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Abstract

Increased inter-connectivity between cyber and cyber-physical systems increases the danger

of Advanced Persistent Threat (APT) cyber attacks, against which perimeter-focused defenses

are no longer sufficient. Rootkits are debatably the most important piece of malicious software

to the success of an APT. Rootkits are are often planted through social engineering, which

intend to bypass perimeter–focused defenses. APTs, the most dangerous of cyber attacks, is

facilitated by one of the least-detected attack methods.

In order to further the practice of detecting rootkits and aid with early detection, this

thesis presents a taxonomy of rootkit activities through each stage of installation and exploita-

tion. Correspondingly, this thesis presents a taxonomy of rootkit detection methods to address

rootkit infection vectors. These taxonomies are then applied to a real-world rootkit example to

demonstrate how combined application of rootkit detection tools and techniques can provide

full-coverage of the possible rootkit-targeted attack surface.
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Chapter 1

Introduction

The security of computing systems is difficult to ensure in the modern era. With the increased

complexity of operating systems, applications, network configurations, and combinations of pro-

prietary hardware and software, the number of vulnerabilities in any given system seems endless.

Security researchers and system administrators attempt to discover and patch vulnerabilities

as they become aware of their existence, but malicious actors are also actively searching for any

vulnerability they can exploit. For each vulnerability that is patched, many other vulnerabil-

ities exist which remain undiscovered and unreported. This seeming futility of attempting to

defend computer systems against malicious cyber threats is casually referred to as “the Great

Wall of Swiss Cheese”.

1.1 The Problem Space

There are several methods by which a malicious actor can infiltrate, gain control, and maintain

that control over a given system. The ideal scenario for an attacker is to infiltrate a system and

then take additional actions to ensure that their activity remains undetected while keeping a

“backdoor” open to maintain consistent access to that system. A backdoor is a vulnerability

or a communication channel which allows an attacker to maintain access to a system. These

types of attacks are called Advanced Persistent Threat (APT) attacks, and are one of the most

serious threats in today’s increasingly connected cyber world [23] [1].

1.1.1 Advanced Persistent Threats

Detection of APT attacks is difficult due to the fact that the goal of an APT is to remain

undetected while gaining as much access and as high a level of privileges in as many systems

as necessary in order to achieve its goal. In order to do this, an APT generally does not

compromise systems using a noisy method of attack, such as penetration testing [2]. An APT

also does not expect to achieve a single goal, such as exfiltrating a credit card database, before

exiting the system [1].

An APT is a blended attack [71], by which several covert exploits are carried out to infiltrate
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a system, hide evidence of access, and quietly attempt to discover and gain access to additional

connected resources, while attempting to not trigger any threat detection systems. In addition,

an APT will install covert services (i.e., backdoors) that allow quick and easy controlled access

to the infiltrated system [1]. A successful APT will compromise several resources, so that if one

of its backdoors is discovered and patched, several others still exist which allow the attacker to

regain the territory they momentarily lost [28].

1.1.2 Rootkits

It could be argued that the most important component to APTs is the backdoor in any devices

they subvert. The backdoor used by an APT is commonly implemented through a rootkit :

a type of malicious software (“malware”) which exploits the host system to gain privileges,

hides itself from detection, and keeps a backdoor open for the attacker to continue to carry out

malicious activities within the system. The backdoor itself can be either an open network port,

or corrupted operating system data which creates a vulnerability that the attacker can exploit

for re-entry [42].

Rootkits are often planted through social engineering tactics, usually by convincing an

insider to unknowingly download and install a malicious binary or corrupted document [23].

Because a rootkit’s activities are focused on evading discovery, it is often discovered only after

it has been firmly planted within the victim system and is communicating information and

instructions to a Command and Control (C2) server off-site [78].

A system administrator who discovers a rootkit may attempt to remove any obviously

infected files and patch any vulnerabilities that enabled its entry. Because rootkits often over-

write or manipulate commands in the system shell or kernel, removing a rootkit is rarely 100

% guaranteed to be successful. Reinstallation of the operating system is the recommended

solution [84], but some rootkits, such as those that infect the BIOS, can even survive reboots

and reinstallation of the operating system [73]. With the highest privileges and the ability to

overwrite kernel-level instructions, the scope of a kernel–level rootkit’s activities within a single

system is vast.

Rootkits don’t always work alone either. Some rootkits can work together as botnets,

communicating information between computers around the world [4]. Other rootkits, more

dangerously, can collaborate between several compromised systems in the same internal network

as part of a laterally–moving APT [32] [28].
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Because the majority of intrusion detection and malware defenses aim to protect the perime-

ter of a network, once rootkits gain access to the inside, they can remain undetected for months,

or sometimes even years. Throughout an APT campaign, malware components quietly pass

information between services, and slowly compromise additional services, and masquerade their

traffic as normal business activities [78].

This poses a problem for system administrators, particularly those who maintain critical

infrastructures, such as control systems, or those who are tasked with an enterprise-wide en-

vironment with varying levels of user authentication, permissions, and potentially thousands

of different proprietary software applications and security controls. Detecting and removing

rootkits from a single computer is a challenging task, and to extend that scope of responsibility

to an enterprise-wide infrastructure is even more difficult.

1.1.3 The Practice of Rootkit Detection

Some well-respected standalone rootkit detectors such as GMER [24] and Malwarebytes’ Anti-

Rootkit BETA [41] perform well in rootkit detection and removal tests. Other tools, such as

Kaspersky’s TDSSKiller [33] aim to remove a single type of rootkit, but may be effective in

detecting other types of rootkits as well. These tools, like many other commercial and open

source tools, have a limited scope that is not always clearly defined. Even though some rootkit

detection tools provide information on what parts of a system are scanned for malicious activity,

it is unclear exactly what that means in regards to the completeness of detection coverage.

The problem lies in the fact that rootkit types and activities are not currently meaning-

fully classified. This hinders detection and removal tools from being applied efficiently and

completely. Rootkit classification is generally high level, either based on the permissions limit-

ing rootkit activity, user-mode versus kernel-mode, or based on a generalization of the domain

of the rootkit (e.g., rootkit versus bootkit). There is no standardized classification through

which to understand rootkit activities, so that rootkits can be understood and identified by

the domain of their activities. There is also no classification through which detection methods

can be clearly applied to these domains. This lack of classification granularity provides very

little information for potential rootkit victims to understand how much coverage their rootkit

detection solution provides, nor what tools to use to gain complete coverage.

Current rootkit detection methods and the application of those methods would be better

facilitated through the following contributions to the practice of rootkit detection and elimina-
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tion:

1. A classification which clearly translates rootkit behavior to system-level activities and

groups these activities by the types of modifications inflicted on the system.

2. A classification of rootkit detection methods which can be directly applied to each domain

of rootkit activity.

1.2 Motivation

Initial research for this project involved a short-term study to determine what requirements

would be necessary in order to detect a cyber event at the earliest stages. Literature on this

subject contains several papers detailing experimental methods to detect malicious activity

as it enters a network or to detect malware exhibiting certain behaviors. However, research

rarely classifies the domains of malware activity within a computer, and does not draw a

distinction between rootkit behavior and other malware. Detection methods tend to consist of

small single-purpose tools, proof-of-concept research solutions, or are integrated into Security

Information and Event Management (SIEM) proprietary software – of which there is a lack of

publicly available technical documentation. Further discussion of this literature is provided in

Chapter 5.

The focus of industry’s most cutting-edge tools, usually in the form of Intrusion Detection

Systems (IDS), Intrusion Prevention Systems (IPS), or SIEM systems aims to detect malicious

software and infiltration attempts as they enter the network. Host-based solutions, while in-

cluded as a feature of the SIEM, seem to be an afterthought. Additionally, the goal of defending

against APTs and other more immediate threats is to move from a reactive stance of patching

holes in the Great Wall of Swiss Cheese to a proactive stance, by which we can detect and

defend against malware threats before they occur. By enabling the detection of a rootkit threat

before it is able to carry out its malicious actions, the state of malware detection will move one

step closer to becoming predictive.

1.3 Objectives

Objectives for this thesis are as follows:

1. Provide guidelines by which rootkits may be classified through identifying its core behav-

iors and objectives.
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2. Provide a systematic way of categorizing the activities performed by a rootkit throughout

each stage of its lifespan, from creation to fulfillment of its mission.

3. Examine rootkit behaviors and activities within a system to classify rootkit activity by

domain affected such that detection methods may be applied according to these classifi-

cations.

4. Identify and classify rootkit detection methods which apply to each domain of rootkit

activity. Develop a method of displaying this information which clearly identifies areas of

rootkit activity with insufficient detection coverage.

5. Examine and draw conclusions about the current state of rootkit detection as related to

the identified domains of rootkit activity, and propose future research projects or industry

related activities which could help bring rootkit detection to a feasible, real-time, full-

coverage state.

1.4 Thesis Impact

This research is intended to provide a logical and complete mid-level taxonomic view of rootkit

activity and corresponding detection methods. The taxonomic views presented here provide

a classification with which to bridge the knowledge gap between existing high-level concepts

and the lower-level specifics of rootkit detection implementations. This research also provides

a method that can be used to categorize and compare rootkit detection and removal implemen-

tations. Also, this research frames the rootkit problem space in a way that helps facilitate both

understanding and communication regarding rootkit actions and responses. Additionally, this

classification provides a way to classify the coverage space of existing rootkit detection solu-

tions, to distinctly identify and communicate the areas of coverage and deficiencies in existing

rootkit detection tools, and identify vectors to add coverage functionality.

This taxonomic classification can assist both academia and industry in developing more

complete rootkit detection tools and methods by providing a centralized source of information

about rootkit activities and corresponding detection techniques. The taxonomies presented

here provide categories with which to classify and compare each rootkit infiltration method by

the attack space it addresses and the techniques it uses, as well as a way to classify detection

tools which address each of these attack spaces. This taxonomy can also be used to evaluate



6

and compare existing and future rootkit detection methods, and provide a starting point for

which tool coverage and efficiency may be computed.

This thesis contributes to the scientific community by:

1. Providing a taxonomic classification through which rootkit objectives, activities, and de-

tection methods can be more easily understood and communicated. This taxonomy will

help research and industry to organize and frame their specific interests within this space

so that it may be refined, expanded upon, or derived from, as the practice of rootkit

development and detection progresses.

2. Making it easier to understand exactly where existing rootkit detection tools provide

rootkit detection coverage and for which rootkit activities these tools could be further

developed in order to improve coverage. Additionally, information provided in this thesis

will help facilitate decision-making in regards to which detection methods may be more

applicable.

3. Providing structured diagrams which increase understanding of rootkit activities and how

they relate to their respective attack spaces and to each other. These visualizations also

help facilitate understanding of how detection methods apply to the rootkit attack space,

and will demonstrate both overlaps and oversights as related to existing rootkit detection

techniques.

1.5 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 provides background on APTs

and the malware lifecycle demonstrated through the kill chain model. The kill chain model

presented in this thesis is inspired by the Cyber Kill Chain R© model developed by Lockheed

Martin [40], and is sometimes called the “Intrusion Kill Chain” in other literature [29] [8]. This

chapter also provides an overview of the rootkit as a kernel-level threat.

Chapter 3 provides a detailed discussion of each stage of rootkit activities corresponding to

the Stages 1–3 of the kill chain: rootkit preparation and delivery.

Chapter 4 provides a detailed discussion of each stage of rootkit activities corresponding

to Stages 4–7 of the kill chain: rootkit installation and system-level activities. This chapter

provides taxonomic representations of rootkit attack vectors and other rootkit strategies, such
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as process hiding and backdoor vulnerability creation. This chapter also discusses the system

kernel and addresses rootkit activity within this space.

Chapter 5 presents an overview of rootkit detection methods and demonstrates how the

current practice of rootkit detection relates to the detectability of a rootkit’s presence and

activities. This chapter concludes by directly correlating detection methods with each of the

rootkit attack vectors identified in Chapter 3.

Chapter 6 applies the taxonomies presented in Chapters 4 and 5 to two Metasploit rootkits

and the ZeroAccess rootkit, demonstrating their effectiveness at framing the problem space and

simplifying the detection space.

Chapter 7 presents conclusions revealed by these taxonomies and the scope of their effec-

tiveness. Then future projects are proposed to extend this work to help advance the science of

rootkit detectability.
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Chapter 2

Background

There are three major topics encompasing the background of this work, which are summarized

in this chapter. First, Section 2.1 is an overview of the problem space, in particular the dangers

of Advanced Persistent Threat (APT) attacks, their prevalence and the danger posed by these

attacks. Included in this discussion is a description of how rootkits are debatably the most

critical piece to the survivability of APTs. However, due to the perimeter-based focus of

defenses, it’s easy for rootkits to penetrate defenses, using system vulnerabilities in combination

with social engineering attacks. Finally, Section 2.2 describes the kill chain, the sequence of

steps which nearly all cyber attacks follow, including that of rootkits.

Rootkits will be discussed in greater detail in Chapter 3.

2.1 Advanced Persistent Threats

An APT attack is a long-term, mission-based cyber attack which aims to compromise several

services, usually belonging to a single target, while remaining undetected. According to the

National Institute of Standards and Technology (NIST), APTs are “a long-term pattern of

targeted, sophisticated attacks” [53]. Symantec describes APTs as using “multiple phases to

break into a network, avoid detection, and harvest valuable information over the long term” [75].

An APT can utilize several different attack vectors, and compromise multiple devices in a

particular domain, while evading detection.

2.1.1 APT Goals

Rather than disrupt services, such as is the objective of DDoS attacks, APTs attempt to gain

access to the target’s resources and maintain persistence within the target’s system [78]. APTs

are “goal oriented” [13] and often work covertly in order to exfiltrate valuable or sensitive data

from high-value targets.

Because of the high financial cost and many man hours required to carry out these attacks,

APTs are usually carried out by two types of actors: a) organized criminal groups and b) state

actors [78] [70].
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The goals of an APT can range from political espionage, targeting military intelligence,

corporate research and intellectual property (IP), exfiltration of credit card or banking infor-

mation, to theft of personally identifiable information (PII), which is commonly referred to as

“identity theft” [80] [36]. APT motives are often financial gain for criminal organizations, and

military and IP for state actors [70].

According to Verizon’s 2014 Data Breach Report [78], 87% of external actors (i.e., not

insider threats) committing cyber espionage were state-affiliated, and 11% of external actors

were related to oranized crime. All other actors combined accounted for the remaining 2% of

cyber espionage-associated attacks. In 2013, a full 54% of cyber espionage attacks were aimed

directly at the United States, with the next closest nation victimized by cyber espionage (South

Korea) at the receiving end of 6% of these attacks.

The external actors committing cyber-espionage were roughtly attributed to Eastern Asia

(49%), Unattributed (25%), and Eastern Europe (21%). The rest of the world accounted for the

remaining 5% of cyber espionage attacks [78]. This would seem to indicate that certain parts of

the world are highly invested in infiltrating the United States in order to obtain research data,

trade secrets, human data (PII), and even government and military secrets.

2.1.2 APT Persistence

In attacks which involve simple goals which can be executed quickly, the attacker can hide in

plain sight, and the use of covert measures may not even be necessary. However, with APTs,

this is a different matter [60].

Sensitive, highly desirable data is likely to be heavily protected, segregated from public-

facing and commonly-accessed internal services. Because of this, the methods required to

infiltrate the target system may be quite complex, and involve several exploitation methods,

slowly gaining ground by building on previous exploits. The best way to carry out this type

of campaign is to proceed slowly so that all activity evades detection completely [2]. Altshuler

et al. demonstrated that very low levels of attack aggressiveness were the most rewarding over

time, which explains why APTs are successful at exfiltrating secrets [2].

2.1.3 APT Launch and Detection

Active APTs are difficult to detect, and even harder to detect after they have successfully

infiltrated a victim’s network. Often, APTs start with a single piece of malware, such as

a rootkit, emailed to an insider at the target organization. If the insider opens the email
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attachment, they unknowingly launch a cyber attack [42]. This is known as a type of social

engineering, which is a very common method by which attackers trick an insider into helping

them breach external defenses [14].

The vector for malware infection in 2013 was overwhelming via malicious email attachments

(87%), followed by “web drive-by” (20%), which implies that casual users browsing the web were

infected by visiting infected websites [78]. The fact that the majority of malware was installed

by email attachments is indicative of the level of success of social engineering [78]. These

infection methods are discussed further in Chapter 3, Section 3.2.2 “Social Reconnaissance”,

and 3.3 “Weaponization”.

Most cyber espionage attempts go undetected for months (62%), and according to the

Verizon 2014 Data Breach Report, the most common way these attempts are discovered is “ad

hoc notification” from organizations which observe the victim’s network traffic communicating

with the Command and Control (C2) servers of a known threat group. 67% of “unrelated”

parties are the vector for revealing the existence of these attempts [78].

Clearly APT attacks can pose a serious threat, and current detection implementations

and practices may not be up to the task of detecting many APT attacks. Regardless of how

skilled the human adversary may be, malware - such as rootkits - are vital to the success of

an APT. These rootkits can be very difficult to detect, which is another reason why APTs are

so successful. By understanding the APT threat’s operational strategy, it may be possible to

identify some vectors which are more valuable than others toward the detection of an APT. An

APT launches and initially deploys much the same as any other malware or cyber threat, and

the model by which an APT targets, enters, and maintains persistence inside a target is called

the kill chain [8] [29]. Rootkits also follow this same creation, deployment, and target-focused

actions. The kill chain is discussed from a high level view in Section 2.2.

2.1.3.1 Zero-Day Threats

For the most part, cyber exploits fall into two categories: those that should be able to be

detected, and those for which there is no precedent and existing defenses cannot be expected

to detect that attack.

For cyber attacks that exploit known vulnerabilities, the exploit should theoretically be able

to be detected because knowledge exists about that particular attack; the exploitability lies in

whether or not a patch or set of mitigations exist for that vulnerability. Exploits that have
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not been seen before are called “zero-day” exploits, because, as of the time that the exploit

is carried out, system administrators have had zero days to defend against this particular

attack [67] [80] [14].

Zero day attacks are a hot commodity on the black market, and can fetch prices up to

hundreds of thousands of dollars, depending on the target system, level of covertness, and level

of access gained through the use of this exploit [6]. While zero day attacks may not be a serious

concern for the individual whose digital property may not be worth the $100K price tag, high-

profile targets can expect to fall victim to zero day attacks [59]. According to the security firm

FireEye, “Zero-day attacks are an important weapon in every APT arsenal” [21].

Because of the high cost, zero-day exploits are not commonly used except where absolutely

necessary. Flame made use of two zero day exploits [79], while Stuxnet claimed use of up to

four zero-days throughout the entire attack campaign [50] [72]. However, to merely establish

a presence within a victim’s network, social engineering combined with a known vulnerability

can be equally effective. These famous APTs are further discussed in Section 2.1.4.

2.1.3.2 Social Engineering

Social engineering is a type of attack in which an adversary uses subtle and manipulative means

in order to convince an employee working at the target organization to help the adversary com-

promise that target [71] [78]. For example, an adversary can place a phone call during business

hours to an employee, posing as the IT department, and invent some technical problem which

requires that employee’s password. Another example of social engineering involves “piggyback-

ing”(also known as “tailgating” or “drafting”), a method by which an adversary poses as an

employee, sometimes by carrying paperwork, a box, or coffees, and physically follows employ-

ees through a security checkpoint that normally requires key-card access. Because of natural

complacency and social pressure to trust fellow employees the adversary knows that legitimate

employees are not likely to question his attempted entry [35].

The same methods of deceiving an insider to believe the attacker’s request for access is

legitimate hold true for more cyber-only methods of social engineering. Despite an organiza-

tion’s best attempts to train employees to be suspicious of links in emails and to only open

attachments from known senders, employee complacency and trust still work in favor of the

adversary [23] [2]. Additionally, once an employee’s machine is compromised, the attacker can

use that employee’s privileges and identity to leap-frog through the organization, spreading
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malware from “trusted” accounts [32] [28] [78] [42] [29].

Often these attacks are carried out using spearphishing. Spearphishing attacks are targeted

social engineering attacks which utilizes the attacker’s direct knowledge of the target company to

send phishing emails to hand-picked recipients. These emails contain information that appears

relevant to the company and recipient [3] [23].

For example, the attacker sends a contextually relevant email that appears to originate

from within the company, which contains what appears to be a legitimate attachment – often

a PDF or Microsoft Office document. This attachment contains a malicious executable which

will usurp the user’s privileges to bury and hide itself in the victim’s machine, while crafting a

backdoor for the attacker to gain access directly to that machine [42] [23] [78] [85].

