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Abstract 
 

Breast cancer is a major health concern globally, and early detection is crucial for successful 

treatment. Breast ultrasound is a widely used imaging modality for the diagnosis of breast 

cancer. In recent years, numerous studies have explored the use of deep learning for breast 

cancer classification in ultrasound images. These studies have shown promising results, with 

deep learning models achieving high levels of accuracy in detecting breast cancer. Despite 

the widely reported potential of deep neural networks for automated breast tumor 

classification and detection, these models are vulnerable to adversarial attacks, which can 

lead to significant performance degradation.  

In this thesis, I build a novel adversarial attack approach under the decision-based black-box 

setting, where model details (e.g., architecture and parameters) are inaccessible, and querying 

the target model only provides the prediction of final class label (i.e., hard-label attack). The 

proposed attack approach has two major components: adaptive binary search and semantic-

aware search. The adaptive binary search utilizes a coarse-to-fine strategy that applies 

different tolerance values in different searching stages to reduce unnecessary queries. The 

proposed semantic mask-aware search crops the search space by using breast anatomy, which 

significantly avoids invalid searches. The proposed approach is validated using a dataset of 

3,378 breast ultrasound images and compared with other state-of-the-art methods by 

attacking three deep learning models. The results demonstrate that the proposed approach 

generates imperceptible adversarial samples at a high success rate (99.83%), and it 

dramatically reduces the average and median queries by 23.96% and 31.79%, respectively, 

compared with the state-of-the-art. 
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Chapter 1: Introduction 
 

1.1 Research Problem 

Breast cancer has emerged as one of the most prevalent types of cancer globally, contributing 

to nearly 12% of all newly diagnosed cancer cases (American Cancer Society). Breast cancer 

is estimated to affect around 31% of female cancer cases in U.S. in 2023 (American Cancer 

Society). Although Deep Neural Networks (DNNs) demonstrated unprecedented 

performance in medical image classification, recent research (Szegedy, Zaremba and 

Sutskever; Goodfellow, Shlens and Szegedy) indicated that DNNs as well as conventional 

machine learning (ML) models can be compromised by adversarial samples. That is, 

adversarial samples can be synthesized by adding unnoticeable perturbations to clean inputs 

and cause the target DNNs to misclassify such samples and return incorrect class labels. 

Adversarial attacks (Madry, Makelov and Schmidt; Carlini and Wagner; Moosavi-Dezfooli, 

Fawzi and Frossard) have been realized to achieve high attack success rates by introducing 

low levels of perturbations.  

A predominant portion of existing adversarial attacks was designed for evading ML models 

for the classification of natural image datasets (e.g., CIFAR-10 (Krizhevsky) and ImageNet 

(Deng, Dong and Socher)). A body of works demonstrated black-box attacks on medical 

images as well. However, medical images possess domain-specific characteristics distinct 

from natural images. As a result, black-box evasion attacks are less successful with some 

modalities of medical images in terms of the number of model queries and success rate. To 

overcome the challenges in existing attacks, I propose an adaptive binary search and 

semantic mask-aware search to reduce the number of queries in extreme examples through 

coarse search and refined search. The thesis is motivated by declining the swing search of the 

decision boundary at an early stage and narrowing down search regions in consonance with 

search depth. Comprehensive experiments are conducted using a combination of several 

breast ultrasound datasets (Al-Dhabyani, Gomaa and Khaled; Shareef, Xian and Sun; Yap, 

Pons and Marti; Geertsma) and demonstrate performance of state-of-the-art models.  

Adversarial attack research focuses on studying and understanding the vulnerabilities of ML 

models to malicious attacks. The purpose of this research is to identify weaknesses in ML 
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models and to develop techniques to defend against adversarial attacks to ensure the 

reliability and trustworthiness of ML-based systems. 

1.2 Thesis Objectives and Contributions 

The thesis is organized as follows: Chapter 2 is the literature review which discusses existing 

research on different adversarial attack categories and the breast ultrasound image 

classification task. Chapter 3 presents the proposed methodology. It describes two major 

designs of this thesis: adaptive binary search and semantic-aware search. Chapter 4 describes 

four datasets that will be used for experiments, and the data preprocessing steps. Chapter 5 

depicts the testing environment and four different experiments based on the proposed method. 

The primary contributions of the study are summarized below. 

