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Abstract 
The hydroclimate of mountain environments shapes the spatiotemporal distribution of energy 
and water on scales from local to global. Climate change is inducing rapid changes in 
mountain hydroclimate in the form of warmer temperatures, reduced snowpack and glacier 
mass balance, and earlier snowmelt runoff. These changes have large implications for local 
and downstream ecosystems and societies. However, understanding of current and future 
mountain hydroclimate is hindered by a paucity of observations and the need for high 
resolution data and models to capture the effects of topographic complexity. New modeling 
approaches, tools, and datasets are needed. This dissertation addresses these needs with a 
focus on three important aspects of mountain hydroclimate: air temperature, snow, and rock 
glaciers. In the first study, I quantify the error and uncertainty in air temperature lapse rates 
and outline best practices for lapse rate estimation. In the second study, I develop a novel 
energy balance snow model and force it with new high-resolution multitemporal climate 
forcings to create snow and climate metrics for the western United States. In the final study, I 
employ a machine learning method to understand the response of rock glacier spatial 
distributions to climate change. This dissertation contributes to scientific understanding of 
mountain hydroclimate and provides tools and datasets to further develop this understanding. 
 

  



iv 
 

Acknowledgements 
First and foremost, I would like to thank my advisor, John Abatzoglou. When I came 

to the University of Idaho for my master’s degree, John was willing to take a chance on me 
even though I only had a music degree. Throughout my master’s and my PhD, John has been 
consistently kind, available, proactively supportive, and insistent on high standards. I would 
not have accomplished what I have without his amazing mentorship and advocacy.  

I would also like to thank Tim Link. In addition to being a valuable scientific mentor, 
Tim has always looked out for me- from setting me up with an amazing internship at the 
Coldwater Lab in Canmore to going to bat for me to make sure U of I did not take away my 
email address. When John moved, Tim stepped up to be my major advisor and chief advocate 
at U of I.  

I thank my committee member Tim Bartholomaus for pushing me to think about 
things from different perspectives. His questions are consistently challenging and have led 
me to grow as a scientist.  

I thank my committee member Andrew Fountain for his enthusiasm for my work and 
willingness to engage from afar. Andrew was always available for a check-in and for 
interesting and informative conversations about climate, glaciers, and rock glaciers.  

I would like to recognize my IGERT colleagues who provided companionship and 
new perspectives, especially Riveraine Walters, Konrad Hafen, Becky Witinok-Huber, and 
Matt Dunkle. A special thank you goes to Adrienne Marshall who inspired me to take on new 
challenges, pushed me to not underestimate myself, and was always available for a de-
stressing run on the mountain when I needed it.  

Thank you also to my friends and family for their unwavering support and 
cheerleading, even when I felt stuck. Juan, thank you for sacrificing so much to move to 
Moscow with me and for always talking to me and providing perspective when I was having 
a rough time. Link, thanks for the many phone conversations and for your pride in me, it’s 
mutual. Moontanners, you inspire me to do my best and think for myself. Gus and Leo, your 
unwavering affection and happiness have made my life so much richer. 

I thank the National Science Foundation (NSF) Integrative Graduate Education and 
Research Traineeship (IGERT) program (award 1249400) and a Hydroinformatics 
Innovation Fellowship from the Consortium of Universities Allied for Water Research 
(CUAHSI; NSF Cooperative Agreement No. EAR-1849458) for helping to fund this work. 

I would like to acknowledge my privilege as a white, upper-middle class woman. I 
have seen repeatedly how this has made the road smoother for me and allowed me to be 
successful. 

This research was conducted on the homelands of the Nimiipu (Nez Perce), at the 
University of Idaho in Moscow, Idaho. The University of Idaho is a land grant university 
whose endowment was partially funded by more than 87,000 acres of land acquired through 
the Morrill Act. The United States government used treaties and seizures to obtain land from 
the Shoshone-Bannocks, Nimiipu, and Schitsu’umsh (Couer d’Alene) tribes. The income 
generated from this land, benefitting the university, is 372 times the amount paid to the 
tribes1. Additionally, data used in this research was collected on land significant to many 
Indigenous communities across the western United States. I recognize, pay respect, and 
extend gratitude to the Indigenous communities that live upon, hold sacred, and care for the 
lands reflected in this research. 
 
1Lee, R. (2020). Morrill Act of 1862 Indigenous Land Parcels Database, High Country News.



v 
 

 

Dedication 
To my parents, who always told me I could be whoever I wanted to be and supported me in 

all possible ways 



vi 
 

Table of Contents 
Authorization to Submit Dissertation ....................................................................................... ii 
Abstract .................................................................................................................................... iii 
Acknowledgements .................................................................................................................. iv 
Dedication ................................................................................................................................. v 
Table of Contents ..................................................................................................................... vi 
List of Tables ......................................................................................................................... viii 
List of Figures .......................................................................................................................... ix 

List of Equations .................................................................................................................... xiv 
Statement of Contribution ....................................................................................................... xv 
Chapter 1: Introduction ............................................................................................................. 1 

References ............................................................................................................................. 5 
Chapter 2: Best Practices for Estimating Near-Surface Air Temperature Lapse Rates ............ 8 

Abstract ................................................................................................................................. 8 

Introduction ........................................................................................................................... 8 
Data ..................................................................................................................................... 11 
Methods ............................................................................................................................... 14 
Results ................................................................................................................................. 19 
Discussion ........................................................................................................................... 29 
Conclusions ......................................................................................................................... 33 
References ........................................................................................................................... 33 

Chapter 3: SnowClim: High-Resolution Snow Model and Data for the Western United States
 ................................................................................................................................................. 38 

Abstract ............................................................................................................................... 38 
Introduction ......................................................................................................................... 38 
Model Description ............................................................................................................... 41 
Model Application to the Western United States ................................................................ 51 
Data Availability ................................................................................................................. 61 
Discussion and Conclusions ................................................................................................ 62 
References ........................................................................................................................... 64 

Chapter 4: Projected Loss of Active Rock Glaciers in the Western U.S. with Warming ....... 76 

Abstract ............................................................................................................................... 76 
Introduction ......................................................................................................................... 76 
Data and Methods ................................................................................................................ 78 



vii 
 

Results ................................................................................................................................. 83 
Discussion and Conclusions ................................................................................................ 90 

References ........................................................................................................................... 93 
Chapter 5: Conclusion ........................................................................................................... 102 
Appendix A - Best Practices for Estimating Near-Surface Temperature Lapse Rates ......... 106 

Synthetic datasets covariates ............................................................................................. 106 
Observational station data covariates ................................................................................ 107 
References ......................................................................................................................... 111 

Appendix B - SnowClim: High-Resolution Snow Model and Data for the Western United 
States ..................................................................................................................................... 114 
Appendix C - Projected Loss of Active Rock Glaciers in the Western U.S. with Warming 118 

Data ................................................................................................................................... 118 
Model Complexity ............................................................................................................. 123 
References ......................................................................................................................... 135 

 
  



viii 
 

List of Tables 
Table 2.1 Covariates used to account for non-elevational effects on temperature.  Additional 

information is available in Appendix A. ..................................................................... 14 

Table 3.1 Required forcing data for the snow model. ............................................................. 42 

Table 3.2 Parameters, their abbreviated names, the parameter values used in calibration, and 
their units. Parameter values with an * indicate values chosen for the full model run 
by calibration at SNOTEL sites. Additional parameter options, including the VIC 
model albedo option, were evaluated in preliminary work but were excluded from the 
full calibration due to consistently poor performance. 1Essery et al., (2013); 2Tarboton 
& Luce, (1996) ............................................................................................................ 51 

Table 3.3 WRF data used to derive forcing data for the snow model. ................................... 54 

Table 3.4 Summary climate and snow variables included in the SnowClim dataset. Summary 
variables are available for pre-industrial, historical, and future time periods. ........... 62 

Table C.1 Environmental covariates used in the Maxent model. 1Lute et al., (2021); 2Gesch et 
al., (2018); 3Anning & Ator, (2017). ........................................................................ 119 

Table C.2 Descriptions of numeric lithology classes which were used as a categorical 
variable in the Maxent model. Data is from Anning & Ator, (2017). ...................... 120 

Table C.3 AUC values from cross-validation experiments. Calibration AUC is the AUC from 
the model calibrated on the indicated spatial fold. Validation AUC is the AUC of the 
model calibrated on the other fold and validated on the indicated spatial fold. Delta 
AUC is the difference between the calibration and validation AUC values. ............ 128 

Table C.4 Summary of pre-industrial, historical, and future rock glacier habitat, grouped by 
level III ecoregion. Suitable and unsuitable areas are defined by the 0.212 threshold 
as discussed in the text. Values are in km2, except for the percent changes which are 
in %. Total column shows the area of the whole ecoregion, whereas the Modeled 
column shows the area within the ecoregion that was included in the distribution 
model. ........................................................................................................................ 134 

 
 

 
 

  



ix 
 

List of Figures 
Figure 2.1 a) Black line shows mean elevation across longitude over the study domain of the 

Oregon Cascades, USA (42.8- 44°N, 120.5-123°W).  Colored points show mean 
summer maximum temperature from 30 weather stations with symbols indicating the 
originating network.  Vertical grey dashed line marks the maximum elevation of the 
transect and divides the stations into west and east groups. b) Examples of lapse rates 
calculated from these stations, including using only sites from the US Cooperative 
Observer Program (COOP), the US Interagency Remote Automatic Weather Stations 
network (RAWS), the US Natural Resources Conservation Service Snowpack 
Telemetry network (SNOTEL), only sites east or west of the divide, the mean 
environmental lapse rate (MELR, -6.5 °C km-1), or all stations (n=30).  c) Distribution 
of lapse rates estimated from 15,000 samples of 10 stations from the full population 
shown in a). Colors and symbols in c) indicate lapse rates shown in b). Vertical jitter 
has been added to points in c). .................................................................................... 10 

Figure 2.2 Oregon Cascades study area. Red box in inset map shows location of Oregon 
Cascades study area in Western North America. The 30 meteorological stations used 
in this study are indicated by markers according to the observation network. Light 
blue polygons are waterbodies. ................................................................................... 12 

Figure 2.3 Lapse rate mean error (x-axis) and interquartile range (y-axis) estimated via a) 
SLR and b) MLR for datasets with varying levels of dataset noise (size) and 
collinearity (color, shape).  Lapse rates are estimated from samples of 5 stations 
drawn from each synthetic dataset. ............................................................................. 19 

Figure 2.4 MAE of lapse rates (log scale on y-axis) estimated from synthetic datasets using 
SLR (left column) and MLR (right column).   MAE is calculated across all possible 
samples of the sample size indicated on the x-axis.  In the upper plots each line 
represents a synthetic dataset with a different collinearity level and with dataset noise 
of 1°C, in the lower plots each line represents a dataset with a different level of 
dataset noise and with collinearity of 0.6. ................................................................... 20 

Figure 2.5 Percent change in a) MAE and b) IQR between the most similar decile of samples 
selected using TDA and all samples. Results are shown for lapse rates estimated via 
SLR from samples of varying sample size (x-axis) drawn from datasets with 
collinearity of 0.3 and varying dataset noise (y-axis). Negative values indicate that the 
most similar decile had lower MAE or IQR than the average sample.  Positive values 
(grey) indicate increased MAE or IQR. ...................................................................... 21 

Figure 2.6 Percent difference in MAE between lapse rates of varying sample size (x-axis) 
selected by TDA (i.e., the median lapse rate from the most similar decile of samples) 
and lapse rates calculated from the full subpopulations using SLR (subpopulation size 
shown on y-axis). Blue, outlined points indicate reduced MAE. Data is from the 
synthetic dataset with noise of 1°C and collinearity of 0.6. ........................................ 23 

Figure 2.7 Lapse rates calculated from samples of five stations from the 30 stations in the 
Oregon Cascades dataset for Tmax (top) and Tmin (bottom). Yellow boxes indicate 
lapse rates calculated via SLR.  Red boxes correspond to lapse rates calculated via 
MLR using elevation, solar radiation, and distance from coast as predictors.  Green 



x 
 

boxes indicate free-air lapse rates calculated from ERA-Interim reanalysis collocated 
with stations (see Appendix A for details) and are the same for Tmax and Tmin. .... 24 

Figure 2.8  (a) Oregon Cascades domain with stations colored according to cluster, as 
indicated by boxplot legend. (b) Tmax lapse rates estimated via SLR from samples of 
5 stations from the full dataset (‘all’, n=30), the ‘west’ cluster (n=17), and the ‘east’ 
cluster (n=13).  Tsc indicates lapse rates estimated for the ‘east’ and ‘west’ clusters 
using spatially corrected station temperatures. Tsc* indicates lapse rates estimated 
from spatially corrected temperatures from the ‘east’ cluster with influential stations 
removed (n=12). .......................................................................................................... 26 

Figure 2.9 Cumulative distributions of spatially corrected Tmax lapse rates estimated from 
samples of stations from the ‘west’ (left column) and ‘east’ (right column) clusters of 
the Oregon Cascades dataset for summer and winter (rows).  Sample sizes of 13 and 
10 were used for the ‘west’ and ‘east’ clusters, respectively. Results are grouped by 
decile of the dissimilarity metric. Only deciles 1, 3, 8, and 10 are shown. ................ 28 

Figure 2.10 Decision tree outlining best practices for estimating near-surface temperature 
lapse rates. N is the total number of stations available (i.e., the population size). ..... 31 

Figure 2.11 Seasonal Tmax lapse rates estimated for the Oregon Cascades stations following 
best practices.  Colored points represent the single best lapse rate (i.e., the median 
lapse rate of the most similar decile of samples) and colored bars indicate uncertainty 
range (the minimum and maximum lapse rates of the most similar decile of samples).  
Grey violin plots illustrate the possible lapse rates that can be estimated from any 
combination of 10 stations from the original dataset, not using best practices.  White 
dots indicate the lapse rate estimated from the full 30 station dataset not using best 
practices.  The gray dashed line marks the MELR (-6.5°C km-1). .............................. 32 

Figure 3.1 Snow model conceptual diagram. Solid black arrows indicate mass fluxes, dashed 
grey arrows indicate energy fluxes. Fluxes are described in the text. ........................ 43 

Figure 3.2 Performance metrics for an hourly model run with the selected parameterization.
 ..................................................................................................................................... 57 

Figure 3.3 Time series of observed and modeled SWE at the Hilts Creek, Idaho SNOTEL 
site. Out of all 170 SNOTEL sites, errors at this site were closest to the all-station 
median errors reported in the text. .............................................................................. 58 

Figure 3.4 Snow model performance for different time steps using the parameter set selected 
in calibration of the hourly model. Points represent median values across 170 
SNOTEL sites. ............................................................................................................ 58 

Figure 3.5 a) Historical and b) future maxswe (mm), c) historical and d) future snow duration 
(days). Historical values are averages over the period 2000-2013. Future values 
represent averages during the period 2071-2100 under RCP 8.5. In a) and b), white 
land areas denote areas that had less than 10 mm maxswe. In c) and d), white land 
areas denote areas where snow duration was 0. Note the non-linear colorscale in 
panels a) and b). .......................................................................................................... 59 

Figure 3.6 a) Absolute and b) percent change in maxswe between historical and future 
periods. c) Absolute and d) percent change in snow duration between historical and 



xi 
 

future periods. Small box in northern Utah indicates the region highlighted in Figure 
3.7. ............................................................................................................................... 60 

Figure 3.7 Example of simulations of changing maxswe for a portion of the Uinta Mountains, 
Utah (location is marked in Figure 3.6). The elevation (m) of the domain is shown in 
a). The percent change (%) in maxswe between historical and late 21st century 
periods as simulated by a 4 km WRF product (Liu et al., 2017) is shown in b) and the 
same metric but from the SnowClim dataset is shown in c). ...................................... 61 

Figure 4.1 a) Modeling domain. Elevation of terrain is indicated by the color bar. Black 
points denote known rock glacier locations. In bivariate density plots (b and c), 
salmon color indicates the distribution of rock glacier locations while grey blue 
indicates the distribution of background domain locations in two-dimensional pre-
industrial covariate space. ........................................................................................... 79 

Figure 4.2 a) Importance of each variable to capturing rock glacier habitat suitability 
according to Maxent jackknife approach. Model performance (y-axis) is the 
normalized regularized training gain. Black horizontal line indicates the performance 
of the model with all variables. Light grey bars indicate the performance of all models 
built with all variables except the variable of interest. Dark grey bars indicate the 
performance of models built on each variable alone and determine the order of the 
bars. b) Marginal response functions illustrating the relationship between the 
covariate values (x-axis) and the rock glacier habitat suitability (y-axis) when other 
variables are held constant at their average sample value. ......................................... 85 

Figure 4.3 Predicted suitability for rock glaciers under pre-industrial (a), present (b), and 
future (c) conditions across the western U.S. The Beartooth Mountains, Montana 
domain used in subsequent analyses is marked by a black rectangle on the western 
U.S. maps. d) shows the area on the y-axis that exceeds the suitability level on the x-
axis (starting at 0.1) for the three time periods. The dashed line in d) marks the 
suitability threshold used in subsequent analyses (0.212). ......................................... 86 

Figure 4.4 Changes in rock glacier habitat suitability over time in the Beartooth Mountains, 
Montana. Elevation of the terrain (a). Changes in rock glacier suitability between a) 
pre-industrial and present periods and b) present and future periods.  Black and white 
outlines denote the locations of present-day rock glaciers and glaciers, respectively. 89 

Figure A.1 Correlation matrix for a subset of the covariates associated with the Oregon 
Cascades stations for Summer and Winter.  Numbers and colors indicate the 
correlation coefficient. .............................................................................................. 107 

Figure B.1 Map of modeling domain with locations modeled at 210m spatial resolution in 
blue. ........................................................................................................................... 114 

Figure B.2 Performance of best hourly model at SNOTEL sites in temperature-
precipitation space. Each point represents a SNOTEL site. ..................................... 115 

Figure B.3 Parameter sensitivity of hourly model performance ........................................... 116 
Figure B.4 Performance of snow model without shallow snow correction for different 

time steps using the parameter set selected in calibration of the hourly model with 



xii 
 

shallow snow correction. Points represent median values across 170 SNOTEL 
sites. .......................................................................................................................... 117 

Figure C.1 Correlation matrices for pre-industrial, present, and future time periods. White 
x’s denote correlations with absolute values greater than 0.7. ................................. 122 

Figure C.2 AICc values for different levels of regularization beta parameter and different 
feature class combinations. ....................................................................................... 124 

Figure C.3 Map of spatial blocks used in the spatial cross validation analysis overlaid on 
western U.S. modeling domain. Blocks were grouped into folds as indicated by 
the number in each block. ......................................................................................... 125 

Figure C.4. Predicted pre-industrial suitability at known rock glacier locations. Color 
scale is divided at the threshold that excludes 10% of known rock glaciers 
(0.212). ...................................................................................................................... 126 

Figure C.5. Pre-industrial covariate distributions at known rock glacier locations. 
Quartiles on the x-axis are quartiles of predicted suitability with 1 being the least 
suitable and 4 being the most suitable. ..................................................................... 127 

Figure C.6. Response functions illustrating the relationship between the covariate values 
(x-axis) and the rock glacier habitat suitability (y-axis) based on models built on 
each variable in isolation. ......................................................................................... 128 

Figure C.7. Distribution of covariates between preindustrial (blue) and present (purple) 
time periods, grouped by suitability change category. For covariates that are not 
time-varying (bottom row), a single violin is shown for each suitability category. 
In the first subplot, percent values indicate the percent of the full modeling 
domain that falls into each category. ........................................................................ 129 

Figure C.8. Distribution of covariates between present (purple) and future (red) time 
periods, grouped by suitability change category. For covariates that are not time-
varying (bottom row), a single violin is shown for each suitability category. In the 
first subplot, percent values indicate the percent of the full modeling domain that 
falls into each category. ............................................................................................ 129 

Figure C.9. Distribution of covariates between preindustrial (blue) and present (purple) 
time periods, for presently glaciated locations, grouped by suitability change 
category. For covariates that are not time-varying (bottom row), a single violin is 
shown for each suitability category. In the first subplot, percent values indicate 
the percent of modeled glaciated area that falls into each category. ........................ 130 

Figure C.10. Distribution of covariates between present (purple) and future (red) time 
periods, for presently glaciated locations, grouped by suitability change category. 
For covariates that are not time-varying (bottom row), a single violin is shown for 
each suitability category. In the first subplot, percent values indicate the percent 
of modeled glaciated area that falls into each category. ........................................... 130 

Figure C.11. Predicted suitability for rock glaciers under pre-industrial (a), present (b), 
and future (c) conditions across the Beartooth Mountains, Montana domain. Red 
and turquoise outlines mark the locations of present day glaciers and rock 
glaciers, respectively. ................................................................................................ 131 



xiii 
 

Figure C.12. Changes in environmental covariates over time at locations corresponding to 
present day glaciers and present-day rock glaciers in the Beartooth Mountains 
domain. Topographic variables, which do not change over time, are represented 
by one violin for glaciers and one for rock glaciers. The rocktype covariate is 
excluded from the plot because all glacier and rock glacier locations in the 
domain had the same rocktype (class 6). .................................................................. 132 

Figure C.13. For locations in the Beartooth Mountains, Montana, distributions of 
covariate values under pre-industrial and present conditions grouped by habitat 
suitability class. The rocktype covariate is not shown because the region has a 
single rocktype (class 6). ........................................................................................... 133 

Figure C.14. For locations in the Beartooth Mountains, Montana, distributions of 
covariate values under present and future conditions grouped by habitat suitability 
class. The rocktype covariate is not shown because the region has a single 
rocktype (class 6). ..................................................................................................... 133 

 
 
  



xiv 
 

List of Equations 
Equation 2.1 ............................................................................................................................ 13 
Equation 2.2 ............................................................................................................................ 14 
Equation 2.3 ............................................................................................................................ 14 
Equation 2.4 ............................................................................................................................ 17 
Equation 3.1 ............................................................................................................................ 42 
Equation 3.2 ............................................................................................................................ 43 
Equation 3.3 ............................................................................................................................ 44 
Equation 3.4 ............................................................................................................................ 44 
Equation 3.5 ............................................................................................................................ 44 
Equation 3.6 ............................................................................................................................ 44 
Equation 3.7 ............................................................................................................................ 45 
Equation 3.8 ............................................................................................................................ 45 
Equation 3.9 ............................................................................................................................ 45 
Equation 3.10 .......................................................................................................................... 45 
Equation 3.11 .......................................................................................................................... 45 
Equation 3.12 .......................................................................................................................... 45 
Equation 3.13 .......................................................................................................................... 45 
Equation 3.14 .......................................................................................................................... 46 
Equation 3.15 .......................................................................................................................... 46 
Equation 3.16 .......................................................................................................................... 48 
Equation 3.17 .......................................................................................................................... 48 
Equation 3.18 .......................................................................................................................... 48 
Equation 3.19 .......................................................................................................................... 48 
Equation 3.20 .......................................................................................................................... 49 
Equation 3.21 .......................................................................................................................... 49 
Equation 3.22 .......................................................................................................................... 50 
Equation 3.23 .......................................................................................................................... 50 
Equation 3.24 .......................................................................................................................... 50 
Equation 3.25 .......................................................................................................................... 51 
Equation 3.26 .......................................................................................................................... 51 
Equation 3.27 .......................................................................................................................... 51 
Equation 3.28 .......................................................................................................................... 51 
Equation A.1 ......................................................................................................................... 106 
Equation A.2  ........................................................................................................................ 106 
Equation A.3  ........................................................................................................................ 106 
Equation A.4  ........................................................................................................................ 109 
Equation A.5  ........................................................................................................................ 110 
 

 
 
  



xv 
 

Statement of Contribution 
For chapter 2, Abigail Lute led the research, performed the analyses, and wrote the 
manuscript with mentorship and feedback from John Abatzoglou. For chapter 3, Abigail Lute 
developed the downscaling routines with feedback from John Abatzoglou. Abigail Lute 
developed the snow model with input from John Abatzoglou and Tim Link. Abigail Lute 
performed the model calibration, model runs, and additional analyses. Abigail Lute wrote the 
manuscript with input from John Abatzoglou and Tim Link. For chapter 4, Abigail Lute 
designed and led the research and wrote the manuscript with input from John Abatzoglou, 
Andrew Fountain, and Tim Bartholomaus. 
 



