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   Abstract 

 The global terrestrial carbon cycle is driven by the photosynthetic process, whereby 

chemical energy is created from a variable stream of solar photons that ultimately provide 

energy for life on Earth. Improved temporal and spatial monitoring of plant function for 

terrestrial biosphere modelling and management purposes rely heavily and increasingly on 

remote sensing systems; however, the interpretation of these data at leaf, canopy, and 

ecosystem scales require a nuanced understanding of vegetation structure and physiology. In 

this work, I seek to develop new and validate existing remote sensing techniques to map plant 

function in both space and time in the Palouse region of Eastern Washington, and the arctic 

tundra of Northern Alaska. From both an applied and theoretical framework, this work uses a 

variety of ground-based remote sensing tools to better understand how plants respond to their 

environment; and further, how aboveground biomass responds to environmental stressors via 

spectral reflectance measurements of the photochemical reflectance index (PRI) and the 

normalized difference vegetation index (NDVI). High resolution NDVI and PRI data were 

used to predict crop yield, biomass, protein concentration and nitrogen uptake in wheat, as 

well as track crop response to environmental conditions throughout the growing season. In the 

Arctic tundra, a 3-D plant canopy model derived from terrestrial light detection and ranging 

(LiDAR) measurements was coupled with a ray tracing model – demonstrating a new 

technique that reveals photosynthetic partitioning according to light availability within a 

small, Arctic shrub. In addition, a meta-analysis of xanthophyll cycle pool size 

(photoprotective pigments) on a global scale reveals patterns of xanthophyll accumulation 

coincident with extreme temperatures and water deficits, particularly in the Arctic tundra. 

This finding provides suggestions for how remote sensing techniques sensitive to xanthophyll 

cycle pool size may enable the eventual mapping of plant physiological status using spectral 

reflectance. To this end, it is my hope that this work provides techniques to enable an 

improved understanding of plant function across space and time, towards advancing the 

global mapping of photosynthesis - ultimately reducing uncertainties in not only the when and 

where, but also the why and how of land-atmosphere CO2 exchange. 
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Chapter 1: Response of High Frequency Photochemical Reflectance Index (PRI) 

Measurements to Environmental Conditions in Wheat 

 

Magney, T.S., Vierling, L.A., Eitel, J.U.H., Huggins, D.R., Garrity, S.R. 

Remote Sensing of Environment, under consideration 

 

Abstract: Remotely sensed data that are sensitive to rapidly changing plant physiology can 

provide real-time information about crop responses to abiotic stressors. The photochemical 

reflectance index (PRI) has shown promise when measured at short timesteps to remotely 

estimate dynamics in xanthophyll pigment interconversion - a plant photoprotective 

mechanism that results in lowered photosynthetic efficiency.  To gain a better understanding 

of this dynamic spectral response to environmental conditions, we investigated PRI over two 

seasons (2013 and 2014) in rainfed soft white spring wheat (Triticum aestivum L.). Highly 

temporally resolved (measurement frequency = five minutes) in-situ radiometric 

measurements of PRI were collected at field plots of varying nitrogen (N) and soil water 

conditions (n = 16). We calculated a corrected PRI (PRIc, as midday PRI - early morning PRI) 

to represent the diurnal magnitude of xanthophyll pigment interconversion. The advantage of 

using PRIc is that it can empirically deconvolve the diurnally changing (facultative) from the 

seasonally changing (constitutive) component of the PRI signal. PRIc was correlated with 

continuous, unattended crop responses associated with vapor pressure deficit (0.50 > R2 > 

0.42), stomatal conductance (R2 = 0.40), and air temperature (0.45 > R2 > 32). Further, the 

sensitivity with which PRIc responded to solar radiation under varying N treatments and 

periods of soil water availability (surplus, depletion, and deficit) suggests that crop growth 

may be inhibited by a xanthophyll cycle mediated stress response, detectable by PRIc. A 

major implication of these findings is that highly temporally and spatially resolved PRIc data 

could be used to track plant stress. In this study, a ~15 day earlier PRIc response was observed 

prior to the onset of senescence as compared to NDVI. 
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1.1. Introduction 

 Better understanding of crop response to environmental stress conditions may be 

possible using near-surface remote sensing platforms (Zhang & Kovacs, 2012).  By 

collecting, processing, and communicating data in real-time, such technology could lead to 

more rapid and efficient methods for targeting site-specific management practices such as 

irrigation, fertilization or cultivar selection. Ground-based remote sensing is well established 

as a tool for assessing crop eco-physiological variables and has garnered wide interest from 

agricultural practitioners as a tool to track crop performance with higher temporal and spatial 

resolution than airborne or satellite data (Mulla, 2013). Further, ground based remote sensing 

techniques can provide valuable information towards scaling daily crop photosynthesis from 

the plot to the landscape scale via airborne and satellite sensors (Cheng et al., 2013; Zarco-

Tejada et al., 2013a,b; Drolet et al., 2005). Of particular interest for bridging this gap is the 

photochemical reflectance index (PRI, Gamon et al., 1992; Garbulsky et al., 2011), due to its 

differing sensitivity to plant function at different timescales (Gamon and Berry, 2012). 

 Research from a wide range of disciplines has highlighted the potential of the PRI to 

remotely detect a photoprotective response of green plants to excess light (Penuelas et al., 

1995; Gamon et al., 1997; Gamon & Surfus, 1999). At short (e.g. diurnal) timescales, the 

functional basis of the PRI is related to its sensitivity to rapid changes in carotenoids through 

the de-eopoxidation of the xanthophyll pigments (Gamon et al., 1992). De-epoxidation of the 

xanthophyll cycle results in a decrease in leaf optical reflectance between ~ 510 nm and ~550 

nm centered at 531 nm (Gamon et al., 1990; Gamon et al., 1992; Peñuelas et al., 1995, Gamon 

& Surfus, 1999). This decrease in reflectance can be detected using remote sensing devices 

capable of measuring narrowband (~1-10 nm bandwidth) spectral reflectance. Typically, the 

reflectance at 531 nm is used in conjunction with a reference band at 570 nm that is 

insensitive to changes in xanthophyll cycle de-epoxidation to calculate the PRI (Eq.1) 

(Gamon et al., 1992): 

            PRI = (ρ531-ρ570) / (ρ531+ρ570)                             (Eq.1) 

 The xanthophyll cycle can be triggered at differing light intensities based on the 

photosynthetic potential of a plant (Demmig-Adams & Adams, 1992). Numerous abiotic 

environmental conditions – nutrient availability (Shrestha et al., 2012), air temperature 

(Dobrowski et al., 2005; Sims et al., 2006), and water availability (Suárez et al., 2008, 2009, 



3 

 

2010) – have been shown to enhance the apparent drop in reflectance at 531 nm, based on the 

well-established observation that this phenomenon is associated with changes in the 

concentration of xanthophyll cycle constituents (from violaxanthin to antheraxanthin, and 

eventually zeaxanthin under increasing irradiance; Demmig-Adams and Adams, 1996; 

Garbulsky et al., 2011). Thus, the presence of any environmental stress will increase the 

magnitude of the PRI response to excess light at short time scales (i.e., tens of seconds to 

minutes, Hartel et al. 1999; Peguero-Pina et al., 2013).  

 PRI has been shown to be one of the only vegetation indices (VIs) sensitive to rapid 

changes in plant physiology (Gamon et al., 1992; Gamon et al., 1997; Penuelas et al., 1995). 

In addition to PRI, reflectance based approaches measuring chlorophyll fluorescence have 

been used to track plant physiological status, but the overall reflectance signal (<1%) is often 

muted by confounding signals and difficult to interpret (e.g., Zarco-Tejada et al., 2000; Zarco-

Tejada et al., 2003; Shrestha et al. 2012; Porcar-Castell, 2014). While there is strong evidence 

that PRI is able to capture rapid changes in photosynthetic status in dark-light transition 

experiments across a wide range of species (e.g., Penuelas et al. 1995; Gamon et al. 1997; 

Guo & Trotter et al., 2004; Magney et al. 2014), PRI measurements in field settings are 

generally only taken at infrequent (≤ 1 measurement per day) intervals and thus might not be 

representative of this rapidly changing plant physiological process throughout a day (e.g., 

Harris et al., 2014). Some of the first demonstrations of the potential for using highly 

temporally resolved diurnal PRI canopy reflectance data stemmed from work by Hilker and 

Hall et al. (Hall et al., 2008; Hilker et al., 2008; Hilker et al., 2009), who reported that the 

effects of canopy shading caused by sun angle strongly influenced the relationship between 

PRI and canopy light-use efficiency (LUE). The confounding effects of canopy architecture 

on high frequency spectral data have been further confirmed in both modelling (Barton & 

North, 2001) and field based studies, where new PRI reference bands have been explored 

(Hernández-Clemente et al. 2011). Results from these studies have spurred further research 

into the mechanistic linkages between the diurnal spectral and physiological behavior of 

plants.  

 At longer time scales, studies have used diurnal PRI measurements to track seasonal 

fluctuations in photosynthetic efficiency (Nichol et al. 2006, 6 times per day) under nutrient 

(Strachan et al., 2002) and water (Thenot et al., 2002; Hmimina et al., 2015) stress conditions. 
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Interpreting the PRI across a season can be challenging as chlorophyll (Chl) and carotenoid 

absorption, which overlap with the spectral bands sensitive to xanthophyll pigments, further 

confound estimates of photosynthetic performance by the PRI (Stylinski et al., 2002; Sims et 

al., 2006; Filella et al. 2009; Garrity et al. 2011; Gamon &Berry, 2012; Zarco-Tejada et al. 

2013b; Hmimina et al., 2014, 2015).  Most of the formative development of the PRI 

technique, whereby PRI is linked to LUE from CO2 flux observations, has been conducted on 

canopies that have relatively little variation in their structural (e.g., variations in leaf area 

index) and foliar pigment concentration over seasonal time scales (Gond et al., 1999). Further 

research is required to elucidate the temporal and spatial dynamics in photosynthetic status by 

using PRI measurements in the presence of varying concentrations of xanthophylls, 

chlorophylls, anthocyanins, and carotenes over a range of canopy structures and crop growth 

stages (Filella et al., 2009; Penuelas et al., 2011; Gamon & Bond, 2013). 

 We hypothesize that diurnal PRI measurements can be used in a similar way as the 

widely used field-portable pulse amplitude modulated (PAM) fluorimeter technique to assess 

plant stress (Bilger et al., 1995; Logan et al., 2007). Chlorophyll fluorescence derived from 

PAM measures the photosynthetic efficiency of photosystem II by comparing a dark-

acclimated pre-photosynthetic minimum fluorescence (Fo) to a light saturated maximal 

fluorescence (Fm; Baker et al., 2004). The difference between Fm and Fo is termed variable 

fluorescence (Fv), and by normalizing Fm by Fv one can determine how many photosynthetic 

reaction centers are open under saturating light. The ratio of (Fv/Fm), or the efficiency of 

photosystem II, will fluctuate on a diurnal time scale depending on the potential for incident 

irradiation to be used for photosynthesis, re-emitted as fluorescence, or dissipated as heat. All 

three of these energy pathways will fluctuate depending on light availability and resources 

available for achieving maximum photosynthesis. Similar to Fv/Fm, extracting information 

about xanthophyll mediated thermal energy dissipation could be done by subtracting an early 

morning PRI value (effectively a 'dark-state', prior to xanthophyll cycle de-epoxidation) from 

PRI measurements throughout the day (Gamon and Berry, 2012; Liu et al., 2013; Hmimina et 

al., 2014, 2015). A recently developed technique is to subtract a dark-state PRI (PRIo) - which 

has been quantified as both a true dark-adapted PRI (Gamon and Berry, 2012) or the intercept 

of incident irradiance and PRI (Hminana et al., 2014) - from the PRI estimate under light, to 

effectively obtain a change in PRI (ΔPRI). The current study presents a similar technique to 
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those previously published by using a simple, corrected PRI (PRIc) - derived from an early 

morning PRIo - to disentangle the facultative (diurnally changing) and constitutive 

(seasonally changing) components of the PRI signal.  

 In this study, we examine the change in the PRI signal at both diurnal and seasonal 

time-steps, with the ultimate goal of enabling early (pre-visual) detection of crop responses to 

abiotic conditions. To address questions related to the interpretation of daily and seasonal 

variations in the PRI signal for crop monitoring, our specific goals were to: 

1) Determine the sensitivity of PRI, PRIo, and PRIc to diurnal and seasonal changes in solar 

radiation, VPD, stomatal conductance, air temperature, relative chlorophyll concentration 

(SPAD) and leaf area index (LAI) in soft white spring wheat (Triticum aestivum L), 

2) Compare the magnitude of the response of the PRIc signal to solar radiation under different 

applied nitrogen (N) treatments and water availability periods, over two growing seasons, and 

3) Assess the potential for PRIc to be used as an indicator of stress-inhibited crop growth 

across spring wheat developmental stages. 

 To accomplish these objectives, measurements of stomatal conductance, solar 

radiation, VPD, air temperature, soil volumetric water content (SVWC), relative chlorophyll 

concentration, and LAI were compared at physiologically relevant time scales with 

continuous and automated spectral reflectance measurements of the PRI and the Normalized 

Difference Vegetation Index (NDVI) at the canopy scale. 

 

1.2. Materials and Methods 

 1.2.1. Study Area  

       Soft white spring wheat (Triticum aestivum L.) was grown following soft white 

winter wheat (Tritivum aestivum L.) during the 2013 and 2014 growing seasons in eight, 100 

m2 (10 m x 10 m) plots with 19 cm row spacing at the Washington State University Cook 

Agronomy Farm (CAF) near Pullman, Washington, USA (N 46.7805, W 117.0855). In each 

of the two seasons, the eight research plots were divided into two fields, where four plots 

were located on a south-facing hilltop slope (field A, historically dry site), and four plots were 

located on a north-facing draw (field B, historically moist site) to promote a wide range of soil 

water availability periods (Fig. 1.1).  Further, to investigate crop response to varying N 

conditions, four N application rates were used at each of the two fields (0, 40, 80, and 120 kg 
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N ha-1) using granular urea (46% N) that was applied via “top-dressing” three days after 

planting (similar to Eitel et al. 2014) (Fig. 1.1). The amount of residual inorganic N in the soil 

prior to planting was <30 kg/ha and did not significantly differ across the plots in fields A and 

B (data not shown). The soil at this site can generally be categorized as Palouse silt loam 

(fine-silty, mixed, superactive, mesic Pachic Ultic Haploxerolls) formed in loess and some ash 

(Soil Survey Staff, 2013). Permeability is moderate to high and available water capacity 

through the entire soil profile is about 29 cm (Soil Survey Staff, 2013). The average annual 

precipitation ranges from 260 to 610 mm, the average annual air temperature is 8-10 ºC, and 

the average frost-free period is 130-150 days. No irrigation was applied, as this is a 

completely snow/rainfed cropping system.  

 1.2.2. Data Collection 

 1.2.2.1. Canopy Spectral Reflectance Data 

       Canopy spectral reflectance measurements began immediately upon crop emergence 

and continued through harvest. Canopy spectral reflectance measurements were collected in a 

fixed location throughout the sampling period at each of the treatment plots using low-cost 

(<$302 as of 2015) Spectral Reflectance Sensors (SRS, Decagon Devices, Pullman, WA). 

SRS sensors are two-band radiometers that measure either incident or reflected radiation in 

wavelengths appropriate for calculating the NDVI and PRI (after Garrity et al. 2010). The 

NDVI sensors used in the current study used LEDs with peak sensitivity centered at 630 and 

800 nm, with 50 and 40 nm full width half maximum band widths, respectively. Newer 

models of SRS NDVI sensors use different detectors with different spectral characteristics. 

PRI wavebands are centered at 532 and 570 nm, with 10 nm full width half maximum band 

widths. Both NDVI and PRI sensors can be equipped with hemispherical sensors using Teflon 

diffusers to make cosine-corrected measurements, and collected measurements of incident 

irradiation by placing them at a sky-looking view zenith angle of 180º.  In addition, down-

facing sensors equipped with a field-stop (restricting the field of view to 20º) were placed 1.5 

m above the crop canopy at a 20º view zenith angle to measure reflected radiation (similar to 

Soudani et al., 2014). Field-stop reflected radiation is then divided by incident irradiation 

measured from the hemispherical sensors to obtain a true canopy reflectance value normalized 

for incident irradiation (reflectance (ρ)). A test for cross-calibration was done in the field 

using a 99% reflectance, white Spectralon reference panel (Labsphere Inc., North Sutton, NH) 
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and no significant differences between sensors was found. Reflectance measurements were 

logged using Decagon’s Em50 datalogger (Decagon Devices, Pullman, WA) for each 

waveband and recorded at five minute intervals throughout the sampling period. The PRI was 

calculated according to eq. 1 and the NDVI was calculated according to eq. 2:  

NDVI = (ρ800nm-ρ630nm) / (ρ800nm+ρ630nm)                                 (Eq. 2) 

 NDVI was measured to provide information on actual growth parameters to compare 

changes in greenness to physiological changes detected by PRI. Due to interactions between 

sun angle and a fixed sensor location, time of day exerts a strong influence on the apparent 

spectral reflectance; therefore, NDVI measured at solar noon was used to summarize an entire 

day into a single value (Gamon et al., 2006; Ryu et al., 2010).  

 In order to reduce the effects of sun-sensor-surface geometry and bidirectional 

reflectance effects, all down-facing sensors were mounted facing the same azimuthal 

direction. We make the assumption that a separation of the physiologically and directionally 

induced changes in PRI using bidirectional reflectance distribution function (BRDF) models 

is not necessary (Hilker et al., 2008) because of a) the consistent view zenith, solar zenith and 

azimuth angles at each of our plots, and b) our study utilizes relative (rather than absolute) 

differences in the PRI response of different wheat canopies. We used relative differences in 

PRI because these data are not being employed to predict a physiological function directly, 

but rather to assess how the magnitude of the PRI signal varies in response to environmental 

stress caused by different water and nutrient conditions. Further, multiple angle measurements 

as proposed for tree canopies by Hall, Hilker and others (e.g., Hall et al. 2008; Hilker et al. 

2008) may not be necessary to account for self-shading in wheat canopies due to their 

relatively simple structure that limits self-shading in the upper canopy.   

 Previous studies have shown that correlations between LUE and PRI are strongest 

under high direct-to-total radiation ratios (e.g., Soudani et al., 2014). Because of this, days in 

which the average direct-to-total radiation fraction was less than 0.2 were not used in analysis. 

This threshold was chosen to retain > 80% of the data, and ensure that a low sunlight day 

(resulting in little PRI response) didn’t misguide interpretation of PRI sensitivity. For 

visualization purposes (e.g. Figs., 1.5c,d & 1.6c,d), days that were discarded were smoothed 

using a locally weighted regression with a smoothing parameter (α) of 0.5 (loess, Cleveland, 

1979; Cleveland & Devlin, 1988). 
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 1.2.2.2. Biophysical Measurements 

 Non-destructive, relative leaf chlorophyll measurements (relative units from 0-60) 

were made using a portable soil plant analysis development (SPAD-502) chlorophyll meter 

(Konica Minolta Sensing, Inc., Osaka Japan). Relative chlorophyll meter readings were 

collected on the lower, middle, and upper parts (following Shrestha et al., 2012) of 12 

randomly selected, top-of canopy, fully-emerged flag leaves within the ~ 1.5 m2 ground 

instantaneous field of view (GIFOV) of the SRS sensors (according to Eitel et al., 2008). We 

refer to these relative chlorophyll concentration values as "SPAD" values. LAI (m2 m-2) was 

measured using a LI-COR model LAI-2000 plant canopy analyzer (LI-COR, Lincoln, NE). 

Within each plot and within the sensor field of view, three measurements taken with the plant 

canopy analyzer were averaged. LAI and SPAD values were collected weekly during the 

growing season (attempting to acquire data during each of the Feekes developmental stages 1-

11) in early morning (low light conditions) at each of the eight plots (10 weeks in 2013 

(n=88), and 12 weeks in 2014 (n = 96). 

 To evaluate the diurnal response of the PRI to changes in photosynthetic capacity 

regulated by stomatal closure, measurements of stomatal conductance (gs, mmol m-2 s-1) 

were made using a leaf porometer (SC-1, Decagon Devices, Pullman, WA, USA) (after 

Zarco-Tejada et al., 2013b). At four different times throughout the 2014 growing season 

(DOY 155, 168, 171, 190, at Feekes developmental stages 7, 8, 9, and 10, respectively), gs 

measurements were made in early morning, mid-morning, and early afternoon on twelve fully 

developed leaves exposed to direct solar radiation within the PRI sensor field of view. A time-

stamp and location (each of the eight treatment plots) was recorded to be compared directly to 

spectral reflectance measurements at the time of data collection. 

Soil Volumetric Water Content (SVWC, m3 m-3) measurements were taken within 

close proximity (5 m) of the plots to represent the general trend in SVWC at each of the plots. 

The SVWC was measured at soil depths of 5 and 15 cm every 15 minutes using EC-5 SVWC 

sensors (Decagon Devices, Pullman, WA, USA); however, an average of the soil profile at 5 

and 15 cm depths below the ground surface were used for visualization purposes in this study. 

Because SVWC experienced fluctuations throughout the day, daily averages were calculated 

for each sensor location. A total of four sensors were used to capture variability in each of the 

low and high SVWC water positions during two seasons. 
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 1.2.2.3 Meteorological Measurements 

       Meteorological measurements were collected at 15 minute intervals from 

instrumentation located on a tower in close proximity (< 30 meters) to the plots following 

AgWeatherNet system protocols (Pullman NE location, at the Cook Agronomy Farm, 

Washington State University; http://weather.wsu.edu/awn.php). Solar radiation was measured 

in units of W/m2 at wavelengths from 360 to 1,200 nm (CS300-L Pyranometer, Campbell 

Scientific, Logan, UT, USA). VPD (kPa) was computed using the known relationship 

between air temperature and saturation vapor pressure (SVP (kPa); Murray et al., 1967) and 

the current relative humidity (RH (%)) at the time of interest. VPD was then calculated as 

[(100-RH)/100]*SVP.  

 1.2.3. Data Analysis        

   The formulation and rationale for the different PRI variants are noted in Table 1. Due 

to the large body of evidence suggesting that the relationship between PRI and independent 

variables (in particular, LUE, Peñuelas et al., 2015; Garbulsky et al., 2011) is weakened due 

to differences in canopy structure and pigments, the PRIc attempts to correct for these 

seasonally changing biochemical and biophysical canopy constituents. While this study does 

not reveal strong relationships between PRI and canopy structure (LAI, Table 2), the 

reference PRI measurement (PRIo) does appear to be significantly related to chlorophyll 

concentration (SPAD, Table 2). 

 Data analyses were performed at different time scales throughout the season. For 

diurnal correlations between vegetation indices and biophysical measurements (solar 

radiation, air temperature, VPD, gs), data collected at 15 minute intervals were used. Seasonal 

correlations were made using PRIc derived by subtracting the daily minimum PRI value from 

PRIo. These analysis were done using simple linear regressions and a coefficient of 

determination (R2). Because simple linear models would violate assumptions of 

independence, individual plots were used as a covariate in the analysis. All data were visually 

examined for non-linear relationships, which are noted in the correlation matrix if present. 

 For the second set of analyses, the data were broken into three different water 

availability periods associated with (1) water surplus, (2) water depletion, and (3) water 

deficit (see Fig. 1.5 for example). We binned the data into three water availability periods to 

examine whether the magnitude of the PRI response on a diurnal time-step (to solar radiation) 
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increased as water became more limiting, thereby suggesting a water stress induced PRI 

response. Four inflection points in the data were created based on these criteria: a) onset of 

vegetative growth, as inferred by NDVI data, b) onset of water depletion, as observed by 

SVWC data, c) end of rapid water depletion, as observed by SVWC data, and d) onset of 

senescence, as inferred by the NDVI data (see Figs. 1.5 & 1.6 for examples). Data before and 

after vegetative and reproductive growth were not considered for this step of analysis so as to 

reduce confusion from soil background (during emergence) and large pigment pool changes 

(during senescence). To determine the inflection-points used to derive the three water 

availability periods, piecewise linear regression modeling was applied to the seasonal NDVI 

and SVWC curves using the “segmented” package (Muggeo, 2008) in R (R Core Team, 2014, 

similar to Sweet et al., 2015). The piecewise regression outputs include inflection-point 

locations (day of year) with standard errors. The inflection points with the smallest standard 

error were used to define the exact bins used in this analysis. The algorithms and conceptual 

framework used to find inflection (or break) points is outlined in Muggeo (2003, 2008). 

 The binning of water surplus, depletion, and deficit conditions allowed the response of 

PRI to solar radiation - which is the primary abiotic driver of xanthophyll de-epoxidation - to 

be compared among the same treatment plots throughout the season. The regressions between 

PRIc and solar radiation at each of the different N treatment plots were compared using 

analysis of covariance (ANCOVA) to determine whether the slopes were significantly 

different (p<0.05), implying that a steeper slope would be the result of a greater xanthophyll 

mediated response to stress (similar to Claudio et al., 2006). No statistical analysis was done 

on the intercepts of the data because the normalization procedure that produces PRIc corrected 

for the dark-adapted PRI value, which permits comparisons of the relative magnitude of the 

PRI response to light. ANCOVA was similarly used to determine whether the slopes of the 

same treatment plot differed as water became more limiting, and a Tukey's test was done to 

determine which slopes were different from one another. To meet the assumptions required to 

perform an ANCOVA, tests for linearity, normality of residuals, homogeneity of error 

variances, and independence of error terms were tested. In the final step of statistical analysis, 

the slope of the PRI vs. solar radiation regression lines at each N treatment plot, and during 

each water availability period, was used as an indicator to investigate the PRI inferred stress 

impact on biomass accumulation. In these correlations, biomass accumulation is determined 
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by NDVI and LAI at the end of each of the three water availability conditions and was used as 

the dependent variable.  

 

1.3. Results & Discussion 

 1.3.1. Diurnal Patterns of the Photochemical Reflectance Index (PRI)  

Fig. 1.2 demonstrates the diurnal response of PRI relative to patterns of solar radiation, vapor 

pressure deficit, and air temperature using selected days from Field A in 2013. A visual 

examination of the diurnal PRI data in Fig. 1.2 suggests that under consistent irradiation 

intensities and varying environmental conditions, wheat canopies with increasingly limited 

water or nitrogen availability experience the deepest PRI-implied photosystem II (PSII) 

downregulation during the day. For example, during the early part of the growing season, 

when water is plentiful, and VPD and air temperature are low, there is a small response of PRI 

and minimal spread between fertilizer regimes; whereas, when water becomes more depleted, 

the magnitude of the diurnal PRI signal increases and greater spread occurs between fertilizer 

regimes. These results support findings by Verhoeven et al., 1997, who found that the rate of 

xanthophyll cycle interconversion increases as nutrients become more limiting in spinach, all 

else being equal. Further, the timing of the PRI response is consistent with a wide body of 

literature suggesting that the modulation of photosynthetic energy conversion efficiency 

throughout the day parallels irradiance conditions with a slight 'leveling off' during peak 

irradiance (see Demmig-Adams et al., 2012 for review). PRI data from this experiment 

generally follow a predicted diurnal pattern, with the lowest PRI implied xanthophyll inter-

conversion occurring in latter parts of the day as the season progresses - coinciding with the 

greatest daily leaf-to-air VPD and air temperature. By using the minimum PRI data point for 

each day, rather than an approximated time of a xanthophyll induced physiological response, 

the PRIc technique should more accurately represent the maximal diurnal stress response of 

plants representative of xanthophyll cycle de-epoxidation on the seasonal time scale. 

