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Abstract 
 
 

 Parallel phenotypic or genetic evolution is often assumed to result from strong repeated 

natural selection associated with adaptation to particular environments.  Here we develop and 

analyze a mathematical model that predicts the probability of parallel genetic evolution as a function 

of the strength of phenotypic selection and constraints imposed by genetic architecture.  We then 

develop a Bayesian approach that uses our model, along with estimates of genetic parameters 

derived from QTL scans, to estimate the strength of parallel phenotypic natural selection. Using 

extensive individual based simulations we then evaluate the performance of our Bayesian estimator 

across a wide range of genetic and evolutionary scenarios. These simulations demonstrate that our 

Bayesian approach provides a useful tool for estimating the strength of parallel phenotypic selection 

from genomic data. In addition, our analyses of simulated data allows us to compare the utility of 

two commonly used experimental methodologies and generate guidelines for future empirical 

studies of parallel genetic evolution.  
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Chapter 1: Introduction 
 
 Parallel evolution has long captivated evolutionary biologists because of the potential 

insights it provides into the importance of genetic constraints and the consistency and repeatability 

of natural selection (Schluter et al. 2004; Schluter 2009). Capitalizing on advances in sequencing 

technology, studies documenting the extent to which the same genetic changes underlie repeated 

patterns of phenotypic evolution have begun to accumulate (Robison et al. 2001; Colosimo et al. 

2004; Shapiro et al. 2004; Sundin et al. 2005). These studies have revealed that the degree of genetic 

parallelism varies widely among systems, with identical genetic changes in some cases (Cresko et al. 

2004; Protas et al. 2006; Coyle et al. 2007; Gross et al. 2009) but largely independent changes in 

others (Robison et al. 2001; Sundin et al. 2005; Nichols et al. 2007; Steiner et al. 2009).  Although 

some of the variation in the degree of genetic parallelism may be explained by evolutionary 

relatedness (Conte et al. 2012), much remains unexplained. 

 One possible reason we see identical genetic changes in some systems, but a variety of 

independent changes in others, is the extent of genetic constraint. This possibility was explored by 

Orr (2005) using a model that studied novel mutations arising at a single locus in two allopatric 

populations.  Orr’s model calculated the probability that the same strongly beneficial mutation arises 

and fixes in both populations and showed that the number of possible mutations is inversely related 

to the probability of parallel evolution.  This prediction is supported by experimental adaptation of 

the bacteriophage 𝜙𝑋174 to high temperatures (Wichman et al. 1999) as well as in the adaptation of 

antifungal drug resistance in Saccharomyces cerevisiae (Anderson et al. 2003).  

Another potential source of the variation in genetic parallelism is differing strengths of 

parallel phenotypic selection across systems.  Strong phenotypic selection may disproportionately 

favor the fixation of large effect alleles, which in turn increases the extent of genetic parallelism.  

Although plausible, the degree to which genetic parallelism depends on the strength of parallel 
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phenotypic selection remains unknown.  To fully understand the role of natural selection in driving 

parallel evolution we need to model the process of parallel evolution across a broad range of 

selection strengths, population sizes, and genetic architectures. Such a model will allow us to 

understand how the probability of observing parallel evolution depends on the nature of standing 

genetic variation. The ability to predict the probability of parallel evolution from standing genetic 

variation is critical in light of evidence suggesting standing genetic variation has played an important 

role in several well-studied examples of parallel evolution (Colosimo et al. 2004; Miller et al. 2012). 

 Our basic approach will be to develop and analyze a multi-locus mathematical model that 

captures the essential features of adaptation to similar novel environments from standing genetic 

variation. Because our model integrates multiple loci, it will enable us to incorporate the effects of 

linkage disequilibrium, epistasis, and an explicit distribution of allelic effect sizes.  We will use this 

model to determine how the strength of parallel phenotypic selection impacts the probability of 

fixation of any particular allele, as well as the degree of parallel genetic evolution across multiple loci. 

We will then develop a Bayesian approach that allows us to estimate the strength of parallel 

phenotypic selection using data commonly collected as part of genome wide QTL scans aimed at 

dissecting the genetic basis of parallel evolution.  Finally, we use a combination of our Bayesian 

approach and individual based simulations to evaluate the performance of two alternative 

experimental methods for studying the genetics of parallel evolution.   
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Chapter 2: The Model 

Biological Scenario: 

 We envision a scenario where individuals from an ancestral population colonize two or more 

novel environments and establish new populations (see Figure 1A).  After this initial colonization we 

assume gene flow between the ancestral and descendent populations is negligible and that 

individuals within populations mate at random.  The descendent populations then experience 

identical patterns of phenotypic selection that cause population mean phenotypes to diverge in 

parallel from the ancestral population; for example the repeated reduction in body armor in 

freshwater sticklebacks from their common marine ancestors (Colosimo et al. 2004). Next we 

envision that the genetic basis of the parallel phenotypic evolution is studied using one of two 

possible experimental designs (Conte et al. 2012). 