1 
 

Chapter 1: Introduction 
 

The study of hydroclimatology is the study of fluxes and stores of energy and water, 

how they relate to one another, and how these quantities and relationships vary in space and 

time. In the context of mountains, there is an added focus on the effects of topographic 

complexity and on all things frozen- snow, ice, and permafrost. The hydroclimate of 

mountains is of particular interest because to a large extent, mountains shape the water 

resources of adjacent non-mountainous regions; mountains confronted with orthogonal winds 

induce orographic precipitation that defines stark wet-dry contrasts in adjacent basins, 

seasonal snow accumulation and storage in mountains is released downstream in warm 

months to support ecosystems, agriculture, and other human endeavors, and the presence of 

mountain snow and ice increases the planetary albedo. By regulating energy and water 

availability, mountain hydroclimate shapes ecosystems and economies on broad scales 

(Barnett et al., 2005; Huss et al., 2017). 

One approach to understanding mountain hydroclimate is through the complementary 

lenses of time and space. Temporally, mountain hydroclimate is subject to natural variability 

on a range of scales from diurnal to seasonal, annual, and decadal. Examples of these scales 

of temporal variability include diurnal upslope and downslope winds, seasonal snow covered 

to snow free states, and annual to decadal patterns of temperature and precipitation stemming 

from large scale modes of climate variability such as the El Niño Southern Oscillation and 

the Pacific Decadal Oscillation. In addition to these layered modes of natural variability, 

there is increasing evidence of anthropogenic hydroclimatic change. Observations indicate 

that increasing greenhouse gas concentrations are warming mountain environments more 

than other environments (Mountain Research Initiative EDW Working Group, 2015) and 

melting snow and glaciers (Najafi et al., 2017; Roe et al., 2021), among many changes. These 

developments are expected to continue and may fundamentally alter mountain hydroclimate, 

for example by eliminating snow and glaciers in some mountain ranges, with large 

implications for ecosystems and societies (Huss et al., 2017). In the face of these changes, a 

more nuanced and comprehensive understanding of current and future mountain 

hydroclimate is needed.  
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 Spatially, the topographic complexity of mountain environments requires an emphasis 

on fine scale variability. Coarser datasets and models of mountain hydroclimatic processes 

and their implications typically have larger errors than finer scale approaches. For example, 

coarser scale models tend to provide less accurate simulations of orographic precipitation 

(Chan et al., 2013), underestimate snowpack (Sohrabi et al., 2019), and overestimate species 

habitat loss under climate change (Randin et al., 2009). However, the development of high-

resolution data and models for mountain environments is hindered by a paucity of 

observations (Strachan & Daly, 2017), either for use themselves or as validation, and by the 

increased computational cost of high-resolution modeling (Wood et al., 2011). These 

challenges highlight the need for novel approaches to make the most of available 

observational data and to maximize model physical realism within the current computational 

constraints. 

 Modeling approaches for addressing these challenges should be developed based on 

data availability, research questions, and computational resources. As an example, empirical 

models are typically less computationally expensive and quicker than other approaches and 

may also have fewer data requirements, both in terms of the number of data types and the 

quantity of each (Jajarmizad et al., 2012). More advanced data-driven approaches, such as 

artificial intelligence and machine learning, can detect relationships in massive datasets and 

are particularly useful when processes are poorly understood or parameters for a more 

mechanistic approach are unavailable (Shortridge et al., 2016). Physics-based modeling can 

be more computationally expensive than other approaches but is thought to provide better 

transferability to new conditions in space and time than empirical approaches since it 

emphasizes physical principles over calibrated parameters (Devi et al., 2015; Merz et al., 

2011). In addition, there is potential for hybrid methods to capitalize on the assets of a variety 

of approaches while avoiding some of the limitations of each (Konapala et al., 2020; Kraft et 

al., 2021). 

 This dissertation addresses the needs for a) a more comprehensive understanding of 

the mountain hydroclimate and cryosphere and b) novel approaches to work within data and 

computation constraints, in the context of three hydroclimatic foci: air temperature, snow, 

and rock glaciers. These investigations, in the form of three chapters, are united by the 

common themes of temporal variability, long-term change, and topographic complexity. The 
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spatial modeling approach for each investigation is tailored to the research questions and data 

availability, resulting in a variety of spatial modeling approaches spanning empirical, 

machine learning, and physics-based methods.  

 The first study seeks to enhance our understanding of spatiotemporal temperature 

variability in mountain environments and improve downscaled climate data and 

environmental model simulations by making better use of available temperature observations 

(Lute & Abatzoglou, 2021). In statistical downscaling routines and environmental models, a 

single parameter called the air temperature lapse rate is often used to distribute temperature 

from either coarse grid cells to finer grid cells or from point locations across a domain. This 

parameter is typically assumed to be constant or is estimated from a handful of 

meteorological stations with no consideration of uncertainty. I used empirical analysis of a 

combination of synthetic and observational datasets to quantify error and uncertainty in lapse 

rates stemming from a variety of sources. I showed that the effects of lapse rate uncertainty 

can exceed the effects of climate change in some modeling contexts and provided a decision 

tree of best practices for lapse rate estimation. This study highlights the ability of empirical 

approaches to enhance the utility of limited observational data with the end result of 

improving climate datasets and environmental model simulations. 

 The second study addresses the need for a large extent, multitemporal, high-

resolution, physics-based snow dataset to provide a more nuanced understanding of the 

changing mountain snowpack (Lute et al., 2021). Such datasets are not currently available 

due to the dual hurdles of insufficient climate forcing data and inadequate computational 

resources. I address the first hurdle by applying best practices for lapse rate estimation from 

the previous study to statistically downscale 4-hourly climate forcing data for pre-industrial, 

historical, and future time periods across the western United States (U.S.) at 210m spatial 

resolution. I then developed a hybrid computationally efficient energy balance snow model 

that contains the essential elements of physics-based snow models (i.e., energy and mass 

conservation), but incorporates empirical elements to enhance computational efficiency. I 

force the model with the downscaled climate forcings to create a multitemporal high-

resolution dataset of climate and snow metrics across the western U.S. This dataset enables 

unprecedented analyses of changing mountain snowpack and its implications for wildlife, 

agriculture, hydrology, and other fields. 
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 The final study also seeks to provide a more comprehensive understanding of the 

changing mountain cryosphere. While snow and glaciers in the western U.S. are expected to 

decline with continued warming (Lute et al., 2021; Moore et al., 2009), the insulating debris 

layer and slow response time to warming of rock glaciers suggest that they may persist 

longer than other components of the cryosphere (Anderson et al., 2018). However, broad 

scale projections of future rock glaciers are hindered by limited process understanding and 

limited data on debris thicknesses and internal debris concentrations. In light of these 

constraints, I employed a machine learning approach, Maxent (Phillips et al., 2006; Phillips 

& Dudík, 2008), to predict the future spatial distribution of rock glaciers in the western U.S. I 

supplied the model with topographic and geologic covariates in addition to the high-

resolution snow and climate metrics developed in the second study. I showed that despite 

their insulating debris layers, rock glaciers are more sensitive to air temperature than they are 

to other covariates. Between pre-industrial and present-day periods the model predicted that 

suitable areas for rock glaciers would decline in many mountain ranges, but some areas 

formerly occupied by alpine glaciers would become more suitable for rock glaciers. 

However, by the late 21st century the model predicted drastic declines in suitable rock 

glacier habitat across the domain. This study suggests that even debris insulation cannot 

protect mountain ice under significant warming and highlights the value of machine learning 

approaches in the context of limited data. 

In sum, this work employed a variety of approaches to advance scientific 

understanding of mountain hydroclimate and to provide new tools and datasets for further 

work. In terms of scientific knowledge, this work enhanced understanding of temperature 

lapse rate uncertainty and its sources, shed light on the climate sensitivity of mountain 

snowpack as it relates to topographic complexity, and highlighted the topoclimatic conditions 

under which rock glaciers can be expected to persist versus disappear. In addition, this work 

leaves a substantial legacy of tools and datasets for further research and for improvement of 

existing models and datasets including a decision tree of best practices for improving 

temperature lapse rate estimates, a computationally efficient energy balance snow model that 

can be run in the cloud, and a suite of multitemporal, high-resolution snow and climate 

metrics for the western U.S. 
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Chapter 2: Best Practices for Estimating Near-Surface Air Temperature 
Lapse Rates 

 
Lute, A.C. and J.T. Abatzoglou (2021). “Best Practices for Estimating Near-Surface Air 

Temperature Lapse Rates.” International Journal of Climatology, 41 (Suppl. 1): E110-E125. 
 

Abstract 

The near-surface air temperature lapse rate is the predominant source of spatial 

temperature variability in mountains and controls snowfall and snowmelt regimes, glacier 

mass balance, and species distributions. Lapse rates are often estimated from observational 

data, however there is little guidance on best practices for estimating lapse rates. We use 

observational and synthetic datasets to evaluate the error and uncertainty in lapse rate 

estimates stemming from sample size, dataset noise, covariate collinearity, domain selection, 

and estimation methods. We find that lapse rates estimated from small sample sizes (<5) or 

datasets with high noise or collinearity can have errors of several °C km−1. Uncertainty in 

lapse rates due to non-elevation related largescale temperature variability was reduced by 

correcting for spatial temperature gradients and restricting domains based on spatial clusters 

of stations. We generally found simple linear regression to be more robust than multiple 

linear regression for lapse rate estimation. Finally, lapse rates had lower error and uncertainty 

when estimated from a sample of topoclimatically self-similar stations. Motivated by these 

results, we outline a set of best practices for lapse rate estimation that include using quality 

controlled temperature observations from as many locations as possible within the study 

domain, accounting for and minimizing non-elevational sources of climatic gradients, and 

calculating lapse rates using simple linear regression across topoclimatically self-similar 

samples of stations which are roughly 80% of the station population size. 

 

Introduction 

Accurate estimates of air temperature are essential for understanding and modelling 

environmental processes in mountain regions. The predominant source of mesoscale to 

microscale spatial temperature variability in mountains is associated with elevation through 

the near-surface air temperature lapse rate. In contrast to the free-air lapse rate that represents 

temperature changes along a vertical profile through the boundary layer and into the free 



9 
 

atmosphere, the near-surface air temperature lapse rate (hereafter, lapse rate) represents 

temperature variability within the surface layer (McCutchan, 1983). The lapse rate is 

therefore a key parameter for resolving local conditions in many environmental models that 

consider topoclimate variability in montane regions. However, guidance on estimating lapse 

rates is lacking, despite the fact that hydrological and ecological modelling efforts can be 

highly sensitive to the choice of lapse rate parameter used to infer fine-scale spatial 

temperature fields (Sekercioglu et al., 2008; Gardner and Sharp, 2009; Immerzeel et 

al., 2014). For example, Minder et al. (2010) showed that the application of contrasting lapse 

rates (−4 and −6.5°C km−1) to a snow model resulted in a 1-month difference in snowmelt 

commencement in the Washington Cascades, United States. Accurate lapse rate estimates are 

also needed to detect and project future elevation dependent warming (Pepin et al., 2015). 

In practice, the lapse rate is often assumed to equal the mean environmental lapse rate 

(MELR) of −6.5°C km−1. Yet, observations show large variability of lapse rates 

geographically, seasonally, diurnally, and with elevation (Rolland, 2003; Lundquist and 

Cayan, 2007; Shen et al., 2016; Navarro-Serrano et al., 2018). The latter results in nonlinear 

lapse rates, although this is rarely acknowledged in modelling contexts. Mechanistic 

explanations for lapse rate variability include radiative processes, thermodynamics, and 

atmospheric dynamics (Harding, 1979; Blandford et al., 2008; Kattel et al., 2013; Navarro-

Serrano et al., 2018). 

Despite basic understanding of these processes, it remains difficult to constrain lapse 

rate estimates with observational data. Figure 2.1 illustrates this challenge showing summer 

temperatures across a longitudinal transect of the Oregon Cascades, United States. Station 

observations are a sample of the spatial temperature field. The default assumption that the 

full population of station observations is optimal for estimating the lapse rate has not been 

evaluated. Lapse rate estimates can be confounded by varied topoclimatic controls across a 

region of interest, which may help explain the diversity of lapse rates estimated using varied 

sample configurations (e.g., Figure 2.1b, c). Hence, while it is conceptually easy to calculate 
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a lapse rate, the statistical approach and station characteristics merit more careful 

consideration than typically given. 

 

Figure 2.1 a) Black line shows mean elevation across longitude over the study domain of the Oregon Cascades, 
USA (42.8- 44°N, 120.5-123°W).  Colored points show mean summer maximum temperature from 30 weather 
stations with symbols indicating the originating network.  Vertical grey dashed line marks the maximum 
elevation of the transect and divides the stations into west and east groups. b) Examples of lapse rates calculated 
from these stations, including using only sites from the US Cooperative Observer Program (COOP), the US 
Interagency Remote Automatic Weather Stations network (RAWS), the US Natural Resources Conservation 
Service Snowpack Telemetry network (SNOTEL), only sites east or west of the divide, the mean environmental 
lapse rate (MELR, -6.5 °C km-1), or all stations (n=30).  c) Distribution of lapse rates estimated from 15,000 
samples of 10 stations from the full population shown in a). Colors and symbols in c) indicate lapse rates shown 
in b). Vertical jitter has been added to points in c). 
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Lapse rates are typically estimated via either simple linear regression (SLR) of 

temperature on elevation or multiple linear regression (MLR) of temperature on elevation 

and other covariates using a local population of observations (e.g., Pepin et al., 1999; 

Rolland, 2003; Kattel et al., 2013); it remains unclear whether SLR or MLR is more 

appropriate. Additionally, these approaches may be confounded by factors exogenous to 

elevation but collinear with elevation, including topographic position, land cover, soil 

moisture, and snow cover (Rolland, 2003; Dobrowski et al., 2009; Kattel et al., 2013; 

Navarro-Serrano et al., 2018). Collinearity is common among empirical approaches designed 

to isolate a single phenomenon and contributes to biased and unstable parameter estimates in 

SLR and MLR (e.g., Graham, 2003; Dormann et al., 2013). Another key consideration in 

calculating lapse rates is sample size. Studies have used as few as two up to tens of stations 

(Kirchner et al., 2013; Li et al., 2013). A further question is which stations should be used. 

Recognizing the role of topoclimatic factors in both determining and, in the context of 

collinearity, confounding lapse rates it may be appropriate to estimate lapse rates from 

stations with similar topoclimatic characteristics. 

Given the importance of accurate lapse rates to environmental understanding and 

modelling, efforts to improve lapse rate estimation methods offer cascading benefits. This 

study quantifies the uncertainty and error in lapse rate estimates stemming from dataset 

characteristics and methodological choices by complementing observational data with 

synthetic data. In addition to standard SLR and MLR methods for lapse rate estimation we 

introduce a novel method that identifies samples of stations that are topoclimatically self-

similar. Finally, we provide recommendations on best practices for lapse rate estimation that 

are applicable in any geographic or temporal context. 

 

Data 

A collection of stations traversing the Cascade Mountains of Oregon, United States 

(42.8–44°N, 120.5–123°W) was selected to exemplify complex terrain and land surfaces 

typical of mountain regions (Figure 2.2). The western, maritime portion of the domain is 

largely mesic and forested whereas the eastern portion in the rain shadow of the Cascade 

Mountains is largely semi-arid with mixed forest and shrubland. Observational data were 
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complemented by a suite of synthetic datasets with prescribed lapse rates. The following 

sections provide details of the synthetic, observational, and covariate datasets. 

 

Synthetic Datasets 

The true lapse rate in a given observational setting is rarely known, impeding efforts 

to formally evaluate empirical lapse rate approaches. As an alternative, we developed 

synthetic temperature datasets with a prescribed lapse rate and fully quantified covariates. 

Nine synthetic datasets were developed that considered different levels of dataset noise and 

topoclimatic collinearity with elevation. Synthetic datasets had the same number of ‘stations’ 

(n = 20) at the same elevations with a prescribed lapse rate of −6.5°C km−1. Dataset noise 

(e.g., sensor error, data transcription errors, temperature variations not explained by other 

covariates) was quantified as the standard deviation of the random error term and was 

prescribed at three levels: 0.1, 1, and 2°C. Dataset collinearity was quantified as the 

correlation (r) between elevation and a prescribed covariate, solar radiation, at three levels: 

0.00, 0.30, and 0.60. 

Station temperatures were calculated as the sum of the temperature effects of three 

conceptual covariates and the random error term: 

Figure 2.2 Oregon Cascades study area. Red box in inset map shows location of Oregon Cascades study area in 
Western North America. The 30 meteorological stations used in this study are indicated by markers according 
to the observation network. Light blue polygons are waterbodies. 
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 𝑇!,#! =		𝑇$%$&!,#! +	𝑇!'(#!,#! +	𝑇)*(!+!,#! +	𝑇,!,#!  

Equation 2.1 

where T is the temperature at station s in dataset ds, and Telev, Tsrad, Tcoast, and Tε are the 

temperature effects of elevation, solar radiation, distance from coast, and random error, 

respectively. Further details can be found in Appendix A. 

 

Observational Datasets 

Daily minimum (Tmin) and maximum temperature (Tmax) during September 1, 

2005–August 31, 2015 for stations in Oregon were acquired from the Global Historical 

Climatology Network – Daily dataset (GHCND v3; Menne et al., 2012). We discarded values 

that were flagged for quality control. The remaining data were subject to completeness 

requirements such that stations were included if all years reported ≥85% of daily values 

(Daly et al., 2008). Seasonal (DJF, MAM, JJA, SON) average temperatures were computed 

for seasons with ≥85% of daily values reported, years with seasonal values reporting <85% 

of daily values were set to missing, and annual and seasonal averages at each station were 

computed from at least 7 (out of a possible 10) data points. This resulted in 30 stations with 

Tmax and Tmin records covering the Oregon Cascades region of interest and spanning 

elevations from 217 to 1974 m (Figures 2.1 and 2.2). The dataset includes stations from the 

U.S. Cooperative Observer Program (COOP) network (n = 5), the U.S. Natural Resources 

Conservation Service Snowpack Telemetry (SNOTEL) network (n = 13), and the U.S. 

Interagency Remote Automatic Weather Station (RAWS) network (n = 12). 

We selected covariates representative of known sources of non-elevational 

temperature variability in mountains (Table 2.1). Details of covariate data sources and 

calculations are provided in Appendix A. Covariates were estimated for each station, and in 

the case of time varying metrics, for seasonal and annual averages. 
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Table 2.1 Covariates used to account for non-elevational effects on temperature.  Additional information is 
available in Appendix A. 

COVARIATE RELEVANT PROCESS DATA SOURCE 

SOLAR RADIATION Surface energy budget WRF 

TOPOGRAPHIC CONVERGENCE 

INDEX (TCI) 

Cold air pooling, coupling to free atmosphere SRTM 

CLOUD COVER Shading during daytime, enhanced longwave 

radiation 

MODIS 

OROGRAPHIC UPSLOPE WIND 

INDEX (WINDEX) 

Cloud cover, latent heating due to upslope 

condensation 

ERA-Interim Reanalysis, SRTM 

DISTANCE FROM COAST Moisture availability, cloud cover, Bowen ratio  

WATERBODY INDEX Surface energy budget NHDPlus V2 

FREE-AIR TEMPERATURE Broad scale atmospheric conditions  ERA-Interim Reanalysis 

FREE-AIR LAPSE RATE Atmospheric stability ERA-Interim Reanalysis 

 
Methods 

Regression Approaches 

We employ two common approaches to estimate temperature lapse rates: simple 

linear regression (SLR) and multiple linear regression (MLR). In SLR, temperature is 

regressed on elevation, such that 

 𝑇 = 𝛽- +	𝛽. × 𝑒𝑙𝑒𝑣 + 	𝜀  
Equation 2.2 

where T is the temperature at a given place and time, β0 is the temperature at reference sea 

level, β1 is the lapse rate, elev is the elevation, and ε is the error. This approach assumes that 

temperature varies only as a function of elevation, disregarding additional topoclimatic 

factors known to affect temperature. Non-elevational factors that influence temperature but 

are not correlated with elevation will be subsumed within the error term. However, if these 

other factors are correlated with elevation, then SLR will alias these factors, making the lapse 

rate a derivative of temperature with respect to elevation, instead of a partial derivative. 

In MLR, temperature is regressed on elevation and other variables, such that 

 𝑇 = 𝛽- +	𝛽. × 𝑒𝑙𝑒𝑣 +	𝛽/ × 𝑋/ 	+ ⋯+	𝛽0 × 𝑋0 + 	𝜀  
Equation 2.3 
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where the additional n − 1 terms β2 through βn are coefficients for the additional n − 1 

predictor variables X2 through Xn. The present study uses covariates of elevation, solar 

radiation, and distance from coast, which explain a large portion of temperature variability 

across the domain (Figure A.1). The number of covariates was limited to three and MLR 

lapse rates were not calculated for samples of <4 stations for this example in order to avoid 

overfitting. A potential hazard in the MLR approach is the assumption of noncollinearity of 

covariates; collinearity between elevation and other predictor variables can produce large 

uncertainties in estimated lapse rates (Dormann et al., 2013). 

We further evaluated the effect of sample size on the robustness of lapse rates by 

running calculations for every combination of stations from two to the population size. Due 

to computational limitations, we restricted the number of station combinations (i.e., samples) 

for a given sample size to 15,000. 

 

Domain Selection 

Spatial variability of lapse rates has been documented for many regions (Wolfe, 1992; 

Rolland, 2003; Li et al., 2013), motivating a domain selection process for grouping stations 

based on climatic and physiographic factors. We used an empirical clustering approach based 

on known regional climate gradients and previous work documenting windward-leeward 

contrasts in lapse rates (Minder et al., 2010). Regionalizing climate stations is commonly 

done to isolate stations in terms of certain climate phenomenon (Abatzoglou et al., 2009). 

