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Abstract

For decades, researchers on vehicular ad-hoc networks (VANETs) and autonomous vehi-

cles presented various solutions for vehicular autonomy and safety. Yet, the work devel-

oped in these areas has been mostly conducted in their own separate worlds, and barely

affect one-another despite their direct relationship. In later years, the Internet of Vehi-

cles (IOV), encompassing sensing, communications, connectivity, processing, networking,

and computation is expected to bridge many technologies to offer value-added informa-

tion for the navigation of self-driving vehicles, to reduce vehicle on board computation,

and to deliver desired functionalities. Potentials for bridging the gap between these two

worlds and creating synergies of these two technologies have started to attract signifi-

cant attention from many companies and governmental agencies. In this Dissertation, a

comprehensive survey is first presented with an overview of the emerging key challenges

related to the two worlds of Vehicular Clouds (VCs) including communications, network-

ing, traffic modeling, medium access, Vehicular Cloud Computing (VCC), VC collation

strategies, security issues, and Autonomous Driving (AD). This will include 3D envi-

ronment learning approaches, AD enabling deep-learning, computer vision and Artificial

Intelligence (AI) techniques. The Dissertation then discusses recent related work and

potential trends on merging these two worlds in order to enrich vehicle cognition of its

surroundings, and enable safer and more informed and coordinated AD systems.

Modern vehicles are equipped with advanced communication, computation and storage

capabilities in On-Board Units (OBUs). These are used to form a Vehicular Cloud (VC)

as coalitions of affordable resources to host infotainment applications. With the limitation

of static vehicular communication schemes and the computational capabilities constraints

in vehicular micro-datacenters, VCs have overcome these technological limitations. VCs

are supposed to maximize the usage of Vehicle to Infrastructure (V2I) communications

over Service Channels (SCHs) for non-safety applications while maintaining reliable short-

lived safety applications Vehicle-to-Vehicle (V2V) communications in the Dedicated Short
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Range Communication (DSRC) technology. This Dissertation presents a novel Advanced

Activity-Aware (AAA) scheme to enhance Multi-Channel Operations based on IEEE

1609.4 standard in MAC Protocol implemented in Wireless Access for Vehicular Envi-

ronment (WAVE) for a more dynamic model. The developed AAA scheme rely on the

awareness of the vehicular safety load. It aims at dynamically finding an optimal setup for

switching between Service Channel Interval (SCHI) and Control Channel Interval (CCHI)

by decreasing every inactivity in the network. The developed scheme is implemented using

NS3 and maintains the default Synchronization Interval (SI), as defined by the standard

in Vehicular Ad hoc Networks (VANETs).

Furthermore, we evaluate both sequential and parallel CUDA-accelerated Markov De-

cision Process (MDP) based schemes using a fast greedy heuristics algorithm to optimize

the problem of vehicular task placement with both IEEE 1609.4 and opportunistically

available V2I of AAA scheme. We derive the system reward of VCC by considering the

overall utilization of the virtualized resources of the distributed Vehicular Clouds (VCs) as

well as the optimality of the solution of placement of the vehicular Bag-of-Tasks (BOTs).

The Dissertation then discusses a vision to create a beneficial link by designing a

multimodal scheme for object detection, recognition, and mapping based on the fusion of

stereo camera frames, point cloud Velodyne LIDAR scans, and Vehicle-to-Vehicle (V2V)

Basic Safety Messages (BSMs) exchanges using VANET protocols. Exploiting the high

similarities in the underlying manifold properties of the three data sets, and their high

neighborhood correlation, the proposed scheme employs semi-supervised manifold align-

ment to merge the key features of rich texture descriptions of objects from 2D images,

depth and distance between objects provided by 3D point cloud, and awareness of self-

declared vehicles from BSMs’ 3D information including the ones not seen by camera and

LIDAR. The proposed scheme is applied to create joint pixel-to-point-cloud and pixel-

to-V2V correspondences of objects in frames from the KITTI Vision Benchmark Suite,

using a semi-supervised manifold alignment, to achieve camera-LIDAR and camera-V2V
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mapping of their recognized objects. Then, the alignment accuracy results in 2 different

driving sequences that are presented while illustrating additional acquired knowledge of

objects from various input modalities. The effect of the number of neighbors employed in

the alignment process and accuracy is also studied. Finally, this Dissertation is concluded

with a list of future research directions that will be useful to researchers in this field.
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Mutual Information Cost Surface On Top and Alpha Blended Camerasynthetic

View on Bottom [124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.18 Motion Estimation and Mapping are Achieved Using a Monocular Camera

Combined with 3D LIDAR [130]. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.19 Point Cloud Perceived by Velodyne Scanner on KITTI Dataset [128]. . . . . . 45

2.20 Visualization of the Ground Plane Extraction with the Measurements that

Coincide with the Ground Plane Are Retained and in Green All Others Are

Discarded [69]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.21 DriveWorks SDK Architecture [60]. . . . . . . . . . . . . . . . . . . . . . . . . 51

2.22 Visualization of HERE’s Live HD Map. . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Wave Different Channel Access Mechanisms. . . . . . . . . . . . . . . . . . . . 56

3.2 IEEE 1609.4 MAC With Multi-Channel Operations. . . . . . . . . . . . . . . . 58

4.1 Vehicular Cloud-Based BOTs Requirements in VMs. . . . . . . . . . . . . . . 64

4.2 Block Diagram of CUDA Enabled GPU. . . . . . . . . . . . . . . . . . . . . . 71

4.4 Average End-To-End Delay of BSM Versus Number of Vehicles. . . . . . . . . 75



xiv

4.3 NS3 Simulation of the VC Build Around the RSU. . . . . . . . . . . . . . . . 76

4.5 Average End-To-End Delay to the RSU of Non-Safety Messages Versus Num-

ber of Vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Throughput of V2V BSM Safety Messages Versus The Number of Vehicles. . . 77

4.7 VC Throughput Versus Number of Vehicles. . . . . . . . . . . . . . . . . . . . 78

4.8 Channels Intervals Adjustment of AAA and IEEE 1609.4 Versus the Number

of Vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Average Percentage of Dropped VMs in Different Network Density Versus Time. 79

4.10 VCC VMs Utilization for Greedy and MDP Schemes. . . . . . . . . . . . . . . 80

4.11 Vehicular Cloud Throughput Under Greedy Scheduling. . . . . . . . . . . . . . 81

4.12 VC Throughput Under MDP Scheduling. . . . . . . . . . . . . . . . . . . . . . 81

4.13 BOTs Scheduling Under Greedy Scheme. . . . . . . . . . . . . . . . . . . . . . 82

4.14 BOTs Scheduling Under MDP-Based Scheme. . . . . . . . . . . . . . . . . . . 82

4.15 Overall VCC and per VC Reward. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.16 Sequential and CUDA-Accelerated Convergence Time and Speedup. . . . . . . 84

5.1 Darknet Convolutional Neural Network Architecture [101] . . . . . . . . . . . 88

5.2 Original Frame (a) from RGB sequence drive 2011 09 26 drive 0005 #117. . . 89

5.3 Detection of Frame (a) objects and their centers of gravity. . . . . . . . . . . . 89

5.4 Original Frame (b) from RGB sequence drive 2011 09 28 drive 0016 #32. . . . 90

5.5 Detection of Frame (b) objects and their center of gravity. . . . . . . . . . . . 90

5.6 Pixel-wise manifolds of the recognized objects for both Frame (a) and Frame

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Point cloud scan corresponding to Frame (a). . . . . . . . . . . . . . . . . . . 91

5.8 Point cloud scan corresponding to Frame (b). . . . . . . . . . . . . . . . . . . 92

5.9 Manifolds of the detected objects from LIDAR point clouds corresponding to

both Frame (a) and Frame (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 Adjacency of Recognized Objects from DSRC. . . . . . . . . . . . . . . . . . . 94



xv

5.11 Number of Objects per Class for both Frame (a) and Frame (b). . . . . . . . . 102

5.12 Camera-LIDAR Object Alignment of Frame (a). . . . . . . . . . . . . . . . . . 103

5.13 Camera-V2V Object Alignment of Frame (a). . . . . . . . . . . . . . . . . . . 104

5.14 Camera-LIDAR Object Alignment of Frame (b). . . . . . . . . . . . . . . . . . 105

5.15 Camera-V2V Object Alignment of Frame (b). . . . . . . . . . . . . . . . . . . 106

5.16 Alignment gains for Frame (a) and Frame (b). . . . . . . . . . . . . . . . . . . 107

5.17 Effect of number of neighbors on the alignment accuracy for Frame (a). . . . . 108

5.18 Effect of number of neighbors on the alignment accuracy for Frame (b). . . . . 110

5.19 Average Alignment Accuracy of the driving Sequences (1): Sequence 09 26 0005

and (2): Sequence 09 28 0016. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.20 Average Alignment Gains of the driving Sequences (1): Sequence 09 26 0005

and (2): Sequence 09 28 0016. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 First Scan in Sequence Drive 2011 09 26 drive 0005 #1. . . . . . . . . . . . . 118

6.2 First Scan in Sequence Drive 2011 09 28 drive 0016 #1. . . . . . . . . . . . . 119

6.3 First Scan in Sequence Drive 2011 09 26 drive 0106 #1. . . . . . . . . . . . . 120

6.4 Tracking 2011 09 26 drive 0005 #1, EKF Predicted Box in Grey and Actual

Box in Red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Tracking 2011 09 28 drive 0016 #1, EKF Predicted Box in Grey and Actual

Box in Red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Tracking 2011 09 26 drive 0106 #1, EKF Predicted Box in Grey and Actual

Box in Red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xvi

List of Acronyms

VANETs vehicular ad-hoc networks

IOV Internet of Vehicles

VC Vehicular Cloud

VCC Vehicular Cloud Computing

AD Autonomous Driving

AI Artificial Intelligence

V2V Vehicle-to-Vehicle

V2I Vehicle-to-Infrastructure

NSF National Science Foundation

USDoT US Department of Transportation

OBU Onboard unit

DSRC Dedicated Short Range Communication

LTE Long Term Evolution

CCH Control Channel

SCH Service Channel

MAC Media Access Control

SLAM Simultaneous Localization And Mapping

BSM Basic Safety Message



xvii

NPRM Notice of Proposed Rule-Making

NHTSA National Highway Traffic Safety Administration

SI Synchronization Interval

QoS Quality of Service

MDP Markov Decision Process

FCC Federal Communication Commission

AC Access Categorie

WSM WAVE Short Message

PHY Physical Layer

CCHI Control Channel Interval

SCHI Service Channel Interval



1

Chapter 1: Introduction

1.1 Motivation

The race among vehicle manufacturers and IT companies to develop, test and market

a reliable fully autonomous vehicular technology is motivated by the big expected annual

revenue stream of smart autonomous and connected vehicles. Researchers have increas-

ingly infused more cyber capabilities to vehicles. Starting from basic communications to

cell towers, passing through V2V and Vehicle-to-Infrastructure (V2I) short range commu-

nications (a.k.a. VANETs), and reaching the recent era of VCs. On the other hand, many

researchers have taken significant steps in vehicular automation with a long-term vision

of reaching a full driving autonomy. Despite their obvious relevance to one another, the

bridging and synergies between these two worlds have not been properly investigated. But

this has recently started to attract massive interest from many companies and government

agencies. For instance, the US National Science Foundation (NSF) and the US US De-

partment of Transportation (USDoT) have expressed tremendous need and importance to

relate these two worlds together in several of their call for research proposals in 2017 [112].

They clearly emphasized the importance of integration and fusion of data from various

input modes in order to create a deeper understanding of the surroundings for safer and

more coordinated AD applications. More precisely, enriched 3D scene reconstruction by

different input technologies and deep learning techniques are of paramount importance

to allow autonomous vehicle systems to perform effectively and safely. These directions

are strongly supported by the few accidents and fatalities [114] and traffic light viola-

tions [52] made by autonomous vehicle prototypes from top industries in the market (e.g.,

Tesla, Uber). These incidents that could have easily been mitigated if there existed strong

connectivity, computing and distributed coordination resources among vehicles and and

the necessary road infrastructure. Luckily, VANET applications for both safety and non-
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safety messaging have been approved by many government agencies (e.g., USDOT) and

are ready for deployment. Forecasters estimate more than 250 million wireless-enabled

vehicles by 2020 [112]. In addition, vehicle manufacturers, such as Cadillac, have already

introduced commercial products (e.g., 2017 Cadillac CTS). Many modern vehicles will

soon be equipped with sophisticated computing and storage capacities in their Onboard

unit (OBU). In addition, vehicles are getting more and more communication technology

options, such as Dedicated Short Range Communication (DSRC), WiFi, 3G or Long Term

Evolution (LTE), which allow them to efficiently communicate and exchange information

about their positions and intended steering commands. Furthermore, these wireless com-

munication technologies can be used for awareness and safety through V2V beacons, as

well as to enrich vehicular knowledge about their status and timings through V2I connec-

tions to static infrastructure entities such as traffic signals, street signs, etc. In addition

to the available computing capabilities, such as micro datacenters in modern RSUs as an

example, modern vehicles are equipped with computing resources in their OBUs. All of

these distributed resources together offer a great opportunity to form VCs. Advanced VC

technologies efficiently combined with recent advances in AD can revolutionize the latter.

A VC does not only provide much more enriched and informed 3D understanding of the

vehicle surroundings through communications among the vehicles and the infrastructure.

But also migrates current AD decision-making paradigms from single isolated operations

per vehicle to a more cooperative and coordinated operation through VCC. However, it

is a difficult task to create a real-time 3D map that is enriched from the mapping of

data derived from distinct sensing inputs as well as premapped data that usually provides

static references on streets from the cloud. Reaching this stage requires not only merging

and finding the synergies of VC and AD systems, but also getting separate data from the

various technologies constituting each of them. For instance, the DSRC technology en-

ables safety and non-safety applications for VANETs, which constitute a key component

in VCs and ADs. Safety applications are time critical applications that are based on V2V
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communications that enrich the knowledge of AD systems, while non-safety applications

rely mostly on V2I communications to enable the connectivity of vehicles to VCs. The

Wireless Access for Vehicular Environment (WAVE) standard partitions the bandwidth

into seven channels of 10 MHz each, one Control Channel (CCH) to serve safety applica-

tions, and six Service Channels Service Channel s (SCHs) to serve non-safety applications.

DSRC specifies a channel switching scheme to allow vehicles to alternate between these

two types of applications. Moreover, the channel switching scheme has a lot of limita-

tions and needs to be improved and adjusted depending on the network density and the

requirements of the applications.

Thus, there is a need for constructing robust single and multi hop communications for

VCs in order to perform the desired coordinated role for multiple non-safety or commercial

applications. This creates many challenges to optimize their coalition formation, manage

the cloud resources efficiently and distributively, and make the technology more cost

effective.

On the other hand, many deep learning and artificial intelligence systems and algo-

rithms have been developed and tailored to enhance autonomous vehicles’ 3D surround-

ing reconstruction and image flow recognition from both camera feeds and LIDAR point

clouds. End-to-End recognition and driving decisions frameworks have also been recently

studied. However, many challenges still exist in terms of the accuracy of the resulting

learned environment and decisions taken by autonomous vehicles, especially in very low

visibility (e.g., foggy weather, camera facing the sun) and out-of-sight scenarios (e.g.,

vehicles hidden by buildings/trucks at intersections), in which camera and LIDAR tech-

nologies can easily fail.

1.2 Research Significance and Market Opportunity

Connected and autonomous vehicles offer a promising market opportunity for on

board communications equipment manufacturers, autonomous steering, Internet Service
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Figure 1.1. Projected Market Share of Autonomous Vehicles Technology Through 2030 [42].

Providers (ISPs), LIDAR and RADAR scanners, AI vehicle computing platforms, etc.

Appealed by the estimated $87 billion market opportunity by 2030 [42], traditional

vehicle manufacturers are thriving to put the pedal to the medal while they contest

with technology companies to put driver assisting features of fully automated self-driving

technology in vehicles. The software systems, computation hardware, and optical cameras

are projected to form the most significant economic impact in the self-driving vehicles

market, as presented in Fig. 1.1.

The National Highway Traffic Safety Administration (NHTSA) has issued a notice

of proposed rule-making Notice of Proposed Rule-Making (NPRM) to mandate vehicle

manufacturers to mount DSRC radios for V2V communications in new vehicles sold in

the USA market starting in 2020 [10]. Consequently, this is expected to produce a rapid

expansion of ubiquitous V2V and V2I connectivity, as the number of projections shown

in Fig. 1.2 makes the leap to self-driving vehicles even smaller. Regardless of the on

board communications, connectivity to the cloud has a substantial and profound impact

on businesses and the society. It enables a variety of key vehicular applications such as

software updates, real-time traffic with parking information, charging stations location

and availability, and vehicular apps that evolve the deployment of autonomous vehicles.
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Figure 1.2. Projected Numbers of Vehicles Equipped With V2X Connectivity Through 2025 [11].

Specifically by 2020, projections estimate that the connected vehicle market is expected

to create a total revenue of $141 Billion [2]. In addition to the aforementioned driving

related features, connected vehicles would gain from cloud services including advanced

infotainment systems, commercial applications, and deep analysis and diagnostic systems.

Based on different connectivity solutions, the annual global sales are expected to gain a

tremendous growth especially for the embedded and integrated solutions, as shown in Fig.

1.3. The embedded connectivity solutions enable connectivity, intelligent computation

and built in services and applications running inside the vehicle. While tethered solutions

rely on the separation of the applications, remain inside the vehicle, and the connectivity

is delivered externally (e.g., using a phone). The integrated solution (usually called bring-

you-own-device) enables connecting a device that has the computation, applications and

connectivity to the vehicle’s dashboard.

US consumer trust and interest in simple, partial, and fully automated driving sys-

tems have increased as detailed in Fig. 1.4 presented by the study in [30]. Among all

the levels of vehicle automation technologies, younger consumers in the US have shown

strong interest in systems with emphasis on basic automation, adaptive safety, limited
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Figure 1.3. Forecast Worldwide Sales of Vehicle Connectivity Solutions.

autonomous driving and full autonomy. These survey findings presented more details

about the trust and the interest of US customers between 2014 and 2016, which definitely

point to a fast-pace growth demand towards the AD systems.

Figure 1.4. US Consumer Interest of Various Levels of Vehicle Automation [30].
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1.3 Goals

Based on the importance of the application of self-driving cars and connected vehicles,

the goals of this work can be summarized as follows:

• Investigate current vehicular technologies and enhancement of the static WAVE

standard.

• Improvements of throughput of the 802.11 p standard over non-safety channels while

maintaining the reliability of safety communication.

• Vehicular Cloud creation and simulation of throughput and VM migration.

• CUDA-accelerated and sequential scheduling study of tasks to maximize the overall

reward of the VCC.

• Application of deep learning on camera frames and LIDAR point cloud of real

driving sequences.

• Fusion and alignment between the output of both perception systems.

• LIDAR data processing, cleaning and tracking with Extended Kalman Filters ap-

plication.

1.4 Related Work

The IOV includes different types of Vehicular Clouds Computing (VCCs) platforms to

support various commercial or non-safety applications. It offers an interesting market op-

portunity and raises many technological challenges to make it cost effective. VCs combine

and manage the available resource of micro data centers in connected vehicles and RSUs

in infrastructure and are deployed by incorporating cloud-based services into VANETs.
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VCs are non-conventional cloud architecture with critical requirements for efficient com-

putation and storage resources utilization and expected to manage communication and

networking limitations as opposed to traditional clouds. A wide-range of on-demand ve-

hicular applications and services, including multimedia streaming, content sharing, urban

sensing and safety and surveillance systems are offered by VCC [49]. One way of imple-

menting VCs is by consolidating the OBUs of geographically co-located parked vehicles

as proposed in [50]. This type of cloud model is easy to establish since the vehicles are in

fixed positions do not require safety messages and consequently we can maximize the usage

of all DSRC channels for vehicle to the cloud communication. Olariu et al. [19] presented

a novel VCs model that is linked via wires or cellular communication to a backbone that

plays the major role of management of the cloud system. The model itself is not cost effi-

cient because all cloud resources are rented and none of the affordable microdatacenters in

RSUs and OBUs are being included. In [106], the developed VC is established to host ve-

hicles’ infotainment applications by using the offered microdatacenters in on-street RSUs.

A challenging VC model is formed by dynamically merging the OBUs of moving vehicles,

forming an Ad Hoc Networks, to offer non-safety services [13]. Maalej et al. [75] developed

a VC model that is built by merging the micro data centers in OBUs of on the move vehi-

cles under RSUs coverage and without computational contribution. This VC modeling is

complex to manage with respect to the high mobility of vehicles which leads to not only

an unpredictable availability of computational resources but also variable performance of

V2V communications and Vehicle to cloud. Vehicles with dual-radios are used in [67]

by having one DSRC radio continuously tuned at CCH and one radio continuously be-

ing used for SCH. Even though this approach avoids the necessity of using Multi-Channel

Switching, but induces high interference cost caused by radio channels adjacency. Authors

in [131], implemented an independent adaptive channel switching mechanism to achieve

selfish switching optimality of each vehicle aside since safety timers end immediately after

safety related packets ends. This methods results in a significant dropped BSMs since it
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does not keep synchronization between vehicles while sending and receiving over CCH.