 In the first design (shown in Figure 1B), parallel genetic evolution is assessed at a set of 

candidate genes.  To identify possible candidate genes individuals from one, or more, of the 

descendent populations (descendent population 1 in Figure 1B) are crossed with ancestral individuals 

and the resulting offspring are scanned for divergent QTL’s.  The remaining populations (descendent 

population 2 in Figure 1B) are then tested for these candidates.  We label this first method with the 

abbreviation GC.  This method has been used in human populations which have independently 

evolved the ability to digest lactose (Tishkoff et al. 2007; Enattah et al. 2008; Ingram et al. 2009) In 

the second design (shown in Figure 1C), descendent populations are searched independently for the 

genes responsible for the repeated phenotypic divergence from the ancestral population.   This is 

done by performing genome wide scans for QTL’s in each descendent population.   We label this 

method with the abbreviation GG.  The GG experimental design was used to identify separate genes 

responsible for a change in developmental rate in two populations of Oncorhyncus mykiss, (Robison 

et al. 2001; Sundin et al. 2005; Nichols et al. 2007).  
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Figure 1: Schematic of biological scenario.  Panel A depicts two descendent populations 
diverging in parallel from a common ancestral population.   The 𝑎 allele predominates at all four 
loci in the ancestral population whereas the 𝐴 fixes at various loci in the two descendent 
populations.  Panel B and C depict the two methods for deducing the underlying genetics of the 
repeated evolution of reduced body size in the two descendent populations depicted in panel A.  
Panel B showing the GC method which involves a genome wide scan of progeny from a cross 
between the first descendent population and the ancestral population and subsequent candidate 
gene search in the second descendent population. Panel C shows the GG method which involves 
two genome wide scans, one in each population.  Compared to Method 1, Method 2 uncovers an 
additional locus driving divergence in population 2.  
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Analytical Model 

Our model assumes the trait experiencing parallel selection is controlled by 𝑛 additive loci. 

Each locus,𝑖, has two possible alleles 𝐴𝑖  and 𝑎𝑖  and a phenotypic effect equal to 𝑏𝑖, such that the 

phenotype of an individual is described by: 

𝑧 = 𝑧̅ + ∑ 𝑏𝑖(𝑋𝑖 − 𝑝𝑖)𝑛
𝑖=1         (1) 

where 𝑋𝑖  is an indicator variable taking the value 1 if the individual carries the 𝐴 allele at locus 𝑖 and 

the value 0 if the individual carries the 𝑎 allele at locus 𝑖, 𝑝𝑖  is the frequency of the 𝐴 allele at locus 𝑖, 

and 𝑧̅ is the average phenotype of the population.  We assume that the phenotype of the ancestral 

population is small, meaning that the frequency of the 𝐴 allele is low at all loci, and equal to 𝑝0𝑖
.  

Within the new environments, individuals experience selection for large phenotypes, favoring an 

increase in frequency of the 𝐴 alleles.  Specifically, we assume the relationship between an 

individual’s phenotype and its fitness, 𝑊(𝑧), is linear and described by the expression: 

 𝑊(𝑧) = 𝛽𝑧 + 𝛼         (2) 

where the parameters 𝛽 and 𝛼 represent the slope an intercept of the fitness surface respectively. 

 To make our multi-locus model analytically tractable we further assume that the strength of 

linear directional selection is weak 𝒪(𝜖) and the rate of recombination between loci is relatively high.  

Under these assumptions, linkage disequilibrium changes very quickly relative to the allele 

frequencies and a quasi-linkage-equilibrium (QLE) is reached where linkage disequilibrium is small, 

also 𝒪(𝜖) (Nagylaki 1993; Nagylaki et al. 1999).  Using the expression for the phenotypic trait 𝑧, given 

in equation (1), as well as the expression for fitness, given by equation (2), we can use the multi-locus 

methods developed by Barton and Turelli (1991) and expanded by Kirkpatrick et al. (2002) to derive 

the change in the frequency of the 𝐴𝑖  allele at QLE over a single generation: 

Δ𝑝𝑖 =
𝛽

𝛼
𝑏𝑖𝑝𝑖(1 − 𝑝𝑖)          (3) 
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Equation (3) reveals that at QLE, linear directional selection allows loci to evolve independently, an 

assumption we will later relax with individual based simulations.   

The independent evolution of loci under the conditions of weak linear selection and frequent 

recombination, enables us to utilize the classic results of the Wright-Fisher model that describes the 

probability of fixation for an allele with initial frequency 𝑝𝑜 in a population of constant size 𝑁.  This 

probability is given by: 

𝑃𝑓𝑖𝑥 =
𝑒2𝑁𝑠(1−𝑝0)(𝑒2𝑁𝑠𝑝𝑜−1)

𝑒2𝑁𝑠−1
         (4) 

(Kimura 1957; Karlin and Taylor 1981).  In equation (4) 𝑠 is the strength of selection acting on the 

allele, and 𝑝0 is its initial frequency.  Under our assumption of linear directional selection, 𝑠 =
𝛽

𝛼
𝑏𝑖, 

and (4) can be re-written as: 

𝑃𝑓𝑖𝑥(𝑖) =
𝑒

2𝑁
𝛽
𝛼

𝑏𝑖(1−𝑝𝑜𝑖
)
(𝑒

2𝑁
𝛽
𝛼

𝑏𝑖𝑝𝑜𝑖 −1)

𝑒
2𝑁

𝛽
𝛼

𝑏𝑖−1

       (5) 

Equation (5) reveals that the probability of fixation depends on initial allele frequency, local 

population size, the strength of phenotypic selection, and the phenotypic effect of the locus. In the 

next section we will use this result to explore how these important parameters influence the extent 

of parallel evolution.  