Clustering was based on covariates that capture large scale climatic and moisture gradients: 

the upslope flow index (hereafter, windex) and the free-air lapse rate. The windex provides 

an indication of linear orographic flow (product of the lower tropospheric flow and local 

terrain gradient, see Appendix A) and the free-air lapse rate provides an indication of broad 

scale atmospheric stability calculated directly from pressure level reanalysis or radiosonde 

data (Minder et al., 2010). Clusters based on seasonal values of the 40 km windex and free-

air lapse rates were assessed using a k-means approach with k= 2 and 10 random starting 

clusters. Lapse rates estimated from the resulting clusters were compared with one another 

and with lapse rates estimated from the full population. 
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Accounting for Regional Climate 

Ideally lapse rates are estimated over small domains with little contrast in regional 

climate, however the paucity of observational stations in mountains often necessitates the use 

of larger domains (>100 km). Large domains may have significant spatial climatic gradients 

not directly tied to elevation (e.g., solar radiation, circulation patterns, continentality), 

making it difficult to isolate elevation-temperature relationships. In these contexts, it is useful 

to consider near-surface temperatures as a function of regional climate and topoclimatic 

siting (Lundquist et al., 2008; Dobrowski et al., 2009; Sadoti et al., 2018). This framing 

contrasts with traditional SLR and MLR methods which do not recognize the effect of 

regional climate on near-surface temperature. 

We use free-air temperatures collocated with stations and at a fixed elevation 

(2,500 m was used in this analysis, the approximate height of the Cascade crest) derived from 

ERA-Interim (Appendix A) as a proxy for spatially varying temperatures that do not entrain 

elevational controls. Spatially corrected station temperatures (Tsc) are calculated as the 

difference between station temperatures and free-air temperatures. While previous studies 

have used free-air temperatures to account for temporal temperature variability (e.g., 

Dobrowski et al., 2009), here we use free-air temperatures to account for spatial temperature 

variability. We evaluate lapse rates estimated from SLR in which Tsc is substituted for station 

temperature as the dependent variable. 

 

Identifying Influential Stations 

Data points with high leverage and an anomalous predictor-response value 

combination can strongly influence linear regression coefficients (Altman and 

Krzywinski, 2016). In the context of lapse rates, the highest and lowest elevation stations can 

exert outsized influence on the lapse rate estimate if their temperatures are poorly predicted 

by a model based on the other stations. We quantify the influence of each station using 

Cook’s Distance (Cook, 1977). Stations with Cook’s Distances exceeding four divided by the 

population size in all seasons are considered influential and are considered for exclusion 

from lapse rate calculations (Altman and Krzywinski, 2016). For brevity, we only evaluate 

station influence for a subset of the Oregon Cascades stations. 
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Topoclimatic Dissimilarity Approach (TDA) 

To improve lapse rate estimates in the context of collinear covariates, one can 

minimize the temperature variance explained by non-elevational factors. One way to 

accomplish this is to a priori develop lapse rates based on stations that occupy similar 

topoclimatic siting for covariates except elevation. For example, solar radiation will be a less 

important predictor of inter-station variability in Tmax for a sample where all sites have 

similar radiational loading than in a sample with large differences in solar radiation. These 

arguments form the basis for a new lapse rate estimation method, termed the Topoclimatic 

Dissimilarity Approach (TDA). The TDA is conceptually similar to the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM; Daly et al., 2002), in that stations are 

selected or weighted based on topoclimatic characteristics, however the specific methods and 

goals differ. 

The TDA is a sample selection algorithm which preferentially minimizes the range of 

values of non-elevational factors according to the amount of temperature variability the 

factor explains. The correlations (rv) between each covariate (v) and temperature across the 

full population of stations are used to weight each covariate. Weightings are applied as the 

square root of the absolute values of rv. Using the full population, each covariate is then 

converted to standardized anomalies so that covariates can be compared. We calculate the 

range of standardized anomalies (Rv) for each covariate across each sample. Elevation ranges 

are subtracted from the maximum elevation range of all the samples to allow the algorithm to 

maximize the range of elevation while minimizing the ranges of all other covariates. A 

topoclimatic dissimilarity metric (TD) is then computed as the weighted maximum distance 

for each sample: 

 
𝑇𝐷 =./|𝑟&| × 	𝑅&

1

&2.

	  

Equation 2.4 

where p is the number of covariates evaluated. TD quantifies the topoclimatic dissimilarity of 

each sample, with lower values representing more topoclimatically self-similar samples. In 

subsequent analyses, TDA results are presented grouped in deciles of TD to elucidate the 

potential value of self-similar samples. Covariates included in the TDA algorithm as used in 

this study are elevation, TCI, cloud cover, windex, distance from coast, and the waterbody 
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index for the observational data and elevation, solar radiation, and distance from coast for the 

synthetic datasets. This algorithm is available as an R script 

at https://github.com/abbylute/lapse_rate_TDA. 

In addition to comparing lapse rates from TDA to lapse rates from randomly sampled 

stations, we evaluated potential advantages of using TDA compared to using SLR with an 

entire population to determine whether the benefits of TDA outweighed the benefits of a 

larger sample. For each synthetic dataset, we drew all possible subpopulations of each size 

(Nsub) from 4 to 19. For Nsub with >100 subpopulations, we randomly selected 100 from the 

list of all possible subpopulations. From each subpopulation, we similarly drew up to 100 

random samples of each size from 2 to Nsub − 1. We applied the TDA to each of these 

subpopulation-sample size combinations. Finally, we compared the error of the median lapse 

rates from the samples with TD in the lowest decile to the lapse rate error from SLR applied 

to the subpopulations. 

 

Assessment Metrics 

Lapse rate error was quantified as the difference between the specified lapse rate 

(−6.5°C km−1 for the synthetic datasets) and the estimated lapse rate. We use mean absolute 

error (MAE) to quantify the average lapse rate error and mean error to quantify lapse rate 

bias. Error was not quantified for the observational dataset because the true lapse rate is 

unknown. 

Lapse rate uncertainty for both the observational and synthetic datasets was 

quantified as the interquartile range (IQR) of the lapse rate estimates. Differences in 

uncertainty are used to assess improvements in observational lapse rate accuracy. 

Initial results for both datasets are presented for a sample size of 5 since this is 

representative of sample sizes used in the literature (e.g., Blandford et al., 2008; Gardner et 

al., 2009; Kirchner et al., 2013; Li et al., 2013). Later results are presented for multiple 

sample sizes or for sample sizes determined to be more appropriate based on intermediate 

results. 
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Results 

Synthetic Datasets 

Lapse Rate Sensitivity to Collinearity, Dataset Noise, Sample Size, and Method 

Lapse rate uncertainty and error were typically greater for datasets with high dataset 

noise, high collinearity, small sample sizes, or when MLR was used (Figures 2.3 and 2.4). 

For samples of 5 stations, we found that increased dataset noise increased the uncertainty and 

MAE of SLR and MLR lapse rate estimates (Figure 2.3). Secondly, increased collinearity 

increased the bias of SLR lapse rate estimates (Figure 2.3a). The bias was positive in this 

case due to the way the collinearity was prescribed in the synthetic datasets (i.e., a positive 

correlation between elevation and solar radiation aliases the lapse rate to other processes). 

Thirdly, the response of MLR estimates to collinearity was less consistent than for SLR, 

likely due to interactions with noise which affected the collinearity structure; dataset noise 

can be aliased by other covariates and contribute to additional collinearity and therefore 

additional error. Except for cases with low noise (0.1°C), SLR generally outperformed MLR. 

We next compared the sensitivity of lapse rate MAE to sample size across the matrix 

of estimation method, collinearity, and dataset noise. MAE increased with increased 

collinearity, increased dataset noise, or decreased sample size in almost every case 

(Figure 2.4). Firstly, MAE increased exponentially with decreasing sample size and was 

Figure 2.3 Lapse rate mean error (x-axis) and interquartile range (y-axis) estimated via a) SLR and b) MLR for 
datasets with varying levels of dataset noise (size) and collinearity (color, shape).  Lapse rates are estimated 
from samples of 5 stations drawn from each synthetic dataset. 
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typically <1°C km−1 for sample sizes of at least 5 stations. Small samples were more likely to 

span a small elevation range (<500 m) than larger samples, which amplified the effect of 

non-elevational factors on the lapse rate (not shown) and increased uncertainty. Secondly, 

SLR lapse rate estimates had lower error than MLR estimates for small sample sizes (5 or 

less), greater collinearity, and greater dataset noise. Small samples can have greater 

collinearity (both from latent covariates and aliased from dataset noise) than the population 

as a whole, resulting in larger MAE, particularly for MLR. MLR slightly outperformed SLR 

for cases with low to moderate dataset noise and collinearity and sample sizes >5. These 

Figure 2.4 MAE of lapse rates (log scale on y-axis) estimated from synthetic datasets using SLR (left column) 
and MLR (right column).   MAE is calculated across all possible samples of the sample size indicated on the x-
axis.  In the upper plots each line represents a synthetic dataset with a different collinearity level and with 
dataset noise of 1°C, in the lower plots each line represents a dataset with a different level of dataset noise and 
with collinearity of 0.6. 
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results mirror conclusions of other statistical efforts that consider the interacting effects of 

noise, collinearity, sample size, and regression method on the bias and uncertainty of 

regression coefficients in other disciplines (Mason and Perreault Jr., 1991). 

 

Application of Topoclimatic Dissimilarity Approach to Synthetic Datasets 

Compared to all samples, the most self-similar samples generally had lower lapse rate 

MAE and uncertainty (Figure 2.5). The TDA was effective at reducing error and uncertainty 

for small samples, since small samples from a finite population provide more diversity to 

choose from than larger samples which have many stations in common and offer limited 

flexibility. The TDA also reduced error and uncertainty for large samples, which had low 

Figure 2.5 Percent change in a) MAE and b) IQR between the most similar decile of samples selected using 
TDA and all samples. Results are shown for lapse rates estimated via SLR from samples of varying sample 
size (x-axis) drawn from datasets with collinearity of 0.3 and varying dataset noise (y-axis). Negative values 
indicate that the most similar decile had lower MAE or IQR than the average sample.  Positive values (grey) 
indicate increased MAE or IQR.   
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error initially (Figure 2.4), suggesting that omission of just one to a few outlier stations can 

greatly reduce lapse rate error. Low uncertainty does not necessarily equate to better lapse 

rates with lower error; it is possible to have low lapse rate uncertainty but large lapse rate  

error. However, across the synthetic datasets lower IQR typically corresponded to lower 

MAE (e.g., Figure 2.5), suggesting that this definition of uncertainty may be a proxy for error 

in the observational datasets. 

The median lapse rate from the most similar decile of samples, evaluated for all 

sample sizes, dataset noise, and collinearity levels, had absolute error < 0.5°C in 84% of 

cases, compared to 67% of cases for all possible samples. The median lapse rate from the 

most similar decile provides a good best guess at the actual lapse rate and the minimum and 

maximum lapse rates from the most similar decile may be useful as a measure of lapse rate 

uncertainty. 

Median lapse rates from the most similar decile of samples had lower MAE than 

lapse rates estimated from subpopulation-based SLR in some cases (Figure 2.6), with MAE 

being an average of 12% lower (−0.04°C km−1) for subpopulation size >5 and sample 

size ≥80% of the subpopulation size. Given the larger uncertainty of the observational data 

(3.5°C km−1 on average for the SLR results shown in Figure 2.7) compared to the synthetic 

data (1°C km−1 for sample size of 5 for datasets with 1°C noise), we expect larger absolute 

error reduction for the TDA applied to the observational data. In many cases, lapse rates 

estimated from the TDA using a sample size of 2 had lower error than the full subpopulation, 

illustrating that it is possible to calculate an accurate lapse rate from only two stations. 

However, error reduction was more consistent for samples sizes that were roughly ≥80% of 

the subpopulation size. For the middle range of sample sizes, the TDA was not beneficial; 

middle range sample sizes had neither the flexibility of small samples to choose the best 

stations nor the robustness of the larger samples. Finally, for subpopulation sizes roughly ≤5, 

the TDA was not consistently beneficial. In these cases, the median of lapse rates estimated 

from all possible station combinations of size 2 to the subpopulation size − 1 typically was as 

accurate or more accurate than the full subpopulation lapse rate (not shown). 
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Oregon Cascades Station Dataset 

Lapse Rate Estimation Method and Sample Size 

Seasonal lapse rates estimated via MLR from samples of 5 stations from the Oregon 

Cascades had uncertainty >5°C km−1 (Figure 2.7). Tmax lapse rates estimated via SLR were 

generally weaker than those estimated via MLR, while the opposite was found for Tmin. The 

uncertainty of SLR estimates was generally smaller than for MLR, which is expected since 

SLR regression coefficient variance is a function of sample size and noise, whereas MLR 

coefficient variance is additionally a function of collinearity (Mason and Perreault Jr., 1991; 

Montgomery et al., 2012). Uncertainty increased dramatically for samples smaller than 10 

stations (not shown). Combined with the results for the synthetic datasets, these results 

confirm the hypothesis of Rolland (2003) that small sample sizes can be a source of error in 

lapse rate estimates. 

Figure 2.6 Percent difference in MAE between lapse rates of varying sample size (x-axis) selected by TDA 
(i.e., the median lapse rate from the most similar decile of samples) and lapse rates calculated from the full 
subpopulations using SLR (subpopulation size shown on y-axis). Blue, outlined points indicate reduced 
MAE. Data is from the synthetic dataset with noise of 1°C and collinearity of 0.6. 
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Free-air lapse rates showed limited seasonality and typically fell between the SLR 

and MLR estimates for Tmax but were steeper than most SLR and MLR estimates for Tmin. 

The steeper free-air lapse rates relative to near-surface Tmin lapse rates is likely related to 

night-time atmospheric decoupling and cold air drainage (Lundquist et al., 2008; Daly et 

al., 2010). 

 

Collinearity 

One might expect that the predictor variables in the MLR (elevation, solar radiation, 

and distance from coast) would capture the key processes controlling spatial variability in 

temperature and provide more refined lapse rate estimates than SLR. However, MLR 

increased lapse rate uncertainty due to collinearity between elevation and additional predictor 

variables (e.g., the correlation between elevation and distance from coast was 0.57; 

Figure 2.7 Lapse rates calculated from samples of five stations from the 30 stations in the Oregon Cascades 
dataset for Tmax (top) and Tmin (bottom). Yellow boxes indicate lapse rates calculated via SLR.  Red 
boxes correspond to lapse rates calculated via MLR using elevation, solar radiation, and distance from coast 
as predictors.  Green boxes indicate free-air lapse rates calculated from ERA-Interim reanalysis collocated 
with stations (see Appendix A for details) and are the same for Tmax and Tmin. 
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Figure A.1). Recognizing this collinearity and the large uncertainty in MLR lapse rates 

(Figure 2.7), we focus on SLR lapse rates for the remainder of the paper. For brevity, we 

only present results for Tmax to illustrate our methods. 

 

Accounting for Spatial Variability of Lapse Rates Through Domain Selection and 

Spatial Temperature Correction 

We evaluated two methods of accounting for spatial variability of lapse rates: a 

spatial clustering approach and a spatial temperature correction. Spatial clustering aims to 

identify contrasting regional climates which may merit separate lapse rates whereas the 

spatial temperature correction is designed to address gradual climatic gradients not related to 

elevational differences. Therefore, we recommend assessing the potential for clustering first, 

and then spatial correction. Spatial correction can be applied with or without clustering. 

The clustering analysis identified two clusters roughly corresponding to stations west 

and east of the Cascade crest, hereafter referred to as a windward ‘west’ cluster (n = 17) and 

a leeward ‘east’ cluster (n = 13) (Figure 2.8a). Tmax lapse rates from these clusters 

contrasted with lapse rates from the full population of stations (Figure 2.8b). ‘East’ cluster 

lapse rates were steeper than full population or ‘west’ cluster lapse rates, except in winter. 

The ‘east’ cluster had the greatest seasonality, with steeper lapse rates during summer and 

weaker lapse rates in winter when inversions are more common (Whiteman et al., 2001). The 

large uncertainty in the ‘east’ cluster may be partly due to the small elevation range of these 

stations (645 m) relative to those in the ‘west’ cluster (1,615 m), since small elevation ranges 

amplify the effects of non-elevational factors on the lapse rate. In contrast, ‘west’ cluster 

lapse rates were around −5°C km−1 with minimal seasonality. The east–west contrasts in 

lapse rates and in lapse rate seasonality are similar to the results of Minder et al., (2010) for 

the Washington Cascades. Coherent spatial patterns of lapse rates and lapse rate seasonality 

have also been identified in other regions including Spain and Northern Italy (Rolland, 2003; 

Navarro-Serrano et al., 2018). 

In all seasons except winter, the median Tmax lapse rate from the full population was 

weaker than the median lapse rate from either of the clusters. This was most evident in 

summer, when ‘east’ stations were significantly warmer than ‘west’ stations at the same  
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elevation due to greater Bowen ratio and downward surface shortwave flux. The fact that the 

full population lapse rates do not represent the lapse rates in these subregions (similar to 

Rolland, 2003), and the strong and physically reasonable contrasts between ‘east’ and ‘west’ 

lapse rates motivate regionalization efforts when calculating lapse rates over large 

geographic areas. 

Spatial correction of Tmax (Tsc) steepened lapse rates in the ‘east’ cluster, particularly 

in summer and generally reduced the uncertainty compared to lapse rates based on raw 

Figure 2.8  (a) Oregon Cascades domain with stations colored according to cluster, as indicated by boxplot 
legend. (b) Tmax lapse rates estimated via SLR from samples of 5 stations from the full dataset (‘all’, n=30), the 
‘west’ cluster (n=17), and the ‘east’ cluster (n=13).  Tsc indicates lapse rates estimated for the ‘east’ and ‘west’ 
clusters using spatially corrected station temperatures. Tsc* indicates lapse rates estimated from spatially 
corrected temperatures from the ‘east’ cluster with influential stations removed (n=12). 
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station temperatures and increased the correlation between elevation and temperature 

(Figure 2.8b). An exception was the ‘east’ cluster in winter, likely because of the prevalence 

of persistent winter cold pool events in this region (Whiteman et al., 2001) which decouple 

near-surface temperatures from free-air temperatures. Considering all combinations of 

region, season, and sample size, Tsc reduced the lapse rate uncertainty in >75% of cases. The 

uncertainty reduction was typically on the order of tenths of °C km−1, but in some cases 

exceeded 1°C km−1. The uncertainty reduction was greater for small samples and in summer 

as free-air temperatures in summer exhibit a longitudinal gradient across the study region. 

Similarly, we expect that the uncertainty reduction would be greater if applied to regions 

with larger differences in free-air temperature (e.g., larger geographic regions). 

While clustering was most appropriate for this example, we also assessed the benefit 

of applying the spatial correction without clustering. Lapse rates estimated from spatially 

corrected temperatures from samples of 5 stations from the full dataset were generally 

steeper and had lower uncertainty than those estimated from uncorrected station temperatures 

(not shown). The largest improvements were seen in summer; the median lapse rate was 

0.9°C km−1 steeper and the IQR was 0.3°C km−1 smaller. These results were similar to the 

clustering results, but the improvements were smaller. 

 

Influential Stations in the Oregon Cascades Dataset 

Application of Cook’s Distance to the ‘east’ cluster identified the highest elevation 

station, Crater Lake COOP station (GHCND ID: USC00351946), as influential. This station 

was colder in every season than would be expected based on lapse rates estimated from the 

other stations and would be excluded by the TDA if the TDA did not try to maximize sample 

elevation range. It is possible that this station could be indicative of a steeper lapse rate 

across high elevation portions of the domain, however this would require additional data to 

evaluate. We excluded this station from further analysis, which resulted in lapse rates that 

were 1.5–3°C km−1 weaker than lapse rates based on the full cluster (Figure 2.8b). We 

reapplied Cook’s Distance after removing this station and no additional influential stations 

were identified. Hereafter, the ‘east’ cluster refers to the ‘east’ cluster with this influential 

station removed. 
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Application of Topoclimatic Dissimilarity Approach to the Oregon Cascades Dataset 

Application of the TDA to the Oregon Cascades dataset, using spatially corrected 

station temperatures and sample sizes roughly 80% of the population size (13 and 10 for 

‘west’ and ‘east’, respectively), resulted in contrasting lapse rate distributions across 

dissimilarity quantiles (Figure 2.9). The distributions of lapse rates in the most similar 

quantile were tightly clustered relative to distributions for less similar quantiles, suggesting 

that accounting for topoclimatic variability in station siting can improve temperature 

estimates (Lookingbill and Urban, 2003). In general, we expect the TDA to exclude 

dissimilar stations and reduce lapse rate error and uncertainty, however the specifics of which 

stations are excluded based on which covariates will depend on the dataset. 

For the ‘west’ cluster in summer, cloud cover was the strongest predictor of 

temperature after elevation. In the most similar decile of samples, the TDA preferentially 

excluded the stations with the lowest and highest cloud cover values which were much 

Figure 2.9 Cumulative distributions of spatially corrected Tmax lapse rates estimated from samples of stations 
from the ‘west’ (left column) and ‘east’ (right column) clusters of the Oregon Cascades dataset for summer 
and winter (rows).  Sample sizes of 13 and 10 were used for the ‘west’ and ‘east’ clusters, respectively. 
Results are grouped by decile of the dissimilarity metric. Only deciles 1, 3, 8, and 10 are shown. 
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warmer and cooler, respectively, than expected, resulting in a weaker lapse rate. The most 

important non-elevation predictor of winter temperature in the ‘west’ cluster was distance 

from coast, however this variable was strongly correlated with elevation (r = 0.78) limiting 

the TDA from excluding this covariate in station selection for the most similar decile. 

Instead, stations with extreme values in the next most important predictors of temperature 

(the waterbody index and the 40 km windex) were excluded from the most similar decile. 

The ‘east’ cluster lapse rates based on the TDA had greater seasonality than the 

‘west’ cluster. Summer lapse rates for the ‘east’ cluster were steep, with a median of −9.0°C 

km−1for the most similar decile. This was slightly weaker than the summer lapse rate 

calculated across all ‘east’ cluster stations (−9.2°C km−1) but is slightly steeper than the 

summer lapse rates found by Minder et al., (2010) for the lee side of the Washington 

Cascades. In the most self-similar decile of samples, the TDA excluded a site that was an 

outlier in terms of the 40 km windex, which was the covariate most strongly correlated with 

summer temperature (r = −0.56) after elevation (r = −0.80). Winter temperatures were as 

strongly correlated with the TCI as they were with elevation (r ~ 0.41), corroborating the 

importance of inversions and cold-air drainage effects in the ‘east’ cluster in winter. The 

TDA preferentially excluded the station with the highest TCI value from the most similar 

decile of samples. 