In [53], the authors proposed to adapt the Minimum Contention Window of the CCH’s

packet Access Classes based on a certain CCHI that guarantees a given transmission rate

of safety messages, communication range changes, vehicle density, safety message rates

and sizes. A fair amount of research in the literature are focusing making of the value

iteration algorithm calculation run in parallel. These research efforts are mostly related

on the theoretical formulation, and if implemented are employed on cluster systems or

specialized shared memory multi-CPU systems as illustrated in [104]. The parallelization

limitation of these system is due to the fact of expensive shared memory in multi-CPU

systems and additions to increase parallelism is very costly, while cluster systems incur a

high communication cost because of missing shared memory [121]. The cost of commu-

nication gets higher considerably with each computational resource addition it outweighs

the benefit in performance. These developed systems offer parallelism for a few heavy

processes working one problem at a time and does not use the key benefit of parallelism

offered by GPUs for executing light-weight threads simultaneously. The acceleration of

the decision making of task scheduling in vehicular clouds has never been developed as a

full solution. Additionally, a computation resource allocation scheme is being applied to

VCC in [133] with the emphasis on energy cost and income of the cloud by applying the

problem as a semi-Markov decision Process (SMDP), while Yu et al. [127] focused only on

the resource reservation, allocation and management for the VC versus virtual machine

migration cost.

Analyzing camera frames using various techniques has been one of the mostly used

techniques for autonomous vehicle surrounding recognition. One suggested technique is

semantic segmentation, which labels each pixel in an image with the category of the be-

longing objects. To determine that a certain pixel belongs to a vehicle, a person or to

any other class of objects, a contextual window that is wide enough is defined to show

the surrounding of the pixel and consequently make an informed decision of the pixel’s
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object class. Techniques based on Markov Random Fields (MRF), Conditional Random

Fields (CRF) and many graphical models are presented in [55], [66], [89] to guarantee the

consistency of pixel labeling in the context of the overall image. In addition, the authors

in [116], [63], [51] developed various methods for image pre-segmentation into super-pixels,

which are used to extract the categories and features from both individual segments and

combinations of neighboring segments.

Alternatively, the authors in [65] attempted to create 3D reconstruction of dynamic

scenes by achieving a long-range spatio-temporal regularization in semantic video segmen-

tation, due to the fact that both the camera and the scene are in motion. The developed

idea is to integrate deep convolutional neural networks (CNNs) and CRF to perform

sharp pixel-level boundaries of objects. The proposed solution minimized the distances

between the features associated with corresponding points in the scene, and consequently

optimized the feature space that is used by the dense CRF. To this end, deep learning

has shown the best performance in inferring objects from previously untrained scenes.

In [119], the segmentation of the input images was achieved by representing the dynamic

scene as a collection of rigidly moving planes and jointly recovering the geometry/3D

motion when over-segmenting the scene. The developed piece-wise rigid scene is intended

to represent real world scenes with independent object motions rather than pixel-based

representations like partially used in [86].

Joseph et al. [101] developed a general purpose object detection system characterized

by a resolution classifier and the usage of a two fully connected networks. These two net-

works are built on top of a 24-layer convolutional network, followed by two fully connected

layers. Additionally, a unified muti-scale deep CNN for real-time object detection is de-

veloped in [24] with many sub-network detectors and multiple output layers for multiple

object class recognition.

Another widely-used sensing technique for 3D environment reconstruction is LIDAR

scanners. 3D LIDAR-generated point clouds were already used in distance ranging, ob-
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stacle detection and avoidance, path planning, and were thus imported to autonomous

driving systems. 2D convolutional neural networks (CNNs) [56] have been designed for

processing and recognizing objects from 3D LIDAR point cloud. However, this solution

is not considered optimal since it requires a model to recover the original geometric rela-

tionships. Vote3Deep is developed in [41] for fast point cloud object detection using 3D

CNN, in order to keep the key power of LIDAR as distance and objects 3D shapes and

depth detection. The KITTI Vision Benchmark Suite [48] offers raw LIDAR and labeled

objects from point cloud.

As clarified above, most autonomous driving systems rely on LIDAR, stereo cameras

or radar sensors to achieve object detection, and scene flow estimation of objects on roads.

Despite the great advancement in both technologies, they are still incapable of detecting

hidden elements, such as hidden vehicles or pedestrians. Camera based systems may also

fail in detecting geometrically line-of-sight entities due to limited visibility conditions,

such as bad weather conditions (e.g., very bright sun, fog, heavy rain/snow) and close

colours to surrounding nature (e.g., the cause of the prototype accident in [115]). Fi-

nally, the camera and LIDAR techniques fail in detecting road/traffic conditions, (e.g.,

red traffic lights, change in speed limit, etc), which may cause traffic violations (e.g., [52])

and even fatal problems. As aforementioned, all such problems may be resolved if these

sensing technologies are complimented with actual in-flow information from both close

vehicles and traffic infrastructure through VANETs. Google’s self driving car project

called WAYMO [83] is collaborating with Intel in order to create powerful chips respon-

sible for the processing and fusion of data retrieved from radars, cameras, and LIDARs.

Researchers in [111] presented an approach to geometrically align points from LIDAR

scans to points captured from a 360 degree camera.

In addition, VANETs offers various types of V2V and vehicle-to-infrastructure (V2I)

safety messages on 7 control channels operating over a dedicated 75 MHz spectrum band
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around 5.9 GHz [61, 76]. Our aim in this work is to present an augmented scene flow

understanding and object mapping by considering not only LIDAR and cameras, but also

DSRC-based V2V beacons exchanged between vehicles.

The traditional localization approach using Global Positioning Systems (GPS) is not

only inaccurate but also limited since it gives the position of the vehicle itself without

distances of their surroundings. Knowing that the automated driving instructions need

to be precise and requires that the steering commands to be in tune with the surrounding

moving and static objects. Most research attempts that are used by vehicle automation

systems to gain better insight about textural and spatial details, use Simultaneous Lo-

calization And Mapping (SLAM) techniques [39] for self-driving cars localization through

odometry [93]. This uses data irrespective of sensing modality to approximate the esti-

mate changes of a vehicle’s position over time according to their surrounding. SLAMs

techniques’ heavy computation and limitation to guarantee only positioning is the in-

centive to this work by offering alignment of dynamic surrounding objects fused from

different input sensors, instead of aligning the whole scene without knowing the objects

and mining them.

1.5 Contributions

Our work contributions can be divided into three major pillar projects, namely AAA

scheme and VC scheduling, manifold alignment and sensor fusion and tracking and LIDAR

3D scene understanding.

Cloud computing and vehicular Communication represent the corner stones for build-

ing smart cities with safer roads, intelligent transportation management and on the air

infotainment applications. The key advantage of Vehciular Clouds (VCs) is to host ap-

plications that are frequently requested and deployed on VANETs. The virtualized com-

putational resources in OBUs of vehicles and in RSUs offer a promising environment to

place non-safety computation hungry applications. The vehicular network reliability and
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the clouds performance are of paramount importance because of the complex challenges

including the increase of the offloaded data from the cloud, the rapidly changing topology

of the network and the safety of vehicles. The Dedicated Short Range Communication

(DSRC) [62] standard is considered as a key vehicular communication technology that

was created by the Federal Communication Commission (FCC) [7]. DSRC spans over a

dedicated 75 MHz spectrum band around 5.9 GHz in USA [88]. The used bandwidth is

partitioned into seven different channels of 10 Mhz each. The channels contain one Control

Channel (178) to serve event-driven and safety related applications, and six Service Chan-

nels (172,174,176,180,182,184) to serve packets of cloud-based non-safety applications in

vehicular networks. Time critical Safety applications are based on V2V communication

and delay-tolerant non-safety applications based on the V2I communication and may

include V2V communication during infrastructure coverage limitations. Consequently,

VANETs deployment is expected to guarantee a reliable dissemination of safety messages

in V2V as well as to take advantage of abundant resources in a VCs to host applications

with a reasonable downtime on clients’ side when Virtual Machine Migration (VMM)

occurs while leaving the coalition forming the cloud.

The main contributions developed in the advanced scheme based on IEEE 1609.4 and

the VC task scheduling are summarized as follows:

• Develop a DSRC channel inactivity awareness and highly dynamic automated inter-

val switching scheme based on the calculated average effective interval utilization.

• VCs connectivity improvement by maximizing the SCH utilization and reducing V2I

end-to-end delays.

• Reducing the probability of the dropped Virtual Machine (VM) duing migration by

improving the VC throughput and enhancing the reliability applications through a

decrease in the end-to-end delay of packets between vehicles and RSUs.

• Formulation of an optimal vehicular task placement scheme as a Markov Decision
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Process and comparison with a fast greedy heuristic algorithm for scheduling vehic-

ular tasks in a VCC system that is formed of various VCs with opportunistically

available V2I communications.

• Accelerate the iteration value algorithm used to calculate the optimal decisions of

the MDP problem using the CUDA parallel programming model.

The goal of this Dissertation is to merge the key features of LIDAR in giving accurate

distances, camera with object textural details, and V2V beacons for the awareness of both

hidden out-of-sight vehicles or vehicles not observed by the two other means. We first

adapt the camera and LIDAR learning and object recognition schemes to prepare the

resulting data for alignment. We also generate BSMs for vehicles detected in the KITTI

Vision Benchmark Suite for alignment purposes. Exploiting the physical neighborhood

correlation within the three data sets, and their natural correspondences in the 3D physical

space, we then cast the merging problem of these three sets of data as a semi-supervised

manifold alignment. Our proposed approach is to first identify few clear correspondences

between data points from each pair of data sets, and employ them to align (i.e., pair) the

rest of the points between the camera-LIDAR and camera-V2V data sets, thus establishing

a full object correspondence among the three sets. To perform this alignment, we compute

the neighborhood correlations and Laplacian matrix for in each data set using local linear

embedding. The alignment problem is then formulated as an eigenvalue problem over

a compounded Laplacian matrix. Once the mapping of paired points is done, the other

points from each data set can be easily paired and the non-paired points can be added

in the aligned 3D environment, thus significantly enriching the vehicle knowledge of its

surroundings. We test this work using the scene flow, 3D LIDAR point clouds, and

generated BSMs of the KITTI Vision Benchmark Suite, and perform the camera-LIDAR

and camera-V2V alignment.
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1.6 Organization of the Dissertation

The remainder structure of this Dissertation is organized into six major chapters.

Chapter 2 provides a comprehensive survey of the key challenges in VANETs, VCs, stereo

perception and LIDAR understanding and the fusion techniques. In chapter 3, we present

the WAVE 802.11p MAC with the multi-channel operations defined in the IEEE 1609.4

standard and the developed AAA advanced scheme. Afterwards, chapter 4 sheds light

on the vehicular workload modeling and vehicular cloud computing scheduling with both

sequentially and parallel schemes. The developed technique to post-align pre-learned

scenes for camera feeds and LIDAR scans between the created manifolds are presented

in Chapter 5. In Chapter 6, we present the extended kalman filters applied to the 3D

CNN for the raw lidar scans. Finally, we conclude the Dissertation by summarizing the

important take-away contributions and open research directions in chapter 7.
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Chapter 2: The Integration of Vehicular

Clouds and Autonomous Driving

2.1 Key Challenges in VANETs and VCs

The major studied building blocks of vehicular networks can be classified into four

major sections; namely: communications technologies, cellular and DSRC architectures,

network architectures and VANET MAC protocols. The vehicular networks are intended

to manage the connectivity of vehicles from and to VCs and to support access inde-

pendently of the clouds’ architectures and challenges. This section focus on the overall

challenges in VCs and provides a thorough summary of the most relevant architectures

developed in the literature.

2.1.1 Vehicular Communications Technologies

Modern vehicles are mostly equipped with various communications technologies such

as WiFi, DSRC, 3G, and LTE. This is considered a valuable advancement, but ensuring

that vehicles use the most appropriate communication technologies is a very challenging

problem. This is the case for each of these technologies and the trade-off between their

pros and cons. The maximum range of WiFi-direct can extend to 200 meters with a

highest data rate of 11 Mbps. Whereas LTE is a paid mobile communication technology

that has a wider connectivity coverage than DSRC and WiFi, but provides a lower data

rate that ranges from 5 to 12 Mbps. Even though DSRC has a maximum data rate of up

to 27 Mbps, its maximum range is 1000 meters.
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2.1.1.1 Dedicated Short-Range Communications (DSRC)

The DSRC [61] standard was coined by the Federal Communications Commission

(FCC) [7] to operate over a dedicated 75 MHz spectrum band around 5.9 GHz in the

USA [88] and partitions the bandwidth into seven channels. The DSRC has been adopted

to enable two classes of applications (Safety and Non-Safety) for VANETs. One con-

trol channel CCH number 178 which are used to serve safety applications. Six SCHs

(172,174,176,180,182,184) to serve non-safety applications.

DSRC specifies a channel switching scheme that allows vehicles to alternate between

the transmission of safety and non-safety packets. The DSRC standard recommends that,

during a SI which is 100ms long, vehicles should visit the CCH to exchange their status

messages with neighboring vehicles. The SI is composed of Control Channel Interval

(CCHI) and Service Channel Interval (SCHI), both intervals are used to access the CCH

and the SCHs for sending safety and non-safety application packets, respectively. Many

research studies have been conducted to optimize the CCHI and the SCHI to guarantee

a fair split of the SI between the safety and non-safety applications and to prioritize

applications based on their QoS requirements. A higher time share of the CCH from the

SI leads to more reliable safety applications. In [53], the authors developed two algorithms

to optimize the length of the CCHI so that non-safety applications have a fair share of

the SI. In [77], the authors developed an advanced awareness scheme of channel inactivity

to dynamically achieve optimal interval switching based on the average effective interval

utilization.

2.1.1.2 Cellular Technology and DSRC-Cellular hybrid Architectures

Due to the aforementioned limitations of DSRC, many research attempts have raised

interest to investigate the support of cellular technologies (e.g., 3G, LTE, 5G) for vehicle

to any (V2X) communications and usage of both DSRC and cellular communications, as
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shown in Fig. 2.1. Cellular technology is gaining momentum in the research community

over DSRC because of the following enablers:

• The capacity of dense networks to support high bandwidth demand of vehicles and

cellular users at the same time. In such scenario, the performance evaluation of the

downlink with unicast and broadcast vehicular messages is studied in [81] for LTE

based systems.

• Reduced frequency of horizontal handoff of vehicles between BSs is guaranteed

through the large cellular coverage.

• Unlike DSRC poor Non-Line-Of-Sight receptions, cellular LTE systems provide po-

tentially better coverage as demonstrated in [82].

• Cellular is widespread and mature technology that accelerates the deployment of

V2X communications and does not require new infrastructure facilities like DSRC.

On the contrary, current research studies that investigate sending vehicular safety mes-

sages using LTE [25], and cross-traffic assistance of vehicular safety messages using UMTS

and LTE [82], do not account for traditional cellular network traffic. Even though the

downlink and uplink transmission rates between the BS, as the access network connecting

to the Internet, and vehicles in LTE (up to 300 and 75 Mb/s, respectively) are higher than

in DSRC, LTE cannot provide the same awareness update rate and latency for Coopera-

tive Awareness Messages (CAM) like ”offered” using DSRC [82]. To put it differently, the

centralized nature of cellular networks imposes that messages should be sent from vehicles

to BSs that unicast or broadcast messages to other vehicles. In other words, instead of

directly sending safety messages using DSRC, in cellular networks safety messages have

to pass by the BS. Therefore, the use of the cellular technology results in lower awareness

update rate and higher latency for disseminating delay critical safety-related applications.

Additionally, several challenges limit transmission of the messages received by the BS:
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Figure 2.1. DSRC-Cellular Hybrid Scenario for V2X Communications [9].

• Unicasts the received safety messages to the relevant vehicles subject to the the

initial sender’s safety. The Work in [14] shows that in case of unicast of messages

from the BS, the uplink has lower traffic load than the downlink and it becomes a

bottleneck. One affordable solution that is available in 3GPP and higher standards

is the use of multimedia broadcast and multicast services (MBMS), and the evolved

MBMS (eMBMS) for safety message dissemination over cellular communications.

• Broadcasts the received safety messages to all the vehicles in its cell coverage area.

Ultimately every vehicle receives all the safety messages sent by the BS, regardless

of whether or not it belongs to the same zone of relevance to the sending vehicle. An

alternative solution that might have a high latency is to create multicast groups [5]

with eMBMS that are concerned with the safety messages that the BS transmits.
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2.1.1.3 Traffic modeling and networking of Safety and Non-Safety Applica-

tions

To better understand how the traffic density in vehicular networks affects the reliability

of the safety applications in event-driven and periodic applications, many studies [53] allow

safety applications to optimize the CCHI while applying different types of workloads

composed of various safety applications. Many types of safety applications depend on

different types of data [15].

In the VANET WAVE Protocol, every CCH period supports sending only one beacon

packet for every vehicle in every channel period. The key point is how to prevent and

detect the collision caused by hidden or exposed terminals in the broadcast mode especially

that there are no Request To Send (RTS), Clear To Send (CTS), Acknowledgements

(ACKs) and re-transmission packets as in the case of IEEE 802.11 wireless networking

protocols. There are many types of safety applications that are used to increase the

safety of roads by exchanging information regarding the traffic, vehicles’ statuses, road

conditions and many other details. These applications include:

• V2I safety applications [37] related to the communications between vehicles and road

infrastructure. They include Stop Sign Violation Warning (SSVW) [95], Railroad

Crossing Violation Warning (RCVW), Spot Weather Information Warning (SWIW),

Oversize Vehicle Warning (OVW) and Reduced Speed Zone Warning (RSZW).

• V2V safety applications [47] that are executed by vehicles and received by their

neighboring ones. They include Forward Collision Warning (FCW), Electronic

Emergency Brake Light, Do Not Pass Warning, Left Turn Assist (LTA), Intersection

Movement Assist (IMA), Blind Spot Warning (BSW) and Lane Change Warning

(LCW).

The authors in [15] studied the packet reception rate of various scenarios each composed

of a mixture of different safety applications. Packet reception rates in VANETs charac-
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terizes the successful transfer probability of safety packets sent between vehicles and it

is calculated to achieve the overall successful probability of transfer. The probability is

based on the following three conditions: successful transfer probability of a packet when

no other vehicle is sending, the successful transfer probability of a packet when left side

senders are sending packets, and the successful transfer probability of a packet when right

side senders are sending packets.

Asgari et al. [15] proposed that Based on the Poisson Distribution rules, the workload

of a running application on a vehicle can be characterized by one parameter λr which

is the exponential distribution parameter of the time between packets received by other

vehicles and time of the presented mathematical model. A very challenging problem is

to allow vehicles to access the channel with a derived optimal probability in a way that

maximizes the successful transmission rates. It also modifies DSRC parameters based on

the conditions of the road and network conditions to allow the co-existence of safety and

non-safety applications with lower congestion and higher successful transmission rate.

In [125], authors presented a cloud-based network selection scheme to ensure that vehicles

on the move are assisted and are able to make decisions to select the best network after

having a wider network awareness scope. The developed scheme considers the high mo-

bility of vehicles and the fast changing network topology as well as the changes adapted

to the communications channel leading to unstable Received Signal Strength (RSS). Xu

et al. [125] developed a coalition formation game model for vehicular networks with a fast

convergence algorithm tested with three vehicular scenarios that demonstrate a realistic

range of network topology, resource availability and mobility patterns of vehicles. It uses

a distributed database that holds and periodically updates the networks’ statistics, road

traffic flow information and network maps. Vehicles can consequently apply a network

selection algorithm to determine the most suitable network that maximizes their flow of

application packets from and to the cloud.
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2.1.1.4 Vehicular Network Architectures

In this section, we survey the most recent research progress on vehicular network

architectures, as detailed in [70]. This can be classified into three major categories based

on the parts intervening in the network:

• Stationary cellular and/or RSU based networks used as access points to provide

services to vehicles, such architecture is detailed in [27].

• Pure VANET formed by parked [50] or moving vehicles [33].

• Hybrid network architecture that combines cellular and RSU with mobile vehicles

as ad-hoc networks, as described in [92].

Vehicular networks based on fixed infrastructure are eventually unfeasible because of the

high cost associated with infrastructure deployment. Most of the research attempts fo-

cus on VANETs and hybrid networks. VANETs are created by applying the principles of

mobile ad-hoc networks (MANETs) for spontaneously creating a wireless network of mov-

ing vehicles to increase safety through DSRC communications or collaboration to better

utilize the communications capabilities of vehicles in the same area. VANETs support

a wide range of applications that vary from simple one hop [73] information dissemina-

tion of CAMs [109] to multi-hop [70] dissemination of messages over vast distances [54].

VANETs can be divided into three types depending on their building blocks; namely,

connected vehicles that rely only on V2V communications, coalition of RSUs and OBUs

with V2V and V2I communication, and interconnected infrastructure equipment (e.g.,

Traffic light, pavement markers, cameras, etc.). In contrast to MANETs, modeling the

moving nodes in VANETs is less complex especially that most of vehicles are restricted

in their range of motion by paved highways/roads with traffic lights. The key issue of

network selection is when vehicles are connected to many types of infrastructure nodes

like RSUs with DSRC communications access and/or cellular nodes with 3G/LTE access
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and/or WiFi. Thus, it renders the decision making regarding the best type of connectivity

very critical given vehicular application requirements, cost, availability expectations, etc.