The probability of parallel genetic evolution 

We begin by analyzing the simplest possible scenario, where parallel genetic evolution is 

assessed at only a single genetic locus. For this simple case, parallel adaptation entails the repeated 

fixation of the same allele in multiple descendent populations.   We can use equation (5) to express 

the probability that the 𝐴𝑖  allele fixes independently in each of 𝑚 populations:   
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𝑃∥ = (
𝑒

2𝑁
𝛽
𝛼

𝑏𝑖(1−𝑝𝑜𝑖
)
(𝑒

2𝑁
𝛽
𝛼

𝑏𝑖𝑝𝑜𝑖 −1)

𝑒
2𝑁

𝛽
𝛼

𝑏𝑖−1

)

𝑚

        (6) 

Equation (6), highlights three important factors that will influence the probability that parallel 

genetic evolution is observed. First, (6) shows that the probability of repeated fixation of an allele 

increases with its initial frequency.  Second, (6) reveals that large effect alleles are more likely to fix in 

parallel.  This relationship between effect size and parallel evolution is shown in Figure 2. The third 

effect on 𝑃∥ is the stochasticity of evolution.  This effect is captured by the term 𝑁
𝛽

𝛼
, the product of 

the population size 𝑁 and the selection gradient 
𝛽

𝛼
, which we will denote collectively as 𝜂. This 

combined parameter captures the balance between drift and selection; small values of 𝜂 connote 

systems driven primarily by drift and are hence highly stochastic.  Whereas if  𝜂 is large, selection 

predominates and evolution becomes more deterministic. The probability of parallel evolution, 𝑃∥, 

increases with 𝜂 as shown by the three lines in figure 2.  Since 𝜂 is proportional to the strength of 

selection, this last result indicates that parallel genetic evolution may enable insights into the 

strength of natural selection driving parallel adaptation.  
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Bayesian inferences on the strength of Natural Selection 

 Although the single locus results of the previous section are insightful, they fall short of 

capturing the genetic richness of real populations, where the extent of parallel evolution must be 

assessed across multiple loci. In these more realistic scenarios, the genetic data can be described by a 

matrix, 𝒟, whose rows represent descendent populations and columns loci.  Each element of 𝒟 takes 

a value of 0 or 1 depending on which allele has fixed at a particular locus in a given population 

(Figure 1A). Using equation (7) we can develop a likelihood function specifying the probability of 

observing the data, 𝒟, given a particular strength of natural selection and population size, 𝜂.  This 

likelihood expression consists of a product of terms, one for each locus in each population.  If the 𝐴 

allele has fixed at a locus it contributes a term 𝑃𝑓𝑖𝑥, as defined by equation (7). Alternatively, if the 𝐴 

allele is lost, it contributes a term (1 − 𝑃𝑓𝑖𝑥).  Thus, for 𝑚 populations and  𝑛 loci, the likelihood of 

observing the data, 𝒟, is given by the following product: 

Figure 2: The probability of parallel evolution as a function of effect size, 𝒃. For a given 
strength of selection the probability of fixation, and hence parallel evolution, increases with 
allelic effect size.  The rate of increase however is non-linear and depends on the strength of 
selection 𝑠 and the population size 𝑁 which are given by the parameter 𝜂 = 𝑁𝑠. 
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ℒ(𝒟) = ∏ ∏ 𝑃𝑓𝑖𝑥(𝜂, 𝑖)𝒟𝑖𝑗(1 − 𝑃𝑓𝑖𝑥(𝜂, 𝑖))
1−𝒟𝑖,𝑗𝑛

𝑖=1
𝑚
𝑗=1       (7) 

where 𝑖 is an index over loci and 𝑗 an index over populations. 

 For most genetic data 𝒟 we can use equation (7) to formulate a maximum likelihood 

estimate for 𝜂. The variable 𝜂, which is the product between the population size and the strength of 

selection, can then be used to estimate the strength of selection if an independent estimate for 

population size is available.  There are however, some cases where (7) will not supply a biologically 

meaningful estimate of 𝜂.  For example, if all divergent loci fix in all descendent populations such that 

matrix 𝒟 is all 1’s.  For such an outcome (7) yields a maximum likelihood estimate 𝜂 = ∞.  Although 

not informative on its own, such estimates can be relevant when framed in a Bayesian context where 

we can factor in our prior belief that extremely strong selection is unlikely.   

We incorporate our knowledge about the likely strength of selection in the form of the prior 

distribution, 𝜋(𝜂). Bayes theorem enables us formulate estimates for 𝜂 in the form of the posterior 

distribution 𝑝(𝜂|𝒟) that are biologically meaningful for all possible genetic outcomes, 𝒟.    

