estimates of parameters and actual coverage of sample size from 104 iterations. 

n  10 50 90 130 

mean( N ) 15.33306 80.61423 148.25858 213.11055 

Var( N ) 181.2788323 9205.8829309 34260.964470 90523.84834 

mean( N ) 9.199837 48.368536 88.955150 127.866327 

Var( N ) 65.2603796 3314.1178551 12333.94721 32588.58540 

mean(
2 ) 5.003680 5.041748 5.000736 5.030245 

Var(
2 ) 9.537804238 9.73983669 9.65257563 10.084054308 

N  actual coverage of 

95% CI (%) 
93.81 95.48 95.31 95.10 
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Figure 2.1: Single multinomial case. Sorted distances of Pearson’s chi-squared statistic for 

varying sample sizes over 104 iterations plotted against the quantiles of 2

1r 
 distribution. 

 

 The simulation results agree with the result derived earlier that N  is biased, and 

after the bias correction by multiplying N  with 
3

1

r

r




, as in equation (16), the average of 

the 
410  simulated values of the new estimate N  is much closer to n  than that of N   (Table 
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2.1).  The actual coverage of 100(1 ) % confidence interval at 0.05   was overall closer 

to 100(1 ) % with N  than with N  . The boxplots of scaled bias (the difference between 

the statistic and n , divided by n ) for tested sample sizes over 
410  iterations are shown in 

Figure 2.2 for N  and for N  in Figure 2.3. The dashed horizontal line corresponds to zero 

value on the y-axis of scaled bias. On the figures the bottom and the top of each of the three 

boxes are the 25th and 75th percentiles of simulated data, or Q1 and Q3 respectively, with the 

line segment near the middle of the box represents the 50th percentile- the median.  The 

lower whisker is the Q1-1.5IQR, and the upper whisker is the Q3+1.5IQR, where IQR is the 

Q3-Q1 difference. In both cases the boxplot whiskers extending from 75th percentile mark 

were longer than the whiskers from the 25th percentile mark, low median, and many data 

points in the positive scaled bias direction, indicating distribution heavily skewed to the 

right. These results are consistent with the gamma distribution [14]. The Q3-Q1 range was 

smaller for N , indicating overall smaller scaled bias with N  than with N . The horizontal 

dashed line is centered closer to the center of boxes in Figure 2.2 than in Figure 2.3, 

indicating that N  is closer to true sample size than N  is. 
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Figure 2.2: Single multinomial case. Boxplots of scaled difference 
N n

n


 for varying 

sample sizes over 104 iterations.  
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Figure 2.3: Single multinomial case. Boxplots of scaled difference 
N n

n


 for varying 

sample sizes over 104 iterations.  
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2.10 Conclusion and Discussion 

Above was presented a method for estimating sample counts for a single multinomial 

model with r  outcomes, when the proportions are known but the counts are missing. As 

shown in Section 2.9, the moment estimate corrected for bias N  converges quickly to the 

true value of n  when known expected proportions 1 2, ,..., rp p p  are non-sparse. When n  is 

50, approximately 57.14% of expected counts 
j

np  are greater than 5, and the remaining 

expected counts being greater than 4. The results agree with the literature [13][12]. 

As shown in Table 2.1, an average of n  was 153.33%, 161.23%, 164.73%, and 

163.93% for the n  value for n  of 10, 50, 90, and 130 respectively. The results are 

consistent with derived bias of n  in equation (15). In the particular case of 6r  , the ratio 

is 1.67. For 1k r  , the results of the mean value of  
2  reciprocal over 104 simulations 

are around
1

2k 
, and variance of around 

2

2

( 2) ( 4)k k 
, the defined variance [15]. In same 

manner an expected variance of N , 
2 2n k Var

2

1 
 
 

, is  
2 2

2

2

( 2) ( 4)

n k

k k 
. As starting sample 

size n  increases, the variance of N  over 104 iterations is closer to the expected variance of 

N .  