These infrastructure nodes have to be utilized efficiently in the best manner that reduces

handover latency from one network to another and to avoid bottleneck network conges-

tion. In [84], authors studied the use of IPv6 based on its efficient Internet traffic flow

management over heterogeneous technologies. Their model is based on using the RSUs

to act as IPv6 routers and to handle the convergence of DSRC and cellular technologies

while vehicles get in or out of their coverage.

2.1.2 Vehicular Cloud Computing (VCC)

Realizing a standardized VCC is not an easy task to achieve due to the various pro-

posed architectures and the many challenges related to various provenances of computing

and virtualization capabilities.

2.1.2.1 Vehicular Cloud (VC) Architecture

Based on the description in [123] and in [12], the overall VCC architecture relies on

three layers:

• Inside-vehicle or Tier-1 cloud formed by physical resources.

• Vehicular and infrastructure communications or Tier-2 cloud.

• The abstraction of computational resources and the formation of VCC similar to a

traditional Back-End Cloud (BEC).

The inside-vehicle layer [58] is responsible for monitoring the health and mood of the

driver and collecting information inside the vehicle. The collected data can be pressure

and temperature by using body sensors, environmental sensors, smart phone sensors, the

vehicle’s internal sensors, Inertial Navigation Sensors (INS), and driver behavior recogni-

tion to predict the driver’s reflexes and intentions.



24

Later, all the information collated via sensors should be sent to the cloud for storage or

for use as input for various software programs in the application layer. It is assumed that

each vehicle is equipped with an OBU and that is considered as the key-stone for compu-

tation in the VC. Equally important, the OBUs have broadband wireless communications

capabilities to transfer data through 3G or LTE cellular communications devices, Wi-Fi,

WiMAX, or WAVE. The OBU is connected to the sensors, GPU, GPS, controller, etc.

through a central gateway and form a complex in-vehicle network [20]. The next layer of

this architecture is responsible for the communications. This layer covers V2V and V2I

communications. The V2I component of this layer is used to augment the safety level of

vehicles on highways by reducing the percentage of crashes, delays and congestion, im-

prove mobility, and provide Wireless Roadside Inspection (WRI) to automatically inspect

commercial vehicles. The cloud is the last layer of the VCC architecture that allows for

massive and complex computations in minimal time. The cloud layer consists of three

internal sub-layers: application, cloud infrastructure, and cloud platform.

2.1.2.2 Vehicular Cloud Computing (VCC) Challenges

The computing resources of vehicles that remain underutilized are combined to create

a vehicular cloud composed of vehicles in parking lots [50]. In [106], authors propose

forming a vehicular cloud by using the microdatacenters in the RSUs so that every RSU

offers its capabilities to run infotainment applications. In [13] the VC is able to merge

autonomously the moving OBUs to offer services. Whether the VC is static or in motion,

as presented in 2.2, many challenges still remain on how to manage these types of clouds

with unpredictable availability of computational resources as vehicles enter and leave the

cloud. Moreover, handling VMMs with the lowest cost possible and across heterogeneous

VCs is a requirement. The technical challenge also lies in the fact that the vehicles come

and go, which makes the assignment of computing resources to tasks difficult. In addi-
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Figure 2.2. Different Architectures of Vehicular Clouds.

tion, there is a tremendous need for fault tolerant job assignment strategies to mitigate

the effects of resource volatility and unavailability in VCs, as detailed in [50].

This can be achieved by offering a theoretical analysis and prediction of the expected job

completion time in both cases when vehicles do not leave during a checkpoint operation

and when vehicles leave while checkpointing is in progress, which leads to a loss of VMs

context and to the failure of the system. One of the solutions proposed in the literature

is referred to as checkpointing where the state of the computation is saved periodically

while jobs are still in progress and the most recent image, or also called copy, of VM is

used to rollback the computation in case of a system failure. The contribution of the

authors in this paper is focused on saving the state of the computation of a VMM by a

vehicle only when needed.

This puts less overhead on the system, especially that most of the checkpoints are not

necessary which may increase the efficiency of the vehicular cloud. Ghazizadeh et al. [50]

designed a model for deterministic environment in terms of vehicle departures and arrivals

to the network. The authors explored also the idea of assigning each job to two vehicles

for fault-tolerance purposes and taking a checkpoint only when one of them leaves the

parking lot.

The proposed solution seems efficient in terms of minimizing the packet losses of appli-
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cations when vehicles leave the cloud but it has a significant disadvantage as each task

is being executed twice at the same time which decreases the effective throughput of the

cloud.

In [126] the authors investigate the resource management and sharing problem for

bandwidth communication and computing resources to handle mobile applications in

cloud-enabled vehicular networks. Cloud SPs cooperate to form coalitions of cloud re-

sources to share their idle resources with each other. The coalition game model or scheme

based on two-sided matching theory for cooperation among cloud SPs. The resources can

be better utilized with an improved QoS for users.

The Cloud Service Provider (CSP) reserves a certain amount of long-term bandwidth from

network providers and reserves some long-term computing resources (eg., CPU, Memory,

Storage, Bandwidth, etc.) from data-centers, which are owned by CSPs. When the CSPâs

available resources are limited and do not satisfy the vehicular application requirements,

the service quality and user experience degrade. With this in mind, the solution is that

vehicles share their storage, bandwidth, and energy resources with each other to secure,

store, carry and forward network data for the mutual enhancement of the overall perfor-

mance of a network of the cloud environment.

The Vehicular Cloud Service Providers (VCSPs) using the computation and communica-

tions capabilities of the underlying OBUs have to employ efficient resource management

and sharing schemes to meet the requirements of the applications on the street, while

taking into account the main differences between Mobile Cloud Computing (MCC) and

VCs especially the high mobility of vehicles. It is considered as a compelling business

model in the cloud market to know the cost of resources to be rented and the reward of

resources offered to the cloud. Having a combination of prices with resource demands

in cloud-enabled vehicular networks is implemented as a coalition formation application

using the two sided matching theory.

This application also helps to improve the fairness of transactions and optimizes the
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resource utilization and cost of the VCSP. Therefore, building a win-win situation by

rewarding, as in [68], vehicles agreeing to become a cloud member.

Additionally, some applications have strict deadline constraints, which causes a prob-

lem with decision-making for VC selection to host the applications especially with unstable

VC resources. In [13], two major issues that are considered related to the cloud avail-

ability and lifetime, and the applications processing time. The high mobility of vehicles

over time reflects the dynamic changes of resource availability over time, which similarly

implies many issues regarding the management of the the dynamic VC’s resources to guar-

antee that tasks are completed with minimum cost before their deadlines and within the

lifetime of the VC. In contrast to the previously discussed work, authors in [13] assume

that the computing resources of the OBUs are limited and could merge autonomously,

flexibly and dynamically to offer services to authorized users. The proposed architecture

of the dynamic VC consists of a Cloud Directory Application Repository (CDAR) that

contains a list of all applications, all tasks that compose applications and application

deadlines, vehicular cloud communications (e.g., WAVE, 4G or 5G Based).

In addition, the architecture is based on a broker that first announces invitations for

participation in the cloud, receives responses of the vehicles containing the type and the

amount of the available resources and finally registers the vehicular cloud in a CDAR in

its area and specifies the properties of resources, lifetime of cloud and costs of resources.

In addition, one major concern in VC is the cloud formation and VMM specifically

with the most challenging type of VC that has mobile micro datacenters mounted on

vehicles’ OBUs and with RSUs acting as head of cloud. In [102], authors have developed

dynamic VMM for dynamic VCs. When a vehicle is moving it may exit one network

and enter another. If it is still in the same area or still in the communications range

of the same RSU, there is no need for VMM. Otherwise, there will be a pressing need

to effectively migrate the virtual machines running those applications in order to keep

them in the same network. The authors proposed a new scheme called vehicular VMM
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which is used to better achieve an effective handling of frequent changes in the data center

topology and host heterogeneity while keeping minimal RSU intervention.

2.2 Autonomous Driving: Perception and LIDAR Scene

understanding and Reconstruction

In this section, we discuss the most successful machine learning techniques for AD

approaches using different input modality sensors, as presented in Fig. 2.3. With this

in mind, the classification of recent work falls into the following broad categories: medi-

ated direct perception approaches, behavior approaches, reflex approaches, and LIDAR

perception approaches. Then, we present recent visual-based and LIDAR-basd odometry

for vehicle localization and mapping based on raw data with non-recognized objects in

scene, based on camera-only feeds, LIDAR-only point cloud data, and mixed approaches

combining visual and LIDAR inputs for joint vehicle localization and mapping within its

surrounding objects.

Figure 2.3. Illustration of Three Paradigms of the Autonomous Driving Systems [26].

2.2.1 Mediated Perception Approaches for Autonomous Driv-

ing Systems

Mediated perception approaches process the entire scene given by a front-facing cam-

era and parse it in order to recognize driving-relevant objects that impact the driving

decisions. This kind of approach depends on independent modules that are used for dif-
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ferent specialized recognition tasks, such as lanes, vehicles, pedestrians, traffic lights and

signs, free space, etc. [48].

The recognition results of these modules are integrated and combined in a unique world

representation to represent the surroundings of the vehicle and from which the final driv-

ing decisions are made, as detailed in most of the state-of-the-art systems [94]. The

complexity and cost of mediated perception approaches stems from the need to make a

total scene parsing and understanding, while only a small number of recognized objects

are relevant to make driving decisions from one frame to another.

2.2.1.1 Pixel by Pixel Full Scene Labeling (FSL)

One approach to understand the scene around vehicles is semantic segmentation that

labels each pixel in an image with the category of the object to which it belongs. La-

beling each pixel of the scene independently from its surrounding pixels is a very hard

task to achieve. In order to know the category of a pixel, the labeling process relies on

relatively short-range surrounding information and long-range information to understand

the context while an object covers more than a pixel. Fig. 2.4 shows the result of FSL on

a camera frame from the SIFT flow Dataset.

In other words, to determine that a certain pixel belongs to a vehicle, a pedestrian or to

any other class of object, FSL needs to have a contextual window that is wide enough

to show the surrounding of the pixel. Consequently, an informed decision can be made

of the class of the object that contains the pixel. Techniques based on Markov Ran-

dom Fields (MRF), Conditional Random Field (CRF) and other graphical models are

presented in [55], [66], [89] to guarantee the consistency of labeling the pixels in the con-

text of the overall image. In addition, authors in [51], [63] and [116] developed various

methods for pre-segmentation into super-pixels or segment candidates that are used to

extract the categories and features characterizing individual segments and combinations

of neighboring segments.
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Farabet et al. [46] developed a FSL technique that includes detection, segmentation

and recognition of all objects in the scene. It uses a large contextual window that labels

pixels and reduces the requirements for postprocessing methods by using a multiscale

Convolutional Neural Network (CNN) that is trained from raw pixels to extract dense

feature vectors that are encoding regions of multiple sizes centered on each pixel of the

image.

Figure 2.4. Results of FSL on SIFT Flow Dataset [45].

A complete detailed version of the same scene parsing architecture is developed in [45].

The key idea behind the proposed mutiscale dense feature extractor is to generate a series

of feature vectors of regions with multiple sizes and centered around every pixel. The

CNNs that are fed with raw pixels with end to end training have copies of a single net-

work with the same weights. These networks are applied to multiple scales of a Laplacien

pyramid version of the input image. The trained networks offer features that produce

efficient multiscale representations for FSL to capture texture, shape and contextual in-

formation. Even though the learned multiscale representations allow for the detection and
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recognition of regions and objects contained in the scene, they do not draw the boundaries

of the regions accurately.

In [18], the authors were the first to utilize the CNN architecture for semantically

segmenting the pixel of the images using a pixel-wise classification layer on top of the the

decoder network that follows the encoder network. Impressive results of the pixe-lwise

classification are presented in Fig. 2.5.

Figure 2.5. Pixels Labeling Based on Different Class of Objects [18].

2.2.2 Direct Perception Approaches for Autonomous Driving

Systems

The direct perception approach was initially introduced by [26] to predict the driv-

ing decisions, instead of learning to map images containing different situations with the

steering action or parsing and recognizing the scene and deciding the control actions of

the vehicle. The developed model is built on top of a CNN that automatically derives

indicators of situation of the road, such as the distance between the vehicle and the lane

marking, angle of the vehicle relative to the road and distances to other surrounding ve-
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hicles. Additionally, the adopted and trained CNN learns to extract image features and

makes meaningful predictions and description for scene understanding and autonomously

drive the vehicle by the help of a simple controller.

2.2.3 Behavior Reflex Approaches for Autonomous Driving

Systems

Behavior reflex approaches [99] are drastically different from mediated perception ap-

proaches and direct perception approaches by constructing a direct mapping of the sensed

input to the corresponding driving action that has been taken. One former technique is

developed in [8] that generated a neural network to create a direct mapping from input

images to corresponding steering angles in order to be directly applied to learn driving

actions. To learn the model, the system uses the images and the actions representing the

steering angles as the training data. It has been proven that this technique can handle

lane navigation, but failed to realize accurate decisions in a complicated traffic scenario.

As opposed to the Autonomous Land Vehicle in a Neural Network (ALVINN) system

developed in [99] that uses fully-connected networks, the end-to-end DAVE-2 system pro-

posed by NVIDIA in [21] uses a CNN that directly maps the raw pixels of images from

cameras to the steering commands. DAVE-2 makes use of CNNs that offers more than

pattern recognition, as it is trained to learn the whole processing pipeline, to find steer-

ing decisions based on training video data collected while driving from two cameras and

coupled with left and right steering decisions.

2.2.4 LIDAR Perception Approaches for Autonomous Driving

Systems

The work in [34] developed a solution based on LIDAR data only to explore the vehi-

cle surroundings. This solution involves three consecutive phases; namely, segmentation,

fragmentation detection and clustering, and tracking. The developed solution is built
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based on combining multiple artificial intelligence techniques and it is conceived for de-

tecting and tracking objects of any shape that are going to be used by autonomous vehicles

to find and understand the scene flow of its surroundings as shown in Fig 2.6.

Figure 2.6. LIDAR-Based Scene Understanding.

2.2.5 Mixed Mediated and LIDAR Perception Approaches for

Autonomous Driving Systems

The autonomous driving platform developed in [87] presents an interesting and chal-

lenging real-world computer vision benchmarks that include stereo, optical flow, visual

odometry, 3D object detection and 3D tracking of real time surroundings of autonomous

vehicles. The data includes the LIDAR and the camera recordings of driving sequences

as shown in Fig. 2.8.
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Figure 2.7. KITTI Benchmark Suite for creating the Dataset [87].

2.3 Localization and Mapping For Self-Driving Ve-

hicles

Traditional localization approaches such as GPS are inaccurate with a significant lo-

calization error in addition to the total unreliability because of the insufficient network

coverage. Digital driving instructions have to be ultra-precise since driving requires steer-

ing commands to be in consensus with the deep-learning and mapping of the outdoor

environment.

Consequently, fully AD systems opt to use high-precision maps or also called HD maps

to localize a vehicle in the space and within its surrounding objects in the scene. Auto-

matically created high-precision decision maps put together various enriched multi-model

sensed data and a pre-mapped environment that can be from raw LIDAR, Video or mixed

sources.
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Figure 2.8. Real-Time 3D Object Detection and Tracking.

As opposed to standard definition maps that are based on GPS positioning such as Google

Maps and used for machine to human communications, HD maps are fundamentally dif-

ferent with a better resolution and are meant for machine-to-machine communications.

Its relative localization systems are supposed to provide an approximate maximum local-

ization precision of 25 cm, in comparison with a 2 to 10 meter accuracy in GPS, without

the need for external error detection and correction systems.

Major research attempts are discussed in this section to gain a better insight into the real

practicality of SLAM [39] for localization of self-driving vehicles through odometry [93]

that uses data irrespective of sensing modality to approximate the changes in a vehicle’s

position over time.

2.3.1 Visual Odometry for Vehicle Localization

Scanned roads by stereo cameras overlaid over high precision positional data produce

a highly detailed representation and localization. In this context, Raul et al. developed
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in [90] a novel feature-based monocular SLAM system that requires creation of initial

maps since depths may not be found from a single image frame in order to provide

wide baseline loop closing detection and to serve motion clutter. The developed solution

covers the tracking, mapping, relocalization and loop closing based on a novel strategy

that selects specific key important points and keyframes to generate trackable maps that

grow with scene content changes.

Every Map point holds the 3D position of the world coordinate system, the viewing

direction consisting of rays joining the point with the optical center of the keyframes

observing it, and a representative ORB descriptor holding the smallest hamming distance

among all associated descriptors in keyframes where the same point is observed.

In addition, the proposed scheme ensures that every keyframe stores camera principal

points and focal length, ORB features that were extracted from the frame independently

of whether or not they are associated with map points and the camera pose that represents

rigid body transformation of points from real-world coordinates to camera coordinates.

Then the co-visibility graph, the essential graph, ORB descriptors extraction and the

automatic map initialization are achieved dynamically in order to satisfy finding initial

correspondences and making the parallel computation to find inliers between models. Fig.

2.9 shows points and keyframe trajectory, ground truth and trajectory and after many

iterations of full bundle adjustment.

A continuous estimation of vehicle’s current position and orientation depending on

the observed environment from the camera is presented in [118] as shown in Fig. 2.10.

It enables SLAM with rigidly coupled frames of Multi-Camera Systems (MCS) by taking

advantage of the MultiCol Model and introducing:

• The usage of Multi-Key Frames (MKFs) with identification and match points across

them and mask outliers.

• Hyper-graph formulation of MultiCol for different tracking and modeling pipeline
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Figure 2.9. Sequences 00, 05, and 07 From the Odometry Benchmark of the KITTI dataset. (Left)
Points and Keyframe Trajectory. (Center) Trajectory and Ground Truth. (Right) Trajectory After 20
Iterations of Full BA [90].

than used in [90] where graph edges connect two vertexes only and now edges can

connect to any arbitrary number of vertexes.

• Advanced Multi-camera loop closing that searches eventual loop closures from newly

presented MKF in order to figure out if a place has been visited.

Depiction of the loop closing, applying similarity transformation to possible alignment of

points and usage of the alignment error to correct the remaining MKF poses and points

mapping by projection to map are generalized in Fig. 2.10.
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Figure 2.10. Loop Detection Example on an Uncoinciding Spatial Alignment of Local Map With Historic
Map [118].

The authors in [98] presented a stereo SLAM localization system called S-PTAM that

uses only a stereo camera to avoid the monocular bootstrapping problem as in [90]. To

improve robustness, the authors used to enforce stereo constraints on the pose- and map-

refinment algorithms and applied a maintenance process for each independent thread by

running a map bundle adjustment refinement algorithm in local area to improve global

consistency.

Fig. 2.11 draws the estimated trajectory discovered by S-PTAM compared to ground

truth and to generated maps while appiled to the sequence 00 of the KITTI dataset.

Figure 2.11. Estimated Trajectory Performed by S-PTAM on KITTI Dataset 00 Compared to the
Ground Truth as well as the Generated Map [98].

To achieve the creation of reliable visual environment systems, the authors in [44]
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present a scheme for tracking keypoint and estimation of egomotion and the structure of

the environment from the trajectories of the selected keypoints.

Fig. 2.12 presents an overview of the pipeline of the solution that first consists of decom-

posing a sequence of images from a monocular camera setup into consecutive frames and

applying a propagation based tracking method to find the 2D trajectories of the keypoints

and not through finding keypoint correspondences like in [98].

The search of the keypoints matches from one frame is achieved by propagating the esti-

mated 3D position of each keypoint from one frame to another and by making sure that

the photometric consistency is verified.

Figure 2.12. System Steps Modules From Sequence of Images to Propagation Based Tracking and Finally
Keypoint Trajectories. The Keypoints (a) and (b) in Frame n-1 and Frame n, While Keypoints (c) is the
Predicted Keypoints in Frame n+1 [44].

2.3.2 LIDAR-Based Vehicle Localization

In general, the rotational movement of LIDAR scanners and having the vehicle on the

move too, make the registration and localization of the point cloud very difficult.

The authors in [129] proposed a solution that uses odometry measurements to achieve

low-drift and low-computational complexity by applying two algorithms. The first algo-
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rithm is applied to perform the odometry with low fidelity and high frequency for LIDAR

velocity estimation. The second algorithm is applied to run with a lower frequency to

perform both fine matching and registration of the point cloud data.

The LIDAR odometry algorithm uses last sweep point cloud, current sweep growing point

cloud and the pose transform from last recursion as inputs parameters. It extracts fea-

ture points, finds its correspondence and applies motion estimation to a robust fitting,

as presented in Fig. 2.13. The mapping algorithm is used to match and register the re-

projected point cloud to a specific time stamp, based on the undistorted point cloud and

the pose transform that contains the LIDAR motion during the sweep generated by the

LIDAR odometry algorithm. LOAM solution is ranked #3, with a 0.70 % , on the KITTI

odometry benchmark for the average computed translational and rotational errors.

Figure 2.13. The Developed Solution Decomposes The Problem Into Two Parallel Algorithms: The
Odometry Algorithm Used to Estimate the Velocity of LIDAR and to Correct Distortion in the Point
Cloud, then, a Mapping Algorithm Matches and Registers the Point Cloud to Create a Map [129].

The authors in [29] developed a novel idea of synthetic 2D LIDAR in order to achieve

precise vehicle localization on a virtual 2D plane. The presented Monte Carlo Localization

to estiamte the position of the vehicle replies on the synthetic LIDAR measurements and

odometry information. A demonstration of the accuracy and robustness of this approach
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is demonstrated through carrying out real-time localization of the driving test in the NUS

campus area, as presented in Fig. 2.14.