 1.3.2. Seasonal patterns of NDVI, PRIc, SVWC, VPD, & Air Temperature 

 VIs were related with key environmental variables at the seasonal timescale (Figs. 1.3 

& 1.4). Seasonal patterns of NDVI and PRIc reveal several interesting patterns as compared 

against environmental conditions, with a particularly strong response to SVWC, as would be 

hypothesized in a rainfed wheat system such as this (Figs. 1.3 & 1.4). Because field locations 
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were chosen to capture the full range of soil water conditions, there is a substantial difference 

in the range and duration of seasonal SVWC patterns among all four fields. In 2013, the water 

surplus time period (as determined from inflection points in the NDVI and SVWC data) was 

nearly twice as long as in 2014, resulting in more time for vegetative growth – which can be 

seen in the rapid increase in NDVI data. While the soil moisture conditions (both magnitude 

and timing) in 2014 are very similar, in 2013 the onset of water depletion occurred nearly 10 

days later in field B and dropped at a faster rate and to a greater extent before reaching water 

deficit conditions. In all fields over both seasons, the water deficit period is coincident with 

limited (if any) vegetative growth (as indicated by a leveling off of NDVI values) during crop 

reproductive stages. While Figs. 1.3a,b & 1.4a,b reveal nearly symmetrical growth patterns 

(NDVI) relative to SVWC prior to the onset of senescence, a response to applied nitrogen also 

occurs towards the end of vegetative growth; for example, high and medium N addition plots 

begin to achieve higher maximal growth during rapid vegetative growth as indicated by NDVI 

data.  

         Figs. 1.3c,d & 1.4c,d show the seasonal trends in PRIc and mean daily VPD/air 

temperature. In both 2013 and 2014, a general increase in VPD and air temperature can be 

observed, but primarily not until the crop has reached the reproductive stage. The PRIc data 

reveals a general trend downward across all treatment plots, coincident with decreasing 

SVWC and increasing VPD and air temperatures throughout the season. The most drastic 

drop in PRIc appears prior to senescence, exhibiting a ~15 day earlier decline as compared 

with NDVI in 2013. The PRIc data representative of applied N treatments deviate further from 

one another as the season progresses, with the control and low N plots experiencing the 

lowest PRIc values, while medium and high N addition plots experience the least amount of 

PRI inferred stress. An explanation of this phenomenon is likely the larger chlorophyll pools 

(higher SPAD) in the high N addition plots, which are able to theoretically achieve greater 

rates of photosynthesis under high light (Evans, 1983), limiting the need to for increased 

photoprotective xanthophyll cycle interconversion. 

 Interpreting the PRIc data as a diurnal 'stress signal' (facultative rather than 

constitutive, Gamon and Berry et al., 2012) here suggests that PRIc could be used as an early 

warning sign of a drastic physiological change prior to senescence. There is substantial 

variability in the PRIc data as compared with the NDVI data, particularly when NDVI values 
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are saturated following vegetative growth. During this time, when the crop has begun 

investing energy into grain production as opposed to vegetative growth, there is little variation 

in SPAD and LAI readings, implying that limited changes in carotenoid/chlorophyll 

concentration or vegetation structure are occurring (prior to senescence); meanwhile sudden 

drops in the PRIc signal are indicative of the deployment of a xanthophyll driven 

photoprotective response to low soil water and increasing VPD/air temperatures. Due to the 

weak relationships between PRIc /SPAD/LAI (table 2), we make the assumption that the 

seasonal responses of PRIc are mainly facilitated by short term changes in the xanthophyll 

cycle as opposed to longer-term pigment changes, though both are likely playing a 

complimentary role in driving the PRIc signal.       

 While it is difficult to tease apart the relative contributions of each of these 

environmental parameters on the overall inferred PRIc stress response, these patterns manifest 

themselves in a predictable manner (i.e., plants with more N available will have less of a 

stress response to excess light than those with limited N); this approach could reveal new 

techniques to further examine how PRI is responding to N availability at the field scale. Due 

to the high co-linearity between explanatory variables, the differences in sampling time scale, 

and the multifaceted contributions to spectral reflectance, it was beyond the scope of this 

study to examine the explanatory power of each dependent variable on the PRI signal (i.e., 

using a random forest approach, Soudini et al., 2014), though future work should explore 

questions along these lines. Further elaboration of PRI response to VPD, air temperature, 

stomatal conductance, N and water availability specifically will be discussed in section 1.3.3 

1.3.4 & 1.3.4. 

 1.3.3. Relationships between Vegetation Indices, Meteorological, Biochemical, and 

Canopy Properties across the Entire Growing Season 

       The results presented in Table 2 provide a general overview of vegetation index 

response to the wide range of environmental conditions experienced throughout the two 

growing seasons. On a diurnal time scale, air temperature (Tempd), stomatal conductance (gs), 

and vapor pressure deficit (VPDd) are mechanistically related to each other but also 

empirically related to PRI, and to a greater extent, PRIc, suggesting that the PRI is sensitive to 

conditions where high VPDd and Tempd limit gs - similar to findings in Soudani et al., 2014. 

Conversely, the structural index, NDVI, is not significantly related to Tempd, and VPDd. 
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NDVI is also weakly correlated to gs, whereas PRI variants respond strongly to the variation 

in gs. 

      On a seasonal time scale, the daily mean vapor pressure deficit (VPDs) and air 

temperature (Temps) were significantly correlated to PRI variants, with the strongest and most 

significant correlation to PRIc (Table 2). These results further confirm the hypothesis that the 

plant functional response to VPD is linked with a more physiologically sensitive VI (PRI, as 

opposed to NDVI). The weak relationships between seasonal VPD, LAI, and SPAD, provide 

further evidence of the PRI responding to environmental variables such as VPD at shorter 

time scales than pigment and structural changes. Other significant correlations of note are the 

strong relationships between NDVI/LAI, and PRIo/SPAD. Both of these empirical 

relationships support the wide bodies of evidence that NDVI is sensitive to structural changes 

(LAI) in the canopy and that a single PRI (PRI & PRIo) value taken during the day is sensitive 

to pigment changes throughout the season (e.g., Garrity et al., 2011). When PRI is corrected 

to account for the relative differences in pigment concentrations, the R2 value decreases, 

though is still significant. Scatterplots of the relationships between the uncorrected PRI, and 

PRIc and their relation to LAI and relative chlorophyll concentration can be seen in Fig 1.5. 

 Fig. 1.5 compares the traditional PRI vegetation index with the corrected PRI (PRIc) 

designed to account for confounding structural and non-xanthophyll pigment effects on the 

PRI at the seasonal time scale in order to better understand plant responses to environmental 

stress. While several studies have corrected for structure and non-xanthophyll pigment effects 

using modeling approaches and alternative reference bands (e.g. Suárez et al. 2009; 

Hernández-Clemente et al. 2011), this work is among the first to demonstrate the utility of a 

corrected PRI using entirely spectrally derived data from low-cost, automated, off the shelf 

spectral radiometers collecting high temporal resolution data (Garrity et al., 2010; Gamon et 

al., 2015). Previous studies have demonstrated a response of PRI to xanthophyll cycle de-

epoxidation and LUE over short time scales (Gamon et al., 1990, 1992,1997), whereas 

contrasting results have been reported among studies conducted over longer time scales at the 

leaf (e.g., Rahimzadeh-Bajgiran et al. 2012) and canopy scales (e.g Porcar-Castell et al. 

2012). Fig. 1.5 broadly agrees with previous studies that have found that long term PRI 

variability is driven by canopy chlorophyll and structure (Stylinski et al., 2002; Nakaji et al., 

2006; Garrity et al., 2011; Porcar-Castell et al., 2012). Substantial improvement in 
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deconvolving the seasonal pigment response of PRI by subtracting a dark-state PRI (PRIo) 

was done by creating PRIc as a novel derivation to isolate the diurnal PRI signal from the 

background seasonal PRI signal (Fig. 1.5). However, PRIc made limited improvements 

decoupling the structural (LAI) effect from the raw PRI signal. This suggests that PRIo was 

primarily sensitive to variability in pigment concentrations and should not be used in this 

system to correct for changes in LAI. This is not of major concern considering that, in 

general, environmental drivers of a PRI inferred stress in a rainfed system will increase as the 

season progresses coincident with leaf area. Meanwhile, the variability in pigment 

concentrations, which was primarily affected by applied N at planting, changes little until the 

crop begins to senesce towards the end of the season. Using NDVI and PRIc data in 

conjunction could help scientists or practitioners understand field scale variability in 

physiological stress (PRIc) and its effect on crop growth (NDVI). 

        Due to the limited variation in relative chlorophyll concentration during the 

growing season in each of the treatment plots, the scatter around SPAD values > 40 in Fig. 1.5 

suggests that PRIc was not responding to constitutive pigment related changes prior to 

senescence. While the dataset presented here is not robust enough to quantify complete 

pigment pools or canopy structure complexities, further evidence that PRIc may be correcting 

for the confounding effects of seasonally varying biophysical and biochemical canopy 

components can be explained by the weak relationship between NDVI and PRIc (Table 2). 

NDVI is physically based on chlorophyll absorption in the red portion of the spectrum (i.e. 

pigment related) and total leaf area reflectance in near infrared portion of the spectrum (i.e. 

structurally related) (Tucker et al., 1979). While NDVI is responding on a seasonal time scale 

to both of these biophysical and biochemical canopy constituents, PRIc is not.  Rather, PRIc is 

isolating the shorter term stress signals of the plants. 

        Because only NDVI and PRI reflectance data were collected in this study, more 

advanced correction techniques that could have further de-convolved structural and pigment 

related PRI variability were not explored. Future work should investigate waveband selection 

for normalization of PRI variants as they relate to the specific canopy under investigation. 

Recent work by Hminana et al. (2014) suggests that subtracting a dark-state PRIo from a 

“light-exposed” PRI to infer a ∆PRI is more representative of the facultative xanthophyll 

response PRI was designed to detect (Gamon et al., 2015); but other work by Hminana et al. 
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(2015) and Zarco-Tejada et al. (2013) make use of the red-edge band (because of the strong 

link to chlorophyll concentration) which shows to have a similar normalization effect by 

accounting for the variability of the “light-exposed” PRI that is not caused by variations in 

structure and non-xanthophyll pigments. Gamon and Bond (2013) note that the use of a dark-

state PRIo as a reference value (described in table 1 of this work), and the normalization of 

PRI by solar radiation, is somewhat analogous to recent methods that consider a sunlit 

fraction of stand-level PRI measurements (Hall et al., 2008; Hilker et al., 2008), which could 

help to reduce the errors due to variation in constitutive pigment levels (Gamon and Berry 

2012). While our PRIc estimate showed moderate insensitivity to chlorophyll and LAI 

throughout the sampling period for this particular canopy (Table 2 & Fig. 1.5), this 

relationship may lose power if used over a time frame where changes over a wide range of 

pigment concentrations are experienced or a given canopy is more complex (e.g. Barton and 

North, 2001; Hall et al., 2008, Hilker et al., 2008). In addition, though no strong empirical 

relationship was determined between LAI and PRIc, it makes physiological sense that the 

range in PRI values observed throughout the day would increase as leaf area increased, 

assuming that that total xanthophyll pool of the canopy increases with leaf area. To account 

for this, our data show that PRIo and PRIc decreases as leaf area increases, and thus when it is 

subtracted by the greater range of PRI values, it should account for this phenomenon - though 

further research along these lines is needed.  

      Lastly, by using an empirically derived PRIc to investigate plant physiological 

responses to abiotic conditions, this work seeks to estimate a parameter that cannot be tested 

using radiative transfer models. Current modelling methods lack a proper assessment of this 

rapid conversion of xanthophyll pigments as a function of stress; rather, they rely on 

simulating the 531 and 570 nm bands as a function of structure variation and pigment 

concentration. Radiative transfer models often require a demanding parameterization of leaf 

and canopy variables, long development time and extensive computational costs (Malenovsky 

et al., 2009), hampering their current operational use. Due to the promising capability of PRIc 

found in this study, the remaining results will only show data using PRIc. 

 Fig. 1.6 shows the statistically significant and strong inverse relationship observed in 

PRIc as VPD increases at both seasonal (Fig. 1.6a, against the daily mean VPD value) and 

diurnal (Fig. 1.6b, against 15 minute data throughout the entire two growing seasons) time 
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steps. The patterns observed in Fig. 1.6 highlight the sensitivity of PRIc to environmental 

conditions that affect plant physiology, as compared to the poor relationships between NDVI 

and VPD in Table 2. Because PRIc is a relative value and SRS calibration, viewing angle, and 

conditions are not identical across all plots, the statistical model results include individual plot 

(n=16) as a covariate; however, data are plotted without a covariate for visualization purposes 

(2-D, opposed to 3-D). Due to the collinearity of VPD and air temperature (R2 = 0.71), a 

similar response of PRIc to each meteorological variable was observed (Fig. 1.7). Increasing 

air temperature appears to induce a xanthophyll driven PRI response at both seasonal (mean 

daily air temp) and diurnal (15 minute) time scales. 

   Figs. 1.6 and 1.7 demonstrate that wheat canopies under increasing temperatures and 

leaf-to-air VPD may be experiencing the deepest PRI-implied photosystem II (PSII) 

downregulation during the day. This is confirmed both quantitatively (Figs. 1.6 & 1.7) but 

also qualitatively in Fig. 1.2, when the daily timing of maximum photosynthetic depression in 

the diurnal PRI signal also appears to occur following the greatest expected leaf-to-air VPD 

and air temperature during the day, and Figs. 1.3 & 1.4 when seasonal fluctuations in VPD 

and air temperatures generally coincide with PRIc sensitivity. To quantify the diurnal response 

of PRIc to physiological mechanisms changing on a diurnal time step, gs was measured on 

leaves within the SRS field of view (Fig. 1.8).  

 Because gs measurements were collected on days when air temperature, VPD, and 

solar radiation were high, a midday photosynthetic depression was observed, whereby low 

PRI values during mid-day (peak VPD, solar radiation, and air temperature) coincided with 

low stomatal conductance. Low midday gs can be explained by a midday stomatal closure due 

to environmental conditions (Demmig-Adams et al., 2012). Fig. 1.8 shows that a significant 

linear relationship was observed between leaf level gs and canopy level PRIc. These data 

suggest that the processes by which stomatal aperture are controlled due to environmental 

conditions similarly drive sensitivity of the PRI. Similar to findings by Zaro-Tejada et al. 

(2013b), results from this study found a strong link between gs and PRIc (R2 = 0.40), 

regardless of the inherent variability in leaf-level gs within a plant canopy. The highest PRIc 

and gs values were observed in mid-morning, before light induced stress caused a drop in 

reflectance at 531 nm, resulting in high stomatal conductance and expected photosynthesis. 

Table 2 and Figs. 1.6-1.8 confirm that PRIc is sensitive to meteorological conditions that 
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control stomatal aperture; however, in the context of agricultural management, growers and 

practitioners would likely want to use this information to explore the response of crops to 

environmental variables that are more manageable such as nitrogen and water availability. 

And further, this method might also be useful for crop researchers trying to find phenotypes 

that are well suited to grow under harsh environmental conditions. 

 1.3.4. Sensitivity of PRIc to Solar Radiation under Water and Nitrogen Availabilities 

 Because plant photoprotective mechanisms are a response to irradiance levels that 

exceeds the capacity for photosynthetic electron transport, we used linear regressions of PRIc 

and solar radiation to explore the effects of nitrogen and water availability on reductions in 

crop photosynthetic potential.  This analysis was facilitated by the linear response of PRIc to 

solar radiation, reaching un-sustained saturation during peak sunlight (as would be expected 

in a light-response curve; Hminana et al. 2015). The sensitivity of PRIc to solar radiation 

under all available nitrogen and water regimes is explored in Fig. 1.9. The results of the 

ANCOVA, which is a general linear model combining analysis of variance (ANOVA) and 

regression analysis to examine significant differences between slopes and across categorical 

independent variables (here, applied N and water availability), are displayed in the Fig. 1.9 

legends.  We evaluated whether or not a significant difference existed between treatment plots 

during each water availability period from Figs. 1.3 & 1.4, and the assumptions outlined 

previously for the conducting an analysis of variance between study plots water availability 

scenarios were met.  

 Figs. 1.9a-c show the rate and magnitude of the PRIc response to solar radiation at 

field A in 2013 using a least squares best fit line and confidence intervals, suggesting that a 

highly significant difference exists among treatment plots during each stage of water 

availability. A Tukey's test suggests that during water surplus and depletion (1.9a&b), no 

significant difference existed between the control and low N plots or the medium and high N 

plots; however, during water deficit, a significant difference existed among all four treatment 

plots. Further, as the season progressed, and water availability became more limiting, PRIc 

exhibited a stronger response to incident irradiation across all treatment plots (Fig. 1.9c).  

     Fig. 1.9d-f represents the PRIc response to solar radiation at Field B in 2013. The 

ANCOVA suggests significant differences among all treatment plots at any given time of 

year. The treatment plots during water surplus deviated least from one another. During water 
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surplus, there was no significant difference between the low and medium treatment plots; and 

also no significant difference between the high and medium plots during water depletion. 

Throughout the season, a significant difference was experienced between water stages at all 

treatment plots except the low N availability plot, which showed no significant difference in 

rate of PRIc to solar radiation between water surplus and depletion. Further, a significant 

increase in the response of PRIc to solar radiation was observed between water surplus and 

depletion in the medium and high N treatment plots, while every other significant difference 

between water availability periods was due to an increasingly negative slope.  

 Fig. 1.9g-i demonstrates the rate and magnitude of the PRIc response to solar radiation 

at field A in 2014. Results from the ANCOVA show no significant difference between 

treatment plots during water surplus, while deviation in the rate of response of the PRIc 

according to N availability increases as water becomes more limiting. Tukey's test revealed no 

significant differences between the high and control treatment plots during water depletion 

and between the low, medium, and high treatment plots during water deficit. Significantly 

more negative responses of PRIc were seen at all plots as water became more limiting except 

at the medium N plot between surplus and depletion, and at the high N plot between depletion 

and deficit. 

 Fig. 1.9j-l exemplifies the sensitivity of PRIc to solar radiation at treatment plots 

during differing water availability periods in field B during the 2014 growing season, where 

significant differences among all treatments under each water availability period existed. 

However, three non-significant differences exist among treatment plots: 1) between low and 

control during water surplus, 2) between high and medium during depletion, and 3) between 

low and control during deficit. All treatment plots show a significantly different and more 

negative response between water surplus and water depletion; whereas during water deficit, 

all treatment plots show a significantly more negative response of the PRIc to solar radiation 

from water surplus, but the slope of the high N plot is significantly greater and the low N plot 

is not significantly different from the water depletion. 

  Over all treatment plots during both seasons, a significantly different response of the 

PRIc to solar radiation appeared in every water availability period except for water surplus in 

field A, 2014. This suggests that nitrogen availability is a primary driver of PRIc sensitivity, 

and that, in most cases, the response was stronger (greater slope) in plots with less applied N 
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at planting. In general, the range of differences among treatment plots increased as the season 

progressed, suggesting that the PRIc response to N availability was more pronounced as leaf 

area increased and SVWC decreased. At the individual plot scale, water limitation caused a 

significant increase in the rate of PRIc response to solar radiation in 24 out of 32 total 

transitions between SVWC stages. This suggests that, in addition to a strong sensitivity of 

PRIc to N availability, PRIc is also highly responsive to water availability in this system. 

 1.3.5. PRIc Sensitivity to Biomass Accumulation & Implications for Scaling PRI Data 

 In the final step of analysis, we compared LAI and NDVI values at the end of each 

water availability period with the slope of the PRIc vs. solar radiation relationship from Fig. 

1.9 to understand the relationship between remotely inferred stress and biomass accumulation. 

In theory, if PRIc is tightly coupled to daily and seasonal fluctuations in abiotic stressors, a 

large PRIc signal should indicate that the inferred crop stress would inhibit photosynthesis and 

biomass accumulation. To test this, we compared the magnitude of the daily response of PRIc 

to solar radiation (slope of the line) against actual leaf area accumulation at the end of each 

water availability period. Fig 1.10 shows a statistically insignificant and weak relationship (R2 

= 0.22, 0.23, Fig. 1.10a, 10d) between LAI/NDVI and the PRIc vs. solar radiation slope 

during the water surplus period. Significant and strong relationships were observed between 

the magnitude and rate of the PRIc response to solar radiation and LAI/NDVI during the water 

depletion (R2 = 0.70, 0.55, respectively, Fig. 1.10b, 1.10e), and water deficit periods (R2 = 

0.78, 0.83, respectively, Fig. 1.10c, 1.10f). These results suggest that a larger xanthophyll 

mediated drop in reflectance at 531 may be contributing to a lower capacity for 

photosynthesis at high light levels, resulting in stress-inhibited reduction in biomass 

accumulation. For example, higher N availability plots resulted in a smaller magnitude 

response of the PRIc to light, resulting in greater biomass accumulation as measured by LAI 

and NDVI. The interpretation of this phenomena could be driving the relationships seen in 

Figs. 1.10a,b,d,&e, where biomass accumulation was occurring; however, during water deficit 

(Figs. 1.10 c,f), when little change in NDVI and LAI occurred, contrasting conclusions could 

be drawn suggesting that the less productive canopies actually spurred higher PRIc response 

to sunlight.  

 The results in Fig. 1.10 show compelling evidence that theoretically more stress 

results in less biomass; however, a different interpretation of these data could assume that 
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PRIc is more sensitive to total leaf area than the empirical relationships from this study 

suggest, and that PRIc is responding to leaf area (particularly during the water deficit stage 

when the change in LAI and NDVI is minimal, Fig. 1.10c&f), as opposed to stress-inhibited 

biomass accumulation. While the predicative and explanatory variables in this relationship 

could be interchangeable, it can generally be assumed that a less productive wheat crop 

experiences a greater response of PRIc to solar radiation.  As a result, in this particular system, 

early detection of crop stress could be done by examining the diurnal deviation of PRI from a 

dark-state PRIo. With this understanding, highly temporally and spatially resolved PRIc data 

could enable growers and practitioners to monitor decreases in plant physiological condition 

days to weeks prior than could be detected using traditional remote sensing techniques (such 

as the NDVI, (Vierling et al., in review)). 

 PRI derived inferences of canopy photosynthetic performance via a xanthophyll 

mediated photoprotective response of green plants have been widely applied with varying 

degrees of success (Garbulsky et al., 2011); however, the interpretation of these data may be 

limited due to a lack of high temporally and spatially resolved spectral reflectance data over a 

wide range of plant structure and pigment conditions. Automated, well-calibrated sensors that 

enable high frequency data collection on the ground will surely help advance our scientific 

understanding of the PRI (Gamon et al., 2015). The technique proposed by Hall et al. (2012), 

and Hilker et al., (2012), whereby a physiologically based model (derived from APAR, 

temperature, and VPD) is combined with a single estimate of a PRI derived LUE from the 

CHRIS/PROBA satellite imaging spectrometer to down-regulate LUE at 30 minute intervals, 

could be further validated using ground-based sensors. Results from this study suggest that 

researchers should use caution when using satellite interpretations of daily photosynthesis via 

the PRI, as the timing of image acquisition, and the lack of a PRIo, will play a major role on 

inferences made using the PRI. PRI scaling techniques could be improved and further 

validated using ground based (temporally overdetermined) data, as satellite- and airborne-

based (spatially overdetermined) PRI measurements that only capture a single daily PRI 

value, for example, may be limited in their operational capacity. 
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1.4. Conclusion  

 We evaluated the utility of highly temporally resolved ground based radiometric 

measurements of PRI to capture crop response to environmental stress conditions (SVWC, 

nitrogen availability, VPD, temperature, gs) during two complete seasons in spring wheat. As 

with many other annual and deciduous canopies, wheat experiences substantial seasonal 

changes in foliar pigments and LAI, which have been shown to affect PRI. Our assessment 

evaluated a corrected PRIc to account for structure and non-xanthophyll pigment variations, 

and determined that PRIc adequately accounts for constitutive effects on the PRI signal related 

to changes in pigment concentration. From this, we determined the PRIc does indeed respond 

to diurnal physiological changes resulting from changes in VPD, air temperature, and 

stomatal conductance. To determine the drivers of the magnitude of seasonal PRIc patterns, 

we examined the slope of the relationship between PRIc and solar radiation for each day in 

which sufficient sun was available to initiate xanthophyll cycle interconversion. The slope of 

the PRIc vs. solar radiation least squares line was then compared using an ANCOVA between 

N treatments and three binned water availability periods (based on SVWC), and it was 

concluded that the PRIc signal is more sensitive to conditions where water and nutrients are 

more limiting. The predictive capacity of these slopes (magnitude of PRI inferred stress) were 

then related to biomass accumulation – derived from LAI and NDVI - at the end of each 

binned soil water period, and it was determined that there is a tight correlation between total 

biomass accumulation and environmental stress conditions detectable using the PRI; however, 

the strength of this relationship during differing water availabilities can be interpreted in a 

number of independent and complimentary ways. Further research is necessary to decouple 

the relative contributions of different abiotic environmental stressors on the PRI stress 

response signal, but an examination of the diurnal PRIc response to solar radiation here 

implies the magnitude of stress could be used in the future to elucidate the spatial and 

temporal variation in crop performance at the field scale. 

 This study has potentially broad implications for the scaling and future interpretation 

of the PRI as an indicator of plant stress. Further development of these techniques could lead 

to early stress detection for site-specific irrigation and nutrient management in agricultural 

systems or to infer future crop breeding endeavors focused on targeting stress during specific 

plant phenophases. These results support a growing body of evidence that the standard PRI 
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formulation needs to be corrected for canopy pigment content and seasonal changes in LAI, 

and that fine temporal resolution measurements might be necessary to completely capture the 

midday photosynthetic depression response seen in plants. 
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Figures: 

 

Figure 1.1. Overview of the experimental design of the study. Plots with four 

applied nitrogen (N) treatments (control, low, medium, and high) placed in 

historically low (south facing)and high (north facing) soil water field positions 

during the 2013 and 2014 growing seasons.  Note that between years the relative 

positions of the two plot locations are not to scale.  
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Figure 1.3. (a) Seasonal variation in 5 cm depth soil volumetric water content (m3/m3, black 

dots) and midday NDVI over four applied nitrogen rates (control = red, low N = green, 

medium N = blue, high N = black) on field A (low moisture field position) in 2013. Vertical 

lines correspond with inflection points in SVWC and NDVI data used to bin the data into 

three water availability periods: surplus, depletion, and deficit. Diagonal red lines indicate 

data that was not used in analysis because pre-determined inflection points either prior to crop 

emergence or after the onset of senescence. (b) Same as (a) except at field B (high moisture 

position). (c) Seasonal variation in mean daily VPD (kPa, black dots) and PRIc over four 

applied nitrogen rates on field A. (d) Same as (c) except at field B and compared to mean 

daily air temperature. Note: VPD and air temperature were the same for fields A and B, while 

SVWC was measured at each plot location. 
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Figure 1.4. (a) Seasonal variation in 5 cm depth soil volumetric water content (m3/m3, black 

dots) and midday NDVI over four applied nitrogen rates (control = red, low N = green, 

medium N = blue, high N = black) on field A (low moisture field position) in 2014. Vertical 

lines correspond with inflection points in SVWC and NDVI data used to bin the data into 

three water availability periods: surplus, depletion, and deficit. Diagonal red lines indicate 

data that was not used in analysis because of pre-determined inflection points either prior to 

crop emergence or after the onset of senescence. (b) Same as (a) except at field B (high 

moisture position). (c) Seasonal variation in mean daily VPD (kPa, black dots) and PRIc over 

four applied nitrogen rates on field A. (d) Same as (c) except at field B and compared to mean 

daily air temperature. Note: VPD and air temperature were the same for fields A and B, while 

SVWC was measured at each plot location. 
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Figure 1.5. (a) Seasonal relationship between LAI and PRI over all treatment plots in 2013 

(red) and 2014 (green). Shades of red and green represent the different nitrogen treatment 

plots for each season (n=8). RSE = residual standard error (PRI units (b) PRIc against LAI; 

PRIc = PRIdaily minimum - PRIo); (c) Relative chlorophyll concentration (SPAD) vs. uncorrected 

PRI; (d) SPAD vs. corrected PRIc. Sample size is 176 for Figs. a-d. 
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 Figure 1.6. (a) Seasonal relationship between VPDd (8:00-18:00) and PRIc over all 

treatment plots over both seasons (green = 2013; red = 2014; n= 1416); PRIc = PRIdaily 

minimum - PRIo; RSE = residual standard error (PRI units). Shades of red and green 

indicate individual treatment plots (b) Diurnal PRIc against VPD for all treatments over 

both seasons (n = 5,284). Data is binned into hexagonal bins for visualization using 

count data broken up in groupings of 8-9 (hexbin function, R core team 2014). Bins 

with counts < 20 were excluded from figure but were included in statistical analysis, 

and colors were not assigned due to high point density. 
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Figure 1.7. (a) Seasonal relationship between daily mean air temperature (8:00-18:00) 

and PRIc over all treatment plots over both seasons (n= 1416); PRIc = PRIdaily minimum - 

PRIo; RSE = residual standard error (PRI units). (b) Diurnal PRIc against air 

temperature for all treatments over both seasons (n = 5,284). Data is binned used 

hexagonal bins for visualization using count data broken up in groupings of 8-9 (hexbin 

function, R core team). Bins with counts < 20 were excluded from figure but were 

included in statistical analysis. 
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Figure 1.8. Stomatal conductance (gs, mmol m-2 s-1, n = 12 per data point) vs. 