The sample size estimation was obtained from using Pearson’s 
2  statistic. The log-

likelihood ratio statistic 
2G  could be a possible direction of future work to explore a 

different approach for estimation of sample size n  in the multinomial model [16].  
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Chapter 3 

Dennis-Kemp Model with Same n  for Each Time Interval 

3.1  Purpose 

This chapter implements a method for sample size n  estimation described in 

previous chapter for use in forecasting plant development events in the agriculture of Blue 

Diamond® Growers Nonpareil almonds. The method is based on Dennis et al. [1] (known in 

the literature as the Dennis-Kemp model) which estimates the proportions of insects or 

plants in a given development stage as a function of time, measured in accumulated degree 

days. Typical stage development data are in the form of a two-way table counts, with the ith 

row corresponding to a sample of size in  at time it . The Dennis-Kemp model employs a 

product multinomial likelihood for count data, with the model proportions in each row 

(proportions of organisms in stage j  at time it ) being functions of time containing 

unknown parameters. In this chapter a method is proposed for estimation of sample size 

when only proportions are known for a product multinomial model with r  development 

stages and q  sampling times, as well as how to account for sparseness of contingency tables 

due to low or zero expected cell proportions. 

3.2  Blue Diamond Almond Counts 

 The Blue Diamond® Growers keep track of development in almond orchards during 

each growing season for sampling times i
t , 1 2i , ,...,q  in degree-days (DD) for r  stages of 

tree development between dormancy and full bloom. A project was initiated under the 

USDA Agricultural Research Service to develop a phenology model for the almonds, in 
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order to forecast the best time (10% bloom) to schedule honey bee placement for pollination. 

When the data were made available to USDA-ARS, the investigators became aware that the 

empirical proportions   

/ij ij ip y n  for each sampling time i
t  were recorded but not the counts nor the sample size. 

Because the sampling protocol appeared to be standard, it was assumed that the 

sample size at each time i
t  stayed the same, i.e.: 

in n . (22) 

3.3 Model Description 

The proportion of population in development stage j , 1,2,...,j r  at it  is described 

by the Dennis-Kemp (D-K) model [1] as:  

1/ 1 exp
j i

ij

i

a t
p

t

    
           

 for 1j  , 

1
1/ 1 exp 1/ 1 exp

j i j i

ij

i i

a t a t
p

t t 


             

                                

 for 2,..., 1j r  , 

1
1/ 1 exp 1/ 1 exp

j i j i

ij

i i

a t a t
p

t t 


             

                                

 for j r .  

(23) 

The 
j

a  represents amount of development in DD needed to undergo stage j , and   the 

variability of development rates within the population. The model assumes the underlying 

development level of an organism to be a continuous mean-increasing stochastic process, 

with the organism entering a discernable stage j  after attaining development level 
1ja 
.   

The likelihood for the D-K model can be expressed as a product multinomial  
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1 2

1 2 1 1 2

1 1 2

L( , ,..., , ) ...
...

i i ir

q
y y y

r i i ir

i i i ir

n
a a a p p p

y y y




 
  

 
 , (24) 

where individual multinomials for each i
t  are assumed to be independent [13]. Here the 

likelihood is written under the assumption of the same sample size for each sampling time. 

Numerical maximization is required to obtain maximum likelihood (ML) estimates of the 

unknown parameters: 

 1 2 1, ,..., ,ra a a 
 . (25) 

A computationally more stable technique is to maximize the log-likelihood 

1 1 11 2

logL( ) log
...

q q r

ij ij

i i ji i ir

n
y p

y y y


  

 
  

 
  . (26) 

The sample sizes n  are not needed for maximization of   when rewriting the equation as:  

1 1 11 2

logL( ) log
...

q q r

ij ij

i i ji i ir

n
n p p

y y y


  

 
  

 
   (27) 

and noting that the first term is a constant. The 
ijp  corresponds to observed proportion of 

almonds that are at stage j  for a given time point. The (log) likelihood is maximized when 

the double sum is maximized. Estimation of n  was done on data of Blue Diamond 

Nonpareil type form year 2005 growing season. The data had recorded empirical proportions 

ijp  but missing counts 
ijy . The data with 18q   sampling times originally consisted of 