Figure 2.14. Autonomous Navigation With Synthetic Virtual LIDAR. Images on the Right from Top to
Bottom Correspond to Visual Validation of Localization Repeatability From Checkpoint A to E [29].

In [22], the authors studied an accurate and reliable vehicle localization system by

using the landmarks acquired from LIDAR mapping systems. Since the standard Global

Navigation Satellite System (GNSS) solutions lacks high reliability, the developed solu-

tion relies on relative localization using LIDAR sensors and a pre-mapped environment.

Consequently, the creation of detailed environment maps is a necessary step to produce

accurate localization. The obtained landmark pairs are then associated with each others

using an estimation approach, which leads to accurate position estimations of the robotic

vehicle, as presented in Fig. 2.15.

Figure 2.15. Pole Detection Results With Black is Near, White is Far (or error), and Detected Poles are
Marked in Red [22].
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Additionally, more advanced methods were incorporated, such as using dead reckoning

based on multiple matching successive scans as presented in SLAM approaches. Alterna-

tively, the authors discussed other landmark incorporating examples like planar patches,

as presented in Fig. 2.16. Then, they investigated in details the matching algorithm with

the RMS variations, and the weak configuration points that were automatically detected.

This yield smaller error bounds that met the requirement of the design in terms of reliable

and automatic association procedure.

Figure 2.16. GPS Trajectory on Top and Result of Matching on Buttom [22].

2.3.3 Combined Visual-LIDAR Odometry for Vehicle Local-

ization

It is widely common to utilize the dense point clouds with measures of surface reflec-

tivity obtained by LIDAR scans to obtain localization results of centimeter-level accuracy.

However, this comes at a prohibitive cost in terms of sensor suites and complex state-of-

the-art localization techniques. This is why, the authors in [124] investigated a cheaper

model that finds comparable localization accuracy using cameras.

The developed model is built to localize a single monocular camera within an already

created 3D ground map from a surveying vehicle equipped with 3D LIDAR scanners, as

shown in Fig. 2.17. To realize that, a GPU is used to create several synthetic views of the

visited environment in order to achieve maximal normalized mutual information between

the GPU and the real camera measures.
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Figure 2.17. Localization Within LIDAR Maps with Birdâs Eye View on Left, Normalized Mutual
Information Cost Surface On Top and Alpha Blended Camerasynthetic View on Bottom [124].

In [130], the authors present a general framework for combining visual and LIDAR

odometries in a fundamental and novel method. The method shows improvements in

performance over the state of the art, particularly in robustness to aggressive motion

and temporary lack of visual features. The proposed on-line method starts with a visual

odometry to estimate the ego-motion and to register point clouds from a scanning LIDAR

at a high frequency but low fidelity. Then, scan matching based LIDAR odometry refines

the motion estimation and point cloud registration, simultaneously. In addition to the

comparison of the motion estimation accuracy, the authors evaluated the robustness of

the method when the sensor suite moves at a high speed and is subject to significant

ambient lighting changes.

The overall system is divided into two sections. The visual odometry section estimates

frame to frame motion of the sensor at the image frame rate, using visual images with

assistance from LIDAR clouds. In this section, the feature tracking block extracts and
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matches visual features between consecutive images, as shown in Fig. 2.18.

The depth map registration block registers LIDAR clouds on a local depthmap, and

associates depth to the visual features. The frame to frame motion estimation block takes

the visual features to compute motion estimates. When applied to the KITTI odometry

benchmark for assessing the translational and rotational errors, V-LOAM achieves 0.75%

of relative position drift and is ranked #2.

Figure 2.18. Motion Estimation and Mapping are Achieved Using a Monocular Camera Combined with
3D LIDAR [130].

Visual odometry can be augmented with depth information as provided by RGB-D

cameras, or from LIDARs associated with cameras. However, such depth information

can be limited by the sensors, leaving large areas in the visual images where depth is

unavailable.

The authors in [128] propose a method to utilize the depth, even if sparsely available, in

recovery of camera motion. In addition, the method utilizes depth by triangulation from

the previously estimated motion, and salient visual features for which depth is unavail-

able. The core of the proposed method is a bundle adjustment that refines the motion

estimates in parallel by processing a sequence of images, in a batch optimization.

The method in [128] for the three sensor setups, one using an RGB-D camera, and two

using combinations of a camera and a 3D LIDAR. The presented method is rated #2

on the KITTI odometry benchmark irrespective of the sensing modality, and is rated #1

among visual odometry methods, as presented in Fig. 2.19.
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Figure 2.19. Point Cloud Perceived by Velodyne Scanner on KITTI Dataset [128].

In [69] the authors developed a complete solution for high-accuracy localization of

vehicles on the move using urban environments’ maps. The presented solution aims to

generate high-resolution environment maps by integrating GPS, IMU, wheel odometry,

and LIDAR point cloud data obtained from the vehicle’s recorded data. The solution

allows the localization of the moving vehicle within the maps by mainly using a particle

filter method for calculating the correlation of LIDAR measurements with the map, as

shown in Fig. 2.20.

The map is created by the reconstruction the 3D structure of the environment using

infrared reflected laser beams of the LIDAR. More precisely, the experimental results

relative accuracy are better by more than an order of magnitude than the ones using

traditional methods (e.g., GPS, IMU and odometry). Therefore, the presented solution

achieved a reliable real-time localization within 10 centimeter range accuracy during bad

whether and without GPS services, as opposed to the non accurate outdoor localization

research work based only on GPS.
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Figure 2.20. Visualization of the Ground Plane Extraction with the Measurements that Coincide with
the Ground Plane Are Retained and in Green All Others Are Discarded [69].

2.4 Towards VCs Meeting Autonomous Vehicles

In full alignment with the USDoTâs ITS-JPO vision stated in the RFP, we innovatively

blend connected vehicle technology with autonomous vehicle systems. These systems will

leverage the power of V2V and V2I communications, to significantly enrich the vehicle

understanding of its surroundings and collectively perform driving decisions given the

exchanged dynamics, movements, and intents of all vehicles.

In addition to the communications impact, VCs are expected to play a major role in

supporting the limited capabilities of vehicles with on the move add-on functionalities.

The VC will contribute to creating solid learning formulations to build more accurate 3D

scenes of the vehicle surroundings, using the acquired information from multiple input

modes, such as cameras, LIDARs, and exchanged V2V/V2I messages.

The targeted multimodal solutions will insert all the information acquired by the input

modes into one mapping and learning setting, which is very likely to be the revolutionary

HD live maps. It encodes one accurate 3D space representing the surrounding scene

including V2V-enabled out-of-sight vehicles and V2I-conveyed sign/signal information,

2D images with rich texture description and accurate object depth in 3D LIDAR point

clouds.
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2.5 Post Alignment and Fusion

Maalej et al. presented in [78] a multimodal framework for object detection, recog-

nition and mapping based on the fusion of stereo camera frames, point cloud Velodyne

LIDAR scans, and V2V exchanged BSMs over DSRC. Based on the adapted Darknet’s

CNN, the pixel-wise adjacency coordinates of moments are derived from the bounding

boxes of recognized objects of KITTI frames. In addition, objects are retrieved from

point cloud scans to the same camera capture. The generated BSMs corresponding to the

vehicles from LIDAR have position (x,y,z) triplet as a replacement to the real-world posi-

tioning from (Latitude, Longitude, Elevation). The authors presented a semi-supervised

manifold alignment technique to achieve camera-LIDAR and camera-V2V mapping of

recognized objects that have the same underlying manifold.

The post-alignement consists of matching correpsonding pairs of recognized objects to

reconstruct a 3D world as a virtual map surrounding the self-driving vehicles. Finally, the

presented enriched points are the ones that were not mapped as they might correspond

to out-of-sight objects, or BSMs of distant cars, etc.

Alternatively in [6], the idea of a cloud-to-car mapping system is presented by Archer

Software to have from the cloud the most updated details about road networks like lane

curvature, roadway profile, static positions of traffic signs and then recognized objects

from the car itself are post-added in order to achieve automatic maneuvering.

In [64], the authors present a novel cloud-assisted design for autonomous driving that

is called Carcel, where all the sensed data from self-driving cars and from static roadside

sensors are post-aggregated and managed in the cloud. Precisely, the cloud is responsible

for conveying obstacles to vehicles after analyzing the received information, which means

that the cloud will assist vehicles on roads to make decisions to avoid obstacles that are

not necessarily sensed by their sensors. Moreover, the longer range information that the

cloud builds about the traffic patterns enables more efficient path planning. This method
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is not realistic due to the huge amount of data that is sent from and to the cloud, which

delays the steering decisions arriving to vehicles.

2.6 Pre-fusion between VC and AD Data Modalities

As opposed to the post-fusion and mapping systems, the pre-fusion systems do not

rely on having seperate recognized data from sensors or cloud that are mapped together.

For example, Mobileye’s REM system [43] relies first on a pre-existing rich HD maps that

are supplemented with to-the-minute data from real-world driving. An advanced faster

version for accurate real-time mapping of data is currently under development.

An issue with the pre-fusion of cloud data of in-vehicle sensors is the threat of cyber

attacks which may lead to a disastrous reconstruction of surrounding world and conse-

quently to a failing AD system. As detailed in [3] having self-driving vehicles relying on

offline system might be the solution to hinder hackers.

More simplistic and secure scheme that does not rely on incoming cloud data is devel-

oped in [28], where a Multi-View 3D networks (MV3D) is developed to guarantee accurate

3D object detection applied to autonomous driving scenarios. The developed sensory-

fusion framework is used to predict the orientation of 3D bounding boxes representing an

object by taking both raw RGB images and LIDAR point cloud without applying any

prior recognition. The generated candidates of 3D boxes for localization and detection

in the KITTI benchmark outperforms the up-to-date systems by approximately 25% and

30%.

Similarly in [117], the 3D point cloud and 2D front view images are fused via a CNN

with the usage of a Region Proposal Network (RPN) that is used in the network’s multiple

layers to generate proposal region objects in the front view.
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2.7 Cooperative and Coordinated Autonomous Driv-

ing

In order to fully leverage the autonomy of self-driving vehicles, it is obvious that

developing intelligent systems built on top of coordinated autonomy would guarantee

additional safety with more trusted manoeuvres, reduce fuel consumption and balance

network traffic while guaranteeing a cooperative dispatching of vehicles depending on time

and positions. In this context many ongoing research projects on vehicles coordination

are being developed.

EPFL’s research team working on the AutoNet2030 [23] presented in the design of

distributed algorithms among vehicles with different levels of intelligence on borad rang-

ing from fully autonomous to standard vehicles for cooperation among vehicles. The

demonstration included an autonomous truck, an autonomous vehicle and an ordinary

car equipped with a human machine interface that was able to satisfy cooperatively a

merging scenario on a highway by offering enough space to a vehicle intending to merge

in-between the two others. The robustness of the algorithms allows its deployability even

before having all the vehicles being autonomous.

Another key feature of coordinated driving is being implemented by the authors in [31]

consisting of a decentralized trajectory coordination for autonomous vehicles without the

usage of widely applied synchronization points that force all vehicles to pass by syn-

chronously. The developed system assumes that a unique priority is assigned to every

vehicle and each one periodically informs other vehicles about its planned future trajec-

tory through V2V communications. Consequently, every vehicle will be responsible for

maintaining the possible trajectory that will be collision-free with regard to other vehi-

cles with higher priority. The collision-free path is obtained by the trajectory planned

that takes into account space, time and a pre-designed network of paths while model-

ing higher-priority vehicles when moving. A real time scenario validating the developed
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method is presented where every conflict between desired trajectories triggers automatic

conflict resolution.

2.8 Examples of Integration Systems

NVIDIA’s Drive PX [60] AI car computer for self-driving vehicles is considered as a pi-

oneering effort among all the computing platforms for real-time scene understanding, HD

mapping, energy efficiency, automated highway driving, accelerated deep learning, sensor

fusion, HD mapping, etc. Its GPU data parallel architecture accelerates the perception

task of detecting and classifying objects using deep neural networks that are pre-trained

in cloud datacenters and deployed in the vehicle.

In addition NVIDIA’s recently developed Co-Pilot [110] is considered as an extra AI sys-

tem built toward fully autonomous systems that is either driving the vehicle or looking

out for the driver. In other words, for tricky traffic, changing roads without up-to date

maps or highly fuzzy uncertain perception then the Co-Pilot makes sure to increase pas-

senger driver awareness with surrounding environmental awareness. It notifies the driver

about objects that she might need to be concerned about, increase the cautiousness of

driver about where to look by focusing on the driver’s face recognition, head tracking,

gaze tracking, lips reading, etc.

NVIDIA’s DriveWorks [36] is a powerful Software Development Kit (SDK) for researchers

and industry to implement any level of autonomous driving accelerated on Drive PX. Its

layered architecture and run-time pipeline framework is detailed in Fig. 2.21 and offers

the following:

• Detection Libraries used for various types of sensors processing, fusion for objects

segmentation, detection and classification.

• Localization Libraries used for odometry mapping, map localization and HD maps

interfacing.
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• Planning Libraries to ensure functions of vehicle automatic control, overall scene

understanding and intelligent path planning.

• Visualization Libraries offering applications for cluster display streaming, ADAS

and debug rendering.

Figure 2.21. DriveWorks SDK Architecture [60].

Partnering with NVIDIA on AI technology, HERE [57] is moving forward to accelerate

its HD Live Maps [4] by using DRIVE PX 2 for its self-driving vehicle solutions that are

delivered as a cloud service for a digital mapping content. The HD Live Maps is a layered

complex solution, visualized in Fig. 2.22, can be depicted as:

• Lane Model: is considered as the key model of the HD maps since it provides a

highly accurate representation of the road networks with different lanes’ separation

and roads’ delimiters, all mapper with a 10 to 20 cm precision.

• Localization Model: allows finding the exact position of the vehicle in the lane

where it is driving on the HD Map. Interestingly, it allows cars to be map makers

since as long as they are being on the road, they collect data about the perceived

environment and provide it to the cloud which aggregates all received information

to update the maps.
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• Activity Layer: plays a major role in understanding dynamic events while driving on

the road network such as heavy traffic, accidents, road closures, and other dynamic

events that may impact the driving strategies and paths of the vehicle.

• Analytic Layer is used to adapt to tricky scenarios on how to drive by looking

at various driving styles that inform the vehicles on how to behave under similar

conditions.

As an illustration, HERE HD Live Maps offer intelligent complete solutions needed to pave

the road to raise the trust in the commercial sustainability and reusability of automated

driving systems by vehicle manufacturers for automated driving solutions.

Figure 2.22. Visualization of HERE’s Live HD Map.

With cameras, RADAR, LIDAR, unreliable GPS and more sensors, Waymo [122] as

formerly known as the Google self-driving car has achieved self-driven 3 million miles by

using complex heavy computation mapping and fusion of sensed data while using minimal
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access to cloud-based services. Up to now, the self-driving is not commercialized yet even

though there have been different prototypes varying from modified traditional vehicles

requiring human inputs to vehicles without steering wheels.

Tesla’s Autopilot [1] is considered as the most popular full standalone hardware with

software solution for autonomous cars that is being actively updated and refined as long

as the number of driven miles get higher, more than 1.3 billion miles of data [59]. All

cars built by Tesla after 2014 are equipped with hardware autopilot that are capable of

receiving updates from the cloud of the core software for self-driving, required drivers for

the sensors, etc.

With its particular technology that relies on 8 cameras, surrounding both Model S and X,

along with twelve ultrasonic sensors, RADAR and GPS, the Autopilot creates a 3D view of

the vehicle’s surrounding in every direction that is beyond human access. The enhanced

Autopilot offers new capabilities varying from simple speed to traffic condition adjust-

ment to complex lane changing without driver’s input. Despite these new technological

advancements and market solutions for autonomous driving, most of the aforementioned

solutions have at certain places, moments or situations of low confidence of driving au-

tonomously. With such low confidence, self-driving systems require the driver to take-over

the commands for driving.
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Chapter 3: Wireless Access for

Vehicular Environment and IEEE 1609.4

The Wireless Access for Vehicular Environment (WAVE) standard partitions the band-

width into seven channels of 10 MHz each, one control channel (CCH) to serve safety

applications, and six Service Channels (SCHs) to serve non-safety applications. DSRC

specifies a channel switching scheme to allow vehicles to alternate between these two types

of applications. Moreover, the channel switching scheme has a lot of limitations and needs

to be improved and adjusted depending on the network density and the requirements of

the applications. WAVE is divided into four categories of 1609 family of standards:

• IEEE 1609.1: standard used as a guide to manage the resources in VANETs like

RSUs, OBUs etc.

• IEEE 1609.2: standard defined as the WAVE security services for applications and

management of messages that is responsible for ensuring the anonymity, authenticity

and confidentiality of the vehicular safety and non-safety packets.

• IEEE 1609.3: standard developed as a guide for WAVE network configuration man-

agement and WAVE Short Message (WSM) transmission and reception.

• IEEE 1609.4: standard responsible for WAVE Multi-Channel Operations that it pro-

vides DSRC frequency band coordination and management of multiple connection

access by adopting IEEE 802.11p for Wireless LAN Media Access Control (MAC)

and Physical Layer (PHY) specifications

DSRC specifies a channel switching scheme to allow Vehicles to alternate between differ-

ent packets of safety and non-safety applications. DSRC standard recommends that for

Synchronization Interval (SI) which is equal to 100ms, vehicles should visit the CCH to

exchange their different types of status messages with the neighboring Vehicles. The SI
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is composed of Control Channel Interval (CCHI) and Service Channel Interval (SCHI),

both used to respectively access the CCH and the SCH for sending safety and non-safety

applications packets. Many challenges are studied to optimize the CCHI and the SCHI

to guarantee a fair share of SI between the safety and non safety applications and to

prioritize applications based on their QoS requirements. The more we increase the time

share of the CCH from the SI the more we increase the reliability of safety applications.

3.1 WAVE 802.11p MAC

Most of the Medium Access Control(MAC) protocols developed in the literature and

used in IEEE 802.11p are employed in earlier standards of Wireless LANs. The medium

access is very challenging in VANETs because of its rapidly changing network topologies

due to vehicles’ mobility. Frequency Division Multiple Access (FDMA) [71], Time Di-

vision Multiple Access (TDMA) [132] and Code Division Multiple Access (CDMA) [91]

are very complex to implement because of the permenant need of coordination to as-

sociate frequency channels, time slots or codes with vehicles. The IEEE 802.11p MAC

protocol uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) pro-

tocol [120] that is highly considered the best adapted by VANETs. The IEEE 802.11p

offers to transmit packets on one channel and it employs a continuous mechanism [72]

for DSRC channel access to send both non-safety and safety packets, as presented in Fig.

3.1. WAVE recommends that, for a fixed SI equal to 100ms, every vehicle have to be

tuned to the CCH in order to exchange their safety related messages with the neighboring

vehicles [53]. WAVE employs Quality of Service (QoS) differentiation between the packets

sent over CCH or SCH by supporting the contention-based Enhanced Distributed Channel

Access (EDCA) mechanism [72]. EDCA implements four different access classes by using

different transmission queue for each, as presented in Fig. 3.2, as well as various Arbitra-

tion Inter-Frame Spacing (AIFS) period, maximum and minimum Contention Windows

(CWs) for traffic priority. To guarantee channel switching and coordination mechanisms,
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Figure 3.1. Wave Different Channel Access Mechanisms.

the IEEE 1609.4 standard for Multi-Channel Operations [100] is developed on top of

IEEE 802.11p MAC as Fig. 3.2 presents. To support Multi-Channel Operations, channel

switching procedures have been proposed in IEEE 1609.4. The IEEE 802.11p MAC uses

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) In this technology,

there are four access classes (ACs) with different Arbitration Inter Frame Space Numbers

(AIFSN) to ensure less waiting time for high priority packets, where CWmin and CW-

max respectively represent the minimum and maximum contention windows that an AC

can use in the IEEE 802.11 back-off process IEEE 1609.4 describes a concept of channel

intervals in which time is divided into alternating Control Channel (CCH) and Service

Channel (SCH) intervals. The general concept calls for each interval to be 50ms long.

A pair of a CCH and SCH intervals forms a Sync interval. There are ten Sync intervals

per second, the clearest issue with IEEE 1609.4 is channel utilization. While a device is

allowed to stay on the CCH and send and receive vehicle safety messages at all times,

it is generally expected that it should schedule its safety message transmission during

the CCH intervals. This is to accommodate the safety needs of vehicles nearby that are

actively channel switching to engage in other applications in SCHs. A major challenge in

VANET is the frequent topology changes in network topology. VANET MAC protocols

have to reduce the medium access delay for safety applications, to handle all the vehicles

entering or leaving the network.
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3.2 IEEE 1609.4 Standard for Multi-Channel Oper-

ations

The IEEE 1609.4 supports Multi-Channel wireless radio operations for WAVE by pro-

viding the coordination and management of the DSRC channel switching and routing by

adopting the specifications of IEEE 802.11p MAC and Physical Layer(PHY). Fig. 3.1 de-

scribes the channel intervals by dividing channel access times into fixed alternating CCH

and SCH intervals that are dedicated respectively for sending safety and non-safety pack-

ets. When it comes to VANETs with low density of vehicles, the static switching scheme

of IEEE 1609.4 does not guarantee an optimal channel utilization. It presumes that ve-

hicles have to be tuned to CCH (resp SCH) during CCHI (resp SCHI) no matter the

existence of messages that need to be sent. Low density networks are characterized with

important inactivity for safety message transmissions during the specified static timer in

IEEE 1609.4. It represents a challenging incentive to enable a dynamic intelligent time

share to access the different channel types based on the VANETs’ safety messages and

Cloud applications. This optimized access, if exists, will increase the reliability of VC to

offer more throughput, handle efficiently the task placement and allows a higher prob-

ability of successful virtual machine migration from vehicles before leaving the network

forming the VC.