𝑝(𝜂|𝒟) =
𝜋(𝜂)ℒ(𝒟)

∫ ℒ
 

𝜂
(𝒟)

          (8) 

The denominator of this expression is the integral over the likelihood surface, and cannot be easily 

evaluated. For this reason, we employ Markov Chain Monte Carlo simulation methods to sample 

from the posterior distribution and generate an estimate of the most probable value of 𝜂  for the 

given genetic data 𝒟.  We label this estimate �̂�.  We take two approaches to evaluating the 

performance of this Bayesian estimator. First we analyze its performance under the assumptions of 

the analytical model by generating the genetic data 𝒟 using a Wright-Fisher model.  Next, we test the 

robustness of our Bayesian estimator to violations of the assumptions of our analytical model by 

generating the genetic data 𝒟 using multi-locus individual based simulations.   
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Wright-Fisher Simulation 

 We simulated the data 𝒟 for two populations under the Wright-Fisher model by drawing a 

random number for each locus and population and setting 𝒟𝑖,𝑗 to 1 if the random number was less 

than 𝑝𝑓𝑖𝑥, given by equation (5), and to 0 otherwise. The value of 𝑝𝑓𝑖𝑥  depends on the initial allele 

frequency at each locus,𝑝0𝑖
, the allelic effect sizes of each locus, 𝑏𝑖, as well as the variable 𝜂.  For 

each simulation we drew the values of these parameters independently and at random.  Initial allele 

frequencies ranged between 0 and 0.5 and were drawn independently for each locus.  Because our 

model envisions divergence of descendent populations from a common ancestor we assumed that 

the initial frequency at any one locus was the same in both populations.  Allelic effect sizes were 

drawn from a uniform distribution between 0 and 1, whereas the value of 𝜂 ranged from 0 to 50.  

The genetic outcome 𝒟 simulated in this manner may not however resemble what would be 

measured using experimental methods.  For example, using current genomic techniques it is not 

possible to identify loci that have not diverged from the ancestral state. To address how 

experimental methodologies effect our Bayesian estimates we considered two modified forms of 𝒟 

that resemble sampling under the two experimental methods described previously.  The first of these 

methods, GC, (Figure 1B) assesses parallel genetic evolution at candidate genes which are known to 

have generated the phenotypic divergence in the first descendent population.  Hence under this 

method we only consider the columns of 𝒟 (ie loci) where the 𝐴 allele has fixed in the first 

population.  The effective number of loci under this method is denoted by 𝑛𝐺𝐶.  The second 

experimental method, GG, (Figure 1C) independently assesses divergent loci in all populations.  𝒟 

under this method therefore contains all columns (loci) which have fixed in at least one population. 

We denote the effective number of loci under this method by 𝑛𝐺𝐺.  

  For each simulated 𝒟, as well as for 𝒟 modified by the two experimental methods, we 

estimated 𝜂 using a metropolis algorithm as described in the supplementary material.  For the prior 
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distribution 𝜋(𝜂) we used a uniform distribution on the interval 𝜂 = ±60. To analyze the 

performance of the Bayesian estimator we ran a regression of the estimated values of �̂� on the true 

values 𝜂 using 200 data points.  Overall, this analysis revealed that the Bayesian estimator was quite 

accurate, explaining between 30% and 60% of the variation (see Table S2). In addition, our analysis 

showed that the accuracy of the estimates increases with the number of loci.  This trend holds true 

regardless of the experimental method used.  However, the effective number of loci under the GG 

experimental method is always greater than that of the GC method.  The results of these simulations 

suggest our estimator performs quite well when data meet the assumptions of our analytical model; 

however, this may not be the case for real data. In the next section, we explore the performance of 

our estimator using individual based simulations that allow us to violate key assumptions of our 

analytical model such as weak selection and frequent recombination.  

Individual Based Simulation 

Our individual based simulations (IBS) consider two allopatric populations, each of which has 

a constant size of 𝑁 = 1000 individuals. Initial allele frequencies and effect sizes at each diallelic loci 

as well as the value of 𝜂 were drawn randomly as described above under the Wright-Fisher model.  

Individuals within each population undergo a two stage life cycle.  During the first stage, “selection”, 

the probability that an individual survives is given by its fitness, fitness is computed using either 

equation (1) which describes linear selection or an expression for stabilizing selection described 

below.  Surviving individuals enter the second life cycle stage, ”reproduction”, which consists of 

generating an offspring population from the remaining parental population.  This is done by drawing 

a pair of parents at random from the pool of surviving individuals and producing an offspring from 

these parents by recombining the parental genomes at a specified rate 𝑟 and allowing mutation 

between the two allelic states at a per locus mutation rate of 𝜇 = 10−6. This process is continued 

with replacement of parents until the offspring population reaches the pre-selection size of 𝑁.  This 
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life cycle is repeated until all loci approach fixation or loss (allele frequencies > 0.99 or < 0.01) at 

which point the simulations were terminated and the matrix of genetic data 𝒟 filled by rounding.  As 

in the previous section, we formulate modified versions of 𝒟 that resemble sampling under the two 

experimental methods. Then, using the metropolis algorithm, we compute estimates for the value of 

𝜂 using the original outcome 𝒟 as well as the two modified forms of 𝒟 (see Supplementary Material). 