Ultimately, this strategy can be successful regardless of both network and host-based de-

fenses in place. Even a payload can go undetected at the network level because of encoding

schemes which change the signature of the malware. In the end, any system can be compro-

mised if the users “choose” to install or download malware or malicious updates [82], which is

the strength of social engineering. Strategies which defeat the network and trick the end user

are further detailed in Section 3.3.

2.1.4 Famous APTs

APTs have risen in prominence in the past decade, with high-profile attacks making headlines

around the world. The following sections describe a few of the most famous APTs, some of

which will also be referenced throughout this thesis. As can be seen from these examples,

these APTs were likely developed by state-sponsored actors on high-stakes targets, revealing

the scope of damage possible when APTs succeed.

2.1.4.1 Stuxnet

Stuxnet was an APT first discovered in 2009, which appeared to be designed to attack the Ira-

nian Nuclear Program’s Natanz uranium enrichment plant. Stuxnet specifically caused physical

damage by targeting the Industrial Control Systems (ICS)’s Programmable Logic Controllers

(PLC) that managed the uranium enrichment centrifuges. The infected PLCs caused the cen-

trifuges to operate at speeds outside designated limits, ruining the present batch of uranium

and setting the Iranian nuclear program back four years [79] [72].

The initial infection vector for Stuxnet is not known, but may have been the result of

spearphishing emails to contracted employees [85].
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Stuxnet likely spread like a worm through networks and connected devices, and it is likely

that the targeted PLCs, which were not connected to the internet, were infected via USB [67].

Once connected, Stuxnet automatically executed and gained access to critical resources [79].

Stuxnet primarily infected Windows systems running Siemens Step-7 software. The ma-

licious binaries were hidden by rootkits, and the PLC code was modified to present normal

operating values to monitoring software. New PLC drivers were signed using compromised

digital certificates. Stuxnet scanned the infected system for the presence of security monitoring

software, and depending on what service it detected, it would inject its payload in a way to

avoid detection. It used encryption for some of the payload and to communicate information

about the infected system to C2 servers when internet access was available [79].

It is believed that the team behind Stuxnet was state-sponsored, because the complexity

needed to ensure success on such a specific target would require a realistic test environment

modeling the uranium enrichment facility, experts with extensive knowledge on the operation of

such equipment in a nuclear facility, highly skilled programmers and researchers who either per-

sonally developed, likely had financial backing, and may have had direct access to a repository

of zero-day exploits [79].

2.1.4.2 Duqu

Duqu was an APT discovered in 2011 which infected very few targets – approximately 50

worldwide. Duqu had a structure similar to Stuxnet, but rather than industrial sabotage, its

mission was espionage.

Duqu was initially spread through spearphishing emails [85] which contained infected Mi-

crosoft Word files, but did not auto-propagate. Like Stuxnet, it hid its code using rootkits and

used compromised digital certificates [79].

Duqu facilitated espionage through a keylogger, which captured user credentials such as

passwords, and then communicated the keylogged data to offsite C2 servers using steganographic

encryption. After 36 days, unless the attacker sent specific instructions to do otherwise, Duqu

self destructed [79].

2.1.4.3 Flame

Flame was an APT first detected in 2012, but is suspected to have already been active for many

years prior. It is believed that Flame compromised several thousand Windows systems in the

Middle East, and is notable for its small size – just under 20 megabytes [79].
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Flame’s mission was espionage, with modules that engaged in keylogging, taking screenshots,

capturing emails, recording audio using the computer’s internal microphone, and gathering in-

formation about nearby Bluetooth devices. The most impressive feature of Flame is its ability

to impersonate a windows update server. In order to forge signatures for Flame’s “software up-

dates”, it had to perform a cryptanalytic attack against Microsoft’s Terminal Services licensing

certificate authority in order to generate valid digital signatures [79].

Flame’s initial infection vector was likely targeted spearphishing emails [85] and it did not

self-propagate but spread via connected devices, such as USB. Although its overall design and

mission is different from Stuxnet, the use of two of the exact same zero day vulnerabilities as

Stuxnet, as well as a similar keylogging module to the one used by Duqu, lead researchers to

believe that they were developed by collaborating teams [79].

2.1.4.4 Red October

Red October is an APT that was detected in 2012, but may have been active since 2007. Red

October targeted both government and industry for the purposes of both political espionage

and IP theft, particularly in Russian-speaking countries [78].

Red October was spread through targeted emails containing malicious Microsoft Word and

Excel files. Using a minimalist architecture, Red October downloaded modular functionality as

needed from C2 servers. It was able to steal information from both PCs and mobile devices such

as Nokia phones and iPhones. Activities included keylogging, email interception, and recovery

of deleted files [79].

2.2 The Kill Chain

Almost every malicious cyber attack which penetrates internal defenses from outside the victim’s

network follows the pattern of the kill chain model [8] [29]. Each one of these steps much be

performed in order for a cyber attack to be considered successful [13]. A simplified version of

this model is shown in Figure 2.1.

Figure 2.1: Kill Chain

The steps of the kill chain model are as follows:

1. Reconnaissance: Also known as the “information gathering” stage, the attackers gather
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data on the intended target, and likely use many publicly-available resources in order to

remain undetected. This can involve visiting corporate websites, blogs, and making friends

and collecting information about employees of the organization, as well as their personal

and public interests.

2. Weaponization: The attacker crafts the malicious payload, which includes exploits,

malware, and other activities which will be used to compromise the victim.

3. Delivery: The malicious payload is sent to the victim and successfully received.

4. Exploitation: The exploit is executed. Often this is triggered by a legitimate user

unknowingly authorizing the installation of malware by clicking on an unsafe URL or

opening a malicious email attachment.

5. Installation: The exploit is used to install malware on the victim machine. This step is

only relevant if malware is used, as is the scenario explored in this paper.

6. Command and Control: The malware (rootkit) contacts a Command and Control

(C2) server hosted by the attackers, to report a successful installation and obtain further

instructions. Often the C2 server is used to download additional malware with enhanced

functionality onto the victim’s machine.

7. Action: This is the step in the kill chain where the malicious actor uses the access gained

through victim’s machine to achieve their goals. In the case of APTs, this stage can be

very quiet and may consist of several small subsequent exploits to elevate privileges, make

subtle system changes, and eventually infiltrate other machines and services across the

network.

According to the kill chain model, it is nearly impossible to detect malicious activity taking

place at Steps 1 and 2, Reconnaissance and Weaponization, respectively. Step 3, Delivery, is

the stage at which detection can occur at the network level, but as explained in Section 2.1.3.2,

often the deployment mechanisms for these attacks bypass network defenses. Steps 4 and

5, Exploitation and Installation, are often initiated by a user of the soon-to-be compromised

system, and at this stage, host-based resources should be able to detect malicious activities

taking place. At Step 6, C2, the malware is already calling “home” and exfiltrating information

about the compromised host. By the time Step 7 “Actions” occurs, the attacker or malware is
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already achieving their malicious objectives. Unfortunately, it is often the case that few, if any,

defense mechanisms or reactionary measures occur anywhere between Steps 4-7 [18].

2.3 Perimeter-Focused Defenses

Currently, the industry focus is on intrusion prevention through network monitoring strategies.

This is evident in the prolific number of Security Information and Event Management (SIEM)

systems. Many of these enterprise-wide solutions incorporate network monitoring, both signa-

ture and behavior-based IDS solutions, and in-depth, yet “passive” firewall solutions [70]. Each

system claims to be a complete package due to advanced proprietary algorithms correlating

IDS and firewall logs with a network monitoring solution that uses machine learning to train to

recognize what is considered normal network traffic and what traffic may be suspicious [1] [6].

Unfortunately, while these solutions may stop the vast majority of intrusion attempts there

will always be other attacks which slip through the cracks. These attacks could slip through by

negligence or human error if network defenses aren’t configured properly, or updated with the

latest malware definitions. “Zero-day” attacks and those carried out through social engineering,

can be very successful despite a system being well-maintained and up to date. Both of these

kinds of attacks are commonly seen as components of APTs.

2.3.0.5 The Keys to the Castle

Layered defenses are an ideal, but not the reality. Past the outer layer of defenses consisting

of firewalls and various flavors of intrusion detection systems, the fortifications at the client

machine level are usually very weak, particularly where they are connected to other nodes in

the same system. Once the attacker has gained access to a victim machine, it is only a matter

of time before they gain access to more resources [23] [32] [78] [42].

The payload, activated by the employee, has inherited a minimum of user-level privileges,

and now has insider access to the same resources as that user, including networked storage and

the projects the user is working on. If the payload includes a keylogger, the attacker can then

harvest the employee’s credentials and perform activities later, impersonating as that employee.

Access to just a single machine in the internal network can give an attacker an enormous

amount of information not seen from the outside. This includes emails and lists of contacts,

knowledge of the company infrastructure, levels of permissions, certificates used, human knowl-

edge such as company lingo and terminology, and internal organization, providing an attacker
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with a much more robust set of information on new targets for social engineering.

Knowledge gained from user–level access can assist an attacker in exploiting the compro-

mised machine to elevate privileges and attempt to move laterally, accessing and exploiting

other systems throughout the victim’s network.

Because of the dangers posed by these host-based attacks, it makes sense to fortify host

systems with additional services to detect attacks not previously flagged by either network

or host-based IDS and anti-malware solutions. However, many solutions which aim to detect

OS/kernel-based malware are limited in their scope.

Operating under the assumption that the system has already been compromised, the ideal

scenario is to monitor the host machine in some way to detect that suspicious behavior is taking

place. There are several methods available in both research and industry, but exactly what they

monitor, and how complete that coverage may be is not defined.

In order to develop a more complete solution to detecting APTs before they are able to

enter the Actions Step and spread to other hosts in the victim’s environment, it is useful to

break the problem down into manageable units.

1. Define activities performed by rootkit malware.

2. Categorize these activities into domains of activity.

3. Apply known detection methods to each of these domains.

4. Analyze solutions for full-coverage, and identify malware-affected regions lacking coverage.

5. Propose solutions to provide full coverage. Provide metrics to evaluate full coverage.

The research presented in this thesis is tasked with the first three points: to define rootkit

activities and categorize them according to domains of activity so that detection methods can

be directly associated with each of those domains. These are addressed in Chapters 3, 4 and 5.

The application of detection methods to rootkit activity domains is presented specifically in

Chapter 6. The remaining steps are recommended to be addressed in future research and by

industry, and are discussed in further detail in Chapter 7.
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Chapter 3

Rootkit Preparation and Delivery

This chapter provides background information regarding the development of kernel-level rootk-

its prior to rootkit activities within the target system. The focus of this chapter is on the

considerations and types of preparation an attacker must make for the rootkit to be effective.

First, Section 3.1 provides a definition and some semantics addressing what a rootkit is, and

what it is not, and addresses basic features and objectives of a rootkit from a high-level perspec-

tive. In particular, Section 3.1.1 relates the kill chain to rootkit-specific activities. Rootkits

are discussed in this thesis as relating to the kill chain. Sections 3.2 “Reconnaissance”, 3.3

“Weaponization”, and 3.4 “Delivery” provide detail about rootkits during the first three steps

of the kill chain. Subsequent steps in the kill chain are addressed in Chapter 4.

Table 3.1 provides a simple roadmap for topics discussed in this chapter.
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Topic Section

Rootkit Overview 3.1

Step 1: Reconnaissance 3.2

Step 2: Weaponization 3.3

Step 3: Delivery 3.4

Table 3.1: Chapter 3 Roadmap

3.1 Rootkit Overview

A rootkit is a type of malware that covertly infiltrates a host computer system and opens a

door up for more malware to further compromise the host. Bravo and Garcia define a rootkit

as “Any software that gives continued privileged access to a computer while actively hiding its

presence and other information from administrators by subverting standard operating system

functionality or other applications” [9]. Ries states that the goal of a rootkit is to provide an

attacker or malicious code with a permanent and undetectable presence on a computer [63].

Rootkits are notorious for assisting APT attacks, particularly for industrial espionage [6].

Rootkits proceed through four main phases of operation: 1) covertly enter a victim’s system,

2) exploit the host to elevate privileges, 3) install and persist while hiding evidence of itself,

and 4) perform other simple malicious activities, which usually includes opening a backdoor for

a command and control (C2) server or human attacker. These phases can be broken down into

specific steps following the structure of the kill chain, as addressed in Section 3.1.1.

A rootkit can be confused or identified as another type of malware. For example, a rootkit is

often considered to be the same as a trojan, which is malware disguised as legitimate software.

Rootkits sometimes do hide within or are disguised as software applications, and trojans often

install backdoors, but trojans don’t always attempt to elevate privileges or enable a communi-

cations channel. Rootkits, however, can be installed via both exploits or trojans. In this way,

rootkits and trojans contain some similar features and functionality.

Additionally, a rootkit and a “backdoor” are not always the same thing, even though they

are often both referred to as a “backdoor”. A backdoor describes an alternate channel which

attackers can use to gain access to a system, but its existence may not be intentionally malicious.

For example, an unintentionally misconfigured firewall could be used by attackers. A rootkit

contains more functionality than a simple “backdoor”, as it is capable of other activities, such

as masking the presence of that backdoor.
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Figure 3.1: Stages of the Rootkit Kill Chain

Often rootkits are bundled with additional malware payloads which may assist in elevating

permissions, opening ports, installing keyloggers, and even facilitating contact with the C2

server and downloading even more malware. These activities make the system just a little

bit “noisier” and could help expose the existence of the rootkit, but rootkit discovery is by

no means easy. Even more difficult than detecting a noisy rootkit, is detecting one that has

been planted, but is merely sitting and waiting, with no ports actively open, and no additional

malware processes running. Because there is almost a limitless number of possible payloads

that could accompany a rootkit, for the sake of approaching some standardized model of basic

rootkit detection, including dormant rootkit threats, this research focuses on rootkits with

minimal functionality.

3.1.1 Rootkit Kill Chain

A rootkit’s activities closely follow the same stages as any other attack, best expressed through

the kill chain.

First, the attacker performs Reconnaissance and Weaponization, and then uses social engi-

neering for Delivery. After successful delivery to a victim’s system, a trusted insider is necessary

to launch the rootkit, which attempts Exploitation to gain footing on the host system for In-

stallation. Afterward, the rootkit contacts the C2 server and performs malicious activities in

the Actions stage.

Figure 3.1 shows the stages of the kill chain, as performed through rootkit activity. The

stages are categorized by the actor or component initiating activity at that stage.

Figure 3.2 depicts how the kill chain directly relates to a rootkit’s operational goals.
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Figure 3.2: Rootkit Objectives as Related to the Kill Chain

3.1.2 Breakdown of Rootkit Activities

Subsequent sections in this chapter and in Chapter 4 roughly follow the steps of the kill chain

for rootkits. These stages address the following topics of interest.

1. Rootkits specialize in taking measures to avoid triggering alarms while entering a victim

system. The method of selecting unsuspecting targets via reconnaissance is addressed in

Section 3.2. Methods used to allow the rootkit to bypass network and host-based defenses

is addressed in Section 3.3, and delivery to the victim is discussed in Section 3.4.

2. During the installation process, the rootkit may combine exploitation tactics with instal-

lation instructions in order to gain access to protected areas within the host operating

system. The installation process is detailed in Section 4.1, and exploitation strategies

used to gain system privileges are briefly discussed in Section 4.1.6.

3. To maximize infiltration into a victim’s computer, rootkits try to install themselves in

the kernel of an operating system. A discussion of what the kernel is and how it relates

to rootkit activity is detailed in Section 4.1.2.

4. The installation process also includes tactics for a rootkit to hide its code and config-

urations. Installation hiding methods are discussed in section 4.1.8, “Rootkit Hiding

Methods”.

5. Rootkits can include payloads (i.e., additional malware) to provide support functionality,

but these payloads can be considered to be separate from the rootkit itself. Rather than
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act as a carrier for malware, rootkits tend to remain small, and additional malware or

functionality can instead be delivered to the victim through the backdoor that the rootkit

creates. This backdoor is discussed in Section 4.2.

6. Once a rootkit has been installed, it often facilitates two primary activities: 1) prepare

the OS to receive more malware, usually by subverting defenses, and 2) hide evidence

of rootkit and related malware activity. A discussion of rootkit activity is detailed in

Section 4.3. The rootkit will also use its system level access to ensure that its files and

actions are not noticed by system monitoring utilities. Rootkit hiding measures which

disable security services are detailed in Section 4.3.1.

The following sections discuss rootkit preparations corresponding to the first three steps of

the kill chain. Taxonomies for the major concepts are provided in order to better structure

the problem space surrounding each stage, and to facilitate understanding of what indicators

of rootkit activity may later be detected. kill chain stages 4–7 are addressed in Chapter 4, and

detection methods as related to these topics are addressed in Chapter 5.

3.2 Reconnaissance

There are several methods by which an attacker can gather information about a potential tar-

get. Assuming that the attacker has no inside accomplice, and has no other information, such

as stolen credentials, they can still gain quite a bit of knowledge from public information. Ac-

cording to the Penetration Testing Execution Standard [57], “open source intelligence (OSINT)

is a form of intelligence collection management that involves finding, selecting, and acquiring

information from publicly available sources and analyzing it to produce actionable intelligence”.

Generally an attacker can choose to probe external services of a potential target either

via the use of freely available penetration testing tools to discover vulnerabilities in a victim’s

external facing systems or through the use of social engineering by convincing an insider to help

provide the attacker with access.

Table 3.2 provides a high level taxonomic overview of reconnaissance techniques discussed

in this section.

3.2.1 Cyber Reconnaissance

There are three types of OSINT reconnaissance: passive, semi-passive, and active. Passive

information gathering only gleans information from public sources, and involves no direct cy-
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Kill Chain Phase Topic Section

Step # 1: Reconnaissance 3.2

Cyber 3.2.1

Passive

Semi–Passive

Active

Social 3.2.2

Passive

Active

Table 3.2: Section 3.2 Roadmap

ber contact with the target’s systems. Semi-passive methods lightly probe the target with

seemingly-innocuous network traffic, such as internet traffic. Active methods are noisier [57].

For example, an active style of reconnaissance might probe the potential victim’s entire known

IP range in order to discover all externally facing systems, identify the services visibly being

used, and which ports on those services are open. This kind of information is easily gathered

using tools such as nmap [55], but it can be noisy, depending on the intensity and duration of

the scans.

Knowledge of the victim’s network infrastructure, even just at the perimeter of the network,

can be useful for attacking the victim’s externally-facing services. However, because external

network defenses tend to be the most heavily fortified, any direct scanning or probing of ex-

ternal systems can be easily noticed, for example, changes in LDAP queries [18]. This is why

publicly available information, such as DNS registrations or version information about servers

and website content management systems are good sources of information to find potential

vulnerabilities [14].

Often the option of a direct cyber attack is discarded in favor of using social engineering

to initiate the attack from inside the network. This is the assumption made for the examples

provided in this thesis.

3.2.2 Social Reconnaissance

When a malicious actor is planning an attack, it is best if all information gathered about

the victim is collected as quietly as possible [2]. The premise of social engineering is that an

attacker can persuade someone who has access to a potential victim’s internal resources to

provide the attacker with an easier way in. This type of attack can be carried out physically
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or electronically, and with or without the insider even knowing that they helped facilitate the

attack.

The quietest way to perform social engineering on an insider, such as an employee, is to

engage the insider in a way such that they: 1) provide the attacker with an easy way in and

2) have no suspicion that they have done so because they think that the action they took

was part of normal business or social operations. This often occurs when an insider opens a

business-related document containing malware or visits a website which downloads malware in

the background. These methods are discussed in Section 3.3, “Weaponization”.

Information useful for social engineering is publicly available and requires little cyber re-

connaissance by the attacker. For example, most businesses, government and military entities

have publicly-facing websites with information about their industry, interests, partnerships, and

personnel. Names, roles, phone numbers and email addresses of persons in various positions

throughout these entities are sometimes publicly available.

Additionally, with social media and other online services such as Facebook, Twitter, LinkedIn,

Tumblr, Blogger, and others, an employee’s personal interests and social life are often available

for an attacker to determine what may be considered “relevant” for the purposes of social engi-

neering. In extreme cases, the attacker may even forge an internet presence for the purpose of

befriending a potential target. The goal of this reconnaissance is to eventually get the insider

to somehow provide the attacker with account credentials, knowledge of business operations,

visit a malicious website, or open a malicious file from work, which will then launch hidden

malware on a machine inside the network.

Social engineering strategies can either either indirectly attempt to lure potential victims

to download or open malicious content, or the strategy can directly target specific individuals,

with the intention that these hand-selected insiders will launch the malware on their own work

machines. These strategies are discussed further in Section 3.4.1.

Once the attacker has selected their method of social engineering and determined that

enough information has been collected in order to successfully launch an attack, then the attack

enters the Weaponization phase.