7r   development stages; Dormant, Green Tip, Pink Bud, Popcorn, Bloom, Petal Fall, 

Jacket. For all of the recorded sampling times the observed proportion 1
0

i
p   for 

development stage 1j  , corresponding to Dormant. The Dormant stage was excluded from 

the dataset, reducing the total number of stages of development to 6r  . 
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The estimates of expected proportions 1 2
ˆ ˆ ˆ, ,...,i i irp p p , 1,2,...,i q  were derived from D-K 

model from equation (23), where the estimated proportions are a function of ML estimates

   1 2 1 ,ˆˆ 695.593861,769.754086 816.238611,919.064476,952.973931,1.0. 8605ˆ ˆ, , 6.., ,ra a a 
 

. The comparison of the fitted estimates of expected proportions as a function of Degree-

Days from Dennis-Kemp model against the observed proportions are shown in Figure 3.1. 
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Figure 3.1: Line plots of expected proportions of almonds in stages 1-6 as a function of 

time (Degree-Days). Colored circles correspond to observed proportions from the data. 
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3.4 Variability of ML Estimates Depends on n  

The maximization of the log-likelihood does not depend on sample size, however n  

does affect the variability of the ML estimates of parameters in  . For sufficiently large 

samples ML estimates ̂  follow a multivariate normal distribution with mean vector   and 

variance-covariance matrix given by [13] 

 
1

V( ) I( ) 


 . (28) 

V( )  is inversely proportional to n . Here I( )  stands for the Fisher information matrix 

with k  rows and l  columns defined by 

 
2 log L( )

I E
k l




 

 
   

  
, (29) 

which for product multinomial models becomes  

 
1 1

( ) ( )1
I

( )

q r
j i j i

i j j i k l

p t p t
n

p t


  

    
    

    
 , (30) 

the second derivative corresponding to the curvature of log-likelihood. The variance-

covariance matrix V( ) can be estimated with Hessian matrix: 

2 ˆlog L( )ˆJ( )
ˆ ˆ
k l




 




 
 (31) 

[12] with r r  dimension for r  parameters . The 100(1 ) % Wald confidence interval for 

j  is: 

/2
ˆ ˆz vj jj  , (32) 

where v̂ jj
 is the jth element on the main diagonal of ˆV( ) . 
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3.5 Estimation of n  from Pearson Goodness-of-Fit Statistic 

The sample size needed for confidence intervals of D-K model ML is estimated with 

Pearson goodness-of-fit statistic. With r  parameters and q  sampling times, the model fits 

the data if:  

2

2

1 1

ˆ( ) ( )

ˆ ( )

q r
j i j i

i j j i

p t p t
n

p t 

       
  

 , (33) 

where ˆ
ijp  are estimates of 

ijp  from D-K model. 

The observed proportions 
ijp  are obtained from large number of simulations of q

multinomial distributions with specified n  and ˆ
ijp . The expected value of 

2  for fitted 

model is the degrees of freedom of ( 1)q r  .  

The reciprocal of a gamma-distributed random variable is derived in a similar 

manner as for a single multinomial case, but with different shape parameter.  From   

2 ~chi-squared( ( 1)q r  ), we obtain the moment estimate 

   
2 2

1 1nq r q r
N

D

 
 


. (34) 

3.6 Bias of Moment Estimate of n   

As in Chapter 2 for a single multinomial, N  is biased. The expected value of N  is 

 
 ( 1)1

E E
( 1) 2

n q r
N

Y q r

 
  

  
, (35) 

where ~Y gamma ( , )c  , 
( 1)

2

q r 
 , 1/ 2 , and  ( 1)c nq r  . 

The estimate of n  is corrected for bias:  
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   
2

1 2 1 2

( 1)

q r q r
N N

q r D

   
 


. (36) 

For the model with same r  number of parameters, as the number of sampling times- q - 

increases, the bias of moment estimate decreases. For example, with a single multinomial 

( 1)q   from previous chapter , with 6r   the expected value is 66.67%  too high, where 

with twenty sampling times the sample size is overestimated only by 2.27% .  