3.3 Advanced Activity-Aware (AAA) Multi-Channel

Operations

A detailed description of the variables used in the formulation of the AAA scheme

is presented in Table 3.1. We describe the algorithm AAA Multi-Channel Operations

Scheme that consist in two main parts of updating MAC interval timers after finding the

effective CCH utilization. Moving vehicles under the same RSU communication range,
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Figure 3.2. IEEE 1609.4 MAC With Multi-Channel Operations.

will have time-changing distances between each other, and the network will end up having

a varying end-to-end delays of generated and transmitted BSMs during CCHI. Addition-

ally, newly accepted vehicles to the network and VC will send non-safety applications

packets but broadcast their safety beacons. Every vehicle will contribute by calculating

the average end-to-end delay and the number of exchanged BSMs in order to dynamically

find and evaluate the overall inactivity during the used CCHI and whether or not it can

be reduced. The preliminary phase consist of collecting the characteristics about the V2V

communication usage during BSM exchange, and later the RSU collects the details from

all the vehicles under its management and execute the AAA algorithm. Based on the

safety packet rates RGBSM , the total number of generated BSMs by every vehicle in one

SI can be found by using Eq.3.1 and are considered ready in the queue at the beginning

of every Guard Interval (GI) during every CCHI.

NGBSM = RGBSM ∗GI (3.1)
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During repeated CCH access based on the CCHI, the number of the broad-casted BSM

related packets by the DSRC antenna in vehicle’s OBU is expressed in Eq. 3.2 by cal-

culating the difference between the originally generated and the still queued BSMs Qvh

after channel switching.

Svh = NGBSM −Qvh (3.2)

Successfully received BSMs have and average end-to-end delay denoted by RvhBSM ,

can be found by every vehicle vh by using Eq. 3.3. Let tRijh and tSijh be respectively the

time of ith BSM received by vehicle vh and sent by vehicle vj.

Dvh =

∑NV
i=1
i 6=h

∑Nih

j=0 tRijh − tSijh
RvhBSM

(3.3)

The inactivity interval during current switching scheme can be calculated as the difference

between the default CCHI and the average time during which the CCH is effectively used,

which is given by Eq. 3.4, where DV 2V , given by Eq. 3.5, represents the average delay

of BSM in V2V communication and SV 2V , given by Eq. 3.6, is the number of exchanged

BSM in the network.

UCCH = SV 2V ∗DV 2V (3.4)

DV 2V =
DV 2V +

∑NV

h=1Dvh
(3.5)

SV 2V =
SV 2V +

∑NV

vh=1 Svh

1 +NV

(3.6)

The increased average of VC related packets that are sent by vehicles to the RSU is

formulated by Eq. 3.9, during the enhanced SCHI that is expressed in Eq. 3.8 based on

the calculated inactivity interval given by Eq. 3.7 as the difference between the default

interval and the effective utilization interval.

ICCH = CCHI − UCCH (3.7)
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ESCHI = DSCHI + ICCH (3.8)

SV C =

NV∑

h=1

NGV C −QviV C (3.9)

The algorithm collects after every SI the information related to the successful sent packets,

Table 3.1. Symbols and Notations

Varaible Description

NV Total Number of Vehicles
ST Total Simulation Time
SI Default Synchronisation Interval
NSync Number of SIs in Total Simulation Time
SIi Current Snchronisation Interval
ICCH Inactivity Interval of CCH in CCHI
UCCH Average effective utilisation of CCH in CCHI
RGBSM BSM packet generation rate
RGV C VC non-safety application packet generation rate
NGBSM Number of generated BSM messages per vehicle
NGV C Number of VC applications packets per vehicle
Svi Number of BSM sent by vehicle vi
Dvi Average end-to-end delay of all BSMs received by vi
Qvi Number of BSM queued packets of vi
QviV C Number of VC queued packets of vi
RviBSM Number of BSM received of vehicle vi
tSijh Time jth BSM is sent by vi and received by vh
Nih Total number of BSMs sent by vi and received by vh
tSV CijRSU Time when packet j is sent from vi to the RSU
tRV CijRSU Time when packet j sent from vi is received by RSU
NiRSU VC packets sent by vi and received by RSU
SV 2V Average number of BSM messages sent by all the vehicles
SV C Average VC packets sent by vehicles to the RSU
DV 2V Average end-to-end delay of BSM message
DV C Average end-to-end delay of VC packets
tRijh Time jth BSM sent by vi is received by vh
DCCHI Default Control Channel Interval
DSCHI Default Service Channel Interval

delays, vehicles’ number and other parameters. It updates the characteristics of WAVE

every 10*SIs=1s by figuring out whether the used CCHI is longer than needed or not.
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Giving more time to the SCHI will increase the successful transmission rate and decrease

the average end to end delay of up-link data from vehicles to the RSU. For simplification

purposes, we will not consider any prioritization of any kind of application packets over

others during the transmission attempt in CCH or SCH. BSMs are the only type of V2V

communication in the CCH and IP packets from vehicles to the RSU. We will consider the

same Access Categories Access Categories (ACs) for all the Queues either in CCH or SCHs,

for that we assign the same minimum and maximum for Contention Windows (CW) and

AIFS as shown in Table 3.1. We do not intend to study the effect of service prioritization

and the differentiation between ACs of the different channel access parameters of EDCA

used in IEEE 802.11p. We would rather identify the overall inactivity interval of using

the CCH between all the vehicles during the default CCHI and use it to increase the time

share of the SCH to fulfill the enhanced VC performance. Algorithm 1 presents more

details for the part of finding the average end-to-end delay between exchanged BSMs

between every SI transition, as well details about inactivity and increased SCHI in order

to keep the default SI equal to 100 ms as predifined by the standard.
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Algorithm 1 Advanced Activity-Aware Multi-Channel Operations
Result: Adjusted CCHI and SCHI

NSync =
ST
SI

, SIi = 1

while SIi < NSync do

if Current Time != UTC second then

SV 2V =
SV 2V +

∑NV
vh=1 Svh

1+NV

DV 2V =
DV 2V +

∑NV
h=1 Dvh

1+
∑NV

vh=1 RvhBSM

else
{Average Effective CCH Utilization}
UCCH = SV 2V ∗DV 2V

{Inactivity Interval in current CCHI}
ICCH = CCHI − UCCH

if UCCH < DCCHI then
{Update MAC Interval Timers }
CCHI = UCCH

SCHI = SCHI + ICCH

{ The NGV C are ready at the new SCHI}
NGV C = RGV C ∗ SI
{Increased SV C in new longer SCHI}
SV C = SV C +

∑NV

h=1NGV C −QviV C

{Reduced DV C in the new longer SCHI}
DV C =

DV C+
∑NV

i=1

∑NiRSU
j=0 tRV CijRSU−tSV CijRSU

1+
∑NV

i=1

∑NiRSU
j=0 tRV CijRSU−tSV CijRSU

else
{The number of vehicles is high and CCHI is not sufficient}
CCHI = DCCHI

SCHI = DSCHI

end

SV 2V = 0

DV 2V = 0

SIi= SIi + 1
end

end
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Chapter 4: Vehicular Task Workload

Modeling and Vehicular Cloud

Computing Model

4.1 Vehicular Task Workload Modeling

We consider a set of n Bag-of-Tasks (BOTs), as presented in Fig. 4.1, each forming

a collection of identical and independent tasks that can be placed and executed in any

order. Every BOT has its own requirements in terms of delay, throughput and number of

VMs that have to be met in accordance with the VC performance metrics like delay and

throughput. In the context VCC, we will not consider the periodicity and the temporal

burstiness of task arrivals and we assume that all the BOTs are available before any

scheduling decision.

4.2 Vehicular Cloud Computing Model

Based on our developed AAA scheme and the default IEEE 1609.4, we consider the

simulation results shown in Fig. 4.7 of the throughput of different VCs composition of

microdatacenters. For simplicity, we consider that each vehicle contribute to the formation

of the VC with one virtualised VM from its OBU’s microdatacenter. The overall VCC

system is built on top of various VCs that differ from one vehicular network to another.

Each coalition of vehicles under the same RSU constitute a single VC, as shown in Fig.

4.3, with specific OBUs, virtualized as VM, density and VM throughput and delay. The

AAA scheme calculates the average end-to-end delay and the number of successfully

exchanged BSM, it is the key part to dynamically evaluate whether or not the used CCHI

can be reduced for the sake of an increased SCHI as detailed in Fig. 3.1. Significant

improvement in the each VC metrics are achieved by using the AAA in comparison to the
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Figure 4.1. Vehicular Cloud-Based BOTs Requirements in VMs.

default IEEE 1609.4. The scheduling problem consists of placing a set of BOTs into the

available resources of various VCs while taking into account the uniqueness of each one of

them in one hand and maximizing the utilization of VMs on the other hand. Moreover,

the TCC resources offer VMs that are pay-per-use. Therefore, a cost effective scheduling

policy cannot greedily acquire as many resources as possible.

4.3 Fast Greedy Heuristics for scheduling vehicu-

lar tasks in Vehicular Cloud Computing

A fast greedy heuristics algorithm framework developed in [96] is used to find the

sub-optimal solutions for the virtual machine allocation problem. The greedy scheduling

algorithms never consider its choices after a scheduling decision has been made, which

may lead to a non-optimal final decisions since one policy may have the highest reward

among all the possible decisions, but can deteriorate the reward of the next decisions.

We consider the total VCC formed by all the VCs described and simulated above and

are considered as data centers with different throughput and delay. There is no general

optimal decision-making scheme for task scheduling into VCs. Therefore, optimality of
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policies vary depending on the abundance and the distribution of the VMs in all the

VCs as well as the requirements of the vehicular applications in every BOT. For this, the

greedy-assignment of task to VMs of specific VC is considered as central scheduler [35]

that sorts the VMs of all the VCs based on their performance metrics and assign task

to the most efficient first VM suitable for hosting. It then continues allocation until no

task remains in all the BOTs or else, VMs queues of every VC are full. The fast greedy

heuristics scheme is described by the following algorithm.

Algorithm 1 : Greedy scheme for most Efficient VM first

VCC ← Set of vehicular clouds forming the VC
SBOT← Set of different BOT
Ti← Set of tasks in the ith BOT
most efficient VM (mevm) ← NULL
for all boti ∈ SBOT do
for all Tij ∈ boti do

isScheduled=Flase
for all vci ∈ VCC do

if isScheduled=True then
Break

end if
for all VMi ∈ vci do
if VMi is available and meets the requirements of the task Tij then

mevm = VMi, isScheduled=True, Tij /∈ boti end if

if isScheduled=Flase then
Task Tij is placed in paid cloud
Tij is removed from boti

end if
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4.4 Sequential and CUDA-accelerated MDP-Based

scheme for scheduling tasks in Vehicular Cloud

Computing

4.4.1 MDP-Based Scheme Model

Abstractly, the Markov Decision Process(MDP) can be formulated by a state space S

of the VCC, action set A of scheduling decisions, immediate reward function r(s,a,s’) of

the VCC and probabilistic transition P (s’|s,a) from a state s to s’ under the action a.

4.4.2 System States

As stated earlier, we will focus on the scheduling multiple set of BOTs with different

VMs requirements into the VCs of the VCC system. For an efficient task scheduling,

there is a trade-off to achieve between minimizing the cost related to paid hosting services

and maximizing the overall reward of the VCC. The MDP system states S reflects the

distributed VCs with the available virtualized resources of the vehicles’ OBUs, the hosted

applications and the vehicular tasks remaining to be placed. So we can denote the state

set as:

S = {s|s = (n1, n2, ..., nTT ,M, e)} (4.1)

where ni is the number of vehicular applications that were allocated to the ith VC, M

represents the set of available VMs per VCs and e is the task placement request.

4.4.3 Actions

In our MDP model for task scheduling we have many possibilities of scheduling actions

a that can be executed from the set A:

A = {−1, 1} (4.2)
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When an application scheduling request occurs, the VCC decides among the set of ac-

tions which one should to be launched. Placing in TCC due to communication delay or

throughput limitation or VM insufficiency represent -1. Whereas a(s)=1 represents the

case that the selected VC from the VCC the minimum delay and VM required by the

application.

4.4.4 Transition function

Our problem has a probabilistic transition function P (s’|s,a) −→ [0,1] that indicates

the probability of transitioning from a specific state s to another state s’ of VCC after

an action a is taken. For every application placement request, each of the VCs verifies

whether or not its average Vehicle to Infrastructure (V2I) packet delay meets the re-

quirement of the application itself and it has available non occupied VMs that meet the

required throughput for hosting it. When a new service request needs to be placed, the

number of occupied VMs is given by Eq. 4.3 independently of the taken action by the

overall VCC system.

Nv =
Nc∑

i=1

Na∑

j=1

uij + vj (4.3)

When a scheduling request of an application j, requiring nj VMs, is served and placed on

ithV C, the number of occupied VMs in the corresponding cloud becomes

TVMi =
Rc∑

i=1

ui + nj (4.4)

4.4.5 Rewards

Based on the taken action a, the instant system reward under the current state of the

VCC s can be expressed as:

r(s, a, s′) = k(s, a, s′)− g(s, a, s′) (4.5)
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k(s,a,s’) represents the immediate reward of the VCC system after making the scheduling

action a under the current state s when the event e of task placement happens. It holds

the income gained by VC after hosting the task. g(s,a,s’) is the instant cost of the current

decision epoch of the task placement request. When a task scheduling request is admitted

to the VC, the immediate reward that can be earned is expressed by Eq. 4.6 and the cost

related to this policy is defined by Eq. 4.7.

k(s, a, s′) = βvc ∗ nj (4.6)

g(s, a, s′) = βtc ∗ nj + γvc ∗ µi (4.7)

µi is the underutilized VMs in the ith VC. βvc, βtc and γvc represent respectively the

induced reward per VM in VCC, cost of placement per VM in TCC and cost of underuti-

lized VM in VCC left behind after scheduling. The VCC system does not gain any reward

under the states in which all the VMs of every VC have been exhausted. Thus, the next

scheduling epochs of the remaining application will only induce a cost that represents a

negative contribution to the reward.

4.4.6 Total Reward of the Solution

The main objective of the MDP-based task scheduling in VCC is to optimize the task

placement of various BOTs over distributed VCs that increases the function of the total

cloud reward. The function is the maximum expected long-term cumulative reward of the

VCC is expressed as:

R = max
s∈S

[
∑

s′∈S,a∈A
r(s, a, s′)]

= max
s∈S

[
∑

s′∈S,a∈A
k(s, a, s′)− g(s, a, s′)]

= max
s∈S

[
∑

s′∈S,a∈A
(1 + βvc) ∗ nj − (βtc ∗ nj + γvc ∗ V Cij)]

(4.8)
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4.4.7 Optimal Solution with MDP Scheduling

An optimal solution of scheduling decisions is found through the iteration algorithm so

that it maximizes the expected long-term overall reward of the VCC system. The solution

to the MDP is a policy π: S −→ A that maximizes the long-term sum of expected rewards

achievable starting from any state s. The iterative algorithm tabulates the cumulative

optimal reward in the function V ∗, which represents the unique solution for the Bellman

equation given in Eq. 4.9:

V ∗(s) = max
s∈S

[r(s, a, s′) +
∑

s′∈S
P (s′|s, a)V ∗(s′)] (4.9)

Since our model is formulated as finite MDP model with sequential decision making under

uncertainty, with finite spaces of states and actions, the value iteration algorithm is used

to solve the maximization problem that is presented by Eq. 4.8. A detailed description

of the steps executed by the iteration algorithm are given by the following algorithm.

Algorithm 2 : Value Iteration Algorithm

Step 1: We set V(s)=0 for every state s of the VCC, k = 0 and ε > 0.

Step2: For each state s, compute Vk+1(s) = maxs∈S[r(s, a, s′)+(
∑

s′∈S P (s′|s, a)V k(s′))]

Step 3:If ||V k+1(s)− V k(s)|| <ε, go to Step 4 . Otherwise, increase k by 1 and go back

to Step2 .

Step 4: For each s ε S, we compute the stationary optimal policy of schedul-

ing in the VCC and stop and output the deterministic policy of scheduling, π=

argmaxaεAs [maxs∈S[r(s, a, s′) +
∑

s′∈S P (s′|s, a)V k+1(s′)]
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4.5 CUDA Accelerated Blocks of State Divided It-

eration (BSDI) Algorithm for Value Iteration

General purpose GPUs have become specialized for highly parallel intensive Single In-

struction Multiple Data (SIMD) computation, as shown in Fig. 4.2. These modern GPUs

are therefore being designed to guarantee that more transistors are devoted to effective

data processing rather than to flow control and data caching unlike CPU. Every Stream-

ing Multiprocessor (SM) contains multiple streaming processors (SPs), also called CUDA

cores [107], and highly energy efficient special function units, which are simple (without

scalar and only vector instructions, simple register renaming, simple branch prediction

and prefetching, etc.). CUDA-enabled GPUs accelerate data-parallel applications by run-

ning thread groups in lock-step to execute the same instruction in a SIMD mode [38] and

mapping them to parallel execution units. When a CUDA program on the host CPU

invokes a kernel grid, the set of thread blocks are grouped and distributed to SMs with

the available execution capacity. Multiple thread blocks are concurrently executed on a

single SM and when it finishes new blocks of threads are launched on vacated SMs. In

contrast, while using fully hyper-threaded CPUs the core’s clock speed decreases [105] so

that the chip does not melt. We sort of have a tradeoff between multithreading and the

clock speed. In the GPUs we do not have these design tensions and we only consider

a highly data parallel programs to be executed by thousands of threads and we are not

interested in how long it takes any thread to complete but, rather, how long to complete

the kernel in order to evaluate the the computational throughput performance in single/-

double precision Floating-point Operations Per Second (flops). GPUs architecture with

multiple cores is driven by the high memory bandwidth in order to
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Figure 4.2. Block Diagram of CUDA Enabled GPU.

offer massive parallel processing resources, and are very-suited to address problems

that can be expressed as data-parallel programming. The NVIDIA’s Quadro K1100M

GPU, as detailed in Table 4.1 is used to leverage the parallel capabilities of the CUDA

programming model by running the kernel program that is the parallel implementation

of the value iteration algorithm responsible for finding the optimal solution of the MDP

scheduling model, as detailed in [74].
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Table 4.1. CUDA Enabled GPU Characteristics

Varia, ble Description

Device 0/CUDA Driver/Routine Quadro K1100M with 7.5/6.5

Architecture Kepler

CUDA Compute Capability 3.0

Total amount of gloal memory 2048 MBytes

Number of MPs 2

Number of CUDA cores/MP 192

Total number of cores 384 CUDA cores

Clock Rate of GPU 706 MHz (0.71 GHz)

Clock Rate of Memory 1400 MHz

Memory Bus Width 128 bits

Size of L2 Cache 262144 bytes

Total Amount of Constant Memory 65536 bytes

Total Shared Memory per Block 49152 bytes

Total Registers per Block 65536

Size of Warp 32

Maximum Threads Number per MP 2048

Maximum Threads Number per Block 1024

Texture alignment 512 bytes

Host to Device Bandwidth 9735 MB/s

Device to Host Bandwidth 9302 MB/s

Device to Device Bandwidth 3200 MB/s

Peak single precision performance 550 Gigaflops

The Block of State Divided Iteration (BSDI) is presented in Algorithm 3 to parallelize
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the state space of the VCC and to adapt the value iteration algorithm to the CUDA

programming model. It partitions the state space S into equal sized blocks and we assign

a thread within each block to be responsible for the calculation of the rewards under

different transitions of possible scheduling decisions while residing the successor states of

the states’ actions within the same block.