Table 3.3 describes logical notation used to indicate the applicability of each branch of the

taxonomies presented in this thesis.

Figure 3.3 shows the taxonomy of reconnaissance methods used to gather information about

a potential victim.
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Symbol Logic Intent

• AND All options apply.

+ OR One option applies.⊕
XOR One or more options apply.

OPTIONAL These features are included at the discretion of the attacker.

Table 3.3: Logic Notation for Taxonomies

Figure 3.3: Taxonomy of Reconnaissance Methods

3.3 Weaponization

Weaponization is the process of transforming something benign into something that will com-

promise the security of the recipient. The delivery of rootkits is often facilitated by two highly-

effective methods: 1) downloaded from a compromised website or 2) encapuslated within a

seemingly legitimate attachment. Links to the website or a copy of the attachment are usually

distributed via email through social engineered phishing or spearphishing attacks.

At the weaponization stage, information obtained during reconnaissance can be useful in

order to determine the method of delivery, and the payload to be delivered [72].

3.3.1 Delivery Considerations

During the reconnaissance stage, the attacker has gleaned information about the target’s busi-

ness operations, and ideally a few target employees’ job roles and interests. The attacker may

choose to employ a phishing attack, and so needs to decide how to advertise the bait to the

targets. This decision may lead the attacker to compromise a website, for which a URL may be

sent as spam mail to company employees. The attacker may even attempt to compromise the

company’s own website, although this is a riskier move. Methods for compromising a website
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Kill Chain Phase Considerations Section

Weaponization 3.3

Delivery Considerations 3.3.1

Weaponized Websites 3.3.1.1

Email Distribution 3.3.1.2

Weaponized Content 3.3.1.3

Exploits and Payloads 3.3.2

Exploit Kits 3.3.3

Blackhole 3.3.3.1

Metasploit 3.3.3.2

Obfuscation 3.3.4

Code Scrambling 3.3.4.1

Compression 3.3.4.2

Packaging 3.3.4.3

Encryption 3.3.4.4

Table 3.4: Section 3.3 Roadmap

are discussed below, in Section 3.3.1.1.

If choosing a spearphishing strategy, the attacker needs to decide how to present the attack

to the target, so that the target is cooperative and unsuspecting. In addition to emailing

potential victims a URL, the attacker could directly send an attachment. The contents of the

attachment will appear to be relevant so that when the victim opens the attachment, they get

exactly what they expected, unaware of any background processes launched in the background.

Additionally, any attachments sent through a corporate firewall and through a business’s

security and scanning systems must not raise any alarms. Methods for avoiding network and

host based IDSs and security systems are listed in Section 3.3.4. Additionally, stand-alone

payloads, such as executables, are much more likely to be detected by antivirus products [45].

An attack which attempts to foil IDS and other security programs is known as a content-

based evasion attack. This type of attack uses several different methods to obfuscate the actual

properties of the content. These methods include manipulating the structural, lexical or tem-

poral composition of the content, for example, emails, spreadsheets, ad-hoc documents, etc.

3.3.1.1 Weaponized Websites

If the attacker decides that the best delivery method is via a compromised URL, the attacker

decides whether the website hosting malicious content is owned by the attacker or another
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party [78] [21], and if the victim is to know whether or not they are downloading anything from

that site [23] [78].

There are advantages and disadvantages of an attacker owning the site hosting the malicious

content. Should the attacker choose to host their own site, they run the risk of being identified

should that site come under suspicion. It has been observed, however, that phishing attacks from

China tended to be launched from personally-owned domains rather than hacked websites [36].

Malicious actors can choose to rent space on servers available for malicious purposes, such

as described in Section 3.3.3.1 on the Blackhole exploit kit. Additionally, the site could either

be a simple web hosting service or a site that forges a legitimate web presence, which could

require considerable setup.

Regardless of ownership, the site hosting malicious content needs to be relevant to the

industry and needs of the target. Often attackers will utilize “watering hole” attacks, which

are attacks on websites that are known to consistently draw users from the target industry [21].

This was a popular method that targeted government websites in 2013, and in the same year, a

“burst” of Internet Explorer zero day attacks were used to facilitate these attacks as well [21].

A malicious actor who compromises an existing website gains access to all hosted content

and regular visitors, as well as an established reputation in the web community. The attacker

can be removed from the website at any time, but malicious content hosted may remain. The

attacker can either trojanize existing content on the site, or post new malicious content for

victim-initiated downloads. For example, user guides, games, and even drivers or software

updates hosted on a legitimate website could be malicious. The attacker could also redirect

this site to another malicious one, or weaponize the site to initiate the malware download in

the background.

Many of the C2 servers used by the MiniDuke APT were legitimate websites that had been

compromised to deliver further instructions to the MiniDuke malware visiting that site [79].

Because background downloads are a popular way to distribute malware, ad servers, which

have a presence in many sites are a very popular type of web service to compromise, especially

if the ads serve high-traffic websites. Even a single ad from a compromised ad server, loaded

onto a legitimate webpage, can compromise many visitors to that page [90].

Communications protocols also each have special ways in which they can be exploited. For

example, SMTP servers established as open relays can be used to spread spam, and FTP and

HTTP servers can become repositories for malware, as reported by Sood et al. [72].
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Figure 3.4: Types of Website Weaponization

If the intended target is to be made unaware of the malicious download, there is less of

a need to present the victim with anything more than the website, and the malicious content

must only be able to pass basic network security measures by not appearing to be a malicious

executable. However, if the attacker chooses to have the victim deploy the malware, then the

rootkit or other malware must be packaged as a file that the target will open.

The above strategies for a compromised website, which apply to an attacker-owned or a

compromised third-party website, are reflected in Figure 3.4.

3.3.1.2 Email Distribution

In addition to an attacker taking over a website as the distribution channel for content, email

is the other primary method of distributing malware, and is considered to be highly effective,

and can easily slip past network security services such as firewalls and IDSs [72].

Bulk spamming entire companies is increasingly more difficult to carry out due to spam

blacklists and rules that can detect mass, indiscriminate distribution. Smaller sets of spe-

cific email targets are more likely to make it through to a human recipient, which is why

spearphishing is desirable for implanting malware. According to the Verizon 2014 Data Breach

Investigations Report [78], spearphishing was the most prolific method used to gain access to a

victim’s environment.

The primary concerns for an attacker aiming to submit malicious content to a recipient are

how to disguise themselves, the sender, as non-suspicious, and whether they are sending the

target a link to a website or an actual attachment.

Identity: The identity of the sender of the email can be forged quite easily using an exploit

kit, as described below in Section 3.3.3.

URL: The URL address contained in the email can either be an honest representation of the
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Figure 3.5: Types of Email Weaponization

web address, or the URL could be disguised in emails displaying HTML or some other graphical

format. Although the use of forged addresses can be successful, often businesses concerned with

security will block HTML and formatting content and only display the text presented. In this

case, the target may select the URL presented, and visit a legitimate site, not the one the

attacker intended.

Attachment: Attachments sent to the target must be appropriate for the victim to be

more likely to open the file than to be suspicious. There are three main types of attachments.

The attachment could be an executable, such as a trojanized software program. In this case,

the victim is aware that a program is about to run on their machine, and therefore they are

more prone to caution than with other attachment types. The attachment could be either a file

or a software program embedded in a container of sorts, such as a zip or rar file. The program

used to unzip or decompress the contents is usually the carrier for the exploit. The attachment

could be a file, like a spreadsheet or a PDF document, which will exploit whatever version of

the program that the victim has installed to open the document. Through this method, the

victim is less likely to associate any amount of danger with the act of opening the file. These

attachment types are discussed in the following section.

While these are considerations for developing defenses, detection mechanisms for these items

are not addressed in this thesis.

3.3.1.3 Weaponized Content

There are three types of content which can be used to distribute malware: executables, contain-

ers, and files. There are functional differences between these types in terms of detectability, the

type of exploit used, and even the likelihood the target will open the attachment or suspect it

to be a culprit if a rootkit or malware is detected later.

Executables: Executables attempting to pass through network–based IDS usually face
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high levels of scrutiny, and so an attacker would need to take extra care to ensure that it passes

all likely network–based IDS. An executable which is known to be malicious and which does

not use obfuscation is likely to be stopped by signature–based detection systems, as discussed

in Section 5.2.1. Even if obfuscation is used, the behavior of the executable may reveal its

malicious intention through defense tools which pre–execute the binary to observe its behavior

before allowing it to pass through the network perimeter [69].

Some networks employ virtual machine introspection (VMI), which prevents any executable

from passing the perimeter until it has executed it on a virtual machine to monitor its behavior.

A file which does not execute as expected, or which causes unallowable behavior on that virtual

machine will not be forwarded on to the intended recipient. Executables with delayed malicious

activity, or those which only respond to certain environmental conditions may run, but not

display any malicious behavior [69]. Section 5.4.2 describes VMI in more detail.

Falsifying the file extension may also raise flags at the network level, but can also prevent

the executable (and embedded exploit) from even running if the recipient or system does not

recognize how to open the file. There are methods by which an executable can prevent itself

from being run in a virtual environment, but these methods are also more likely to result in

the attachment being blocked rather than delivered.

One of the best ways to deliver malware via an executable is to inject malware into an

existing legitimate executable, such as a driver, or a common office product add-on or update.

It would perform as expected on a VMI appliance - minus additional functionality. A downside

to this method is that known software and executables can be compared to a published signature

of the original content (e.g., MD5, SHA1). Any changes to the content will result in the creation

of a new signature, and if network defenses or the intended target check these signatures, the

executable will not be delivered.

The ZeroAccess rootkit was deployed via trojanized copies of a DivX Plus 8.0 keygen and

copies of the game Skyrim [90]. Both of these executables targeted persons attempting to access

commercial software without paying for it. As a result, victims were more likely to download the

executables from home and were not likely to be protected by enterprise-level network defenses.

Containers: The attacker can choose to embed the malicious content in a zip or rar file.

One advantage to this approach is that the container can hold any kind of content and thus

has no known signature to check, unlike executables. However, VMI implementations can still

unpack zipped or compressed files and run the contents. Additional security could be added
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to the compressed package by encrypting it with a password, but this can raise more suspicion

by the recipient, and any unnecessary complexity added to the delivery process can cause the

recipient to not want to open the file.

The container can contain a malicious executable, trojanized files, and even hidden files

with malicious functionality. The weapon itself could be contained in any content within the

container or a hidden executable which launches at the time the container is opened, exploiting

the host-based extractor and starting the exploitation process on the target’s machine.

Files: The most common carriers for malware are standard office documents, such as

.doc(x), .xls(x) or .pdf files. Content distributed via these files is a natural part of conducting

business and can be customized for the intended target’s current business circumstances or

interests. It should be noted that the content of the file is only relevant to convince the target

to open the file.

When the victim downloads or launches the file from their inbox a common host-based

application appropriate to that file type will attempt to open the file. The malicious content

embedded in the file or document will then exploit a weakness in that host application. The

type of exploit used depends on the expected host application. For example, Adobe Reader

version 9 can be exploited to produce a reverse TCP shell.

There is a large number of possible exploits and classifying host-based application exploit

vectors is not attempted in this thesis. However, regardless of the type of exploit used, the goal

for the malware or rootkit is to attempt installation, which is discussed in depth in Section 4.1,

“Rootkit Installation”.

3.3.2 Exploits and Payloads

There are two main components to the weaponized package: the exploit, and the payload. An

exploit is carried out by taking advantage of some weakness in a software program or operating

system. The payload is the malicious software which can install and run after the system has

been exploited.

There are two different uses for exploits in the deployment of a rootkit to a victim:

1. The first exploit occurs when the victim opens the malicious content and a vulnerability

in the host program allows the hidden malware to start executing in the background.

2. The second exploit is usually contained in the payload and it launches as part of the

rootkit installation process to provide the rootkit with elevated privileges.
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The payload is the rootkit and all helper functions and files. Rootkits tend to be small; their

addition to the file or application should not affect the expected size significantly, and because

rootkits establish a connection to the attacker’s server, additional malware can wait until the

rootkit has established itself and created a friendly environment for new malware installation.

The possible range of vulnerabilities an exploit can target or the range of potential payloads

which may be included are outside the scope of this thesis, and so they are not discussed in

depth here.

3.3.3 Exploit Kits

Often rootkits are deployed from a suite of tools designed for use in for malware creation

and exploitation. Exploit kits are an effective way for malicious actors with minimal level of

technical experience to distribute malware. This section introduces two tools which greatly

assist an attacker with both the weaponization and delivery process.

3.3.3.1 The Blackhole Exploit Kit

The Russian-developed Blackhole exploit kit is a framework for exploits and social engineering

tools, and was responsible for generating the vast majority of spam and hacking in 2012 [27].

Blackhole also included a Browser Exploit Pack (BEP) which included tools to compromise

and host malware on websites. Exploits developed in Blackhole could be crafted for specific

operating systems, target country, browser, and other criteria [72].

Blackhole was used to plant some notorious malware including Zeus, the TDSS rootkit, the

ZeroAccess rootkit, and various ransomware [27].

Blackhole is unique in its business model: rather than charge the user a flat rate to purchase

the kit Blackhole and use of the Blackhole server is “rented” to the malicious user for a monthly

fee. The actor responsible for the creation and marketing of Blackhole was arrested in Russia

in 2013 [78] but there are many tools similar to Blackhole available in the wild.

3.3.3.2 Metasploit

Metasploit is a popular penetration testing tool which often comes preloaded alongside other

exploitation tools in the penetration testing OS Kali Linux, and can be used to manually craft

and deploy exploits and payloads [46]. An alternative to the Blackhole exploit kit, Metasploit

and its related tools are free to use, although, unlike Blackhole, server space is not provided.
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The Metasploit framework (MSF) contains a database of exploits targeting known vulnera-

bilities in software programs and operating systems, as well as a database of payloads to further

compromise the target. Weaponization can be performed both manually and through an au-

tomated interface. Manual weaponization uses msfexploit and msfvenom, which load exploits

and payloads, and obfuscates attack code. Automation is achieved through the use of the So-

cial Engineer Toolkit (SET), a collection of tools designed to simplify the social engineering

weaponization process, which is integrated with Metasploit to utilize the exploits, payloads,

and other tools within Metasploit.

SET presents Metasploit functionality in a menu-based format (as opposed to a command

line interface) with the intent to simplify the social engineering weaponization process. Menu

options include commands such as “Mass Mailer Attack” and “Website Attack Vectors”,

and make it easy for a non-expert adversary to craft a malicious payload into a file and mail

it anonymously. The Mass Mailer Attack gives the attacker the option to send an email to

a single address or to recipients in a mailing list. Metasploit’s SET also includes attacks

specifically for Arduinos, SMS messages, wireless access points, and other attacks, including

the Infectious Media Generator, which enables a CD/DVD/USB to auto-run malicious content

when loaded [49].

3.3.4 Obfuscation

Obfuscation is a method by which malware morphs or rearranges its code so that it cannot

be assessed to be malicious by standard detection mechanisms. This is typically achieved

through code scrambling, encryption, or by packaging the malware inside another object. Some

obfuscation efforts go as far as to implement code to inhibit debugging or virtual execution of

the binary [72].

The most common tools that aid the process of obfuscation are packers which compress

the malware and reduce its size. Packagers embed malware inside legitimate software, and

crypters, which encrypt the malware, both tools changing the signature of the code [72].

3.3.4.1 Code Scrambling

Obfuscation by scrambling rearranges the order of the code so that it is less likely to generate

a known signature but the functionality of the code remains the same. Each of Metasploit’s

msfvenom’s scrambling algorithms is named and ranked within the application. One popular

obfuscation algorithm is the shikata ga nai algorithm [?].
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Polymorphic malware commonly automates code scrambling for each successive copy in

such a way to change its signature [74]. However, some types of “polymorphism” can also be

achieved through manual encryption, or repackaging [66] [28].

3.3.4.2 Compression

Packers compress malware, changing the signature and reducing the size. Malware is usually

packed with a type of complex, polymorphic packer [90]. RogueAV is one example of mal-

ware which uses a dynamic packer, effectively evading signature-based and some pattern-based

defenses [85].

3.3.4.3 Packaging

Packagers bundle malware within legitimate software, turning the application into a trojan [85].

Injecting malicious code into a legitimate application is also called “trojanizing” the applica-

tion [83] [45] [9]. Trojanizing is a popular method of distributing malware within highly popular

binaries, but is more likely to be detected in enterprise environments which verify the legitimacy

of applications through integrity verification [72].

Malware is often embedded within common business applications, such as Adobe PDF, Mi-

crosoft Word, or even ZIP files. Due to the variable nature of the content of these documents, a

signature is not infeasible to compare against for integrity checking [66]. For example, an email

sent to Mandiant employees in 2012 was suspected to originate from China’s People’s Libera-

tion Army (PLA) Unit 61398, also known as “APT1”. The email contained a malicious ZIP

file called “Internal Discussion Press Release In Next Week8.zip”, which contained a custom

backdoor [42].

3.3.4.4 Encryption

Crypters can be used to obfuscate software by not only rendering the signature detection in-

effective, but also by making the code unable to be analyzed for functionality if the target’s

detection system debugs or executes binaries externally prior to delivery. Even though func-

tionality cannot be determined, the detection of encryption alone can raise suspicion [72] [51].

Additionally, the code must be decrypted before it can be executed, making the installation

method just a little bit more complicated.

According to the Websense 2013 Threat Report, Blackhole used “criminal encryption”,

which is described as a type of encryption that anti-virus engines and deobfuscation tools have
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Figure 3.6: Taxonomy of Weaponization Methods

trouble detecting [85]. However, the presence of an unknown encryption should raise suspicion.

Figure 3.6 shows the taxonomy of weaponization methods used to prepare a malicious

package to both host the rootkit and not raise suspicion by the target.

3.4 Rootkit Delivery

Delivery: Delivery can be defined as the stage in which the rootkit is transmitted, successfully

enters the victim’s network, and eventually resides on the victim’s machine. The method of

transmitting the rootkit ideally raises no alarm by any firewall rules, network or host based

IDS, or by any other defenses. From the perspective of the network, there is no indication

that the rootkit or its container is in any way malicious. Additionally, if the rootkit requires

human intervention in order to install, then it must be delivered so that the recipient knows of

its presence and also believes it to be benign and necessary so that they will eventually take

action to open it and (knowingly or unknowingly) launch the installation process.

The Weaponization stage addresses mechanisms which can be built into or around the

rootkit, such as obfuscation, to prevent it from being stopped by both network and host-based

defenses, as well as social engineering strategies which can help effect delivery. The Delivery

stage addresses the application of some social engineering strategies as applied to both active

and passive delivery methods, and physical and cyber delivery methods, in order to ensure that

the rootkit is safely delivered to the victim.

This section discusses various delivery methods by which a rootkit could be transmitted and

received to the target machine. Rootkit transmission methods can be boiled down to active or

passive methods used in conjunction with physical or cyber methods.
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Kill Chain Phase Considerations Section

Delivery 3.4

Active vs. Passive Delivery 3.4.1

Active 3.4.1.1

Passive 3.4.1.2

Physical vs. Cyber Delivery 3.4.2

Cyber 3.4.2.2

Physical 3.4.2.1

Table 3.5: Section 3.4 Roadmap

• Active delivery directly interacts with the target in order to deliver malware.

• Passive delivery requires planting malware in a way such that the target is likely to

inadvertently stumble upon or discover the malware and install it themselves.

• Cyber delivery only requires digital access, usually through a network, in order to deliver

malware.

• Physical delivery requires physical access to some aspect of a victim’s hardware in order

to deliver the malware.

Both active and passive delivery can be facilitated by cyber or physical means as discussed

in Section 3.4.2. Likewise, both physical and cyber delivery can each be actively or passively

distributed.

The methods discussed below are not all equally likely to be implemented, but are important

to discuss in order to understand the range of options for malware delivery. The rest of this

thesis, starting with Section 4.1 “Installation and Exploitation”, simplifies delivery assumptions

to the scenario of a rootkit embedded in a seemingly relevant email attachment, delivered via

spearphishing.

Table 3.5 provides a high level taxonomic overview of weaponization techniques discussed

in this section.

3.4.1 Active vs. Passive Delivery

Malware delivery can be evaluated by the level of interaction the attacker chooses to have with

individual targets.
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3.4.1.1 Active Delivery

Active malware delivery is ideal for situations necessitating a specific target and thus more

direct interactions.

Rather than hoping for some arbitrary victim to inadvertently click a link or stumble upon

a relevant website, actors choosing to use active delivery know who the victim should be,

and how they may likely become infected. Often active delivery is preceded by high levels of

reconnaissance so that more information about the victim will help ensure the success of the

delivery. For example, this includes information about the target’s political or personal interests

for more effective social engineering and knowledge of the target’s hardware and/or operating

system to ensure the rootkit can effectively install.