 

Discussion 

Our results document latent uncertainties in near-surface temperature lapse rate 

estimates. Standard approaches for calculating lapse rates using our example of stations in 

the Oregon Cascades showed uncertainty of >5°C km−1 in some cases (Figure 2.7). Given 

this uncertainty, it is unsurprising that the mean environmental lapse rate of −6.5°C km−1 is 

often used. However, the sensitivity of environmental models to lapse rate estimates (e.g., 

Gardner and Sharp, 2009) indicates that a one size fits all lapse rate parameter is not 

sufficient and that better lapse rate estimation methods are needed (e.g., Minder et al., 2010). 

The analyses presented above of observational and synthetic datasets point to a handful of 

best practices for lapse rate estimation (Figure 2.10) applicable to any timescale or 

geographic context, and to station data or gridded data (Cannon et al., 2012). 
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1. Estimation method: SLR provides more accurate and robust lapse rate estimates than 

MLR in situations with high collinearity and data noise or small sample sizes 

(Figure 2.4). MLR can provide extreme lapse rate estimates when collinearity exists, 

which is common in observational data (Figures 2.7 and A.1). Therefore, we 

recommend the use of SLR. 

2. Sample size: Small samples are more sensitive than large samples to deviations in 

station temperature stemming from non-elevational factors. Evaluation of the TDA 

found that sample sizes that were roughly 80% of the population size struck a balance 

between the benefits of more data points and the benefits of being able to exclude 

dissimilar stations (Figure 2.6). We recommend using more than 5 stations and using 

sample sizes of about 80% of the population size when applying the TDA. 

3. Elevation Range: Theory and exploratory data analysis indicate that lapse rate error 

increases dramatically as the sample elevation range decreases (Figure 2.8). Efforts 

should be made to collect data from a wide range of elevations, or barring this, a large 

number of stations, and the greater lapse rate uncertainty stemming from small 

elevation ranges should be taken into account in broader modelling efforts. 

4. Dataset Noise: Analysis of the synthetic datasets illustrated that dataset noise 

increases lapse rate uncertainty and can increase bias (Figure 2.3). Efforts to quality 

control and correct for known sources of temperature bias, including removing 

influential stations, can reduce the uncertainty in lapse rate estimates. 

5. Collinearity: Collinearity of elevation with non-elevational factors influencing 

temperature is common in observational data and affects lapse rate estimates 

(Figures 2.3 and 2.4). Selection of self-similar samples (e.g., using the TDA) can 

reduce the effects of collinearity and improve lapse rate estimates 

(Figures 2.5 and 2.6). Topoclimatic variables used to assess collinearity and sample 

self-similarity should be tailored to reflect processes relevant to the region and time 

period of interest. 

6. Domain selection: Lapse rates estimated from windward and leeward clusters of 

stations showed distinct values and seasonality compared to those using stations from 

the full domain (Figure 2.8). This suggests that lapse rates should be estimated over  
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Figure 2.10 Decision tree outlining best practices for estimating near-surface temperature lapse rates. N is the 
total number of stations available (i.e., the population size). 
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regions without strong climatic discontinuities or should be estimated from spatially 

corrected temperatures. 

7. Uncertainty: Given the large uncertainty in lapse rates documented here, we argue 

that lapse rate uncertainty should be incorporated in model uncertainty and sensitivity 

analyses when possible. 

Using the best practices outlined above we estimated seasonal lapse rates and lapse 

rate uncertainty for the ‘west’ and ‘east’ clusters of the Oregon Cascades station data 

(Figure 2.11). Our results indicate lapse rates close to 2°C km−1 different, on average, from 

those estimated from the full dataset without using best practices or from the commonly used 

MELR (similar to Navarro-Serrano et al., 2018; Shen et al., 2016). 

 

 
 

Figure 2.11 Seasonal Tmax lapse rates estimated for the Oregon Cascades stations following best practices.  
Colored points represent the single best lapse rate (i.e., the median lapse rate of the most similar decile of 
samples) and colored bars indicate uncertainty range (the minimum and maximum lapse rates of the most 
similar decile of samples).  Grey violin plots illustrate the possible lapse rates that can be estimated from any 
combination of 10 stations from the original dataset, not using best practices.  White dots indicate the lapse rate 
estimated from the full 30 station dataset not using best practices.  The gray dashed line marks the MELR (-
6.5°C km-1). 
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Conclusions 

Temperature fields in environmental models dictate a wide range of processes 

including phenology, growing degree days, precipitation phase, snowmelt, and glacier mass 

balance, thereby exerting outsized influence on modelling outcomes. Yet these temperature 

fields are often governed by a single lapse rate parameter selected from the literature or 

calculated from a handful of stations within the modelling domain with little consideration of 

error or uncertainty. Contrasting but physically reasonable lapse rates (−4 and -6.5°C km−1) 

applied to an elevational range of 1 km can result in differences in model outcomes that are 

of similar magnitude to the difference between modelling outcomes based on historical and 

+2°C climate scenarios (Minder et al., 2010), emphasizing the importance of carefully 

choosing a lapse rate. We show that lapse rate uncertainty can easily exceed the range 

evaluated by Minder et al., (2010), suggesting that the effects of lapse rate uncertainty may 

exceed the effects of climate change in some modelling contexts. 

The best practices presented here reduce lapse rate uncertainty and error, but further 

research is needed to refine lapse rate estimation methods. In particular, night-time 

temperature lapse rates in complex terrain remain difficult to determine due to localized 

atmospheric decoupling, and thermal belts at topographic elevations near the inversion top 

may lead to multiple lapse rates (Lundquist and Cayan, 2007). Building on the clustering 

analysis presented here, additional work is needed to understand the relevant spatial scales 

over which lapse rates should be defined. Development of carefully designed observational 

temperature networks may help to further evaluate methodological choices. Improvement in 

lapse rate estimates will enhance the accuracy of environmental models and downscaling 

routines, enabling better understanding of biophysical processes and how they will change in 

a warming climate. 
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Chapter 3: SnowClim: High-Resolution Snow Model and Data for the 
Western United States 

 
Abstract 

Seasonal snowpack dynamics shape the biophysical and societal characteristics of many 

global regions. However, snowpack accumulation and duration have generally declined in 

recent decades largely due to anthropogenic climate change. Mechanistic understanding of 

snowpack spatiotemporal heterogeneity and climate change impacts will benefit from snow 

data products that are based on physical principles, that are simulated at high spatial 

resolution, and that cover large geographic domains. Existing datasets do not meet these 

requirements, hindering our ability to understand both contemporary and changing snow 

regimes and to develop adaptation strategies in regions where snowpack patterns and 

processes are important components of Earth systems. 

We developed a computationally efficient physics-based snow model, SnowClim, that can be 

run in the cloud. The model was evaluated and calibrated at NRCS Snowpack Telemetry 

sites across the western United States (U.S.), achieving a site-median root mean square error 

for daily snow water equivalent of 62 mm, bias in peak snow water equivalent of -9.6 mm, 

and bias in snow duration of 1.2 days when run hourly. Positive biases were found at sites 

with mean winter temperature above freezing where the estimation of precipitation phase is 

prone to errors. The model was applied to the western US using newly developed forcing 

data created by statistically downscaling 4-hourly pre-industrial, historical, and pseudo-

global warming climate data from the Weather Research and Forecasting (WRF) model. The 

resulting product is the SnowClim dataset, a suite of summary climate and snow metrics for 

the western US at 210 m spatial resolution. The physical basis, large extent, and high spatial 

resolution of this dataset will enable unprecedented analyses of changing hydroclimate and 

its implications for natural and human systems. 

 
Introduction 

Seasonal snowpack shapes the climatic, hydrologic, ecological, economic, and 

cultural characteristics of many global regions. Snow is an important determinant of the 

surface energy balance through its effect on land surface albedo, partitioning of sensible and 
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latent heat fluxes, near-surface atmospheric stability, and horizontal energy transport (Cohen, 

1994; Rudisill et al., 2021; Stiegler et al., 2016). Hydrologic benefits of snow include natural 

water storage, delayed runoff, and cooler stream temperatures (Bales et al., 2006; Luce et al., 

2014). Ecologically, seasonal snow insulates flora and snow-dependent fauna, controls 

mobility and foraging opportunities, mediates nutrient cycling, and supplements plant-water 

availability (Formozov, 1964; Grippa et al., 2005; Jones, 1999). Economically, seasonal 

snow synchronizes water supply and demand enabling crop irrigation, fuels a multibillion-

dollar winter recreation industry in the United States (U.S.) alone, and can cause 

transportation delays and accidents (Burakowski & Magnusson, 2012; Qin et al., 2020; 

Seeherman & Liu, 2015; Sturm et al., 2017). Finally, seasonal snow is a defining aspect of 

many cultures globally, shaping language, traditions, and sense of self (Eira et al., 2013; 

Mergen, 1997).  

In many mountain regions, recent decades have seen less precipitation falling as 

snow, lower peak snow water equivalent (SWE), shorter snow duration, and earlier snowmelt 

runoff (Choi et al., 2010; Fritze et al., 2011; Knowles et al., 2006; Mote et al., 2018). These 

developments are expected to continue in the coming decades, resulting in substantial 

declines (>50%) in seasonal snowpack for areas such as the western U.S. and significant 

impacts to human and natural systems (Fountain et al., 2012; Fyfe et al., 2017; Huss et al., 

2017; Marshall et al., 2019). In addition to these macroscale developments, there are 

important nuances to changing snow. Increased atmospheric water vapor due to warming is 

expected to enable larger snowfall events (Lute et al., 2015), which may buffer declines in 

snowpack (Marshall et al., 2020). Changes in atmospheric circulation may affect snow 

accumulation, for example by diminishing orographic precipitation enhancement (Luce et al., 

2013) or altering characteristics of atmospheric rivers (Dettinger, 2011). Decreasing snow 

cover will result in increased hydrologic importance of microclimates that serve as snow 

refugia, such as high elevations, deposition zones, and shaded areas (Marshall et al., 2019; 

McLaughlin et al., 2017). A warmer and moister atmosphere will shift the relative 

importance of snowpack energy and mass budget terms, resulting, for example, in slower 

snowmelt (Musselman et al., 2017), changes to the partitioning of snow ablation between 

runoff and sublimation (Sexstone et al., 2018), and increasing rain-on-snow risk in regions 

that retain snow cover (Musselman et al., 2018). 
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Understanding these changes and their implications often requires snow models and 

modeled snow data products (hereafter snow data) that satisfy at least one of several criteria. 

These criteria include that the data is: a) simulated with physics-based representations of 

energy and mass transfer processes, b) spatially continuous, c) high spatial resolution, d) 

large extent, e) multivariate, and f) multitemporal. To address some questions about 

contemporary or future snow, the snow models themselves are needed and must be able to 

synthesize data that satisfies these criteria. Snow data developed from physical principles is 

argued to be necessary for both capturing the spatial variability of energy fluxes across the 

landscape and providing physically realistic simulations of the effects of climate change 

(Kumar et al., 2013; Raleigh & Clark, 2014). To assess changes in snowpack across a 

landscape, spatially continuous data are needed. In areas of complex terrain, high spatial 

resolution data are necessary to resolve the effects of elevation and shading (Barsugli et al., 

2020; Sohrabi et al., 2019; Winstral et al., 2014). For some applications, such as water 

management and species distribution modeling, snow data may need to cover large 

geographic domains. Multiple snow metrics are needed for diverse applications (e.g., SWE 

for water management, snow depth for wildlife). Finally, historical and future data are 

necessary to evaluate changes over time and to inform long term planning and development 

of adaptation strategies for specific locales.  

There are two major hurdles to the development of a snow dataset that meets all of 

these criteria: appropriate forcing data and computational cost. Presently, large-extent climate 

datasets only achieve horizontal resolutions of up to 1 km (e.g., Abatzoglou & Brown, 2012; 

Fick & Hijmans, 2017; Thornton et al., 2014) and the finer resolution datasets cover limited 

domains or are restricted to historical periods (Dietrich et al., 2019; Holden et al., 2011, 

2016). Second, even with appropriate forcing data, the computational expense of running 

snow models has generally forced the selection of some of these criteria at the expense of 

others (Winstral et al., 2014). For example, a temperature-index model might be used for 

applications requiring rapid results over large domains (e.g., SNOW-17; Anderson, 2006), a 

physics-based model might be run at high resolution over watershed sized domains (Garen & 

Marks, 2005; Liston & Elder, 2006), or a physics-based model might be run at coarser 

resolution over a larger extent (e.g., SNODAS, National Operational Hydrologic Remote 

Sensing Center, 2004; WRF, Liu et al., 2017; Gergel et al., 2017; Wrzesien et al., 2018). 
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There is potential for clever computational solutions and model formulations, such as 

variable resolution grids, to alleviate these trade-offs to some extent (Marsh et al., 2020). 

In this study we developed a computationally efficient physics-based snow model 

called SnowClim that has a flexible model structure and can be run in the cloud. The model 

retains the most important components of physically based models, including the complete 

energy balance and internal snowpack energetics, while omitting more computationally 

expensive components such as horizontal transport, multiple layers, and iterative solutions 

for snow surface temperature. Unlike existing models, this simplified physics-based model is 

efficient enough to be run over sub-continental domains at high spatial resolution. We force 

the SnowClim model with pre-industrial (1850-1879), historical (2000-2013), and projected 

future (2071-2100) meteorological data from the Weather Research and Forecasting (WRF) 

model downscaled to correct for terrain effects. We then applied the model to the western 

U.S. to create the SnowClim dataset, a multivariate, gridded, snow and climate dataset for 

three time periods at 210m spatial resolution. Here we provide a description of the model and 

its application to the western U.S., including parameterization, calibration, climate forcing 

data preparation, and resultant datasets.  

 

Model Description 

Model Overview 

The SnowClim model is a fully distributed energy and mass balance snow model. It 

simulates the snowpack as a single layer, but accounts for different surface and pack 

temperatures (Figure 3.1). The effects of vegetation, fractional snow cover, and snow 

redistribution via gravitational and wind-driven processes are not represented.  

The model has a flexible structure to facilitate uncertainty analysis and application to 

new conditions. This flexible structure includes tunable parameters, customizability of the 

spatiotemporal application, and process modularity. Key parameters (Table 3.2) are user-

defined as opposed to hard-coded in the model, allowing for calibration of the model to new 

conditions and regions as seen fit. The temporal and spatial resolution and extent are also 

user-defined, which allows users to adjust to computational constraints and the requirements 

of the project. Finally, key processes such as albedo and turbulent fluxes are modularized to 

allow evaluation of alternative process representations.  
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The required forcings are described in Table 3.1. The model is written in MATLAB. 

The model can be run in the cloud using MATLAB online through CUAHSI’s HydroShare 

Platform. 

 
Table 3.1 Required forcing data for the snow model. 

 

Energy Balance 

The SnowClim model evaluates the surface energy balance at each time step such that 

𝑄0$+ =	𝑆𝑊↓ −	𝑆𝑊↑ + 𝐿𝑊↓ − 𝐿𝑊↑ + 𝐻	 +	𝐸5 	+ 	𝐸6 	+ 	𝑃 + 𝐺 
Equation 3.1 

where 𝑄0$+ is the net surface energy flux, 𝑆𝑊↓ is the downward shortwave radiation at the 

surface, 𝑆𝑊↑ is the upward shortwave radiation at the surface,	𝐿𝑊↓ is the downward 

longwave radiation at the surface, 𝐿𝑊↑ is the upward longwave radiation at the surface, 𝐻 is 

the sensible heat flux, 𝐸5 and 𝐸6 are the latent heat fluxes of ice and water, 𝑃 is the advected 

heat flux from precipitation, and 𝐺 is the ground heat flux (Figure 3.1). 

Forcing data Abbreviation 

Downward shortwave radiation flux at the surface 𝑆𝑊↓ 

Downward longwave radiation flux at the surface 𝐿𝑊↓ 

Air Temperature 𝑇(  

Dewpoint Temperature 𝑇#  

Precipitation 𝑃 

Relative Humidity 𝑅𝐻 

Specific Humidity 𝑄( 

Wind speed 𝑈( 

Air pressure 𝑃(5' 
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Figure 3.1 Snow model conceptual diagram. Solid black arrows indicate mass fluxes, dashed grey arrows 
indicate energy fluxes. Fluxes are described in the text. 

 
Shortwave Radiation 

Upward shortwave radiation is equivalent to  

𝑆𝑊↑ = 𝑆𝑊↓𝛼 
Equation 3.2 

where 𝛼 is the spectrally integrated snow surface albedo.  

Springtime snow model simulations are sensitive to the specific albedo algorithm 

(Etchevers et al., 2004; Günther et al., 2019). The SnowClim model provides three options 

for computing snow albedo (albedo_opt). In all options, albedo decays with time and the 

albedo of shallow snowpacks (<100 mm depth) is diminished to account for the albedo of the 

ground surface, assumed to be 0.25 (Walter et al., 2005). A user-specified maximum albedo 

parameter (albedo_max) is used in each method.  

The simplest albedo model (Essery et al., 2013; hereafter Essery), is empirical and 

sets albedo decay as a function of snowpack temperature. Snow albedo is augmented based 

on the occurrence and amount of new snow. Parameters other than the maximum albedo are 

taken from Douville et al., (1995). 
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In the second albedo model (Hamman et al., 2018; Liang et al., 1994; hereafter VIC), 

snowpacks with new snow depth > 10mm and non-zero cold content receive the maximum 

snow albedo. Other albedo parameters are taken directly from VIC. Snow albedo decays 

more rapidly for melting snowpacks than cold snowpacks (cold content, 𝑐𝑐 < 0). 

The final albedo model (Tarboton & Luce, 1996; hereafter Tarboton) accounts for the 

wavelength dependence of albedo by computing separate visible and near-infrared band 

albedos as a function of snow surface age and solar illumination angle. The maximum albedo 

parameter is set equal to the average of the maximum visible band and infrared band albedos. 

This is the only albedo model of the three that includes a correction for illumination angle. 

 

Longwave Radiation 

Upward longwave radiation is a function of snow surface temperature (𝑇!) in degrees 

Celsius, snow emissivity (𝜀), and the Stefan-Boltzmann constant (𝜎) such that 

𝐿𝑊↑ = 𝜀𝜎(𝑇! + 273.15)7 
Equation 3.3 

We assume 𝜀 =0.98 (Armstrong & Brun, 2008). We consider 𝑇! to be a function of the 

dewpoint temperature (𝑇#; Raleigh et al., 2013), such that 

𝑇! = 	𝑚𝑖𝑛(0	°𝐶, 𝑇# 	+ 	𝑇(##) 
Equation 3.4 

where 	𝑇(## is an augmentation parameter that increases 𝑇! and improves simulations of 

sublimation. For further discussion of 𝑇! see the section title Enhanced Single Layer 

Approach. 

 

Turbulent Fluxes 

The turbulent fluxes, 𝐻, 𝐸5, and 𝐸6, are estimated using a Richardson number 

parameterization of the exchange coefficient following Essery et al., (2013). The bulk 

formula are 

𝐻	 = 	−𝜌(𝑐(𝐶8𝑈((𝑇! − 𝑇() 
Equation 3.5   

𝐸5 	= 	−𝜌(𝐶8𝑈((𝑄! − 𝑄()𝜆!				𝑓𝑜𝑟	𝑇! < 0 
Equation 3.6 
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𝐸6 	= 	−𝜌(𝐶8𝑈((𝑄! − 𝑄()𝜆&				𝑓𝑜𝑟	𝑇! = 0 
Equation 3.7 

where 𝜌( is the air density, 𝑐( is the specific heat capacity of air, 𝐶8 is the bulk exchange 

coefficient that accounts for near-surface atmospheric stability, 𝑈( is the wind speed, 𝑄!	is 

the specific humidity of the snow surface, and 𝑄( is the specific humidity of the air which is 

a required forcing. The specific humidity of the snow surface is calculated from 𝑇!. The 

exchange coefficient 𝐶8 is parameterized as a function of the near-surface atmospheric 

stability as captured by the bulk Richardson number (𝑅𝑖9) such that  

𝐶8 =	𝐹8(𝑅𝑖9)𝐶8: 
Equation 3.8       

𝑅𝑖9 = (𝑔𝑧;(𝑇( − 𝑇!))/(𝑇(𝑈(/) 
Equation 3.9       

𝐶8: = 𝑘/[𝑙𝑛(𝑧;/𝑧-)]<.[𝑙𝑛(𝑧=/𝑧>)]<. 
Equation 3.10             

𝐹8(𝑅𝑖9) 	= 	1									𝑓𝑜𝑟	𝑅𝑖9 = 0 
Equation 3.11   

𝐹8(𝑅𝑖9) 	= 	1 −	(3𝑐𝑅𝑖9)/(1 + 3𝑐/𝐶8:(−𝑅𝑖9𝑧;/𝑧-).//)								𝑓𝑜𝑟	𝑅𝑖9 < 0 
Equation 3.12 

𝐹8(𝑅𝑖9) 	= 	 [1	 +	(2𝑐𝑅𝑖9)/(1 + 	𝑅𝑖9).//]<.									𝑓𝑜𝑟	𝑅𝑖9 > 0 
Equation 3.13 

where 𝑔 is gravitational acceleration, 𝑧; is the height of simulated wind speeds, 𝑧= is the 

height of simulated air temperatures, 𝑧- is the surface roughness length for momentum, 𝑧> is 

the surface roughness length for heat and water vapor, and c is a constant assumed to equal 5 

(Louis, 1979). 𝑧- and 𝑧> are adjustable user-specified parameters (Table 3.2).  

An optional windless exchange coefficient is available to counter large radiative 

losses particularly during stable conditions (Helgason & Pomeroy, 2012; Jordan, 1991). 

Application of the windless exchange coefficient can be modified through three parameters: 

E0_value, E0_app, and E0_stability (Table 3.2). E0_value is the value in W m-2 of the 

windless exchange coefficient. E0_app controls the application of the windless heat exchange 
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coefficient to the sensible and latent heat fluxes; an E0_app value of 1 applies the coefficient 

only to the sensible heat flux, whereas an E0_app value of 2 applies the coefficient to both 

the sensible and latent heat fluxes.  E0_stability controls the type of conditions where the 

windless coefficient is applied; an E0_stability value of 1 applies the coefficient to all 

conditions, whereas an E0_stability value of 2 applies the condition only under stable 

atmospheric conditions. 

 

Precipitation Heat Flux 

The heat flux of liquid precipitation is  

𝑃	 = 	 𝑐6𝜌6𝑇#𝑃'(50 
Equation 3.14        

where 𝑐6 is the specific heat of water, 𝜌6 is the density of water, and 𝑃'(50 is the rate of 

liquid precipitation. The heat flux of solid precipitation (𝑆) is handled separately for 

diagnostic purposes and is added directly to the snowpack cold content. 

𝑆	 = 	 𝑐5𝜌6𝑇#𝑃!0*6 
Equation 3.15         

where	𝑐5 is the heat capacity of ice and 𝑃!0*6 is the rate of snowfall. 