3.7 Confidence Interval 

The 100(1 ) % confidence interval for sample size unbiased estimate for the 

product multinomial sampling model of q  sampling times and r  proportions per single 

multinomial is found similarly to as in Chapter 2, by finding a pivotal quantity based on the 

Pearson chi-squared statistic.  Noting that 

 2 2 2

1 /2 /2P 1          (37) 

and that 

 2
( 1) 2n q r

N

 
   (38) 

is a pivotal quantity, an approximate  100 1  % confidence interval for n  becomes 

2 2

1 /2 /2,  
( 1) 2 ( 1) 2

N N

q r q r


 
 

    

  
. (39) 

The equation (39) is equivalent to equation (20). The confidence interval is expected to 

capture n  approximately 100(1 ) % of occasions under hypothetical repeated sampling. 

3.8 Convergence of n  for q  Sampling Times 

Convergence rule for a chi-squared statistic for product multinomial is same as for a 

single multinomial case; 1ijnp   for all j  and 5ijnp   for at least 80% of the cells or more 
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rigorous 5ijnp   for all j .  The rule applies to each sampling time it  separately under the 

assumption that multinomial distributions for different times are assumed to be independent. 

3.9  Low Expected Counts 

In the Blue Diamond® Nonpareil almond case, the data contains zeroes for some of 

the development stages per it . The maximization of logL( )  equation for estimation of  In 

D-K model [1] where the estimated multinomial probabilities 1 2
ˆ ˆ ˆ, ,...,i i irp p p  per it , 

1, 2,...,i q  found by maximization of vector   have their lower bound set to equal to no 

less than a chosen constant (
610
). This allows for simulation of potentially non-zero 

observed proportions 1 2, ,...,i i irp p p  for 
1 2, ,..., qt t t . The simulated 

ijp  for which a probability 

of random draw from multinomial distribution is set to minimum value will depend on that 

arbitrarily chosen lowest acceptable probability, leading to extremely low value of that 
ijp . 

A few low or zero counts can strongly bias sample size estimation. Pooling low expected 

probabilities 1 2
ˆ ˆ ˆ, ,...,i i irp p p  together as a single stage [13] can be an alternative.  

In the pooling case, instead of 
2  holding ( 1)q r   degrees of freedom, each row of 

counts per i
t  will contribute 1ir   degrees of freedom, with ir  being not necessarily the 

same for 1,2,...,i q . Summation of 1ir   over q  sampling times yields new degrees of 

freedom: 
1

q

i

i

r q


  , distributed with 2

k ,  

1

q

i

i

k r q


  . (40) 
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The 
2  statistic is derived in similar manner as for a single multinomial and product 

multinomial case, from large number of simulations of 
2 2nD   from equation (3), but the 

deviance statistic is equal to: 

1 2

2 2 2

2

1 1 1

ˆ ˆ ˆ
...

ˆ ˆ ˆ

qrr r
ij ij ij ij ij ij

j j jij ij ij

p p p p p p
D

p p p  

                   (41) 

due to potentially different degrees of freedom per row.  

The empirical sample size is derived by setting 
2E( )  to its expected degrees of 

freedom divided by the deviance statistic: 

2

1

/
q

i

i

N r q D


 
  
 
 . (42) 

The expected value of N  is: 

  1

1

1
E E

2

q

i

i

q

i

i

n r q

N
Y

r q





 
 

     
 

 




 (43) 

with 
1

q

i

i

c n r q


 
  

 
 , 

1

/ 2
q

i

i

r q


 
  
 
  and 1/ 2 for ~Y gamma ( , )c  . The moment 

estimate of sample size n  is corrected for bias by setting to a new estimate: 

21

1

1

2

2 /

q

i q

i
iq

i

i

i

r q

N N r q D

r q







 
 

    
 





. (44) 

The approximate  100 1  % confidence interval for n  for the pooling case is: 
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2 2

1 /2 /2

1 1

,  

2 2
q q

i i

i i

N N

r q r q



 

 
 
 
 

    
 
 

  
 (45) 

with pivotal quantity of 
1

2 /
q

i

i

n r q N


 
  

 
 . 