Social engineering via spearphishing has proved to be a useful active delivery method [85] [78].

For example, an attacker could email a malicious PDF document containing legitimate infor-

mation about upcoming tax changes to personnel in the Human Resources department of a

company, or send a malicious link about a mutual hobby to an unwitting social media “friend”

on the inside to share with their supervisor. An attacker can use a document posted online

by a legitimate business, or even on the target’s own website or blog, add the malware to the

document, and then send it to the target [13].

In 2009 the GhostNet rootkit was distributed via an email containing “contextually relevant”

information with a malicious attachment that dropped a trojan connecting to six different C2

servers in China and Hong Kong [37]. Famous APTs Flame, Stuxnet, and Red October are

believed to also have been initiated via spearphishing messages to specific individuals within

certain targeted organizations [85].

In 2011, political figures in Hong Kong received a high volume of emails containing malicious

documents, usually during major political events. For example, several malicious attachments

were delivered while massive rioting was occurring in Guangzhou province. The timeliness

of these emails led investigators to believe that the goal of these attempted APT attacks was

political espionage. The attackers were highly invested in their social engineering attempts, even

scheduling political meetings in order to send relevant content in the spearphishing emails and

attachments. File extensions for these emails included .pdf, .doc(x), .xls(x), and .chm [37].
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3.4.1.2 Passive Delivery

Passive delivery methods are less concerned with who the end victim is, as long as the malware

is delivered somewhere. Distribution methods are more broad than in active methods, such as

bulk spam or phishing emails, or a compromised website. The victims could be indiscriminately

chosen, such as spam email sent to as many addresses as the attackers can obtain. Victim

selection could be narrowed down to a target industry or business resulting in phishing emails

or watering hole attacks.

One example of an effective passive delivery method involves attackers setting up a malicious

website, as discussed in Section 3.3.1.1. When a victim visits the site, either by casually landing

on the page or directly clicking a malicious link, the website’s server backend will attempt to

launch an exploit against that machine. Common exploits for Windows target applications

such as Internet Explorer, Adobe Acrobat, Flash Player, and Java [90].

Passive attacks often consist of “phishing” attacks, where the attacker sends an email con-

taining a malicious URL to every employee within a company, or a “watering hole” attack

where the attacker hijacks a popular niche-tech website so that visitors end up with malware

downloading in the background [78] [21].

Other passive methods involve planting compromised files on peer-to-peer (P2P) services,

establishing rogue Wi-Fi services, and even the possible compromise of shared storage such as

cloud services [72]. The type of delivery method is also indicative of the goals of the attacker.

Spam messages tend to lead victims to a variety of highly dangerous exploits, while phishing

tends to be very specific, primarily for banking or backdoors and botnets [85].

The lines can be blurred between active and passive delivery methods when the target

business is specific, but the individual targets are indiscriminately chosen. For example, the

Aurora attack, which targeted Google, was distributed via a malicious URL sent to Google

employees via phishing emails [67].

3.4.2 Physical vs. Cyber Delivery

Both active and passive methods of malware delivery can also employ both physical and cyber

delivery strategies.
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3.4.2.1 Physical Delivery

Physically-delivered malware can be Actively planted through either direct physical access or

indirectly through the supply chain. While this thesis focuses mostly on cyber-only strategies,

it is important to note that emails and websites are not the only places from which malware

can be sourced.

Physical access is often not considered when planning cyber defenses, but a single piece

of compromised hardware connected inside the DMZ can be uncontested by security defenses.

Physical delivery methods highlight the importance of vetting supply chain vendors and con-

tractors, as both can access physical resources with less scrutiny than in-bound network traffic.

Active-physical malware delivery requires direct physical access to a specific target’s hard-

ware resources. For example, a malicious contractor doing network upgrades could intentionally

launch malware from a connected device, or knowingly install malware on a laptop being re-

paired.

The supply chain can also act as a player in the distribution of malware. According to

FireEye, the supply chain is one of the top ten vertical targets for organizations worldwide [21].

International supply chains are frequently utilized by vendors of hardware components. Hard-

ware is assembled in one country, with parts originating from other countries, and is then

re–branded, marketed and sold in yet others [67].

An adversary with influence in a foreign manufacturing facility could take advantage of an

organization’s purchase request to manufacture PC chips by adding malicious circuits which

initiate keylogging. A malicious vendor could choose to ship that same malicious hardware to

a target customer [3] [67].

Malware compromise through physical delivery can also be facilitated through passive

means. A system can be accidentally compromised if a third-party contractor performs system

maintenance unknowingly using a previously compromised device, or unknowingly installs an

adversary-compromised hardware device. This is a real danger for companies who permit de-

vices to connect to the company network that are not held to the same standard of patching,

maintenance, and vetting as company-maintained devices. The supply chain can also be a

vector for indirect malware distribution. Honest vendors may ship unknowingly compromised

hardware from a malicious supply chain manufacturer to a target customer. Vendor credibility

alone does not mean that hardware will not introduce malware threats [11].
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Active Passive

Physical Insider PnP abuse Employee PnP/hardware misuse,

Malicious vendor Compromised vendor,

Malicious 3rd party contractor Compromised 3rd party contractor

Cyber Spearphishing Phishing & spam

Malicious insider Employee email/web abuse

Cyber attack Web drive-by, watering-hole

Connected services (e.g. cloud)

Table 3.6: Active-Passive and Physical-Digital Delivery Examples

Figure 3.7: Taxonomy of Physical Delivery Methods

In addition to supply chain and third party contractors, another major vector for malware

infection results from employee misuse of company resources. One of the most prevalent passive

forms of physical malware infection results from unintentional insertion of compromised physical

media, such as USBs and other Plug-n-Play (PnP) devices, which are considered misuse via

“unapproved hardware”. Employees can also misuse resources by taking company hardware

(e.g., a work laptop or external storage device) home, or utilize cyber misuse by checking

personal email and browsing unsafe sites from within the company firewall [78].

Examples of malware spread via USB include the W32/Fanbot.A@mm worm, which also spread

itself by email and P2P services [75], the Stuxnet worm [79], and quite possibly the Flame

bot [79].

3.4.2.2 Cyber Delivery

Cyber delivery encompasses any method of malware delivery which does not necessitate physi-

cal means. Cyber-only malware delivery is most often performed through web-based malware

downloads and through emails containing malicious URLs or compromised attachments. How-
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Figure 3.8: Taxonomy of Cyber Delivery Methods

ever, cyber-only delivery can occur through any network-connected service on a user’s machine.

This includes synchronized cloud services, such as Dropbox [15], P2P services, Bluetooth [91],

and even Wi-Fi interactions [2].

Table 3.6 lists some of the malware delivery methods which can result from combinations

of physical-cyber and active-passive delivery mechanisms.

Figure 3.7 shows the taxonomy of physical delivery methods and Figure 3.8 shows the

taxonomy of cyber delivery methods.

After the malicious package is delivered to the victim, the next stage in the kill chain is

for the package to be opened so that the rootkit may begin installation. Chapter 4 addresses

rootkit activities after it has been successfully delivered to the victim’s machine.
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Chapter 4

Kernel–mode Rootkits

There are several different types of rootkits, such as those that affect hardware, run only in

memory, or remain entirely in user mode. This thesis focuses on “kernel–mode” rootkits, which

primarily operate through kernel and system feature manipulations and related resources.

This chapter provides further detail on kernel–mode rootkit activities once inside the target

system. Descriptions of the regions affected and resulting behaviors are provided along with

taxonomies for the mechanisms used to compromise a system.

Section 4.1 details both rootkit installation and exploitation actions, and comprises the bulk

of rootkit activity. Section 4.2 discusses rootkit C2 channel and communications. Section 4.3

details rootkit attack activities as an extension of rootkit capabilities. Section 4.4 discusses spe-

cialized rootkits, particularly those that are not limited to kernel–mode activities, and rootkits

which specifically target industrial control systems. Table 4.1 provides a simple roadmap for

topics discussed in this chapter.

Chapter 5 addresses the background and taxonomies of rootkit detection mechanisms, as

related to rootkit information discussed in this chapter.



43

Kill Chain Phase Section

Steps 4 & 5: Installation and Exploitation 4.1

Step 6: Backdoor Creation 4.2

Step 7: Rootkit Activity 4.3

Specialized Rootkits 4.4

Table 4.1: Chapter 4 Roadmap

Kill Chain Phase Topic Section

Installation / Exploitation 4.1

Operational Goals 4.1.1

The Kernel 4.1.2

Installation Techniques 4.1.4

Installation Process 4.1.5

Rootkit Privilege Escalation 4.1.6

Rootkit Persistence 4.1.7

Rootkit Hiding Methods 4.1.8

Table 4.2: Section 4.1 Roadmap

4.1 Rootkit Installation and Exploitation

Stages 4 and 5 of the kill chain, Installation and Exploitation, directly follow rootkit delivery.

These stages are discussed together in this section because the installation process involves

alternately planting files and in turn subverting the victim’s system in order to obtain necessary

privileges for further installation. Where rootkits are concerned, exploitation is a natural part

of the installation stage. Application–specific exploits are not the focus of this research, but

kernel-level workarounds are exploits of rootkit installation activity, and are addressed.

There are two major stages to rootkit installation: the first stage requires the malicious

package to be executed, through which arbitrary exploits against applications on the host

machine grant privileges to allow the rootkit to install itself. The second stage is the installation,

which can take many forms and infect many locations on the victim machine, both in user

space and at the kernel level. Low or kernel level manipulations that allow the rootkit to gain

additional levels of access to further its installation may or may not be executed through kernel

space or through additional application–specific exploits.

Table 4.2 provides a roadmap for topic discussed in Section 4.1.
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4.1.1 Operational Goals

Prior to discussing the actions that take place during rootkit installation, it’s necessary to

understand the intention behind each action. As discussed in Section 3.1, rootkits have four

primary stages of operation: 1) covertly enter a victim’s system, 2) exploit the host to elevate

privileges, 3) install and persist while hiding evidence of itself, and 4) perform other simple

malicious activities.

Section 3.4 “Delivery” addressed rootkit entry to the target’s system, and Section 4.3,

“Rootkit Activity”, addresses additional malicious activities. This section addresses the in-

between stages, which are all a part of rootkit installation.

Each activity performed at the installation stage prepares the rootkit to fulfill some aspect

of its operational goals. The following are rootkit operational goals, which guide the rootkit

installation process. The only operational goal that is not specifically handled at installation is

that of backdoor creation.

1. Rootkits attempt to gain elevated privileges. A rootkit is rarely intended to act

alone, but as a vehicle for other malware or adversaries to exploit. Regardless of the mode

into which the rootkit process was started, through exploits the rootkit gains access to

kernel and OS resources. Privilege escalation is gained during the installation process,

and is further discussed in Section 4.1.6, “Rootkit Privilege Escalation”.

2. Rootkits aim to persist. In order to remain useful as an APT asset, a rootkit will

do whatever it can to ensure that it survives reboots, configuration changes, and even

attempts to remove it directly. This is performed by hiding its file, processes, and even

integrating itself into the system so that removal could be devastating to the system as a

whole. Rootkit persistence methods are discussed in Section 4.1.7, “Rootkit Persistence”.

3. Rootkits attempt to conceal their presence. The first mission for a rootkit is to

deploy without being detected. A rootkit will do whatever it can to hide its own existence

from process lists, the directory structure, and will even attempt to disable programs that

it knows may expose its processes or attempt to remove it. Details on rootkit hiding

methods are discussed in Section 4.1.8, “Rootkit Hiding”.

4. Rootkits create a backdoor. A rootkit will often be sent alone, to serve the covert act

of introducing a vulnerability into a system so that other malware or the adversary may
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later achieve access and further the exploit process. Backdoors can consist of an open

network port, a compromised network-facing application, or even a vulnerability for an

attacker to exploit. The backdoor is often some form of network channel for a remote

server connection to send further instructions or malware downloads. The method by

which a rootkit establishes backdoors is handled separately from initial installation, as

Step 6 of the kill chain, and is discussed in Section 4.2, “Backdoor Creation”.

In order to understand the methods rootkits use in order to infiltrate a victim system, it

is necessary to understand the space in which installation and exploitation take place. Section

4.1.2 discusses the kernel, which is where the most critical rootkit activities take place. The

following sections discuss strategies rootkits use to take action within the user space. Section

4.1 concludes with specific ways that rootkits combine these methods in order to fulfill their

operational goals.

4.1.2 The Kernel

The kernel is the part of the operating system which handles low–level instructions, and facili-

tates I/O operations between the OS and hardware.

Many successful rootkits exploit kernel features, because custom instructions executed

through the kernel can manipulate the flow of information through the operating system. This

allows a rootkit to modify the way that the system responds to commands by altering the con-

tent or calling order of kernel objects or by placing new instructions or jumps to attacker–placed

code.

This section provides a simple overview of the structure of the Windows and Linux kernels,

and then discusses kernel features which are most commonly used by rootkits to fulfill malicious

objectives.

Table 4.3 provides a high level view of kernel structures discussed in this section.

4.1.2.1 Windows Kernel

The Windows kernel is a microkernel, where several utilities reside in user space, and then

interface with the kernel to complete requests. User space services communicate to kernel level

services through device drivers and application interprocess communication (IPC).

The Intel x86 architecture is designed with four rings as layers of permission or protection

around the kernel. However, Windows systems use only two of the rings: Ring 0 is kernel
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Kill Chain
Phase

Topic Section

Installation / Exploitation 4.1

The Kernel 4.1.2

Windows Kernel 4.1.2.1

Linux Kernel 4.1.2.2

Terminology 4.1.2.3

Kernel Structures 4.1.3

Kernel Objects 4.1.3.1

Address Tables 4.1.3.2

Libraries/APIs 4.1.3.3

Configuration Files 4.1.3.4

Drivers 4.1.3.5

Table 4.3: Section 4.1.2 Roadmap

mode (highest privilege) and Ring 3 is user mode (lowest privilege). Each of these modes use

virtualized memory addresses through a hardware abstraction layer [39].

User–mode is primarily utilized by high level applications, which typically require user

interaction and run with lowest privilege. User mode applications include standard third–party

applications, services, and applications which a user interface.

Windows user–level applications are each assigned their own process, virtual address space,

and handle table. The address space of user–mode applications is limited to prevent access (and

possible damage) to OS data in the kernel address space [47]. Because an application’s virtual

address space is private, one application cannot alter data that belongs to another application.

Crashes of user level processes generally only bring down the affected process, and are

recoverable as they do not affect the core operating system [76] [47].

Kernel–mode describes low–level operating system applications and processes, which run

at highest privilege. The kernel mode address space in Windows is shared by all kernel–level

processes, making it easy for a single corrupted kernel–level process to corrupt the memory

space of other processes [76]. Due to this simple, two–layered architecture, code running in

kernel mode is implicitly trusted [73].

Driver crashes at the kernel level can bring the entire system down. This is one reason

why kernel–mode malware is typically more difficult to write, as any obvious signs of system

malfunction could raise alerts to its presence [47].
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4.1.2.2 Linux Kernel

Linux is a monolithic kernel system with applications residing in user space and the entire

operating system residing in kernel space. The Linux kernel is similar to the Windows kernel

in that the hardware utilizes two main levels of privilege. Consisting of a 2–ring layered ar-

chitecture, Ring 0 is considered to be kernel/supervisor mode (highest privilege), and Ring 3

is user mode (least privileged). Permissions level are divided into a less-privileged user space

and a high–privilege “root” space which has access to system resources. Although user and

root permissions roughly parallel those of the ring architecture, the relationship is not precise,

and context switches to those of the rings themselves are more the domain of hardware–based

rootkits [81], which are not discussed in depth in this thesis.

User space in Linux–like systems is the domain of user applications, system daemons, and

some application–specific libraries.

Kernel space in Linux is the residence of device drivers, the virtual file system (VFS) and

virtual memory, memory management, the scheduler and IPC.

Kernel–mode rootkits in Linux operate similarly to that of Windows kernel–mode rootkits

and use techniques that modify resources that may in themselves be defined as user–mode,

kernel–mode or the system. Therefore the space in which the rootkit is operating is more

defined by the resources accessed, such as libraries or dynamic kernel modules, and less that

of an assigned privilege level. Kernel–mode rootkits manipulate resources at all of these levels,

provided an exploit has provided access to that resource.

The Linux kernel is modular, and so specific functionality, such as drivers and file system

accesses can be implemented as kernel modules [65].

4.1.2.3 Terminology

The following terms are used frequently throughout this thesis. Although the use of one term

may appear with greater frequency in reference to one particular operating system, these terms

can generally apply to the same concept in other operating systems. It should be noted that

the majority of literature focuses on Windows rootkits, and thus the majority of examples

presented in this thesis apply to the Windows domain.

• Kernel mode is the term used to refer to activities primarily occurring at the kernel

level of an OS, but which also frequently use user space and OS resources. The level

of permission assumed to access this broad range of regions is frequently referred to in
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literature as “kernel–level” [9] [77] [73] [63]. According to Vasisht et al., kernel–mode

rootkits operate with “unrestricted accesses at the root privilege level” and can manipulate

any component of the system [77].

• Kernel object/kernel module are significant components within kernel space. Often

this term refers to a function, or piece of code with specific features or functionality. Kernel

objects/modules can be callers or callees at the kernel level of an operating system.

• Kernel code consists of both code and instructions inside kernel modules and data

structures. Kernel code dictates the logic by which instructions are executed.

• Kernel data are the value of variables or returned values of kernel objects or other data

sources. Kernel data is semantically relevant information by which other modules and

kernel objects and applications make decisions.

• System calls are the method by which applications or programs request a service from

the kernel, including requests for hardware access, process creation and execution, and

scheduling. These calls can be made by objects within the kernel, although this term

usually refers to a service outside the system making requests for the system to handle a

service.

• Application Programming Interfaces (API) are the building blocks for software

programs, including parameters, tools, and protocols. Each platform’s API provides a

set of functions which can be used to create and modify software programs and other

platform–dependent utilities.

• Inter–Process Communication (IPC) is the process by which applications and ser-

vices communicate with each other, in particular where the individual process memory

spaces are virtualized or cannot be accessed via memory address alone.

4.1.3 Kernel Structures

This section discusses the structures and utilities used by rootkits. The categories of kernel

structures discussed below are present with some variation in both Windows and Linux–based

operating systems.
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4.1.3.1 Kernel Objects

The term “kernel object” can be used to describe several different types of kernel data struc-

tures and devices, including high level device drivers and the file system, processes, threads,

events, semaphores, queues, and timers. Kernel objects can also be both static or dynamic [73].

Although this term may be broadly applied, kernel objects are generally considered to be either

part of the functionality of the system kernel, or are modular and extend the functionality of

the kernel.

The accessibility of kernel objects depends on the level of privilege of the service calling

the object. User level applications in Windows do not reference kernel objects directly (i.e., by

pointers) but rather by handles, which provides some layer of security between the user layer

and the kernel–space data structure. However, in kernel mode, objects can be accessed directly,

by their pointers. The Access Control List (ACL) maintains each kernel object’s handle,

and interfaces with the Security Reference Monitor (SRM) to ensure objects are only being

accessed by assigned permissions [73]

In Linux, the system call interface (SCI) mediates user level application access to kernel

level structures. The system call lookup table contains the addresses for kernel objects,

Each module has parameters. These parameters can provide additional functionality that

can change their behavior. If the module is already running, existing parameters must be

unloaded before new parameters can be loaded, or new custom parameters can be directly

loaded. Each module also has dependencies, either calling or being called by other modules,

and for the most part tends to interact frequently with a certain subset of other relevant

modules.

In Linux, dynamic kernel modules are generally called “loadable kernel modules” (LKM) [4]

[84] [77], while in Windows the same term is applied more specifically to objects such as device

drivers [73]. LKMs are compiled as object code and may be ready for use when needed.

In user mode, applications can crash and restart with minimally corrupted user–level data.

LKMs, when crashed, can bring the entire system down. Regardless of OS, the kernel is a

difficult domain to exploit, as malware and legitimate modules need to operate nearly perfectly

in order to avoid a system crash. This is especially true for rootkit activities, as any slight

abnormality caused by the code can reveal the presence of non–standard functionality.
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4.1.3.2 Address Tables

Address tables within the kernel provide pointer information to kernel objects and user level

process handlers. There are three primary tables which are used by rootkits: SSDT, IAT, and

ICT.

• Import Address Table (IAT)/Global Offset Table(GOT):

The IAT (Windows) and GOT (Linux) are global tables which contain offsets to the

pointers for library functions [81]. Windows user level applications call libraries using

a function handle to access addresses indirectly [73] [63]. The GOT similarly resolves

addresses without requiring function handles.