 

Ground Heat Flux 

The ground heat flux can be important in controlling the onset of seasonal snow 

accumulation, particularly in warmer environments (e.g., Mazurkiewicz et al., 2008). 

However, under most circumstances 𝐺 is thought to provide a minor contribution to the 

energy budget (DeWalle & Rango, 2008). In the interest of model efficiency and to avoid 

uncertainties associated with estimating soil temperatures and thermal conductivities, we use 

a constant 𝐺 of 2 W m-2 (Walter et al., 2005), similar to other models (Etchevers et al., 2002).  

 

Enhanced Single Layer Approach 

Single layer snow models typically provide less physically realistic snowpack 

simulations than multilayer models due to their simplified treatment of energy transfer within 

the snowpack (Blöschl & Kirnbauer, 1991; Waliser et al., 2011). Bulk single layer 

conceptualizations treat the surface temperature and energy balance as synonymous with the 
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pack temperature and energy balance, ignoring the contrast between the thin surface layer 

which is highly sensitive to the near-surface atmosphere, and the pack, which is characterized 

by thermal inertia, i.e., cold content. These distinctions are key to accurate modeling of 

snowpack heat fluxes (Blöschl & Kirnbauer, 1991) and snowpack ablation (Waliser et al., 

2011). 

  To address these shortcomings, advanced single layer snow models have 

differentiated between surface and pack temperatures, while attempting to maintain the 

parsimony of a single layer model (Tarboton & Luce, 1996; You et al., 2014). However, 

these approaches typically require iterative methods to solve for snow surface temperature 

that can be computationally expensive (Wigmosta et al., 1994) and subject to large 

uncertainty (Raleigh et al., 2013). 

  The present model uses a two-step modification of the net surface energy flux to 

approximate the conduction of energy between the surface and the snowpack. This approach 

enables separate temperatures and energy balances for surface and pack components while 

retaining the computational efficiency necessary to accomplish the modeling objectives of 

both large spatial extent and relatively fine resolution. In this approach, the surface is 

conceptualized as a skin with zero depth. 

  First, we apply a temporal running mean to the net surface energy flux to approximate 

the attenuation with depth of the characteristic diurnal variations in energy at the surface, 

akin to the approach taken by You et al., (2014). The smoothed energy flux from the surface 

to the pack at each time step (𝑄0$+\\\\\\) is calculated as the average net surface energy flux over a 

period smooth_hrs, that is a tunable parameter (Table 3.2). This approach reduces unrealistic 

high frequency modifications of the cold content and large amplitude freeze-thaw cycles 

during the ablation season.  

  Second, we apply a progressive tax on the negative net energy flux to the snowpack 

to limit the excessive accumulation of cold content that results from all surface energy being 

directly translated to the pack. The net effect of the energy tax is to reduce snowpack cold 

content, resulting in more accurate cold content simulations similar to those from other, more 

complex physics-based models (Jennings et al., 2018; not shown). Other single layer models 

have sought to limit cold content, however they used approaches that required site specific 
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calibration (Blöschl & Kirnbauer, 1991; Braun, 1984). We apply a progressive tax such that 

negative energy fluxes to snowpacks with larger cold content receive larger taxes: 

 

𝑄1()@ =	𝑄0$+\\\\\\										𝑓𝑜𝑟	𝑄0$+\\\\\\ 		≥ 0 

Equation 3.16 

𝑄1()@ =	𝑄0$+\\\\\\ 	× (1	 − 	𝑡𝑎𝑥)										𝑓𝑜𝑟	𝑄0$+\\\\\\ 	< 0 

Equation 3.17  

𝑡𝑎𝑥	 = 		
𝑐𝑐	 − 	𝑐𝑐-
𝑐𝑐.

	× 𝑚𝑎𝑥𝑡𝑎𝑥		such	that	0	 ≤ 	𝑡𝑎𝑥	 ≤ 	𝑚𝑎𝑥𝑡𝑎𝑥 

Equation 3.18 

𝑄0$+\\\\\\	 is the smoothed net surface energy flux, 𝑄1()@ is the energy flux from the surface to the 

pack, and 𝑐𝑐 is the snowpack cold content. 𝑐𝑐-, 𝑐𝑐., and 𝑚𝑎𝑥𝑡𝑎𝑥 are tunable parameters that 

define the maximum (least negative) cold content to which the tax should be applied, the 

range of cold content over which the tax should be applied (𝑐𝑐- to 𝑐𝑐- + 𝑐𝑐.), and the 

maximum possible tax, respectively (Table 3.2). Negative energy fluxes to snowpacks with 

cold contents less negative than 𝑐𝑐- receive 0 tax, and negative energy fluxes to snowpacks 

with cold contents more negative than 𝑐𝑐- + 𝑐𝑐. receive a tax equal to 𝑚𝑎𝑥𝑡𝑎𝑥.  

𝑄1()@ is added to the snowpack cold content (𝑐𝑐) at each time step. Pack temperature 

(𝑇1()@) can be obtained from cold content: 

𝑇1()@ = 	𝑐𝑐	/	(𝜌6 	× 𝑐𝑖	 × 𝑆𝑊𝐸)	 

Equation 3.19       

where 𝑐𝑖 is the heat capacity of ice and 𝑆𝑊𝐸 is the snow water equivalent. 

 

Modification for Shallow Snowpacks 

We developed a computationally efficient approach for controlling energy balance 

instabilities for shallow snowpacks. Marks et al., (1999) addressed the problem by shifting to 

progressively smaller time steps. In the interest of computational efficiency, we take an 

alternative approach. When modeled SWE is less than a threshold value, 𝑇1()@ is constrained 

to be ≥ 𝑇( but ≤ 0°𝐶. Cold content is then updated according to this new temperature. The 

threshold for applying this correction is 15 mm of SWE for every hour in the time step (e.g., 
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for a model run at a 4 hour time step the temperature correction would be applied to 

snowpacks with 60 mm SWE or less). Constraining 𝑇1()@ and cold content in this way is 

reasonable given that surface and pack temperatures are likely to be similar for shallow 

snowpacks and the strong correspondence between 𝑇! and 𝑇( (Helgason & Pomeroy, 2012). 

 

Mass Balance 

The mass balance of the solid and liquid portions of the snowpack are evaluated at 

each time step as 

𝑀! 	= 	𝑀!0*6 	+ 	𝑀'$A 	− 	𝑀B$%+ 	+ 	𝑀#$1 	− 	𝑀!;C 

Equation 3.20    

𝑀% 	= 	𝑀'(50 	− 	𝑀'$A 	+ 	𝑀B$%+ 	− 	𝑀';0*AA +	𝑀)*0# 	− 	𝑀$&(1 

Equation 3.21   

where 𝑀! is the mass of the solid portion of the snowpack, 𝑀!0*6 is the mass of new 

snowfall, 𝑀'$A is the mass of liquid water in the snowpack that has been refrozen, 𝑀B$%+ is 

the mass of snow that has melted, 𝑀#$1 is the mass of deposition, 𝑀!;C is the mass of 

sublimation, 𝑀% is the mass of the liquid in the snowpack, 𝑀'(50 is the mass of rain added to 

the snowpack, 𝑀';0*AA is the mass of liquid water that has left the snowpack as runoff, 

𝑀)*0# is the mass of condensation, and 𝑀$&(1 is the mass of evaporation (Figure 3.1). 

 

Accumulation 

Snowfall is calculated as an air temperature and relative humidity dependent fraction 

of precipitation using the bivariate logistic regression model of Jennings et al., (2018). We 

use a non-binary formulation to allow for mixed phase precipitation. New snowfall amounts 

less than 0.1 mm water equivalent per hour are set to 0.  Rainfall is the difference between 

precipitation and snowfall. The temperature of new snowfall is set equal to the minimum of 

the dewpoint temperature and freezing point (0°C) whereas the temperature of rainfall is set 

equal to the maximum of the dewpoint temperature and the freezing point (Marks et al., 

2013; Raleigh et al., 2013).  

The density of new snowfall is calculated as a function of air temperature (Anderson, 

1976) using constants identified by Oleson et al., (2004). Compaction of the snowpack is 
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modeled as a function of SWE and snowpack temperature following (Anderson, (1976) and 

using constants from Boone, (2002) for the ISBA-ES snow model. Snow depth is a function 

of SWE and density and is updated following changes in either variable. 

 

Melt 

Positive net energy flux must satisfy the snowpack cold content before melt can 

occur. Melt is equivalent to the minimum of the current SWE and the potential melt, 

𝑚𝑒𝑙𝑡1*+	 = 	𝑄1()@/(𝜆A 	× 𝜌6)		for			𝑄1()@ > 	0	 

Equation 3.22    

where 𝜆A is the latent heat of freezing.  

 

Liquid Water Content 

Rainfall, melt, and condensation are added to and evaporation is subtracted from the 

snowpack liquid water content. Snowpack liquid water content in excess of the liquid water 

holding capacity of the snowpack contributes to runoff. The liquid water holding capacity of 

the snowpack is the product of snow depth and the maximum liquid water fraction (lw_max, 

Table 3.2). Liquid water content below this threshold but greater than the minimum liquid 

water content (equivalent to 1% of snow depth; Marsh, (1991)) is allowed to drain at a rate of 

100 mm hr-1 (based on values in Armstrong & Brun, (2008) and DeWalle & Rango, (2008)).  

 

Refreezing 

Excess cold content can be used to refreeze liquid water in the snowpack. The amount 

of water refrozen is the minimum of the total liquid water content of the snowpack and the 

potential refreezing, 

	𝑟𝑒𝑓𝑟𝑒𝑒𝑧𝑒1*+ = −
𝑐𝑐

𝜆A 	× 	𝜌6
					for			𝑐𝑐 < 	0		 

Equation 3.23    

𝑀'$A = 	𝑚𝑖𝑛l𝑟𝑒𝑓𝑟𝑒𝑒𝑧𝑒1*+ , 𝑀%m								for	𝑐𝑐 < 	0 

Equation 3.24     

Energy released by refreezing is added to the snowpack cold content and the refrozen mass is 

added to the SWE, increasing the snowpack density (we assume no change in snow depth). 
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Refreezing is turned off when snowpack density exceeds 550 kg m-3, which is considered to 

be the maximum snow density above which snow becomes firn (Marshall, 2012). 

 

Sublimation and Condensation 

Latent heat transfer results in sublimation or evaporation from or deposition or 

condensation onto the snowpack, such that 

𝑀!;C =	−𝐸5/(𝜆! × 𝜌6)							for			𝐸5 < 	0	𝑎𝑛𝑑	𝑇! < 0	 
Equation 3.25    

𝑀$&(1 =	−𝐸6/(𝜆& 	× 𝜌6)							for			𝐸6 < 	0	𝑎𝑛𝑑	𝑇! = 0 

Equation 3.26  

𝑀#$1 =	−𝐸5 	/(𝜆! 	× 	𝜌6)								for			𝐸5 > 	0	𝑎𝑛𝑑	𝑇! < 0	 

Equation 3.27   

𝑀)*0# =	−𝐸6/(𝜆& 	× 	𝜌6)								for			𝐸6 > 	0	𝑎𝑛𝑑	𝑇! = 0	 
Equation 3.28  

where 𝜆! is the latent heat of sublimation and 𝜆& is the latent heat of vaporization. 

 

Model Application to the Western United States 

The SnowClim model was evaluated and calibrated at a collection of automated snow 

stations across montane portions of the western US and further applied to the broader western 

US to create the SnowClim dataset. We describe the preparation and downscaling of the 

meteorological forcing data, the model calibration, and the model simulations for the western 

US. The model was calibrated at Snowpack Telemetry (SNOTEL) sites and model 

performance at these sites was used to select the parameters and temporal resolution at which 

to run the model over the full domain.  

 

 

 
Table 3.2 Parameters, their abbreviated names, the parameter values used in calibration, and their units. 
Parameter values with an * indicate values chosen for the full model run by calibration at SNOTEL sites. 
Additional parameter options, including the VIC model albedo option, were evaluated in preliminary work but 
were excluded from the full calibration due to consistently poor performance. 1Essery et al., (2013); 2Tarboton 
& Luce, (1996) 
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Parameter Abbreviated name Values used for calibration Units 

Albedo Algorithm albedo_opt Essery(1), Tarboton(2)* - 

Momentum 
roughness length 

𝑧- 10-3, 10-4, 10-5* m 

Heat and vapor 
roughness length 

𝑧> 𝑧-/10* m 

Maximum Albedo albedo_max 0.85*, 0.90 - 

Maximum liquid 
water fraction 

lw_max 0.1* - 

Windless heat 
exchange 
coefficient 

E0 0, 1*, 2 W m-2 K-1 

Windless heat 
exchange 
coefficient flux 
application 

E0_app 1* - 

Windless heat 
exchange 
coefficient 
stability condition 

E0_stability 2* - 

Cold content 
threshold at which 
to start energy tax 

𝑐𝑐- 0*, -5000, -10000 kJ m-2 

Cold content range 
to tax 

𝑐𝑐. -5000, -10000*, -15000, -20000 kJ m-2 

Maximum tax to 
apply to surface 
energy 

𝑚𝑎𝑥𝑡𝑎𝑥 0.3, 0.6, 0.9* - 

Surface energy 
flux smoothing 
window 

smooth_hrs 8, 12*, 24 hours 

Snow surface 
temperature 
augmentation 

𝑇(##  0, 1, 2* °C 



53 
 

Spatial Resolution 

To balance the competing ambitions of high spatial resolution and computational 

feasibility over the western US domain, we used variable spatial resolutions. Regions of 

complex terrain were modeled at 210m (hereafter ‘fine’). This high resolution enhances the 

model’s ability to capture the effects of elevation, aspect, and slope on snowpack in complex 

terrain. Regions of less complex terrain were modeled at 1050m (hereafter ‘coarse’). Terrain 

complexity was assessed for each coarse grid cell by examining the elevations and 

downscaled solar radiation values for the 25 collocated fine grid cells. If the elevation 

difference across the fine cells was less than 50m and the maximum percent difference in 

solar radiation was less than 10%, then snow simulations were completed at coarse 

resolution. Otherwise, simulations were completed at fine resolution. This resulted in 

approximately 30% of the domain being modeled at coarse resolution (Figure B.1). Grid cells 

were defined using the 1 arc-second National Elevation Dataset Digital Elevation Model 

(DEM; Gesch et al., 2018), aggregated to 210m or 1050m.  

 

Forcing Data Preparation 

Modeled hourly meteorological data from the Weather Research and Forecasting 

model (WRF; Liu et al., 2017) were downscaled to force the snow model (Table 3.3). 

Forcing data was developed for a historical period, future period, and pre-industrial period. 

The raw WRF data consisted of 4 km spatial resolution hourly simulations for 1 October 

2000 to 30 September 2013, that used initial and boundary conditions from ERA-Interim 

(Dee et al., 2011), herein referred to as historical period. A pseudo-global warming run was 

also performed by perturbing ERA-Interim by average differences from a suite of climate 

models participating in the Fifth Coupled Model Intercomparison Project (CMIP5; Taylor et 

al., 2012) between 1976-2005 and 2071-2100 under the RCP 8.5 scenario (Liu et al., 2017). 

Pre-industrial forcing data was developed by perturbing the downscaled historical WRF data 

by monthly climatological differences in climate between pre-industrial (1850-1879) and the 

historical period using a pattern scaling approach (Mitchell, 2003) based on spatially varying 

differences in variables from the CMIP5 models.  
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Table 3.3 WRF data used to derive forcing data for the snow model. 

WRF data Abbreviation 

Downward shortwave radiation flux at the surface 𝑆𝑊↓ 

Downward longwave radiation flux at the surface 𝐿𝑊↓ 

Mean Air Temperature 𝑇(  

Precipitation 𝑃 

Wind speed 𝑈( 

Air pressure 𝑃(5' 

Water vapor mixing ratio (kg/kg) 𝑄 

 

Spatial downscaling for all variables except solar radiation was accomplished using 

moving window lapse rates (i.e., the change in the variable with elevation). Lapse rate 

downscaling has been shown to perform well relative to other statistical downscaling 

approaches in mountainous terrain (Praskievicz, 2018; Wang et al., 2012). We estimated 

monthly lapse rates for each grid cell and each variable, except for temperature for which we 

estimated hourly lapse rates for each grid cell. Windows of 7x7 WRF grid cells, or 28 km x 

28 km, were used to balance the competing objectives of sufficient data points and the ability 

to capture local phenomena (Lute & Abatzoglou, 2021). Lapse rate corrections were applied 

hourly using the elevation difference between the WRF grid cell and the target DEM grid 

cell. For air pressure, lapse rates were calculated from and applied to temporally averaged 

WRF data. Grid cells not classified as land by WRF were excluded from lapse rate 

calculations.  

For precipitation, a modified version of the methods above was used. Prior to 

calculating lapse rates, WRF precipitation was bias-corrected to monthly 4 km precipitation 

from PRISM (PRISM Climate Group, 2015) by calculating monthly correction ratios- the 

ratio of total monthly PRISM precipitation to total monthly WRF precipitation. Correction 

ratios were set to 1 (no correction) when monthly WRF precipitation was 0 or when the ratio 

was infinite. Monthly precipitation lapse rates were divided by the number of hours with 
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precipitation each month and days with 0 precipitation were maintained in the downscaled 

data to avoid precipitation everyday due to non-zero monthly lapse rates.  

Solar radiation was downscaled to the target DEM using the insol package in R 

(Corripio, 2015) following the approach of Lute & Abatzoglou, (2021) which preserves the 

atmospheric effects (e.g., cloud cover) captured by WRF and also accounts for slope, aspect, 

self-shading, and shading by adjacent terrain. Parameters required by the algorithm, 

including visibility, RH, and temperature, were assumed to be constant. Terrain corrections 

were calculated for the midpoint of each hour of the middle day of each month, aggregated to 

the desired temporal resolution using a weighting scheme based on the amount of solar 

radiation each hour, and then interpolated to the full time period. 

For model calibration at SNOTEL sites (see next section), the above downscaling 

procedures were applied, but values were adjusted based on the elevation difference between 

the SNOTEL site and the collocated WRF grid cell based on calculated lapse rates. 

Downscaled WRF precipitation was bias corrected to SNOTEL sites by applying a monthly 

correction factor consisting of the ratio of the total SNOTEL precipitation to the total WRF 

precipitation similar to Havens et al., (2019). We note that such bias correction approaches 

may not address issues of precipitation undercatch at SNOTEL sites. 

Additional variables needed to force the snow model including specific humidity, 

relative humidity, and dewpoint temperature were derived from the downscaled water vapor 

mixing ratio, air temperature, and air pressure data using standard methods. Dewpoint 

temperatures exceeding the air temperature were set equal to the air temperature.  

 

Model Calibration 

Calibration Methods 

The model was calibrated at SNOTEL sites across the mountains of the western US to 

select a single best parameter set across all sites. A total of 170 SNOTEL sites were selected 

meeting the following requirements: 

1. elevation difference of less than 75m relative to the collocated WRF grid cell; 

2. missing no more than 1% of daily precipitation and SWE observations between 

October and May in every water year between 1 October 2000 and 30 September 

2013; 
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3. located more than 25km from any other SNOTEL site. 

Missing SWE values were infilled using linear interpolation. Missing precipitation values 

were infilled using an inverse distance weighted average of the values at the three closest 

sites. 

Calibration consisted of running the model across all SNOTEL sites for each possible 

combination of parameters listed in Table 3.2. Model performance was assessed using the 

mean absolute percent error (MAPE) of annual maximum SWE (maxswe), the MAPE of 

annual snow duration, and the root mean squared error (RMSE) of daily SWE at each site. 

Snow duration was defined as the duration (in days) of the longest period of consecutive days 

with SWE > 0. RMSE was computed for days when observed SWE exceeded 10 mm. 

Additionally, we used the mean error (ME) and mean percent error (MPE) of maxswe and 

duration to visualize calibration errors. The optimal parameter set was selected using Pareto 

preference ordering (Khu & Madsen, 2005) based on the median of each statistic across 

stations.  

The model was subsequently evaluated for different run time steps (1, 2, 3, 4, 6, 8, 12, 

and 24 hours). Separate model calibration for each time step selected similar parameter sets 

to the hourly run, so the hourly parameter set was used for all time steps. Model performance 

was again assessed as described above.  

 
Calibration Results 

Snow model calibration via Pareto optimization selected a single best parameter set 

(Table 3.2). The station median MAPE of maxswe, MAPE of snow duration, and daily 

RMSE for this parameter set were 15.6%, 8.86%, and 62.2 mm, respectively.  The spatial 

distribution of ME and MPE in maxswe and duration lacked strong coherent spatial patterns, 

suggesting that the model captured major climate related effects (Figure 3.2). The largest 

negative biases were found at dry sites with small or intermittent snowpacks (Figure B.2). 

The largest positive biases were found at sites with mean winter temperatures at or above 

freezing, where snow accumulation is very sensitive to the partitioning of precipitation into 

rain vs. snow (Figure B.2). A time series of observed and modeled SWE at one site with error 

values close to the station median values illustrates the model performance on a daily scale 

(Figure 3.3). The model also captured key components of interannual snowpack variability 
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over the short historical period; the station median correlations for maxswe and for snow 

duration were 0.92 and 0.69, respectively. The station correlations did not demonstrate any 

clear geographic or climatic patterns. This lends confidence to the model’s ability to transfer 

to new climates. The parameter sensitivity of the model is documented in Appendix B 

(Figure B.3). 

 
Figure 3.2 Performance metrics for an hourly model run with the selected parameterization. 
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Figure 3.3 Time series of observed and modeled SWE at the Hilts Creek, Idaho SNOTEL site. Out of all 170 
SNOTEL sites, errors at this site were closest to the all-station median errors reported in the text. 

Model performance generally deteriorated as temporal resolution coarsened from 1 

hour to 24 hours, although there was some improvement going from 12 hours to 24 hours 

(Figure 3.4). A timestep of 4 hours was selected for the full western US model run to balance  

the objectives of computational efficiency and model performance. The station median 

MAPE of maxswe, MAPE of snow duration, and RMSE for the 4 hour time step were 17.8%, 

11.9%, and 75.4 mm, respectively. We note that simulations without the modification for 

shallow snowpacks degraded more consistently and significantly with coarsening temporal 

resolution (Figure B.4). 

Figure 3.4 Snow model performance for different time steps using the parameter set selected in calibration 
of the hourly model. Points represent median values across 170 SNOTEL sites. 
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Figure 3.5 a) Historical and b) future maxswe (mm), c) historical and d) future snow duration (days). Historical 
values are averages over the period 2000-2013. Future values represent averages during the period 2071-2100 
under RCP 8.5. In a) and b), white land areas denote areas that had less than 10 mm maxswe. In c) and d), white 
land areas denote areas where snow duration was 0. Note the non-linear colorscale in panels a) and b). 