PRIc (n=96). gs measurements taken throughout four days during the 2014 

growing season were used as a validation of the PRIc response to diurnal 

physiological changes induced by environmental variables.    
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Figure 1.9. (a) Field A 2013: Response of PRIc to solar radiation (W m-2) over all treatment 

plots (control = red, low = green, medium = blue, high = black) with 95% confidence 

intervals during water surplus. F and p value from ANCOVA conducted on all four treatment 

plots. * indicates a significant difference between water availability periods, and a + or - 

indicates a positive or negative change in slope between (a), (b), and (c) for each treatment 

plot. (b) Same as (a) except during water depletion. (c) Same as (a) except during water 

deficit. (d-f) same as a-c except for field B 2013. (g-i) same as a-c except for field A 2014. (j-

l) same as a-c except for field B 2014. 



41 

 

 

 

F
ig

u
re

 1
.1

0
. 

(a
) 

S
lo

p
e 

o
f 

P
R

I c
 v

s.
 I

rr
ad

ia
n

ce
 (

W
 m

-2
) 

as
 a

 p
re

d
ic

to
r 

o
f 

b
io

m
as

s 
ac

cu
m

u
la

ti
o
n
 a

s 
m

ea
su

re
d
 b

y
 L

A
I 

(m
2
 

m
-2

) 
at

 t
h
e 

en
d
 o

f 
b
in

n
ed

 w
at

er
 a

v
ai

la
b
il

it
y
 p

er
io

d
 (

co
n
tr

o
l 

=
 r

ed
 c

ir
cl

e,
 l

o
w

 =
 g

re
en

 t
ri

an
g
le

, 
m

ed
iu

m
 =

 b
lu

e 
x

, 
h
ig

h
 =

 

b
la

ck
 s

q
u
ar

e)
 (

b
) 

S
am

e 
as

 (
a)

 e
x

ce
p
t 

d
u
ri

n
g
 w

at
er

 d
ep

le
ti

o
n
. 
(c

) 
S

am
e 

as
 (

a)
 e

x
ce

p
t 

d
u
ri

n
g
 w

at
er

 d
ef

ic
it

. 
(d

) 
S

lo
p
e 

o
f 

P
R

I c
 v

s.
 I

rr
ad

ia
n

ce
 (

W
 m

-2
) 

as
 a

 p
re

d
ic

to
r 

o
f 

b
io

m
as

s 
ac

cu
m

u
la

ti
o
n
 a

s 
m

ea
su

re
d
 b

y
 N

D
V

I 
at

 t
h

e 
en

d
 o

f 
b

in
n

ed
 w

at
er

 

p
er

io
d
. 
(e

) 
S

am
e 

as
 (

d
) 

ex
ce

p
t 

d
u
ri

n
g
 w

at
er

 d
ep

le
ti

o
n

. 
(f

) 
S

am
e 

as
 (

e)
 e

x
ce

p
t 

d
u
ri

n
g
 w

at
er

 d
ef

ic
it

. 



42 

 

Chapter 2: Daily NDVI-derived Phenology Metrics Improve In-Season Predictions of 

Biomass, Grain, Protein, and Nitrogen Accumulation in Spring Wheat 

 

Magney, T.S., Eitel, J.U.H., Huggins, D.R., Vierling, L.A. 

to be submitted to Field Crops Research 

 

Abstract: Automated, low-cost and field-deployable remote sensing tools are well suited for 

continuously monitoring crop growth and providing growers with timely information about 

crop performance. Because automated sensors provide unprecedented information about crop 

development and performance across time, we examined the hypothesis that ground-based 

canopy reflectance data might define crop phenology in new ways over the course of the 

season that can better forecast crop yield, protein, biomass, and grain nitrogen at harvest. This 

study examines the utility of high frequency Normalized Difference Vegetation Index (NDVI) 

data to monitor crop phenology over two complete growing seasons. Spectral reflectance data 

was collected at a total of sixteen plots under four different applied nitrogen (N) and soil 

water availability scenarios in rainfed soft white spring wheat (Triticum aestivum L.). Using 

NDVI at solar noon, four phenological time periods - representative of the onset of 1) 

tillering, 2), stem extension, 3) heading, and 4) ripening - were derived from the data using a 

non-parametric regression locally weighted smoothing parameter (loess) to account for day to 

day variability, and piecewise linear regression to determine inflection points in the seasonal 

NDVI curve. Phenological metrics (i.e. the change in NDVI per day, and duration (in days) of 

each phenological period) were compared against daily NDVI values throughout the season to 

predict harvest metrics including biomass, grain yield, protein concentration, and N 

accumulation. Daily NDVI data were generally poor predictors of harvest early in the 

growing season (except for grain N accumulation, R2 > 0.60 during tillering), and reached 

maximum predictive power at the onset of heading, and the middle of ripening for biomass 

and yield (R2 ~0.50 & ~ 0.25 during heading, respectively, and R2 ~ 0.50 during early 

ripening). Conversely, using both simple and multiple regression analysis, we found that 

harvest metrics were better described using the rate and duration of NDVI derived 

phenological periods. Simple regressions between NDVI derived phenological metrics 

revealed several physiologically and management relevant correlations including strong 
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statistically-significant (p<0.05) relationships between the rate of tillering & stem extension 

and total biomass (R2 = 0.63 & 0.54, respectively), the duration of heading and yield (R2 = 

0.67), the rate of ripening and grain protein concentration (R2 = 0.45), and the duration of 

ripening and grain N content (R2 = 0.43), for example. Using multiple regression analysis, 

83% of the variance in yield, 67% in protein concentration, 87% in total biomass, and 80% in 

grain N was explained by two to three NDVI derived phenological metrics. Further, multiple 

regression analysis using NDVI derived phenological metrics from the early season (tillering 

and stem extension) periods substantially improved early prediction of yield and biomass as 

compared to daily NDVI data, whereas protein and grain N were primarily driven by metrics 

associated with the reproductive development of the crop (heading and ripening). This work 

has implications for improving in-season management decisions and understanding of the 

phenological drivers of harvest metrics using daily NDVI data. 

 

2.1. Introduction 

Daily information regarding crop development patterns is important for monitoring 

and predicting grain quantity and quality. Highly resolved, objective, and real-time 

information about crop phenology and growth can aid in within-season farm management 

decisions, but also improve the understanding of abiotic and physiological processes 

controlling plant N uptake, yield, and protein content. The motivation behind tracking key 

phenological phases in crop development is not new (Hanway et al., 1963; Cleary and 

Waring, 1969; Zadoks et al., 1974); but its quantification has improved significantly in recent 

years due to the advent of canopy reflectance data available from spectro-radiometetric 

platforms (Goodin and Henebry, 1997; Raun et al., 2001; Viña et al., 2004). More recently, 

several low-cost approaches towards continuous monitoring of plant phenology have been 

conducted using digital time-lapse cameras (Rundel et al., 2009; Richardson et al., 2007; 

Sakamoto et al., 2012), filtered photodiodes (Garrity et al., 2010; Magney et al., 2015), light-

emitting diodes (Ryu et al., 2010), and autonomously operating terrestrial laser scanners (Eitel 

et al., 2013). The rapid development of low-cost, easily-interpretable, and field-ready ground 

based remote sensing systems is the result of a growing interest in tracking temporal and 

spatial changes in the physiological and phenological status of vegetation (Vierling et al., in 

revision). 
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Some of the initial development of remotely sensed vegetation indices, such as the 

normalized difference vegetation index (NDVI) (Tucker, 1979) - a differenced ratio of 

reflected energy in the red and near-infrared portions of the electromagnetic spectrum - was 

prompted by the motivation to indirectly predict grain yield using bands available from space 

using Landsat satellite data (Rouse et al., 1974; Tucker et al., 1980; Pinter et al., 1981; Aase 

and Siddoway, 1981). Following these early explorations, issues such as sensor view angle, 

solar angle, atmospheric conditions, radiometric calibration, canopy architecture, and soil 

background were determined to be important factors confounding crop canopy reflectance 

(Verhoef, 1984; Huete et al., 1987; Jackson and Huete, 1991; Eitel et al., 2009). Since then, 

interest has grown quickly around selection of the optimal sensor angles, wavelengths, 

measurement frequencies, spatial resolution, radiometric resolution, and technical capabilities 

of instruments used for monitoring and predicting crop growth parameters (see review by 

Mulla, 2013). For nearly four decades (Tucker et al., 1979), NDVI has remained one of the 

most consistently measured vegetation indices across a wide variety of sampling platforms, 

prompting its widespread use in agriculture. 

  Highly temporally resolved NDVI data has been widely used to track seasonal 

phenology of green-up and senescence over a wide variety of ecosystems from space using 

NOAA's advanced high resolution radiometer (AVHRR, e.g., Justice et al., 1985; Myeni et 

al., 1997; Brown and de Beuers et al., 2008) and NASA's Moderate Resolution Imaging 

Spectrometer (MODIS, Fisher and Mustard et al., 2007; Soudani et al., 2008). Additionally, 

more immediately available information has been used at much finer spatial and temporal 

resolutions using ground-based instruments (Vierling et al., 1997, Huemmrich et al., 1999, 

Viña et al., 2004; Huete, 2012; Soudani et al., 2012). Accurate interpretation of satellite-based 

data requires robust, and highly temporally resolved, ground-based reference data (Nguy-

Robertson et al., 2013). Furthermore, the inherent complexity, processing time, and 

difficulties in acquiring and interpreting satellite images at the field scale can make this 

technology inaccessible for many growers to make within-season management decisions. 

Ground-based sensors therefore can inform both agricultural management decisions, as well 

as to track plant phenological variation that can be used by crop scientists seeking a more 

process-based understanding of dynamics controlling biomass accumulation and grain-fill 

(e.g., Oscarson, 2000; Farooq et al., 2014). 
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Because NDVI is an integrated measure of canopy greenness, and ground-based 

radiometers can repeatedly collect NDVI readings at consistent height and viewing geometry 

in <1 second, these data can be compared across different field locations, nutrient plots, 

irrigation regimes, and over cultivars with traits engineered to maximize reproductive growth 

(e.g., Borrell et al., 2014). The plant breeding community has a keen interest in developing 

crops that 'stay-green' longer, increasing duration of grain-fill, and decreasing the rate of 

senescence (Christopher et al., 2014; Gaju et al., 2014). Phenological data has already been 

used to investigate the physiological and morphological traits necessary to increase grain 

quality and quantity using visual observations and instruments that quantify at the loss of 

chlorophyll using a handheld chlorophyll meter (Borrell et al., 2000). Using chlorophyll 

meters to derive phenological metrics such as the onset and rate of senescence, researchers 

have found that 'stay-green' phenotypes can retard senescence, promoting a longer grain fill 

period (Harris et al., 2007). Additionally, phenological dynamics during the post-anthesis 

period in wheat have been described using logistical models (Pepler et al., 2005). However, 

hand-held chlorophyll meters are limited in both time and space, with data collections that can 

suffer from subjective measurement bias, and models require validation over many different 

growing conditions and cultivars. High temporal automated measurements of NDVI have 

provided a more robust and objective approach to indirectly estimate crop phenological 

expression (Lopes et al., 2012).  

 The overall goal of this study was to investigate the utility of NDVI to derive 

physiologically and management relevant phenological periods, and investigate their capacity 

to make within-season predictions of leaf area, biomass, grain yield, N uptake, and grain 

protein concentration. Our specific objectives were to: 1) Determine how the diurnal 

variability in NDVI measurements influences the prediction of leaf area throughout the 

growing season; 2) Investigate the predictive capacity of a daily NDVI value throughout the 

growing season to model end of season grain yield, biomass, grain N uptake, and protein 

concentration; and 3) Compare daily NDVI values to the rate and duration of four 

phenological periods (onset of tillering, stem extension, heading, and ripening) in predicting 

harvest metrics (biomass, grain yield, N uptake, and grain protein concentration). To 

accomplish these objectives, we collected and analyzed automated NDVI radiometric data for 
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two complete growing seasons over four applied nitrogen (N) and four different water 

availability regimes.  

 

2.2. Methods 

 2.2.1. Study site 

In both 2013 and 2014, soft white spring wheat (Triticum aestivum L.) was grown 

following soft white winter wheat (Tritivum aestivum L.) in eight, 100 m2 (10 m x 10 m) plots 

with 19 cm row spacing at the Washington State University Cook Agronomy Farm (CAF) 

near Pullman, Washington, USA (N 46.7805, W 117.0855). The eight research plots were 

divided into two fields (hereafter referred to as Field A and Field B) to promote a wide range 

of soil water availability scenarios (see Table 1). Additionally, four "top-dressed" N 

application rates were applied at each of the two fields (0, 40, 80, and 120 kg ha-1) using 

granular urea (46% N) three days post seeding (similar to Eitel et al. 2014). Soil was sampled 

for inorganic N (NO3 and NH4) prior to N application; residual N in the soil did not 

significantly differ across the plots (p<0.05). The study site has silt load soils developed in 

loess deposits with some ash (fine-silty, mixed, superactive, mesic Pachic Ultic Haploxerolls, 

Soil Survey Staff, 2014). CAF is a dryland site without any irrigation, and permeability is 

moderate to high. The average annual precipitation ranges from 260 to 610 mm, and the 

average available water capacity through the entire soil profile is about 29 cm (Soil Survey 

Staff, 2013).  

 2.2.2 Biophysical measurements 

We collected both in-season and end-of-season (i.e. harvest) biophysical 

measurements in the field.  The only in-season canopy metric used in this study was plant leaf 

area index (LAI). LAI has been widely used by ecologists, ecophysiologists, modelers, 

farmers, and foresters, to investigate the response of plant growth to the surrounding 

environment (Bréda, et al., 2003). LAI (m2 leaves per m2 ground) was measured at all plots 

(n=8) on a weekly basis using a LI-COR model LAI-2000 plant canopy analyzer (LI-COR, 

Lincoln, NE). At each plot location, three LAI measurements were collected and averaged for 

analyses (n=88 (10 weeks, 2013), n=96 (12 weeks, 2014). Soil volumetric water content 

(SVWC) measurements were collected on the day of planting within close proximity (5 m) of 

each field location. The SVWC reported here was measured at a soil depth of 5 cm below 
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ground surface using EC-5 SVWC sensors (Decagon Devices, Pullman, WA, USA). The 

depth to argillic layer was determined using a soil probe, and determined when a distinct clay 

layer was found. 

End-of-season harvest metrics were determined from a hand harvest, where the crop 

was removed at <5 cm above the ground surface using a sickle. We bagged, dried at 60o C, 

and weighed biomass of the three square meters within the field of view of each NDVI 

radiometer. Samples were threshed using a plot combine to separate the grain from the chaff, 

and weighed. Aboveground plant and straw biomass were expressed on an area basis. Protein 

concentration was determined using a NIR analyzer (InfratecTM 1241 Grain Analyzer, Foss, 

Eden Prarie, MN), and grain N content was determined by dividing protein concentrations by 

5.7 and multiplying by the grain yield (Huggins, Pan, & Smith, 2010). 

 2.2.3 Canopy NDVI spectral reflectance measurements  

Canopy reflectance measurements began shortly after planting (prior to emergence) 

and remained until harvest. NDVI data were collected continuously in a fixed location 

throughout the sampling period at each of the plots using low cost Spectral Reflectance 

Sensors (SRS, Decagon Devices, Pullman, WA). SRSs are two-band radiometers that measure 

incident and reflected radiation in wavelengths appropriate for calculating NDVI (after 

Garrity et al. 2010). The NDVI wavebands are centered at 630 and 800 nm wavelengths, with 

50 and 40 nm full width half maximum band widths, respectively. These wavebands were 

used in calculating NDVI using Equation 1:   

NDVI = (800nm-630nm) / (800nm+630nm)   (Eq. 1) 

NDVI SRS sensors equipped with Teflon diffusers were placed facing up (view zenith 

angle of 180º) to make cosine-corrected measurements of incident irradiation.  Additional 

sensors fitted with field-stops (20° field of view) were placed 1.5m above the crop canopy at a 

20º view zenith angle to measure upwelling canopy radiance.  The upwelling radiation 

measurement was then divided by the incident irradiation to obtain a true canopy reflectance 

value (ρ). A test for cross-calibration was done in the field using a 99% reflectance, white 

Spectralon reference panel (Labsphere Inc., North Sutton, NH); no significant differences 

between sensors was found (data not shown). Reflectance measurements were logged using 

Em50 dataloggers (Decagon Devices, Pullman, WA) for each waveband and recorded at five 

minute intervals throughout the two growing seasons.  
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2.2.3 Statistical analysis 

Initial analysis focused on what time of the day was best suited to relate NDVI to LAI 

throughout the entire season. For this, we used a simple linear regression and R2 value for 

each day that LAI data was collected. We determined that 12:00 noon was the best time of 

day to use NDVI data, and due to the inherent variability of these values on a day to day basis, 

smoothing of daily NDVI data was done by using a locally-weighted non-parametric 

regression with a smoothing parameter (α) of 0.5, Fig. 2.1  (loess, Cleveland, 1979; 1988). 

The red dots in Fig. 2.1 represent the smoothed NDVI values and 95% confidence intervals to 

represent the range of daily values (7:00-20:00) at the control plot on field A in 2014.  

 Tillering, stem extension, heading, and ripening were chosen to represent the onset of 

significant growing stages (according to Zadoks' 10, 31, 50, 70, respectively; Zadoks, 1974). 

The onset of each phenological period was determined using piecewise linear regression from 

the 'segmented' package (Vito & Muggeo, 2003, 2008; similar to Sweet et al., 2014 & 

Magney et al., 2015) in R (R Core Team, 2014). The outputs from the piecewise linear 

regression include the x-axis location of the inflection point with a standard error. The three 

inflection points with the smallest standard errors were used to define and bin the 

phenological periods. If there was an inflection point between the times when the crop 

emerged and tillering began, that day was chosen as the onset of tillering. The standard errors 

were recorded and represented in Figs. 2.5-2.8. The conceptual framework and algorithms 

used to determine inflection points are described in Vito & Muggeo (2003, 2008). The rate 

(slope) of each phenological period was calculated using the change in NDVI over the 

duration (length) of the period. 

Step-wise multiple linear regression analysis was done to assess the potential for using 

one or more predictors for harvest metrics, and to determine the relative importance of 

phenological time periods (rate and duration) in influencing grain quality and quantity. The 

'stepwisefit' package in R used Akaike information criterion (AIC) values to assess the 

relative quality of multiple regression models by favoring models with fewer explanatory 

variables. The regression model with the lowest AIC was chosen at different time frames 

throughout the season to determine that capability of predicting each harvest metric after each 

phenological period. A variance inflation factor (VIF) with a maximum threshold of 10 
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(O'Brien, 2007) was used as a test for multi-colinearity within each model - VIF > 10 was 

discarded from the model.  

 

2.3. Results 

2.3.1. Influence of time of day on NDVI vs. LAI relationship 

 Fig. 2.2 demonstrates the predictive capability of NDVI values at 5 minute intervals 

throughout the growing season on days when LAI data was collected. Fig. 2.2a suggests that 

in this system, and with these sensors, data from 12:00 noon provide a tighter fit and better 

LAI predictive power (Fig. 2.2c). In general, as solar zenith angle increases, NDVI's 

predictive capacity increases, similar to findings by Sims et al., 2006 and Nguy-Robertson et 

al., 2013. A primary limitation of NDVI is that it tends to saturate at high LAI values; 

however, the distribution of points around the best fit line do not suggest saturation at LAI 

values approaching four (Fig. 2.2c). For these reasons, NDVI at 12:00 was used for all 

seasonal analyses (similar to Gamon et al., 2006; Ryu et al., 2010; Nguy-Robertson et al., 

2013). 

2.3.2. Predictions using daily NDVI: Biomass, Yield, Grain N, grain protein 

 Fig. 2.3 shows how well single, daily NDVI values across all 16 plots can be used to 

predict end-of-season harvest metrics (i.e. biomass, yield, grain N, and grain protein).  

Individual daily NDVI values do not perform well in determining early season biomass, yield, 

or protein concentration. However, greater than 50% of the variance in harvested grain N can 

be explained during using daily NDVI values during the majority of the stem extension period 

(17-37 days since emergence), when most N is being taken up by the crop. Yield and biomass 

prediction are at their peaks when there is the most variation (widest 95% confidence interval 

bars) in the NDVI data (37-46 days since emergence), at the culmination of vegetative growth 

and during mid senescence (~75-85 days since emergence). NDVI is a poor predictor of 

protein throughout the entire growing season, with a small peak towards the end of the season.  

 2.3.3. Seasonal trends in the rate and duration of phenological periods 

 Fig. 2.4 shows the seasonal patterns of NDVI-derived phenological periods from 2013 

Field A (Fig. 2.4a), 2013 Field B (Fig. 2.4b), 2014 Field A (Fig. 2.4c), and 2014 Field B (Fig. 

2.4d). In general, the 2013 crop experienced a slower growth rate at the onset of tillering and 

stem extension, a shorter duration of heading, and a slower senescence (ripening) rate. 
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Additionally, the magnitude of the NDVI values is generally lower in 2013. An effect of 

fertilizer treatment is most apparent in the seasonally dry, south-facing, poorly drained sites 

(Fields A). The fertilizer treatment response is represented by the control and low plots 

consistently experiencing slower growth rates, less time during grain-fill (heading), and lower 

magnitude NDVI values. The onset of most phenological periods is consistent within each 

field, however, the duration of heading is longer for the medium treatment in Fig. 2.4a-c. 

There is also a noticeable increase in NDVI values during the heading period in Fig. 2.4 a and 

c, suggesting that there may have been some additional vegetative growth during this 

reproductive stage, or larger spikes that could contribute to overall increased reflectance in the 

NIR and decreased reflectance in the red, similar to the findings by Viña et al., 2004 (see 

section 2.4.2.3 for discussion). 

 2.3.4. Predictions using metrics of NDVI over phenological periods: Biomass, Yield, 

Grain N, grain protein 

 2.3.4.1. Summary table for all predictor and explanatory variables 

  Table 2 highlights the coefficient of determination between the rate and duration of 

each daily NDVI derived phenological period and end of season biomass, grain yield, protein 

concentration, and grain N uptake.  

 Our study suggests that the strongest (and all statistically significant at the p<0.05 

level) predictors of yield are rate of tillering (R2 = 0.72), duration of heading (R2 = 0.67), and 

duration of ripening (R2 = 0.42). For protein concentration, the rate of heading (R2 = 0.64), 

rate of ripening (R2 = 0.45), duration of stem extension (R2 = 0.35), duration of tillering 

through heading (R2 = .25), and the duration of tillering through stem extension (R2 = 0.28) 

all show significant correlations, with the metrics corresponding to the duration of 

phenological periods not showing strong correlations. Harvested biomass and grain N are 

significantly correlated to 7 of the 10 phenological periods: rate of tillering (R2 = 0.62, 0.37, 

respectively); rate of stem extension (R2 = 0.55, 0.53, respectively); rate of ripening (R2 = 

0.28, 0.45, respectively); duration of stem extension (R2 = 0.25, 0.35, respectively); duration 

of heading (R2 = 0.66, 0.36, respectively); duration of ripening (R2 = 0.66, 0.42, respectively);  

and duration of tillering through heading (R2 = 0.40, 0.46, respectively). The physiological 

explanations for these correlations will be elaborated upon in the discussion.      
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 2.3.4.2. Top predictors of biomass 

 Fig. 2.5 shows the linear regressions between biomass and the top four predictor 

variables, rate of tillering, rate of stem extension, duration of heading, and duration of 

ripening. 

 2.3.4.3. Top predictors of yield Fig. 2.6 shows the linear regressions between grain 

yield and the top three predictor variables, rate of tillering, duration of heading, and duration 

of ripening. 

 2.3.4.4. Top predictors of protein concentration  

 Fig. 2.7 shows the linear regressions between grain protein concentration (%) and the 

top two predictor variables, rate of heading and rate of ripening. 

 2.3.4.5. Top predictors of grain N concentration   

 Fig. 2.8 demonstrates the top four predictors of end of season grain N concentration, 

rate of stem extension, rate of ripening, duration of heading, and duration of ripening. 

 2.3.5. Stepwise regression analysis 

 Stepwise regression analysis at different times of the season was performed to assess 

the performance of within-season predictive capacity of NDVI derived phenology, but also to 

examine how NDVI phenology may explain harvest metrics. 

2.3.5.1. Early season prediction of harvest metrics 

 Table 3 exemplifies the capacity for the rate/duration or a combination of both during 

tillering to predict end-of-season harvest metrics relevant to crop productivity. The simple 

regressions previously shown in Table 2 are only improved in the case of biomass prediction, 

where both the rate and duration of tillering combined marginally improve the R2 from 0.62 

(rate) and 0.55 (duration) to 0.68 with a root mean square error (RMSE) of 82.12 kg/ha. A 

low VIF between the rate and duration of tillering suggests that a combination of the two does 

not over-predict biomass due to multi-collinearity. Results suggest that yield and biomass can 

be predicted during this phenological period, but early information on grain N content and 

protein concentration is difficult. 

2.3.5.2. Early-mid season prediction of harvest metrics 

 Table 4 shows the results of stepwise multiple linear regression analysis in the 

prediction of harvest metrics through stem extension. Analysis suggests strong predictive 

capacity of yield, biomass, and grain N (R2 = 0.83, 0.87, 0.70; RMSE = 31.44, 82.12, 9.294, 
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respectively) using phenologically derived metrics - rate of tillering (p=0.07), duration of 

tillering (p=0.16), and rate of stem extension for biomass (p<0.01); rate of tillering (p<0.01), 

rate of stem extension (p=0.03), and duration of stem extension for yield (p=0.04); and 

duration of tillering (0.02) and rate of stem extension (p<0.01) for grain N. A lower p-value 

indicates that the independent variable explains more variance in the final model, and low 

VIFs (<5) imply lack of multi-collinearity. The ability to predict protein concentration from 

phenological metrics, and from a daily NDVI value (Fig. 2.3) during the vegetative growth 

stage (tillering-heading) showed to be weak. 

 2.3.5.3. Mid-late season prediction of harvest metrics 

 Table 5 shows the results from the stepwise AIC selection process in the prediction of 

harvest metrics from tillering through heading (just prior to senescence). These results suggest 

that using phenological metrics during heading aid only in the prediction of protein 

concentration (R2 = 0.69 and RMSE = 1.09%, compared to R2 = 0.33 and RMSE = 1.44% 

through stem extension). The addition of the rate (p < 0.01) and duration (p=0.43) of heading 

to the duration of stem extension (p = 0.18) suggest that physiological dynamics during the 

reproductive growth stages are important for determining grain protein concentration. 