• The proposed adaptive binary search algorithm effectively reduces unnecessary 

queries by searching adversaries using a coarse-to-fine manner. 

• The proposed semantic-aware search algorithm avoids invalid searches by cropping 

the search space using semantic masks from breast anatomy. 

• The combination of the two above algorithms leads to a novel hard-label black-box 

attack approach. It significantly reduces the number of queries for searching 

adversaries for extreme samples. 
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Chapter 2: Related Work 
 

2.1 Attack Categories 

Adversarial attacks can be categorized into white-box attacks and black-box attacks. In a 

white-box adversarial setting, attackers are assumed to have complete knowledge of the 

targeted model, including knowledge of the model architecture, parameters, gradients, 

objective function, etc. The black-box setting is more challenging because adversaries do not 

have access to the model structure or parameters. It is also more realistic since most model 

developers do not provide such access to users. In both white-box and black-box attacks, 

adversarial attacks can be identified as targeted and untargeted according to the final output 

of the attack result. A targeted attack fools a model into falsely predicting a specific label for 

the adversarial image. An untargeted attack classifies predicted irrelevant label of the 

adversarial, which means it is not the correct label. Adversarial attacks have two scenarios 

evasion attack and poison attack. The attacker injects fake training data intending to corrupt 

the learned model in a poisoning attack. Only malicious samples in the test set are modified 

to evade detection and misclassified as legitimate in an evasion attack, thus evasion attack 

does not influence the training data. This thesis mainly focuses on evasion attacks under the 

black-box setting. 

2.2 White-box Attack 

L-BFGS (Szegedy, Zaremba and Sutskever) was the first approach that demonstrated that 

adding a small perturbation to an image could evade a target ML classifier and produce the 

wrong classification. FGSM attack (Goodfellow, Shlens and Szegedy) used the sign of the 

gradient of a neural network loss with respect to inputs to find adversarial perturbations. The 

sign function is used to ensure that the perturbation is in the direction that maximizes the loss 

function. PGD attack (Madry, Makelov and Schmidt) applied FGSM iteratively with a 

smaller distortion in each step to minimize the overall perturbation. CW attack (Carlini and 

Wagner) formulated the adversarial example generation as a constrained optimization 

problem, that approximates the minimal perturbation for misclassifying an input sample. 
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2.3 Black-box Attack 

In real-world scenarios, the model structure will not be provided to the attacker. Therefore, 

the adversary has limited knowledge of the model. The attacker can apply a black-box attack 

to a model with similar architecture, then transfer to a targeted model. This is called transfer-

based black-box attacks. Without employing any extra model, the adversarial black-box 

attack can be categorized by model feedback from given queries. The black-box attack is 

split into scored-based attacks and decision-based attacks. 

2.4 Transfer-based Black-box Attack 

Prior works (Papernot, McDaniel and Goodfellow) demonstrated that adversarial samples 

from one ML model could transfer to other models in a black-box setting. Transfer-based 

black-box attacks are black-box attacks that steal information from a surrogate model. The 

surrogate model is considered a white-box model and the attacker can implement any white-

box techniques to that. Guessing smart (Brunner, Diehl and Le) computed gradients from 

surrogate models and find an adversarial position, which is helpful to move a small distance 

toward a clean image.  

2.4.1 Score-based Black-box Attack 

Scored-based black-box attack (also called soft-label attack) obtains information about a 

target ML model by querying the model. In a scored-based attack, an adversary can acquire 

probability confidence scores from the targeted model. Zeroth order optimization approaches 

(Chen, Zhang and Sharma) employed returned confidence scores to estimate the gradient and 

generate adversarial samples. Also, SimBA (Guo, Gardner and You) purposed a low-

frequency perturbation, a random direction is repeatedly selected from orthogonal search 

directions, using confidence scores to check whether it is pointing toward or away from the 

decision boundary. SignHuner (Al-Dujaili and O'Reilly) estimated the gradient sign bits 

(Bernstein, Wang and Azizzadenesheli) based on the gradient from the previous step to reach 

faster convergence. Square attack (Andriushchenko, Croce and Flammarion) used a score-

based setting without relying on local gradient information by utilizing a randomized search 

at each step to find an optimized solution. 
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2.4.2 Decision-based Black-box Attack  