 

Model Results for the Western United States 

The SnowClim model was applied to the western US (contiguous US west of 104°W) 

using the parameters identified above, a temporal resolution of 4 hours, and a variable spatial 

resolution as described previously (210m-1050m horizontal resolution). The model was run 

in parallel on a high-performance computer with 34 cores and 128GB RAM. The compute 

time for downscaling climate forcing and executing the snow model was 10 days and 3.5 

days, respectively for the historical period. 
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Historical maxswe was 115 mm, spatially averaged across the full western US 

domain, and locations with historical maxswe < 10mm were largely restricted to the southern 

and southwestern portions of the domain (Figure 3.5a). Under the future scenario, the areas 

with maxswe < 10 mm greatly expanded to encompass many lower elevation areas and 

spatially averaged maxswe declined to 55 mm (Figure 3.5b). Historical snow duration 

averaged 115 days (Figure 3.5c), but declined to 56 days in the future scenario (Figure 3.5d). 

There were only a handful of locations with increases in maxswe or duration in the future 

period compared with the historical period, and these increases were small (Figure 3.6). The 

largest relative declines in maxswe and duration were found at low elevations. On average, 

maxswe and snow duration decreased by 55% and 57%, respectively. 

 

Figure 3.6 a) Absolute and b) percent change in maxswe between historical and future periods. c) Absolute and 
d) percent change in snow duration between historical and future periods. Small box in northern Utah indicates 
the region highlighted in Figure 3.7. 
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Compared to existing large extent, multitemporal, physics-based snow datasets such 

as that from the 4 km WRF runs (Liu et al., 2017), SnowClim provided a much more 

nuanced picture of changing snow, particularly in areas of complex terrain. For example, 

Figure 3.7 shows relative changes in maxswe for the Uinta Mountains in northeastern Utah 

as simulated directly by the 4 km WRF product and by SnowClim. SnowClim captured 

effects of elevation and aspect, including greater percent reductions in maxswe at lower 

elevations and on south facing aspects, similar to Barsugli et al., (2020). Nuanced results 

such as these are only possible with high-resolution, physics-based snow modeling. 

 
Figure 3.7 Example of simulations of changing maxswe for a portion of the Uinta Mountains, Utah (location is 
marked in Figure 3.6). The elevation (m) of the domain is shown in a). The percent change (%) in maxswe 
between historical and late 21st century periods as simulated by a 4 km WRF product (Liu et al., 2017) is shown 
in b) and the same metric but from the SnowClim dataset is shown in c). 

 
Data Availability 

Climate forcing data and modeled snow variables were aggregated to monthly and 

annual climatologies for each time period to create the SnowClim dataset (Table 3.4).  
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Table 3.4 Summary climate and snow variables included in the SnowClim dataset. Summary variables are 
available for pre-industrial, historical, and future time periods. 

Climate Variables 

Monthly temperature (min, max, and mean) 

Monthly precipitation 

Monthly solar radiation 

Monthly dewpoint temperature 

Annual number of freeze/thaw cycles 

Snow Variables 

Monthly SWE 

Monthly snow depth 

Monthly snow cover days 

Monthly snowfall 

Annual size and date of maximum SWE 

Annual size and date of largest snowfall event 

Annual snow duration 

Date of first and last snow 

Number of days without snow between first and last snow 

 

Discussion and Conclusions 

Through the development of a new computationally efficient snow model, SnowClim, 

and novel forcing data, we have overcome the two major hurdles to achieving snow data that 

meets the criteria outlined in the introduction. SnowClim’s unique balance of mostly physical 

and some empirical components allows it to capture contrasts in radiative loading in complex 

terrain, timing and rate of ablation, and responses to future climate, while maintaining 

computational efficiency. The SnowClim dataset is spatially continuous across the western 

US at sub-kilometer resolution in complex terrain, enabling both high-resolution and large-

extent analyses. The inclusion of multiple snow variables and compatible climate variables 
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across multiple time periods will empower analyses of hydroclimatic responses to changing 

climate. 

The SnowClim model excludes some processes that might be included in more 

complex, computationally expensive models, such as vegetation related processes and snow 

redistribution processes. In some contexts, these may be necessary for accurate modeling of 

the snowpack (Freudiger et al., 2017; Musselman et al., 2008). Given the complexity of 

vegetation-snow processes, incorporation of vegetation effects may add significant 

computational expense and is hindered by the need for vegetation related data and parameters 

that are expected to change between the time periods considered here. However, 

incorporation of an optional vegetation routine to be used when data and computational 

resources are available is a logical next step. As it is, the SnowClim data can be considered a 

potential snow layer in vegetated areas and is expected to be most realistic in minimally 

vegetated areas with low amounts of snow redistribution. The model also includes simplified 

representations of the ground heat flux and snow surface temperature, which may be better 

captured by more physics-based approaches. In particular, a more nuanced treatment of the 

ground heat flux may be desired in warm snow climates (Mazurkiewicz et al., 2008).  

Contrasts between modeled and observed snow metrics stem from several factors, 

including but not limited to: uncertainties in climate forcings, SNOTEL site specific factors 

that the model neglects such as fine scale topographic and vegetation patterns, and errors in 

model specification including process representation and calibration. Despite these factors, 

errors at SNOTEL sites from the hourly SnowClim model run were relatively small and 

compared well with errors reported for other gridded snow products. Ikeda et al., (2021) 

evaluated the snow simulations from the same 4 km WRF model runs that we sourced our 

raw climate forcings from Liu et al., (2017). Relative to SNOTEL sites, they found a -26.2% 

bias in maxswe. In contrast, the SnowClim model achieves a maxswe bias of only 0.15%. 

Wrzesien et al., (2018) compared maxswe at SNOTEL sites to maxswe from 9 km WRF 

simulations. Across sites, they found a correlation coefficient of 0.55 and a bias of -89 mm. 

SnowClim achieves a correlation coefficient of 0.94 and bias of -11 mm. In the Sierra 

Nevadas, Guan et al., (2013) blended modeled, remotely sensed, and observed data to capture 

SWE at 6 sites. Their method achieved a SWE RMSE of 205 mm compared to snow surveys. 

The SnowClim mean RMSE of daily SWE was 77 mm across all sites and 166 mm at Sierra 
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Nevada sites. While errors at SNOTEL sites were generally low, the model did tend to 

overestimate maxswe and duration at some warm/wet sites and underestimate these metrics 

at dry sites (Figure B.2). Further evaluation of the parameters used here in more marginal 

snow environments would lend additional confidence to the application of SnowClim data in 

these areas.  

The flexible, modularized, structure of the SnowClim model lends itself to 

calibration, parameter sensitivity assessment, and experimentation. In the western US, model 

performance was particularly sensitive to the choice of albedo algorithm and snow surface 

temperature parameterization, in line with previous findings (Etchevers et al., 2004; Günther 

et al., 2019; Slater et al., 2001; Figure B.3). Given the importance of impurities (e.g., tree 

litter, dust, and black carbon) on snow albedo and consequently snow melt (Waliser et al., 

2011), a future step will be to add albedo algorithms that account for these effects. The 

modular structure of SnowClim would make this relatively straightforward. 

Given the multifaceted importance of snow and the ongoing changes to snow due to 

climate change, there is a need for models that can accurately and efficiently simulate snow 

to generate spatially extensive, high-resolution datasets to meet the diverse requirements of 

different applications. We anticipate that the SnowClim model and data will be powerful 

tools for researchers and managers across a range of disciplines including ecology and 

wildlife biology, recreation, transportation, hazard planning, and glacier and hydrologic 

modeling. 
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Chapter 4: Projected Loss of Active Rock Glaciers in the Western U.S. 
with Warming 

 
Abstract 

Warming is diminishing mountain snowpack and glaciers in many regions, with substantial 

implications for local and downstream ecosystems and societies. Rock glaciers may respond 

more slowly than snow or glaciers to warming due to their insulating debris layer. A slower 

response would enable rock glaciers to continue to provide important habitat and cool 

summer streamflow after snow and glaciers have diminished. However, a robust assessment 

of rock glacier environmental niche and future distributions across broad geographic scales is 

lacking, limiting our understanding of how alpine ecosystems and streamflow will respond to 

climate change. Using process-relevant, high-resolution covariates we develop a species 

distribution model of the topographic, geologic, and hydroclimatic niche of rock glaciers that 

provides novel estimates of potential rock glacier distributions for different climate 

equilibria. We show that mean annual air temperature and headwall area are the dominant 

controls on rock glacier spatial distributions, with rock glaciers more likely to be found in 

areas with mean annual temperatures below freezing and large headwalls. Guided by the 

assumption that modern rock glaciers are long-lived features in equilibrium with pre-

industrial conditions, we find that equilibration to present hydroclimatic conditions will result 

in a 36% reduction in suitable rock glacier habitat and equilibration to late 21st century 

climate under RCP8.5 will result in near-complete loss (99% reduction) of rock glacier 

habitat across the western United States. Under present-day conditions, we find limited 

potential (5.5 km2) for glacier to rock glacier transformation, concentrated in cold, high 

elevation, moderate precipitation areas. More widespread glacier to rock glacier 

transformation may be limited by debris supply.  

 

Introduction 

The mountain cryosphere provides critical services including water storage, climate 

regulation, and habitat for cold-adapted species (Huggel et al., 2015). Rock glaciers are one 

component of the mountain cryosphere that is particularly important in semi-arid montane 

portions of the world. In the continental western United States (U.S.), the total water 
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equivalent of rock glaciers is estimated to be of similar magnitude to that of glaciers 

(Fountain et al., 2017; Jones et al., 2018; Trcka, 2020). While climate change is reducing 

snowpack and glacier mass balance (Huss et al., 2017; Moore et al., 2009; Mote et al., 2018), 

rock glaciers are hypothesized to be more resilient to warming due to their insulating debris 

mantle (Anderson et al., 2018); the response time of rock glaciers to warming is hundreds of 

years (Müller et al., 2016), much longer than the decadal response time of midlatitude 

glaciers (Cuffey and Paterson, 2010) and the almost immediate response time of snow. This 

suggests that rock glaciers may become an increasingly important source of summer water 

supply and refugium for cold-adapted species (Harrington et al., 2017, 2018; Jones et al., 

2018; Millar et al., 2015).  

Rock glaciers depend on a balance of ice and debris fluxes which are controlled by 

climate, topography, and lithology (Bolch & Gorbunov, 2014; Brenning & Azócar, 2010; 

Brenning & Trombotto, 2006; Chueca, 1992; Johnson et al., 2007; Millar & Westfall, 2008; 

Morris, 1981). Previous studies on these combined factors, that we term “rock glacier 

habitat”, have been largely descriptive, conducted at the scale of mountain ranges or small 

regions, and many neglected to include any hydroclimatic information despite the 

dependence of rock glaciers on the accumulation and ablation of snow and ice. Larger scale 

assessments of the influence of a more functionally relevant set of predictors may better 

identify the fundamental environmental niche of rock glaciers and improve understanding of 

rock glacier genesis and climate sensitivity.   

Case studies and numerical modeling approaches have evaluated rock glacier climate 

sensitivity for individual or small groups of rock glaciers, finding that rock glaciers in 

warmer locations will deteriorate with continued warming while some conventional ice 

glaciers may transition to rock glaciers (Anderson et al., 2018; Delaloye et al., 2010; Jones et 

al., 2019; Kääb et al., 2007; Marcer et al., 2021). Glaciers that become rock glaciers are 

likely to persist on the landscape longer and continue to provide important services such as 

cool summer water supply. These past analyses have provided valuable insights into rock 

glacier rheologic behavior, response times, and climate sensitivity, but fall short of providing 

a more generalizable understanding of how rock glaciers occupy landscapes across broader 

scales or how they may respond to climate change. It remains unclear under what geologic, 
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topographic, and hydroclimatic conditions rock glaciers are likely to persist, disappear, or 

develop from glaciers.  

We employ a machine learning approach (Maxent; Phillips et al., 2006; Phillips & 

Dudík, 2008) to address three primary questions: 1) What hydroclimatic, geologic, and 

topographic constraints describe the environmental niche of rock glaciers?; 2) How will the 

spatial distribution of rock glaciers change with projected climate change?; and 3) Is there 

potential for glacier to rock glacier transformation in the western U.S.? We address these 

questions by constructing a Maxent model of rock glacier distributions using datasets of 

known rock glacier locations and high-resolution pre-industrial hydroclimatic, geologic, and 

topographic predictors across the western U.S. We use this model and data reflecting present 

and projected late-21st century conditions under RCP8.5 to predict where rock glaciers are 

likely to disappear, persist, or develop from glaciers in the future. This approach elucidates 

generalizable controls on rock glacier spatial distributions and their climatic sensitivity and 

allows us to provide the first estimates of future rock glacier distributions across the western 

U.S.  

 
Data and Methods 

Data 

We compiled a set of environmental predictors that capture the hydroclimatic, 

topographic, and geologic controls on rock glaciers (Table C.1). Predictors cover the western 

U.S. at a common 210 m spatial resolution, similar to the scale of the rock glaciers 

themselves (Johnson et al., 2020). We limit the western U.S. modeling domain to potential 

rock glacier habitat using lower montane and higher elevation classes from the mountain 

classification scheme of Körner et al., (2011) and a mean annual temperature threshold < 8°C 

(Figure 4.1). This domain contains all active rock glacier features from the inventory of 

Trcka, (2020; n = 1486), the centroids of which were used as presence locations in the 

Maxent models. Alpine ice glacier (hereafter glacier) outlines from the Global Land Ice 

Measurements from Space dataset (GLIMS; Fountain, 2006; Hoffman & Fountain, 2016) 

were also used for comparison with rock glaciers.  

Given the rapid recent global warming and the roughly several hundred-year response 

time of rock glaciers to warming (Müller et al., 2016), it is unlikely that rock glaciers are in 
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equilibrium with the current climate (Anderson et al., 2018). We assumed that present-day 

rock glaciers are a result of pre-industrial climate (1850-1879) and we developed models of 

the present distribution of rock glaciers using pre-industrial climate forcing. We then 

predicted rock glacier distributions under recent historical conditions (2000-2013; hereafter 

present) and future conditions under a high-warming scenario (2071-2100). Since the models 

are calibrated on pre-industrial conditions and current rock glacier locations, predicted rock 

glacier distributions for the different time periods reflect the distribution that would result 

once rock glaciers equilibrate to the given hydroclimatic conditions. For the present period, 

climatological measures of mean, minimum, and maximum annual temperatures (tmean, 

tmin, tmax), annual number of temperature oscillations around 0°C (freeze-thaw), annual 

precipitation (precip), annual rainfall (rain), and annual downward solar radiation (solar) 

were calculated from output from the Weather Research and Forecasting model (WRF; Liu et 

al., 2017) statistically downscaled to ~210 m horizontal resolution using local  

Figure 4.1 a) Modeling domain. Elevation of terrain is indicated by the color bar. Black points denote known 
rock glacier locations. In bivariate density plots (b and c), salmon color indicates the distribution of rock glacier 
locations while grey blue indicates the distribution of background domain locations in two-dimensional pre-
industrial covariate space.  
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lapse rates, precipitation bias correction, and solar terrain correction (Lute et al., 2021). Pre-

industrial climate covariates were created by perturbing the present period to reflect pre-

industrial conditions (1850-1879) using monthly climatological differences in climate 

between the pre-industrial and present periods from the Fifth Coupled Model 

Intercomparison Project (CMIP5; Taylor et al., 2012; Lute et al., 2021).  Future climate 

covariates were created using pseudo-global warming runs from WRF, reflecting 2071-2100 

conditions under RCP8.5 (Liu et al., 2017). Both pre-industrial and future covariates were 

downscaled using the same methods as the present period (Lute et al., 2021). Further 

discussion of the predictor variables is available in Appendix C. 

 We also considered snow metrics calculated from an energy balance snow model 

(Lute et al., 2021) forced with the previously described climate datasets. These metrics 

include annual snowfall water equivalent (sfe), snow duration (duration), annual maximum 

snow water equivalent (maxswe), and the number of snow free days between the snow on 

and snow off dates (nosnowdays). The use of snow data enhances the physical relevance of 

the predictor variables relative to using variables derived from temperature and precipitation 

alone as is often done in environmental niche modeling, and may enhance model 

transferability (Austin, 2002). 

Topographic factors are widely known to influence rock glaciers as they affect both 

debris and ice supply as well as the energy budget (Frauenfelder et al., 2003). To capture 

these topographic effects, terrain aspect, terrain slope, and a headwall metric (headwall3 or 

headwall5) were derived from the 1 arc-second National Elevation Dataset (Gesch et al., 

2018), aggregated to 210 m resolution. The headwall metric was calculated as the fraction of 

pixels within a given radius of the target pixel that are higher elevation than the target pixel 

and exceed a slope threshold (e.g., Bolch & Gorbunov, 2014; Kenner & Magnusson, 2017).  

Geologic factors influence the debris available for rock glaciers, thereby exerting a 

first order control on rock glacier distributions (Haeberli et al., 2006; Johnson et al., 2007). 

We used a rasterized version of a generalized lithology classification consisting of 12 rock 

types (Anning & Ator, 2017) to represent these effects. Rock type descriptions are provided 

in Table C.2. 
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Methods 

Maxent modeling (Phillips et al., 2006; Phillips & Dudík, 2008) is a commonly used 

machine learning approach for environmental niche modeling that is data-driven and well-

suited to large datasets. Maxent models use known species presence locations and spatial 

fields of predictors (i.e., background data) to construct features from the predictor data which 

are combined to allow modeling of complex, nonlinear relationships. Maxent’s logistic 

output provides continuous values between 0 and 1 which can be interpreted as a measure of 

habitat suitability. Maxent has provided excellent performance in predicting species 

distributions, including under new conditions in space and time (Duque-Lazo et al., 2016; 

Elith et al., 2006). There has been a recent uptick in the application of Maxent in the physical 

sciences and glaciology in particular where it has generated new insights into surging 

glaciers and glacier responses to climate change (Comino et al., 2021; Manquehual-Cheuque 

& Somos-Valenzuela, 2021; Sevestre & Benn, 2015; Wang et al., 2021). Maxent is an ideal 

modeling approach for the questions posed here because it a) uses presence only data such as 

the rock glacier inventory, b) can handle large datasets of environmental covariates enabling 

high-resolution, large-extent modeling, and c) is designed to address questions about 

changing distributions and habitat suitability like those posed here. We implemented Maxent 

using the dismo (Hijmans et al., 2020) and ENMeval (Kass et al., 2021) packages in R (R 

Core Team, 2020). For modeling efficiency, 10,000 background points were randomly 

selected for model calibration, in addition to the 1486 known rock glacier locations.  

Prior to running Maxent, we removed strongly collinear variables (see Appendix C, 

Figure C.1 for details), leaving 9 covariates. Next, to determine optimal model complexity 

and avoid overfitting, we built a suite of models using various levels of model complexity 

and evaluated model performance using the AICc statistic (Akaike, 1974; see Appendix C for 

details). The selected model was used to map rock glacier habitat suitability across the 

domain based on Maxent’s logistic output. 

We performed several cross validations of the model to assess model transferability 

geographically and to new climates. First, we split the data into 400 km blocks using the 

blockCV R package (Valavi et al., 2019) with a block size approximately ten times larger 

than the median effective range of spatial autocorrelation of the predictor variables (Figure 

C.3). Second, we split the data into cold and warm groups to evaluate potential model 
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transferability to a warmer climate. Specifically, we developed a model using data with pre-

industrial tmean below the median value for rock glacier locations (roughly -2.8°C) and 

evaluated this model on the warmer half of rock glacier presence locations. The area under 

the receiver operating characteristic curve statistic (AUC) was used to assess model 

performance.  

Predictor variable importance was assessed using the model jackknife approach 

available in Maxent. The approach calculates the loss in regularized training gain when each 

variable is left out of a model as well as the regularized training gain of a model built on that 

variable alone. We present a normalized version of the regularized training gain for ease of 

interpretation. The relationship of each covariate to the model predictions of presence was 

further evaluated by inspecting the marginal response curves that characterize the 

relationship between covariate values and predicted suitability of rock glacier habitat when 

other variables are held constant at their average value at known rock glacier locations. 

Additional response curves from models based on each variable in isolation are provided in 

Figure C.6.  

 The optimal model calibrated on the pre-industrial covariates and current active rock 

glacier locations was used to predict rock glacier habitat suitability over time by applying it 

to the pre-industrial, present, and future predictors. Throughout, references to results for a 

particular time period should be interpreted as results assuming active rock glacier 

equilibration to hydroclimatic conditions in that time period, not to realized changes by that 

time period. For example, predictions of rock glacier suitability under future hydroclimate 

represent the potential distribution of active rock glaciers that would result once rock glaciers 

reached equilibrium with the future climate, which in reality may be hundreds of years later 

due to the slow response of rock glaciers to warming (Müller et al., 2016).  

To control predictions outside of the range of the calibration data, we used clamping, 

which keeps the response curve probabilities constant outside the range of calibration 

conditions. To define binary presence/absence thresholds in the model predictions, we used 

the pre-industrial suitability threshold that omitted 10% of known rock glaciers. For both the 

pre-industrial to present transition and the present to future transition, locations were 

classified into four groups depending on the change in their predicted suitability. Locations 

that did not exceed the threshold in either the earlier or later period were classified as ‘never 
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suitable’. Locations that exceeded the threshold in both periods were labeled ‘persist’. 

Locations which were suitable in the earlier period but not in the later period were labeled 

‘disappear’, and locations which were not suitable in the earlier period but were suitable in 

the later period were labeled ‘enhance’. Suitable and unsuitable classifications were also used 

to aggregate suitability predictions by level III ecoregion (US Environmental Protection 

Agency, 2013; Table C.4). 

 
Results 

Pre-industrial model 

Based on the multimodel evaluation approach, we identified the model with a beta 

parameter of 7 and linear, quadratic, threshold, and hinge feature classes as the model with 

the optimal balance of performance and parsimony (Figure C.2). This model achieved an 

AUC of 0.98 and the prediction threshold which excluded 10% of rock glaciers was 0.212. 

Rock glaciers excluded at this prediction threshold were scattered across the domain, with 

larger concentrations in Colorado and New Mexico (Figure C.4). Known rock glaciers 

predicted to have low suitability tended to have smaller headwall areas, more snow free days, 

more diverse aspects and rock types, less snowfall, more solar radiation, and warmer 

temperatures (Figures C.5). The mean suitability at active rock glacier locations was higher 

than at inactive rock glacier locations (0.72 and 0.50, respectively). 

Models calibrated on portions of the domain and validated on other portions of the 

domain maintained high AUC values in both calibration and validation, suggesting that the 

model is robust to changing environmental conditions (Table C.3). In particular, a model 

calibrated on colder rock glacier locations exhibited no degradation in performance when 

applied to warmer rock glacier locations, suggesting that the model will transfer well to 

future climates. 