Biomass and grain N prediction did not improve with information during the heading stage, 

while the duration of heading marginally improved the yield model (RMSE = 29.8 kg/ha from 

31.55 kg/ha at the culmination of stem extension). For all models, the VIF is below 3, except 

for protein where two variables have VIFs of 8.33, and 9.82, which still suggests non multi-

collinearity (<10).  

 2.3.5.4. Late season prediction of harvest metrics 

 The inclusion of phenological metrics associated with the crop ripening (senescence) 

time period  were used in all AIC selected models; however, the only improved model was in 

the prediction of grain N (R2 = 0.80 from R2 = 0.70 using data through heading). Protein 

concentration prediction dropped from R2 = 0.69 to R2 = 0.67, but the model eliminated one 

independent variable, and as a result has arguably more explanatory power due to increased 

simplicity. The R2 did not improve for biomass or grain yield, but the RMSE dropped slightly 

(82.12 kg/ha to 79.25 kg/ha for biomass; 29.80 kg/ha to 29.63 kg/ha for yield). These results 

suggest that while phenological information from ripening is useful in understanding biomass, 

yield, and protein, early and mid-season prediction is equally as strong, except for grain N. 
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2.4. Discussion 

 This study highlights the utility of highly temporally resolved reflectance data to 

derive important phenological periods of crop growth. Using daily NDVI data, a piecewise 

linear regression approach was employed to determine inflection points in seasonal crop 

phenology to quantify a rate and duration of phenological time periods relevant to 

agronomists, plant breeders, plant eco-physiologists, and growers, among others. For sixteen 

plots of rainfed spring wheat during the 2013 and 2014 growing season, NDVI derived 

phenological periods improved estimation of harvest metrics. In the following sections, 

potential explanations for these phenomena will be explored.  

 2.4.1. Temporal variation in NDVI's predictive capacity 

 Many researchers have noted the diurnal variability in canopy reflectance resulting 

from bidirectional reflectance spectra that are confounded by soils, crop residue, solar zenith 

angles, canopy architecture, and leaf area (Norman et al., 1985; Ranson et al., 1985; Hilker et 

al., 2009; Nguy-Robertson et al., 2013). Due to these confounding factors, many studies use 

highly resolved spectral reflectance data from the same time every day when interpreting 

seasonal data (Gamon et al., 2006; Ryu et al., 2010; Nguy-Robertson et al., 2013). Our results 

suggest that the time of day NDVI is used does play an important role in estimating LAI (Fig. 

2.2). Nguy-Robertson et al., 2013 noted that diurnal reflectance varied little at the end of the 

corn and soybean growing season between 10:30 and 15:30, when peak solar zenith angles 

were higher. Similarly, results from this study show that there is a slight variation in canopy 

reflectance spectra up to and after 12:00, in accordance with decreasing solar zenith angle 

(Fig. 2.2). It can also be noted that while the slope of the line between the NDVI and LAI 

relationship remains fairly constant through the day (0.14-0.18), the intercept of the 

relationship ranges from 0.17 at 7:00 to 0.34 at 20:00, suggesting that this empirical fit will 

change depending on the time of day. The strongest fit at 12:00 for the NDVI and LAI 

relationship is likely a result of less bidirectional reflectance contribution confounding the 

signal during peak sunlight (Norman et al., 1985). The solar zenith angle at 12:00 noon is 

closest to the viewing angle of the SRS (~20o), thus the observed relationship would likely 

change depending on both the viewing direction and angle of the sensor.  

 To assess how time of day selection for the piecewise linear regression would change 

the rate and duration of phenological time periods changes, a sensitivity analysis was 
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conducted  to determine if inflection points (as shown in Fig. 2.1) drastically change based on 

time of day (e.g., Fig. 2.9). A qualitative look at the data in Fig. 2.9 suggests that the 

inflection point does vary depending on time of day NDVI data was used; with the most 

spread coming from data collected at 8:00, 16:00 and 18:00, and less than ±1 day difference 

for each inflection point between 10:00-14:00 for this individual plot. While a complete 

analysis is beyond the scope of this research, we do note a significant effect of time of day 

over all sixteen plots, where the duration of each phenological period can be up ± 3 days 

different depending on time of day NDVI is used. Regardless of what time of day is chosen 

for NDVI, if the sensor and solar geometries are the same at all locations, differences in the 

rate and duration of phenology can be relatively compared across N or irrigation treatments, 

cultivars, and different field positions, among others - though future research should 

investigate this further. Also worth noting is that the magnitude of the NDVI values change 

depending on time of day, whereby an increase in solar zenith angle generally corresponds 

with higher NDVI values post senescence (Fig. 2.9, for example). One explanation could be 

an increase in NIR reflectance coming from the wheat heads themselves (Pimstein et al., 

2009; and similar to findings by Veña et al., 2004 for corn), but this non-conclusive 

hypothesis should be investigated further. Results from both Figs. 2.2 and 2.9 support 

findings by many researchers that NDVI around 12:00 is the best time of day to use such data.  

 Using NDVI from 12:00 noon, we investigated the ability of a daily NDVI value to 

predict harvest metrics throughout the season (Fig. 2.3). Many researchers have used ground 

based remote sensing tools to predict cereal yield (Mahey et al., 1991; Ruan et al., 2001; 

Babar et al., 2006), N uptake (Stone et al., 1996; Shanahan et al., 2008; Qualm et al., 2010), 

protein content (Hansen et al., 2002; Freeman et al., 2003), and biomass (Kleman and 

Fagerland et al., 1987; Erdle et al., 2011) early in the growing season with mixed results, and 

often have had more success using more complex vegetation indices (Lindgren et al., 1994; 

Haboudene et al., 2002;  Prasad et al., 2006; Eitel et al., 2008; Panda et al., 2010). In this 

study, early season predictions were the strongest towards the end of rapid vegetative growth 

(37-46 days since emergence), and during mid-senescence (75-85 days since emergence, Fig. 

2.3, similar to findings by Mahey et al., 1991). Freeman et al., 2003 note that yield prediction 

using NDVI in wheat can be accurate two months prior to harvest, when yield estimates 

stabilize; however, in this recognizably different agro-ecosystem, our results suggest that 
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while yield estimates are strongest just prior to heading (two months before harvest), their 

predictive capacity drops off during grain-fill, just prior to senescence (Fig. 2.3). The near 

symmetrical patterns of yield and biomass could be explained by the close correlation 

between these two parameters in this study (r = .83); however, in the interest of increasing the 

harvest index (yield/biomass) for crop yield gap analysis (Van den Boogaard et al., 1996; 

Lobell et al., 2013), harsh conditions (high VPD, high temperature) incurred during the 

reproductive stage can lower the harvest index, and could be detected by a shortening of the 

duration of grain fill or increased rate of senescence (Reynolds et al., 2012; this study, Figs. 

2.5c,d & 2.6c,d).  

 The prediction of grain protein has traditionally been based on the premise that the N 

assimilated in plant tissue components is directly related to grain protein content (Tindal et 

al., 1995; Wang et al., 2005); however, protein concentration in the grain is a product of not 

only the amount of N in tissue prior to grain-fill, but the conditions (i.e., abiotic stress) that 

the crop undergoes during this time period (Masclaux-Daubresse et al., 2010). As a result, 

individual daily values of canopy NDVI alone is generally a poor predictor of grain protein 

prior to harvest since it does not consider the abiotic conditions during grain fill (Hansen et 

al., 2002 and Xue et al., 2007). This study confirms these findings, as R2 predictive capacity 

using daily NDVI values never exceeds 0.20 until the final days of the growing season (Fig. 

2.9). However, because crop phenology responds to abiotic conditions during grainfill that 

drive grain protein concentration, this study showed that metrics derived from NDVI-defined 

phenological stages during ripening can substantially improve protein predictions (Fig. 2.7 

and Tables 2-6).  

 Due to the fact that grain N content in this study is computed using yield and protein 

concentration, one would expect that its capacity to be predicted using NDVI metrics would 

fall somewhere between yield and protein concentration.  However, the peak predictive power 

using daily NDVI data occurs 19-30 days after emergence (R2 ~ 0.60), and immediately 

spikes as soon as rapid vegetative growth (stem extension) is underway. This could be due to 

the strong relationship between rate of stem extension and N uptake (Miller et al., 1994; and 

in this study, Fig. 2.8a), as this time period is crucial for establishing baselines for the 50 to 90 

percent of N that will ultimately be remobilized from leaf and stem to the grain (Chapin and 

Wardlaw, 1988). Recognizing that single daily NDVI data might not provide the best 
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representation of end of season harvest metrics, this study found single daily NDVI derived 

crop phenological periods showed a > 50% increase in the explained variance of biomass, 

yield, protein, and N prediction (Fig. 2.3 and Table 2).   

 2.4.2. Physiological significance of phenological time periods influencing harvest 

metrics 

 The results from this analysis suggest that different phenological time periods, derived 

from daily NDVI data, are indicators of grain quantity and quality; however, there is no direct 

evidence to explain why or how NDVI derived crop phenology directly influences harvest 

metrics. As a result, we can only make inferences as to how they might be related to end-of-

season crop parameters. The goal of this work is to develop a simple method that derives 

highly resolved phenological data, and supports published observations that note the influence 

of phenological metrics to harvest data. Explanations of why the rate and duration of tillering 

(4.2.1), stem extension (4.2.2), heading (4.2.3), and ripening (4.2.4) are discussed in the 

following sections. 

 2.4.2.1. Tillering 

 This study found that the rate of tillering is strongly correlated to biomass and yield, 

and moderately correlated to grain N at harvest in spring wheat (Table 2). N availability 

produced a small varied response in rate differences within each field according to NDVI data 

(Fig. 2.4). This observation has been noted under ranges of N availability scenarios; whereby, 

an increase in weight and number of tillers with increased N availability is often observed 

(Longnecker et al., 1993; Oscarson et al., 2000). However, at low LAI values (<1), the NDVI 

signal could have been dominated by soil background reflectance, dampening the overall 

signal (Huete et al., 1988). The use of a soil adjusted vegetation index during this time period 

could alleviate this confounding effect, and result in greater observed differences during the 

NDVI derived tillering period (Qi et al., 1994; Rondeaux et al., 1996; Haboudane et al., 2002; 

Eitel et al., 2007). To avoid this problem, the first inflection point in the data (when there was 

a visible increase in rate of growth) was used as the onset of tillering. Further elucidating the 

discrepancies in tiller response using proximal remote sensing data at this important crop 

growth stage could aid in early season N management decisions (e.g., Eitel et al., 2014) 

 At this early growing stage, when soil water content is high, the most limiting 

contributor to a delayed start date is soil temperature and anaerobic soil conditions - affecting 
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soil water potential (Lindstrom et al., 1976). These early impediments were experienced in 

2013, resulting in delayed crop emergence and a short and slow tillering period, which 

undoubtedly contributed to lower biomass and yield during this season. As can be seen in Fig. 

2.4, the duration of tillering was only one or two days longer in 2014, but the rate of growth 

(tiller establishment) allowed for greater potential for biomass accumulation and yield. Figs. 

2.6a and 2.7a show strong relationships supporting the hypothesis that more tillers result in 

more spikes and more seeds; however, without the low tiller production observed in Field A 

in 2013 (resulting in low yield and biomass), the relationship would likely weaken. We 

suspect that over a wider range of conditions/planting densities and increased sample size this 

relationship will hold, but it should be noted that not all tillers produce spikes in wheat, and in 

many cases tillers abort before heading (Gallangher and Biscoe, 1978). In the stepwise 

multiple regression analysis, rate of tillering proved to be the strongest early season predictor 

of biomass, yield, and grain N, suggesting that early diagnosis of yield potential could be 

determined using NDVI derived phenological data during this time period. 

 2.4.2.2. Stem extension 

 Results from this study support the observations of much research that has postulated 

that high growth rate leads to a considerable increase in biomass (Richards, 1987). The rate 

and duration of stem extension proved to be significant predictors of biomass and grain N at 

harvest in this experiment (Tables 2 and 4). While strong relationships between biomass at 

anthesis or during grain fill and yield have been observed, this experiment suggests that the 

rate of biomass accumulation (rate of stem extension) was not a strong predictor of yield. This 

could be explained by the wide range in harvest index observed in these trials (0.47-0.65), 

suggesting that biomass accumulation did not directly translate into yield, making daily NDVI 

- which is intrinsically sensative to LAI/biomass, and phenological metrics associated with 

vegetative growth - not necessarily the most useful for predicting yield.  

 Early work by Van Andel and Jager (1981) and Simane et al., (1993) showed that 

drought and moisture stress during stem extension result in lower rates of biomass 

accumulation. In this study, SVWC in both sites in 2013 was higher at planting but increased 

temperatures during the 2014 season (5°C higher on average during stem extension than in 

2013) likely spurred greater growth rates since water is not necessarily limited at the onset of 

stem extension in this system. As can be observed in Fig. 2.4, the onset and culmination of the 
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stem extension period falls on or around the same date for fertilizer treatments within the 

same field position; however, in most cases the rate of change in stem extension is greatest 

where there is more available N, resulting in a greater NDVI value at the onset of heating. In 

all four cases, the control plot had the lowest NDVI value after stem extension, and the 

medium fertilizer plot had the highest NDVI. This could suggest that 80 kg/ha (medium) N is 

sufficient for achieving maximum nitrogen use efficiencies (NUE).  

 The multiple regression analysis (Table 4) shows that the rate of stem extension was a 

strong explanatory variable in the yield, biomass, and grain N predictive models, improving 

the predictive power of these three harvest metrics to R2 = 0.83 for yield, 0.87 for biomass, 

and 0.70 for grain N. As previously mentioned, the lack of protein prediction using 

phenological data up to this point in the growing season is not surprising, as the 

remobilization of N from leaves and stems to seeds is largely driven by post-anthesis weather 

conditions. The role of available N in biomass accumulation and grain protein concentration 

is the result of complex interactions between carbon and nitrogen assimilation that could be 

further examined with highly resolved information on vegetative growth rate as is shown here 

(Triboi and Triboi-Blondel, 2002). 

 2.4.2.3. Heading 

 The vegetative growth stage (tillering and stem extension) is extremely important to 

ensure the maximum amount of carbohydrates to be supplied during grain filling (Donmez et 

al., 2001). Because the Palouse region of the US Pacific Northwest is a rainfed environment, 

the heading and grain fill time period generally takes place when it is hot and dry - conditions 

that limit photosynthesis. End-of-season yield greatly depends on the remobilization of 

assimilates acquired during vegetative growth to the grain (Villegas et al., 2001). Hot and dry 

conditions will expedite the duration of the grain-fill period, limiting the maximum amount of 

nutrient translocation to the seed (Bogard et al., 2011). Tables 2 and 5 and Figs. 2.6b and 2.8c 

support the hypothesis that an extended duration of the heading phenological time period will 

increase grain yield and translocation of N from vegetative parts to seed. The strength of the 

relationship between the duration of heading and yield (Fig. 2.6b) shows compelling evidence 

that the effect of both between and within field location variability has strong predictive 

power as the points still fall along the relatively same slope (except Field B 2013). Further, if 

a primary physiological constraint on delayed senescence is the vegetative N reserves, it is 
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logical that total biomass and grain N are also positively correlated to heading duration (Fig. 

2.5c and 2.8c). The simple approach described here could help breeders trying to develop 

'stay-green' phenotypes to improve yields under abiotic stress (Borrell et al., 2001; Lopes and 

Reynolds, 2012). 

 The relationships between NDVI derived rate of heading and end-of-season harvest 

metrics are difficult to interpret. Table 2 and Figure 2.7a show a strong relationship between 

rate of heading and protein concentration. It could be postulated that this is merely a spurious 

correlation, but we hypothesize that this could be the result of biomass accumulation after the 

onset of heading. A positive relationship between rate of heading and protein concentration 

suggests that additional N uptake by the roots occurred after anthesis, and because 5 to 50% 

of post-anthesis N uptake is translocated to grain N (Van Sanford and MacKown, 1986; de 

Ruiter and Brooking, 1994; Gaju et al., 2014), the remaining N uptake could have manifested 

itself in leaf development, ultimately resulting in increasing NDVI values during this time 

period. This is supported by field trials where high N availability or additional N application 

at anthesis has shown to increase grain protein concentration (Gooding and Davies, 1992; Bly 

and Woodward, 2003). Because all proteins consist of amino acids, and N is part of the basic 

structure of amino acids necessary for protein synthesis, we hypothesize that increased plant 

vigor (by increased photosynthesis in N rich plants) experienced during the heading 

phenological period resulted in a greater concentration of protein remobilization, though this 

is non-conclusive and requires further research. The stepwise multiple regression analysis in 

Table 5 shows that the predictive capacity of a combination of NDVI derived phenological 

periods only improves the protein model, where rate and duration of heading play in 

important role in reducing the model RMSE from 1.44% to 1.09%. Regardless of a true 

diagnostic interpretation of this relationship, wide bodies of evidence associating rates of 

senescence to protein concentration support findings in the following section.  

 2.4.2.4. Ripening 

 The importance of ripening and crop senescence in determining grain quality has been 

extensively studied, and confirmed that N remobilization is tied to the rate and duration of 

senescence (Wang et al., 2005). The rate of leaf senescence is largely controlled by abiotic 

factors that lead to the gradual deterioration of leaf function due to chlorosis and a decline in 

photosynthesis (see review by Farooq et al., 2014). An increased rate of senescence has often 



60 

 

been linked to less time for grain-fill, resulting in a lower harvest index (Madani et al., 2010). 

Our study supports these findings with significant positive relationships observed in Table 2 

and Figs. 2.5d, 2.6c, and 2.8d between biomass, yield, and grain N and the duration of 

ripening. Physiologically, the ripening period is important in the remobilization of nutrients to 

the grain, implying that a shorter time of senescence results in lower yields and lower grain N 

content as was observed here (Fig. 2.6c and 2.8d). Drought and heat stress are generally 

attributed to influencing the rates of senescence, though in different ways. For example, 

Lopes and Reynolds 2012 used NDVI to monitor wheat phenology and found a positive 

correlation between yield and senescence rate under heat stress, and a negative correlation 

between senescence rate and under drought and heat stress. The Palouse region is generally 

not characterized by high temperatures in mid-summer and thus it is likely that drought stress 

resulting from soil water depletion in contributing to expedited senescence rates. Also, the 

NDVI derived duration of ripening shows a strong positive correlation to biomass (Fig. 2.8d), 

which could likely be explained by the fact that more green leaf area will take longer to 

senesce.   

 There is speculation that depletion of soil moisture during ripening (drought related 

stress) could reduce starch accumulation and thus yields of hard red wheat, while increasing 

protein concentration (Brown et al., 1999). Soft white winter wheat in this system is not 

managed to meet minimum protein thresholds, but the dynamics of protein synthesis during 

ripening are similar, and this study suggests that increased rates of senescence induce greater 

protein concentration (Fig. 2.7b). As was mentioned previously, protein concentration is 

likely more closely related to nutrient availability, as a stepwise increase in protein 

concentration was observed at all four fields according to N availability. Interestingly, the rate 

of senescence response was both field and N regime specific, suggesting that a combined 

effect of increased rate of ripening and available N ultimately drove protein concentration and 

grain N content. At this point, interpretation of relationships between the rate and duration of 

phenological periods is highly speculative, but is supported by similar findings that relate crop 

phenology to harvest metrics. 
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2.5. Conclusion 

We evaluated the utility of highly temporally resolved ground based radiometric 

measurements of NDVI to quantify the rate and duration phenolgical periods during the wheat 

growing season. NDVI derived phenological metrics were compared to daily NDVI values for 

their predictive capacity of biomass accumulation, grain yield, protein concentration, and 

grain N content. Daily NDVI values generally showed poor predictive power of end of season 

metrics, with peak predictive power occurring at short time intervals throughout the growing 

season. This finding highlights the importance of when NDVI data should be used (both 

diurnally and seasonally) as a predictive tool. When a piecewise linear regression was used to 

determine inflection points in the seasonal NDVI curve, the rate and duration of NDVI 

derived phenological periods related to the onset of tillering, stem extension, and ripening 

were determined. These NDVI derived phenological metrics were compared across sixteen 

plots under varying available N and water scenarios, and strong, notable relationships were 

observed between 1) rate of tillering and biomass accumulation/yield, 2) rate of stem 

extension and biomass/yield/grain N content, 3) duration of heading and biomass/yield/grain 

N content, 4) duration of ripening and yield/ grain N, and 5) rate of ripening and protein 

concentration. A stepwise multiple regression analysis was also done to assess the viability of 

combined NDVI derived phenological metrics for early season prediction of harvest data. 

Using information from tillering and stem extension, strong predictive power was observed 

for yield, biomass, and grain N; however, mid-season prediction of protein concentration is 

difficult, as phenological metrics post-anthesis are most relevant to protein synthesis.  

Easily interpretable, objective, low-cost, and field-ready ground based remote sensing 

information could provide growers with information regarding crop growth dynamics prior to 

mid-season fertilizer or irrigation decisions. Perhaps more immediately, this type of data can 

be used in a retrospective fashion by agronomists, breeders, and scientists to gain a better 

understanding of how abiotic conditions influence physiological and phenological patterns 

throughout the season. Further, this study demonstrated the potential and limitations of daily 

NDVI data in deriving relevant phenological parameters that could be extrapolated to larger 

regions using daily satellite imagery available from AVHRR or MODIS, for example. Our 

primary objective was to provide a simple technique that could be widely used by both 

growers and scientists to gain a better understanding of crop phenological variability, but 
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more research is necessary to evaluate the potential of highly resolved radiometric 

measurements in different systems, under differing conditions, and using alternate 

wavelengths, with the ultimate goal of providing more diagnostic information on crop status.  
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Tables: 

Table 2.1. Summary of field characteristics for each plot location in study. Each   field 

location included four N addition plots. SVWC = Soil Volumetric Water Content; LAI = Leaf 

Area Index; DOY = Day of Year.
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Table 2.2. R2 between rate (ΔNDVI/days) and duration (days) of key phenological periods 

and end-of-season harvest metrics of biomass (kg/ha), yield (kg/ha), protein (%), and grain N 

(kg/ha). Duration of tillering -> heading represents the length of time for tillering, stem 

extension, and heading time periods; whereas the duration of tillering -> stem extension 

represents only the tillering and stem extension time periods. n=16 for all relationships. 
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Table 2.3. Results from stepwise multiple linear regression using AIC selection criteria 

between rate and duration during the earliest phenological time period, tillering.  
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Table 2.4. Results from stepwise multiple linear regression using AIC selection criteria 

between rate and duration during the first two phenological time periods: tillering and stem 

extension. 
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Table 2.5. Results from stepwise multiple linear regression using AIC selection criteria 

between rate and duration during the first three phenological time periods: tillering, stem 

extension, and heading. 
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Table 2.6. Results from stepwise multiple linear regression using AIC selection criteria 

between rate and duration during all four phenological time periods: tillering, stem extension, 

heading, and ripening. 
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Figures: 

Figure 2.1.  Seasonal trends in NDVI data - control plot of Field A in 2014. This figure is 

used as an example for how inflection points were determined, and to represent the onset of 

the four phenological stages used in this study. Red points are smoothed daily NDVI values, 

and error bars represent one standard deviation of the data from 7:00-20:00 each day. The 

slope of each phenological period is representative of change in NDVI per day.  
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Figure 2.3. Seasonal trend in the daily NDVI data values (black) with error bars representing 

95% confidence intervals around daily NDVI data for all plots. All daily NDVI values were 

normalized to 'days since emergence' since the phenology varied from plot to plot depending 

on location and season. NDVI vs. yield (blue), biomass (green), protein (red), and grain N 

(brown) coefficients of determination (R2) are also plotted throughout the season (each model 

determined from n=16). 
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Figure 2.5. Linear regressions between harvested biomass (kg/ha) and (a) rate of tillering 

(NDVI/day), (b) rate of stem extension (NDVI/day), (c) duration of heading (days), and (d) 

duration of ripening (days). Symbols represent four different applied N treatments (circle = 

control, triangle = low, square = medium, and x = high). Colors represent different years and 

field positions (black = field A 2013, red = field B 2013, green = Field A 2014, and blue = 

field B 2014). Error bars represent the standard error from the piecewise linear regression in 

either the location of inflection point (for duration) or slope of the line (for rate).  
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Figure 2.6. Linear regressions between harvested grain yield (kg/ha) and (a) rate of tillering 

(NDVI/day), (b) duration of heading (days), and (c) duration of ripening (days). Symbols 

represent four different applied N treatments (circle = control, triangle = low, square = 

medium, and x = high). Colors represent different years and field positions (black = field A 

2013, red = field B 2013, green = Field A 2014, and blue = field B 2014). Error bars represent 

the standard error from the piecewise linear regression in either the location of inflection point 

(for duration) or slope of the line (for rate).  
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Figure 2.7. Linear regressions between grain protein concentration (%) and (a) rate of 

heading (NDVI/day), and (b) rate of ripening (NDVI/day). Symbols represent four different 

applied N treatments (circle = control, triangle = low, square = medium, and x = high). Colors 

represent different years and field positions (black = field A 2013, red = field B 2013, green = 

Field A 2014, and blue = field B 2014). Error bars represent the standard error from the 

piecewise linear regression in either the location of inflection point (for duration) or slope of 

the line (for rate). 
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Figure 2.8. Linear regressions between grain N content (kg/ha) and (a) rate stem extension 

(NDVI/day), (b) rate of ripening (NDVI/day), (c) duration of heading (days), and (d) duration 

of ripening (days). Symbols represent four different applied N treatments (circle = control, 

triangle = low, square = medium, and x = high). Colors represent different years and field 

positions (black = field A 2013, red = field B 2013, green = Field A 2014, and blue = field B 

2014). Error bars represent the standard error from the piecewise linear regression in either 

the location of inflection point (for duration) or slope of the line (for rate).  
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Figure 2.9. Variation in time of day NDVI selection for use in piecewise regression. Vertical 

lines represent inflection points indicating the onset of tillering, heading, and ripening. All 

data was recorded similarly to Fig. 2.1.  
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Chapter 3: LiDAR Canopy Radiation Model Reveals Patterns of Photosynthetic 

Partitioning in an Arctic Shrub 

 

Magney, T.S., Eitel, J.U.H., Griffin, K.L., Boelman, N.T., Greaves, H., Prager, C.M., Logan, 

B.A., Zheng, G., Ma, L., Fortin, L., Oliver, R., Vierling, L.A. 

to be submitted to Agricultural and Forest Meteorology 

 

Abstract: Characterizing the wide range of light availability and photosynthetic capacity 

throughout a plant canopy is important for modelling the exchanges of carbon, water, and 

nutrients between the biosphere and the atmosphere. Such characterization could be especially 

important in one of the world’s most rapidly changing biomes – the arctic tundra. An 

improved understanding of canopy organization within small arctic shrubs could provide 

insights into climate feedbacks associated with increasing shrub size, range, and complexity 

in tundra ecosystems. The multifaceted interactions between 3-D canopy structure, 

environmental conditions, leaf physiology, and light availability will affect the potentials and 

limitations of vegetation carbon assimilation and storage. The aim of this study was to 

elucidate evidence for photosynthetic partitioning according to light availability within a 

small canopy (< 1 m tall) of Salix pulchra exposed to near continuous sunlight at low-solar 

angles in the arctic tundra. Instantaneous photosynthetic photon flux density (PPFD) and daily 

integrated quantum flux density (Qint) were modelled from a ray-tracing algorithm for voxels 

(edge-length .01 m) within the canopy that were assigned a physically based digital gap 

fraction (DGF) and extinction coefficient (k) to compute an effective leaf area index (LAIe). 