• The System Service Descriptor Table (SSDT) or System Call Table:

The System Service Descriptor Table (SSDT) is a dispatch table in Windows which con-

tains the pointers to system functions (APIs) that implement system services (located in

ntoskrnl.exe). This is a kernel-level address table which the System Service Dispatcher

uses to find a system service’s code [63]. The Linux equivalent is the System Call Table [4].

• Interrupt Descriptor Table (IDT):

The IDT is a data structure in Windows that stores the handlers for software inter-

rupts [73]. The CPU checks the IDT when interrupts occur in order to determine what

code will be called to handle that particular event [63] [77]. The Linux equivalent is also

called the Interrupt Descriptor Table [4].

4.1.3.3 Libraries/APIs

The Linux API consists of system calls and subroutines which programs use to access system

resources. Libraries contain frequently-used code that can be shared by multiple services within

an operating system.

Windows uses dynamically linked libraries (DLLs) which include functions and data that

other modules can use. The Linux equivalent to Windows’ DLLs could be the Executable and

Linking Format (ELF) files, which is the shared object (.so) format.

4.1.3.4 Configuration Files

Configuration settings stored for diverse applications are often contained in a standardized re-

gion of the OS. The Windows Registry is one highly useful domain for configuration information
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for applications and procedures. In Linux, configuration information is often stored in the /etc

folder or in an individual application’s initialization(.ini) or configuration(.conf) files.

4.1.3.5 Drivers

Drivers are objects which enable communication between applications and I/O devices. One

notable type of driver is the filter driver, which exploits the Windows layered device driver

architecture. A filter driver placed between two layers of drivers can intercept and censor

information in a way that benefits the attacker [73].

In the Windows microkernel structure, kernel–mode device drivers can perform direct mem-

ory access (DMA) through which they have the ability to write directly to physical memory [87].

Memory protection mechanisms may be in place to ensure that a user–mode driver does not

attempt to write within kernel space, but these mechanisms are imperfect [51].

4.1.4 Installation Techniques

When a rootkit installed, it plants malicious code or instructions via one of the three following

types of code placement. These forms will become important later in the discussion of rootkit

detection, as some detection methods are better than others at detecting different types of

rootkit code. After introducing these methods of kernel level code placement, specific kernel-

modification strategies are discussed. Each strategy identifies the domain of activity as related

to kernel structures, and the type of code placement used.

Injected code or data. This type of rootkit code is planted inside an already existing

host, with the assumption that when the host runs, this code will be executed as part of the

host’s instruction set. However, rather than writing over existing instructions, injected code is

planted as additional functionality, rather than replacing existing functionality.

Overwritten or altered code or data. In this scenario, the rootkit actively changes the

instructions within a kernel module, binary, or even the address of a pointer [84]. Sometimes the

overwritten code is lost forever, but with many rootkits, the original code is stored elsewhere to

be called via a malicious filter [44] [81]. This is commonly implemented as pointer overwriting

in address tables to modify execution flow [84] [73].

Standalone code or data. This code takes some form of relatively complete, self-sufficient

code, which implements instructions on its own. This can take either the form of a kernel

module with malicious instructions, a malware executable, or even a brand new entry in a table
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Figure 4.1: Data/Code Modification Types

or registry. Standalone code is new, occupying previously unallocated space. Standalone data

can be planted with legitimate data to be used to create malicious logic.

Using complex combinations of these three code planting styles, rootkits can achieve their

objectives.

Although a rootkit can only perform kernel level activities through incrementally gained

access via successive exploitation actions, the installation process is not always linear. The

activities presented in the following sections, unless otherwise specified, may be performed at

any stage in the rootkit installation process, and as a result, are not presented chronologically.

Additionally, the following activities which help fulfill rootkit objectives, while commonly

used by many rootkits, are not all used by all rootkits. Rootkit activities discussed in this

section are primarily described in terms of installation activities, and additional post-installation

functionality is discussed in Section 4.3.

The techniques described below provide a broad overview of how kernel manipulation activ-

ities can be combined in order to perform some of the most common rootkit activities, These

techniques are not exhaustive, but provide a broad range of information to which detection

techniques, discussed in the next chapter, can be applied.

These activities can be simplified to a) placing hooks in the system in order to b) control the

flow of information and actions performed by the system. The term “hooking” can be used to

imply that a rootkit has modified a system feature such that it has overwritten or placed code

within that feature such that it has control over some aspect of that feature’s activities. There

are several types of features which can be hooked, such as kernel modules, address tables, and

configuration settings, as described below. Control flow modification ultimately is how the

rootkit controls activities within the kernel, by hooking processes such that they deviate from

the actions originally intended in order to execute malicious activities on behalf of the rootkit.

Table 4.4 provides a high level view of kernel structures discussed in this section.
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Kill Chain Phase Technique Section

Installation / Exploitation 4.1

Installation Techniques 4.1.4

API Detouring 4.1.4.1

DKOM 4.1.4.2

Configuration/Registry 4.1.4.3

Code Injection/Patching 4.1.4.4

Filtering 4.1.4.5

Process/Thread Injection 4.1.4.6

Malicious Logic 4.1.4.7

Table 4.4: Section 4.1.4 Roadmap

4.1.4.1 API Detouring

API detouring, also known as a “redirection attack” or “control flow attack”, is an abuse of

system APIs in order to modify the execution flow of system instructions. Kernel level rootkits

implement execution redirection both through hooks and injection [51].

API detouring is generally started by overwriting a pointer in one of the system address

tables, from where rootkits can either access and make modifications to kernel code, or change

the order of instructions. API hooking must be handled carefully, because if an instruction is

called, and the malicious codes does not return to the original (or next) intended address, the

entire system could crash. Despite the caution required to implement API detours, this method

is shown to be highly effective. Wang et al. reported that 96% of Windows and Linux rootkits

were persistent kernel–mode rootkits which used control flow modifications [84].

Rootkits “Aphex” and “Hacker Defender” utilize API detours to modify the return address

on the stack so that as the called API returns, it calls the malicious code, so the results can be

modified to benefit the rootkit before fully returning [4] [83]. ProBot SE, a keylogging rootkit

modified the Service Dispatch Table entries for kernel-mode [83].

API detouring usually starts with modifications to tables containing addresses for system

API functions and kernel modules.

• SSDT:

The System Service Descriptor Table (SSDT) is a table in Windows which contains the

pointers to resolve API system calls for system services (located in ntoskrnl.exe).

The rootkit overwrites an address in this table to point to its own malicious code, and so
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the operating system will run that malicious code with highest privileges [63] [76]. SSDT

hooking can be used to intercept requests for the registry, file system, processes, threads,

and even memory [63].

The pointer in the SSDT could either be redirected to the attacker’s own code, somewhere

in memory, or in order to create malicious logic, the pointer could redirect to a different

API than the one originally intended. It only takes a single address overwrite in the SSDT

in order for a rootkit to gain global access to the entire system [73] [62].

Additionally, some rootkits do not change the address in the SSDT but change the as-

sembly instructions of the first bytes in the target API (in ntoskrnl then) to point to the

hooking module. This is a different method, called an inline hook, which is covered later

in this section [39].

• IAT: The Import Address Table (IAT) is a table in Windows which contains pointers

to all the functions that a particular program might use. IAT deviation, also known as

IAT “patching” is a popular method for user-mode rootkits to gain kernel-level access.

If an attacker is able to overwrite or create pointers within this table, when the targeted

program is executed, the first address it jumps to can actually jump to whatever function

the attacker specifies. The Urbin and Mersting rootkits perform IAT deviation to point

API calls to a trojanized import function instead [83]. This method can also be used to

hide files, as the files displayed within a directory are listed via IAT-listed API functions.

• IDT:

The Interrupt Descriptor Table (IDT) handles interrupts, the handlers for which can be

intercepted and forwarded on to rootkit code [82]. IDT interrupts are often used for

keylogging, as they can intercept keyboard input interrupts [77].

Address table modification attacks fall into the category of pointer manipulation attacks,

which overwrite a pointer to redirect calls to that address to rootkit code instead. Pointer

attacks can either overwrite address table pointers, or overwrite pointers within a kernel module.

Execution flow can also be modified if a pointer to rootkit code also is added to the sequence

of instructions.

Code redirection can also occur through inline function hooks, which place a JMP in-

struction over the first five bytes of an API function, along with the 32 bit address of where to

jump.
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Figure 4.2: API Detouring

4.1.4.2 Direct Kernel Object Manipulation (DKOM)

Direct kernel object manipulation (DKOM) is the term used to encompass any sort of

attack that manipulates kernel objects within some arbitrary OS. This includes modification

or addition of kernel objects or their contents, malicious calling sequences, and attacks which

affect or change the perception of an object’s existence or liveness [58]. Kernel level rootkits

use DKOM, as it is highly effective and not easily detected [51].

There are several ways that kernel objects can be manipulated to benefit a rootkit. The

simplest method is by overwriting a pointer in one of the system address tables, and redirecting

control flow either to an attacker-planted malicious kernel module, or to a different system

module to create malicious logic flow [73]. Additionally, kernel code itself can be injected with

additional instructions or overwritten, but DKOM attacks avoid these tactics as they are easily

detected [73].

DKOM attacks make good use of existing kernel data structures, often by “hooking” an

existing kernel module , either by overwriting a pointer to a function or injecting malicious code

so that its activities and actions are implemented when that module is called. Kernel hooks

include mechanisms that load code or data into memory modules [9]. Both the ZeroAccess and

TDL rootkits hooked processes in critical functions [72]. For example, ZeroAccess overwrote

704 bytes of ScRegisterTCPEndpoint from “services.exe” [44]

Kernel objects can also be duplicated, with malicious functionality added to the copy.

Rather than redirecting calls to malicious code and then calling to the original module, a

malicious duplicate can provide both original functionality with malicious features. Duplicate

kernel objects can include drivers, modules, and even calling patterns.
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4.1.4.3 Configuration / Registry

Configuration settings are an ideal location for rootkits to hook further into a system. The Win-

dows Registry is a popular location for rootkits to hide configuration settings and persistence

information.

In a sample of 30 malware, Wang et al. found that each malware used at least one Registry

hook, of which most were hidden to prevent removal [83]. Registry APIs Advapi32!RegEnumValue

and NtDll!NtEnumerateKey are commonly hooked in order to hide not only files, but to in-

tercept and filter Registry query information that may reveal the existence of the rootkit’s

Registry settings [83].

Auto Start Extensibility Point (ASEP) hooks can load and run processes on startup, load

drivers, or even hook multiple processes at the same time, through a shared resource (e.g., a

DLL) [4] [83]. Rootkits Urbin and Mersting hook the AppInit DLLs ASEP to load their DLL

into every process that loads User32.dll, and then hide the ASEP hook [83]. Hacker Defender

hides its ASEP hooks for the service hxdef100.exe and the driver hxdefdrv.sys [83].

4.1.4.4 Code Injection / Patching

Injection or “patching” attacks add functionality to an existing module or system call. This is

performed by either adding code or instructions to an existing module or API, or by modifying

the control flow to other services. This attack can utilize API Detouring, Overwriting, and

Injection, depending on how it is carried out.

Injection attacks which use API detouring can be performed through the following methods:

• Return–oriented programming, also known as a “return to library” technique, in-

volves overwriting the return address of a library routine to create a chain of malicious

logic that concludes by returning to the original return address location. This method

makes use of sets of existing machine instructions (“gadgets”), generating a malicious

result through the instruction calling order [7].

Return–to–libc is a common return–oriented attack which overflows a buffer to overwrite

the address to point to a particular function in the libc library. Overwriting stack data

can then result in the flow of several subsequent addresses to functions called such that

it results in a malicious flow of logic [81].

• Jump–oriented programming builds up an attack through chaining functional gad-
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Figure 4.3: Conditional Filtering

gets, but ends indirectly (no return), relying on the dispatcher to schedule and execute

the malicious logic.

In addition to initiating detours through an OS, it is also possible to place additional code

directly inside kernel objects. However, this type of injection, also called “patching”, is much

more difficult to do than generating detours. This is because it is much harder to find and

work with raw code than it is to simply find the address of a module. When the code is

modified, nothing critical can be overwritten or added, and the injected/patched code must be

in non-paged memory, because if the rootkit code is temporarily moved to disk, it can cause an

unrecoverable fault [63].

4.1.4.5 Filtering

Kernel drivers can be used not only to interface with devices, but play a key role in kernel-

level rootkits. According to Musavi et al., “most rootkits in the wild prefer to use malicious

drivers” [51].

Rootkits which filter data often attack the API interface for device–independent services

like read and write, and lower level drivers that serve as an abstract interface to the hardware

below. Filter drivers can be placed between high and low level drivers to intercept and filter data

between the layers [73]. Filter drivers can intercept user data, like log keystrokes or intercept

passwords entered through network activity. The file management interface in particular is

attacked to hide files or directories [73].

Due to Windows allowing a layered driver functionality, each driver filtering data from the

driver one layer above, it is easy for rootkits to also implement their own filter driver [63]. Filter

drivers may also be installed into the networking stack to create low level backdoors [63]
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4.1.4.6 Process/Thread Injection

Malicious processes can also be loaded into new or running threads. One of the advantages

to loading a malicious process directly into a running thread is so that the process does not

only run when hijacked system modules are called. This effectively hides the running code

from the process/module query APIs [83]. Sparks et al. describe the Win32 API as providing

a “Rootkit API” as user mode functions CreateRemoteThread and WriteProcessMemory can

be readily injected by an attacker. Thread and process resources may be accessed in Windows

through the Object Manager, Process & Thread Manager, or the Memory Manager, which also

handles paging [73]. Using the libc library, attackers can easily create new threads and launch

“arbitrary” processes [81].

A political espionage malware, upon installation, called the CreateRemoteThread API to

inject its malicious “msvcr.dll” directly into the running process explorer.exe. This mali-

cious DLL waited for three more malicious binaries to be downloaded from the C2 server, and

then took the initiative to launch at least two of them [37].

4.1.4.7 Malicious Logic

Any of the activities a rootkit takes within the OS ultimately creates a series of malicious activ-

ities, which can be considered “malicious logic”, however this term is more specifically applied

to a scenario where legitimate, unmodified system modules are called in an order that produces

malicious results, such as that of return–oriented or jump–oriented programming. However, a

malicious outcome can be effected not only by the calling order of a set of instructions, but also

by data values submitted by compromised modules.

Semantic value manipulation (SVM) is malicious logic created by modifying or filtering

data inputs and outputs so that the system behaves as the attacker desires. Because of the

vast number of modules and processes within an OS which produce outputs and make decisions

on the state of other reported modules, the attack space for SVM attacks is “vast” and full

coverage detection is not an easy task to achieve [58]. The PLCs in the Stuxnet attack were

programmed to return values within the desired thresholds while the centrifuges were sent

commands to operate outside those defined limits. This prevented the system from responding

appropriately, and so alarms were not raised, and no counter–instructions were sent to the

centrifuges to bring them back within limits [79].

Almost every rootkit installation technique can employ the basic three installation methods:
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Installation
Technique

Injection Overwriting Standalone

API Detouring Injected pointers
add functionality to
a module.

Overwritten pointers
in an address table.

Standalone APIs
add new or
faux-duplicate
functionality to OS.

DKOM Injected modules
contain additional
instructions.

Overwritten
modules perform
tasks in new
malicious ways.

Standalone modules
planted somewhere
in memory.

Code Injection /
Patching

New code or
instructions placed
inside existing
modules or data
structures.

Overwrite existing
pointer in table or
module (API
detouring).

N/A

Configuration /
Registry

Injected
configuration
parameters can add
additional rules.

Overwritten
configurations
operate under
altered parameters.

Standalone entries
add new processes
or tasks to startup.

Filtering Injected drivers or
APIs filter data
cause malicious
logic.

Data overwritten in
existing drivers can
conditionally filter
calls or data.

Standalone drivers
filter messages
between other
drivers and modules.

Process / Thread
Injection

New malicious
processes can be
injected into a
currently executing
thread.

N/A New threads can be
created and loaded
using Win32
API/libc.

Malicious Logic Injecting new
instructions or
pointers to both
legitimate (OS) and
malicious
modules/APIs can
effect a malicious
sequence of events.

Overwriting code or
data causes
malicious
instructions to
execute when called.

New modules or
malicious copies of
system
modules/APIs
perform malicious
actions.

Table 4.5: Core Installation Methods Applied to Rootkit Installation Techniques

injection, overwriting, and planting standalone code, as depicted in Table 4.5. This is important

to note as these basic three techniques are the foundation for detection as discussed in Chapter 5.

The techniques discussed in this section can now be applied to the actual rootkit installation

process, discussed in the following section.

4.1.5 Installation Process

Rootkit installation involves breaking out of the carrier application, unloading its code and

processes, and performing activities which help prepare it to fulfill its mission effectively and

covertly.
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Some malicious payloads are relatively self-executing (e.g., many viruses and worms), but

rootkits which have been planted via social engineering methods require that a user or program

on the victim system initiate the rootkit installation process. For example, a PDF with a

malicious payload, which has been emailed to the victim, will not execute itself, but requires

that 1) the human user attempt to open the file manually, after which 2) an application on the

host machine associated with that file type starts its own processes to execute this file.

The rootkit is launched when malicious instructions embedded within that file take ad-

vantage of a vulnerability within the associated application. These embedded exploits usually

target specific versions of the expected application. For example, CVE-2013-0640/0641 exploits

Adobe Reader, and allows malicious code to bypass sandboxing [21]. CVE-2013-0633/0634 used

embedded Flash exploits to bypass sandboxing in Microsoft 2008 Office files [21]. The MiniDuke

APT was able to exploit all versions of Adobe Reader as well [79].

Table 4.6 provides a high level view of kernel–level rootkit objectives achieved through the

use of methods discussed in this section.

4.1.6 Rootkit Privilege Escalation

According to Musavi et al., there are two methods used to get into kernel space: use a driver

or use an exploit that targets an unpatched vulnerability [51]. The strategy used to escalate

privileges also can depend on the access level into which the rootkit is opened. Exploits used

by the rootkit to gain elevated access to the victim system can be either a continuation of

the original container exploit, some arbitrary secondary application exploit, or with the use of

drivers, can directly tap into kernel resources and solidify a high-level foothold deep inside the

system.

If the rootkit is loaded into an environment with restricted privileges then often an arsenal

of arbitrary exploits may be necessary to gain sufficient privileges. This is expected, and so the

privilege escalation exploit is usually another aspect of the application-specific exploits which

allowed it to start installation in the first place. These exploits can take almost any form.

For example, privilege escalation exploits can be authentication-based, using stolen or de-

fault credentials or bypassing authentication altogether. For example, MSF exploit module

exploit/windows/http/SolarWinds fsm userlogin is an application-specific exploit which

allows an authentication bypass on systems running Solarwinds Firewall Security Manager

6.6.5. [48].
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Kill Chain Phase Objective Considerations Example Section

Installation / Exploitation 4.1

Privilege Escalation 4.1.6

Mode User Mode

Privileged Mode

Method Malicious Driver

Exploit /
Vulnerability

Persistence 4.1.7

Non-volatile
storage

Config. settings, file
system, kernel
loaded

4.1.7.1

Difficult to
access

Kernel loaded 4.1.7.2

Outside file system

Configuration
settings

Dangerous to
access

Kernel loaded 4.1.7.3

Restore copy Local backup 4.1.7.4

Network / C2
backup

Evade Detection (hiding) 4.1.8

Physical
Evidence
(within file
system)

Obscure location 4.1.8.1

False identity

Unbrowsable
location

Unenumerated

Injected / trojanized

Physical
Evidence
(outside file
system)

Nonvolatile memory
location

Conceal
process
Evidence

False Identity 4.1.8.2

False intent /
misreporting

Unenumerated

Disable security
services

Injected / trojanized

Table 4.6: Installation Objectives Techniques and Roadmap

If a rootkit is initially loaded into user space, in order to perform lower level activities, it

often must exploit a victim process. A user-mode rootkit can also hook system API functions,

usually performing IAT deviation, and overwriting code in order to detour activity lower in the
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kernel [9].

According to Musavi et al., kernel-level drivers are one of the primary approaches used to

penetrate Windows systems [51]. To gain privileges, the 32-bit installer for the ZeroAccess

rootkit loaded its code into the kernel by overwriting an existing driver [90].

Rootkits may come bundled with multiple privilege escalation options, depending on the

privileges into which it is launched. Exploits which assume Administrator privileges may be

attempted first, as these attempts are less complicated, and thus less risky. For example,

the 64-bit installer for ZeroAccess first attempted to call RtlAdjustPrivilege to give itself

SE DEBUG PRIVILEGES, which would be successful if the user were logged into the computer

as Administrator. However, if this failed, ZeroAccess would then copy a legitimate version

of Adobe Flash Installer, load malicious code into that space, and then generate a User Ac-

count Control (UAC) pop-up to require an Administrator to authorize the installation of what

appeared to be a legitimate version of Adobe Flash [90].