 

Predictor Variable Importance 

The model jackknife approach highlighted tmean as being the single most important 

variable in the rock glacier model (Figure 4.2a). Models built on headwall5, slope, and sfe 

alone were the next most powerful. Solar and rocktype were the two least useful predictors 

when used in isolation. 
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The relationships between each pre-industrial variable and predicted rock glacier 

suitability largely matched expectations based on the literature (Figure 4.2b; Figure C.6 

shows response curves for each variable in isolation). Hydroclimatically, the model found 

that rock glaciers were most likely in areas with tmean < -1°C (see also Figure 4.1), < 500 

mm rainfall, less than 250 Wm-2 solar radiation, ~500-1,500 mm of SFE, and where the 

snowpack was temporally discontinuous. Rock glaciers were more likely to be found on 

northern aspects, on 10-30° slopes, and in locations with larger headwall areas. The model 

showed a slight preference for metamorphic and igneous rocktypes and indicated 

sedimentary rocktypes were less likely to host rock glaciers.  
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Predicted Rock Glacier Distributions 

The Maxent model described above was forced with pre-industrial covariates to 

predict rock glacier habitat suitability under pre-industrial climate equilibria, which is 

assumed to drive the present distribution of rock glaciers. This approach predicted 

approximately 27,400 km2 of rock glacier habitat across the 437,000 km2 modeling domain, 

with concentrations in the high elevation regions of the Rockies, the southeastern Sierra 

Nevada, and the eastern portion of the North Cascades (Table C.4; Figure 4.3a, 4.3d). The 

Figure 4.2 a) Importance of each variable to capturing rock glacier habitat suitability according to Maxent 
jackknife approach. Model performance (y-axis) is the normalized regularized training gain. Black horizontal 
line indicates the performance of the model with all variables. Light grey bars indicate the performance of all 
models built with all variables except the variable of interest. Dark grey bars indicate the performance of 
models built on each variable alone and determine the order of the bars. b) Marginal response functions 
illustrating the relationship between the covariate values (x-axis) and the rock glacier habitat suitability (y-axis) 
when other variables are held constant at their average sample value.  
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areas of high predicted rock glacier suitability aligned well with known current rock glacier 

locations (Figure 4.1).   

The rock glacier suitability predictions commensurate with present-day climate 

equilibria were largely similar to those for pre-industrial climate equilibria (Figure 4.3b). 

However, most locations that were suitable in the pre-industrial period saw a slight reduction 

in suitability when projected to the present day, resulting in a net reduction in suitable area of 

Figure 4.3 Predicted suitability for rock glaciers under pre-industrial (a), present (b), and future (c) conditions 
across the western U.S. The Beartooth Mountains, Montana domain used in subsequent analyses is marked by a 
black rectangle on the western U.S. maps. d) shows the area on the y-axis that exceeds the suitability level on 
the x-axis (starting at 0.1) for the three time periods. The dashed line in d) marks the suitability threshold used 
in subsequent analyses (0.212). 
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36% or 9,800 km2, including 10% of known rock glacier locations (Table C.4). A few areas 

were predicted to have enhanced suitability (<0.1% of the domain), including high elevation 

portions of the Southern Sierra, Middle Rockies, and Southern Rockies. These locations were 

cooler, had more solar radiation, and were more focused on southern aspects relative to 

locations where habitat persisted or disappeared (Figure C.7). Locations where habitat 

persisted tended to be more focused on north aspects and have cooler temperatures than 

locations where habitat disappeared (Figure C.7).  

Drastic reductions in rock glacier habitat were simulated using predictors representing 

future high-end warming conditions (Figure 4.3c). Relative to the present period, more than 

98% (~17,300 km2) of suitable habitat was projected to disappear, including 90% of known 

rock glacier locations (Table C.4). The 0.1% of the domain projected to retain suitable 

habitat under the future climate was scattered in the Sierra Nevada, the Idaho Batholith, the 

Middle Rockies, the Wasatch and Uinta Mountains, and the Southern Rockies (Table C.4). 

These locations were cooler, more focused on north aspects, had larger headwall areas, and 

were at higher elevations than locations where suitability was projected to disappear (Figure 

C.8). Only 1 grid cell was predicted to have enhanced suitability in the future climate.  

 

Glacier to Rock Glacier Transformation 

To address our third research question, regarding glacier to rock glacier 

transformation, we evaluated the rock glacier suitability over time at locations presently 

occupied by glaciers. Present-day glaciers cover 729 km2 of the modeling domain. During 

the pre-industrial period, 39.5% of this area was considered suitable for rock glaciers and the 

average rock glacier suitability at glaciated locations was 0.29. Suitable area declined to 

29.0% in the present period and 4.1% in the future period, while average suitability in 

glaciated locations declined to 0.22 in the present period and 0.03 in the future period. 

Glaciated locations that retained suitable rock glacier habitat in the present period had cooler 

temperatures, less rain and snowfall, and were at higher elevations than locations that became 

unsuitable (Figure C.9). Rock glacier suitability increased between the pre-industrial and 

present periods at some glaciated locations in the Middle Rockies. These locations had cooler 

temperatures, more solar radiation, and were located at higher elevations, on lower slopes, 

and were less focused on north aspects (Figure C.9). 
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Between the present and future periods, there was a large reduction in rock glacier 

suitability at glaciated locations (Figure C.10). Relative to locations where suitability  

disappeared, locations where suitability persisted had cooler temperatures, less rain, more 

solar radiation, larger headwall areas, and were more concentrated on north aspects and at 

high elevations.  

We illustrate some of these developments on a landscape scale using an area of the 

Beartooth Mountains, Montana (-109.7°W to -109.55°W, 45.05°N to 45.14°N; Figure 4.4a). 

Over this domain, the pre-industrial model predicted high rock glacier suitability in all of the 

known rock glacier locations, as well as some of the glacier locations (Figure C.11a). A small 

increase in suitable habitat was found under present climate equilibria (Figure 4.4b, C.11). 

Average suitability remained relatively constant at locations collocated with known rock 

glaciers, but increased from 0.67 to 0.78 at locations collocated with glaciers. Historically, 

glaciers in this region occupied locations at higher elevations, with smaller headwall areas 

and a wider range of slopes, with more rain and snowfall, and cooler temperatures relative to 

rock glacier locations, but under present climate temperatures at glacier locations became 

more similar to historical temperatures at rock glacier locations (Figure C.12). Locations with 

enhanced suitability, some of which corresponded with glacier locations, were cooler, at 

higher elevations, and on more south facing slopes (Figure 4.4b, C.13), similar to the patterns 

seen across the western U.S. domain (Figure C.7). 

By the future period, the majority of rock glacier habitat in the Beartooth Mountains 

was projected to disappear, with only the highest elevations and mostly north facing slopes 

retaining habitat (Figure 4.4c, C.14). Both glacier and rock glacier locations saw substantial 

warming between the present and future periods, with corresponding increases in rainfall and 

decreases in snowfall (Figure C.12). Average suitability at rock glacier locations declined 

from 0.91 to 0.33, while at glacier locations it declined from 0.78 to 0.20. 

 

Figure 4.4 Changes in rock glacier habitat suitability over time in the Beartooth Mountains, Montana. 
Elevation of the terrain (a). Changes in rock glacier suitability between a) pre-industrial and present 
periods and b) present and future periods.  Black and white outlines denote the locations of present-day 
rock glaciers and glaciers, respectively.  
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Discussion and Conclusions 

The Maxent model calibrated on pre-industrial covariates and current known rock 

glacier locations performed very well in both calibration and cross validation, maintaining 

AUC values > 0.9 in all cases (Table C.3). The model predicted ~27,400 km2 of suitable 

habitat in the pre-industrial period, which is significantly greater than the estimated area of 

present rock glaciers (1000 km2, Johnson et al., 2020), suggesting that the model predictions 

should be considered as potential, not actual, rock glacier habitat. The excellent cross 

validation performance and the diversity of conditions across the western U.S. suggest that 

the model may transfer well to locations outside of the modeling domain, including warmer 

novel climates.  

Relationships between topographic and geologic covariates and rock glacier habitat 

suitability simulated by the model (Figure 4.2b) matched expectations based on the literature 

(Bolch & Gorbunov, 2014; Brazier et al., 1998; Charbonneau & Smith, 2018; Frauenfelder et 

al., 2003; Haeberli et al., 2006; Johnson et al., 2007; Kenner & Magnusson, 2017; Matsuoka 

& Ikeda, 2001; Wahrhaftig & Cox, 1959). Climatically, rock glaciers were more likely in 

areas with pre-industrial tmean < -1°C, which corresponds well with other estimates of rock 

glacier temperature niches based on present climate (Bolch & Gorbunov, 2014; Kenner & 

Magnusson, 2017). In terms of precipitation, rock glaciers were more likely in areas that 

received less than 400 mm/year of rain and between 500 and 1500 mm/year of sfe, which is 

comparable to previous estimates (Bolch & Gorbunov, 2014). Areas with low solar radiation 

had higher predicted suitability (Figure 4.2b, Johnson et al., 2007). Locations with 

temporally discontinuous snow cover were most suitable for rock glaciers as such conditions 

allow for cold air infiltration into the surface debris matrix (Haeberli et al., 2006), whereas 

snow-rich locations were less suitable for rock glaciers, similar to the findings of Kenner & 

Magnusson, (2017). Compared with previous efforts to understand controls on rock glacier 

spatial distributions, this work considered more functionally relevant covariates, a larger 

spatial extent, a larger sample of known rock glaciers, and a larger range of environmental 

conditions. These characteristics, in addition to several successful cross validations, lend 

confidence to the generalizability of the relationships we found between environmental 

covariates and rock glacier distributions.  
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This work provided the first estimates of future rock glacier spatial distributions. 

Relative to pre-industrial rock glacier habitat, habitat in equilibria with present-day climate 

showed moderate declines in suitability in most mountain ranges and some increases in 

suitability in high elevation areas and on equatorward aspects (Figure 4.3b, C.7). An 

additional 10% of known rock glaciers were considered unsuitable in the present climate, 

suggesting that they are currently in disequilibrium. In contrast, 99% of habitat that was 

suitable for rock glaciers under the pre-industrial climate became unsuitable in equilibria 

with future climate (Figure 4.3c, Table C.4). Remaining habitat was concentrated at the 

highest elevations and on poleward aspects (Figure C.8). These contrasting scenarios 

illustrate the potential for actions which limit climate warming to avoid the near complete 

loss of one element of the mountain cryosphere. 

While snow and glaciers are expected to become increasingly focused on north facing 

slopes with minimal solar radiation (Barsugli et al., 2020; Florentine et al., 2018), rock 

glacier habitat was predicted to improve on some south facing slopes with high solar 

radiation under the present climate (Figures 4.4b, C.7, C.9, C.13). These sites were also some 

of the coldest and highest elevation sites. This finding aligns with previous work on current 

rock glacier distributions that shows that rock glaciers can exist on equatorward aspects with 

high solar radiation if they are sufficiently cold (Brenning & Azócar, 2009; Brenning & 

Trombotto, 2006). This can be explained by the fact that solar radiation warms the debris 

surface and the air above the rock glacier, but due to air density differences the warm air is 

unlikely to infiltrate the debris matrix and thus warming is limited to conduction through the 

debris matrix, which is minimal (Haeberli et al., 2006). However, these high radiation sites 

only maintained habitat through the present period; under the future scenario, rock glacier 

habitat became increasingly focused on poleward aspects and at high elevations (Figure 4.4c, 

C.8, C.10, C.14), similar to expectations for snow and glaciers. 

We found limited potential for glacier to rock glacier transformation in the western 

U.S. Presently glaciated areas that were suitable for rock glaciers in the present climate were 

particularly cold, high elevation sites that received < 1500 mm of sfe (Figure C.9) and were 

scattered across western U.S. mountains. Under the future scenario, presently glaciated areas 

with suitable rock glacier habitat were largely restricted to the southern Sierra Nevada and 

Middle Rockies. Case studies of glacier to rock glacier transformations in the central Andes 
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showed that this transformation can occur over the course of decades (Monnier & Kinnard, 

2015, 2016). Along with other studies, they highlighted the importance of topoclimatic 

conditions and specifically a reduction in the ratio of ice supply to debris supply (Anderson 

et al., 2018; Knight et al., 2019). Glacier ice volume in the western U.S. has declined and is 

projected to continue declining through the 21st century (Frans et al., 2018; Radić et al., 

2014). However, the largest glaciers (concentrated in Oregon and Washington) tend to be in 

locations that receive the most precipitation and snowfall but have the smallest headwall 

areas, and vice versa. Therefore, we hypothesize that many western U.S. glaciers in wetter 

locations will not transition to rock glaciers because the reduction in ice supply necessary to 

achieve a suitable ice to debris ratio would require a large reduction in the snowfall to rainfall 

ratio and be associated with a large increase in rainfall which is unsuitable for rock glaciers. 

This aligns with work based on observations of currently transitioning landforms, which 

suggested that debris supply may determine which glaciers transition to rock glaciers and 

which do not (Jones et al., 2019). 

Sources of uncertainty in our estimates of rock glacier distributions and their 

environmental controls include uncertainties in the rock glacier inventory (Brardinoni et al., 

2019), the spatial scale of the covariates (especially in the case of terrain metrics; Deng et al., 

2007), missing or poorly captured processes such as snow redistribution, uncertainties in the 

downscaled climate data, the model formulation (e.g., beta parameter, feature classes, and 

covariate selection; Convertino et al., 2014), the suitability threshold (Liu et al., 2016), and 

differential response times of rock glaciers to climate forcing (Knight et al., 2019). Predicting 

future rock glacier distributions introduces additional uncertainties regarding the stationarity 

of modeled relationships between covariates and rock glaciers as well as uncertainties in the 

future climate data stemming from climate models and scenarios. Model development steps 

including assessment of collinearity and optimal model complexity have alleviated some of 

these concerns, but these results remain one possible estimate of rock glacier habitat. 

Specifically, the assumption that current rock glaciers are a reflection of pre-industrial 

hydroclimatic conditions may overestimate or underestimate rock glacier decline for rock 

glaciers that have equilibrated to more or less recent conditions, respectively. Future work 

should quantify these sources of uncertainty and their effects on predicted rock glacier 

habitat.  While the chosen covariates did an excellent job of predicting current rock glacier 
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habitat in calibration and cross validation, future work could incorporate more process-

relevant predictors such as a refined metric of headwall area (Janke & Frauenfelder, 2008), 

some measure of fracturing propensity (Chueca, 1992), and a metric of snow redistribution 

via wind and avalanching (Kenner & Magnusson, 2017). Evaluation of changes in glaciers 

and rock glaciers using remote sensing and field investigations would provide a useful 

secondary line of evidence. 

 The impacts of the loss of active rock glaciers in the western U.S. will likely be felt 

most at local scales and in semi-arid regions. Beyond their intrinsic value as features of the 

mountain landscape, rock glaciers support greater plant, arthropod, and bacterial diversity 

than nearby landscapes (Fegel et al., 2016; Franklin, 2012; Millar et al., 2015) and provide 

potential climate refugia for pika and cold-adapted fish (Harrington et al., 2017; Millar & 

Westfall, 2019). Equilibration to future climate, and the transition from active to inactive or 

relict, may take hundreds to thousands of years (Müller et al., 2016) during which time rock 

glaciers may continue to provide these services as well as increased contributions to 

streamflow in semi-arid watersheds (Brighenti et al., 2019; Harrington et al., 2018; Wagner 

et al., 2016). However, under the high warming scenario considered here, rock glaciers, like 

snow and glaciers, are likely to eventually disappear from the landscape. In contrast, 

stabilizing climate at today’s temperatures will largely preserve active rock glaciers in this 

region. 
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Chapter 5: Conclusion 
 

In a nutshell, this work uses innovative approaches to data and computational 

constraints to enhance the physical realism of environmental models in the context of 

topographic complexity and climate change. Outcomes of this work include scientific 

findings, tools, and datasets that will benefit science and society more broadly. Below, I 

highlight the broader impacts of this research and suggest areas for future work. 

In the first study, I showed how sparse temperature observations can be best used to 

calculate temperature lapse rates, which allow the estimation of air temperature across 

gridded, high-resolution domains. This work enhanced the utility of these observations by 

accounting for topoclimatic variability and quantifying sources of error and uncertainty. The 

best practices we developed for lapse rate estimation have the potential for broad scale 

impact by improving the accuracy of environmental models, statistical downscaling routines, 

and assessments of elevation dependent warming.  

Additional work is needed to better constrain lapse rates for daily minimum air 

temperatures which are subject to more frequent inversions than daily maximum air 

temperatures and to better understand the variability of lapse rates across both spatial and 

temporal scales. An assessment of elevation dependent warming using observational data and 

best practices for lapse rate estimation would complement existing studies based on model 

outputs. 

In the second study, I developed a novel hybrid snow model that emphasizes fidelity 

to physics and computational efficiency. A basis in physics is key to capturing differences in 

snowpack across complex terrain and to simulating its response to ongoing climate change, 

however physics-based models are typically too expensive to run at high resolution (<1 km) 

across large (subcontinental or larger) domains. The hybrid approach I developed retains the 

most important element of physics-based models while incorporating empirical 

parameterizations to enhance efficiency. I also created high-resolution climate forcing data 

that incorporates the effects of topographic complexity through elevation adjustments and 

correction of solar radiation for aspect, self-shading, and shading by adjacent terrain. These 

traits are key to understanding the current and future mountain snowpack since snowpack is 

likely to have differential sensitivities across terrain (e.g., aspect). The SnowClim model will 



103 
 

enable others to run high-resolution, physics-based simulations of snow in other contexts. 

The SnowClim dataset, consisting of climatologies of important climate and snow metrics for 

three time periods, will enable unprecedented assessment of changing snowpack in the 

Western U.S. and its implications for wildlife, agriculture, water resources, and other 

applications. 

Future work regarding the SnowClim model could include incorporation of additional 

or more sophisticated processes, further evaluation of model uncertainty, and more thorough 

evaluation of model outputs. Specifically, it should be investigated whether more 

sophisticated representations of snow surface temperature and ground heat flux substantially 

improve simulations. In its current form, the model neglects some important processes such 

as sublimation by blowing snow, snow redistribution by wind and gravity, the effects of 

vegetation, and the effects of impurities such as dust and black carbon on snow albedo. In 

terms of model uncertainty, more work is needed to understand whether calibration at 

SNOTEL sites, which are typically in forest clearings, may bias the calibration by selecting 

parameters that compensate for the lack of vegetation effects in the model. Connecting this 

work to the previous chapter, it would be interesting to compare the current model outputs 

with those based on temperature data downscaled with a constant lapse rate in order to 

further document the importance of air temperature lapse rates in environmental modeling. 

More thorough evaluation of model outputs is needed to better understand differential 

snowpack sensitivities as a function of terrain properties such as aspect and elevation. 

Furthermore, this work would benefit from spatial comparison with an independent dataset of 

high-resolution snowpack observations. More broadly, this work highlighted the need for 

more observations of snowpack sublimation and cold content in order to validate energy and 

mass fluxes in snow models. These elements are key to accurately simulating the partitioning 

of snow lost to the air versus surface and groundwater and to simulating snowmelt timing. 

With additional observations of cold content, future work should further investigate empirical 

parameterizations for cold content in single layer models given the potential to improve 

physical realism while limiting computational cost. 

In the third study, we sought to understand the current and future distribution of rock 

glaciers in the Western U.S. A physics-based modeling approach was not feasible in this case 

due to the limited observations of rock glacier internal compositions and debris 
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characterizations. To maximize the utility of the available data, we used a machine learning 

approach from the species distribution modeling literature. Recognizing the importance of 

fine resolution topoclimate to rock glaciers, we sourced high-resolution topographic, 

geologic, and hydroclimatic information. The use of high spatial resolution, physically 

relevant predictors enhanced the physical basis of the modeling approach and helped to 

account for the effects of topographic complexity. This work highlights the utility of machine 

learning approaches when necessary data for more physics-based approaches are unavailable. 

This approach enabled novel large-scale predictions of future rock glacier distributions, 

which are important for understanding semi-arid alpine ecosystems in a changing climate. 

This approach also generated insights regarding shifting rock glacier habitat suitability on the 

landscape and environmental prerequisites for glacier to rock glacier transformation that have 

not been achieved with previous approaches. Modeled suitabilities may also inform 

reassessment of rock glacier status at known rock glaciers with low modeled suitability and 

creation of new rock glacier inventories in previously unsurveyed areas. 

Future work with this model should include more thorough assessments of glacier to 

rock glacier transformation potential. Specifically, more work is needed to understand what 

distinguishes glacier habitat from rock glacier habitat and what makes some glacier habitat 

suitable for transitioning to rock glaciers under a warming climate but other glacier habitat 

not suitable for this transition. In this vein, more thought should be given to the evolution of 

terrain parameters during glaciation and deglaciation and how this sets the stage for rock 

glacier development. Given that observed glacier to rock glacier transformations have 

occurred over the course of decades, glaciated locations with high modeled potential for 

transformation to rock glaciers should be investigated and subject to ongoing monitoring 

using time series of remotely sensed imagery. These efforts could help constrain the global 

potential for glacier to rock glacier transformation, informing adaptation measures in 

mountain environments. This work would benefit from quantification of uncertainty 

stemming from choice of equilibrium time period, model parameters, environmental 

variables, future climate scenarios, spatial resolution, and modeling approach. Broadly 

speaking, much remains unknown about rock glaciers. Detailed geophysical investigations 

are needed to better understand rock glacier genesis and evolution in past climates, internal 

composition, activity level, and degree of climate equilibrium on broad scales. 
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In sum, this work has improved our understanding of mountain environments in a 

variety of ways, including enabling more accurate assessments of elevation dependent 

warming, improving understanding of changes in snow in past and future climates, and 

providing a first estimate of future rock glacier distributions. This work developed and 

applied novel modeling approaches in order to push the limits of data and computational 

constraints, opening up new territory for future work. Through an emphasis on topographic 

complexity, this work documented ways to improve temperature lapse rates, found 

differential climate sensitivities of snow as a function of aspect, and increased the physical 

realism of a machine learning approach. The tools and datasets developed in this research 

will enable continued progress toward a more comprehensive understanding of current and 

future mountain environments. 
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Appendix A - Best Practices for Estimating Near-Surface Temperature 
Lapse Rates 

 
Synthetic datasets covariates 

Elevation 

Elevation (𝑒𝑙𝑒𝑣) values were drawn from a random uniform distribution between 500 

and 3500m.  The effect of 𝑒𝑙𝑒𝑣 on temperature was estimated via simple linear regression 

based on a sea level temperature (y-intercept) of 25°C and the prescribed lapse rate of -

6.5°C/km. 

 𝑇$%$& = 		25°𝐶 +	−6.5°𝐶/𝑘𝑚	 × 𝑒𝑙𝑒𝑣/1000  

Equation A.1 

 
Solar Radiation 

Solar radiation (𝑠𝑟𝑎𝑑) values were initially drawn from a random normal distribution 

with mean 175 W/m2 and standard deviation 70 W/m2.  Then 𝑠𝑟𝑎𝑑 values were made 

orthogonal to 𝑒𝑙𝑒𝑣 values using QR-decomposition, scaled, and perturbed by a function of 

𝑒𝑙𝑒𝑣  to match the desired collinearity level (r = 0.0, 0.3, or 0.6). Finally,	𝑠𝑟𝑎𝑑 values were 

rescaled, resulting in a quasi-random normal distribution of values of mean 175 W/m2, 

standard deviation 70 W/m2, and the prescribed collinearity.  