Parameters for the ray-tracing model were derived from the x, y, and z locations of high 

spatial resolution (<1 mm) 3-D maps of shrub canopies from terrestrial LiDAR point clouds. 

Modelled Qint and a LiDAR derived path-length – determined as the accumulated photon 

travel distance from the canopy-edge – were compared with traditional light quantification 

techniques including leaf-area index (LAI), and vertical canopy depth. Weak exponential 

relationships were observed between the four light quantification techniques (0.07 < r2 < 

0.28), suggesting wide variability among these methods. When each of the light environment 

characterization techniques were compared against leaf-level data on photosynthetic 

partitioning including percent nitrogen (N %), chlorophyll a to b ratio (Chl a/b), and Amax, 
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patterns suggesting photosynthetic partitioning only emerged when the LiDAR data derived 

3-D locations of the leaf samples were considered (Qint
 and path length). Statistically 

significant (p< 0.05) trends that follow the theoretical response of leaves to light availability 

were observed between all three measurements related to photosynthesis and LiDAR data 

derived Qint (r = 0.31, 0.46, 0.49 for N%, Chl a/b, and Amax, respectively); while 2 of 3 

parameters showed a statistically significant response to path length, 1 of 3 to manually 

measured canopy depth, and 1 of 3 to ceptometer derived LAI. Results from this study 

suggest that LiDAR based techniques for quantifying the 3-D light environment of small 

shrubs exposed to low solar angles revealed patterns of photosynthetic partitioning that may 

otherwise be overlooked using more traditional techniques. 

 

3.1. Introduction 

 Light availability is the primary factor driving the two- to four fold differences in 

foliage photosynthetic capacity within a plant canopy (Brunner et al., 1998; Le Roux et al., 

2001; Baldocchi et al., 2002; Niinemets et al., 2006; Niinemets, 2007). A better understanding 

of how light varies throughout vegetation canopies is fundamental to scaling the biophysical 

processes controlling resource exchange between the biosphere and atmosphere (Baldocchi & 

Harley et al, 1995, de Pury & Farquer, 1997). The non-linear response of photosynthesis to 

light has made scaling exercises difficult, requiring a nuanced understanding of vegetation 

structure and physiology for modeling and predicting carbon sources and sinks at leaf, 

canopy, and ecosystem scales (e.g., Kirschbaum et al., 1988; Pearcy et al.., 1997; Schurr et 

al., 2006).  

 There are several mechanisms by which plants acclimate to the local light 

environment to maximize photosynthetic potential. In an effort to modify itself for optimal 

carbon assimilation capacity, plants can alter their anatomy or canopy architecture, change the 

composition of biomass invested in canopy components (leaves, stems, roots), and partition 

the relative concentration of biochemical constituents (nitrogen, plant pigments) throughout 

the canopy (see review by Niinemets et al., 2010). The majority of studies examining the 

effects of light variability on photosynthetic processes have been conducted on tree canopies 

often experiencing a five- fold difference in integrated quantum flux density (Qint, Anderson, 

1964) – measured as the integral of instantaneous measurements of photosynthetic photon 
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flux density (PPFD) throughout a day (e.g., Ellsworth & Reich, 1993; Vierling & Wessman, 

2000; Kitajima & Hogan, 2003; Niinemets et al., 2004). In general, the theoretical foundation 

of light attenuation throughout a canopy - the Beer-Lambert law – is observed in field studies, 

where an exponential decay in radiation occurs coincident with canopy penetration (e.g. Ross, 

1981; Brunner et al., 1998). Given the importance of within-canopy photosynthetic 

partitioning in maximizing whole plant carbon gain, it is important that these processes are 

investigated across a wide range of species and environmental conditions (Evans & Poorter, 

2001). 

 Traditional field determination of light variability within a plant canopy has been done 

using a wide range of instruments and techniques: light transmittance determined through leaf 

area index measurements (LAI, e.g., Hirose & Werger 1987; Pierce & Running, 1988; 

Ellsworth & Reich, 1993; Bréda, 2003; Weiss et al., 2004), vertical canopy depth (e.g., 

Bolstad & Gower, 1990; Ellsworth & Reich, 1993; Niinemets, 1996), gap fraction analysis 

(e.g., Norman & Campbell, 1989; Welles & Cohen, 1996), long-term field placement of 

photodiodes or quantum sensors (Niinemets et al., 1998, 2004; Vierling & Wessman, 2000), 

and digital hemispherical photography (Jonckheere et al., 2004; Gonsamo et al., 2010), among 

others (Jennings et al., 1999; Niinemets, 2010). However, given their often poor spatial and 

temporal resolution and invasive nature of measurement collection, traditional techniques for 

quantifying the light environment will be further confounded depending on the solar angle, 

instrument selection, instrument field of view (FOV), sensor stability and cleanliness, 

irradiance conditions, spatial heterogeneity within a plant canopy, and user subjectivity in 

measurement location. As a result, field based techniques for accurately representing the plant 

light environment can be challenging and highly variable (Bréda, 2003; Jonckheere et al., 

2004; Garrigues et al., 2008). To account for the limitations inherent in traditional field-based 

techniques and to enable the scaling of plant physiological response to light across space and 

time, there has been increasing interest in linking plant structure and function using three-

dimensional (3D) models of ‘virtual plants’ (Whitehead et al., 1990; Hanan, 1997; Sievänen 

et al., 2000; Godin and Sinoquet, 2005; Pearcy et al., 2005; Vos et al., 2007; Sarlikioti et al., 

2011). Models of plant structure in 3D vary widely in their spatial and temporal resolution, 

and have been used to better understand the link between physiology and structure. By their 

very nature however, artificial 3D canopy models cannot link empirical measurements made 
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in the field to actual structural attributes. As a result, there has been increasing interest in 

mapping 3D plant canopy structure in the field with high-spatial resolution (sub centimeter 

level) using ground-based light-detection and ranging technology (LiDAR; Lovell et al., 

2003; Omasa et al., 2007; Jupp et al., 2009; Eitel et al., 2010, 2013 2014a; Van der Zande et 

al., 2010, 2011; Beland et al., 2011, 2014;  Bittner et al., 2012; van Leeuwen et al., 2013; 

Vierling et al., 2013; Zheng et al., 2013; Cifuentes et al., 2014; Widlowski et al., 2014; 

Greaves et al., 2015). 

 LiDAR is capable of non-invasively providing highly spatially resolved 3D canopy 

structural information by determining the x, y, and z location of each surveyed laser return 

based on the angular time-of-flight between laser pulse emission and return. By making use of 

TLS with low beam divergences and minimizing the distance between the TLS and the survey 

canopy, high sampling densities can be achieved – allowing for the re-creation of canopy 

structure at scales < 1mm (e.g., Eitel et al., 2014; Greaves et al., 2015). The high level of 

canopy structural detail afforded by TLS technology provides the opportunity to model the 

geometrically explicit canopy internal radiation regime for cubic volume elements, or voxels 

(Kimes, 1984; Cohen and Fuchs, 1987) throughout plant canopies via ray-tracing (van 

Leeuwen et al., 2013). Yet, challenges remain  that might affect the accuracy of the modeled 

light regime including viewing obstruction (inability of a laser pulse to reach the inner 

canopy), movement of canopy elements by wind, determination of the optimum voxel size, 

leaf clumping and edge laser return values (also known as mixed pixels, ghost returns, or air 

return values) where the laser is split at the edge of a canopy component and the recorded x, 

y, and z location does not present a real object but rather the interpolated x, y, and z location 

between two or more canopy objects (Eitel et al., 2010). Nonetheless, this method has shown 

great promise to repeatability, objectively, and non-destructively characterize canopy light in 

3-D at unprecedented spatial resolutions (Van der Zande et al., 2009; 2010; Bittner et al., 

2012; Widlowski et al., 2014). Similar to virtual 3D models describing canopy radiation 

environment, estimating light transmittance can be done using Beer-Lamberts law by 

ascribing an extinction coefficient (k, probability that light will not penetrate through a voxel) 

and a digital gap fraction (DGF, the probability a photon will not reach a canopy element, 

based on obstructions in a given direction) to each voxel. Combining a TLS derived canopy 

architectural map with a ray-tracing algorithm could, in theory, offer improvements over 
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traditionally parameterized (e.g., using virtual 3D canopy models) radiative transfer models 

that may be limited by overly-simplistic representations of canopy elements.  

 While it has been speculated that a more representative voxel based light environment 

could be used to relate to plant physiological measurements, to our knowledge no direct links 

between LiDAR derived canopy radiation models and empirical physiological data have been 

published. Utilizing the advantages of LiDAR data driven canopy radiation modeling, this 

work seeks to make the direct connection between plant physiological measurements and light 

environment. Three commonly used metrics for assessing photosynthetic acclimation to light 

environment are the spatial partitioning of leaf nitrogen (N), chlorophyll a to b ratio (Chl a/b), 

and photosynthetic capacity (Amax) (Field, 1983; Hirose & Werger, 1987; Ellsworth & Reich, 

1993; Niinemets 2007). The close relationship between leaf N and rate of photosynthesis is 

well understood and based on the premise that Calvin cycle proteins and thylakoids that drive 

electron transport are primarily N (Evans, 1983, 1989). It is also well established that the Chl 

a/b ratio can be a useful indicator of photosynthetic partitioning within a plant canopy due to 

its positive correlation with the ratio of photosystem II (PSII) cores to light harvesting 

chlorophyll-protein complexes, LHCII (Boardman 1977; Martin & Warner, 1984; Hikosaka 

& Terashima, 1995; Kitajima & Hogan, 2003). Because LHCII contains the bulk of Chl b, 

increases in the relative proportion of Chl a to Chl b in high light is an adaptive response of 

chloroplasts maximizing light harvesting capacity (Dale & Causton, 1992). Lastly, the 

allocation of leaf N and Chl a/b along a light gradient implies accumulation of photosynthetic 

enzymes and the subsequent positive scaling of foliage photosynthetic rates. Gas exchange 

techniques have been widely used to obtain Amax of plants (Farquhar et al., 1980), and further 

to assess photosynthetic partitioning within plant canopies according to light availability 

(Niinemets, 2007, 2010). While photosynthetic partitioning has been found using 

measurements of leaf N, Chl a/b, and Amax in complex tree canopies, or in relatively 

homogeneous agricultural environments, there has been limited research on small, sparse, 

shrub canopies (>1m tall) where resource partitioning may not be hypothesized to exist.  

 This study investigated photosynthetic partitioning according to light availability 

within the small, sparse canopy of Salix pulchra, which grows among the shrubs Salix 

alaxensis, and Betula Nana, over low-lying mosses, sedges, tussocks, and grammanoids, at 

high latitudes in the arctic tundra. Several unpublished investigations have shown little or 
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negligible evidence for photosynthetic partitioning in small arctic shrubs (Heskel et al., 2012, 

Formica et al., 2013). The significance of partitioning in arctic shrubs is that current models 

extrapolating carbon exchange in this ecosystem are based on the linear relationship found 

between LAI and N in arctic plant species (Williams et al., 2001; van Wijk et al., 2005; 

Shaver et al., 2007; Street et al., 2007). The success of these models is largely due to the 

assumption that arctic vegetation with LAI values often < 1.0 m m-2 are vertically and 

horizontally homogeneous and that the short growing season, low solar angles, and sparse 

canopy do not partition resources to maximize photosynthetic optimization (Williams and 

Rastetter, 1999). However, with the advent of a changing climate, rapid expansion and growth 

of woody shrubs in the tundra has been observed (see review by Myers-Smith et al., 2011). 

Over time, as more complex canopies begin to dominate the landscape, more complex models 

that account for vegetation changes in one of the world’s largest biomes will need to be 

developed to determine the errors associated with modeled and observed canopy 

photosynthesis. With this motivation, previous work by our group (Heskel et al., 2012, 

Formica et al., 2013) has attempted to relate measurements of photosynthesis to light 

environment in tundra shrubs, but have been limited to the quantification of light environment 

by an LAI-2000 (LICOR, Lincoln, Nebraska), and vertical depth measured by hand. In an 

attempt to better quantify the light regime of measurements related to photosynthetic 

partitioning within tundra shrub canopies representative of the future projected arctic 

ecosystem (e.g., Myers-Smith et al., 2011), our objectives were two-fold: 

1) Compare the relative differences in light measurements acquired from traditional 

(LAI, canopy depth) and TLS/ray-tracing techniques (path length, Qint) made within a 

S. pulchra canopy. 

2) Explore how leaf measurements (leaf N, Chl a/b, Amax) within a S. pulchra canopy 

respond to light availability as quantified by the four techniques in objective one. 

 To address these objectives, we utilized light information derived from a LiDAR data 

driven canopy radiation model, LiDAR data derived path length, vertical canopy depth, and 

LAI measurements, and compared these estimates with leaf level measurements of leaf N, Chl 

a/b, and Amax to investigate patterns related to photosynthetic partitioning.  
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3.2. Methods 

3.2.1 Study area 

 S. pulchra shrubs examined in this experiment were located near the Arctic Long 

Term Ecological Research Station (LTER) at Toolik Lake (68.63°N, -149.60°W). Twenty-six 

fully expanded leaves were chosen subjectively to obtain a wide range of potential light 

conditions within four shrubs, allowing for a total of 104 leaves to be examined for analysis. 

Large shrubs (height ~ 1 m) representative of what are expected to dominate the tundra 

ecosystem in the near future include S. pulchra, S. alaxensis, and B.nana (Myers-Smith et al., 

2011). However, S. alaxensis are expected to dominate the riparian landscapes, while B. nana 

and S. pulchra are expected to increase in size and range in non-riparian tundra. This study 

only focused on S. pulchra primarily due to its larger leaf size compared to B. nana. Isolated 

shrubs were selected for ease of interpretation during canopy radiation simulation and to 

ensure that obstruction from surrounding vegetation wouldn’t occlude the shrub of interest. 

All shrubs achieved a range in maximum LAI from 2.0 – 2.4 m m-2. S. pulchra leaf samples 

were taken during peak growing season (July 6-16) under diffuse light conditions. S. pulchra 

were growing in the moist acidic tundra complexes (MAT) near Toolik Lake, with the 

dominant plant community including Eriophorum vaginatum-Sphagnum, Carex bigelowii-

Sphagnum, Salix alaxensis, and Betula nana. The average soil pH in the MAT is < 5.5, mean 

annual temperature is -8.73 °C and mean annual precipitation is 164.47 mm. 

 3.2.2. Field data collection and instrumentation 

 The TLS scans of S. pulchra were taken from four opposing directions (in a diamond 

shape) to avoid directional occlusion effects from one scan angle (Van der Zande et al., 2008). 

Scans were taken at a consistent range of 2 m with a nominal point spacing of 1 mm and an 

angular step of 0.5 milliradians (similar to Greaves et al., 2015). A plastic tarp was held in the 

direction of prevailing winds to minimize moving canopy elements during the scan, after 

which the effect of wind of leaf movement was negligible. Because an increase in the TLS 

viewing zenith angle improves estimates of forest canopy gap fraction, the laser scanner head 

sat atop a tripod approximately 2 m above the ground with approximately a 45º viewing 

zenith angle to capture all shrub elements from each scanning position (Cifuentes et al., 

2014). A discrete return, time-of-flight, Leica Scan Station 2 TLS with a pulsed green (532 

nm) laser was used (Leica Geosytems Inc., Heerbrugg, Switzerland). The TLS employs a 4 
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mm beam diameter, a range of 0-50 m, and a sampling density < 1 mm (as described in 

Magney et al., 2014 and Eitel et al., 2014a). On the same day TLS scans were acquired, 26 

sample locations within each shrub were selected, and marked. Following the initial scans and 

LAI-2000 measurements, the shrub was trimmed using shears and the x, y, and z sample 

location were visually identified in the LiDAR point cloud of the trimmed shrub. Four 

reflective targets with sub-centimeter accurate GPS locations were scanned during each TLS 

acquisition to permit co-registration of each of the four scans into a local (x, y, and z) and 

global (Universal Transverse Mercator, UTM) coordinate system. Fig. 3.1 is provided to 

highlight the spatial variability of samples selected within one of the shrubs. Details on TLS 

data processing can be found in section 3.2.3. 

 After the sampling locations were recorded, the nearest four to five leaves attached to 

the stem were removed and immediately brought back to the laboratory. In the laboratory, gas 

exchange measurements were taken on each leaf sample (section 3.2.4.1), followed by a leaf 

punch that was placed in a -80º C freezer within 24 hours of removal from shrub (for pigment 

analysis, section 2.4.2), and the remaining leaves were dried for leaf N analysis (section 

3.2.4.3).  

 3.2.3. Terrestrial LiDAR processing 

 At each shrub location, the four scans were co-registered and merged into the local 

polar (x, y, z) coordinate system, forming a single point cloud using the Cyclone software 

environment (Version 8.1, Leica Geosystems Inc., Heerbrugg, Switzerland). Following 

merging into the local coordinate system, the point cloud was then assigned global Cartesian 

coordinates (UTM, Northing and Easting) that were linked to GPS measurements taken from 

four geo-referenced targets scanned during each TLS acquisition. The 104 local x, y, z 

coordinates from sampling locations recorded during the last TLS scan at each shrub were 

also converted to global coordinates for use in the ray-tracing algorithm described in section 

2.5.4. An example of sample locations merged into the single global coordinate point cloud is 

displayed in Fig. 3.1. Due to the abundance of airborne insects in this study location, each 

merged shrub point cloud was then manually cleaned to remove “mosquito hits” that would 

interfere with rays penetrating the canopy (as described in Greaves et al., 2015).  

For the final two metrics used to estimate the light environment (path length and Qint), the 

shrub canopy was divided in voxels with a 0.01 m edge-length (Fig. 3.2). 
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 The 0.01 m voxel edge length is substantially smaller than top performing voxel sizes 

in other studies (e.g., Van der Zande et al., 2010, 2011; Beland et al., 2014; Cifuentes et al., 

2014), but also differs from the aforementioned studies because of the small stature, leaf, and 

stem size of S. pulchra; with the exception of Bittner et al. (2012), who conducted a 

sensitivity analysis to evaluate a ray-tracing canopy light model using different voxel sizes for 

beech trees of a similar height to the shrubs used in this study. Bittner and colleagues found 

that the top performing voxel edge length was 0.031 m, ensuring that voxels where no 

vegetative component existed were not misrepresented, allowing for more accurate estimates 

of light transmittance. Similarly, we chose a small voxel size with a 0.01 m edge length for 

several reasons: 1) The point sampling density was 1 mm to capture the canopy with high 

resolution, but ultimately resulted in oversampling and the abundance of edge, or ‘ghost’ 

points (noise, Eitel et al., 2010), tailing from the canopy elements. This increased the number 

of points and changed the actual spatial distribution pattern of foliage elements; 2) 0.01 m is 

close to the characteristic size of the canopy elements, including stem diameters (similar to 

suggestions provided by Beland et al., 2014). For radiation regime mapping choosing a voxel 

size based on the characteristic size of canopy elements instead of the sampling space makes 

intuitive sense with respect to spaces between leaves and branches; 3) The effects of 

neighboring voxels on radiation environment could be incorporated with a bigger voxel size 

(i.e., the characteristic size); 4) Since the laser beam is 4 mm, this is the low limit at which the 

laser can readily resolve a voxel; 5) Lastly, and potentially most importantly, a sensitivity 

analysis showed that the computed digital gap fraction (DGF, computed as in Zheng et al., 

2013 and described in section 3.2.5.4) remained stable beyond 0.01 m (Fig. 3.3). Voxel sizes 

below this threshold likely overestimated DGF to due to excessive inclusion of noisy canopy 

elements.  

 Figs. 2.1 and 2.2 are colored according to height, with no differentiation between non-

photosynthetic and photosynthetic canopy components. Unlike some studies that have been 

able to separate woody from leaf material using the laser return intensity in the near infrared 

or short-wave infrared wavelengths (Douglas et al., 2012; Beland et al., 2014; Danson et al., 

2014), we were not able to reliably separate photosynthetic and non-photosynthetic 

components based on green (532 nm) laser return intensity. This was primarily due to the 

small (1 - 10 cm2) and thin leaves and stems (1-5 cm diameter) within the S. pulchra canopy, 
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which complicated manual visual separation, but also caused wide variability in the intensity 

return of the green laser, making it difficult to establish thresholds to separate photosynthetic 

from non-photosynthetic canopy components. Such separation is important for future 

developments of this work, but because of the low transmittance of energy in the PPFD 

spectrum (400 – 700 nm) through green leaves (often < 10 %), we determined the difference 

would be minor. 

 3.2.4. Physiological measurements 

 3.2.4.1. Gas exchange measurements 

 Leaf gas exchange measurements were conducted within a 12-15 hour period after 

harvest to avoid leaf wilting. In the lab, four prepped and calibrated gas exchange analyzers 

(IRGA LI-6400XT Portable Photosynthesis System, LI-COR) were used to obtain CO2 fluxes 

of photosynthesis and respiration for leaves on each of the branch tips. Leaf selection was 

determined based on the size (closest to the cuvette size of 6 cm2) and flatness of the leaf. The 

gas-exchange method from Heskel et al. (2013) was used to obtain light curves for each 

sample. Following light-response curve measurements, one-sided leaf area was measured 

using a leaf area meter (LI-3100, LI-COR Inc., Lincoln, NE, USA).  During processing of the 

gas exchange data, leaf area was corrected for if the leaf did not fill the 6cm2 cuvette, as rate 

calculations are based on the leaf area. Maximum light saturated net photosynthetic rate 

(Amax) was estimated by fitting the data to a rectangular hyperbolic function (Excel Solver, 

Microsoft, Redmond, WA, USA) (Heskel et al., 2013).  

 3.2.4.2 Pigment analysis 

 Following gas exchange and leaf area measurements, circular leaf disks were removed 

from leaf samples using three different size cork borers (0.15, 0.23, 0.24 cm2) depending on 

leaf size and to avoid veins. Leaf punches were placed in an aluminum foil envelope and 

immediately brought to a -80ºC freezer, where they remained until high-performance liquid 

chromatography (HPLC) analysis (Gilmore & Yamamoto, 1991). Pigments were extracted 

according to Adams & Demmig-Adams (1992) with one modification: disks were ground 

using a ball mill (8000D, Specs Cetriprep, Metuchen, NJ, USA) (Magney et al., 2014). The 

HPLC analysis was done using an Agilent 1100 series HPLC (Agilent Technologies, Palo 

Alto, CA, USA) with a YMC CarotenoidTM C-30 reverse phase column (YMC Co., Ltd, 

Kyoto, Japan) at 35º C. Solvent concentrations and gradients according to Magney et al., 2014 
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were used. Total Chl a and b (µmol m-2) was quantified using the HPLC peak area (mAU * 

sec) and the size of the leaf tissue sample, and Chl b was divided by Chl a to compute the Chl 

a:b ratio (Logan et al., 1996).   

 3.2.4.3. Leaf N 

 Following foliar gas exchange and leaf area measurements, leaves were dried in a 

drying oven at 50º C for at least 48 hours. After leaf drydown, the leaves were weighed and 

put into small sample tubes with metal beads to be pulverized using a grinder (Mini Bead 

Beater, Biospec). This pulverized leaf material was sent to the lab where %N was determined 

using automated dry combustion on a per mass basis (TruSpec CN, Leco Corporation, St. 

Joseph, MI).        

 3.2.5. Quantifying the light regime 

 3.2.5.1. Leaf Area Index 

 LAI is a dimensionless measure used to describe the one-sided green leaf area (m2) per 

unit ground surface (m2) in plant canopies. LAI-2000 (LI-COR Inc., Lincoln, NE, USA), 

which has a 148º FOV fisheye lens, was used to measure relative light transmittance at each 

leaf sample location within each shrub (for instrument details and assumptions see Jonckheere 

et al., 2004 & Garrigues et al., 2008). LAI-2000 is an indirect optical method that is 

commonly used to investigate light transmission through canopies (Jonckheere et al., 2004), 

and applies the Beer-Lambert law by integrating information at each canopy layer of incident 

irradiance and canopy structure (Monsi and Saeki, 1953). According to the LAI-2000 manual, 

one above canopy and four within canopy measurements were taken directly above each 

sampling location to avoid direct leaf shading. LAI measurements were taken under diffuse 

illumination for optimal performance (Hyer and Goetz, 2004; Jonckheere et al., 2004). A 270º 

view cap was placed on top of the lens to eliminate azimuth angles that would be effected by 

the operator or background (LAI-2000 protocol, Garrigues et al., 2008).  

 3.2.5.2. Vertical Canopy Depth 

 Vertical canopy depth has been traditionally used to investigate light gradients in tree 

canopies at lower latitudes (e.g., Ellsworth & Reich, 1993); but was used here for comparison 

and to determine if vertical partitioning exists in small shrubs exposed to near continuous, 

low-solar angles. For more precise determination of vertical depth, the z (elevation) from each 

sampling location was used and subtracted from the maximum shrub z value in each point 
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cloud. Canopy depths ranged from 0 cm (top of canopy) to -0.65 cm (near the middle-bottom 

of the canopy).  

 3.2.5.3. Terrestrial LiDAR derived path length 

 Due to the near continuous low-angle sunlight, path length was computed to provide a 

more accurate 3-D representation of sample location relative to the diurnal course of the sun, 

whereby a longer path length indicates a sample voxel location deeper in the canopy. A 

physically based ray tracing (RT) algorithm using the global Cartesian coordinates of shrub 

voxels was used to model the canopy light environment based on sun angle (θ) and time of 

day. Similar to Bittner et al., 2012, the RT algorithm simulated the daily course of the sun by 

using line segments (Ri, in m) with a starting point at outer-edge of the canopy (Si, in m) and 

an ending point (Ei, in m) at the sampling location. Over the course of the day, Ri interacted 

with all voxels between the outer-edge of the canopy (Si, according to solar zenith angle (θ), 

and time of day) and the sampling location, Ei, allowing for the angular distance (path length, 

(d) m) between Si and Ei. to be computed according to equation 1 over the course of the day. 

                                               𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑) = ∑ (𝑆𝑖 − 𝐸𝑖) θ−1 s−1𝑛
𝑖=1                        (Eq. 1) 

 While the relative light environment according to 3D location within the shrub can be 

estimated with the path length, it does not count for the varying intensity of irradiance at the 

top of the canopy (Io) over the course of the day (section 3.2.5.4). 

 3.2.5.4 Terrestrial LiDAR derived ray-tracing model 

 The basic premise underlying the RT model used here was to apply Beer-Lambert’s 

law (Eq. 2) to describe the attenuation of light through each voxel throughout the canopy 

(Monsi and Seiki, 1953). 

       𝑃𝑃𝐹𝐷 (𝑣𝑜𝑥𝑒𝑙) =  𝐼˳ ∗ 𝑒−𝑘∗𝐿𝐴𝐼𝑒                                 (Eq. 2) 

 In Eq. 2, PPFD (voxel) is the instantaneous irradiance (µmol m-2 s-1) at each voxel 

sample location, which accounts for the top of canopy irradiance, Io, an extinction coefficient 

(k), and the effective LAI (LAIe, m
2 m-2). LAIe can be defined as the product of LAI (woody 

and leaf material) and a clumping index (Nilson, 1971, Ryu et al., 2010), which is derived 

from a computed digital gap fraction (DGF; likelihood for solar beam with fixed direction to 

penetrate through plant canopy). Io was recorded at 15 minute intervals throughout the day 

using a quantum sensor measuring light intensity (µmol m-2 s-1) in the 400-700 nm range at 

the field site during a cloud-free day during the sampling period (LI-191, LI-COR, Lincoln, 
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Nebraska, USA). To obtain an instantaneous PPFD value for every second during a cloud-free 

day, Io was smoothed using a locally weighted non-parametric regression with a smoothing 

parameter (α) of 0.5 (Cleveland, 1979; Cleveland & Devlin, 1979). Due to the complexity of 

incorporating diffuse light into the RT model, and this particular studies interest in 

quantifying the range in relative light environment to investigate patterns of photosynthetic 

partitioning, only Io, data from one cloud-free day during the sampling period was used. The 

relatively simplistic nature of this RT model was not able to account for diffuse light or 

internal canopy scattering, thereby consistently overestimating light incident upon leaves in 

the upper canopy and underestimating light availability at increasing canopy depths. 