Algorithm 3 : Parallel Blocks of State Dvivided Iteration

cudaMemcpy(Vg(s), hV g(s), lengthbytes, cudaMemcpyHostToDevice)

Vg(s) ← State space residing in global memory

shared Vs(s) ← State space residing in shared memory

for all s ∈ S in parallel do

Vs(s) = Vg(s)

Synchronize threads : syncthreads()

v ← Vs(s)

for iterations < number of episodes do

∆s ← 0

for all a ∈ A do

Vs(s)← maxs∈S[r(s, a, s′) +
∑

s′∈S P (s′|s, a)VInBlock(s
′)]

end for

∆s ← max(∆s, |v − Vs(s)|)
Vs(s) ← v

Synchronize threads : syncthreads()

end for

Vg(s) = Vs(s)

end for

for all ∆s of s ∈ S in parallel do π ← max(∆s)

end for

cudaMemcpy(h π,π,lengthbytes,cudaMemcpyDeviceToHost)
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4.6 Simulation of AAA and static IEEE 1609.4 scheme

and performance metrics comparison of the VCC

and the safety applications

Fig. 4.3 represents a screenshot of the NS-3 simulated VC. It is formed via an ab-

stracted layer of computing from the microdatacenters of the fixed RSU as well as of the

random vehicles that are moving in way point mobility with random speed under the

RSU area. Packets of the safety messages are generated by every vehicle once every 100

ms, which corresponds at the beginning of Guard Intervals of every CCHI. Additionally,

the packet generation rate of the non-safety applications hosted in the VC that are also

queued in each vehicle during the beginning of the Guard Interval corresponding to every

SCHI. Only periodic V2V BSMs with equal packet size of 200 Bytes are considered in

the study and the VC non-safety packets are with equal size of 1500 Bytes. The detailed

parameters used in the simulation with NS3 are presented in Table 4.2. In addition, we

consider for simplification reason the usage of equal priorities between packets by using

the background traffic (BK) defined in the access category in EDCA for the CCH. In zone

Z0 in Fig. 4.4, it is characteriszed with few number of distant vehicles that are introduced

randomly to the network under the RSU communication range. The AAA scheme offers

and average end-to-end delay of V2V safety packets that very much comparable to the

the one given by using default static IEEE 1609.4, even though the AAA used a reduced

CCHI as presented in Fig. 4.8. When a larger number of vehicle is introduced under the

RSU communication area, as highlighted in zone Z1, the inter-distances between vehicles

gets smaller and the CCHI gets increased in order to give more activity time in CCH for

vehicles so that they successfully exchange their safety related messages, as presented in

Fig. 4.8.
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Table 4.2. Parameters of the Simulation in NS3

Parameters Values

Number of Vehicles 5 - 50
Simulation Time 1000 ms
Number of RSUs 1
Virtual Machine size 500 kbits
Synchronisation Interval
(SI)

100 ms

Transceiver Communica-
tion Range

200m

Default SCHI and CCHI 50 ms
RSU area 50*50m
Default Guard Interval (GI) 4 ms
VC application packet gen-
eration rate

10 Hz

VC application packet size 1500 Byte
BSM packet generation rate 10 Hz
BSM packet size 200 Byte
Modulation and Data rate QPSK 6 Mbps
CCH and SCH Bandwidth 10 Mhz
CWmin of BK 15
EDCA Access Class Background Traffic (BK)
CWmax of BK 1023
Number of SCH and CCH 1
AIFSN of BK 9
Propagation Model Nakagami
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Figure 4.4. Average End-To-End Delay of BSM Versus Number of Vehicles.
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Figure 4.3. NS3 Simulation of the VC Build Around the RSU.

The average end-to-end delay of packets delivered in the VC is acceptable in low dense

VANETs, as shown in Fig. 4.5. As long as the number of vehicles increases, more BSMs

are queued to be sent and so the CCHI has to get increased, which induces a reduction in

the Inactivity Interval progressively and consequently will lead to a decrease in the SCHI

for cloud related packets, as presented in Fig. 4.8, and increases of the average end-to-

end delay of VC applications. Our Advanced Activity-Aware Multi-Channel Operations
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Figure 4.5. Average End-To-End Delay to the RSU of Non-Safety Messages Versus Number of Vehicles.

scheme offers a very much comparable successful number of exchanged BSMs and V2V
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throughput as in the default IEEE 1609.4 with static channel access switching, as com-

pared in Fig. 4.6, even though that the CCHI was significantly decreased as presented in

Fig. 4.8.
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Figure 4.6. Throughput of V2V BSM Safety Messages Versus The Number of Vehicles.

Significant improvement is achieved in the throughput of the VC by using the AAA

Multi-Channel Operations scheme over the static IEEE 1609.4 as detailed in Fig. 4.11.

The conisderable improvement is caused by automatically considering that the CCHI is

minimized by the inactivity interval that is very significant in VANETs with low vehicle

density, which induce an extended SCHI compared to the default for the VC applications.

Therefore, more vehicles will find slots in CW to successfully send cloud related packets

before switching to V2V safety communication, which consequently generates a higher

throughput of the VC.
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Figure 4.7. VC Throughput Versus Number of Vehicles.

Fig. 4.8 shows the impact of the AAA scheme to finding the inactivity interval and

automatically adapting the interval timers of IEEE 1609.4 by decreasing the CCHI for

BSM dissemination and increasing the SCHI for VC usage for both vehicular type of

communiaction in WAVE.
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Figure 4.8. Channels Intervals Adjustment of AAA and IEEE 1609.4 Versus the Number of Vehicles.

The formulation of the average throughput per vehicle of non-safety applications that

are hosted in the VC is given by Eq. 4.10 as follows:

Thij =
ThV Cij
j

(4.10)

where ThV Cij represented the calculated throughput of the VC found while using the ith
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Figure 4.9. Average Percentage of Dropped VMs in Different Network Density Versus Time.

mode of either the default IEEE 1609.4 or the AAA scheme for a number of j OBUs

forming it.

The scenario of the migration consist of a vehicle that has a total of TVMsize = 500kbits

as the size of all its VMs running in its OBU and should do migration to the RSU before

leaving the network and the VC. The average percentage of dropped VMs, are presented

in Fig. 4.9, at an instant t(s) from the beginning of migration is defined as shown in Eq.

4.11.

AVMt = 1−
t∑

k=0

TVMsize − k ∗ ThV Cij
ThV Cij

(4.11)

4.7 Numerical Results and Analysis of the schedul-

ing schemes in VCC

The evaluation of the scheduling schemes of tasks for the VCC mainly targets the

derived performance of the scheduling decisions based on MDP and greedy heuristic by

jointly considering the resource utilization of the virtual machines offered by the VCC and
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the acquired total reward of the scheduling decisions. Fig. 4.10 presents the histogram of

the overall total percentage of VMs utilization after placing the tasks from the BOTs by

using the fast greedy and the MDP-based schemes. We note that the fact of having equal

VM utilization in VCs from the VCC under the greedy scheme and MDP scheduling does

not really reflect the same placement decisions have been made of tasks. Most of the

VCs forming the VCC system contain many left behind unused VMs under the greedy

algorithm since it does not calculate the impact of every decision on the next placement

decisions. The VM utilization achieved by using the MDP scheduling scheme is maximized

through the selection of the highest total reward of a sequence of placement decisions and

not only based on the reward per task scheduling.
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Figure 4.10. VCC VMs Utilization for Greedy and MDP Schemes.

Based on the VCC utilization and the scheduling decisions made by the greedy algo-

rithm, Fig. 4.11 shows that various VC did not reach their optimal throughput under

both of the IEEE 1609.4 and the AAA schemes.
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Figure 4.11. Vehicular Cloud Throughput Under Greedy Scheduling.

In addition, the evaluation of the VCs throughput by using the MDP scheme presents,

as described in Fig. 4.12, a maximized effective utilization of the VMs. Moreover, the

task hosted in the VMs do not follow a specific rule as in the Greedy scheme and highly

depends on decisions with the highest total reward of the cloud and fill up the maximum

available VMs in every VCs.
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Figure 4.12. VC Throughput Under MDP Scheduling.

Fig. 4.13 and Fig. 4.14 show how the tasks of the BOTs are distributed along free

VMs in VCs and paid VMs in TCC. In addition, we compare the total underutilized VMs

left by the Greedy and MDP-based scheme in the VCC and total required VMs for both
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of the scheme. The results also describe the improvements that MDP scheme offers in

comparison with the Greedy scheme in terms of number of occupied VMs in both of the

cloud environments.
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Figure 4.13. BOTs Scheduling Under Greedy Scheme.
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Figure 4.14. BOTs Scheduling Under MDP-Based Scheme.

The overall maximized reward resulting as the best scheduling decisions of all the

BOTs under both MDP scheme and heuristic greedy algorithm is presented in Fig. 4.15.

The Bar Chart in the center is the total reward of the overall VCC while taking into

account the cost related to under utilization of VMs. While the dotted chart shows per
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reward per VC without considering additional costs of unused VMs. We showed that the

proposed MDP scheduling decisions outperform the greedy ones for every VC and for the

total reward of the VCC system in both of the utilization and the reward that involve

both the revenue and the cost of decisions with βvc=1, βtc=1.2 and γvc=1.
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Figure 4.15. Overall VCC and per VC Reward.

The CUDA Occupancy calculator is used to find out the optimal block size for the

execution of the algorithm on the Quadro K1100M GPU. The BSDI algorithm was as-

signed a 124 threads per block, which resulted in 124/192=64.5% occupancy per MP. As

shown in Fig. 4.16, the parallel version iteration algorithm BSID performs considerably

faster than the sequential algorithm in terms of the required time it takes converge for

the optimal scheduling epochs. Performance is a key factor when solving MDPs as the

size of the states increase quickly.

The parallel BSID algorithm achieves a speedup of almost 32% compared to the se-

quential value iteration algorithm to converge to the optimal decisions. The speedup can

get even higher if we apply it to a higher number of VCC states the occupancy of threads

running in parallel per every SM will have a higher usage.
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Figure 4.16. Sequential and CUDA-Accelerated Convergence Time and Speedup.
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Chapter 5: Autonomous Vehicle Sensor

Modalities

In this Chapter, we develop a multimodal surrounding recognition scheme for au-

tonomous vehicles, capable of mapping corresponding recognized objects from camera,

LIDAR, and V2V data sets. The proposed scheme exploits the fact that the spacial rela-

tionships between objects in all three data sets can be characterized by manifolds, both

representing intersecting sets of these objects and exhibiting high neighborhood corre-

lations. We thus employ a manifold alignment approach to learn the correspondences

between similar objects within the different data sets and enrich them with the other

objects not detected by each mode, thus accomplishing a more robust perception of its

surroundings. We first tested the proposed approach for two specific scenes to gain pre-

liminary insights and more rigorous analysis of the main factor affecting the alignment

accuracy, such as the percentage of neighborhood correlation, overlapping objects, etc.

We then applied the learned information in testing our proposed scheme in entire driving

sequences. For many cases, 100% alignment accuracy was achieved, and alignment accu-

racy averages of 74%-92% and 50%-78% were obtained for cars and persons, respectively.

Cases of mis-matches were further shown to occur only within the same type of objects

and for objects that overlap or are in very close proximity to one-another, thus minimally

effecting the possible decisions of the recognizing vehicle.

5.1 Preparing Data Sets for Alignment

In this section, we will illustrate the steps taken in order to prepare the manifolds

of the different data sets from the multi-modes of vehicle sensing of its surroundings.

Luckily, the raw V2V data usually comes with the required information for alignment,

since each BSM clearly indicate the GPS position of its transmitting vehicle. Thus, the
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adjacencies between vehicle objects from the V2V data can be easily computed and does

not require any further recognition nor preparation. Thus, the next two subsections will

focus on adapting the object recognition schemes from camera feeds and LIDAR scans to

both extract the objects of interest to the alignment process, and determine their relative

locations to one-another. This information will be then used to create manifolds for each

of these data sets, representing the adjacency relations of their detected objects of interest,

which will then enable us to feed them to the alignment process.

5.1.1 Adapting Recognition from Camera Feeds

In this section, we describe our approach of adapting the learning procedure from

camera feeds, in order to prepare the camera data set that is suitable for our proposed

alignment process. This adaptation consists of tailoring the darknet’s CNN, developed

in [101] to test the KITTI stereo images using the architecture illustrated in Fig. 5.1. To

render both the two important object classes for the alignment process, namely “Cars”

and “Persons”, and the center of gravity of the object bounding box (or object pixels) in

the 2D space. Inspired by this CNN design, we propose to exploit the feature of objects’

anchor boxes, which predict the coordinates of the bounding boxes around recognized

objects, to find their pixel adjacency directly from the fully connected layers that are de-

veloped on top of the convolutional network extractor (both illustrated in Fig. 5.1). We

use a single CNN that processes the entire image pixels during both the training and test

time, and predicts all the bounding boxes and their corresponding classes probabilities.

We then apply a hard threshold on the probabilities of the object suspected to be either

a “Car” or a “Person”, beyond which these objects are deem to be so.

While parsing through the frames of any driving sequence, our tailored CNN stores

the characteristics of each object in an organized way, including its class name, anchor

box dimensions in pixels, and its calculated center of gravity in the 2D space. Moreover,

counters are set to keep track of the total number of objects from each class per frame.
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The extracted details of objects are stored separately from one frame to another both

within the same driving sequence and across different sequences. To test the efficiency

of our tailored CNN, we applied it to recognize the objects in Fig. 5.2 and Fig. 5.4,

representing two original frames (that we will denote in the rest of the Dissertation as

Frame (a) and Frame (b), respectively) from two different driving sequences from the

KITTI Suite. Frame (a) and Frame (b) include different object counts per class either

from image recognition or from labeled LIDAR object recognition. The model is be-

ing changed to support reading all the frames contained in both of the drive sequences

2011 09 28 drive 00016 and 2011 09 26 drive 0005 from the KITTI Suite. We opt to se-

lect from sequences recorded with RGB cameras instead of gray-scale, for clarity of work

purposes. The results of applying our tailored CNN on Frame (a) and Frame (b) are

illustrated in Fig. 5.3 and Fig. 5.5, respectively. We can clearly see from both figures

that the objects are perfectly recognized and labeled with their proper classes. The center

of gravity of each object is depicted by a red cross within each object’s anchor box. The

centers of gravity are computed according to the pixels belonging to each object and are

expressed in pixels in the 2D space.

It is worth noting that some vehicles are not detected in both Fig. 5.3 and Fig. 5.5.

The failure in detecting these vehicles occurred due to either the overlap between vehicles

(as in the parked undetected vehicle on the right of street in Fig. 5.3) or the shaded zone

they lie in (as in the case of the parked vehicle to the right of the leftmost recognized

vehicle in Fig. 5.5) and thus the low variance, as perceived by the camera, between their

pixel colours and those of the background. As aforementioned, the latter phenomenon

was the cause of the fatal accident by the Tesla autonomous vehicle prototype. This

calls for our proposed multi-modal sensing of the vehicle’s 3D surrounding environment

by adding LIDAR, and most importantly V2V (and also V2I and vehicle-to-pedestrian

V2P) information to each vehicle’s object recognition system. Indeed, the problem of

these undetected objects will be resolved if the camera information is aligned with the re-
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Figure 5.1. Darknet Convolutional Neural Network Architecture [101]

ceived V2V information from the other vehicles, thus reducing chances of having missing

knowledge of the surrounding vehicles. In Fig. 5.6, we plot the 2D pixel-wise manifolds of

the car and people objects detected by camera for both Frame (a) and Frame (b). These

manifolds illustrate the adjacency relations between the centers of gravity of the detected

objects in each of the frames, which represents approximate distances in terms of pixels

between them in the 2D space. The neighborhood relations between the objects from the

camera frames will be thus expressed in terms of pixels, and will be inserted with that

format to the neighborhood weight calculations that will be introduced in Section 5.2.3.

The obtained curves for both Frame (a) and Frame (b) in Fig. 5.6 represent camera data

set manifold in the pixel domain.

It is important to note here that the representation of distant objects in the manner

illustrated in Fig. 5.6 can give a meaningful value of distance between them, and can

be easily correlated with distances from both LIDAR scans and V2V BSMs positions.

However, due to the 2D nature of camera images, the distance representation between

very close or overlapping objects in the image may be highly inaccurate and will not

provide relevant information to the alignment process.
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Figure 5.2. Original Frame (a) from RGB sequence drive 2011 09 26 drive 0005 #117.

Figure 5.3. Detection of Frame (a) objects and their centers of gravity.

5.1.2 Adapting Recognition from LIDAR Point Clouds

This section illustrates the adaptation of object recognition from LIDAR point clouds

to prepare a data set that is suitable for our proposed alignment process. To simplify

this process, we are not considering the recognition of every object from the LIDAR point

clouds, since a tremendous number of unknown, and most importantly un-mappable,

objects can be detected as a set of neighbored point clouds. As in the previous section, we

will thus restrict the recognition of the Vote3Deep 3D CNN, developed in [41], to identify

only “Cars” and “Persons”, since the remaining items do not represent major importance

in the alignment process. The Vote3Deep 3D CNN uses feature-centric voting to detect

persons and cars that are spatially sparse along many unoccupied regions, without the

need to transform the 3D point cloud to a lower dimensional space.

The Velodyne LIDAR scans corresponding to both of Frame (a) and Frame (b) are
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Figure 5.4. Original Frame (b) from RGB sequence drive 2011 09 28 drive 0016 #32.

Figure 5.5. Detection of Frame (b) objects and their center of gravity.

plotted in Fig. 5.7 and in Fig. 5.8, respectively. The black centered area in both figures

is the car that is equipped with the 360◦ Velodyne spinning laser scanner. The circled

points in both figures represent the free space contour lines where no obstacles have been

encountered (i.e., each circle represents points of equal distance from the vehicle with no

objects in them). All cars and persons in both of Frame (a) and Frame (b) are represented

by more dense dots (almost creating a 3D surface) due to the reflections of the laser beams

from these objects. We note that the other black areas without circled points nor objects

correspond to zones in which the LIDAR beams were blocked by obstacles. Consequently,

the LIDAR scans cannot provide any knowledge of what is in these zones.

Fig. 5.9 depicts the 3D manifolds of the detected car and people objects from the

LIDAR scans of both Frame (a) and Frame (b). The relative position of each object with

respect to the Velodyne LIDAR Scanner position is represented by an (x,y,z) triplet in

the 3D space. As in Fig. 5.6, the manifolds represent the adjacency relations between
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Figure 5.6. Pixel-wise manifolds of the recognized objects for both Frame (a) and Frame (b).

Figure 5.7. Point cloud scan corresponding to Frame (a).

the centers of gravity of the detected objects in each of the frames, which represents the

approximate distances between them in the 3D space.

We note that the manifolds representing the detected objects from the LIDAR point

clouds contain a larger number of persons and cars compared to those detected from the

camera in Fig. 5.6. For example, the undetected shaded vehicle next to the leftmost

detected vehicle in Fig. 5.5 by the camera was detected by the LIDAR point clouds as

shown in Fig. 5.9. Moreover, the objects that are behind the camera were captured by

the LIDAR spinning scans.
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Figure 5.8. Point cloud scan corresponding to Frame (b).

5.1.3 V2V BSMs Generation from KITTI Benchmark Objects

The lack of time-stamped V2V BSMs data that corresponds to camera frames and

LIDAR scans have encouraged us to dynamically generate the V2V related messages of

the recognized objects from the LIDAR scans. We chose the LIDAR scans over the camera

feeds to generate BSMs as usually BSMs can be received from larger distances that the

range of cameras and thus should include a larger number of vehicles. Moreover, since

we are using the camera as our reference alignment set (i.e., our methods aligns both the

LIDAR and V2V data sets with camera data set), it is better generate the V2V BSMs from

another set to have stronger discrepancies in the data sets and make the alignment more

challenging. Note that, although they are generated from LIDAR data in our testing, the

V2V BSM data sets and their corresponding manifolds will be significantly different from

those of the LIDAR data sets, since the former ones include objects identified as “Car”

only. Indeed, pedestrians do not typically generate BSMs, and thus objects identified as

people in the LIDAR data set will not show up in the V2V BSM dataset.

For each identified vehicle by the LIDAR in every frame of the two aforementioned

sequences, we generate a simple BSM only stating its position. The vehicles detected

per-scan, whether moving or parked, are assumed to generate the V2V BSM beacons.
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Figure 5.9. Manifolds of the detected objects from LIDAR point clouds corresponding to both Frame
(a) and Frame (b).

It is important to note that, in practice, parked vehicles may or may not send beacons

depending on the employed V2V standard. However, this fact will not affect the proposed

alignment process, but will rather only increase or decrease the number of objects to be

aligned. We employed the position (x,y,z) triplet of the object of the Velodyne LIDAR

Scanner to emulate the GPS coordinate system (Latitude, Longitude, Elevation) that

will be used in practical scenarios. Note that we did not include to our generate data set

other typical BSM fields, such as messages count, temporary ID, brake system status, and

acceleration, as they will not be used in the alignment process. In practical scenarios, the

vehicle can easily extract the position information from the BSM for alignment purposes.

Fig. 5.10 depicts the manifolds of the generated V2V BSM data sets of Frame (a)

and Frame (b), respectively. As expected, the shape of and the number of points in the

manifolds in Fig. 5.10 are different from the ones formed by LIDAR objects in Fig. 5.9.

This is due to the lack of objects identified as “Persons” from the former.

5.2 Proposed Alignment Approach

Having the manifolds of all vehicle sensing modes created, this section will illustrate

the proposed approach to align these three manifolds, thus linking each object in each
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Figure 5.10. Adjacency of Recognized Objects from DSRC.

data set to its corresponding ones in the two others. Objects with no correspondences

(e.g., objects detected in one data set but not the other) can then be added to the global

knowledge of the vehicle, thus creating one enriched scene for the vehicle’s surroundings.

Our proposed approach to align these three data sets is done by aligning both the

LIDAR and V2V data sets individually with the camera data set. This choice is driven

by the fact that the camera component is the most widely used component in autonomous

vehicles, both at the research and prototyping level. The main two types of input data

that the system takes are raw RGB frames from camera, LIDAR points cloud recorded in

the driving sequences and V2V generated BSMs. Consequently, the alignment process is

applied between camera, LIDAR and V2V data are principally the anchor boxes surround-

ing objects extracted from 2D Convnet, 3D position of objects retrieved after detection

from 3D LIDAR and the V2V positions of cars. Once both data sets are aligned with the

camera data sets, the correspondences between each two objects in them will be set nat-

urally through their common corresponding object in the camera data set. Consequently,

the rest of this section will focus on aligning only two data sets, one from the LIDAR or

V2V data set, and the other being the camera.
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The manifold alignment procedure between any two correlated data sets (i.e., having

some correlation to one another in some space) is based on jointly embedding the objects

of these data set in a lower dimensional space while both:

• Aligning points of initial correspondence between these data sets (i.e., points that

are initially known to correspond to one another in the two data sets) in this lower

dimensional space.