Decision-based attack (also called hard-label attack) returns only the top-1 class prediction 

from the target model. Boundary attack (Brendel, Rauber and Bethge) indicated decision-

based attack, which required less hyperparameter than transfer-based attack and was more 

robust than score-based attack. The decision-based black-box attack is closer to realistic 

scenarios. HJSA (Chen, Jordan and Wainwright) utilized binary information at the decision 

boundary to calculate the directional gradient. SignOPT (Cheng, Singh and Chen) extended 

the previous work OPT (Cheng, Le and Chen), and specified a single query oracle for 

computing zeroth-order gradient direction. RayS (Chen and Gu) used the research in (Al-

Dujaili and O'Reilly; Cheng, Singh and Chen), and implemented a hyperparameter-free 

decision-based attack without zeroth-order gradient estimation. It significantly reduced the 

number of queries for attacking DNNs to several hundred. But it failed to use a small number 

of queries to find adversaries for many extreme BUS images. 

2.5 Breast Ultrasound Image (BUS) Classification 

Recent studies showed DNN enhanced the classification of breast ultrasound images. Hijab 

et al. (Hijab, Rushdi and Gomaa) indicated deep learning outcomes in biomedical 

applications could be significantly enhanced through the development of pre-trained and 

fine-tuned convolutional neural network (CNN) architecture using medical imaging data. Xie 

et al. (Xie, Song and Zhang) designed a dual-sampling convolutional neural network 

(DSCNN) with residual networks for the diagnosis of breast tumor images. Their network 

could prevent gradient disappearance and degradation and improve accuracy by using a 

parallel DSCNN. ESTAN (Shareef, Vakanski and Freer) presented a new architecture that 

utilizes two encoders to extract global and local information and integrate image context 

information at varying scales. The authors introduced row-column-wise kernels that conform 

to the horizontal arrangement of the breast anatomy tissue layers in BUS images. By 

employing this approach, their network demonstrated enhanced segmentation performance 

for tumors of varying sizes and surpassed the performance of existing state-of-the-art 

methods for BUS segmentation. MT-ESTAN (Shareef, Xian and Sun) conducted a multi-task 

neural network that combines two separate tasks tumor classification (primary task) and 

tumor segmentation (secondary task) associated with their previous work ESTAN in one 

shared model. The network learns from both tasks and alleviates the low generalization issue 
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caused by small training datasets. The learned shared features between object segmentation 

and classification improve the robustness and generalizability of the model.  

However, Ma et al. (Ma, Niu and Gu) implemented FGSM, BIM (Kurakin, Goodfellow and 

Bengio), PGD and CW on medical images and proved medical deep learning systems are 

vulnerable to small carefully-engineered perturbations. They explained the reasons are the 

complex biological textures in medical images that cause higher gradient regions, and those 

regions are sensitive to small adversarial perturbations. Moreover, DNNs that are currently 

considered for the natural image at a large scale, the model may not be optimized for medical 

imaging tasks due to overparameterization. This can lead to a loss landscape that is too sharp 

and an increased susceptibility to adversarial attacks. 
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Chapter 3: Proposed Method 
 

3.1 Problem Formulation (Preliminary) 

Let 𝑓 be a DNN model, 𝑥0 is the input (clean image) and 𝑦 is the true class label associated 

with 𝑥0. A general hard-label black-box adversarial attack can be divided into two categories: 

targeted attack and untargeted attack, which are formulated as 

Targeted Attack: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷(𝑥, 𝑥0) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥) = 𝑡                    (1) 

Untargeted Attack: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷(𝑥, 𝑥0) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥) ≠ 𝑦                     (2) 

The goal is to generate an adversarial sample 𝑥 that is nearest to the 𝑥0, 𝐷 denotes the 

distance between 𝑥 and 𝑥0 under e.g., the 𝐿∞ norm. The targeted attack is to change the 

decision to some pre-specified label 𝑡. 𝐷(𝑥, 𝑥0)  < 𝜖, where 𝜖 is the maximum perturbation 

strength under 𝐿∞ norm. This thesis only considers untargeted attacks Eq. (2). Optimizing 

this framework under soft-label black-box attack can use the logits from a surrogate model or 

probabilities of top-𝑘 predictions (Moosavi-Dezfooli, Fawzi and Frossard; Moon, An and 