With these assumptions, we were able to compute PPFD throughout the day during peak 

growing season for each sampling location based on LAIe. The theoretical foundation behind 

the derivation of LAIe stems from the development and thorough testing of the digital 

hemispherical photography (DHF) method to compute LAI (Chen & Black., 1991). 

Computation of LAIe requires an estimation of the DGF and the extinction coefficient (k) for 

each solar zenith angle (θ) throughout the day according to Zheng et al., 2013 in equation 3. 

   LAIe  (θ) = -ln DGF(θ) / k (cos(θ), α)                                      (Eq. 3) 

 In eq. 3, DGF and k varied for each voxel in the point cloud depending on the time of 

the day ((θ) s-1). DGF and k ranged from 0 to 1 depending on the angular specific interaction 

(α) of Ri with foliage elements, with lower k values representing voxels with fewer points and 

stem or leaf angles more parallel to the incident Ri, allowing for more light attenuation 

through the voxel. A lower DGF was representative of a lower probability that light will reach 

a given voxel. Details on the computation of DGF, k, and α from terrestrial LiDAR data can 

be found in Zheng et al., 2013, who reported a strong correlation between TLS derived LAIe 

and DHP, but will be described briefly below.  

 In summary, for the incident light beams with a fixed θ, k for each voxel was obtained 

by finding the orientation distribution of the “effective foliage elements”. Although only a 

partial surface was sampled due to occlusion resulting from some scan angles, the sampled 

points represent the effective foliage elements in terms of the penetration of incident rays (Ri) 

in a specific angular direction. The characterization of the specific foliage element distribution 

was done using an ellipsoidal model described by Campbell (1986) and following the method 

developed by Zheng and Moskal (2012). This was done by computing the normal vectors for 
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every point within the shrub point clouds, whereby the tangential plane was reconstructed 

based on the six nearest neighbor points around the centroid point and unit vector, and a 

covariance matrix of the support region (Hoppe et al, 1992; Pierre-Alliez & Guennenbaud, 

2010). 

To compute DGF, a simulation of incident direct solar beams at all times throughout 

the day was done using the azimuthal and inclination angles for different solar positions based 

on the global Cartesian coordinate system during local time according to the “Solar Position 

Calculator” (http://esrl.noaa.gov/gmd/grad/solcalc/azel.html). By assuming direct solar beams 

come from the nadir direction, the point cloud data was rotated to each azimuthal and 

inclination angle throughout the day with an unchanged relative position between solar beams 

and point cloud data. The point cloud was sliced vertically in the direction of each solar beam 

upon each rotation throughout the day. The point cloud slicing algorithm used a line quadrat 

analysis to analyze the number of points in each voxel, rendering a voxel as empty, or 

composed of canopy elements (non-empty) (Zheng & Moskal 2012). For each slice plane 

(layer of voxels) within the canopy, the ratio of number of empty voxels over the total number 

of voxels in the specific slice plane was used to represent the DGF for each vertical plane 

within the canopy. After computing the DGF for each slice plane and the incident parallel 

solar beams at each fixed direction, DGF values were summed from the top of the canopy to 

the sample voxel similarly to eq. 1, according to eq. 4: 

            𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝐺𝐹 = ∑ (𝐷𝐺𝐹(𝑆𝑖) − 𝐷𝐺𝐹(𝐸𝑖)) θ−1 s−1𝑛
𝑖=1               (Eq. 4) 

   From this, k and accumulated DGF allowed for the derivation of LAIe at each sample 

voxel according to eq. 3, allowing for the computation of an instantaneous PPFD (eq. 2) value 

throughout the entire day. Qint was then computed according to equation 5, whereby the 

integral of instantaneous light (µmol m-2 s-1) was summed over an entire day of simulated 

radiation (mol m-2 day -1). 

    𝑄𝑖𝑛𝑡 = ∫ 𝑃𝑃𝐹𝐷 𝜃−1 s−1  
𝑛

𝑖=0
                                          (Eq. 5) 

 In summary, by ascribing a k value associated with an ellipsoidal leaf inclination angle 

and the direction of incoming solar radiation (Campbell, 1990; Zheng et al., 2013) and a DGF 

associated with the likelihood for solar beams with fixed direction to penetrate to a given 

voxel, we were able to compute LAIe as in input for Beer-Lamberts law (Eq. 2), and compute 

an integrated Qint over the course of a direct sun day to capture the variability in relative light 

http://esrl.noaa.gov/gmd/grad/solcalc/azel.html
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environment within the small shrub canopy (Eq. 5). Limitations to this method are discussed 

in detail in Zheng et al., 2013; and will be elaborated on in section 3.4. 

 3.2.6. Statistical analysis  

 To compare the relative differences in light measurements acquired from the LAI-

2000, vertical canopy depth, path length, and Qint a histogram of data distribution was used for 

visual inspection and an exponential best fit curve was fitted between Qint and the remaining 

three light quantification techniques. To explore how leaf measurements within a S. pulchra 

canopy respond to light availability, two different methods were used to compare the response 

of photosynthetic parameters, the first are represented by boxplots and the second by linear 

regression. Boxplots were binned into four categories using the Freedman-Diaconis rule, 

which defines bin size as 2*IQR (x)* n -1/3, where IQR (x) represents the interquartile range 

and n represents the sample size (Freedman & Diaconis, 1981). Sample size varied for 

measurements of %N, Chla:b, and Amax, as a result of  instrumentation errors resulting in 

erroneous values encountered during analysis, but did not alter the chosen bin size according 

the Freedman-Diaconis rule. Notched boxplots were chosen for visual examination of 

significant differences (p < 0.05) between binned samples, and represent the 95% confidence 

interval of the mean. To further examine trends in photosynthetic partitioning according to 

light availability, linear least squares lines were fit to the data and were assigned a correlation 

coefficient, Pearson’s r. In this final step of analysis, Qint and LAI data were log-transformed 

to account for non-normal exponential distributions.  

 

3.3. Results 

 3.3.1. Diurnal radiation regime at sampling locations 

 Fig. 3.4a demonstrates the diurnal radiation regime for all 104 sample locations from 

all scanned shrubs. Fig. 3.4b-d show a un-voxelized point cloud with 5 example locations that 

are highlighted by the radiation curves in Fig. 3.4a. A hypothetical rendition of the sun’s 

course at specific of day is provided in 4b. By linking the location of sample 1 on the shrub 

with the accompanying cyan diurnal radiation (I (d)) curve, one notices that this upper canopy 

location is exposed to near complete radiation, symmetrical with incident PPFD (Io); whereas, 

location 4, on the west end of the shrub, was exposed to little light until later in the day, 
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following the blue I(d) curve reaching a maximum of 375 µmol m-2 s-1 at around 19:00, for 

example. 

 3.3.2. Comparisons of light environment estimates 

 Fig. 3.5 shows histograms of the count distributions of data from each of the four light 

environment metrics. All x-axes are oriented with more hypothetical light on the left side of 

the axis. A left exponential distribution was observed in the LAI data (Fig. 3.5a), with nearly 

50% of the data measuring LAI values falling below 0.5 m2 m-2. An opposite observation – 

exponential right skewed distribution - was observed in the Qint estimates, with more than 

50% of the data suggesting sample voxels were exposed to < 5.0 mol m-2 day-1 of light (Fig. 

3.5d). Both measurements related to the relative location within the shrub – not light 

environment explicitly – were found to have near-normal distributions, with a slight left skew 

for canopy depth data (Fig. 3.5b) and path length (Fig. 3.5c). 

 A negative exponential function describes the relationship observed between all 

response variables and Qint (Fig. 3.6), following the expected response of light attenuation 

through the canopy according to Beer-Lamberts law in Eqs. 2 & 3. The relationships between 

Qint, LAI, and vertical canopy depth are not statistically significant (p> 0.05), with low 

coefficients of determination (Qint vs. LAI r2 = 0.10, root mean squared error (RMSE) = 12.20 

mol m-2 day-1; and Qint vs. canopy depth r2 = 0.07, RMSE = 12.91 mol m-2 day-1); while a 

statistically significant relationship between Qint vs. and path length was observed (r2 = 0.28, 

RMSE = 11.69 mol m-2 day-1). 

 3.3.3. Boxplots of relationships between light environment and photosynthetic 

parameters 

 Fig. 3.7 shows the binned relationships between leaf %N and light environment: LAI 

(Fig. 3.7a), canopy depth (Fig. 3.7b), path length (Fig. 3.7c), and Qint (Fig. 3.7d). A general 

trend towards lower leaf %N values is observed in increasingly light limited shrub locations 

across all light quantification techniques. Binned light regimes are characterized from 1-4, 

where 1 is the highest light (left side of each plot) and 4 is the lowest light regime (right side 

of each plot). Statistically significant differences among bins exists for leaf %N and LAI 

between the 2nd and 3rd light regime (Fig. 3.7a), the 1st and 4th light regime for path length 

(Fig 3.7c) and between the 1st and both the 3rd and 4th light regime for Qint (Fig. 3.7d). These 

trends will be discussed in more detail in section 3.3.4. 
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 Fig. 3.8 shows the binned trends between Chla:b and light variables. A general 

increasing trend in the means of Chla:b and LAI, with no significant differences between 

binned light regimes is observed in Fig. 3.8a. Fig. 3.8b shows no trend between binned 

canopy depth and Chl a:b ratio, while significant differences are observed among binned light 

regime 4 and regimes 1, 2, and 3 (Fig. 3.8c). The general trend towards decreasing Chla:b ratio 

with decreasing light availability is only seen when using path length and Qint as light 

quantifiers, with significant differences between Qint light regimes 1 and 3 and Chla:b. These 

trends will be discussed in more detail in section 3.3.4. 

 The last set of boxplots in Fig. 3.9 only shows a substantial decrease in Amax with 

decreases in Qint, where significant differences exist between light regime 1, and regimes 3 

and 4; and between light regime 2, and regimes 3 and 4 (Fig. 3.9d). Significant differences 

also exist between Amax and LAI light regime 4 and regimes 1 and 2. No significant 

differences are seen among canopy depth and path length light regimes and Amax. These 

trends will be discussed in more detail in section 3.3.4. 

 3.3.4. Linear trends between light environment and photosynthetic parameters   

 Fig. 3.10 shows the linear relationships with statistical significance between all light 

variables and photosynthetic parameters. A negative slope implies photosynthetic partitioning 

according to light availability, and was only significantly different from zero for the 

relationship between log transformed LAI and Leaf %N (Leaf % N vs. LAI r = 0.21, p < 0.05, 

Fig. 3.10a); Chla:b vs. log transformed LAI r = 0.01, Fig. 3.10e); Amax vs. log transformed LAI 

r = 0.04, Fig. 3.10i). Similarly, one significant trend was observed between photosynthetic 

parameters and canopy depth – leaf %N and canopy depth (r = 0.26, p < 0.05, Fig. 3.10b), 

whereas no significant trends were observed between Chla:b and canopy depth (r = 0.18, Fig. 

3.10f), or Amax and canopy depth (r = 0.11, Fig. 3.10j). A statistically significantly different 

from zero slope was observed between %N and path length (r = 0.27, p < 0.05, Fig. 3.10c), 

and between Chla:b and path length (r = 0.49, p < 0.01, Fig. 3.10g), but no significant trend 

was seen between path length and Amax (r = 0.15, Fig. 3.10k). Strong, significant trends were 

observed between log transformed Qint and leaf %N (r = 0.31, p < 0.01, Fig. 3.10d), between 

Chla:b and log transformed Qint (r = 0.46, p < 0.01, Fig. 3.10h), and between log transformed 

Qint and Amax (r = 0.49, p < 0.01 Fig. 3.10l). 
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3.4. Discussion 

 Results from this study suggest that depending on the method used in quantifying the 

relative light environment within small shrubs, different conclusions regarding photosynthetic 

partitioning within a S. pulchra canopy can be drawn. If a researcher were to use a more 

traditional method – such as LAI-2000 or vertical depth measurements – they would conclude 

that there is a weak, slightly significant negative trend towards decreasing %N as light 

availability decreases, and no statistically significant response of Chla:b or Amax to light 

availability. However, due to the small, sparse, nature of the S. pulchra canopy and the near 

continuous low-angle sunlight during the arctic growing season, one might want to explore 

techniques that relate physiological measurements to the actual 3D environment within the 

shrub (path length), or a simulated Qint. Using this approach, both path length and Qint 

revealed statistically significant negative trends in leaf %N and Chla:b, from which one would 

also expect similar trends in Amax. However, path length did not reveal patterns of Amax 

partitioning according to light availability, whereas the strongest and most convincing Amax 

trend was exhibited when the radiation regime was quantified using Qint. While several 

studies have shown the capability of voxel ray tracing to simulate the light distribution 

throughout a canopy (e.g., Van der Zande et al., 2010, 2011; Bittner et al., 2012), this study is 

among the first to link TLS derived canopy radiation environment to physiological 

measurements in the field. 

 3.4.1. Comparisons between different light environments 

 A comparison of LAI, vertical canopy depth, and path length with our estimate of Qint 

suggests that there is substantial variability in light environment quantification techniques. A 

major limitation to measuring LAI within a S. pulchra canopy using an LAI-2000 could be 

due to the unrepresentative temporal sampling regime, the bias towards high solar zenith 

angles, and the inability to capture potentially subtle canopy spatial heterogeneity (Weiss et 

al., 2004). A sensitivity analysis by Garrigues et al. (2008) found that substantial variability 

exists in LAI-2000 measurements under varying illumination conditions, especially compared 

to digital hemispherical photography which captures illumination from a wider range of solar 

zenith angles. While we sought to control for light conditions by sampling LAI under diffuse 

light, it was difficult to account for inconsistent light intensities throughout the day. While 

LAI measurements using an LAI-2000 are fast and easily repeatable, the primary success of 
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this technique has been attributed in larger forested canopies (Breda et al., 2003). LAI-2000 

measurements also make the assumption that foliage is an optical black body (absorbing all 

radiation), having the same leaf geometrical convex projection, and random foliage element 

distribution throughout the canopy (Jonckheere et al., 2004). In the case of S. pulchra, there is 

substantial variability in leaf size, leaf angular projection, and leaf clumping, making the 

canopy highly heterogeneous. The heterogeneous nature of S. pulchra canopies is thus likely 

underestimated using LAI-2000 measurements, which was observed here with the abundance 

of LAI values < 0.5 (Fig. 3.5a, similar to observations by Chason et al., 1992; Dufrene Breda, 

1995). Nonetheless, we attempted to account for the impact of external factors such as 

illumination conditions and background effects (i.e. instrument user, clumping) by taking 

LAI-2000 measurements using a 270º view cap (Nackaerts and Coppin, 2000).   

 A negative exponential relationship was also observed between Qint and vertical 

canopy depth (Fig. 3.6b), albeit with sufficient scatter and a low coefficient of determination. 

This highlights the expected observation that the low solar zenith angles abundant at high 

latitudes permit non-vertical distribution of light throughout the canopy. For example, 13 of 

the sample locations between achieving the top 20% of Qint are at vertical canopy depths 

between -0.1 and -0.6 m. Some of these points are spatially similar to points 2 & 4 in Fig. 3.2, 

which are located on the exterior of the shrub, receiving near full sunlight early or late in the 

day at low solar zenith angles. Also worth noting are the several points at the top of the 

canopy (near 0) with low reported Qint values ranging from 7 to 20 mol m-2 day-1. An 

explanation for this could be that the shrubs used in this study had relatively flat canopy tops, 

and that most leaves are located in the upper canopy. These particular leaves could have been 

located in the center of the canopy, shaded by clumps of leaves during the majority of low 

light angles experienced throughout the day. The continuous ‘shading’ by a few voxels may 

cause underestimation of light by using Beer-Lamberts law under direct sunlight, which leads 

to an exponential decrease in light through the canopy upon penetrating only a few voxels. 

Thus if a top-of-canopy leaf was surrounded by two or three voxels on every side, light 

transmission would decrease on orders of magnitude one to two times that of PPFD at exterior 

canopy voxels. Due to the lack of vertical photosynthetic partitioning or light distribution in 

the S. pulchra canopy, using a path length term might be more representative of spatial light 

distribution at a given voxel in 3D. 
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 By not ascribing a DGF, k, or LAIe, to the sample voxels, a path length, representative 

of the voxels relative 3D location within the shrub was investigated. Due to the normal 

distribution of data using this method (Fig., 3.5c), it could theoretically be better at capturing 

the wide range of light availability than the simulated Qint - which shows rapid attenuation of 

light at voxel locations in the middle or outer-middle part of the shrub (Fig. 3.6c) - 

particularly under diffuse radiation conditions. The strongest, and only statistically significant 

negative exponential trend, was observed between path length and Qint; however, there is still 

substantial scatter in the relationship. This scatter supports the theory that as light penetrates 

the canopy and interacts with different foliage distributions (affecting k) and clumps of 

canopy elements (affecting DGF) an exponential, yet somewhat unpredictable drop in Qint is 

observed. This is coincident with suggestions made by Beland et al. (2014) regarding the 

importance of accounting for leaf clumping from voxelized TLS data, noting that smaller 

voxel sizes may better eliminate the assumption of random foliage distribution – though data 

supporting this hypothesis do not exist for this study.  

 Indeed a more rigorous evaluation and sensitivity analysis of the effectiveness of the 

RT + TLS model used here would provide us with greater confidence in the model. However, 

inputs to the model have been validated with ground measurements (Zheng & Moskal, 2012; 

Zheng et al., 2013; Zheng et al., in review), and nonetheless results from this study suggest 

that wide variability does exist among the four techniques used to quantify relative light 

regime. As such, caution should be taken when comparing within canopy physiological 

measurements with light environment measurements in similar canopies. While great strides 

have been made to improve the quantification of vegetation parameters using TLS data – e.g., 

biomass (Olsoy et al., 2014; Calders et al., 2014; Eitel et al., 2014a; Greaves et al., 2015) leaf 

area distribution (Beland et al., 2011; 2014), and leaf area index (Zheng et al., 2012; 2013; 

Pueschell et al., 2014), there are still several pervading issues associated with the 

interpretation of high resolution point cloud data on vegetation parameters. These include, but 

are not limited to, the effect of a species-specific voxel size on determining DGF, occlusion 

and noise inherent in TLS data, TLS sampling setup, size of canopy elements, the complexity 

associated with canopy heterogeneity, and the separation of leaf tissue from non-

photosynthetic canopy elements.  
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 Firstly, the voxel size was determined based on the sensitivity analysis highlighted in 

Fig. 3.2, where the average digital gap fraction achieved at each voxel location within the four 

shrubs reached an asymptote at voxel-edge sizes > 0.01 m. Due to the high sampling density 

achieved here, we were able to retain a high point density within each voxel, allowing for the 

computation of DGF and k within each voxel. This is coincident with findings by Cifuentes et 

al., 2014 who reported that smaller voxel sizes in a high density point cloud enhanced the 

representation of foliage elements within the canopy. Following the diamond sampling design 

to minimize shadowing (Van der Zande et al., 2008), we were able to increase the amount of 

data within the small canopy to theoretically account for the short zenith range of the close 

proximity scan positions (Seidel et al., 2012). However, the high spatial resolution of this 

point cloud increased the chances of oversampling, potentially leading to the abundance of 

low Qint estimates (Fig. 3.5d).  

 Vaccari et al. (2013) attempted to correct for erroneous ‘ghost’ points and edge hits by 

examining the canopy perimeter for a bias correction in DGF. In this study, wind, small GPS 

errors, mosquitos, and the movement of canopy elements among TLS scans undoubtedly 

produced an excess of ‘ghost points’ within the point cloud. While some of this noise was 

removed manually, noise removal using this technique in the inner canopy was limited. This 

could be another explanation for the rapid light attenuation upon entering the shrub canopy, 

and abundance of low Qint values at voxel locations. Future studies on small stature vegetation 

might consider limiting sampling density from each scan angle to account for issues related to 

oversampling; which is contrary to findings by Van der Zande et al., 2011, who observed an 

overestimation of TLS+RT derived light penetration, caused by errors in LAD estimation. 

Rather, our assumed underestimation of Qint was likely due to the high sampling density, 

abundance of ‘ghost points’ due to the small leaves and stems of S. pulchra, registration 

errors, and changes in environmental conditions. The quality of the model could be further 

increased by the separation of woody and vegetative components using the intensity return 

from a single (Moorthy et al., 2008; Beland et al., 2014) or dual wavelength scanner (Douglas 

et al., 2012; Gaulton et al.,. 2013; Danson et al., 2014; Eitel et al., 2014b), allowing for a 

small fraction of transmission through leaves to be accounted for.  

 One of the primary limitations of this work is the lack of ground validation of 

radiation environment derived from Qint. While the deployment of quantum sensors that 
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integrate light throughout the day (as in Bittner et al., 2012) may have been one technique to 

validate the RT model, it was beyond the scope of this research to robustly validate the model. 

Rather, it was our goal to use previously published techniques for extracting LAIe to 

incorporate into the Beer-Lambert equation to potentially elucidate evidence for 

photosynthetic partitioning in S. pulchra. The use of the RT + TLS model did indeed show 

greater evidence of photosynthetic partitioning across all three parameters. 

 3.4.2. Evidence for photosynthetic partitioning in S. alaxensis 

 Our results suggest that patterns of photosynthetic partitioning within the S. pulchra 

canopy are more noticeable when the 3-D canopy light environment is considered. With an 

understanding of the limitations discussed above that are inherent in the RT + TLS model 

used here, modeling results suggest photosynthetic partitioning as has been shown for other 

vegetation canopies where the light environment is easier to quantify due to less extreme sun 

angles and denser canopies that make differences in light levels less subtle. This finding is 

particularly relevant considering the unpublished studies showing negligible evidence for 

photosynthetic partitioning using %N, Amax, and maximum electron transport rate (J) in arctic 

shrubs (Heskel et al., 2012; Formica et al., 2013). Further, this finding challenges the 

assumption made in current tundra carbon exchange models, whereby LAI, PPFD, and air 

temperature explain ~80% of the variance in net ecosystem exchange (NEE, Shaver et al., 

2007). LAI in the previous study was measured using an exponential model describing the 

relationship between LAI and NDVI by combining data from van Wijk & Williams 2005, and 

Williams et al., 2006. The majority of LAI values measured in these two studies are below 1 

m2 m-2, with less than 5% of the measured species having an LAI between 1.5 and 2.0 m2 m-2. 

Indeed a strong relationship was observed between total foliar N and LAI in these studies, but 

as a result of current and ongoing increases in shrub size, abundance, and complexity in the 

arctic (Thompson et al., 2004; Myers-Smith et al., 2011), we hypothesize that a more dramatic 

range in light reaching canopy layers will change in the near future. 

 According to the theory of canopy optimization, increasingly taller individuals will 

allocate photosynthetically relevant nutrients in a more efficient manner to maximize whole 

plant carbon gain (Field 1983; Hirose and Werger, 1987).  Our results provide some of the 

first evidence that big leaf models which currently work well in canopies with low LAI and 

limited self-shading may need to account for small levels of photosynthetic partitioning 
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within the canopy. While it was not our intention to provide a predictive model describing the 

relationship between photosynthetic resources and Qint, future work across more species and a 

wider range of shrub sizes in conjunction with whole plant photosynthesis measurements 

should be investigated and accounted for in NEE models specific to the arctic ecosystem. This 

could be exemplified similarly to the arctic soil-plant-atmosphere (SPA) model developed by 

Williams et al. (2001), which assumes light attenuation throughout shrub canopies according 

to Beer-Lamberts law. The SPA model, however, attributes a decline in photosynthetic rates 

vertically throughout the canopy, contradicting results from this study – using shrubs with 

sizes on the high end of the arctic spectrum – whereby no significant changes in 

photosynthetic partitioning exists on a vertical profile within the canopy.  

 The recognizable complexity of relating TLS + RT derived Qint makes the derivation 

of empirical relationships between light availability and photosynthetic partitioning difficult. 

As TLS + RT models continue to improve, however, the incorporation of diffuse light could 

play an important component in the arctic – where it has recently been shown that arctic 

photosynthetic efficiency is actually enhanced under diffuse light (Williams et al., 2014). This 

consideration, in addition to accounting for the measurement limitations mentioned earlier 

could provide a more comprehensive understanding of photosynthetic partitioning in the 

arctic tundra. Further, the empirical relationships observed between the TLS return intensity 

and leaf biochemical constituents – chlorophyll (Eitel et al., 2010), nitrogen (Eitel et al., 2011, 

2014a, b), water content (Galton et al., 2013) and photoprotective mechanisms (Magney et al., 

2014) – could enable the concurrent examination of canopy structure and function in 3D using 

a single TLS acquisition (see Eitel et al., 2014b and Magney et al. 2014 for further 

discussion). In order for the 3D mapping of photosynthesis and subsequent understanding of 

photosynthetic partitioning in 3D using only remotely sensed measurements to become a 

reality, it is important that TLS + RT models are first related to widely accepted and validated 

destructive measurements related to photosynthesis such as %N, Chla:b, and Amax. 

 

3.5. Conclusion 

 This study examined four different techniques for estimating light availability at 

locations where leaf-level measurements related to photosynthesis were made within the small 

canopy of the arctic shrub, S. pulchra. We found that traditional techniques – LAI and vertical 
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canopy depth – provide limited evidence of photosynthetic partitioning within the shrub 

canopy. Rather, when the 3D environment derived from TLS was considered (path length) 

and a RT model was used to describe the light environment, evidence of photosynthetic 

partitioning according to light availability was observed. This is primarily due to the fact that 

the low solar zenith angles incident upon arctic vegetation provide a unique light environment 

which different foliage elements are exposed to throughout the day. By ascribing a Qint value 

to individual voxels where samples were taken, we discovered – for the first time – evidence 

of photosynthetic partitioning in small arctic shrubs. This finding suggests that as shrubs in 

the arctic become increasingly complex due to observed warming from climate change, 

photosynthetic partitioning to maximize whole plant carbon gain could facilitate further 

expansion of shrubs in this ecosystem. The observed trends here are not yet strong enough to 

calibrate arctic ecosystem-level carbon cycling models, but provide a platform for similar 

investigations to build upon further. 
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Figures: 

Figure 3.1. Example of sampling locations within one shrub point cloud. Sampled leaves are 

denoted by pink squares, and emphasized using a surrounding pink circle. A total of 26 

locations within this shrub were chosen, through some are not visible due to occlusion effects.  
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Figure 3.2. Sensitivity analysis showing the variability of the estimated average digital 

gap fraction (DGF) of all of the sampled voxels for each of the four shrubs (n=26 per 

shrub). The grey bar denotes the points prior to a DGF vs. voxel size asymptote.  