We used the Individual based simulations to test the robustness of the Bayesian estimator 

when selection is strong and/or non-linear. To test the effect of non-linear selection, individual based 

simulations were run where an individual’s fitness was determined by one of two alternative forms 

of selection: linear directional selection described by (2), or stabilizing selection toward a phenotypic 

optimum:   

𝑊(𝑧) = 𝑒−𝛾(𝑧−𝜃)2
          (9) 

where 𝜃 is the phenotypic optima  and 𝛾 is the strength of stabilizing selection. Including simulations 

where selection is stabilizing is important because it relaxes our previous assumption that loci evolve 

independently. Stabilizing selection is particularly useful in testing this assumption because the 

extent of interdependence between loci can be manipulated by changing the value of the phenotypic 

optima, 𝜃.  Specifically, when 𝜃 is greater than the largest possible phenotype, 𝑧𝑚𝑎𝑥, loci remain 

relatively independent as directional selection predominates over epistatic selection. However when 

𝜃 < 𝑧𝑚𝑎𝑥 this is no longer true as epistatic selection now dominates.  Therefore, when 𝜃 > 𝑧𝑚𝑎𝑥 

evolution is much more likely to resemble linear selection as our analytical model assumed.  As 

expected, analysis of simulated data shows that the accuracy of our Bayesian estimates depends on 

the form of selection. Specifically, estimates for 𝜂 are most accurate under linear selection, 

somewhat less accurate under stabilizing selection toward a distance optimum( 𝜃 > 𝑧𝑚𝑎𝑥), and least 

accurate under stabilizing selection toward a close optimum (𝜃 < 𝑧𝑚𝑎𝑥).  In addition to assuming 
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that selection is linear we also assumed that selection is weak.  Indeed, the accuracy of the Bayesian 

estimates decrease with increasing 𝜂, shown by the increasing variance about the regression line. In 

addition, a systematic underestimation of large 𝜂 values results in regression lines with consistently 

positive intercepts (see Figure 3).   

  



14 
 

 
 

Figure 3:  Regression Fit of IBS Data under the three forms of selection.  Data and linear regression fit between 
the time averaged values of 𝜂 and the Bayesian estimate �̂� for 200 replicates of the individual based simulation.  
The Bayesian estimator uses genetic data filtered to resemble sampling using the GG experimental method.   

 



15 
 

 
 

 We also used our simulations to explore the sensitivity of our estimator to infrequent or 

restricted recombination among candidate loci. Not surprisingly, these simulations revealed that our 

Bayesian estimator performs best under free recombination (𝑟 = 0.5) and poorest when 

recombination is absent altogether (𝑟 = 0).  The effect of constrained recombination is more drastic 

for stabilizing selection than linear selection, and is particularly pronounced when 𝜃 < 𝑧𝑚𝑎𝑥. 

Stabilizing selection is more susceptible to error from constrained recombination because in such 

cases epistasis causes the buildup of linkage disequilibrium between loci, exacerbating the violation 

of our assumption that loci evolve independently.  
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Chapter 3: Discussion 

The results of our analytical model demonstrate that parallel genetic evolution becomes 

increasingly likely as the strength of parallel selection increases. The extent of this increase, however, 

is determined by the genetic architecture of the trait under selection with parallel evolution at large 

effect loci being more sensitive to natural selection then loci of smaller effect.  Our Bayesian 

estimator utilizes this connection between genetic effect size and sensitivity to selection to formulate 

estimates for the strength of natural selection driving parallel genetic evolution.  Our individual 

based simulations illustrate that such estimates are accurate under a broad range of parameters and 

robust to violations in assumption of the underlying model.   

Evaluating the performance of our Bayesian estimator using simulated data reveals that the 

number of loci used for inference is a critical. Specifically, increasing the number of loci from 2 to 8 

yields a fourfold increase in accuracy. The increase in accuracy with the number of loci is particularly 

pronounced when selection is stabilizing, and holds regardless of the experimental method used to 

identify the loci involved in phenotypic adaptation.    This result suggests that if wish to make 

inferences about the processes underlying repeated patterns of phenotypic evolution, it is important 

to identify as many loci as possible.  The two experimental methods, GG and GC, discussed 

throughout differ consistently in the number of loci they detect with GG methods always exceeding 

GC methods.  Hence it follows that inferences drawn from GG methods should typically outperform 

inferences drawn from GC methods.  

The number of candidate loci identified in known examples of parallel evolution ranges 

anywhere from 2 loci (Wilkens and Strecker 2003; Protas et al. 2006; Gross et al. 2009) to as many as 

8 loci (Robison et al. 2001; Sundin et al. 2005), with the majority of studies at the low end of this 

range.  Given the importance of having many loci to accurately determine the strength of selection, 



17 
 

 
 

current data may be unprepared to address the role of natural selection in driving parallel evolution 

in any one system.  However we may be able to make general inferences about the strength of 

selection by looking at parallel genetic evolution across systems. Our model predicts that strong 

natural selection should produce an overabundance of parallel genetic evolution at large effect loci.  

Indeed, many large effect genes, such as EDA and Pitx1 in stickleback (Colosimo et al. 2004; Shapiro 

et al. 2004), as well as Mc1r in lizards and fish (Wilkens and Strecker 2003; Protas et al. 2006; Vidal et 

al. 2007; Gross et al. 2009; Rosenblum et al. 2010) underlie parallel phenotypic evolution.   However 

in this regard, our current assessment of the genetics of parallel evolution may be substantially 

skewed as populations are much more likely to be tested for large effect candidate genes rather than 

genes of small effect.  It is therefore important that future studies of parallel evolution focus on 

understanding the role of genes from across the effect size spectrum.   