Kernel mode rootkits are loaded into memory as a dynamic kernel module, and then the

kernel module uses detouring or modifies system data structures to carry out actions. As a

module operating as part of the system kernel access and privileges are gained merely by navi-

gating the flow of system calls and carrying out further kernel level exploits, such as overwriting

pointers to redirect to malicious code that furthers the rootkit’s hold in the system.

4.1.7 Rootkit Persistence

Approximately 96% of rootkits establish some kind of persistence in order to achieve their

goals. Persistence can be defined as a rootkit having altered control flow such that the rootkit

is not easily removed or disabled, or the rootkit’s core functions can be easily restored after

removal [81]. A rootkit’s objectives for gaining persistence require that it survive a) system re-

boots, b) attempts to disable it, and c) attempts to remove it, including those which may occur

by the system. Remaining undetected is critical for a rootkit to withstand being disabled/re-

moved by both the user and the system. Methods used to conceal rootkits are discussed in

Section 4.1.8.

Methods of obtaining persistence ultimately boil down to a rootkit placing code in 1) non–

volatile locations that are either a) difficult to access, b) are critical to the operation of the

system and therefore dangerous to access or 2) by storing copies by which the rootkit may be

reinstalled, either from local code or via the C2 channel. The rootkit must somehow also ensure
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that the rootkit processes restart when the system returns to operation, usually through boot

scripts or adding the rootkit to the OS’s list of startup applications.

4.1.7.1 Non-volatile Storage Locations

The first criteria for a successful rootkit installation is one that it will survive system reboots,

and so kernel–mode rootkits aim to persist by not running in memory, but rather store instances

in places that are unlikely to be overwritten or erased. As such, a rootkit is installed such that

it is not dependent on volatile memory and likely to be swapped out through paging, but is

instead stored in non–volatile memory, on the hard disk.

4.1.7.2 Difficult–to–Remove Locations

Rootkit persistence locations include those that are difficult to remove, often because the loca-

tion is either nonstandard or complicated for individual users to navigate.

Configuration settings can help a rootkit gain persistence for both existence and func-

tionality. For example, kernel modules in Linux can store persistent configuration settings in

/etc/modprobe.d/, which facilitates loading the affected modules directly into the kernel [61].

The Windows Registry is a highly valuable location for rootkits to both hide and initiate

their services. To survive and start running after a system reboot, rootkits plant a key in

the registry called an Auto Start Extensibility Point (ASEP). Some registry keys which can be

hooked include HKLM\SYSTEM\CurrentControlSet\services which auto-starts drivers and ser-

vices, and HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run which auto-starts other

processes [83].

Other storage locations that are difficult to access include uncommon folders within the

file system, in storage locations outside the browsable file system, or as parts of the system

kernel itself. In addition to selecting a good non–volatile location to place rootkit code, other

strategies for the concealment of rootkit code and objects are used to ensure that these storage

locations remain undiscovered.

One common location rootkits reside in the Windows file system is in a user’s AppData

folder, which only requires user-level privileges [6]. However, with Administrator or system

privileges, any location within the file system is a viable storage location, provided other rootkit

utilities, particularly any services responsible for launching the malicious application know the

address or file path. Some rootkits will even store drivers within hidden file systems and then

reload them into memory after reboot [51].
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Vogl et al. demonstrated that, although difficult, it is possible for malware to only inject data

to gain persistent functionality through the use of return oriented programming (ROP) [81].

4.1.7.3 Dangerous–to–Remove Locations

Rootkit persistence in critical regions are more dangerous to access because they tend to be

closer to the heart of the operating system. For example, a rootkit installed as kernel objects

must be handled carefully. If adding, modifying, or removing these modules results in broken

links or bad logic at the kernel level the entire system can crash.

With adequate permissions, an attacker or malware can easily load a new Linux kernel

module using modprobe [61]. Some rootkits can use the /dev/kmem and /dev/mem interfaces,

which provide access to non–virtualized system memory, to write directly into the kernel [4] [82].

Injecting code or adding function calls into kernel modules is more difficult to perform than

loading and unloading entire modules [63]. Removing rootkit code injected into essential system

modules could present even more difficulty; if the operation is not performed perfectly, missing

data or unexpected functionality could result in a system crash.

4.1.7.4 Reinstallation / Restoration

If the bulk of a rootkit is discovered and removed, it may persist if copies of the rootkit are still

accessible. These copies could be stored in a location that automatically reinstalls the rootkit

if it is detected as missing at boot time.

For example, the MiniDuke APT created encrypted payloads of itself, using a custom key

based on the CPU, drive, and computer name of the victim machine. Because this payload

was encrypted it was difficult to discover. If rootkit functionality was removed MiniDuke could

decrypt its own payload and reinstall itself [79].

Similar to MiniDuke’s host–based backup strategy, a rootkit compromised U.S. Air Force

web server was discovered to contain up to seven bootable kernels. Each kernel was a successive

upgrade to the previous kernel, and could be reverted with whatever compromises existed at the

time of that kernel’s operation. The only difficulty in restoration on this particular machine,

however, was that the attacker would require manual intervention to initiate the kernel reversion

process [45].

An example of networked backups, the drivers for the Festi rootkit are memory resident,

and are downloaded and reinstalled from the C2 server every time the machine boots [51].
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Figure 4.4: Rootkit Persistence

Other rootkits, such as BIOS rootkits, are able to survive reinstallation of the OS. However,

these are outside the scope of this thesis and are not discussed in depth here.

4.1.8 Rootkit Hiding Methods

Part of the survivability of a rootkit depends on its ability to stay hidden. Rootkits employ

several techniques to hide their physical presence and their active processes from services that

might disclose evidence of malicious activity.

4.1.8.1 Physical Evidence

Methods a rootkit can use to conceal its files, binaries, and other hijacked features are diverse

and require extensive knowledge of the domain in which it will be installing. Rootkit resources

can be placed in the normal directory structure, or any similar known and enumerable location,

and then hidden by preventing file enumeration APIs from displaying the rootkit files [4] [83].

Rootkit resources can also be hidden within nonstandard locations on disk, the location of

which only the rootkit could naturally know.

Hidden in File System Rootkit code and files can either be hidden “in plain sight” where

a user or system process could theoretically be able to locate the rootkit code within enumerable

regions, or the rootkit can use kernel–level exploits to make the rootkit undiscoverable. The

strategies the rootkit uses depend on if the rootkit attempts to hide its files or if it tries to

falsify its identity. Multiple concealment methods may be used together as multiple layers of
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security for the rootkit.

• “Plain Sight”: Obscure Location

Files can be hidden in plain sight by planting the malicious files among many other files

in directories which are unlikely to be accessed or noticed by the user. This strategy also

includes registry entries and directly linked kernel objects for which enumeration utilities

exist.

Objects merely hidden from a user’s view are still vulnerable to discovery by host-based

malware scanners. The use of encryption and compression can greatly reduce the chances

of detection through automated tools, although the very presence of obfuscated contents

of code can be suspicious [62].

• “Plain Sight”: Identity/Intent Falsification

It is a common technique for kernel rootkits to use file masquerading, by which the rootkit

modifies its name or properties to falsify its identity as benign or even useful software [51].

For example, the Tapin worm (W32.Tapin) copies itself as paint.exe, and then modifies

the attributes of other helper executables to “Hidden” and “System” (reserved for system

use and not to be modified or removed) [38].

Rootkits can also use obfuscation on files and binaries in an attempt to appear benign to

malware detection tools that perform code emulation [62]. However, obfuscation is not

often used in a rootkit’s kernel–level drivers because of the need for debugging, main-

tenance and crash dump analysis [51]. These techniques are discussed in Section 3.3.4,

“Obfuscation”.

• Hidden: Unbrowsable Locations

Locations in the file system which file enumeration utilities do not consider to be part

of the directory structure are convenient places for rootkit code to hide. For example,

ZeroAccess placed files inside the Global Assembly Cache (GAC), the contents of which

are interpreted as cache entries, and not a browsable directory structure. However, this

technique only hides files from users browsing directories via the Windows GUI. These

entries are viewable through the command line interface and would not prevent host–based

file enumeration tools from viewing the contents of the GAC [90].
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ZeroAccess rootkit also hid files by first creating a directory under %systemroot%, and

then using the Windows API ZwCreateSymbolicLinkObject to convert the directory to

a symbolic link, making it inaccessible to other programs [90]. The Okray rootkit stored

its SSH keys as ASCII text in file root/dev/srd0 which is commonly understood to be a

directory, not a file [45].

The existence of a static malicious kernel module can be effectively erased through pointer

manipulation. Pointers to the kernel module are not listed in the IAT or other tables

containing addresses to modules that a particular function may call. Rather, the attacker

often stores the module in a nonstandard memory location and then hard-codes the pointer

to this module within some other rootkit-owned memory location.

• Hidden: Forcibly Unenumerated

One of the more effective techniques rootkits can employ is that of hijacking file enu-

meration APIs so that when the contents of a directory or registry entry is requested

rootkit code and objects are not listed [39]. Resources that can be hidden through API

enumeration hijacking include files, folders and registry entries [83]. This is often per-

formed through trojanizing IAT file enumeration APIs so that physical evidence and

dynamic rootkit processes fail to be listed [84]. Additionally, abusing the use of APIs

FindFirstFile and FindNextFile from the Kernel32 DLL can skip over any rootkit

objects which would normally be listed.

To hide Windows Registry entries, rootkits can hook the Registry API functions using

custom drivers which target the NtEnumerateValueKey API, which is the routine that

retrieves the value entries of an open key. If the name of the value to be hidden is found,

the API is called a second time with instructions to omit that particular value from the list

shown. [76]. Rootkits can use Registry–specific APIs such as RegEnumKey, but for more

universal effectiveness rootkits can also choose to hook system-wide NT API functions

such as NtEnumerateKey [83] [64].

Another file hiding method which is particularly effective takes advantages of restrictions

on file names which are unallowed by the Win32 API but not the NTFS file system.

These files are planted as part of the NTFS file system, but files with long full pathnames,

trailing dots or spaces, special characters, etc. are not considered legitimate, and as a

result ommitted by the Win32 enumeration APIs [83].
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The same methods rootkits use to hide files and processes can be used either indirectly or

intentionally to hijack antivirus or malware scanners’ enumeration utilities. This ensures

that rootkit files are ignored before they can be evaluated [39].

• Hidden: Injected

Rootkits can inject code into a legitimate application or process to either execute when

that process runs, or to store code or data for another rootkit process. Rootkits can

also plant or create a compromised copy of the original program, either to replace the

original, or gain access to resources as that program. For example, the ZeroAccess rootkit

successfully ran one of its privilege escalation exploits by creating a copy of the legitimate

tool Adobe Flash Player and then using the memory space allocated to the duplicate

program to display a malicious UAC pop-up requesting Administrator credentials [90].

In addition to trojanizing binaries, rootkits can also hide code or data in Alternate Data

Streams (ADS), a secondary location within files that can contain data not viewable to

the user when the file is accessed using its normal application [83].

Note that injection/trojanizing could be considered another form of identity forgery (dis-

cussed above), but is discussed separately in this thesis, as detection methods applied to

identity forgery of standalone rootkit code differs significantly from that of rootkit code

trojanized within another application.

Outside File System:

To completely evade concerns from file system enumeration, Rootkits can store code and

data outside the file system and on the hard disk. Examples of nonstandard locations include

file slack space, which runs the risk of being overwritten, and in bad disk sectors [83].

The difficulty in placing code in locations identified as unallocated by the OS is that the

rootkit must 1) be able to identify unallocated memory locations of an appropriate size, 2)

ensure that this memory location is not pageable, and 3) store the address for this nonstandard

memory location so that it can call this code when needed [73].

4.1.8.2 Process Evidence

Simply hiding physical evidence is not enough to prevent rootkits from being detected. A

successful rootkit will also take measures to remove all traces of running processes and suspi-

cious activity occurring in real time on a compromised system. Some of the methods used to
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Figure 4.5: Concealment Methods for Physical Existence

hide physical evidence can also be used to hide running processes such as API enumeration

interception, but additional methods are needed to hide dynamic rootkit activity.

The most obvious evidence of dynamic rootkit activity can be seen in running process lists, or

in the type of data or amount of resources consumed by trojanized applications, therefore these

are the locations rootkits attempt to remove evidence. It should be noted that a rootkit cannot

effectively remove all evidence of its activity as the very methods used to induce invisibility are

also additional activities prone to detection.

Similar to physical evidence, rootkit processes can either be visible (“plain sight”) and

forge their identity, and falsify data and status information about trojanized processes, or

they can attain invisibility through removal from process list enumeration and other tricks.

Process hiding can be summed up to the two following strategies: 1) falsify information about

the process responsible for the malicious behavior to make it seem non-malicious, or 2) make

malicious processes invisible.

The following are ways in which a rootkit may hide live data and processes.

• “Plain Sight”: Identity/Intent Falsification

Attempts at invisibility are more critical for processes than files, as there are hundreds

of thousands of files, but only hundreds of processes which is much easier for a human

operator to query at a glance [83]. Because of this, it is effective for a rootkit process to

adopt the name of a benign or helpful process instead.
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• “Plain Sight”: Intent Falsification/Misreporting

Malicious processes can falsify the intentions of a running process through obfuscation

attacks, including control flow evasion and data falsification such as liveness misreporting.

Some of the most common obfuscation attacks include control flow obfuscation, run-

time loading of OS kernel modules, and the use of encrypted commands, callees, and

strings [51].

Control flow obfuscation is a method of obscuring the instructions executed by a malware

module by inserting false code and unnecessary API calls. These false instructions attempt

to foil flow analysis detection methods, which detect malicious activity based on data

outputs communicated during live activity [69].

Control flow obfuscation is difficult to do in kernel space, however, because driver struc-

tures tend to be modular, with a known signature, providing minimal options for obfus-

cation [51]. However, because kernel control flow is dynamic, the very fact that control

has deviated from the original set of instructions is very difficult to detect [62].

Compromised kernel objects can also be programmed to report false data to any moni-

toring services. This was famously done by Stuxnet, which sent malicious instructions to

the PLCs to spin centrifuges at unacceptable limits, but reported normal parameters and

results back to the console [91].

One very useful type of data misreporting is that of an application or kernel object mis-

reporting their liveness status. Misreported liveness can allow malicious kernel processes

to tell process list APIs, and malware scanners, as well as other services that the mod-

ule is not running, when in fact it is [62]. Liveness reporting can also be abused in the

reverse method where services that the malware has disabled, such as anti-virus and IDS

programs, report that they are active to the OS.

• Hidden: Forcibly Unenumerated

In order to hide evidence of a standalone malicious process rootkits ensure that entries

about their processes are not reported or displayed in the system call list [82], Windows

Task Manager and other process list utilities. [83]

Similar to API hijacking which prevents static resources from being enumerated, partic-

ularly within the file system and active processes along with dynamically loaded modules
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can also be hidden from process enumeration APIs [83]. For example, the Aphex rootkit

modifies the IAT entry for the NtDll!NtQuerySystemInformation API to intercept and

filter process list queries. [83]

Rootkits “Hacker Defender” and “Berbew” place a JMP instruction in the NtDll!NtQuerySystemInformation

in-memory code in order to hijack the enumeration queries. ProBot SE modifies the pro-

cess dispatch entries in the Service Dispatch Table in the kernel [83].

In Windows, there are two process lists: the active process list and the process list used by

the scheduler. The rootkit only needs to be recognized by the scheduler. The active pro-

cess list is the only list queried for enumeration. Therefore, a rootkit removing itself from

the active process list effectively hides evidence while allowing it to run as scheduled [73].

Windows also uses doubly linked lists for loaded modules. If a malicious loaded module

modifies the pointers of adjacent modules, it can remove itself from the list, while still

running [73]. The FU rootkit hides processes by removing the entry directly from the

Active Process List kernel data structure [83].

• Hidden: Disable Security

Another method rootkits can employ in order to remain undetected is to completely

disable all services that are capable of detecting the rootkit in the first place. For example,

the ZeroAccess rootkit hides itself from security services by disabling Windows Updates,

Windows Firewall, Windows Defender, and other services. This is further discussed in

Section 6.1.

It is worth noting, however, that unless liveness statuses are meticulous about reporting

that these services are live, evidence of a completely disabled suite of security software

can also be a very strong indicator that malicious activity is occurring within the system.

• Hidden: Injected

Trojanizing a popular utility is a way for a rootkit process to remain undetected, serving

as as additional malicious functionality in conjunction with a legitimate service. For

example, a SANS investigation of a compromised web server revealed the mYrk rootkit

disguised inside a legitimate Linux utility called zic [45]. DLL injection, particularly

in commonly accessed libraries, is also an effective way for existing kernel processes to

sponsor rootkit functionality.
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Figure 4.6: Concealment Methods for Process Evidence

Frequently called kernel modules can be injected with malicious code [9]. Rootkits can also

bring their own compromised versions of system utilities. For example, Bravo et al. provide

the example of a custom version of ps that omits the presence of malicious processes [9].

4.2 Backdoor Creation

The backdoor is a channel opened by the rootkit specifically for malicious communications

with sources outside the victim’s machine. This channel is used to transmit information about

the compromised machine, download updates or additional malware, and is sometimes used to

connect to other compromised machines as part of a botnet.

Section 4.2.1 discusses methods that rootkits may use to establish a covert communication

channel. Section 4.2.2 applies general rootkit objectives to the C2 channel and how C2 activities

hide and maintain persistence. Section 4.2.3 discusses the types of communication and services

to which these channels communicate, and information transmitted and activities performed

through the backdoor channel.

Table 4.7 presents a roadmap to topics discussed in this section.

4.2.1 Backdoor Implementations

Backdoors are classified into three different types given their placement method: 1) vulnera-

bilities planted for an attacker to manually exploit to gain access, 2) software planted on the

victim’s machine which facilitates communication or direct access, or 3) backdoors that are
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Kill Chain Phase Topic Section

Backdoor Creation 4.2

Backdoor Implementation 4.2.1

Vulnerability Creation 4.2.1.1

Remote Administration Software 4.2.1.2

Custom Backdoors 4.2.1.3

C2 Objectives 4.2.2

C2 Persistence 4.2.2.1

C2 Hiding 4.2.2.2

C2 Communication 4.2.3

Communication Target and Services 4.2.3.1

Communication Methods 4.2.3.2

Communication Content 4.2.3.3

Table 4.7: Section 4.2 Roadmap

Figure 4.7: Backdoor Implementation Methods

manually created by the rootkit. These backdoors can communicate a variety of information

and instructions between the target system and servers or actors offsite.

Figure 4.7 depicts the methods used by rootkits to establish a backdoor into a victim’s

machine.

4.2.1.1 Vulnerability Creation

A rootkit could modify the host system to create a vulnerability that would allow a human

attacker to manually use knowledge of that vulnerability to penetrate the system [52].

4.2.1.2 Remote Administration Software

A malicious actor can use a rootkit to implement a software tool such as a Remote Adminis-

tration Tool (RAT) or Remote Manipulation System (RMS). These services allow an attacker
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full access to all services on the victim machine whenever desired. Two popular RATs used by

the APT1 threat are Gh0st RAT and Poison Ivy [42] [21].

SecureList reported a bank hack in which a modified version of an RMS was used to

transfer funds. The initial infecting malware, Backdoor.Win32.RMS, initiated the download

of Backdoor.Win32.Agent, which provided virtual network services (VNS) as remote access to

the computer [59].

While RAT/RMS services may provide an entire suite of options for activities which can

be performed on a target, they require targeted human interaction and are therefore easier to

detect than a custom backdoor [21].

4.2.1.3 Custom Backdoors

Rootkits can also choose to manually install a communication service by choosing a protocol

and communication channel in the same way any other application or service. This is not

difficult, as a malware process can easily open ports simply by hooking certain functions within

the kernel [39].

Rootkit installers can also come with custom payloads containing backdoors in the form of

executables or code, which are planted and executed as part of the rootkit installation process.

For example, a malicious PDF sent to the Lockheed Martin Computer Incident Response Team

(LM–CIRT) contained an installer fssm32.exe with two backdoor components, IEUpd.exe and

IEXPLORE.hlp. These components communicated to the C2 server using HTTP requests [29].

APT1 actors have been known to use software tools such as Poison Ivy and Gh0st RAT but

more often create their own custom backdoors on systems they infiltrate [42].