3.10 Results 

Following are presented the results of sample size estimation method with and 

without pooling the cells with low expected probabilities from the D-K model. The model 

assumed 
ij

p̂  estimated from D-K model to be the true expected proportions. The Nonpareil 

almond dataset from year 2005 consisted of eighteen sampling times i
t , 1,2,...,i q , i.e. 

18q  . The starting sample sizes were set to 50, 150, 250 and 500 before pooling, and 50, 

250, 750, 1000 with pooling. The parameters N , N  and Pearson 
2  as well as the 

coverages of N and N  were estimated from 104 iterations.  

For the first case, the sample size estimation technique was evaluated for the 

unpooled model where the cell count per time point was kept constant at six for 6r   stages 

of development of almond. The observed empirical proportions were simulated from a 

product multinomial: 

1 2

1 2

1 1 2

!
ˆ ˆ ˆ...

! !... !
i i ir

q
y y yi

i i ir

i i i ir

n
p p p

y y y

  
  
  

  (46) 

The Pearson 
2  from simulations was set to 1( )q r   the expected degrees of freedom. With 

18 sampling times and 6 stages of development, E(
2 ) being equal to 90. The first moment 

of n  from equation (34) and set to new, unbiased moment estimate based on equation (36). 
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The second case involved pooling cells in the table with expected proportions 
ij

p̂ , 

so that each row that corresponded to specified i
t  could potentially have different number 

of cells i
r . For the particular dataset cells with 0 0035

ij
p ˆ .  were combined with adjacent 

ij
p̂  cells, except for last three sampling times, 16i  , 17i   and 18i  , where cells were 

pooled with adjacent cell 5 0.003488668ˆ
ip   for i =16, 5 0.0017957ˆ

ip   for i =17, and 

5 0.0009966204ˆ
ip  for i =18 respectively, so that the table of pooled expected proportions 

had at least two cells per sampling time i
t .  

Sorted distances of Pearson’s chi-squared statistic from
410  iterations  were plotted 

against the quantiles of chi-squared distribution, 2

( 1)q r 
 for first case (Figure 3.2), and after 

pooling 2

k  , 
1

q

i

i

k r q


  , 51k   for second case. After pooling the chi-squared statistic 

approached the expected value corresponding of corresponding quantile (Figure 3.5)  

Before pooling the variability in chi-squared statistic was large. For the first case 

with ( 1)q r   equal to 90, the average of Pearson’s 
2  statistic was close to expected value, 

(Table 3.1). With low coverages of sample size estimates- both N  and N - that were based 

only on Pearson’s 
2 - the coverage failed to capture 95% of true n  due to high variance of 

Pearson’s 
2  statistic. High variance indicates that the simulated data do not fit the chi-

squared distribution. 
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Table 3.1: Estimates of parameters and actual coverage of sample size from 104 iterations 

for Nonpareil almonds from year 2005 before pooling. 

n  50 150 250 500 

mean( N ) 73.02937 197.06024 312.37299 595.23978 

Var( N ) 758.75875 4832.83463 11036.74841 35686.8419 

mean( N ) 71.4065 192.6811 305.4314 582.0122 

Var( N ) 725.4108324 4620.42856 10551.6765037 34118.383215 

mean(
2 ) 90.14077 89.60789 90.89638 89.46268 

Var(
2 ) 71440.731571 17025.323336 12380.91808 4011.53394 

N  actual coverage of 

95% CI (%) 
33.13 41.18 48.50 56.78 
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Figure 3.2: Product multinomial before pooling case. Sorted distances of Pearson’s chi-

squared statistic for varying sample sizes over 104 iterations plotted against the quantiles 

of 2

( 1)q r 
 distribution. 