Although the results of our individual based simulation suggest that the Bayesian estimator is 

quite robust to violations in many of our assumptions, there are still several assumptions remain 

untested. We still assume that after initial colonization there is no ongoing gene flow between the 

ancestral and descendent populations.  This assumption enables accurate estimation of initial allele 

frequencies in descendent population from analysis of the standing genetic variation of the ancestral 

population.  Another assumption is constant population size across time, this does not allow for 

extreme bottlenecks or extensive founder effects.  Historically small population sizes may be critically 

important in cases like the repeated evolution of reduced skin pigmentation in European and Asian 

human populations for which there is evidence for an extensive bottlenecks (Schmegner et al. 2005; 

Amos and Hoffman 2010). Finally we assume that selection is identical in each population. We can 

extend our results to compute independent Bayesian estimates of selection in each descendent 

population by considering the loci from each population separately.  However this reduces the 
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number of loci used for each inference by a factor of the number of populations, and hence greatly 

reduces accuracy.   

We have developed and tested a Bayesian approach to estimating the strength of parallel 

phenotypic selection using genetic data. This approach offers a novel method for capitalizing on 

rapidly increasing genetic data derived from studies of parallel evolution. By analyzing parallel 

genetic evolution within and across biological systems in the light of our theoretical predictions it 

may be possible to formulate predictions for the role of natural selection in driving parallel evolution 

at large.   Extensions of our model to repeated phenotypic evolution within more distantly related 

populations may finally be able to assess the relative roles of natural selection and genetic constraint 

in driving parallel evolution.  
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Appendix A: Evolution of Allele Frequencies and Linkage Disequilibrium  

 As discussed in the main text, our model studies parallel phenotypic evolution in two or more 

descendent populations which were colonized by a single common ancestral population (Figure 1). 

Within the ancestral population selection is assumed to favor a small values of the phenotype, 𝑧. 

Whereas larger values of the phenotype 𝑧 are favored in the descendent populations. We further 

assume the phenotype 𝑧 is determined by the additive action of 𝑛 diallelic loci with alleles 𝐴 and 𝑎 

such that: 

𝑧 = 𝑧̅ + ∑ 𝑏𝑖𝜁𝑖
𝑛
𝑖=1 + ℯ𝑧          (S1) 

where 𝑧̅ is the average phenotype of the population,𝑏𝑖 is the effect of the 𝐴 allele relative to the 𝑎 

allele, 𝜁𝑖 = (𝑋𝑖 − 𝑝𝑖) where 𝑋𝑖  is an indicator variable which takes on the value 1 if the individual 

carries the 𝐴𝑖  allele and a value of 0 if it carries the 𝑎𝑖  allele, and 𝑝𝑖  is the allele frequency of the 𝐴 

allele. The variable ℯ𝑧 describes the random environmental component of the phenotype. For 

simplicity we assume there is no environment effect and hence ℯ𝑧 = 0.  Given this simplification 

equation (S1) reduces to equation (1) of the main text. Because we assume selection favors a small 

value of the phenotype, 𝑧, in the ancestral population and ignore mutation, allele frequencies, 𝑝, 

within the ancestral population will be near zero.  We assume that the approximate values of these 

allele frequencies are known. 

 We begin our analysis by focusing on the simplest possible selective scenario capable of 

generating parallel phenotypic evolution: directional selection of identical strength within each of the 

descendent populations.  Specifically, we assume that selection is linear such that absolute fitness as 

a function of the phenotype is given by the line: 

𝑊(𝑧) = 𝛽𝑧 + 𝛼         (S2) 
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Here 𝛽 and 𝛼 describe the slope and intercept of the selection surface respectively.  Equation (S2) is 

the same as equation (2) of the main text.  Averaging (S2) over individuals gives us the following 

expression for the average fitness of a population. 

�̅� = 𝛽𝑧̅ + 𝛼  

Where 𝑧̅ is the average phenotype of the population as defined in equation (S1).  The relative fitness 

of an individual with phenotype 𝑧 is given by the ratio 𝑤(𝑧) =
𝑊(𝑧)

�̅�
.  The resulting expression for 

relative fitness is simplified by assuming that selection is weak and Taylor expanding about 𝛽 = 0: 

𝑤(𝑧) =
𝛽𝑧+𝛼

𝛽�̅�+𝛼
≈ 1 +

𝛽

𝛼
(𝑧 − 𝑧̅) + 𝒪(𝛽2)        (S3) 

Substituting in the definition of the trait 𝑧 from equation (S1) we get an expression for relative fitness 

as a function of the individual effect of each locus: 

𝑤(𝑧) = 1 + ∑
𝛽

𝛼
𝑏𝑖𝜁𝑖

𝑛
𝑖=1           (S4) 

Expression (S4) is very useful as it allows us to determine the selection on each locus.  To do so we 

begin with equation (7) from of Kirkpatrick et al. (2002) which gives a general expression for relative 

fitness:  

𝑤(𝑧) = 1 + ∑ 𝑎𝑖(𝜁𝑖)
𝑛
𝑖 + ∑ ∑ 𝑎𝑖,𝑗(𝜁𝑖𝑗 −𝐷𝑖𝑗)

𝑛
𝑗<𝑖

𝑛
𝑖 +⋯     (S5) 

where 𝐷𝑖𝑗 is the linkage disequilibrium between the alleles at the 𝑖𝑡ℎ and 𝑗𝑡ℎ loci,  𝑎𝑖  is the selection 

coefficient on the 𝐴𝑖  allele, and 𝑎𝑖,𝑗 is a selection coefficient describing the correlational selection 

acting on the combination of the 𝐴𝑖  and 𝐴𝑗 alleles.  We can solve for these selection coefficients (the 

𝑎′𝑠) by comparing like terms between (S4) and (S5).  This reveals that: 

𝑎𝑖 =
𝛽

𝛼
𝑏𝑖   𝑎𝑛𝑑     𝑎𝑖,𝑗 = 0         (S6) 
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With these selection coefficients in hand we can describe the change in the allele frequency 

of the 𝐴𝑖  allele over a single generation using equation (10) from Kirkpatrick et al. (2002). 