Song; Andriushchenko, Croce and Flammarion; Chen, Zhang and Sharma; Guo, Gardner and 

You). However, the hard-label black-box is more challenging since the model only provides 

the top-1 classification result. (Cheng, Le and Chen; Cheng, Singh and Chen) re-formulated 

hard-label black-box attack by finding the direction 𝜃 with the shortest distance to the 

decision boundary.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔(𝜃)                                                                          (3) 

𝑔(𝜃) =  𝑚𝑖𝑛𝑚𝑖𝑧𝑒 𝜆   𝑠. 𝑡. 𝑓 (𝑥0 + 𝜆
𝜃

||𝜃||
) ≠ 𝑦                                       (4) 

In E.q. (4), 𝑔(𝜃) is the distance from x0 to closest adversarial sample along the search 

direction 𝜃; λ is the distance to the decision boundary which is determined by a binary search 

algorithm. 

RayS (Chen and Gu) significantly improved the optimization of the above-formulated 

problem by bounding the search space to a discrete set of ray directions, i.e., 𝜃 ∈  [−1, 1]𝑑 

where 𝑑 is the number of dimensions of the space. It also modified the optimization 
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framework E.q. (4), to a none zeroth-order gradient estimation on 𝐿∞ norm ball. RayS 

reduced the possible searching directions from 𝑅𝑑 (Cheng, Le and Chen; Cheng, Singh and 

Chen) to 2𝑑 . RayS used a greedy search algorithm without estimating any gradients, which 

only stored the best search direction established on the previous search direction. Different 

from (Cheng, Le and Chen; Cheng, Singh and Chen; Chen, Jordan and Wainwright), taking 

multiple or an average of few queries to determine the next search direction, RayS queried 

𝑓(𝑥) once before doing a binary search for 𝜆. The search direction is selected to do a binary 

search, only if an adversary sample 𝑥 could be found. Nevertheless, RayS lacked a reliable 

way to look for an adversarial example when block partitions rise. The reason is the search 

directions get closer to each other. Their small constant binary search tolerance causes more 

unnecessary queries from hierarchical search.  

The proposed method is a novel approach that applies adaptive binary search and semantic-

aware search to reduce the search queries on extreme examples. The proposed method 

followed RayS equation (4). 

3.2 Adaptive Binary Search 

The binary search has been widely adopted in hard-label black-box attacks (Chen, Jordan and 

Wainwright; Cheng, Le and Chen; Cheng, Singh and Chen; Chen and Gu) to efficiently 

search adversaries along a direction Eq. (3). It attempts to minimize the distortion to generate 

adversarial examples close to the decision boundary. The efficiency of the binary search 

depends on the size of the search interval and the number of queries required to locate the 

target value. The number of queries in binary search is directly determined by a tolerance 

value that refers to the acceptable precision of the target adversary. For a specific search 

direction in the binary search algorithm, an adversary should meet the following condition 

defined by tolerance.  

||𝑥𝑒  −  𝑥𝑠||
∞

 ≤  𝜏 𝑠. 𝑡. 𝑓(𝑥𝑠) =  𝑦 𝑎𝑛𝑑 𝑓(𝑥𝑒) ≠  𝑦                               (5) 

where 𝑥𝑠 and 𝑥𝑒 are two samples on the two sides of the decision boundary. 𝜏 was defined as 

a fixed small positive value in previous work (Chen and Gu). 

A small 𝜏 allows find adversaries close to a decision boundary but needs more queries to 

search for a valid match. On the other hand, a large tolerance requires fewer queries but 
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generates adversaries that are not close to a decision boundary. RayS (Chen and Gu) used a 

hierarchical searching strategy and a fixed small 𝜏 to search a sequence of adversaries to 

approach the searching goal defined by the distance upper bound 𝜖. Because of the fixed 

small 𝜏 , all adversaries are searched using the same precision, resulting in many unnecessary 

queries. Especially for a deep search hierarchy, this may lead to an enormous number of 

queries. Inspired by the trade-off between tolerance values and the number of queries, this 

thesis proposes an adaptive binary search (AdptBS) in Algorithm 1 which applies a larger 𝜏 

in the coarse search stage and a small 𝜏 at a fine search stage. As shown in line 9 of 

Algorithm 1, the fine search stage is defined by a distance range [𝜖 + 𝜇 ∗  𝜏, 𝜖 +  𝜏 ] which 

uses small 𝜏 . For the coarse search stage, 𝜏 is set to a large value (0.1) that needs fewer 

queries. 𝜇 is a parameter to adjusted when to change 𝜏. This control 𝜏 is always less than the 

difference between 𝐷(𝑥, 𝑥0) and distance upper boundary 𝜖. Algorithm 1 adjusted 𝜏, if 

current adversarial sample is in the blue region in Figure 1.  
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Figure 1. Adaptive tolerance range in Algorithm 1. 