 

The boxplots of scaled bias over 104 iterations for the unpooled case before bias 

correction (Figure 3.3) and after bias correction (Figure 3.4)  look similar. The dashed 

horizontal line is a value of zero on the y-axis corresponding to Scaled Bias. As described in 
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section 3.6, the bias of moment estimate N  is expected to be much smaller for product 

multinomial than for a single multinomial.  For example, for 500n   with ( 1)q r   of 90, N  

is larger from N  only by approximately 2.27% (Table 3.1). The observed mean of N  and of 

N  were greater than expected and the coverage was low before and after bias correction. 

The mean of the 
2  statistic was close to its expected value of k , where k  stands for 

degrees of freedom. However, the variance of 
2  was larger than 2k   [15]. 

The boxplot whiskers extending from 75th percentile mark were not much longer 

than the whiskers from the 25th percentile mark, which is inconsistent with the skewness of 

gamma distribution [14]. 
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Figure 3.3: Boxplots of scaled difference 
N n

n


 for varying sample sizes over 104 

iterations for unpooled case.  
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Figure 3.4: Boxplots of scaled difference 
N n

n


 for varying sample sizes over 104 

iterations for unpooled case.  
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For comparison of how the summary statistics would look like with sample size sufficiently 

large, the unpooled case was re-ran separately with starting sample size n  of 5 106. The 

results are shown in Table 3.2. 

Table 3.2: Estimates of parameters and actual coverage of sample size from 104 iterations 

for starting sample size of 5106 for Nonpareil almonds data from year 2005 before 

pooling. 

n  5 106 

mean( N ) 5,113,370 106 

Var( N ) 6.03916 1011 

mean( N ) 4.999740 106 

Var( N ) 5.77374 1011 

mean(
2 ) 90.00389 

Var(
2 ) 180.6244 

N  actual coverage of 95% CI (%) 95.11 

 

According to Bernardo and Smith [15],  an expected variance of the inverse chi-

squared distribution is 2

2

( 2) ( 4)k k 
, or equivalently 

63.003075 10  for k=90. From the 

relationship of expected value of N  defined in equation (43), or rewritten as:  

2

1
E( ) EN kn

 
  

 
, (47) 

The variance of N  is defined as: 

2 2

2

2
Var( )

( 2) ( 4)

n k
N

k k


 
 (48) 

(6.081231011 for k=90). The results in Table 3.2 are consistent with the literature. Both the 

estimates and the variances of estimates match with corresponding parameters and its 

variances of the chi-squared distribution. 
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 The results after pooling technique described earlier in this section are presented in 

Table 3.3.  For sample size n  of 1000, the coverage and Var(
2 ) is close to 95% and to 

defined variance of: 

2Var( ) 2k  , (49) 

respectively (Table 3.3).  

Table 3.3: Estimates of parameters and actual coverage of sample size from 104 iterations 

for Nonpareil almonds from year 2005 after pooling. 

n  50 250 750 1000 

mean( N ) 53.0655 261.2525 783.9797 1040.1732 

Var( N ) 172.781468 3114.690664 26980.26255 47067.287790 

mean( N ) 50.9845 251.0073 753.2354 999.3821 

Var( N ) 159.495696 2875.191189 24905.65566 43448.119179 

mean(
2 ) 51.06640 50.98479 50.84372 51.08287 

Var(
2 ) 168.5847550 114.0892897 104.7079488 105.6327902 

N  actual coverage of 

95% CI (%) 
88.60 93.80 94.26 94.63 

N  actual coverage of 95% 

CI (%) 
88.95 94.04 94.66 94.64 

 

For the pooling case, cells with ˆ 0.0035ijp   were combined with adjacent 
ij

p̂  cells, 

except for last three sampling times i =16, i =17, and i =18, where cells were pooled with 

adjacent cell 5
0 003488668

i
p  .ˆ , 5

0 0017957
i

p  .ˆ , and 5
0 0009966204

i
p  .ˆ  respectively, so 

that the table of pooled expected proportions had at least two cells per sampling time, with 

exceptions to sampling times i =16, i =17, and i =18. 
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Figure 3.5: Product multinomial after pooling case. Sorted distances of Pearson’s chi-

squared statistic for varying sample sizes over 104 iterations plotted against the quantiles 

of 2

k  distribution, 
1

q

i

i

k r q


  . 
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Figure 3.6: Boxplots of scaled difference 
N n

n


 for varying sample sizes over 104 

iterations for pooled case.  
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Figure 3.7: Boxplots of scaled differences 
N n

n


 for varying sample sizes over 104 

iterations for pooled case.  
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3.11 Conclusion and Discussion 

In general, the proposed method of pooling is an alternative solution to sample size 

estimation of multinomial sampling model with known expected proportions. 