Δ𝑝𝑖 = 𝑎𝑖𝑝𝑖(1 − 𝑝𝑖) + ∑ 𝑎𝑗𝐷𝑖𝑗
𝑛
𝑗≠𝑖         (S7) 

Where 𝐷𝑖𝑗 is the linkage disequilibrium between the 𝐴𝑖 and 𝐴𝑗 alleles.  To further simplify this 

expression we assume that recombination is frequent relative to the strength of selection, an 

assumption which allows the populations to reach a state known as quasi-linkage-equilibrium (QLE). 

At QLE, the 𝐷𝑖𝑗 terms are small and on the same order as the selection, 𝒪(𝛽) (Nagylaki 1993; 

Nagylaki et al. 1999)  This allows us to simplify the change in allele frequency in (S7) to: 

  Δ𝑝𝑖 ≈ 𝑎𝑖𝑝𝑖(1 − 𝑝𝑖) + 𝒪(𝛽
2)        (S8) 

which simplifies to equation (3) of the main text upon substituting the value of 𝑎𝑖  from equation (S6).   

 Because (S8) shows that at QLE the evolution of allele frequencies across loci is independent, 

we can make use of several classical results derived from the Wright-Fisher model to study the 

balance between selection and drift within the colonizing populations. Specifically, this can be easily 

seen by comparing equation (S8) to the following equation which is the classical expression for the 

change in allele frequency under the Wright-Fisher model. 

Δ𝑝 = 𝑠 𝑝(1 − 𝑝)         (S9) 

(Hartl and Clark 2007) Comparison of (S8) to (S9) reveals that under linear selection at QLE 𝑠 =
𝛽

𝛼
𝑏𝑖.  

We can use this expression for 𝑠 to utilize another classical result of the Wright-Fisher model, the 

probability of fixation of an allele under linear directional selection (Karlin and Taylor 1981). 

𝑃𝑓𝑖𝑥 =
𝑒2𝑁𝑠(1−𝑝0)(𝑒2𝑁𝑠𝑝𝑜−1)

𝑒2𝑁𝑠−1
=
𝑒
2𝑁
𝛽
𝛼
𝑏𝑖(1−𝑝0)(𝑒

2𝑁
𝛽
𝛼
𝑏𝑖𝑝𝑜−1)

𝑒
2𝑁
𝛽
𝛼
𝑏𝑖−1

     (S10) 
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Which is equation (4) and (5) of the main text.   

 Extending equation (S10) to capture parallel genetic evolution is not straight-forward.  If 

there are 𝑚 populations undergoing parallel evolution parallel genetic evolution at locus 𝑖 represents 

the independent fixation of the 𝐴𝑖  allele in each of these populations and is hence given by the 𝑚𝑡ℎ 

power of (S10).  See equation (6) of the main text.  QLE enables us to assume a similar independence 

between the fixation of alleles at loci as exists between the fixation of alleles across populations.  

This important simplification enables us to easily extend equation (S10) to capture the probability of 

any particular genetic outcome 𝒟 as described in equation (7) of the main text.   

Appendix B: Markov Chain Monte Carlo Simulation of Posterior Distributions. 

 At the conclusion of the individual based simulation we have the genetic data 𝒟, which 

consists of a 2 X 𝑛 matrix of 0’s and 1’s indicating the fixation or loss of alleles at the 𝑛 loci in the two 

descendent populations.  As inputs to our simulation we also know the values for the allelic effect 

sizes and initial allele frequencies.  We use the following Metropolis algorithm to sample the 

posterior distribution, 𝑝(𝜂|𝒟) where 𝜂 = 𝑁
𝛽

𝛼
.  The basic algorithm can be described in 7 steps, the 

first of these steps initializes the algorithm, the 2nd through 4th steps are recursive and generate 

samples from the posterior (Marjoram et al. 2003), whereas the 5th and 6th steps address the 

convergence and termination of the algorithm respectively.  Convergence to the true posterior 

distribution can be computed by simulating multiple independent sequences of points and then 

comparing the variance between versus within these sequences, we will simulate 𝑚 = 5 sequences 

to assess convergence.  One important feature of MCMC sampling of the posterior distribution is 

called “burn in”, a phenomena describing how the beginning portion of a sequence of sampled 

points depends largely on the initial starting point rather than on the posterior distribution, therefore 

the first simulated points are often uninformative in describing the posterior.  To eliminate “burn in“ 
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effects, when testing convergence and computing the estimated posterior distribution it is a 

common practice to only use the last half of the simulated points in a sequence (Gelman 2004).   

  Initialization 

1. Draw 𝑚 initial estimates of 𝜂 = 𝑁
𝛽

𝛼
 prior distribution.  These estimates will serve 

as the starting points for each of the 𝑚 sequences. 