 

3.3 Semantic-Aware Search 

RayS (Chen and Gu) searches adversarial samples using the whole image space with high 

dimensions. The worst case of RayS strategy is searching for each pixel on the whole image. 

Guessing smart (Brunner, Diehl and Le) elucidated regional masking for an attack to limit 

the perturbation to specific regions to reduce the dimensionality of the search space to avoid 

waste of queries. Thus, they designed an attack to take larger steps in high-difference regions. 

Guessing smart directly reduces the searching space into mask region with the current 

position. MT-ESTAN (Shareef, Xian and Sun) improved the breast ultrasound cancer 

classification with a multiclass learning approach, joint breast classification and tumor 

segmentation. In this work, semantic masks of BUS images are used to choose image regions 

of breast tumors and mammary tissues, shown in Figure 2. The regions are selected because 

tumor classes are mainly determined by image features in the regions, and it is more efficient 

to search adversaries by adding perturbations to these regions. 

Inspired by the regional masking approach (Brunner, Diehl and Le; Shareef, Xian and Sun), 

this work proposes a hybrid strategy to produce a search mask for each BUS image by 

combining a semantic mask and a cropping mask. The semantic mask is generated by using a 

U-Net-based semantic segmentation approach; and the cropping mask trims blocks at the 

front and end of the search direction. As shown in Algorithm 2. The algorithm skips the front 
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and end blocks using 𝑐𝑟𝑜𝑝𝑘 of the search direction to ignore top and bottom image regions. 

In Figure 4, the cropping mask can be considered as a pruned branch to remove the 

unnecessary search space compared with RayS (Figure 3). The combination of semantic 

masks and cropping masks skips checking a region that does not contain crucial features. A 

block-level cut point 𝐾 is applied to increase the skipping blocks to adapt to the increasing 

number of fine blocks generated by the 𝐵𝑙𝑜𝑐𝑘𝑆𝑝𝑙𝑖𝑡(𝑘) function. The details about the best 

cut point 𝐾 will be discuss in Chapter 5. 
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Figure 2. Semantic masks of BUS images. 

 

 

Figure 3. RayS block splitting. 
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Figure 4. Block splitting in semantic-aware search. 
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Chapter 4:  Materials and Data 
 

4.1 Breast Ultrasound Dataset 

The method was evaluated on Breast Ultrasound (BUS) dataset. Since the existing public 

BUS Datasets are small, the performance of all attack algorithms was tested on a 

combination of four BUS datasets: BUSI (Al-Dhabyani, Gomaa and Khaled), BUSIS (Zhang, 

Xian and Cheng), HMSS (Geertsma) and Dataset B (Yap, Pons and Marti). Since BUS 

problem is binary classification, benign and malignant cases are considered. The dataset 

contains a total of 3378 images: 1698 benign images and 1680 malignant images. BUSI 

dataset contains a total of 647 images with 437 benign images and 210 malignant images. 

The images in BUSI were acquired by LOGIQ E9 ultrasound and LOGIQ E9 Agile 

ultrasound system. These images were from Baheya Hospital for Early Detection & 

Treatment of Women's Cancer in Cairo, Egypt. BUSIS dataset contains a total of 562 images 

with 306 benign and 256 malignant images from China. The images were collected by 

multiple ultrasound devices: GE VIVID 7, LOGIQ E9, Hitachi EUB-6500, Philips iU22 and 

Siemens ACUSON S2000. The dataset was prepared by the Second Affiliated Hospital of 

Harbin Medical University, the Affiliated Hospital of Qingdao University and the Second 

Hospital of Hebei Medical University. HMSS dataset contains a total of 2006 images with 

846 benign and 1160 malignant images. It was collected by Dr. Geertsma at Gelederse Vallei 

hospital in Netherlands, in a collaboration with Hitachi Medical Systems Europe. Dataset B 

contains a total of 163 images with 109 benign and 54 malignant images from different 

women in 2012. It was provided by UDIAT Diagnostic Centre of the Parc Taulí Corporation, 

Sabadell (Spain) and images were gathered by a Siemens ACUSON Sequoia C512 system 

17L5 HD linear array transducer (8.5 MHz). 