The minimum proposed expected count ˆ
ijnp  per row is 3.5, allowing for few exceptions to 

the rule. The particular dataset had exceptions to the rule 16.67% of the times. It is 

recommended that the rule for pooling is not violated more than the tested limit.  The 

proposed method is an improvement over existing technique [17] that does not allow 

exceptions to the pooling. It is also more relevant than the method proposed by Otis et al. [7] 

for mark-recapture in closed populations.  

The developed model is an extension from Dennis-Kemp model [1]  in which the 

maximization of parameter estimates does not depend on the sample size, however their 

variability does. The expected proportions of almond data are a function of time, and the 

implementation of developed sample size estimation with previously developed model can 

be applied to future phenology data. 

For Blue Diamond almond data, an assumption of constant sample size over 

sampling times is adequate but the model cannot be applied to animal datasets or other plant 

data with changing population size over time. A thorough knowledge of studied population 

is needed. 
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Appendix 1 

This appendix contains derivation of unbiased estimate of sample size n  in a 

multinomial model. The chi-squared distribution with k   degrees of freedom is denoted by 

2

k .  

1k r   for a single multinomial with r  cell probabilities with 
1

1
r

j

j

p


  constraint, 

( 1)k q r   for a product multinomial ( q  independent rows) and 
1

1
r

ij

j

p


 , 

1

1
q

i

i

k q r


 
  

 
  for a product multinomial of varying numbers of cell probabilities 

1 2, ,..., qr r r , 
1

1
ir

ij

j

p


  : 

2 2 2~ knD    

2 2( ) ( )E nE D k    

Set 
2nD k , so that the moment estimate 

2

k
N

D
 . 

 

 

 

 

 

 

  

/2 1
1 1

2 2

2 2

0

/2

1
2

1/ 21 1
( )

/ 2

1 1/ 2 1
1/ 2 2 2

/ 2
1 1 1

2 2
2

1/ 2

2 1/ 2 2

k k
y

k

k

kn
E N kE knE y e dy

D k

k k
kn

kn

k kk

kn k
n

k k

   
     

   

 
 

 

   
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    

   
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   

 
    

       
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 

 
 



 

2k
N N

k


  unbiased estimate. 
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Appendix 2 

Sample code for R program. 

# expected probabilities for 6 sampling times: 
prob.t1=c(0.895, 0.1, 0.005) 
prob.t2=c(0.22, 0.62, 0.15 ,0.01) 
prob.t3=c( 0.01, 0.275 ,0.6, 0.1065,0.005,0.0035) 
prob.t4=c(0.004, 0.146 ,0.85) 
prob.t5=c(0.005,0.57,0.425) 
prob.t6=c(0.001, 0.999)   # violation of minimum of 0.0035 for expected probability 
 
q=6  # 6 sampling times  
 
prob.adj=vector("list",q) 
 
prob.adj[[1]]=prob.t1 
prob.adj[[2]]=prob.t2 
prob.adj[[3]]=prob.t3 
prob.adj[[4]]=prob.t4 
prob.adj[[5]]=prob.t5 
prob.adj[[6]]=prob.t6 
 
n.0=c(rep(50,q),rep(250,q),rep(750,q),rep(1000,q))   # choose starting n value, same for 
each t 
l=length(n.0) 
prob.0=rep(prob.adj,l/q) 
nsim=1000 # choose number of simulations 
N.emp=matrix(0,nsim,l/q)  
p.log.p=vector("list",l) 
p.emp=vector("list",l)  # empirical proportions of simulations 
chi.sq.int=matrix(0,nsim,l) 
chi.sq=matrix(0,nsim,l/q) 
g.sq.int=matrix(0,nsim,l) 
g.sq=matrix(0,nsim,l/q) 
k=length(unlist(prob.adj))-q  # degrees of freedom of chi-squared 
 