• Preserving the neighborhood correlation (i.e., the local structure) in each of them.

Once this embedding is done, each pair of points from the two data sets that have the

closest proximity in this lower dimensional embedding are declared as corresponding to

one-another. Clearly, our data sets of interest have clear correlation in the 3D space

as a subset of each of them represent the exact same objects perceived by the vehicle

through three different modes. They thus qualify to be aligned using manifold alignment.

Given the above methodology, the proposed alignment process between our camera and

LIDAR/V2V data sets will follow three main steps:

1. Neighborhood weight computation within each data sets (to preserve local struc-

tures).

2. Initial correspondence determination.

3. Semi-supervised alignment.

Each of these steps will be explained in details in the next three subsections.

5.2.1 Neighborhood Weight Computation

The neighborhood weights are a one dimensional representation of the distance/adja-

cency relations between each pair of objects in any one data set. A higher/lower weight

value between two data points symbolizes their higher/lower proximity in their origi-

nal space. Computing these weights are usually done through dimensionality reduction
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techniques, such as locally linear embedding, heat kernels, etc. In our work, we select

the locally linear embedding (LLE) technique [108] because it gives more importance in

preserving the neighborhood correlation in the one-dimensional space.

To compute the neighborhood weights using LLE for any data set, the N data points

having the closest Euclidian distance to each higher dimensional data point t(i) are first

identified as its neighbor set N (i). Let
[
t(N (i,1)), . . . , t(N (i,N))

]
be such set of points for

data point t(i). Given this set, the LLE thus computes the neighborhood weights of t(i)

using the following optimization problem, Eq. 5.1:

arg min
Wij

=





∣∣∣∣∣∣
t(i) −

∑

j∈N (i)

Wijt
(N (i,j))

∣∣∣∣∣∣

2
 s.t

∑

j∈N (i)

Wij = 1 (5.1)

Clearly, a closer the point t(N (i,j)) to t(i) will have a higher weight Wij. Points t(j) that

are not in N (i) will have Wij = 0. The above optimization problem can be solved for

each point t(i) using a closed form solution as follows [108]. Defining the distance matrix

Di of point t(i) as shown in Eq. 5.2:

Di =




t(i) − t(N (i,1))

t(i) − t(N (i,2))

.

.

.

t(i) − t(N (i,N))




(5.2)

Wij for all t(j) ∈ N (i) can be computed as in Eq. 5.3:
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Wij =

N∑

k=1

{
(DiD

T
i )−1

}
jk

N∑

m=1

N∑

n=1

{
(DiD

T
i )−1

}
mn

(5.3)

Note that
{(

DiD
T
i

)−1}
uv

is the element of the uth row and the vth column in the inverse

of matrix DiD
T
i . By repeating this procedure for all data points in each of the data sets,

we obtained all required neighborhood weights for the alignment process.

5.2.2 Initial Correspondence Determinations

The second step of the alignment process consists of determining at least one point

of correspondence between the camera and LIDAR/V2V data set. Some techniques were

employed in the literature to estimate these initial correspondences based on the geometry

of the data sets [97]- [80] . The main idea behind these techniques is to match some

local geometries within the data sets, and declare points having a few highly similar

local geometries as corresponding. In most cases, this requires a long search among all

combinations of points to find high similarities and thus close to correct correspondences,

which sometimes increases the complexity of the process.

Luckily, the considered data sets already possess some geometric references that can

somewhat relate them to one-another. For instance, the front camera and LIDAR are

usually aligned in the vehicle, and it is easy to roughly determine the LIDAR reflected

beams (and thus its corresponding detected objects if any) from a certain direction/range

corresponding to a certain direction/range of the camera picture (and thus its detected

object). We can then use one of these objects from the same exact direction and distance

from the vehicle to tag them as initial correspondences. For example, we can pick the

initial point of correspondence between these two data sets to be the ones representing

the one or few furthest point(s) captured by both the camera and LIDAR within the

same direction(s) from the vehicle. If we apply this approach for Frame (b), we can align,
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and estimate that the leftmost identified vehicle in Fig. 5.5 with the vehicle identified

by the LIDAR beam reflected from that direction. This approach is also suitable for the

alignment with V2V as we can estimate the distance from the camera and/or LIDAR

to this farthest recognized object in a certain direction and match it to the most likely

received GPS that matches it in distance and direction from the vehicle. Consequently,

we will employ this approach to identify one or few point of correspondence across the

three data sets, and employ them in the alignment process.

It is important to mention that, although some errors may occur in this initial align-

ment process, but so could happen in the previously proposed techniques [80]- [97] given

the exact same three data sets. Most importantly, the error in our case will be in a slight

range within the entire geometry of the data sets, and we can still get good alignment

results for the other objects.

5.2.3 Semi-Supervised Alignment

As aforementioned, the semi-supervised alignment of two manifolds is done by jointly

embedding their data points in a lower dimensional space while both aligning the initial

points of correspondence and preserving the neighborhood correlation in each of them.

The problem of aligning between the camera data set (that we will denote by X ) to the

LIDAR/V2V data set (that we will tab by Y) can be expressed as shown in Eq. 5.4:

arg min
f,g

{
λx
∑

i,j

[fi − fj]2W x
ij + λy

∑

i,j

[gi − gj]2W y
ij

+µ
∑

i∈P
|fi − gi|2

} (5.4)

where f = [f1, .., fX ](T ) and g = [g1, .., gY ](T ) are vectors in RX and RY of the X camera

points and Y LIDAR/V2V points, respectively, P is the set of paired points between X
and Y , whereas W x

ij and W y
ij are the neighborhood weights between the ij pair of points

within data sets X and Y , respectively.
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Clearly, this problem is a three-objective function optimization, with weighting factors

λx, λy and µ. The first two terms aim to separately find the vectors f and g that are

separately preserving the neighborhood structures of the points in X and Y , respectively.

Indeed, minimizing the first term will occur by attributing a smaller fi − fj term (i.e.,

close values of fi and fj) for any i− j pair of points in X with larger W x
ij. Minimizing the

second term plays the exact same role with the elements of vector g to preserve in it the

neighborhood structure of Y . The third term aims to equalize (i.e., align) the elements in

f and g that correspond to paired points in X and Y . Indeed, it penalizes discrepancies

between fi and gi corresponding to each point i ∈ P .

With some simple manipuation, Eq. 5.4 can be re-written as Eq. 5.5:

arg min
f,g

{
λxfTLxf + λygTLyg + µ(f− g)T (f− g)

}
(5.5)

where Lx = [Lxij] ∀ i, j ∈ X , such that:

Lxij =





∑
jW

x
ij, i = j

−W x
ij j ∈ Ni

0 Otherwise

(5.6)

while Ly = [Lyij] ∀ i, j ∈ Y such that Lyij is defined by replacing each W x
ij by W y

ij in Eq. 5.6.

In general, the problem in Eq. 5.5 is ill-defined. Nonetheless, imposing a hard constraint

to make fi = gi ∀ i ∈ P (i.e. as µ → ∞), the problem in Eq. 5.5 is be re-casted as an

eigenvalue problem. Define vector h as:

h =




fP = gP

fQx

gQy


 (5.7)
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where Qx = X/P and Qy = Y/P . In other words, h is vector structured in a way that

it begins with elements of f and g corresponding to the paired points in P , followed by

the remaining (i.e., unpaired) elements of f , and ends with the remaining (i.e., unpaired)

elements of g.

Having this vector defined, and setting µ → ∞ in (5.5), we can re-write the problem

as Eq. 5.8:

arg min
h

{
hTLzh

hTh

}
s.t. hT1 = 0 (5.8)

where:

Lz =




λxLxPP + λyLyPP λxLxPQx λyLyPQy

λxLxQxP λxLxQxQx 0

λyLyQyP 0 λyLyQyQy


 (5.9)

with LxIJ (LyIJ ) defined as the sub-matrix of Lx(Ly) corresponding to the rows indexed by

the elements in I and the columns indexed by the elements in J . λx and λy are computed

following the work in [80] as: λx = X/(X + Y ) and λy = Y/(X + Y ).

The solution of the problem in Eq. 5.8 is known to be the eigenvector h that corre-

sponds to the smallest non-zero eigenvalue of Lz. Finding the optimal vector h∗ naturally

defines the optimal vectors f∗Qx and g∗Qy . By finding the elements of closest distance

from these two latter vectors, the corresponding unpaired points in X and Y are paired

together. This concludes the alignment process.

Note that the vectors f∗Qx and g∗Qy may not (and most probably won’t) be of the

same dimension, and thus the remaining points in the longer vector should correspond to

objects that were detected by one mode but not the other. These points can thus be added

to the global vehicle understanding its surrounding while respecting its neighborhood

correlations (i.e., weights) within its corresponding data set. When this alignment and

object addition operation is repeated for between the camera-LIDAR and camera-V2V

data set pairs, this results in an enriched construction of the vehicle surroundings that no
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single mode of information (camera, LIDAR, or V2V) can attain individually.

5.3 Alignment Accuracy and Gain Testing

In this section, we aim to test both the accuracy of our proposed alignment scheme

and its gain in enriching vehicles’ knowledge about its surroundings using multi-modal

inputs. In these tests, we will use the KITTI benchmark as our source of camera feeds

and LIDAR scans of vehicle surroundings, due to its wide approval and adoption in the

testing of various autonomous vehicle recognition and driving systems. The raw data

recording of both of the driving sequences contain color stereo sequences recorded with a

0.5 Megapixels camera stored in png format, 3D Velodyne LIDAR point clouds stored as

binary float matrix, 3D GPS/IMU data for location and timestamps information stored

in text files.

The only problem with this benchmark is that it does not include a library of BSMs as it

did not assume any V2V communications. We will first generate a V2V BSM streams for

the vehicles in the entire sequences and perform the tests using these generated BSMs. The

driving sequences 2011 09 28 drive 0016 and 2011 09 26 drive 0005 are recorded during

daytime in non-rush hour around the campus of Karlsruhe Institute of Technology and

metropolitan area of Karlsruhe in Germany, respectively. The former sequence has a

total size of 0.7 GB, 192 frames of 1392*512 pixels each and contains 11 distinct cars and

9 distinct persons. while the latter sequence has a total size of 0.6 GB, 160 frames of

1392*512 pixels each and contains 12 distinct cars and 3 distinct persons. We will then

illustrate the detailed alignment accuracy and gain results for Frame (a) and Frame (b).

Finally, we present the aggregate alignment accuracy on the entire two aforementioned

sequences.

In the remainder of this section, we define the alignment accuracy (in percentage) as

the accuracy in mapping all the points from X (i.e., camera data set) to Y (LIDAR/V2V

data sets). More formally, it is defined as the percentage of points in X mapped to wrong
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Figure 5.11. Number of Objects per Class for both Frame (a) and Frame (b).

(i.e., non-actually corresponding) points in Y normalized by the total number of points

of X (i.e., the camera data set) We also define the alignment gain (in percentage) as the

percentage of added objects from the alignment process (i.e., from mapping LIDAR/V2V

detected objects to the camera detected objects), normalized to the original number of

detected objects in the camera data set.

5.3.1 Alignment Results for Frame (a) and Frame (b)

To understand the accuracy and gain results of our alignment process on Frames (a)

and (b), we first illustrate in Fig. 5.11 the number of detected objects per class in these

two frames. We note that, for both frames, the LIDAR scans have detected more cars

and persons than the camera feeds. Due to the method with which they are obtained,

the V2V data set have the same number of cars as the LIDAR data set, but no persons

as expected.

Fig. 5.12 and Fig. 5.13 represent the detailed camera-to-LIDAR and camera-to-V2V

alignment results, respectively, for Frame (a).

Similarly, Fig. 5.14 and Fig. 5.15 represent the detailed camera-to-LIDAR and
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Figure 5.12. Camera-LIDAR Object Alignment of Frame (a).

camera-to-V2V alignment results, respectively, for Frame (b).

The top portion of all four figures illustrate the camera dat set points in 2D, where as

the bottom figure illustrate the LIDAR or V2V data set points in 3D. The first result to

report from these figure is that the alignment accuracy was 100% for all the four alignment

tasks. In other words, all data points from the camera were mapped to the points of the

exact same objects in the LIDAR and V2V data sets. The second observation is the

presence of objects from the camera data set that were not aligned with points from the

V2V data set for both Frame (a) and Frame (b), which are represented by the circled

points in the top portions of Fig. 5.13 and Fig. 5.15, respectively. By comparing the

positions of these points with the recognized objects of Frame (a) and Frame (b) in Fig.

5.3 and Fig. 5.5, respectively, it is easy to notice that all such unmapped points from

the camera data set represent only pedestrians. This behavior is indeed expected as it is

known that V2V data set does not include points representing pedestrians. We can note

from the top portions of Fig. 5.12 and Fig. 5.14 that this case did not occur when aligning

with the LIDAR data set, due to the ability of the LIDAR to detect “Person” objects,

and their proper mapping to those detected by the camera. These facts also clarify the

number of mapped points between camera and LIDAR exceed those mapped between the
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Figure 5.13. Camera-V2V Object Alignment of Frame (a).

camera and V2V objects.

Another important observation is the presence of unmapped data points in the bottom

portions of all four figures, represented by different markers. These points consists of the

objects detected by the LIDAR scans and V2V BSMs but were not detected by analyzing

the camera feeds for both frames. Consequently, these points constitute the components

contributing to the alignment gain as they enrich the vehicle recognition of its surrounding

compared to the sole use of camera feeds (widely used in autonomous vehicle experiments

and prototypes). The “Car”, “Person”, and overall alignment gains, obtained for both

LIDAR and V2V alignment process with the camera information, are illustrated in Fig.

5.16. We can see that up to 120%, 50%, and 78% alignment gains can be obtained by

in the car, person, and overall objects, respectively. This clearly show the merits of our

multi-model surrounding recognition system. We can also notice the overall LIDAR gains

are always equal or larger than the V2V gains in this test, because the V2V data sets

represent a fraction of the LIDAR data set. However, in practical scenarios, V2V gains

can jump significantly as V2V BSMs cover larger distances (around 250 meters) than

those scannable by cameras and LIDARs, and thus can significantly enrich the knowledge
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Figure 5.14. Camera-LIDAR Object Alignment of Frame (b).

about a much wider range of its surroundings.

5.4 Alignment Results over Entire Sequences

To extend our testing beyond two limited frames (i.e., only Frame (a) and Frame

(b)), this section illustrates the alignment results for two driving sequences from the

KITTI data set in terms of both accuracy and gain. In such more practical setting of

an autonomous vehicle driving, we cannot know in advance the number of objects in

each frame. Consequently, the selection of the percentage of neighbors used to create the

weights of the graph are performed using the best values obtained from both of the two

frames (a) and (b) as well as previous studies on manifold alignment (usually in the range

between 30% to 40%).

For both driving sequences 2011 09 26 drive 0005 (consisting of 160 frames, the 117-

th being Frame (a)) and 2011 09 28 drive 0016 (consisting of 192 frames, the 32nd being

Frame (b)), we tested the alignment accuracy performance and gains. Since immediate

subsequent frames do not significantly change in nature, performing alignment of such

frames will not yield to any tangible new information, thus adding non-justified computa-
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Figure 5.15. Camera-V2V Object Alignment of Frame (b).

tional burden on the system. Consequently, we consider a practical scenario by aligning

the received multimodal data every 5 frames of each sequence drive in order to capture

tangible dynamism of the objects without enduring excessive unnecessary computational

loads. It is important to note that the number of identified objects as cars and vehicles

vary from one frame to another, and from one sequence to the other, as presented in Table

5.1.

For each of these frames, we first prepared the camera and LIDAR data sets as ex-

plained in Section 5.1, and generated BSMs for all vehicles in each of the considered scenes

as highlighted in Section 5.1.3. We then preformed the camera-LIDAR and camera-V2V

alignment processes for each of these frames, using 33% (as identified from Frame (a))

and 40% (as identified from Frame (b)) of each point’s neighbors in its weights com-

putations for sequences 2011 09 26 drive 0005 and 2011 09 28 drive 0016, respectively.

We recorded the alignment accuracy and gains for each of the aligned frames and finally

averaged these results over the entire number of used frames in each of the sequences.

The per-frame alignment accuracy for both sequences are presented in Table 5.1, and

the average alignment accuracy results are illustrated in Fig. 5.19. We can first notice

that our proposed scheme achieved 100% of alignment accuracy per-frame in many frames
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Figure 5.16. Alignment gains for Frame (a) and Frame (b).

of both of driving sequence. This result demonstrates the fact the neighboring distance

in pixels is very meaningful and describes the objects’ neighborhood as in the LIDAR

and V2V data sets, especially when objects are sparse. Some alignment results were

less accurate (50%, 66.66% and 75%) due to some instances of overlapping and very

close objects (especially for persons). The resulting variations in accuracy levels is also

strongly related to the number of objects, the selected percentage of neighbors as well as

how the objects are dispatched in the 2D camera space, 3D LIDAR representation and

V2V environment. Moreover, we notice a better achieved alignment accuracy achieved in

the camera-V2V alignment compared to the camera-LIDAR, which can be explained both

as in the previous section and the fact of not having human alignment in the V2V cases

(which is one of the causes of lower alignment performance due to the object overlaps and

higher proximity). Looking at Fig. 5.19, we can observe between 74% and 92% of average

overall alignment accuracy for vehicles and 50% to 78% average accuracy for persons.

These results are quite encouraging, especially on the vehicle side, as they exhibit high

accuracy of alignment, thus yielding to a better understanding of the observed objects

(especially vehicles) by each autonomous vehicle. Even for the cases of mis-alignment,

they occur due to same object overlap or close proximity, which does not represent a sever
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Figure 5.17. Effect of number of neighbors on the alignment accuracy for Frame (a).

drawback to the overall vehicle recongnition of its surroundings. Indeed, all mis-aligned

objects are all from the same type and are occupying the same neighborhood within the

vehicle surroundings, thus not significantly affecting its decisions. Table 5.3 illustrates

the alignment gains obtained in each frame in both considered sequences and the average

gains across all frames per are plotted in Fig. 5.20. The depicted results show significant

gains (from 17% and up to 150%) in the knowledge of the vehicle using the proposed

multimodal surrounding recognition approach. Again, the alignment gains of the objects

of type persons in the V2V data set are null because pedestrian do not send BSMs.

We finally studied the sensitivity of the alignment accuracy in response to the change

in the percentage of points selected for neighborhood weight calculations. Indeed, the used

number of neighbors (N) used to compute these weights, and its percentage (i.e., ratio)

with the respect to the entire data set size, can be crucial factors in the accuracy of the

alignment. For Frame (a) and Frame (b) respectilvey, Fig. 5.17 and Fig. 5.18 depict the

accuracy performance of both camera-LIDAR and camera-V2V alignments against the

percentage of the number of neighbors in the neighborhood weight computation process,

normalized by the total size of each of the data sets. Both figures clearly justify our initial

intuition by showing the significant effect of this parameter on the alignment accuracy.



109

Table 5.1. Alignment Accuracy per Sequence Drive

ID
Sequence 09 26 0005 Sequence 09 28 0016
CAR PERSON CAR PERSON

LIDAR V2V LIDAR V2V LIDAR V2V LIDAR V2V
0 100 100 100 - 75 100 83.33 -
5 100 100 100 - 75 100 83.33 -
10 100 100 100 - 75 100 80 -
15 50 100 0 - 80 80 83.33 -
20 50 100 0 - 60 80 80 -
25 50 100 50 - 80 100 80 -
30 100 100 100 - 100 100 100 -
32 x x x - 100 100 100 -
35 50 100 50 - 80 100 83.33 -
40 50 50 0 - 100 100 100 -
45 50 50 50 - 80 80 80 -
50 50 100 0 - 66.66 83.33 60 -
55 66.66 100 0 - 80 100 60 -
60 50 100 0 - 100 100 57 -
65 50 50 0 - 100 100 100 -
70 50 50 50 - 100 100 100 -
75 50 100 50 - 75 75 60 -
80 100 100 100 - 75 100 80 -
85 100 100 100 - 100 100 83.33 -
90 66.66 66.66 50 - 100 100 71.42 -
95 50 50 50 - 100 100 71.42 -
100 75 75 50 - 75 100 55.55 -
105 83.33 100 50 - 100 100 83.33 -
110 100 100 100 - 75 100 66.66 -
115 100 100 100 - 66.66 66.66 66.66 -
117 100 100 100 - x x x x
120 100 100 100 - 66.66 100 80 -
125 87.5 87.5 0 - 66.66 66.66 75 -
130 100 100 100 - 66.66 66.66 80 -
135 100 100 100 - 33.33 33.33 80 -
140 90 100 0 - 100 100 40 -
145 80 100 100 - 100 100 50 -
150 100 100 100 - 66.66 100 80 -
153 90 90 66.66 - 66.66 100 80 -
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Figure 5.18. Effect of number of neighbors on the alignment accuracy for Frame (b).