The APT1 threat has developed several backdoors throughout its cyber campaigns. Man-

diant classifies the APT1 custom backdoors into two categories: “beachhead backdoors” and

“standard backdoors”. Beachhead backdoors are a minimal-service type of backdoor which al-

lows attackers to retrieve files, gather system information, or launch a standard backdoor. The

beachhead backdoor is a “WEBC2” backdoor, which downloads a web page from a C2 server,

and then interprets any data written between special HTML tags as commands (this is how

the APT1 group earned the nickname “Comment Crew”) [42].

APT1’s standard backdoors communicated both via HTTP (to hide C2 traffic among normal

web traffic) and via a custom protocol. This backdoor allowed APT1 actors to almost completely

control victim systems by gaining full access and permissions to files, directories, processes, the
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Figure 4.8: C2 Objectives: Persistence and Hiding

registry, keylogging and capturing mouse movement, and even logging off the current user or

shutting down the system. One example of a standard backdoor developed by APT1 is the

“BISCUIT” backdoor, named for the command bdkzt, which is believed to have been in use

since at least 2007 [42].

Custom backdoors are used both to communicate autonomously with C2 servers and to be

controlled manually by a human actor. However, backdoors which communicate autonomously

with C2 servers are the most common. According to the Verizon 2014 Data Breach Report,

backdoors as vulnerabilities only accounted for 4% of offsite malicious communication, but 86%

of that traffic consisted of C2 server communication [78].

4.2.2 C2 Objectives

Once a rootkit is established in the target system it has the ability to immediately open a

channel to the C2 server. However, without taking precautions to hide this new modification,

the vulnerability is open to detection and immediate removal. Actions must be taken to both

hide and establish persistence of this channel before use. Even a reboot of the machine could

destroy the channel [13].

Figure 4.8 depicts the methods used by rootkits to fulfill basic channel supporting objectives.

4.2.2.1 C2 Persistence

Persistence of a C2 channel is not often distinguished from that of the rootkit itself, as in-

stallation of the trojan or backdoor is considered to be the primary persistence technique for
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APTs [29]. In the same way, the same mechanisms which rootkits use to persist also apply to

settings or configurations used in order to create the C2 channel, including storing files and

configurations in non-volatile locations.

Redundancy, however, is commonly used to keep C2 channels open. Attackers often create

redundant channels in the case that security configurations render the existing active channel

inoperable [23]. Redundancy can also be implemented with newly developed backdoors installed

on multiple systems within a compromised domain [42].

4.2.2.2 C2 Hiding

The same methods used to hide existence and processes of a rootkit are applied to conceal the

existence and communication of a C2 channel. In particular, C2 channels aim to hide both

the channel and the activity occurring over that channel. While there are several methods of

concealing or misleading the contents of network traffic, the only methods discussed in this

thesis are directly related to rootkit communications, as established between a rootkit and its

C2 server.

The code and modifications required to establish a rootkit channel can be hidden using the

same methods as the rest of the rootkit. For example, the Backdoor.Win32.RMS malware used

for bank hacking hid RMS configurations in the Windows Registry. The registry key containing

the RMS configuration was modified from HKLM\SYSTEM\Remote Manipulator System\v4 to

HKLM\SYSTEM\System\System\Remote\Windows [59].

The user space Winsock Layered Service Provider (LSP) DLL is easy to use, but highly

visible. In order to secure a C2 channel covertly, rootkits will often use the kernel space “TDI”

and “NDIS” interfaces. The TDI interface operates at a lower level than user space security

monitors, and the NDIS driver allows a process access to raw packets, which can bypass security

services including firewalls [51].

A portless backdoor can also be used so that there is no evidence of any C2 activity until

a trigger packet “wakes up” the backdoor service [45]. In order to both hide and establish

persistence for C2 services the actors behind the Duqu 2.0 APT deployed special drivers on any

internet–facing firewalls, gateways, and other services. These drivers appear as a normal system

service which avoids creating log records and consistently allows the attackers direct access to

the internal network. For example, the portserv.sys driver listens to network traffic and waits

for packets containing a special keyword, such as “romanian.antihacker”. It then forwards any
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Figure 4.9: C2 Communication Considerations

traffic from that IP to either port 445 (SMB) or 3389 (Remote Desktop), effectively tunneling

the attacker’s traffic [34].

The C2 server can also take measures to conceal its identity. Fast–flux DNS domains are a

common method used by C2 services to hide their infrastructure and identity. Additionally, the

communications themselves can be encrypted, which when used in combination with a fast–flux

domain C2 server make it difficult to determine what types of communication are occurring

through the rootkit’s channel. For example, the Duqu APT used steganography to attach data

to JPEG images prior to transmitting them to the C2 server [79].

4.2.3 C2 Communication

This section discusses the types of services, methods, and types of information transmitted via

a C2 channel.

Figure 4.9 depicts communication considerations and implementations a rootkit may use.

4.2.3.1 Communication Target and Services

The most common service with which rootkits communicate is to an offsite server dedicated

to controlling compromised systems [85]. In 2013, Mandiant reported that in the previous two

years the APT1 group established at least 937 C2 servers hosted on 849 distinct IP addresses

around the world. From January 2011 to January 2013 Mandiant also detected APT1 actors

from 832 distinct IP addresses logging into this C2 infrastructure using Remote Desktop [42].
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C2 communications need not necessarily communicate with only offsite servers, however.

Once a channel has been established it can be used for lateral communication with other

compromised machines in the same network or with other machines as part of a botnet.

For example, the ZeroAccess botnet operated as a peer-to-peer botnet communicating with

a C2 server while maintaining a list of 256 other actively infected IP addresses. The bot kept the

C2 server updated on other compromised hosts’ infection status, but also distributed malware

and instructions to other bots [90].

4.2.3.2 Communication Methods

Malware infection frameworks (MIF) can be used to facilitate communications between

the C2 and compromised machine. MIFs control the C2 server, send commands, and interpret

responses from the victim. Botnets SpyEye and Zeus used MIFs in order to target victims

for banking information exfiltration [72]. APT1 actors used the HUC Packet Transmit Tool

(HTRAN) to communicate between C2 servers and victims, as part of their attack infrastruc-

ture [42].

Protocols used to transmit the C2 channel can be just as important as disguising the mes-

sages themselves. C2 channels commonly disguise their malicious communications as legitimate

web traffic by using the HTTP protocol, but other communication protocols may be used as

well. Some APT1 backdoors which mimic web traffic include: MACROMAIL mimics MSN Mes-

senger, GLOOXMAIL mimics Jabber and XMPP, and CALENDAR mimics Gmail Calendar’s traffic.

The APT1 threat is known to use FTP to offload data as well [42]. Hiding among legitimate

web traffic to log into malicious web portals is a common way for the rootkit to communicate

with the attackers and download malware without raising suspicion [42].

Obfuscation of the communication carried out by the C2 channel is often in the form

of encryption and is used to mask communications between C2 servers and victim systems.

APT1 attacks are known to frequently use SSL encryption, although this method of illicit

communications can be easily detected once the certificates used for SSL become known [42].

Information being exported can also be broken into smaller file sizes or hidden inside innocuous

traffic. APT1 often preferred to pack information into password protected RAR archives, often

using batch scripts to automate the process, and then splitting the files into 200MB portions

before uploading the data [42].
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4.2.3.3 Communication Content

Although a rootkit’s purpose is to enable attackers to control a machine, access other machines

and services, and eventually use the machine’s resources and information to further the at-

tacker’s goals, these specific missions are often carried out separate from the rootkit itself. For

example, if a malicious actor’s goal is political or industrial espionage the method of discover-

ing relevant documents or capturing keystrokes is performed by a special malware module or

performed manually by the attacker. The rootkit is often limited to only communicating basic

information that helps enable the attacker to further the mission.

Rootkit communications fall into two categories: 1) information about the victim machine

and 2) downloading malware modules to fulfill the attacker’s mission in ways that the rootkit

alone is not programmed to do.

Machine identifiers are commonly created and submitted to the C2 server or other com-

promised machines. As referenced in Sections 4.2.3.1 and 6.1.5, each victim maintained a list of

256 known active infected machines’ IP addresses which were used for communication to other

bots and to report this list to the C2 server. The bot also calculated its own identifier using a

Domain Generation Algorithm (DGA), with which it authenticated its communication to the

C2 server [90]. These identifiers can also be used so that the malware will only execute on

the tagged machine, and cannot be easily studied on any other device. Additionally, malware

tagged with a specific machine identifier makes the malware signature unique which can foil

signature based detection systems [89] .

Malware modules help further the attacker’s mission by performing actions that the

rootkit alone is not designed to do. Rootkits are often kept small with limited capabilities, but

the rootkit backdoor opens up a window do download and install almost any kind of malware

the attacker deems useful [72] [85].

4.3 Rootkit Actions

After a rootkit has been installed on a victim’s machine, and has established connection to a C2

server, there are still several activities it can perform. A rootkit rarely acts alone and although

the rootkit does not provide these services itself it still helps facilitate the further spread of

other malware and provides hiding and persistence support for APT attacks.

Additional rootkit activities which are related to a greater APT mission include lowering

further defenses, disguising network traffic, keylogging and capturing user data, continuing to



80

Kill Chain Phase Topic Section

Additional rootkit activities 4.3

Disable Security Services 4.3.1

Malware Dissemination 4.3.2

Information Capture 4.3.3

Table 4.8: Section 4.3 Roadmap

intercept and disable security services, and exfiltrating information [82] [51] [8]. Although the

C2 channel could be considered an additional activity, because most kill chain models treat

backdoor channel activities as a separate stage, it is presented separately, in Section 4.2.

Table 4.8 presents a roadmap to topics discussed in this section.

It should be noted that although the topics in this section address some of the most common

APT support activities performed by rootkits the the list of items addressed here is by no means

complete. With a complete kernel–level installation and a secure backdoor channel rootkits

could potentially initiate and support nearly any type of malicious activity.

4.3.1 Disable Security Services

Kernel–level rootkits have the ability to be highly conscious of their environment, with access to

all information and privileges for monitoring and manipulating other applications on the host

OS. Some rootkits can even detect if they are on an emulated system, and if so, may refuse to

exhibit malicious behavior to avoid analysis [51].

With high environmental awareness and system level privileges rootkits often manipulate

or disable security services. This includes firewalls, anti–virus, IDS software, and other ser-

vices of which the rootkit is aware may be able to detect its activities [4] [82]. The GMER

rootkit detection tool, referenced in Section 1.1.3, provides a randomized name for each new

implementation because many kinds of malware actively seek out a GMER installation with

the intention of disabling it. After the Zeus (or “Zbot”) malware source code was published

variants of Zeus have been modified to evade anti–virus software, in particular signature–based

detection methods.

The disabling of security services may reveal the presence of the rootkit but if a rootkit

manages to hook into these services and provide false data, then the risk is much higher, as the

system is falsely reporting the absence of malicious activity. Security software that hook into

the SSDT for access to system resources can in turn be hooked by a rootkit. These hooks can
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cause the security software to conditionally report false information back to the system [63].

Operating system APIs in general tend to be shared by both security services and rootkits alike,

and so in the presence of a rootkit, these services cannot be completely trusted [73].

4.3.2 Malware Dissemination

Occasionally a rootkit performs tasks beyond that of installation and opening up a C2 channel.

The mYrk rootkit as detailed by SANS was “capable of hiding processes, files, network sniffing,

modifying firewall rule-sets, and key logging” [45].

However, as addressed in Section 4.2.3.3, rootkits may not contain all the malicious func-

tionality that the attacker desires. In order to further an APT campaign the the rootkit can

instead use its C2 channel to download malware from the C2 servers and launch it on the

compromised system [85].

For example, the GhostNet cyber attack spread as a trojan attached to a targeted email.

After installation, the GhostNet trojan then downloaded the Ghost Remote Administration

Toolkit to the victim’s machine so the machine could be controlled remotely [72] [37].

In addition to downloading and installing new malicious services a rootkit can also extend

its own protections to other malware as well. Rootkits are often used to mask the presence of

files and processes of other malware modules [51].

4.3.3 Information Capture

A substantial black market exists for personal information, banking credentials, and user ac-

count information, such as names, social security numbers, credit card numbers, passwords,

and personal information. This information can be used for political or industrial espionage, or

can be sold on the black market for financial gain [72]. Stolen credentials and password hashes

can also be used to facilitate lateral movement through a victim’s network [4].

While it is possible for victims to unintentionally download spyware programs using any of

the social engineering delivery methods as discussed in Section 3.4 and even though rootkits

could download and install these same programs through the use of the C2 server, as discussed

in Section 4.3.2, kernel–mode rootkits have a natural advantage to gather information from a

compromised machine. Information can be collected through RAM scraping utilities, which

search memory for patterns that are likely to match credit card numbers, social security num-

bers, and other information that matches predictable patterns [78]. However, for information
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that is not found through searching, a rootkit can hook keyboard input functions, also known

as “keylogging” to glean information [39] [4].

In Windows, the I/O Manager is responsible to provide device I/O services and device driver

communication. Manipulating the I/O Manager or by hooking the IDT, kernel mode rootkits

can intercept and issue commands to hardware and copy information from every keystroke [73].

Keylogging to gather banking and personal information is often implemented in botnets which

can gather massive quantities of information that can later be used or sold [72].

According to the Verizon 2014 Data Breach Report, although keyloggers have slipped in

popularity compared to RAM scraping, they are the third most common threat in crimeware

and in the top ten threat varieties of cyber espionage [78].

4.4 Specialized Rootkits

This section discusses two types of rootkits which go beyond those that just target casual

operating systems: rootkits which are not limited to kernel space alone and rootkits which

specifically target cyber–physical systems.

4.4.1 Advanced Rootkits

The rootkits discussed in this thesis are primarily operating system dependent, and as such

can be detected by changes within the underlying operating system and kernel. However, other

types of rootkits are possible, including those that are operating system independent. Although

some of these have not been seen in the wild all of the rootkits addressed in the following section

have at a minimum been proven possible as proof-of-concept implementations through research.

These rootkits may install themselves in locations outside the operating system, including

in hardware and virtualization platforms, and interact directly with hardware, bypassing the

operating system altogether. Although these rootkits are not addressed in depth here, future

research may develop a taxonomic approach to understanding the scope of operations of these

rootkits, in order that specialized detection methods for these rootkits may also be evaluated.

Some of the different types of rootkits include:

• Virtualization rootkits which affect virtualized hardware platforms and processor virtual-

ization extensions [77] [73].

• Memory–based rootkits, which only run in memory, and do not survive reboot, but can be

persistently reloaded by other active malware modules [77].



83

• PCI rootkits, which hide in the firmware of PCI cards [73] [9].

• SMM rootkits, which launch by abusing BIOS shadowing to install a keylogger in System

Management Mode (SMM) using a System Management Interrupt (SMI) [86] [73] [9].

• Bootkits, or MBR rootkits, which copy themselves into the Master Boot Record. Bootkits

add code to execute at machine boot time, before the operating system has loaded, and so

are outside the scope of this report, which deals with covert malware at the kernel–mode.

This also includes BIOS bootkits [22] [9].

• GPU–based rootkits, such as the Jellyfish rootkit, which can run without standard kernel

hooks or modifications [25].

• ICS/SCADA rootkits, as addressed in Section 4.4.2.

Of particular concern are rootkits which use normal kernel–mode exploits to compromise

industrial control systems and cyber–physical infrastructures. These rootkits are discussed in

further detail in Section 4.4.2.

4.4.2 SCADA/ICS Rootkits

Industrial Control Systems (ICS), also known as Supervisory Control and Data Acquisition

(SCADA) systems, consist of software administering the actions of a physical system that

provides physical services. For example, SCADA systems automate the machinery in factories,

electric power dams, water treatment facilities, and other public and private services [91]. The

interdependence of physical systems and cyber systems creates “cyber-physical systems” and

an only recently-exploited terrain for cyber threats [70].

These systems have been traditionally considered “airgapped” because initially they were

not connected to the internet. Additionally, these systems initially were constructed with

proprietary equipment and in-house communication protocols. Hence cyber threats in the form

of malware could not be easily mass-produced.

However, to enable remote monitoring and maintenance of ICS, machines which host the

human-machine interfaces (HMI) - the software that regulates machine actions - are increas-

ingly being connected to the internet. Industrial equipment is starting to include Wi-Fi and

Bluetooth capabilities in order to be maintained by mobile HMI devices and communicate

with other machinery. Equipment and protocols used in control systems are also becoming

standardized [91].
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Internet-connected ICS systems can be easy to find through customized string searches in

popular search engines such as Google and Bing, through the “internet of things” search engine

Shodan [68], through data mining such as the Internet Census 2012, or through SNMP searches.

To easily facilitate attacks on thse devices, Metasploit modules started appearing as of 2012 [10].

Cyber-physical ICS/SCADA systems are highly vulnerable as a single error can have a

great impact in the physical world. For example a misreported data value or a small memory

leak can cause the entire system to respond abnormally and even cause the system to fail [91].

Cyber threats for ICS/SCADA systems can target the OS on which the HMI is hosted, the

HMI itself, the programmable logic controllers (PLC) which send instructions to hardware and

report values back to the HMI, as well as theoretically any other node in the system.

Other characteristics of ICS/SCADA systems include:

• Control systems are time-critical/hard real-time systems where a failure to meet a single

deadline is the same as failure of the entire system.

• Edge nodes (physical devices) are just as critical to the success of the control system as

the HMI, databases, server, and any other node (even though only the perimeter is likely

to be protected).

• Misinformation of data can cause a device or human operator’s appropriate response to

result in the system responding destructively. Misreporting can hide incidents or alerts

altogether.

• Some ICS-specific applications, (e.g. the VxWork embedded OS) can be implemented as

a monolithic kernel, through which all applications are performed as kernel tasks, run

with highest privileges, and low memory protection [91].

Malware that exploits these characteristics has already been seen in the wild. In 2010,

The United States Industrial Control Systems Cyber Emergency Response Team (ICS-CERT)

reported a trojan spread via USB which targeted Siemens ICS software including the HMI

SIMATIC R© WinCC and PCL programming and configuration modules SIMATIC R© STEP

7 [30].

This malware became famously known as Stuxnet, the first major ICS-targeting malware.

Stuxnet used standard windows rootkits to hide itself on the HMI (hosted on a Windows

machine), but also implemented rootkit functionality in the targeted PLCs. The library file



85

Figure 4.10: Layers of Rootkit Installation Indicators

(s7otbxdx.dll) which the infected HMI machine would use to communicate with the PLC,

was replaced with Stuxnet’s modified version (s7otbxsx.dll), which contained mostly the

same exports as the original, but with additional functionality. Stuxnet copied its code to

the attached PLC which contained 70 encrypted code blocks that modified or added PLC

functionality. These PLC function blocks were hidden from the HMI by hijacking any request

used by the HMI to view those code blocks [20] [19].

In 2014, a variant of BlackEnergy, a “highly modular” malware, spread to ICS systems

running GE’s Cimplicity HMI, Siemens WinCC HMI, or the Advantech/BroadWin WebAccess

software. These systems were all connected directly to the internet and they were suspected to

have been discovered through the use of automated tools [31].

In 2014, the Air Force Institute of Technology (AFIT) created a proof-of-concept PLC

rootkit, which could be loaded via any known vector such as a USB or the supply chain. This

rootkit was “vendor agnostic”, persisted through the bootloader, and could be triggered through

a time bomb in the firmware or remotely [26] [17].

4.5 Summary of Rootkit Activities

Rootkits use three basic methods to install on a host OS: injection, overwriting, and place-

ment of standalone code. These three methods are used on kernel structures, such as modules,
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APIs, address tables, and other OS–specific resources and regions in order to generate malicious

logic to carry out their mission. Some of the methods used include trojanizing library func-

tions, replacing pointers to legitimate APIs with newly–planted malicious ones, and hooking

enumeration functions to hide both rootkit code and running processes.

These malicious activities help the rootkit fulfill its primary functions of hiding itself and

its resources, persisting where it cannot be easily removed, and setting up a communications

channel in order to offload information and spread additional malware.

Figure 4.10 displays the different layers at which rootkit activities can operate. Static

evidence are the basic components of any rootkit activity, and combined with each other in

different regions of activity results in the methods used to achieve operational goals. Each of

these categories of rootkit activity can be detected by some combination of rootkit detection

methods, as addressed in Chapter 5.
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Chapter 5

Rootkit Detection

In the same way in which rootkits employ diverse strategies for installation detection methods

also differ in variety and in execution. This chapter discusses detection methods applied to

indicators of a rootkit’s installation and activities discussed in Chapter 4.

Section 5.1 presents a high-level overview of the concepts behind rootkit detection tech-

niques. Subsequent sections provide further detail on each of these high-level concepts and

present specific techniques. Finally, Section 5.5 discusses how rootkit activity relates directly

to detection methods and provides a framework for detection of each level of rootkit activity.