4.2 Data Preprocessing 

Most images in BUS datasets are rectangular. Because Deep Neural Network models need a 

square input shape, images are modified to the square shape. If reshaped images from a 

rectangular shape to a square shape will bring out the distortion problem of the tumor region. 

To avoid morphologic changes in the breast tumors and tissue regions, all images are zero-

padding and fulfilled to form a square following MT-ESTAN (Shareef, Xian and Sun) setting. 
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After padding all images, input images and corresponding semantic masks are reshaped to a 

fixed size 224 × 224. 
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Chapter 5: Experimental Results 
 

5.1 Targeted Model Settings 

All experiments use a randomly selected set of 700 images from the dataset for testing, and 

use rest of the images for training. All experiments use pretrained ResNet50 (He, Zhang and 

Ren), VGG16 (Simonyan and Zisserman) and DenseNet121 (Huang, Liu and Maaten), and 

their accuracy is 82.94%, 80.7% and 87.83%, respectively. All three models have been 

trained 100 epochs with the Adam optimizer, learning rate of 0.0001, and batch size of 4. 

ResNet50 is used to compare the effectiveness of adaptive binary search, semantic-aware 

search and overall performance on other hard-label black-box attacks. The best parameters 

from adaptive binary search and sematic-aware search will be validated on VGG16 and 

DenseNet121, aiming to illustrate the approach is aggressive to deep neural networks. 

5.2 Adversarial attack settings 

Following the adversarial attack setting in RayS (Chen and Gu), the distance upper bound 𝜖 

is set to 0.05, and the maximum number of queries is 10,000 for all attacks. The criterion for 

a successful attack is the 𝐿∞ between the adversarial sample and clean image is less than the 

pre-defined 𝜖. 

5.3 Experiment Environments and Evaluation Metrics 

All neural network models and adversarial attacks are implemented using Python 3.7.0, 

Keras 2.3.1, TensorFlow 1.13.1 and Pytorch 1.9.1. All experiments were conducted with 

NIVIDA Quadro RTX 8000 GPUs, equipped with CUDA Toolkit 10.2. The number of 

average (AVG) and median (MED) queries and the attack success rate (SR) are used to 

quantitatively evaluate the performance of different adversarial attacks. The number of 

average and median queries is counted from successfully attacked images on the test set. The 

success rate is a ratio between successful attacks and total attacks, and it is calculated only 

from images that were correctly classified by the targeted model on the test set. 

5.4 The Effectiveness of Adaptive Binary Search 

In this section, different binary search strategies in the RayS attack (Chen and Gu) 

framework are validated using ResNet50. The original RayS set a fixed binary search 

tolerance τ to 0.001. Results of RayS with other 𝜏 values and AdptBS are reported in Table 1. 
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The results in the first three rows show that the number of queries (AVG and MED) is 

sensitive to 𝜏 ; and small 𝜏 need more queries to find adversaries and large 𝜏 can significantly 

reduce the queries. But large τ could also have the risk to decrease the success rate. However, 

the attacker cannot find out the best 𝜏 without several attempts and multiple attacks on the 

model, which is not efficient. Thus, an adaptive 𝜏 can automatically obtain the best value for 

searching the initial attack starting point and adjust tolerance based on the current distance 

between adversarial samples and the decision boundary. The proposed AdaptBS is applied to 

replace the binary search algorithm in the RayS attack, and its results are shown in the last 

three rows of Table 1. AdptBS halves the number of queries without affecting attack success 

rate. The AdptBS method preserves the high success rate (99.83%) of the original RayS with 

fixed small 𝜏 , and reduces the AVG and MED queries by 21.47% and 29.37% respectively. 

𝜇 decides when to change 𝜏, the best result is 𝜇 = 0.9 and the performance reduce when 

using smaller 𝜇. 𝜇 = 0.9 restricts 𝜏 quickly narrow to a very small value, which use large 𝜏 

for immense perturbation and use small 𝜏 when perturbation in close proximity to 𝜖. 