𝑇!'(# was calculated as a linear function of solar radiation: 

 𝑇!'(# =	
!'(#

.--	E/B$/°G
− 1.75	𝑊/𝑚//°𝐶   

Equation A.2 

 

Distance from coast 

Similar to 𝑠𝑟𝑎𝑑, distance from coast (𝑐𝑜𝑎𝑠𝑡) values were drawn from a random 

normal distribution with mean 150 km and standard deviation 50 km in such a way that the 

correlation with 𝑒𝑙𝑒𝑣 was 0.  𝑇)*(!+ was calculated as a simple nonlinear function of distance 

from coast: 

 
𝑇)*(!+ =

𝑐𝑜𝑎𝑠𝑡/

20000	𝑘𝑚//°𝐶 − 1.125	𝑘𝑚
//°𝐶 

 

Equation A.3 
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Random error 

The error term was drawn randomly from a normal distribution with mean of 0 and 

varying standard deviation (0.1°C, 1°C, or 2°C) and in such a way that the correlation with 

𝑒𝑙𝑒𝑣 was 0.   

 

Observational station data covariates 

A suite of topoclimatic covariates was calculated for each observational station as 

described below.  Correlations between the covariates and temperature are shown in Figure 

A.1. 

 
Figure A.1 Correlation matrix for a subset of the covariates associated with the Oregon Cascades stations for 
Summer and Winter.  Numbers and colors indicate the correlation coefficient. 

 
Elevation 

Station elevations extracted from the station metadata were used as the covariate in 

estimating lapse rates. 

 

Topographic Convergence Index (TCI) 

Topographic convergence is a proxy for drainage effects (e.g., cold air drainage) that 

can occur in montane regions (Lundquist et al., 2008; Sadoti et al., 2018).  We calculated a 

topographic convergence index (TCI) value for each station using a 30m digital elevation 
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model (DEM) from the Shuttle Radar and Topography Mission (SRTM) and the 

rsaga.wetness.index function with default options from the ‘RSAGA’ package (Brenning et 

al., 2018) in R (R Core Team, 2013). 

 

Solar radiation 

Solar radiation exerts a first order control on temperature through the surface energy 

budget (e.g., Dobrowski et al., 2009).  Solar radiation collocated with each station was 

estimated using a two-step process. An initial estimate of monthly average downwelling 

shortwave radiation at the surface was acquired from the Weather Research and Forecasting 

(WRF) model (Liu et al., 2017) at 4 km spatial resolution by averaging data during 2001-

2013.  WRF solar radiation accounts for cloud cover effects but not terrain effects. We 

terrain corrected WRF radiation using the ‘insol’ package (Corripio, 2015) in R. The ‘insol’ 

algorithms account for slope, aspect, self-shading, and shading by adjacent terrain.  We 

calculated monthly solar radiation values by running the algorithm at an hourly timestep for 

the 15th day of each month using static parameter values for visibility (30 km), relative 

humidity (50%), and temperature (288K).  These parameter values are realistic for the 

Oregon Cascades domain and the relative values of solar radiation across the stations are 

insensitive to parameter values.  Following Maguire et al., (2019), we calculate a terrain 

correction factor by dividing calculations using a 30m DEM by calculations using a flat 

DEM with elevation equal to the mean elevation of the 30m DEM.  The terrain correction 

factor is greater than 1 where the terrain enhances solar radiation receipt (e.g., south-facing 

slopes) and less than 1 where terrain decreases solar radiation receipt (e.g., in a shaded 

valley).  We multiplied the WRF solar radiation by the terrain correction factor to derive 

monthly solar radiation accounting for cloud cover and terrain influences.  

 

Cloud cover 

Cloud cover can decrease near-surface temperatures during the daytime by reducing 

incoming solar radiation, but can also influence near-surface temperatures at night through 

downward longwave radiation (Barry, 1992; Pepin et al., 1999). Additionally, cloud cover is 

indicative of higher relative humidity, which dampens near-surface lapse rates by increasing 

latent heating due to condensation (Li et al., 2013; Pepin et al., 1999).  Seasonal and annual 
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means of gridded midday percent cloud cover data derived from 1 km resolution MODIS 

images (Wilson & Jetz, 2016) were extracted for the grid cell collocated with each station.   

 

Orographic upslope wind index (Windex) 

Windward and leeward slopes can experience contrasting climatic and land cover 

conditions which may affect temperature lapse rates (Lundquist & Cayan, 2007; Minder et 

al., 2010).  Differences in lapse rates between windward and leeward slopes may arise due to: 

i) gradients in surface available moisture that alter the Bowen ratio and near-surface 

temperatures, ii) contrasts between moist and dry adiabatic lapse rates, and iii) differences in 

cloud cover. While previous studies have noted differences in lapse rates and topoclimate 

between windward and leeward slopes, we are unaware of studies that have delineated this 

factor as a covariate in topoclimatic modeling.  To represent this effect, we developed an 

orographic upslope wind index (hereafter windex) which can be thought of as a metric of 

linear stable upslope flow due to prevailing wind direction and topography. The windex 

represents the magnitude of upslope (positive values) or downslope (negative values) flow at 

a given location, which indicates whether the location is in a windward or leeward position 

relative to broad scale circulation patterns. 

Monthly 700mb wind velocity from the ERA-Interim reanalysis dataset (Dee et al., 

2011) for 2006-2015 were used to calculate the seasonal and annual windex for each station 

for six different radii: 0.5 km, 1 km, 5 km, 10 km, 20 km, and 40 km.  Winds at 700mb were 

used because they have been identified as relevant to orographic processes in the western 

U.S. (Luce et al., 2013; Lundquist & Cayan, 2007).  The wind fields and 30m DEM were 

aggregated to the scale of each radii.  For each season, the windex was computed as the dot 

product of the wind vector and the elevation gradient, averaged across years: 

 
𝑤𝑖𝑛𝑑𝑒𝑥!,' =

1
𝑛𝑦	 . 𝑉t⃑H',!,'

/-.I

H'2/--J

	 ⋅ 	𝛻𝑒𝑙𝑒𝑣!,' 
 

Equation A.4 

where 𝑛𝑦 is the number of years (10), 𝑦𝑟 is the year from 2006 to 2015, 𝑠 is the station, 𝑟 is 

the radius, 𝑉t⃑  is the interpolated horizontal wind field, and 𝑒𝑙𝑒𝑣 is the aggregated DEM.  
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Distance from coast 

The distance from the nearest coastline can affect broad scale atmospheric conditions 

such as humidity and associated properties of the lower troposphere which can affect lapse 

rates (Navarro‐Serrano et al., 2018). The distance from coast was quantified as the Euclidean 

distance (km) between each station and the nearest coastline using the st_distance function in 

the R sf package (Pebesma, 2018).   

 

Waterbody index 

Large waterbodies can have a moderating effect on diurnal and seasonal 

temperatures.  Using a spatial coverage of waterbodies from NHDPlus version 2 (McKay et 

al., 2012), we developed a waterbody index for each station based on work by Klaić & 

Kvakić, (2014). Waterbodies were restricted to ‘LakePond’ and ‘Reservoir’ feature types and 

features with surface area greater than 10 km2. For each station, an inverse distance weighted 

waterbody metric (wbd_index) was calculated such that: 

 
𝑤𝑏𝑑_𝑖𝑛𝑑𝑒𝑥! =		.

𝑤𝑏𝑑_𝑎𝑟𝑒𝑎6
𝑤𝑏𝑑_𝑑𝑖𝑠𝑡6,!..I

0

62.

 
 

Equation A.5 

where 𝑠 is each station, w is each waterbody, 𝑤𝑏𝑑_𝑎𝑟𝑒𝑎 is the surface area in square 

kilometers of each waterbody, 𝑤𝑏𝑑_𝑑𝑖𝑠𝑡 is the distance in kilometers between each 

waterbody centroid and each station.  The waterbodies included in the above calculation are 

restricted on a station by station basis to those whose centroids are within a 100 km radius of 

the station, thus n (the total number of waterbodies considered) varies by station.  The 

wbd_index declines exponentially with distance from the waterbody and increases linearly 

with waterbody area.   

 

Free-air temperatures 

Free-air temperatures capture regional scale gradients in air mass conditions and can 

help account for non-elevation effects on temperature (Dobrowski et al., 2009). Monthly 

free-air temperature and geopotential height were extracted from the ERA-Interim 

atmospheric reanalysis dataset (Dee et al., 2011) for 2006-2015 on pressure surfaces.  Free-

air temperatures at 2500m (approximate height of the Cascade crest) were estimated via 



111 
 
 
linear regression between the two closest elevation pressure levels.  Grids were bilinearly 

interpolated from 0.75° to 0.05° to minimize abrupt changes in temperature values. The 

monthly fine resolution grids were then aggregated to seasonal grids for each year and values 

at station locations were extracted.   

 

Free-air lapse rates 

Free-air lapse rates are indicative of broad scale atmospheric conditions which can 

affect near-surface temperature lapse rates (Minder et al., 2010).  Free-air lapse rates were 

estimated using linear regression of free-air temperatures on geopotential heights from ERA-

interim for 2006-2015.  The vertical extent of values used in the lapse rate calculation was 

limited to the first pressure surface above model ground level to the pressure surface below 

3700m.  This elevation range was chosen to focus free-air lapse rates on the vertical region 

most relevant to near-surface lapse rates and is a few hundred meters above the highest 

elevation point in the Oregon Cascades, Mt. Hood (3429m).  Free-air lapse rates were 

interpolated from 0.75° to 0.05° and free-air lapse rates collocated with stations were 

extracted. 
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Appendix B - SnowClim: High-Resolution Snow Model and Data for the 
Western United States 

 
Figure B.1 Map of modeling domain with locations modeled at 210m spatial resolution in blue. 
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Figure B.2 Performance of best hourly model at SNOTEL sites in temperature-precipitation space. Each point 
represents a SNOTEL site. 
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Figure B.3 Parameter sensitivity of hourly model performance 
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Figure B.4 Performance of snow model without shallow snow correction for different time steps using the 
parameter set selected in calibration of the hourly model with shallow snow correction. Points represent median 
values across 170 SNOTEL sites. 
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Appendix C - Projected Loss of Active Rock Glaciers in the Western U.S. 
with Warming 

 
Data 

Description of Covariates 

Climate is one key determinant of rock glacier distributions. Temperature is relevant 

to processes of snow accumulation and ablation, active layer thickness, and freeze-thaw 

debris production (Haeberli et al., 2006). Precipitation contributes to snow accumulation and 

ice flux to supply the rock glacier, however rain and meltwater also have the potential to 

infiltrate the surface debris layer, contributing to latent heating of the ice and to erosion of 

finer sediments from the rock glacier surface (Kenner & Magnusson, 2017). Solar radiation 

shapes the strong spatial variability of available energy in complex terrain and rock glaciers 

are often found in shaded areas such as northern aspects or cirques (Johnson et al., 2007). We 

consider the following metrics: mean, minimum, and maximum annual temperatures, annual 

number of temperature oscillations around 0°C, annual precipitation, annual rainfall, and 

mean annual downward solar radiation (Table C.1).  

Snow accumulation is necessary to provide the ice flux for rock glacier development 

and persistence. However, snow is not universally beneficial to rock glaciers. Too much 

snow can increase the ice to debris ratio, leading to the formation of a debris covered glacier 

or ice glacier instead of a rock glacier (Anderson et al., 2018). The insulating effects of snow 

are also a double-edged sword; snow cover limits the advection of air within the debris 

matrix which prevents warming when air temperatures are above freezing, but also can limit 

advective cooling when the air is cold (Wagner et al., 2019). The snow metrics we used 

included annual snowfall water equivalent (sfe), snow duration (duration), annual maximum 

snow water equivalent (maxswe), and the number of snow free days between the snow on 

and snow off dates (nosnowdays). Snow on (off) was defined as the first (last) day of the first 

(last) period of 5 consecutive days of snow cover each year. Duration was calculated as the 

difference between the snow on and off dates.  

Aspect is indicative of solar radiation loading which provides energy for snow and ice 

melt as well as for freeze-thaw debris production, and can be associated with preferential  
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Table C.1 Environmental covariates used in the Maxent model. 1Lute et al., (2021); 2Gesch et al., (2018); 
3Anning & Ator, (2017). 

Environmental 
Covariate Short Name 

Data 
Source Relevant Processes 

Minimum, maximum, 
and mean annual 
temperature, annual 
number of temperature 
oscillations around °0C 

tmin, tmax, 
tmean, 
freeze-thaw 

SnowClim1 Snow accumulation, 
snow melt, freeze-
thaw debris 
production 

Annual precipitation precip SnowClim1 Snow accumulation, 
water infiltration in 
rock matrix 

Annual rainfall rain SnowClim1 Precipitation heat 
flux, propensity to 
wash debris off of 
rock glacier surface 

Mean annual downward 
shortwave radiation 

solar SnowClim1 Available energy for 
melt, snow cover 
duration 

Annual SFE, snow 
duration, annual 
maximum SWE, number 
of snow free days 
between snow on and 
snow off dates 

sfe, 
duration, 
maxswe, 
nosnowdays 

SnowClim1 Accumulation zone 
productivity, surface 
insulation 

Aspect aspect Derived 
from NED2 

Solar radiation 
loading, snow 
ablation 

Slope slope Derived 
from NED2 

Rock glacier driving 
stress, velocity 

Headwall Metric (using 
3x3 window and 5x5 
window) 

headwall3, 
headwall5 

Derived 
from NED2 

Debris supply source, 
avalanche 
supplementation of 
snowpack 

Rock Type rocktype USGS3 Fracture propensity, 
debris supply, clast 
size 
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snow loading if aligned with prevailing winds. Slope is a key variable for calculating the 

driving stress and velocity of rock glaciers and provides a constraint on suitable rock glacier  
 
Table C.2 Descriptions of numeric lithology classes which were used as a categorical variable in the Maxent 
model. Data is from Anning & Ator, (2017). 

 

Class 
number 

Class 
abbreviation 

Class description 

1 CARB sediments and sedimentary rocks. Carbonate rocks such as 
limestone and dolostone. Generally, any rock including any 
minor carbonate lithology is included in this group. Some 
special cases exist where carbonates are also identified based on 
LITH62MINO field. 

2 CLAST_C sediments and sedimentary rocks. Clastic sediments/rocks 
primarily made of sands, gravels, cobbles, or larger clasts. 

3 CLAST_F sediments and sedimentary rocks. Clastic sediments/rocks 
primarily made of fine-grained materials such as shale, 
siltstone, claystone, mudstone, etc. 

4 CLAST_U sediments and sedimentary rocks. Clastic sediments/rocks of 
unknown or highly variable clast sizes. 

5 EVAP sediments and sedimentary rocks. Evaporites or playas. 

6 META Metamorphic rocks. 

7 PLUT_OTH Igneous, generally mafic, other less quartz-rich plutonic rocks, 
such as monzonite or gabbro.  

8 PLUT_QTZ Igneous, generally felsic, quartz-rich plutonic rocks such as 
granitoids, granite, granodacite.  

9 VOLC_OTH Igneous, generally mafic, volcanic rocks, such as basalt that are 
mineralogically equivalent to the less quartz-rich plutonic 
rocks. 

10 VOLC_QTZ Igneous, generally felsic, volcanic rocks such as rhyolite and 
dacite that are mineralogically equivalent to the quartz-rich 
plutonic rocks. 

11 WATER Water or ice 

12 NONE 
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locations since rock glaciers are typically located on 5°-30° slopes which promote downslope  

movement but are not so steep that the rock glacier detaches from sources of debris and ice 

(Kenner & Magnusson, 2017; Sloan & Dyke, 1998).  

Several studies have demonstrated the importance of rock headwalls as sources of 

debris and avalanched snow for rock glaciers (Morris, 1981; Müller et al., 2016). We 

assessed two different headwall metrics, described in the main text. One used a 5x5 window 

and the other used a 3x3 window of grid cells centered on the target pixel and both used a 

slope threshold of 30°. Similar headwall metrics showed up as key predictors of rock glacier 

presence in preliminary work. 

Geologic considerations are also relevant to rock glacier distributions. In particular, 

the fracturing propensity and characteristic clast size of the rock help determine the rate of 

debris supply and the size of the debris, which is relevant to rock glacier energy budgets 

(Ikeda & Matsuoka, 2006; Kenner & Magnusson, 2017). Explanations of the classes in the 

generalized lithology layer we used (Anning & Ator, 2017) are provided in Table C.2. 

 

Covariate Preparation 

Collinearity of predictor variables can hamper the interpretation of the importance 

and effect of different predictors and can degrade model transferability when the collinearity 

structure changes between calibration and projection datasets (Dormann et al., 2013; Feng et 

al., 2019). Collinearity was assessed by computing Pearson correlations coefficients (r) 

between each pair of predictors (Figure C.1). Combinations with |r|>0.7were considered to be 

problematic (Dormann et al., 2013). In cases with |r|>0.7, we chose which collinear variable 

to include/remove by considering the results of the Maxent jackknife procedure (Figure 

4.3a). The approach calculates the loss in regularized training gain when each variable is left 

out of a model and calculates the regularized training gain of a model built on that variable 

alone. For these models we used default parameter options. This resulted in the removal of 

headwall3, tmin, tmax, maxswe, duration, and precip, leaving 10 covariates. 

We assessed changes in the collinearity structure between the pre-industrial, present, 

and future time periods by comparing correlation matrices for the three time periods. For the 

variables we retained from the previous step, the only variable that had substantial changes in 

collinearity was freeze-thaw; the sign of the correlation between freeze-thaw and several  
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Figure C.1 Correlation matrices for pre-industrial, present, and future time periods. White x’s denote 
correlations with absolute values greater than 0.7. 
 
other variables changed between the pre-industrial and future time periods. To avoid 

complications in prediction, we excluded freeze-thaw from the model, leaving 9 covariates. 

 

Model Complexity 

To identify the appropriate level of model complexity, we constructed a series of 

models with varying values of the regularization parameter (beta) and feature classes 

(including linear (L), quadratic (Q), threshold (T), and hinge (H)). We excluded product 

features in the interest of interpretability of the results. We used the ENMeval package (Kass 

et al., 2021) in R to evaluate the performance of these models using the AICc statistic 

(Akaike, 1974), which penalizes model complexity and has been shown to outperform AUC 

based methods of selecting optimal Maxent model complexity (Warren & Seifert, 2011). We 

built a model for each combination of beta parameter (1 (the default), 3, 5, 7, 9) and feature 

class (L, LQ, LH, LT, LQH, LQT, LQTH). The model with the lowest AICc was considered 

the best model. Our analysis showed that the model with a regularization beta of 5 and linear, 

quadratic, and threshold features provided the optimal performance (Figure C.2). However, a 

more parsimonious model with LQTH features and beta of 7 performed similarly well and 

gave similar results. We chose to use this model in the interest of interpretability of the 

results. The selected model was used to map rock glacier probability of presence across the 

domain based on Maxent’s cloglog output. 
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Figure C.2 AICc values for different levels of regularization beta parameter and different feature class 
combinations. 
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Figure C.3 Map of spatial blocks used in the spatial cross validation analysis overlaid on western U.S. modeling 
domain. Blocks were grouped into folds as indicated by the number in each block. 
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Figure C.4. Predicted pre-industrial suitability at known rock glacier locations. Color scale is divided at the 
threshold that excludes 10% of known rock glaciers (0.212). 
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Figure C.5. Pre-industrial covariate distributions at known rock glacier locations. Quartiles on the x-axis are 
quartiles of predicted suitability with 1 being the least suitable and 4 being the most suitable. 
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Figure C.6. Response functions illustrating the relationship between the covariate values (x-axis) and the rock 
glacier habitat suitability (y-axis) based on models built on each variable in isolation.  
 

 
Table C.3 AUC values from cross-validation experiments. Calibration AUC is the AUC from the model 
calibrated on the indicated spatial fold. Validation AUC is the AUC of the model calibrated on the other fold 
and validated on the indicated spatial fold. Delta AUC is the difference between the calibration and validation 
AUC values. 
 

Calibration AUC Validation AUC Delta AUC 

Spatial block fold 1 0.99 0.93 0.06 

Spatial block fold 2 0.98 0.90 0.08 

Cold to warm 0.90 0.90 0.00 
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Figure C.7. Distribution of covariates between preindustrial (blue) and present (purple) time periods, grouped 
by suitability change category. For covariates that are not time-varying (bottom row), a single violin is shown 
for each suitability category. In the first subplot, percent values indicate the percent of the full modeling domain 
that falls into each category. 
 

 
Figure C.8. Distribution of covariates between present (purple) and future (red) time periods, grouped by 
suitability change category. For covariates that are not time-varying (bottom row), a single violin is shown for 
each suitability category. In the first subplot, percent values indicate the percent of the full modeling domain 
that falls into each category. 
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Figure C.9. Distribution of covariates between preindustrial (blue) and present (purple) time periods, for 
presently glaciated locations, grouped by suitability change category. For covariates that are not time-varying 
(bottom row), a single violin is shown for each suitability category. In the first subplot, percent values indicate 
the percent of modeled glaciated area that falls into each category. 
 

 

 
Figure C.10. Distribution of covariates between present (purple) and future (red) time periods, for presently 
glaciated locations, grouped by suitability change category. For covariates that are not time-varying (bottom 
row), a single violin is shown for each suitability category. In the first subplot, percent values indicate the 
percent of modeled glaciated area that falls into each category. 
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Figure C.11. Predicted suitability for rock glaciers under pre-industrial (a), present (b), and future (c) conditions 
across the Beartooth Mountains, Montana domain. Red and turquoise outlines mark the locations of present day 
glaciers and rock glaciers, respectively. 
 

 

 
Figure C.12. Changes in environmental covariates over time at locations corresponding to present day glaciers 
and present-day rock glaciers in the Beartooth Mountains domain. Topographic variables, which do not change 
over time, are represented by one violin for glaciers and one for rock glaciers. The rocktype covariate is 
excluded from the plot because all glacier and rock glacier locations in the domain had the same rocktype (class 
6). 
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Figure C.13. For locations in the Beartooth Mountains, Montana, distributions of covariate values under pre-
industrial and present conditions grouped by habitat suitability class. The rocktype covariate is not shown 
because the region has a single rocktype (class 6). 
 

 
Figure C.14. For locations in the Beartooth Mountains, Montana, distributions of covariate values under present 
and future conditions grouped by habitat suitability class. The rocktype covariate is not shown because the 
region has a single rocktype (class 6). 
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Table C.4. Summary of pre-industrial, historical, and future rock glacier habitat, grouped by level III ecoregion. 
Suitable and unsuitable areas are defined by the 0.212 threshold as discussed in the text. Values are in km2, 
except for the percent changes which are in %. Total column shows the area of the whole ecoregion, whereas 
the Modeled column shows the area within the ecoregion that was included in the distribution model. 
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