 

 

 

 

 

 

 

 

 

 

 



121 

 

 

 

Figure 3.3. Example voxelized point cloud showing 0.01 m3 voxels. A colorized height ramp 

was applied for visualization purposes. 
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Figure 3.7. Relationships between leaf %N and (a) leaf area index (LAI), (b) vertical canopy 

depth, (c) path length, and (d) integrated quantum flux density (Qint) derived from TLS 

radiation model. Data are binned into four boxplots for visualization and statistical 

comparisons between binned light regimes. Notches represent the 95% confidence interval of 

the mean. 
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Figure 3.8. Relationships between chlorophyll a:b ratio and (a) leaf area index (LAI), (b) 

vertical canopy depth, (c) path length, and (d) integrated quantum flux density (Qint) derived 

from TLS radiation model. Data are binned into four boxplots for visualization and statistical 

comparisons between binned light regimes. Notches represent the 95% confidence interval of 

the mean. 
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Figure 3.9. Relationships between photosynthetic capacity (Amax) and (a) leaf area index 

(LAI), (b) vertical canopy depth, (c) path length, and (d) integrated quantum flux density 

(Qint) derived from TLS radiation model. Data are binned into four boxplots for visualization 

and statistical comparisons between binned light regimes. Notches represent the 95% 

confidence interval of the mean. 
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Figure 3.10. Relationships between leaf % N and  (a) leaf area index (LAI), (b) vertical 

canopy depth, (c) path length, and (d) integrated quantum flux density (Qint); chlorophyll a:b 

ratio and  (e) LAI, (f) vertical canopy depth, (g) path length, and (h) Qint; photosynthetic 

capacity (Amax) and (i) LAI, (j) vertical canopy depth, (k) path length, and (l) Qint. Dashed 

lines represent the linear least squares best fit line for the entire dataset. * indicates the slope 

is significantly different from zero at the p>0.05 level and ** p>0.01.  
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Chapter 4: Enhanced xanthophyll cycle activity in arctic willow contrasted with a meta-

analysis of higher plant species 

 

Magney, T.S, Logan, B.A., Griffin, K.L., Eitel, J.U.H, Boelman, N.T., Abatzoglou, J.T., 

Greaves, H., Prager, C.M., Logan, B.A., Fortin, L., Oliver, R., Eusden, S., Vierling, L.A. 

to be submitted to Plant, Cell, and Environment 

 

Abstract: When the capacity for photosynthesis is inhibited by unfavorable growing 

conditions, excess light is dissipated as thermal energy via the interconversion of xanthophyll 

cycle pigments – a photoprotective mechanism ubiquitous among higher plants. The relatively 

low irradiance conditions of the arctic (low direct/diffuse ratio) yet highly stressful 

environment (short growing season, frozen soil, low nutrient availability) suggest contrasting 

hypotheses regarding the necessity for plant investment in photoprotective mechanisms. 

Xanthophyll cycle pigment pool sizes and interconversion rates were investigated in arctic 

willow, Salix pulchra. Our data suggest that bulk xanthophyll pigment pools from upper 

canopy S. pulchra leaves are remarkably high as compared to other higher plant species (168 

± 34 mol V+A+Z mmol Chl a + b -1). Further, we observed high zeaxanthin retention in dark-

acclimated leaves and high rates of xanthophyll cycle inter-conversion – saturating at low 

irradiances, compared to greenhouse grown annual crops grown under favorable conditions 

(unstressed). In an effort to explain the potential drivers of the high xanthophyll cycle pools 

sizes found here, a meta-analysis was conducted using pigment data from 155 vascular plant 

species across 9 biomes. The meta-analysis provides concrete evidence of elevated 

xanthophyll pools in environments exposed to increasingly stressful conditions, i.e. the arctic 

tundra. Building on this, an analysis using climate metrics (derived from annual temperature, 

precipitation, and evapotranspiration data) from globally distributed field locations was 

performed, and supported the hypothesis that during peak photosynthesis, plant 

photoprotective pigments are more abundant in environments prone to extreme temperatures 

and water deficits. 
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4.1. Introduction 

 The photosynthetic process, whereby chemical energy is produced from a variable 

stream of solar photons, ultimately provides energy for most life on earth. During instances 

when a majority of the incoming solar energy is converted into chemical energy by plants, the 

chances for problems to occur are minimal. However, this is often not the case during periods 

when high levels of irradiance are incident upon a leaf surface, during which 50-90% of the 

sun's energy is not utilized by the plant (Björkman and Demmig-Adams, 1994; Demmig-

Adams et al., 1995). It is well understood that the proportion of incoming solar photons not 

used for photosynthetic electron transport increases with exposure to plant stress (Demmig-

Adams & Adams, 2006). Plant stress here is defined as environmental conditions that 

adversely affect plant growth, causing a decline in plant physiological function (Chapin, 1991, 

Niinemets, 2010). When the capacity of a plant to perform photosynthesis is restricted, excess 

light energy can result in the formation of reactive oxygen species (ROS), ultimately leading 

to leaf damage and death (Ledford & Niyogi 2005). To avoid the consequences of ROS 

formation, plants employ a host of photoprotective mechanisms to safely dissipate excess 

energy away from photosystem II (PSII, Demmig-Adams & Adams, 1996; Kanervo et al., 

2005; Niyogi et al., 2005). One of the most ubiquitous mechanisms utilized by plants to 

modulate the efficiency of solar energy into chemical energy is through the xanthophyll cycle 

(Demmig et al, 1987, 1988).  

 Over the last several decades, a wide body of research has emerged, highlighting the 

seemingly complex role of the xanthophyll cycle in thermal energy dissipation (Demmig-

Adams & Adams 2006, Demmig-Adams et al., 2012; Jahns & Holzwarth, 2012). Much of the 

foundational work has been done by manipulating irradiance and/or nutrients in a greenhouse 

environment to examine the role of the xanthophyll cycle in the photoprotection of plants 

under stressful conditions (e.g., Verhoeven et al., 1997; Logan et al., 1999). These studies 

have found that plants under increasing stress employ a greater rate of xanthophyll-cycle 

interconversion, whereby violaxanthin (V) is converted to antheraxanthin (A), and zeaxanthin 

(Z) via successive, enzyme-catalyzed de-epoxidations (Yamamoto, 1979). In concert with the 

strong empirical evidence supporting increased thermal energy dissipation via the 

interconversion of xanthophyll cycle pigments (e.g., Demmig Adams & Adams, 1994; 

Demmig-Adams, 1998), field studies have examined both xanthophyll de-epoxidation 
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throughout the course of the day (e.g., Adams et al., 1999; Barker et al., 2002) and the 

fluctuation of xanthophyll cycle pool size throughout the season (e.g., Adams et al., 1995; 

Logan et al., 1998a; Verhoeven et al., 1998; Adams et al., 2002; Porcar-Castell et al., 2008), 

and under varying light environments (e.g., Logan et al., 1998b; Matsubara et al., 2009). The 

majority of field based studies have been conducted in temperate, semi-arid, and 

Mediterranean climates, with limited xanthophyll investigations conducted in the 

endmembers of our global climate system, such as the tropical rainforest (Königer et al., 

1995, Matsubara et al., 2009; Thiele et al., 2000, Krause et al., 2012); desert (Barker et al., 

1997, 2002); boreal forest (Esminger et al., 2004; Porcar-Castell et al., 2008, 2012); or tundra 

(this study). 

 If xanthophyll cycle variability is indeed an indicator of environmental stress, we can 

hypothesize that high xanthophyll cycle pool sizes would exist across an increasingly stressful 

environmental gradient. For this reason, our attention is brought to the arctic tundra, where 

long, persistent winters, cold temperatures, and low annual precipitation, invoke deep frozen 

soils, a short growing season, and therefore limited opportunity for plant nutrient uptake 

contributing to the creation of carbohydrates from photosynthesis. Compounding these 

stresses is the near complete 24 hours of sunlight during the growing season at high latitudes, 

where one would hypothesize that the availability of excess light energy exceeds 

photosynthetic capacity, and the necessity for photoprotection high. However, the fraction of 

diffuse to direct sunlight is very high, with over 80% of days during a typical summer in 

Northern Alaska (68.63°N, -149.60°W, same as in this study) exceeding a diffuse/direct 

fraction of .8 (Williams et al., 2014). On a global scale, the diffuse fraction of sunlight in the 

arctic is on the high end of the spectrum, with relatively low average summer midday 

photosynthetic photon flux density (PPFD) of 1032 μmol m-2 s-1 above vegetation canopies 

under sunlit conditions and 351 μmol m-2 s-1 during diffuse conditions (Williams et al., 2014). 

From this, opposing hypotheses could suggest 1) high xanthophyll cycle pool size resulting 

from long days in a stressful environment, or 2) low xanthophyll cycle pool size due to the 

high fraction of diffuse sunlight and relative low overall irradiance conditions. These dueling 

hypotheses provided the motivation for this research - to investigate the role of the 

xanthophyll cycle as a potential physiological indicator of environmental stress in the arctic, 

as compared to higher plant species over a wide range of growing conditions. 
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 There has recently been a growing interest in examining the convergence or 

divergence of plant traits across environmental gradients spanning the globe (Wright et al., 

2004; Atkin et al., 2015). A limitation to these studies is the relative lack of information 

coming from one of the world's largest biomes, the arctic tundra. While neither of the 

aforementioned meta-analyses focus on plant pigments directly, there are rapidly 

accumulating published datasets on plant pigments from ecosystems around the world. 

Further, because changes in visible (400-700 nm) spectral reflectance on the leaf surface are 

driven by plant pigments, the remote sensing community has taken a keen interest in 

observing and interpreting changes in plant pigments over space and time (Ollinger, 2010; 

Ustin & Gamon, 2010). In particular, there has been an exponentially increasing number of 

publications relating spectral indices to plant function due to, for example, the strong link 

between rates of photosynthesis/CO2 uptake/light-use efficiency (LUE) and the xanthophyll 

cycle (Gamon et al., 1992; Peñuelas et al., 1995). For this reason, it is important that the 

theory used in the extrapolation of remotely sensed vegetation indices without direct 

validation from leaf level pigment data is well established (Garbulsky et al., 2011). A step 

forward would be to gain a better understanding of how xanthophyll cycle components vary 

across space and time (Gamon & Berry, 2012) in response to environmental conditions, yet a 

compilation of published investigations related to these important plant pigments is lacking. 

For this reason, our goals were threefold: 

1) Investigate the effect of xanthophyll pool constituents (bulk xanthophyll cycle pool 

size, and xanthophyll interconversion rates) on photosynthetic capacity and non-

photochemical quenching in arctic willow, as compared to two greenhouse grown 

crops. 

2) Compare xanthophyll pool sizes in the arctic with similarly collected (sun exposed 

leaves in the field during peak photosynthesis, previously published) pigment data 

spanning a wide range of environmental gradients. 

3) Investigate the climatic drivers of bulk xanthophyll cycle pool size broadly using 

geographical climate metrics: mean annual temperature (MAT), standard deviation of 

MAT, actual evapotranspiration (AET), mean annual precipitation (MAP), absolute 

latitude, and the aridity index (AI).  
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4.2. Methods 

        4.2.1. Study area 

 This study took place in the Northern Alaska tundra during peak growing season (July 

6-16) at the Arctic Long Term Ecological Research Station (LTER) at Toolik Lake (68.63°N, 

-149.60°W). Leaves from Salix pulchra were examined, as this is one of the primary shrubs 

attributed to shrub expansion in the arctic associated with climate change (Myers-Smith et al, 

2011). All sampled leaves were fully expanded and were chosen subjectively to ensure that 

sun, shade, and a mix of sun/shade leaves were chosen. Sun/shade conditions were quantified 

using a using a LI-COR model LAI-2000 (Lincoln, NE, USA), and data was collected during 

diffuse sky conditions to reduce sun/sensor geometry effects (Bréda et al., 2003). To 

encompass the top, middle and lower third of the measured LAI data, LAI values < 0.5 were 

determined to be sun leaves, 1.5 > LAI > 0.5 were considered mixed, and LAI values > 1.5 

were determined shade leaves. The mean shrub height was ~ 1 meter tall, and samples were 

taken from a total of eight shrubs in the moist acidic tundra complexes near the Toolik Lake 

LTER site. This ecosystem is dominated by shrubs (S. pulchra, S. alaxensis, Betula nana) and 

graminoids, with the dominant plant communities including Eriophorum vaginatum-

Sphagnum and Carex bigelowii-Sphagnum, and average soil pH < 5.5). MAT for this region 

is -8.73° C and MAP is 164.47 mm.  

 4.2.2. Experiment protocol  

 In the analysis of bulk xanthophyll cycle pool size, expressed on a total chlorophyll 

basis (mmol V + A +Z, mmol Chl a + b -1), a total of 94 leaf samples encompassing 33 sun-

exposed leaves, 39 mixed sun/shade leaves, and 22 shade leaves were analyzed. Of these 

samples, a total of 40 leaves were taken back to the laboratory for dark-acclimation and 

eventual exposure to full sunlight to induce xanthophyll cycle interconversion. Different 

sampling protocols were used for pigment extraction in the field and laboratory experiment. 

In the field, leaves were removed during mid-day and brought back to the laboratory for foliar 

gas exchange analysis (section 4.2.3). Following gas exchange work, a 0.25 cm2 disk of leaf 

tissue was removed using a cork borer and brought to a -80°C freezer. For this initial part of 

the experiment protocol, we were only interested in quantifying bulk xanthophyll cycle pool 

size and therefore kept time between leaf removal and freezer placement < 24 hrs. On the 

contrary, for the leaf samples used in the laboratory experiment, leaf punches were 
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immediately frozen between blocks of dry ice for determination of xanthophyll pigment 

composition and rates of interconversion. While only single leaves were removed for the bulk 

xanthophyll/photosynthesis analysis, laboratory analysis leaves remained on the stem with 5-

10 leaves remaining and facing all angles.  Experiment protocol in the laboratory was similar 

to Magney et al., 2014; whereby leaves were dark acclimated in ample water for > 2hrs to 

allow for the relaxation of thermal energy dissipation consequent with the epoxidation of the 

xanthophyll cycle carotenoids. Following dark acclimation, the initial pigment and Chl 

fluorescence emission collection, the stem was then placed under a bank of lights (high-

intensity discharge metal halide lamps) facing directly towards the leaves to induce 

xanthophyll pigment interconversion. Leaf level irradiance ranged from 200 µmol m-2 s-1 to 

1200 µmol m-2 s-1. The range in light exposure was the result of varying leaf angles on the 

stem, and was quantified as photosynthetically photon flux density (PPFD) measured by the 

quantum sensor on the fluorimeter (described in section 4.2.5). After exposure to light for 

greater than three minutes, it was assumed that xanthophyll de-epoxidation occurred - at this 

time, a leaf pigment sample was collected and placed immediately between the blocks of dry 

ice, followed by PPFD and chlorophyll fluorescence emission measurements on the same leaf 

the pigment sample was taken on. During analysis, light intensities were binned into low 

(<300 μmol m-2 s-1), medium (800> PPFD > 300 μmol m-2 s-1), and high light (PPFD > 800 

μmol m-2 s-1). 

 A similar protocol was taken for the greenhouse grown species, following Magney et 

al., 2014. The species used for comparison were Triticum aestivum L. (n=19) and Helianthus 

annuus L. (n=18). Both of these annual crops were grown in a greenhouse with ample water 

and nutrients. Half of the T. aestivum and H. annuus plants were placed under a 50% shade 

cloth three weeks prior to conducting the experiment. The light environment in the 

greenhouse peaked at around ~1500 μmol m-2 s-1 above the canopy of "sun" exposed canopies, 

while leaves under the shade cloth peaked around ~ 500 μmol m-2 s-1, which are similar to the 

observed light conditionsfor S. pulchra sun and shade leaves during the peak growing season 

and hence suitable for cross-comparison. 

 4.2.3. Pigment analysis 

 Leaf disks were stored at -80°C until extraction in acetone according to Adams & 

Demmig-Adams (1992). Pigment separation and quantification were achieved by high-
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performance liquid chromatography (HPLC), as described in Gilmore & Yamamoto (1991), 

using an Agilent 1100 series HPLC (Agilent Technologies, Palo Alto, CA, USA) equipped 

with a YMC Carotenoid C-30 reverse phase column (YMC Co., Ltd, Kyoto, Japan) at 35°C 

with the following modification to the solvent gradient: 0–4 min (72 : 8 : 3, acetonitrile : 

methanol : 0.1MTris-HCl (pH 8.0)) followed by a linear gradient to 80% (4 : 1, methanol : 

hexanes) from 4 to 40 min, and the completion of the quantification with the latter mobile 

phase. The level of de-epoxidation of the xanthophyll cycle was expressed as the conversion 

state as a fraction of the total xanthophyll cycle pool (Z + A)/(V + A + Z), because of the 

involvement of Z and A in the energy dissipation process (Gilmore &Yamamoto, 1993). Bulk 

xanthophyll cycle pool size (mmol (V + A +Z) mmol Chl a + b -1) were expressed on a per 

chlorophyll basis to allow for cross-comparison to other studies as total xanthophyll cycle 

pool size could vary depending on HPLC procedure used. Further, differences in leaf 

thickness across species would add variability to xanthophyll cycle pool size expressed on a 

leaf area basis. 

 4.2.4. Foliar gas exchange 

Foliar gas exchange data was only conducted on the 68 leaves that were used in the field 

extraction experiment described above. Mature, fully expanded leaves were brought back to 

the laboratory and were immediately sampled.  Leaf gas exchange measurements were 

conducted within a 12-15 hour period after harvest to avoid leaf wilting. In the lab, four 

prepped and calibrated gas exchange analyzers (IRGA LI-6400XT Portable Photosynthesis 

System, LiCOR) were used to obtain CO2 fluxes of photosynthesis and respiration for leaves 

on each of the branch tips. Leaf selection was determined based on the size (closest to the 

cuvette size of 6 cm2) and flatness of the leaf. The gas-exchange method from Heskel et al. 

(2013) was used to obtain light curves for each sample. Following light-response curve 

measurements, leaf area was measured using a leaf area meter (LI-3100, LI-COR Inc., 

Lincoln, NE, USA).  During processing of the gas exchange data, leaf area was corrected for 

if the leaf did not fill the 6 cm2 cuvette, as rate calculations are based on the leaf area. 

Maximum light saturated net photosynthetic rate (Amax) was estimated by fitting the data to a 

rectangular hyperbolic function (Excel Solver, Microsoft, Redmond, WA, USA) (Heskel et 

al., 2013).  
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 4.2.5. Chlorophyll fluorescence emission  

  Chlorophyll fluorescence measurements were only conducted on the 40 leaves that 

were brought back to the laboratory for the dark light transition experiment to quantify 

thermal energy dissipation via non-photochemical quenching (NPQ), bearing in mind pigment 

analysis was only done on 26 of these leaves. An FMS2 fluorimeter (Hansatech Instruments, 

Kings Lynn, Norfolk, UK) was used to quantify parameters associated with Chl fluorescence 

emission. Measurement of the maximal fluorescence emission (Fm) during exposure to a 0.8-s 

saturating pulse of light (> 3000 μmol m-2 s-1) generated by the instrument was collected 

immediately after dark adaption. After a period of acclimation sufficient to allow fluorescence 

during illumination (i.e. Fs) to achieve steady state (c.2–5 min), the maximal fluorescence 

(Fm′) during exposure to a saturating pulse of light was recorded. NPQ of chlorophyll 

fluorescence was calculated as [(Fm/Fm′) – 1] according to Bilger & Björkman (1990). 

Variable over maximal fluorescence emission (Fv/Fm) was used to indicate conditions of dark-

adapted leaves. Fv/Fm in this context is used to represent the degree of stress incurred by the 

plant (Maxwell & Johnson, 2000). 

 4.2.6. Meta-analysis  

 A meta-analysis with a consistent selection procedure was conducted to compare bulk 

xanthophyll cycle pool size (mmol (V + A +Z) mmol Chl a + b -1) globally to those collected 

from S. pulchra. Due to the variation in sampling time and analysis protocol, expressing VAZ 

on a Chlab basis provides a consistent ratio for cross-comparison, and is the most widely used 

way to express bulk xanthophyll. Similar to the arctic dataset, we only used data from studies 

that were sampled close to the particular ecosystems peak photosynthetic period. For this 

reason, studies including overwintering evergreens (e.g., Adams & Demmig-Adams, 1995), 

for example – though also experiencing stress induced increases in xanthophylls – were not 

used in this study.  For each species at each site, the mean value for VAZ/Chlab pool was 

used. It is well known that shade leaves have lower xanthophyll cycle pool size than sun 

leaves, so to avoid biasing towards low xanthophyll cycle pool size in other ecosystems, we 

only chose to use reported values from sun exposed leaves. Similarly, in order to avoid 

complications due to experimentally-imposed nutrient, water, temperature, or otherwise 

stress, only control (non-manipulated) data from recently matured leaves in the natural field 

environment were used (except for data from the "urban" and "agricultural" biome). All 
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agricultural and urban sites fall under the shrubland/woodland biome (Fig. 4.2), but due to the 

manipulated and highly impacted environment caution should be taken when cross comparing 

with data from natural field conditions. Published rates of xanthophyll interconversion and 

Z+A retention are difficult to interpret because dark to light transition experiments and the 

exact conditions the leaves were exposed to is difficult to compare across studies, and were 

left out of the analysis.  

 Fig. 4.1 shows a map of the latitude and longitude of bulk xanthophyll pool (mmol (V 

+ A +Z) mmol Chl a + b -1) data used in the meta-analysis. The distribution of points highly 

favors Northern hemisphere temperate climates. In some cases, studies were conducted at the 

same field location and therefore the points on the map do not add up to the complete list of 

the 39 studies seen in Table 1. Biome designations were assigned to each location according 

to Wright et al., 2004 and Whittaker et al., 1996 and can be seen in Fig. 4.2. Figs. 4.1 & 4.2 

show the lack of published xanthophyll pool data in more extreme ecosystems such as the 

desert, tundra, boreal forest, and tropical/tropical seasonal rainforests. Because the biome 

distribution of studies here highly favors temperate and shrubland/woodland biomes, climate 

data was used in a continuous fashion to examine the effect of broad ecosystem climate 

characteristics on xanthophyll accumulation.  

 4.2.7. Climate data  

 Monthly temperature, precipitation and potential evapotranspiration (PET) data from 

1981-2010 were acquired from the Climatic Research Unit (CRU) TS3.22 dataset (Harris et 

al., 2013). These data cover global land surfaces at a 0.5-degree spatial resolution as derived 

from long-term high-quality observations. We applied a modified Thornthwaite Water 

Balance Runoff model (e.g., Willmott et al., 1985) using a pre-defined 150-mm soil available 

water holding capacity to derive monthly actual evapotranspiration (AET), aridity index 

(MAP/PET), and climatic water deficit (PET-AET).  Climate summaries were compiled from 

annual mean temperature, cumulative precipitation, climatic water deficit, AET and PET co-

located at each of the site locations. We considered both 30-year climate normals, as well as 

the standard deviation over the 1981-2010 time period. After Wright et al., 2004 (MAT, 

MAP) and Atkin et al., 2015 (AI, absolute Latitude), only annual climate metrics were used to 

quantify the growing environment. Climate information used to compute metrics used here, as 



138 

 

well as the location, number of species, and total xanthophyll cycle pool size are reported in 

Table 1. 

 4.2.8. Statistical Analysis 

 Data were compared using t-tests to search for statistically significant differences (p < 

0.05) between xanthophyll cycle constituents, NPQ, and Amax, among light environments, 

species, and biomes. As this study primarily focuses on the interconversion rates of 

xanthophylls in arctic willow, an analysis of variance (ANOVA) was only conducted between 

annual crop species and S. pulchra. Simple linear regression analysis using a Pearson’s 

correlation coefficient (r) was done to examine the response of xanthophyll cycle pool size to 

generalizable climate conditions. A multiple linear regression analysis was conducted to 

highlight the complimentary effects of extreme temperatures, aridity, and xanthophyll 

accumulation. To meet the assumptions required to perform multiple regression analysis, tests 

for collinearity, normality of residuals, homogeneity of error variances, and independence of 

error terms were tested. 

 

4.3. Results 

 4.3.1. Xanthophylls, photosynthetic capacity, and Fv/Fm of sun/shade S.pulchra leaves 

 Fig 4.3a shows differences in bulk xanthophyll per chlorophyll content of shade 

(n=22), mixed sun/shade (n=39), and sun leaves (n=33) in S. pulchra. A stepwise increase in 

VAZ/Chlab according to sun exposure shows a clear pattern of the increasing need for 

investment in photoprotective pigments in arctic willow. Means and standard deviations of 

pigment pools are 86.7 ± 14.5, 107.76 ± 17.8, and 168.4 ± 24.3 for shade, mixed, and sun 

leaves, respectively. A statistically significant (p < 0.05) difference in xanthophylls on a 

chlorophyll basis between all light environments was observed. Differences in the 

photosynthetic capacity (Amax) of these same leaves, with a slight increase in Amax in the outer 

parts of the canopy were observed, though not statistically significantly different (Fig. 4.3b). 

Means and standard deviations of photosynthetic capacities are 12.4 ± 1.88, 15.1 ± 3.09, and 

15.2 ± 2.89 for shade, mixed, and sun leaves, respectively. Fig 4.3c shows the dark adapted 

Fv/Fm values from leaves used in the laboratory experiment (sun n = 20, shade n = 20). There 

is a statistically significant difference in Fv/Fm with means and standard deviations of 0.84 ±0 

.01, and 0.80 ± 0.01, for shade and sun leaves, respectively (Fig. 4.3c).   
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 4.3.2. Xanthophyll cycle interconversion and non-photochemical quenching 

 Levels of xanthophyll cycle interconversion (Z+A/V+A+Z) and non-photochemical 

quenching under varying light intensities are shown in Fig. 4.4. There is an evident increase in 

Z and A concentration when the shade grown T. aestivum and H. annuus were exposed to low 

and medium light; and a significant increase at only the lowest light level for arctic willow 

(Fig. 4.4a). A similar pattern can be found, albeit at a greater magnitude in the sun grown 

plants, where a general stepwise increase in Z + A interconversion occurs under increasing 

light, with statistically significant within species jumps at low light for wheat; low, medium, 

and high light for sunflower, and low light for arctic willow (Fig. 4.4b). There was a 

statistically significant difference between sun and shade plants in each species at all light 

levels except for wheat, where no statistically significant change between sun and shade 

plants exist.  

 There was a statistically significant difference at all light levels between the arctic 

willow and the annual crops, with high levels of Z & A in the dark acclimated willow. 

Saturation of Z + A concentration at low light intensities occurs at low light levels for S. 

pulchra, with no apparent saturation in the annual crop species (T. aestivum and H. annuus). 

 NPQ show a similar stepwise increase under increasing light intensities across all 

species coincident with xanthophyll interconversion; however, saturation under low and 

medium light for arctic willow does not persist, with a statistically significant NPQ jump 

under high light intensities (Fig. 4.4c,d). For both shade and sun leaves, a statistically 

significant within species NPQ increase occurred at all light levels for all species except under 

low light in shade T. aestivum, medium light under sun T. aestivum, and medium light in both 

sun and shade S. pulchra leaves. NPQ is statistically significantly higher in S. pulchra than 

both T. aestivum and H. annuus at low light for both shade and sun leaves, and medium light 

for sun leaves.  Further, low, medium, and high light NPQ data is significantly higher in sun 

than shade leaves for S. pulchra. 

 4.3.3. Comparing arctic xanthophyll cycle pool size across biomes with a meta-

analysis 

 Biome delineation in the bar chart in Fig. 4.5 was taken from Fig. 4.2. Fig. 4.5 

reiterates the lack of species and studies conducted in environments prone to more extreme 

temperatures and water deficits. The diversity of species used in this meta-analysis tends to be 



140 

 

representative of the relative species diversity in each biome, but it is worth noting that 

several studies which assessed a wide range of species carotenoid pools in the tropical 

rainforest are heavily influencing the diversity of values used here (Königer et al., 1995, 

Matsubara et al., 2009). No statistically significant difference existed between xanthophyll 

cycle pool sizes among the tundra, desert, and boreal forest biome; however, statistically 

significant differences exist between these three biomes and all other biomes (not including 

agricultural and urban).  

 4.3.4. Climate metrics driving xanthophyll pigment pools globally 

 Fig. 4.6 shows the simple linear regressions between mean site xanthophyll pool (with 

SD error bars) and trends in MAT (6a, r = -0.49; root mean square error (RMSE) = 35.3 

VAZ/Chlab); standard deviation of MAT (6b, r = 0.48; RMSE = 35.5 VAZ/Chlab); AET (6c, r 

= -0.49; RMSE = 35.2 VAZ/Chlab); MAP (6d, r = -0.45; RMSE = 36.2 VAZ/Chlab); absolute 

latitude (6e, r = 0.45; RMSE = 36.3 VAZ/Chlab); and AI (6f, r = -0.38; RMSE = 37.5 

VAZ/Chlab).  