 

Table 1. Results of attack with different binary search methods. The percentage values in the 

parenthesis show the difference between the baseline model and a new design. 

Attack Method 𝜇 𝜏 Queries(AVG)↓ Queries(MED) ↓ SR(%) ↑ 

 

RayS (Chen and Gu) 

- 0.001(original) 411.94 248.5 99.83 

- 0.1 299.06 (-27.40%)  159.0 (-36.01%)  99.15 (-0.68%) 

- 0.01 346.07 (-15.99%)  206.0 (-20.63%) 99.83 

AdptBS 

0.9 Adaptive 323.47 (-21.47%)  175.5 (-29.37%)  99.83 

0.8 Adaptive 325.91 (-20.88%) 178.5 (-28.16%) 99.83 

0.7 Adaptive 330.26 (-19.82%) 181.0 (-27.16%) 99.83 

 

5.5 The Effectiveness of Semantic-Aware Search 

In this section, semantic-aware search in the RayS and semantic-aware search are validated 

using ResNet50. The semantic-aware search aims to reduce the search space. It is integrated 

into RayS and the proposed AdptBS algorithm and the results are demonstrated in Table 2. 
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The original RayS with the proposed semantic-aware search reduces AVG, and MED queries 

by 3.87% and 4.22%, respectively. The parameters are 𝜏 = 0.001, 𝑐𝑟𝑜𝑝𝑘 = 2 and 𝐾 = 5. 

The semantic-aware search with the proposed AdptBS algorithm can dramatically drop the 

AVG queries by 23.96%, and the MED queries by 31.79% with 𝜇 = 0.9, 𝑐𝑟𝑜𝑝𝑘 = 2 and 

𝐾 = 5. The impressive results demonstrate adding small perturbations only to breast tumors 

and mammary regions could find good adversaries more efficiently. The best 𝑐𝑟𝑜𝑝𝑘 is 2, 

Table 2 illustrates SR reduce when 𝑐𝑟𝑜𝑝𝑘 increased to large value. The purpose method 

drops less search directions at the beginning of the search stage. Otherwise, the purpose 

method throws more blocks when splitting search space into small-scale search directions, 

because the neighbor search directions are close to each other. The average of split blocks in 

RayS are distributed at 5 and 6. Table 2 shows MED queries in Semantic-Aware AdptBS for 

𝐾 = 5 and 𝐾 = 6 are both 169.5. Since 𝐾 = 5 performed better on AVG queries, the rest the 

experiments are all setting 𝐾 = 5. The purpose method is also effectively reducing the 

number of queries for searching adversaries for extreme samples. There are 15.68% of test 

images use larger than 400 queries and 9.61% of test images use larger than 600 queries in 

the purpose approach. However, 29.51% of test images use more than 400 queries and 15% 

of test images use larger than 600 queries in RayS. Instances of extreme cases on both 

approaches are shown in Figure 5. 

 

Table 2. Results of attack with semantic-aware search. 

Attack Method 𝜇  𝑐𝑟𝑜𝑝𝑘 𝐾 Queries(AVG)↓ Queries(MED) ↓ SR(%) ↑ 

RayS (Chen and Gu) - 2 5 411.94 248.5 99.83 

 

RayS + Semantic Mask 

- 2 5 395.98 (-3.87%)  238.0 (-4.22%) 99.83 

- 2 4 402.29 (-0.23%) 236.5 (-4.82%) 99.83 

- 2 6 399.68 (-2.97%) 238.5 (-4.02%) 99.83 

- 3 5 404.70 (-1.75%) 243.5 (-2.01%) 99.83 

- 4 5 402.29 (-2.34%) 236.5 (-5.07%) 99.83 

 

 

0.9 2 5 313.22 (-23.96%) 169.5 (-31.79%) 99.83 

0.9 2 4 308.62 (-25.07%) 164 (-34.00%) 99.66 (-0.17%) 
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Semantic-Aware AdptBS 

0.9 2 6 318.21 (-22.75%) 169.5 (-31.79%) 99.83 

0.9 3 5 309.18 (-24.94%) 170.0 (-31.58%) 99.49 (- 0.34%) 

0.9 4 5 308.62 (-25.08%) 164.0 (-34.00%) 99.66 (-0.17%) 

0.7 2 5 318.42 (-22.70%) 175.5 (-29.37%) 99.83 

0.7 3 5 328.57 (-20.23%) 175.0 (-29.57%) 99.83 

0.8 2 5 314.04 (-23.76%) 173 (-30.38%) 99.83 

0.8 3 5 319.94 (-22.33%) 173 (-30.38%) 99.66 (-0.17%) 

 

 

Figure 5. Results of RayS and purpose method on extreme images. Q: number of queries. 