 
 
for(jj in 1:nsim){ 
  for (i in 1:l){ 
    p.emp[[i]]=t(rmultinom(nsim,size=n.0[i],prob=unlist(prob.0[[i]]))/n.0[i]) 
    chi.sq.int[jj,i]=n.0[i]*sum((p.emp[[i]][jj,]-prob.0[[i]])^2/prob.0[[i]]) 
     
    for (m in 1:(l/q) ){ 
      chi.sq[,m]=rowSums(chi.sq.int[,((m-1)*q+1):(m*q)]) 
      N.emp[jj,m]=n.0[m*q]*k/chi.sq[jj,m]   
    }  
    
p.log.p[[i]]=p.emp[[i]]*log(p.emp[[i]]/matrix(prob.0[[i]],nsim,length(prob.0[[i]]),byrow = 
TRUE)) 
  } 
} 
 
for(jjj in 1:nsim){ 
  for (iii in 1:l){ 
    for (s in 1:ncol(unlist(p.log.p[[iii]]))){ 
      if(is.nan(p.log.p[[iii]][jjj,s])==TRUE){ 
        p.log.p[[iii]][jjj,s]=0                # l'Hopital's Rule 
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      }  
    } 
    g.sq.int[,iii]=2*n.0[iii]*rowSums(unlist(p.log.p[[iii]])) 
    for (m in 1:(l/q) ){ 
      g.sq[,m]=rowSums(g.sq.int[,((m-1)*q+1):(m*q)]) 
    } 
  } 
} 
 
 
for (m in 1:(l/q)){ 
  qqplot(qchisq(ppoints(nsim),df=k), g.sq[,m],xlab = expression(paste(Chi^2, (k), 
~"Quantile")),ylab=expression(paste(-2*log*Lambda)),cex.lab=1) 
  qqline(distribution = function(p) qchisq(p,df=k),(g.sq[,m])) 
  mtext(unique(n.0)[m]) 
} 
 
 
chi.sq.N.emp.low=matrix(0,nsim,l/q) 
chi.sq.N.emp.up=matrix(0,nsim,l/q) 
count.N.emp=matrix(0,nsim,l/q) 
count.N.hat=matrix(0,nsim,l/q) 
V.inverse=1/(k-2) 
 
 
for (jj in 1:nsim){ 
  for (m in 1:(l/q)){ 
    chi.sq.N.emp.low[jj,m]=qchisq(0.05/2,df=k)*V.inverse*N.emp[jj,m]  # upper confidence 
interval for N.emp at alpha=0.05 
     
    chi.sq.N.emp.up[jj,m]=qchisq(0.05/2,df=k,lower.tail=FALSE)*V.inverse*N.emp[jj,m] # 
lower confidence interval for N.emp at alpha=0.05 
     
    if(n.0[m*q] > chi.sq.N.emp.low[jj,m]  & n.0[m*q] < chi.sq.N.emp.up[jj,m] ) 
    { 
      count.N.emp[jj,m]=1 
    } 
    else{ 
      count.N.emp[jj,m]=0 
    } 
  } 
} 
 
for (jj in 1:nsim){ 
  for (m in 1:(l/q)){ 
    if(n.0[m*q] > (chi.sq.N.emp.low[jj,m]*(k-2)/k)  & n.0[m*q] < 
(chi.sq.N.emp.up[jj,m]*(k-2)/k)) 
    { 
      count.N.hat[jj,m]=1 
    } 
    else{ 
      count.N.hat[jj,m]=0 
    } 
  } 
} 
 
 
# table with resuls of actual coverage at alpha=0.05 of N.emp and N.hat=N.emp*(k-2)/k 
coverage.95=rbind(colSums(count.N.emp)/nsim,colSums(count.N.hat)/nsim)  
row.names(coverage.95)=c("N.emp","N.emp(k-2)/k") 
coverage.95 