We can also observe that having a mid-range percentage of the points in the neighbor-

hood weight computation (from 30 to 40 %) results in much better accuracy compared

to both lower (10 to 25 %) and higher ranges (50% and above). The degradation in the

lower range can be explained by the effect of outliers (i.e., points seeming to be close,

especially in the camera and LIDAR scans, while not being truly so) in weight computa-

tions when the chosen percentage of neighbors is small. When the percentage increases

to the mid range, the number of considered neighbors in the computation becomes quite

larger, thus diminishing the effect of the smaller percentage of outliers in misrepresenting

neighborhood correlation. However, as this percentage grows beyond a certain limit, the

algorithm will relate each point to a lot of points, some of which definitely not being in its

true vicinity. Thus, the concept of neighbourhood dilutes which results in the exhibited

performance degradation.

Another final notice about Fig. 5.17 and Fig. 5.18 is that the camera-V2V alignment

process always results in a better performance. This can be interpreted by the fact that

the V2V data set object is known to all vehicles. Consequently, it is easy in this case

to reject any alignment between a point in the V2V data set with a point representing

a person from the camera data set. In other words, we can easily restrict the alignment
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Figure 5.19. Average Alignment Accuracy of the driving Sequences
(1): Sequence 09 26 0005 and (2): Sequence 09 28 0016.

between the V2V data set and only the objects identified as cars in the camera data set,

which reduces the number of points to be aligned, removes all potential errors of aligning

cars to persons (which can be the case in with LIDAR), and thus results in a better overall

alignment performance.
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Figure 5.20. Average Alignment Gains of the driving Sequences
(1): Sequence 09 26 0005 and (2): Sequence 09 28 0016.
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Chapter 6: Extended Kalman Filters

Applied to the 3D CNN for the Raw

LIDAR Scans

In this Chapter, a novel approach is presented to track recognized 3D vehicle point

clouds from LiDAR scans. This technique is based on tracing the 3D anchor boxes of

these vehicles, recognized though convolutional neural networks (CNNs). Exploiting the

3D CNNs detection of vehicles and persons, and the EKF two-steps process for prediction

and update, the proposed scheme guarantees the awareness of moving detected objects

and improves the perception of Autonomous Vehicles (AV). The proposed scheme reduces

the usage of the expensive detection process of feeding the point cloud to CNN by tracking

the 3D rectangular coordinates containing already detected objects from early Velodyne

scans of the driving sequences. The testing of the proposed method on the well-known

KITTI data set, featuring LiDAR scans of realistic vehicular environments. Results show

that the merits of the proposed scheme in achieving high tracking accuracy.

6.1 Related Work for tracking

With the recent advances of spinning LIDARs, such as Velodyne [103], and solid

state LIDARs [40], various solutions are being developed by researchers and companies

to enhance the 3D awareness of moving objects, defined as the activity layer, surrounding

the self-driving cars. The mobility tracking based on LIDAR scans is not the objective

itself, but it represents a crucial component toward High Definition (HD) 3D maps for

autonomous vehicles. One suggested technique is motion-based tracking [32], which uses

motion cues without any prior information about the objects and operates by initially

detecting multiple motions in the LIDAR scene and segmenting moving objects using a

Bayesian approach. This kind of approach is useful for specific applications, such as object
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avoidance and free derivable path detection, but does not offer rich information about the

tracked objects. In addition, the authors in [16] presented a detection and tracking of

moving objects (DATMO) method that operates at every time step by building a local

2.5D grid that uses the last sets of the LIDAR measurements. Then, all the created grids

are combined with localization data that are successively integrated into a unique local

environment called 2.5D map. Consequently, the 2.5D grid will be compared with the

updated 2.5D map after each scan to find out the 2.5D motion grid. Finally, the 2.5D

motion grid is processed in order to find object level representation in the scene and the

detected objects that are moving are tracked by using data association and Kalman filters.

Alternatively, the authors in [85] attempted to adapt Bayesian filtering to the generated

occupancy grids in order to predict the dynamics of the objects in the grids and combined

them with the developed Fast Clustering and Tracking Algorithm (FCTA) to detect and

track moving objects throughout consecutive grids. The aforementioned techniques are

based on the association of the displacement occurring from one representation of the

LIDAR point cloud to another. This is done in order to detect and track changes that are

abstractly referred to as moving objects without knowing neither their type, their first

occurrence in the scan or any other details. We present a different approach to solving

the LIDAR scene understanding and tracking, by detecting class of objects in early scans

using 3D CNNs, then tracking the objects while the car is moving. Various LIDAR

based perception approaches for objects detection and recognition from a point cloud are

developed in the literature. The work in [34] developed a solution based on LIDAR data

only to explore the vehicle surroundings. This solution involves three consecutive phases;

segmentation, fragmentation detection and clustering. Vote3Deep is developed in [41]

for fast point cloud object detection using 3D CNN, in order to keep the key power of

LIDAR as distance and objects 3D shapes and depth detection applied to the KITTI

Vision Benchmark Suite [48] that offers raw LIDAR and labeled objects from point cloud.

More simplistic and secure scheme that does not rely on incoming cloud data is developed
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in [28], where a Multi-View 3D networks (MV3D) is developed to guarantee accurate 3D

object detection applied to autonomous driving scenarios. Similarly in [117], the 3D point

cloud and 2D front view images are fused via a CNN with the usage of a Region Proposal

Network (RPN) that is used in the network’s multiple layers to generate proposal region

objects in the front view.

The goal of this Chapter is to merge the key features of LIDAR in giving accurate

distances, 3D deep learning for object detection and EKF powerful tracking algorithm.

We first parse raw LIDAR scans and execute object recognition modules to prepare the

resulting data for tracking. Our proposed tracking approach is run separately for each

3D detected object and uses its information to predict the state of the 3D box before

the next LIDAR scan gets loaded. Then, we update the measurement by using the

new observation of the point cloud and correct the belief about the previous predicted

state of the box. The main Kalman filter prediction parameters include position and

speed of the 3D surrounding box, while the key update parameters are the difference

between the actual and predicted measurement, the process and measurement combined

covariance, the Kalman gain after update that contains the weight adjustement to the

current prediction, the state vector and uncertainty matrix of the box , etc.

6.2 Object Detection and Recognition in LIDAR Scans

from KITTI Driving Sequences

This section illustrates the adaptation of object recognition from LIDAR point clouds

from an early scan to prepare the set of detected objects to be tracked. To simplify this

process, we are not considering the recognition of every object from the LIDAR point

clouds, since a tremendous number of class objects can be detected. Thus, we will restrict

the recognition of the Vote3Deep 3D CNN, developed in [41], to identify only “Cars” and

“Persons”, since the remaining items do not represent major importance in the tracking

process. The Vote3Deep 3D CNN uses feature-centric voting to detect persons and cars
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Figure 6.1. First Scan in Sequence Drive 2011 09 26 drive 0005 #1.

that are spatially sparse along many unoccupied regions, without the need to transform

the 3D point cloud to a lower dimensional space.

We present in Fig. 6.1, Fig. 6.2 and Fig. 6.3 initial frames for both of driving sequences

2011 09 26drive 0005, 2011 09 28 drive 0016 and 2011 09 26 drive 0106, respectively.

The black centered area in both figures is the car that is equipped with the 360◦

Velodyne spinning laser scanner. The circled points in both figures represent the free

space contour lines where no obstacles have been encountered (i.e., each circle represent

points of equal distance from the vehicle with no objects in them) . All cars and persons

are represented by more dense dots due to the reflections of the laser beams from these

objects. We note that the other black areas without circled points nor objects correspond

to zones in which the LIDAR beams were blocked by obstacles. Consequently, the LIDAR

scans cannot provide any knowledge of what is in these zones, as presented in Fig. 6.1

and Fig. 6.2.
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Figure 6.2. First Scan in Sequence Drive 2011 09 28 drive 0016 #1.

6.3 EKFs Nonlinear Adaptations of the KFs

6.3.1 KF Formulation and Parameter descriptions

The KF’s widely known closed form solution to the problem of recursive optimal

filtering is guaranteed by respecting the following three conditions:

• All the states and the measurements obey a linear model.

• Every prior distribution is considered to be Gaussian.

• The noise in measurements and in motions are Gaussian.

The Eauqtions representing the general motion of the tracklet and the measurement

model are shown in Eq. 6.1:

xk = Fk−1xk−1 + vk−1, vk ∼ N (0, Qk−1)

yk = Hkxk + wk, wk ∼ N (0, Rk)
(6.1)
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Figure 6.3. First Scan in Sequence Drive 2011 09 26 drive 0106 #1.

We only need the mean x̂k|k and the covariance Pk|k to represent the posterior density

because of the Gaussian densities. Consequently, the key densities are formulated as

follows:

p(xk−1|y1:k−1) ∼ N (x̂k−1|k−1, Pk−1|k−1) (6.2)

p(xk|y1:k−1) ∼ N (x̂k|k−1, Pk|k−1) (6.3)

p(xk|y1:k) ∼ N (x̂k|k, Pk|k) (6.4)

The prediction phase described in KF is applied to find the results of the moments, and

because of the linearity of the models then the prediction results in finding the covariance

and the expected value of shifted and scaled linearily of Gaussian density as shown in Eq.

6.5.

E[xk|y1:k−1] ≡ x̂k|k−1 = Fk−1x̂k−1|k−1

Cov[xk|y1:k−1] ≡ Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk

(6.5)
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The update phase described in KF is decomposed in many parts that are formulated

to resolve the expressions for the moments in the posterior density. Detailed equations

are depicted as follows:

vk = yk −Hkx̂k|k−1 (6.6)

Sk = HkPk|k−1H
T
k +Rk (6.7)

Kk = Pk|k−1H
T
k (Sk)

−1 (6.8)

The vk part represents the difference between the predicted measurement of the 3D

box and the actual measurement found in the next LIDAR frame. It is a zero-mean

with a covariance equal to Sk that represents the expected measurement covariance. In

addition, it is used to represent the region surrounding the predicted state where the

actual measurements of the 3D box are more probable to be received from. The Kk part

is the kalman gain that holds the measure of how much vk needs to be counted in the

posterior prediction phase.

Consequently, the posterior covariance and mean are presented as follows:

Pk|k = Pk|k−1 −KkSkK
T
k

x̂k|k = x̂k|k−1 +Kkvk

(6.9)

6.3.2 EKF non Linearity Extensions

EKF incorporates the nonlinear motion of the 3D tracklet with nonlinear measurement

models from the KF libraries, that uses approximate linearization. Consequently, the

motion and measurement models of the system:
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xk|k−1 = fk−1(xk−1|k−1) + qk−1

yk = hk(xk|k−1) + rk

(6.10)

with nonlinear parts fk−1(·) and hk(·). We perform the linearization by first-order

Taylor expansion for every function around the x̂k−1|k−1 and x̂k|k−1 :

fk−1(xk−1|k−1) ≈ fk−1(x̂k−1|k−1) + f
′

k−1

(x̂k−1|k−1)(xk−1|k−1 − x̂k−1|k−1)
(6.11)

hk(xk|k−1) ≈ hk(x̂k|k−1) + h
′

k(x̂k|k−1)(xk|k−1 − x̂k|k−1) (6.12)

∂fk−1(x̂k−1|k−1)

∂x̂k−1|k−1
(6.13)

with the Jacobian matrices are f
′

k−1(x̂k−1|k−1) and h
′

k(x̂k|k−1). The derivation of lin-

earizations for every model and presented the prediction and update parts can be ex-

pressed as in the following two sub-sections.

6.3.2.1 Prediction Steps

After the linearizations are derived to every model, the before predicted tracking mean

and covariance are now expressed as:

x̂k|k−1 = fk−1(x̂k−1|k−1) (6.14)
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Pk|k−1 = f
′

k−1(x̂k−1|k−1)Pk−1|k−1f
′

k−1(x̂k−1|k−1)
T +Qk−1 (6.15)

6.3.2.2 Update Steps

After prediction boxes are calculated and compared with the real boxes, we can de-

rive for every individual tracking the aposteriori motion noise vk, expected measurement

covariance Sk, Kalman Gain Kk, tracking mean x̂k|k and covariance Pk−1|k−1.

vk = yk − hk(x̂k|k−1) (6.16)

Sk = h
′

k(x̂k|k−1)Pk|k−1h
′

k(x̂k|k−1)
T +Rk (6.17)

Kk = Pk|k−1h
′

k(x̂k|k−1)
TS−1k (6.18)

x̂k|k = x̂k|k−1 +Kkvk (6.19)

Pk−1|k−1 = Pk|k−1 −KkSkK
T
k

(6.20)
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6.4 Proposed Tracking Approach of Multiple 3D

Anchor Boxes

The extension of the Bayesian reasoning to multi 3D boxes is defined on RFS and

requires many tools that are defined and developed by finite-set statistics (FISST) [79].

Every part in any given state RFS xk−1 ∈ Xk−1 can continue existing at a time step k

with a defined probability pS,k, otherwise it will disappear with the probability of 1−pS,k.
The parts that will continue to figure while transitioning to another state xk will follow

a transition function denoted by fk|k−1(xk|xk−1). Consequently, the state RFS Xk will be

predicted as {xk} among the elements xk−1 ∈ Xk−1 that continue existing, otherwise it is

∅. This transition Sk|k−1(xk−1) is modeled in [17].

In addition to the 3D objects still detected from the previous scan, there will be new

3D detected objects that are created at k and defined as Γk. The multiple 3D target

tracking with RFS Xk is described as:

Xk =


 ⋃

xk−1∈Xk−1

Sk|k−1(xk−1)


 ∪ Γk (6.21)

The measured values of RFS Zk consist of the clutter’s and target’s actual observations.

For a target xk ∈ Xk, the probability of missing the detection of the target is 1 − pD,k
and the probability of successfully detecting the target is pD,k. If the target is detected

then the likelihood function of the measurement zk is defined as gk(zk|xk) and equals to

∅ in the case of the target is not detected.

The transition function is Θk(xk), the clutter observations is defined as Kk and the

measurement RFS Zk is the union those sets.

Zk =

[ ⋃

xk∈Xk

Θk(xk)

]
∪Kk (6.22)
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The optimal Bayesian multi-target filter have a similar prediction and update steps of

the single-target Bayesian recursion.

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)

pk−1(Xk−1|Z1:k−1)µs(dXk−1)

(6.23)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)µs(dXk−1)
(6.24)

Where µs is the reference measure for all the collection of subsets of Xk [17].

6.5 Captures of Tracking Results

Fig. 6.4, Fig. 6.5 and Fig. 6.6 represent the tracked screen shots that are recorded

after 5 seconds of the intial frames in Fig. 6.1, Fig. 6.2 and Fig. 6.3, respectively. The

3D boxes in red represent tracked boxes from initial frames and the 3D boxes in grey

represent the wrong prediction of the EKF.

Figure 6.4. Tracking 2011 09 26 drive 0005 #1, EKF Predicted Box in Grey and Actual Box in Red.
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The first result to report from these Figures is that there is a lot of objects that

have been successfully tracked and the Kalman gain recovered from earlier tracked scenes

depending on the nonlinear motion of boxes did successfully estimate the actual position.

In addition, some predicted states of the boxes have not coincided with the actual

ones. Thus, we need to feed the area containing the object again to the 3D CNN and

consequently may loose track.

Figure 6.5. Tracking 2011 09 28 drive 0016 #1, EKF Predicted Box in Grey and Actual Box in Red.

In order to accurately discuss the numerical results of the accuracy of the tracking for

the three driving sequences, we have to remove the ground and non valid sub-point cloud

that is not inferred from the CNN. Then, we discuss the overall number and distances

between the predicted and actual tracked boxes for every scan in every driving sequence.
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Figure 6.6. Tracking 2011 09 26 drive 0106 #1, EKF Predicted Box in Grey and Actual Box in Red.

In summary, we have developed in this Chapter a 3D LIDAR-based solution for au-

tonomous vehicles, capable of tracking recognized objects from LIDAR. The proposed

scheme employs the extended nonlinear tracking models in EKFs for the prediction and

the update of the 3D detected box surrounding cars and persons. We presented a single

object tracking formulation and extend it to include the Bayesian multi-target filter that

runs recursively for each 3D box.
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Chapter 7: Conclusion and Future

Research Directions

The lack of a widely used and standardized wireless communication technology in

VANETs is one the most challenging problems blocking the expansion of VCs. Existing

state-of-the-art research on communications would satisfy the safety aspects required for

V2V safety systems, but does not meet the need of autonomous driving connectivity.

Moreover, many challenges and issues related to the vehicular cloud and vehicular net-

work management with fast changing topologies have been presented. Key challenges to

enable VC and AD systems to be coherent and reinforce the desired functionalites related

to driving commands or the driving experience are also presented. We studied the various

complex components that need to be built, integrated and fit together to guarantee an

autonomous driving vehicle. The sensing, perception, decision and actuation layers come

with many challenges to be deployed, tested and then put into real-world systems.

We present a novel Advanced Activity-Aware (AAA) scheme to enhance Multi-Channel

Operations based on IEEE 1609.4 standard in MAC Protocol implemented in Wireless

Access in Vehicular Environments (WAVE). The developed AAA scheme relies on the

awareness of the vehicular safety load. It aims at dynamically locating an optimal setup

to switch between Service Channel Interval (SCHI) and Control Channel Interval (CCHI)

by decreasing every inactivity in the network. Our scheme is implemented using NS3

and maintains the default Synchronization Interval (SI), as defined by the standard in

Vehicular Ad hoc Networks (VANETs). We evaluate the performance of our proposed

scheme through real-time simulation of VC load and VANET setups using NS3. We evalu-

ate a sequential and a parallel CUDA-accelerated Markov Decision Process (MDP) based

scheme and a fast greedy heuristics algorithm to optimize the problem of vehicular task
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placement with both IEEE 1609.4 and opportunistically available V2I of the AAA scheme.

We derive the system reward of Vehicular Cloud Computing (VCC) by considering the

overall utilization of virtualized resources of the distributed Vehicular Clouds (VCs) as

well as the optimality of the solution of placing the vehicular Bag-of-Tasks (BOTs).

We propose a scheme to create joint pixel-to-point-cloud and pixel-to-V2V correspon-

dences of objects in frames from the KITTI Vision Benchmark Suite. Using a semi-

supervised manifold alignment, to achieve camera-LIDAR and camera-V2V mapping of

their recognized objects. We present the alignment accuracy results over 2 different driv-

ing sequences and illustrate the additional acquired knowledge of objects from the various

input modalities. We also study the effect of the number of neighbors employed in the

alignment process on the alignment accuracy. With proper choice of parameters, the test-

ing of our proposed scheme over two entire driving sequences exhibits 100% accuracy in

the majority of cases, 74-92% and 50-72% average alignment accuracy for vehicles and

pedestrians, and up to 150% additional object recognition of the testing vehicle’s sur-

rounding.

5G might be the complete communications technology that will ease transforming VCs

and automation systems from a vision into a widely affordable reality. Consequently, the

challenges facing 5G connections float on the surface as a disruptive factor for VCs ex-

ploitation. Similarly, knowing that self-driving vehicles are making Big Data even bigger,

high speed connectivity like 5G would be the solution to tap into faster networks and

offload to the cloud the several hundreds of mega bits created per second.

The security issues in both the communications and the automation systems would be

definitely areas of study for the complete standardized systems when developed. Ad-

ditionally, in the future VCs are supposed to manage the microdatacenters mounted in

vehicles, communications base stations and the traditional VC architectures in the hope

that they will revolutionize various systems to be taken advantage of in modern vehicles.

The existing low level vehicles’ automation has not led to fully self-driving complete sys-
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tems yet. This is due to the many open unsolved problems or existing solutions that

need more refinements and improvements. In other words, it is obvious that owning the

most intelligent accurate HD maps will certainly own the future of self-driving vehicles,

independently of the perception, planning and command technologies. This HD (virtual-

world) map allows vehicles to accurately map themselves on well-known empty streets

and add detected dynamic objects later.

Moreover, new sophisticated and cheaper sensors should be developed to make the busi-

ness model of self-driving vhicles more attractive. For example, the spinning Velodyne

LIDAR offers great 360 degrees visibility and accurate depth information, but comes at

a high price tag and huge amount of data creation making processing complex. Recently

announced solid state LIDARs by Quanergy [40] and Velodyne [103] are expected to hit

the market at a few hundred US dollars in comparison to the several thousand US dollars

for the spinning LIDARs.

Other problems facing Spinning-LIDARs along with a comparison with solid state LIDAR

are presented in [113] including durability, precision and stability. Fail-safe real-time soft-

ware used as components in the autonomous driving systems are far from being completely

developed and validated. These pieces of software may include failing functionalities for:

• Objects detection, classification and tracking.

• Sensors fusion and vehicle mapping.

• Deep scene understanding and path planning.

• Control and steering systems.

A sophisticated deployable self-driving solution requires an effective combination of:

• High precision maps to position the car in relation to the surrounding objects in the

scene.

• Depth and stereo sensor detection and fusion.
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• Deep understanding of the scene with effective tracking.

• Accelerated sensor data processing and inference.

• Precise and quick steering commands system.

Self-driving vehicles are known as the mother of artificial intelligence systems and the one

with most promising business models. The emerging idea of VCs is very promising too,

aiming to improve the driving experience by using various types of infotainment appli-

cations. In addition, it should increase vehicular safety by using beaconing applications

and supporting additional over the air data for self-driving systems.

The challenges that are involved in these layers are presented in this Chapter. We also pre-

sented an overview of the existing communication technologies, VANET MAC protocols,

algorithms for VANET network coalition, reliability of safety and non-safety applications,

Vehicular cloud selection based on cost and QoS, all used to bridge reliable communica-

tions, VC and AD systems.
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