Recursive algorithm:  (Repeat for each of the 𝑚 sequences) 

2. From the current estimate 𝜂 propose a move from to a new point 𝜂∗, where 𝜂∗is 

drawn from the jump distribution 𝐽(𝜂, 𝜂∗).    

3. Calculate the probability of accepting the point 𝜂∗, ℎ.  

 

ℎ = min(1,
𝑃(𝐷|𝜂∗)𝜋(𝜂∗)𝐽(𝜂, 𝜂∗)

𝑃(𝐷|𝜂)𝜋(𝜂)𝐽(𝜂∗, 𝜂)
) 

4. Move to 𝜂∗with probability ℎ, otherwise stay at 𝜂.   

Assessing Convergence:  (After simulating 2n points in each of the 𝑚 sequences) 

5. Denote these 𝑚 sequences by 𝜓𝑗  𝑗 ∈ {1,2…𝑚 = 5}.  Discard the first 𝑛 points in 

each sequence for “burn in” and denoting the final 𝑛 points in the 5 sequences 

as 𝜓𝑖,𝑗 𝑖 ∈ {1,2…𝑛}, 𝑗 ∈ {1,2…𝑚 = 5}, calculate the following ratio of the 

variance in the points between versus within each sequence: 

𝑅 = √
𝑛 − 1
𝑛 𝑊 +

1
𝑛𝐵

𝑊
 

Where: 

 𝐵 =
𝑛

𝑚−1
∑ (

1

𝑛
∑ 𝜓𝑖,𝑗
𝑛
𝑖=1 +

1

𝑚
∑

1

𝑛
∑ 𝜓𝑖,𝑗
𝑛
𝑖=1

𝑚
𝑗=1 )

2
𝑚
𝑗=1  and 
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 𝑊 =
1

𝑚
∑

1

𝑛−1
∑ (𝜓𝑖,𝑗 −

1

𝑛
∑ 𝜓𝑖,𝑗
𝑛
𝑖=1 )

2
𝑛
𝑖=1

𝑚
𝑗=1  

6. If 𝑅 < 1 simulating additional points will not significantly improve the estimation 

of the peak of the posterior distribution (Gelman 2004). 

After enough points have been simulated to reach a ratio of 𝑅 < 1, we use the last 𝑛 points 

in each of the 𝑚 = 5 sequences to generate a single histogram which approximates the posterior 

distribution.  We then find the bin of this histogram containing the most points. The minimum value 

of this bin was used as our estimate �̂�. 

Appendix C: Sensitivity of Bayesian Estimator to error in parameters 

 The main text discusses at length the robustness of the Bayesian estimator to violations in 

the assumptions of the analytical model.  The tests addressing this however were performed using 

exact values for the initial frequencies and effect sizes of the alleles.  Although these values can be 

estimated in natural systems such estimates will likely be associated with substantial error.  It is 

therefore also important to address the robustness of the Bayesian estimator to error in these 

parameters as well.  To do so we ran a series of individual based simulations under linear directional 

selection using the same procedure as described in the main text.  However, rather than using the 

true values for the initial frequencies and effect sizes when estimating �̂�, we drew estimates for 

these parameters allowing for a specified amount of error.  Specifically, we drew the values of these 

parameters from a Gaussian distribution centered about the true value and with a variance of either 

1%, 5%, or 10% of the true value.  Table S3 describes the results from these simulations.  In general 

the Bayesian estimator was highly insensitive to error in initial allele frequency and only moderately 

sensitive to error in effect size.   
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Appendix D:  Supplementary Tables: 

 

  

Table S1: Single locus and Multiple loci predictions.  Regression line coefficients and 𝑅2 
values for the fit between simulated and predicted rates of parallel evolution at a single 
locus (A), and a probability of a specific genetic outcome across multiple loci (B). 
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Table S2: Regression fit for three forms of natural selection. Regression line coefficients 
and 𝑅2 values for the three forms of natural selection with free and constrained 
recombination.  Estimates for the strength of selection were made using data filtered to 
resemble the GG experimental methods. The average number of loci used to estimate 𝜂 
under each experimental method is also recorded.  WF indicates data simulated using the 
Wright-Fisher Model, a perfect fit to the assumptions of the analytical model.   

GG Method

Selection # of loci Slope Itercept R^2

Linear 2 0 1 0.233554

1.022567 -7.97479 0.307461

Linear 4 0 1 0.276214

0.746356 5.526915 0.314167

Linear 8 0 1 0.500288

0.867688 3.253798 0.51223

2 0 1 0.026395

2.205828 -14.7943 0.154519

4 0 1 0.199309

1.490425 -9.16855 0.246104

8 0 1 0.396366

0.960228 5.07128 0.447337

2 0 1 -0.15149

1.403294 -11.0413 0.019578

4 0 1 0.001686

1.220801 -6.16244 0.05796

8 0 1 0.012296

0.796777 6.950119 0.114301

 < 𝑧𝑚 𝑥

 < 𝑧𝑚 𝑥

 < 𝑧𝑚 𝑥

  𝑧𝑚 𝑥

  𝑧𝑚 𝑥

  𝑧𝑚 𝑥
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Table S3: Accuracy of Bayesian estimate with error in parameters.  The regression line 
coefficients and 𝑅2 values computed when initial frequencies and effect sizes were known 
with error.  Initial frequencies and effect sizes were drawn from Gaussian distributions 
centered at the true values and with variances of 10% or the true value.   
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