 

5.6 Attack on Other Deep Classifiers 

RayS and the proposed method are used to attack three deep learning models, ResNet50, 

DenseNet121, and VGG16. The three models are pretrained and finetuned on BUS images 

training set. As shown in Table 3, the proposed method outperforms RayS in terms of AVG 

and MED queries on attacking all three models. The tolerance 𝜏 of RayS is 0.001 for all 
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three target models. The parameters of Semantic-Aware AdptBS for three target models are 

𝜇 = 0.9, 𝑐𝑟𝑜𝑝𝑘 = 2 and 𝐾 = 5. For VGG16, the MED queries of the proposed method are 

33.67% less than that of the RayS. For Desenet121, the MED queries of the proposed 

method are 32.03% less than that of the RayS. In addition, Densenet121 required more 

queries during attacks, which indicates that the model is more robust than the ResNet50 and 

VGG16. 

 

Table 3. Results on attacking three models. 

 Model Queries(AVG)↓ Queries(MED) ↓ SR(%) ↑ 

 

RayS (Chen and Gu) 

ResNet50 411.94 248.5 99.83 

Desenet121 618.67 384.0 99.52 

VGG16 456.06 297.0 100 

 

Semantic-Aware AdptBS 

ResNet50 313.22 169.5 99.83 

Desenet121 509.28 261.0 99.52 

VGG16 368.68 197.0 100 

 

5.7 Compared with the State-of-the-art Attacks 

Three state-of-the-art hard-label black-box attack approaches (i.e., OPT (Cheng, Le and 

Chen), SignOPT (Cheng, Singh and Chen), and RayS) are compared with the proposed 

method. The three attacks use the fixed tolerance for binary search. ResNet50 is used as the 

baseline classifier. As shown in Table 4, Sign-OPT and OPT randomly initialize a starting 

point with Gaussian noise or uniform noise and require many queries when using binary 

search to find the direction with the shortest distance to the decision h boundary and calculate 

the directional derivative. Each search direction generated by random noise needs a binary 

search to find the closest distance to the decision boundary. The binary search for each 

direction causes a massive number of queries. RayS significantly improves the success rate 

and reduces the queries to only several hundred due to its new search strategy in a discrete 

space. These three attacks all use the same tolerance for binary search, which prompts more 

queries to find an adversarial sample close to the decision boundary. Moreover, all three 
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attacks search the entire image for each iteration, which is a large search space. Local 

semantic-aware search shrinks search space to significant features. The proposed method 

achieves the same SR as RayS but outperforms the other three approaches on AVG and MED 

queries.  

 

Table 4. Performance of the state-of-the-art hard-label black-box attack approaches. 

Method Queries(AVG)↓ Queries(MED) ↓ SR(%) ↑ 

OPT (Cheng, Le and Chen) 3218.36 2120.5 33.72 

Sign-OPT (Cheng, Singh and Chen) 7066.05 7137.0 24.78 

RayS (Chen and Gu) 411.94 248.5 99.83 

Semantic-Aware AdptBS 313.22 169.5 99.83 
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Chapter 6: Conclusion 
 

This thesis introduced a novel back-box adversarial attack approach against deep learning 

classifiers for breast ultrasound images. It only requires hard-label predicted outputs by the 

target model for the generation of adversarial samples. The proposed attack method 

integrates the semantic-aware search and adaptive binary search and outperforms state-of-

the-art approaches in terms of average queries and success rate. The adaptive binary search 

component allows selecting an accommodative tolerance for binary search in different search 

stages. Using a semantic mask reduces the attack search space, which is critical due to the 

tremendous impact on model prediction. Experimental results on a large dataset of breast 

ultrasound images demonstrated the query-efficiency and the effectiveness of the proposed 

back-box attack.
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