 All assumptions for the multiple regression analysis performed in Fig. 4.7 were met 

and both of the predictor variables (MAT and MAP) were significant predictors. The slope of 

the best fit plane is highly significant (p=1.93e-11), with a coefficient of determination (R2) of 

0.28, and a RMSE of 36.52 VAZ/Chlab. The multiple regression did improve predictive 

capacity of xanthophyll pigment pools substantially, but predictive model construction was 

beyond the scope of this research; rather, we are interested in the general relationship between 

xanthophyll cycle pool size and generalizable climate conditions. Unlike Fig. 4.6, standard 

deviations of the species means were not placed on the 3D-scatter plot; rather, a line was 

drawn through points coming from a similar study to highlight the range of inter-species pools 

from the same study.  

 

4.4. Discussion 

 This study presents new insights regarding the accumulation of bulk xanthophyll cycle 

constituents during peak photosynthesis across environmental gradients, with special attention 

to an abundant arctic species, S. pulchra. Increasingly high levels of xanthophyll pigments 

were found in sun/shade and sun exposed leaves of the small (<1.5 m tall) and relatively 

sparse S. pulchra canopy. High xanthophyll interconversion rates and zeaxathin retention 
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following dark adaption suggest that these high xanthophyll cycle pool size undergo near 

complete inter-conversion at low light. Despite the high capacity for the employment of 

photoprotective mechanisms in this arctic willow species, S. pulchra leaves show modestly 

higher photosynthetic capacities (Amax) and higher PSII efficiencies (Fv/Fm) than have been 

observed in previous studies with similarly high xanthophyll cycle pool size (see section 

4.4.1.. for further discussion). 

 The initial focus on quantifying the capacity for thermal energy dissipation in the 

arctic spurred a meta-analysis of higher plant species pigment pools from 39 published studies 

of 155 species, and results suggest that the bulk xanthophyll pool sizes found in sun leaves in 

an arctic willow are statistically significantly higher than those reported from plants in other 

biomes, with a trend towards higher xanthophyll cycle pool size in ecosystems prone to more 

extreme temperatures and water availabilities. Recognizing that the meta-analysis was limited 

by species and field locations in ecosystems that are characterized by more stressful growth 

conditions such as the arctic, we highlight the need for further research to build upon these 

values as baseline data in the context of global change (see section 4.4.2  for further 

discussion). Further, regardless of limited biome specific data points in the desert, boreal 

forest, and tundra, this study utilized continuous climate metrics used to quantify 

generalizable growing conditions at each field location, and showed significantly negative 

relationships between bulk xanthophylls and MAT, MAP, ET, and AI; and significantly 

positive relationships between xanthophyll cycle pool size and abosolute latitude and standard 

deviation of MAT (see section 4.4.3 for further discussion).  

 4.4.1. High xanthophyll content and interconversion rates in the arctic 

 Though the role of the xanthophyll cycle in thermal energy dissipation is remarkably 

complex, it is well understood that plants exposed to increasing environmental stress rely on 

photoprotective mechanisms to dissipate excess light away from PSII (Demmig-Adams & 

Adams, 2006). Contrary to findings from this study, an increase in xanthophyll cycle 

constituents generally corresponds decreasing photosynthetic capacities (Demmig-Adams & 

Adams, 1996). In the introduction of this paper we presented two opposing hypotheses 

regarding our expectations for high or low capacity for photoprotection in the arctic. The 

former resulting from increased environmental stress at high latitudes, and the latter resulting 

from diffuse skies and relatively low light intensity.  
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 Arctic vegetation is nutrient limited, primarily by nitrogen and phosphorus, though it 

is projected that increasing air temperatures in the arctic will increase soil temperatures, 

microbial activity, and nutrient availability (Shaver et al., 1998; Hobbie et al., 2002). This 

nutrient limitation hypothesis, whereby slow nitrogen mineralization constrains plant growth 

and ecosystem carbon storage, has been extensively studied in experimental fertilization plots 

across the arctic (e.g., Mack et al., 2004). The high xanthophyll cycle pool size found in the 

arctic could be explained by several environmental conditions that are all inter-related; 

whereby climate conditions control thaw layer depth and therefore limit nutrient availability. 

Nutrient limitation has been widely attributed to substantial increases in xanthophyll cycle 

pool size for crops grown in the greenhouse (Verhoeven et al., 1997) and in the field (Khamis 

et al., 1990; Tóth et al., 2002); additionally, N-limited plants have shown elevated levels of 

antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and glutathione 

reductase (Logan et al., 1999), which are all involved in the detoxification of ROS (Anderson 

et al., 1992; Grace and Logan 1996). Given this dataset we cannot quantify the exact stressor 

or biochemical mechanism contributing to photoprotection, but the bulk xanthophyll cycle 

pool size shown here could serve as a baseline to improve interpretation of plant responses to 

environmental conditions – whereby, remote sensing techniques to quantify bulk xanthophyll 

pools (using a ‘dark-state’ photochemical reflectance index, PRIo, Gamon & Berry, 2012; 

Magney et al., in review), for example, could be used as a rapid indicator of plant adaptation 

to the environment.  

  It becomes difficult quickly to compare xanthophyll cycle pools under extreme 

conditions with those found during the "least stressful" time in the arctic, which is why our 

meta-analysis tried to mimic this by only using data that was similarly sampled during some 

of the "least-stressful" times of the season. Nonetheless, if we compare our results to data 

from overwintering species in winter, when cold temperatures inhibit plant physiological 

function, xanthophyll cycle pool size during peak summer in S. alexensis would be considered 

low. For example, Adams et al., 2002 showed that sun leaves of Vinca minor, have V+A+Z 

pools (in mmol mol-1 Chl) that reach up to 156 ± 1 in October, 480 ± 78 in January, and 203 ± 

33 in May, before settling back around 127 ± 11 during the summer. In the same study, the 

seasonal fluctuation of xanthophyll per Chl pools in sun exposed Pseudotsuga menziesii and 

Pinus ponderosa needles range from ~100 mmol mol-1 Chl in the spring when photosynthesis 
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is the highest, to ~150 mmol mol-1 Chl in the summer when photosynthesis declined, and up 

to ~225 mmol mol-1 Chl in the winter when photosynthesis is at a minimum. Similarly, 

Verhoeven et al., 1999 found that bulk xanthophyll pool size increased by 33%, up to 101 ± 8 

mmol mol-1 Chl, in Pinus ponderosa during the relatively mild winters experienced on the 

University of Colorado campus. Future studies should consider the seasonal dynamics of 

xanthophyll activity in arctic species, as bulk xanthophyll cycle pool size are likely to be even 

higher during the shoulder seasons. 

 The aforementioned studies also quantified (Z+A) retention rates throughout the 

season, and found that as plants transitioned into winter there was in increasing presence of 

(Z+A) relative to the bulk xanthophyll pool (V +A +Z), often reaching retention rates > 0.8. 

In these studies, while both the bulk xanthophyll and (Z+A) retention rates are strikingly high 

in the winter, they are accompanied by a substantial decline in photosynthesis. Meanwhile, 

the summer (Z+A) retention rates shown in S. pulchra are among the highest we have 

observed during the period of peak photosynthesis. It is worth noting that the high 

photoprotective capacity (Fig. 4.3a), and the saturation of Z + A interconversion at low light 

intensities (Fig. 4.4) of S. pulchra does not appear to have a substantial effect on decreases in 

photosynthesis (Fig. 4.3b). An explanation for this could be that high xanthophyll cycle pool 

size persist in the arctic because of the exposure to continuous sunlight, albeit at low relative 

intensities.  

 We can further postulate then that S. pulchra maintains modest levels of 

photosynthesis because it is adapted to maximize efficiency under the prevailing diffuse light 

conditions that dominate the arctic ecosystem. Fig. 4.3b suggests that there is no significant 

difference between shade, sun, and mixed shade/sun leaves photosynthetic rates, implying 

that leaves most exposed to direct solar irradiation invest more energy into photoprotective 

mechanisms, while maintaining the same levels of photosynthesis as leaves located inside the 

canopy. This finding is supported by Williams et al., 2014 who showed that photosynthetic 

efficiency is enhanced under diffuse light at this same field site (Arctic LTER at Toolik Lake) 

in arctic shrub canopies. This potentially suggests that the small, sparse canopies of S. pulchra 

are allocating resources (photoprotective xanthophylls) according to light availability to 

achieve maximal rates of photosynthesis throughout the canopy. We hypothesize that local 

stress conditions place constraints on photosynthetic capacity equally throughout the small 
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canopy, and investment in photoprotective mechanisms vary throughout the canopy to 

account for this. However, it is extremely difficult to quantify the light regime for every leaf 

sampled, and therefore we conservatively only binned the data into three light categories 

based on LAI values collected at each leaf sample location.  

 Complimentary to the notion that high xanthophyll cycle pool size are necessary in 

shade and sunlit portions of the canopy, high rates (Z+A) retention in dark acclimated leaves 

were observed (>0.23). This is likely due to the necessity for sustained thermal dissipation 

under near continuous sunlight at high latitudes. The lack of full Z+A relaxation upon 

darkening of leaves and high NPQ values under low intensity light in arctic willow suggest 

that S. pulchra likely maintains an actual trans-thylakoid pH gradient (ΔpH), allowing 

sustained thermal energy dissipation to occur independent of rapidly occurring flexible energy 

dissipation (Gilmore and Björkman, 1994a,b; Gilmore 1997).  

 The findings mentioned previously by Williams et al., 2014 are supported by data 

from the laboratory experiment here, where (Z+A) inter-conversion (Fig. 4.4a,b) saturates at 

low light intensities. This may suggest that the maximum efficiency for photosynthesis is 

achieved at low light, and therefore any light above ~300 μmol m-2 s-1 may be safely 

dissipated as heat through NPQ. Because photosynthesis is enhanced under low light in this 

system, the need for regulating photosynthesis via xanthophyll mediated photoprotection in 

this ecosystem could decrease in the near future as predicted climatic warming will increase 

nutrient availability (Post et al., 2009) and result in increased cloudiness in the arctic (Vavrus 

et al., 2009).  

 Contrary to (Z+A)/(V+A+Z) saturation at low light, results from our laboratory 

experiment suggest that NPQ is potentially being controlled at high light by something other 

than the xanthophyll cycle (Fig. 4.6 c,d). While NPQ in wheat and sunflower increases with 

increasing light coincident with a stepwise increase in (Z+A)/(V+A+Z) inter-conversion, 

NPQ in S. pulchra saturates at medium light (similar to (Z+A)/( V+A+Z)) but increases to the 

same magnitude as NPQ observed in annual crops in high light (while (Z+A)/( V+A+Z)) 

remains saturated). This could highlight the role of non-zeaxanthin induced NPQ, which 

could potentially be driven by Lutein, which has been proposed to act as a quencher of excited 

1Chl+ in the ΔpH-regulated mechanism of NPQ, but this remains unclear (Jahns & Holzwarth, 

2012). Further, the relative magnitude of NPQ is an intriguing comparison between these 
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species, whereby higher NPQ values in S. pulchra are found in low and medium light as 

compared with the annual crops, but are not significantly different from sunflower and wheat 

in high light (Fig. 4.4c,d). Although our study was limited from achieving high light scenarios 

(>1500 μmol m-2 s-1) necessary for expressing full NPQ or xanthophyll interconversion, the 

saturation of (Z+A)/(V+A+Z) at low light levels suggests this may not have been necessary in 

this study. On the contrary, the continually increasing NPQ values might be explained by 

other important photoprotective mechanisms such as antioxidations or tocopherols that might 

account for a lack of xanthophylls in NPQ (Müller et al., 2001, Robinson et al., 2005).   

 4.4.2. Functional converge of xanthophyll pigments according to growing conditions 

 Recognizing that the motivation behind conducting a meta-analysis of xanthophyll 

pigment pools was to develop means of comparison to the arctic willow dataset presented 

here, our meta-analysis is placed very much in the shadows of two large global plant trait 

datasets (e.g., Wright et al., 2004; Atkin et al., 2015). The limited datasets and lack of 

consistencies in sampling protocol reduced our meta-analysis from over 100 published papers 

on the xanthophyll cycle in higher plants to 39 studies. The relative scarcity of xanthophyll 

pigment data is due to the comparatively new nature of xanthophyll related research, not 

gaining traction until the early-mid 1990s. Additionally, the expensive, time-consuming, and 

difficult nature of HPLC methods for quantifying xanthophylls has hampered the widespread 

adoption of types of analyses. For this reason, we established a protocol that enabled patterns 

to be examined across biomes and climate conditions. Unfortunately, this limited our dataset 

to two studies in the desert biome, three in the tropical rainforest, and three in the boreal 

forest. Nonetheless, there is a convincingly statistically significant trend towards increasing 

xanthophyll cycle pool size across a gradient from the cold, dry arctic to the warm, moist 

tropics. 

 Comparative ecophysiological research has highlighted both the divergent and 

convergent properties of plant traits to their environment but is complicated by the scale at 

which measurements are being made (Ehleringer and Field 1993; Meinzer 2003). A similar 

complication arises with this dataset, whereby micrometeorological and abiotic conditions 

present during each sample used in this meta-analysis are likely to vary widely regardless of 

our attempt to only use xanthophyll cycle pool size sizes collected under similar conditions. 

Somewhat surprisingly, there is much consistency in the range (determined by standard 
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deviations bars seen in each biome (Fig. 4.5)) of values experienced over the wide diversity of 

species in some biomes. Our interpretation is thus that there may be some degree of functional 

convergence in the accumulation of xanthophyll pigments according to environmental 

conditions in which these species are found. This pattern is also found in studies that do not 

report xanthophylls according to our protocol. For example, high levels of sustained thermal 

energy dissipation or high concentrations of Z+A have been observed in evergreen conifers 

adapted to extreme environments (i.e., Ottander er al., 1995; Zarter et al., 2006a,b,c). As more 

research relating bulk xanthophyll cycle pool size to total chlorophyll content emerges, we 

suspect that the trend across biomes shown here will remain consistent. 

 There is little debate that fluctuations in xanthophyll cycle components are good 

indicators of photoprotection, canopy light-use efficiency, and plant stress. A global 

compilation of baseline xanthophyll cycle pool size over a wide range of biomes could 

provide researchers with new techniques to monitor environmental change. With the advent of 

the increasingly popular remotely sensed vegetation index, the photochemical reflectance 

index (PRI) (Gamon et al., 1992; Garbulsky et al., 2011) - which is sensitive to changes 

xanthophyll pigment components - it is important that the plant research community gains a 

better understanding of the dynamics and controls on xanthophyll accumulation and 

modulation from seconds and seasons before we can be confident that satellite data may 

explain variability in photosynthetic light-use efficiency across large scales in space and time 

(i.e.,  Hilker et al., 2012; Hall et al., 2012). Further, because satellite data cannot collect 

continuous data over one location, it is especially important that the constitutive component 

(bulk xanthophyll pool) of the PRI inferred xanthophyll status is recognized (Gamon and 

Berry, 2012). Because xanthophyll cycle components are known to vary widely depending on 

light environment, time of year, and climate conditions (Demmig-Adams 2012), and if there 

is indeed functional convergence of xanthophyll pigment pools, baseline PRI measurements 

should, in theory, reveal the same patterns - which could promote the eventual global 

mapping of baseline "xanthophyll status" to more accurately interpret light-use efficiency 

data. Eventually, satellite data on photosynthetic light efficiency – inferred from the physical 

relationship between spectral reflectance and the xanthophyll cycle - could be incorporated 

into global terrestrial biosphere models that currently use plant functional types and climate 
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variability to represent carbon exchange between the plants and the atmosphere (Sitch et al., 

2007). 

 4.4.3. Cold, dry, and more extreme climates promote greater xanthophyll 

accumulation 

 To further support the hypothesis that environmental conditions characteristic of 

global biomes seen in Fig. 4.5, we used the best available climate data to characterize in a 

more continuous fashion the growing conditions experienced at each one of the field locations 

used in the meta-analysis. The addition of data from a common species found in the arctic 

tundra rounds out this analysis by providing an endmember (cold, arid) on the global 

spectrum of climate conditions. In Figs. 4.6 and 4.7, data from the tundra xanthophyll cycle 

pool size falls on the low end of the spectrum for MAT, AET, and MAP, and on the high end 

of the spectrum for absolute latitude, standard deviation of MAT, and the AI. Similarly, data 

from the tropical rainforest, desert, and boreal biomes fall out as endmembers on this 

spectrum. Data in the middle of these relationships come from the highest density of reported 

values in temperate and semi-arid ecosystems and yet, still show relatively consistent trends 

across climate metrics, further strengthening the highly significant positive relationship 

between MAT, MAP, ET, AI and xanthophyll abundance reported here.  

 It could be argued that annual climate data does not accurately represent the growing 

conditions present at the time of sampling; however, seasonal metrics, such as temperature of 

the warmest quarter (as used in the global meta-analysis of leaf respiration in Atkin et al., 

2015), might not be representative of universal plant responses to environmental conditions. 

We instead conducted a broad analysis that attributes common abiotic stressors, such as the 

range of temperatures experienced at each field location (std. dev. of MAT), water availability 

(AI), and water use (AET), to the relate the accumulation of xanthophyll constitutes as 

photoprotective mechanisms in extreme environments. Nonetheless, a substantial component 

of the response variance (RMSE ~ 35 VAZ/Chlab across all metrics) of bulk xanthophyll cycle 

pool size is not accounted for by annual climate metrics, further supporting the notion that 

other characteristics, such as soil characteristics, biotic stressors, and nutrient availability 

(Demmig-Adams & Adams, 2006) are influencing bulk xanthophyll cycle pool size across 

broad environmental gradients.   
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4.5.   Conclusion 

 This paper provides the first published record of xanthophyll pigment data related to 

thermal energy dissipation in an arctic tundra shrub species. In S. pulchra we found that 

leaves at the top of the canopy have greater pools of xanthophyll cycle carotenoid pigments 

responsible for regulating photosynthesis, achieving similar photosynthetic capacity as those 

in inner canopy leaves. This finding resonates with previous research that shows that 

photosynthetic efficiency is enhanced under diffuse light in the arctic, with full inter-

conversion of the xanthophyll cycle at low light. We build on previous research highlighting 

the role of photoprotective mechanisms in the regulation of photosynthesis by noting the 

equally modest capacity for carbon assimilation throughout this small, sparse canopy. The 

high pools of xanthophyll constituents expressed on a chlorophyll basis found in this arctic 

willow prompted a meta-analysis, where we showed - with datasets collected similarly to the 

tundra dataset - that there is evidence of a relationship between biome and bulk xanthophyll 

cycle pool size. A highly significant positive relationship between MAT, MAP, AET, AI, and 

bulk xanthophyll cycle pool size imply that ecosystems prone to more stressful conditions 

promote xanthophyll accumulation, with an emphasis on species in cold, arid environments. 

This work could have implications for understanding the ecological significance of 

photoprotective mechanisms as a response to excess light, and may help to explain large scale 

fluctuations in photosynthetic capacity due to environmental stress. 
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Tables: 

Table 4.1. Summary of studies used in meta-analysis, with location, biome, annual climate 

metrics, number of species, and mean + SD of mol (V+A+Z) mmol Chl a + b -1. 
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Figure 4.2. Delineation of biomes represented by data used in this study by MAT and MAP. 
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Figure 4.3. Bulk xanthophyll cycle pool size in shade (LAI < .5), mixed (1.5 > LAI > .5) sun 

(LAI>1.5) locations on Salix alexensis (a). Photosynthetic capacity of Salix alexensis in 

shade, mixed, and sun locations. (c) Fv/ Fm for shade and sun species. Asteric indicates a 

significant difference using ANCOVA between populations. 
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Figure 4.4. Xanthophyll interconversion rates (a,b) and non-photochemical quenching (c,d) 

of greenhouse grown wheat and sunflower plants compared to arctic willow in the field under 

increasing light intensities in the laboratory. Plants were dark adapted for > 2hrs and then 

placed under increasing light intensities ranging for low (photosynthetic photon flux density 

(PPFD) <300 μmol m-2 s-1), medium (800> PPFD > 300 μmol m-2 s-1), and high light (PPFD > 

800 μmol m-2 s-1). Laboratory conditions were consistant across experiments. Wheat and 

sunflower were placed under a 50% shade cloth for the duration of the growing period, and 

arctic will were from the deepest part of the canopy (LAI > 1.5) (a,c). In (b) wheat and 

sunflower were exposed to high irradiance conditions (daily PPFD reaching 2,000 μmol m-2 s-

1) in the greenhouse, and arctic willow leaves were taken from exposed top of canopy leaves ( 

LAI < 0.5) (b,d). Asteric indicates a significant difference using ANCOVA between willow 

and other species and † indicates significant differences within species from prior light 

regime. 
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Figure 4.7. Multiple linear regression between xanthophyll cycle pool size and mean annual 

precipitation (MAP) and mean annual temperature (MAT) of field locations where data from 

meta-analysis was used. The best fit linear plane is show by the dashed lines. 
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Conclusions and Future Work 

 

Photosynthesis drives the global carbon cycle, and ultimately provides energy for life 

on Earth. Due to a changing climate and increased anthropogenic pressures on our planet’s 

ecosystems, it is critical that we improve our capability to make highly resolved 

measurements related to photosynthesis and ecosystem health. The research bound within this 

dissertation has developed new – and validated current – remote sensing approaches that are 

responsive to physiological and structural vegetation changes in increasingly sensitive 

ecosystems - primarily dryland agriculture of the Pacific Northwest and the Arctic tundra. 

Development of such tools enables better understanding of how controls on vegetation-

atmosphere carbon exchange vary across time and space. Remote sensing driven 

investigations were conducted using terrestrial LiDAR and ground-based spectral reflectance. 

As an empiricist, I sought to validate remotely sensed data with information on plant leaf 

pigments, photosynthetic performance, environmental conditions, and vegetation structure.  

As a process-driven scientist, I coupled remotely sensed data with biophysical, radiative 

transfer, and meteorological data, to gain a more mechanistic understanding of the controls on 

plant function. Fig. 5.1 provides a conceptual framework and visual interpretation of this 

dissertation that encompasses the key research objectives.     

 This dissertation sought to improve interpretations of highly resolved (in space and 

time) remote sensing measurements related indirectly to photosynthesis through: 1) the 

spectral tracking of seasonal and diurnal plant photoprotection via the PRI ; 2) the prediction 

of harvest metrics using the rate and duration of phenological periods derived from daily 

NDVI data; 3) an assessment of photosynthetic partitioning in an Arctic shrub via the 

coupling of a 3-D LiDAR canopy and a ray-tracing model; and 4) highlighting the variability 

in bulk xanthophyll cycle pool pigments across nine biomes as a response to environmental 

conditions. In chapter 1, we developed a ‘corrected PRI’ (PRIc), which was able to 

deconvolve confounding seasonal and diurnal pigment effects on the PRI signal in spring 

wheat. On both a diurnal and seasonal time-step, PRIc showed a strong response to VPD, air 

temperature, gs, water, and N availability. Because PRI did indeed respond to increasing VPD 

and air temperature – thereby limiting gs – and decreasing N and water availability, we 

assumed that the theoretical underpinnings behind the development of PRI held true – 

suggesting increased xanthophyll cycle interconversion as a response to increasingly stressful 
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conditions. As a result, strong relationships were observed between the magnitude of the PRI 

signal and plant productivity. Lastly, the seasonal time-series of NDVI and PRIc suggests that 

PRI could be used as an indicator of ‘physiological phenology,’ whereby a dramatic decline in 

PRI occurred nearly 15 days prior to senescence (observed via a decline in NDVI) signal in 

some cases. This work could have implications for scientists and growers seeking to gain a 

better understanding of physiological crop response to environmental conditions – in 

particular, to nutrient and water availability – for potential applications towards developing 

tools for precision agriculture. 

 In chapter 2, ground-based spectral reflectance sensors were used to derive 

physiologically relevant phenological periods from NDVI data in spring wheat. We devised a 

method to smooth and break up daily NDVI data using piecewise linear regression which 

enabled the quantification of a rate and duration of four key wheat phenological periods: 

tillering, stem extension, heading, and ripening. Using the rate and duration of these 

phenological periods, we were able to predict end of season grain yield, biomass, nitrogen 

uptake, and protein concretion, showing a significant improvement from using a single, daily 

NDVI value. These results have implications for growers, plant breeders, and agronomists 

seeking to develop ‘stay-green’ phenotypes to lengthen the duration of heading; for the early 

prediction of harvest metrics; and for understanding the drivers of wheat phenology. 

 Chapter 3 highlighted the wide variability in measurements used to quantify the light 

environment of small shrubs exposed to low solar angles, from which each technique showed 

different trends when relating photosynthetic parameters (Amax, %N, and Chl a:b) to light 

availability. A high resolution model of 3-D shrub structure was used in conjunction with a 

ray-tracing model to estimate Qint and path length at different locations within the shrub. 

These techniques were compared with more traditional measurements using an LAI-2000 and 

vertical canopy depth. Evidence of photosynthetic partitioning within small arctic shrubs 

using all three parameters was only revealed using light estimates of Qint. This work shows 

that depending on the technique used to quantify the light environment, different conclusions 

could be drawn regarding the physiological organization of canopy components in small 

shrubs. We discussed implications for Arctic carbon cycle models, which currently assume a 

linear relationship between photosynthesis and LAI in shrubs. As Arctic shrubs increase in 

size, abundance, and range as a result of climate change, an improved understanding of 
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photosynthetic partitioning within these increasingly complex canopies could provide 

evidence for the ability of these plants to optimize themselves to achieve maximal carbon gain 

and facilitate further expansion.  

 The final chapter of this dissertation did not use any remote sensing measurements; 

rather, it examined the variability in xanthophyll cycle pigments on a global scale in response 

to growing environment. Xanthophyll pigments are of wide interest to the remote sensing 

community because of their direct link to thermal energy dissipation, which is modulated by 

the efficiency of the photosynthetic apparatus in the conversion of light energy to 

carbohydrates. This work highlighted the high concentrations of xanthophylls in an Arctic 

shrub, and compared it with xanthophyll pigments from 155 species across 9 biomes. Climate 

metrics were derived from the location of each pigment sample, and significant trends were 

seen in the response of xanthophyll cycle pool accumulation to extreme temperatures and 

water deficits. Building on chapter 1, where PRI was corrected by a ‘dark-state’ PRI – 

theoretically sensitive to bulk xanthophyll cycle pigments – this chapter noted the variability 

in pigment pools across a wide range of environmental conditions. Future work should 

investigate the utility of spectral reflectance to estimate bulk xanthophyll cycle pool size as a 

technique to rapidly evaluate the physiological status of leaves, canopies, and ecosystems.  

 A primary goal of this dissertation was to emphasize the value of ground-based remote 

sensing, particularly with the advent of new satellites designed to monitor plant function 

directly. It is increasingly important that a rigorous evaluation of the spatial and temporal 

controls on canopy radiative transfer, and its direct link to plant function, are more 

extensively investigated to enable accurate interpretation of space-based measurements 

related the photosynthesis. Tactful scaling – from the ground, to the air, and to space - and 

more robust radiative transfer models will help build confidence in satellite measurements. 

Finally, as is true of all science, this dissertation has raised more questions than answers: For 

example, can measurements related to plant function from space really be representative of 

what is happening at the leaf and canopy scales? And if so, to what extent can we exploit 

these measurements? What spatial, temporal, and spectral resolutions are necessary to use 

remote sensing data for advancing global mapping of GPP? It is under the guise of these 

questions that I seek to take my future work. 
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