Table 5.1 provides a simple roadmap for topics discussed in this chapter.
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Topic Sub-topic Section

Rootkit Detection Methods Overview 5.1

Detection Technique Categorization 5.1.1

Detection Metrics and Considerations 5.1.2

Detection Method Constraints 5.1.3

Static Rootkit Detection Techniques 5.2

Signatures 5.2.1

Static Heuristics 5.2.2

Static Memory Forensics and Mapping 5.2.3

Dynamic Rootkit Detection Techniques 5.3

Dynamic Behavior Analysis 5.3.1

Crossview Detection 5.3.2

Dynamic Memory Forensics and Mapping 5.3.3

Detection Execution Platform 5.4

Local Machine 5.4.1

Virtualization 5.4.2

Hardware 5.4.3

Rootkit Detection Methods Evaluation 5.5

Coverage Evaluation 5.5.1

Conclusions 5.5.2

Table 5.1: Chapter 5 Roadmap

5.1 Rootkit Detection Methods Overview

This section describes foundational concepts for rootkit detection methods. Section 5.1.1 pro-

vides a categorization of rootkit detection techniques. Section 5.1.2 addresses how data collected

in the detection process are evaluated and determine malicious behavior. Section 5.1.3 provides

some constraints applied to the rootkit detection methods described in this thesis.

5.1.1 Detection Technique Categorization

According to Lockheed Martin, there are three types of indicators of malicious activity: atomic,

computed, and behavioral [29]. This thesis breaks down these indicators into two primary

categories of rootkit detection: static and dynamic analysis, and two secondary approaches:

code–based or data–based analysis. Additional types of analysis such as memory forensics are

also commonly used in combination with other techniques. These methods can be used alone or

in combination to detect evidence of rootkit activity or presence. This list is not comprehensive.

• Static analysis examines the atomic “physical” features of the OS and attempts to identify
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the hard-coded presence of a rootkit. This includes static kernel objects, APIs, content

residing both within and outside the file system. Static analysis ultimately attempts to

uncover evidence of the rootkit installation itself: injection, overwriting, or the planting

of standalone code.

Static analysis can be performed on a byte-for-byte snapshot of a system and does not

require that the system be actively running. Behavioral characteristics can be detected

through heuristic static analysis. Static analysis techniques to reveal rootkits are further

discussed in Section 5.2.

• Dynamic analysis attempts to gather information about rootkit activity from a system

currently in operation. Information collected from dynamic analysis includes loaded dy-

namic kernel modules, system calls placed in real-time, active applications and reported

liveness statuses, and any changes in system activity as a result of data flow through

the system. Dynamic analysis attempts to discover evidence that can only be obtained

through an actively operational system and not through static analysis. Dynamic analysis

techniques to reveal rootkits are further discussed in Section 5.3.

• Code–based analysis is closely related to static analysis and relates to the infrastructure

of the OS and its components and applications. Code–based analysis is concerned with the

data structures and instructions available for execution, but not the individual properties

of these structures themselves.

For example, code–based analysis may identify byte-strings of a known malware but is

not concerned with the addresses to which it is calling are overwritten or out of bounds.

• Data–based analysis, or “semantic analysis”, is concerned with the flow of data through-

out the system. This includes both hard–coded data (static), and reported data values for

run–time decision making (dynamic). “Data” can include information such as pointers

and properties of data structures. Data-based detection methods can identify malicious

inputs and outputs even where the sizes of data structures or sequence of instructions

appear to be unchanged [62].

• Memory forensics is a method of mapping memory accesses, regions, and allocation and

deallocation events. Understanding the memory landscape within an OS can reveal the

placement of malicious code or nonstandard accesses to malicious objects or for malicious
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logic. Memory forensics applies to both static and dynamic detection techniques.

The goal of rootkit detection is to reveal a rootkit’s installation so that the roorkit may be

ultimately erased and the system reverted to its pre–rootkit state. Without a physical foothold

somewhere within the system, dynamic behaviors which carry out the rootkit mission would

not be possible.

From this perspective, it can be argued that static detection is the most important type

of rootkit detection as it reveals the rootkit installation itself. However, many hard–coded

modifications cannot be determined by themselves to be malicious. Hence the behaviors caused

by those modifications reveal the malicious properties of that static data. This is why dynamic

detection methods are also necessary to uncover rootkits. According to Dube et al., static

and dynamic analysis complement one another and provide a “full spectrum defense against

malware with reduced effective scan and detection time” [16].

Detection methods addressed throughout this chapter may use static analysis, dynamic

analysis, or a combination of both. Some methods evaluate the entire operating system for

evidence of a particular malicious characteristic, but it is often the case that both commercial

and research techniques combine techniques in order to focus on limited regions of effectiveness.

5.1.2 Detection Metrics and Considerations

In order to determine that some observable configuration or behavior is malicious definitions

of “normal” and “malicious” must be be determined. Comparing what is actually observed in

a system to these definitions allows detection mechanisms to determine whether or not what

is observed is malicious or allowable. This includes both behavioral (dynamic) and structural

(static) deviations. These deviations are then evaluated by other pre–defined metrics such as

regions affected, number of occurrences, and likelihood of the deviation being erroneous or

malicious.

Methods of defining a baseline of acceptable behavior fall into two overlapping categories:

heuristic rulesets, which often define signs of malicious behavior, and thresholds, which establish

a range of values within which indicators are determined to be either malicious or benign.

5.1.2.1 Heuristics

Heuristic methods define a set of rules or features to which code is evaluated for compliance.

Heuristics can be applied both statically and dynamically. Static heuristics are addressed in
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Section 5.2.2, and dynamic heuristics are addressed in Section 5.3.1.1.

Heuristic rules can be used by detection tools to make precise judgements on indicators be-

cause the rules define what behavior is explicitly unallowed. For example, an anomaly detection

device that monitors the integrity of the SSDT table would detect changes to addresses in that

table and then compare those changes to any anticipated acceptable or unacceptable scenarios.

These scenarios could include factors such as which service is authorizing the change, the range

of addresses to which the overwrite is allowed to point, and other pre–defined parameters. If an

address has changed, and the authorizing service is not on the list of acceptable services, then

this change is flagged as suspicious.

Although a precise determination on the maliciousness of an activity is ideal, covering

all possible rootkit installation scenarios using specific rulesets is not practical. This type of

coverage fails on two counts: 1) it is not feasible to completely safeguard entire kernels because

of their size and complexity [82], and 2) low–level monitoring rulesets would need to be adapted

to the specifics of every system for which it is deployed.

Additionally, strict rules are not practical to detect rootkit installation vectors that mimic

the behaviors of legitimate applications and services. For example, an anomaly detection rule

could dictate that any new Windows Registry modifications generates an alert. This would

result in more false positives than useful information as the contents of the registry are highly

dynamic and more frequently used for legitimate purposes. A rules–based detection metric

would not be able to discern whether or not a normal system call is legitimate or part of a

sequence of instructions used to create malicious logic.

Heuristics can also be applied for gathering information about a system, so that a threshold–

based analysis may be performed. For example: the number of calls a module makes to a

particular system call can be evaluate to be acceptable or suspicious. Thresholds are discussed

in Section 5.1.2.2.

5.1.2.2 Thresholds

Thresholds are a detection metric that sets boundaries for acceptable behavior in order to

distinguish malicious activities from identical legitimate activities.

For example, a context-based detection framework developed by Giura et al. identifies spe-

cific events that are correlated via a ruleset, which is a heuristic method. These events are

evaluated for metrics “confidence” and “risk” by predetermined thresholds. If risk and confi-
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dence levels are evaluated to be out of bounds then they are considered to be in the “alarm

zone” and an alert is raised. Thresholds used for this experiment are parameters specific to each

environment. As new events appear in the system, and match the characteristics of other events

related to APT actions, the confidence level that these activities are malicious is increased [23].

One of the greatest difficulties in both dynamic and static models is how to define appro-

priate thresholds. Classification accuracy requires appropriate parameters to be selected based

on the type of kernel in the system being monitored [66]. Thresholds also often yield false

positives, but if the boundaries are too lenient, malicious activity will go undetected. Because

of the dynamic nature of the kernel, not all malicious behavior can be explicitly defined to be

anomalous. For example, a detection system may need to know how many calls to a particular

module is considered benign, or exactly how many instructions a particular command should

execute before setting off an alarm.

Thresholds are an imprecise method of detecting malicious behavior because they are bi-

ased toward known behaviors that consistently act outside normal system operation. If a

malicious actor manages to only infrequently perform activities that happen to be monitored

by a threshold metric then there is a chance that the activity will only deviate slightly outside

normal behavior and therefore, will not be identified as malicious. Staying within acceptable

thresholds helps APT threats maintain their covert presence in a compromised system.

5.1.3 Detection Method Constraints

Although the detection methods addressed in this thesis attempt to provide as complete cov-

erage as possible, the following constraints apply to detection methods discussed here.

• Detection methods are often not limited to specific rootkit activities, but on detecting

that type of activity applied throughout the OS. For example, rather than detecting only

SSDT hooks a technique may detect all overwritten pointers in system–defined address

tables.

• Detection methods are evaluated independent of the mode from which the rootkit initially

launches. Detection methods assume the scenario of some arbitrary rootkit which is

capable of assuming full privileges at some stage in its implementation and is capable of

any rootkit defined activity.

• Detection methods do not aim to detect a rootkit’s objectives but rather focus on detecting
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evidence of system modifications, which rootkits use to achieve their objectives.

• Detection methods do not aim to detect or identify specific (named) rootkits but rather

to understand what information is available to indicate the existence of some arbitrary

rootkit. Some detection tools which detect specific rootkits exist, such as TDSS Killer [33],

but the methods which these tools use are part of a broader detection scenario.

• Detection methods do not aim to block a rootkit’s process or perform rootkit removal.

Some detection tools may perform these actions but these strategies are outside the scope

of this thesis and are not discussed here.

• Detection methods are limited to discussing kernel/OS rootkits. Advanced OS–independent

rootkits, such as BIOS and SMM rootkits, are outside the scope of this thesis and are not

addressed.

This thesis addresses each detection technique, provides examples, and evaluates the scope

of coverage and effectiveness for each in uncovering areas of rootkit activity, and in particular

how that relates to the original installation.

5.2 Static Rootkit Detection Techniques

Static analysis searches through a system looking for hard–coded modifications to an OS which

may indicate rootkit activity. This is usually performed by parsing code and data structures to

extract a set of features to analyze for the likelihood of malicious intent [51].

The three main installation techniques used by kernel level rootkits are: injection, overwrit-

ing, and planting of standalone code and data. These techniques are all likely to be detected by

static methods alone. Essentially, static analysis attempts to discover the physical modifications

which enable rootkit behaviors.

Static analysis can be performed by looking for byte strings that match a known malware

signature, heuristically analyzing code for potentially abnormal “behavioral” intent, or ad–hoc

pattern matching, as is often the case in research settings. Rootkit indicators may be revealed

by changes in code size, configuration, or presence of abnormal code, file formats, and data

structures.

One of the main benefits of static analysis is that the rootkit or any related malicious

binaries need not be active in order to perform static analysis [73] [51]. Static analysis is also
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Figure 5.1: Static Rootkit Detection Taxonomy

advisable where possible because it is less resource intensive than dynamic behavioral analysis

on a running system and can be performed directly on the host system [51].

There are two primary applications for static analysis: signature matching, which at-

tempts to identify specific byte–strings, and heuristic methods, which applies rules to eval-

uate code properties for malicious intent, which cannot be ascertained by signature matching

alone. Heuristic analysis in particular is aided by information gathered through static memory

forensics and mapping [16].

Figure 5.1 demonstrates a high level association between the relationships between static

and dynamic detection methods and what kind of rootkit indicators they target.

5.2.1 Signatures

Signatures consist of a unique string of bytes created by a hash or extracted from some defined

byte pattern. These calculated values are then compared to known values to make a determi-

nation on the legitimacy or intent of the code. Signatures are used to detect known malware.

Signatures can also be compared to ensure the integrity of known legitimate code and binaries

5.2.1.1 Malware Signatures

Malware signatures help host-based defenses find evidence of that malware in infected files and

stop the vast majority of malware from entering a system, provided that virus and malware

definitions are up to date.

Host-based IDSs and anti-virus software often contain an up-to date database of known
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malicious strings. Applying and evaluating the signature can involve a database of regular

expressions and a string matching engine. Each regular expression in the database can identify

a known piece of malware or malicious functionality [66].

Traditionally this method is only applied to objects in a file system, but it can also be used

to find a specific byte pattern in virtual memory modules as well [9]. Signatures can also be

used as a basis to identify other similar malware that shares some of the same known malicious

byte patterns [66].

This type of detection often attempts to stop malware before it is permitted to execute on a

system, and is considered a preventative measure [9]. The main problem with signature-based

methods is that the malware must be previously known. Unknown, polymorphic, or obfuscated

malware defeats signature-based detection methods [51]. However, signature-based methods

may also be used to detect malicious changes to previously known legitimate software. This

method is known as integrity verification and is addressed in the next section.

5.2.1.2 Integrity Verification

Software integrity verification is a method of ensuring that changes to a piece of software

(or similar self-contained object such as a static kernel module or DLL) can be shown to be

untampered. Often this method is implemented by first creating a hash (a signature) of that

object at initialization, and then consistently compare the original hash to a current hash of

the file to verify that there are no differences. If an object’s hash differs from the one stored at

creation, then it is assumed that the object has been compromised.

The hash generated for comparison could be a checksum, SHA, MD5, or some other signature-

creation algorithm. For example, Wang et al. built a hash by scanning the ELF headers for the

code segment and computing an MD5 hash using Linux’s md5sum utility [82]. Some software

vendors can provide a certificate of integrity, or the administrator installing the software could

verify the integrity of the object prior to installation, and then check it at intervals throughout

the lifetime of that software. This method could fail, however, if the original download is com-

promised, as the original signature will vouch for a compromised application. Additionally, the

signature will change with each update to the software, so updating integrity verification can

be an ongoing maintenance task [82].
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5.2.2 Static Heuristics

Static heuristics may identify modifications to code to which signatures do not easily apply.

Heuristic rulesets can be applied to analyze nearly any aspect of a static image, particularly

where signatures alone fail, and can evaluate the static “behavior”, or intent, of code. For

example, obfuscated or mutated code may not generate an exact signature match to a known

binary, but because the malware retains the original functionality it will utilize the same opcode

features as the original [51]. Similarly, the discovery of pointers to code outside the loaded kernel

would detect address table hooks [73].

Static heuristic methods focus on non–runtime indicators and are often rule–based more

so than threshold–based. These indicators include structural anomalies, program disassembly,

and n-grams [16]. While the possibilities for the application of heuristics is vast there are

several indicators that may reveal the presence of a rootkit. For example, a heuristic method

may examine: the presence of obfuscation, pointers and the locations of addresses in memory,

the number of instructions or jumps loaded to or from a kernel module, and the presence of

nonstandard characters in code (e.g., “*”) [51]. For example, a rule–based heuristic could

determine that any JMP overwrite at the start of a function is definitively malicious based on

the premise that most functions do not start with a jump instruction [73].

Heuristic methods can directly detect modifications to a system such as encrypted files

and code, DKOM hooks and other hard–coded memory accesses to nonstandard locations. In

specific detection scenarios, the use of nonstandard system APIs can be considered suspicious.

For example, the presence of obfuscation of either code or intent can be a good indicator of

malicious activity.

Musavi et al. demonstrated that static heuristics can be applied to detect kernel level filter

drivers. Using a training set of 2200 legitimate drivers and then applying a custom set of static

analysis tools on 2200 known malicious drivers common traits shared by many of the malicious

drivers revealed metrics which can be detected by static analysis [51]:

• Injection was used by 27% of rootkit drivers but only by 1.4% of legitimate drivers.

• File modification activity was used by 19% of malicious drivers but only by 7% of legiti-

mate drivers.

• Filters were used by 98% of malicious drivers and only by 19% of legitimate drivers.
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• Write protection was bypassed by 7% of the malicious rootkit drivers but by only 3 out

of the 2200 legitimate drivers.

One of the downsides to the detection method proposed by Musavi et al. is that attempts to

distinguish rootkit drivers from legitimate drivers by analyzing use of the NDIS library functions

to bypass security products. Interestingly, only 1.12% of rootkit drivers used the NDIS library,

while 19% of legitimate drivers did. The authors propose that the complexities in handling the

network protocol are not a great concern for rootkit drivers, and so code size would be a better

metric for analysis in this case [51].

Musavi et al. also demonstrated how DKOM can be detected through a well–developed set

of static heuristics by enumerating system calls used to obtain kernel objects, and the number

of accesses to the offsets of those objects [51].

The Musavi static driver analysis experiment highlights the complicated role that thresholds

play in the detection of rootkits. Without a defined threshold both legitimate and malicious

drivers would be considered suspect, resulting in a high number of false positives. However,

with low thresholds, both malicious and legitimate drivers would be considered safe.

The difficulty in employing heuristics is that in order to obtain confidence that a partic-

ular modification is related to malicious activity, it must be known beforehand exactly what

is allowable for that specific system. Solutions are often limited in scope and are experimen-

tal. Additionally, heuristic–based methods detect unknown malware, but are “inefficient and

inaccurate” and are unable to detect new forms of malware [66]. For example, according to

Wang et al., code hooks, which are hard-coded modifications to kernel text are “easily detected”

but the possibilities of detecting which kernel objects are hooked are vast because theoretically

any kernel instruction could be overwritten [84].

However, new implementations of malware still aim to achieve the same goals, and so they

display the same intents and behaviors of traditional malware. Detecting malware and rootkits

by their behaviors can be performed by dynamic analysis, which is discussed in Section 5.3.

5.2.2.1 Code–based Heuristics

Static code-based approaches look for evidence within rootkit data structures or code segments.

While a code–based approach is very similar to heuristics in general, a code-based approach

strictly looks for evidence of a rootkit’s functionality through which data structures, system

calls, or instructions are executed, regardless if they are new, overwritten, or injected code, or
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called via malicious logic. Code–based methods are not concerned with “properties” of data

structures. For example, the types of values passed between modules or the legitimacy or

possible values of the data.

Code–based approaches are generally not applicable to dynamic detection strategies except

in the case of dynamically loaded kernel modules.

5.2.2.2 Data–based Heuristics

While data–based detection approaches are more easily defined and applied in the arena of

dynamic detection (See Section 5.3.3.1), data values stored for malicious use could theoretically

exist for detection purposes. For example, a filter driver which returns a predefined set of values

would be hard-coded to pass data values within a particular range. If these values are hard

coded then they could potentially be detected using static heuristic methods [62].

5.2.3 Static Memory Forensics and Mapping

Kernel memory mapping analyzes memory utilized or accessed by a kernel module, which is

the most thorough way to generate a view of the flow of information through the kernel. A

well-formed map of memory accesses can reveal both out-of-bounds and nonstandard memory

accesses and other evidence of malware infection [58] [73].

Memory forensics typically looks for two types of memory-related evidence: out-of-bounds

memory accesses and nonstandard memory accesses. Out-of-bounds accesses are performed by

examining locations of memory accesses,often in suspicion of pointer manipulation, compared

with the results of bounds checking arrays and kernel object stacks. The discovery of an out-

of-range pointer may reveal the presence of address table hooking or redirection attacks to

malicious code [77] [69].

Nonstandard memory accesses typically look for jumps to new memory locations, even

legitimate locations, and can discover attempts at malicious logic. This type of memory forensics

requires a pre-established baseline of expected memory accesses with which to compare actual

accesses. For example, the discovery that a kernel module is placing more calls per operation

can reveal additional malicious functionality as a result of overwritten or injected code. If a

particular instruction is not being called as often as expected, but the standard callees are

submitting the same amount of requests, then it is possible that a filter is redirecting traffic to

a malicious copy of that module [73] [9] [69] [84].

Dynamic memory forensics is discussed in Section 5.3.3.
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Figure 5.2: Dynamic Rootkit Detection Taxonomy

5.3 Dynamic Rootkit Detection Techniques

Dynamic detection methods exist to detect conditions that only occur while a system is opera-

tional. Information accessed through dynamic analysis is continually changing, and so detection

techniques also adapt to changes in the environment. It is often the inconsistencies in system

operation that provide indication that malicious activity is underway.

The one major downside to dynamic detection is that it is a purely reactive technique.

Any indicators of malicious activity discovered are proof that a rootkit has already infiltrated

the system to the point where it can successfully perform those activities. However, without

dynamic detection many static indicators of rootkit activity would go undetected as a result.

Dynamic detection methods are broken into the following categories. Behavior analysis

searches for evidence of rootkit objective fulfillment. Dynamic heuristics involves the rules and

rule–creation for defining malicious activities. Dynamic memory forensics and mapping reveal

ways of detecting suspicious activity through memory accesses and allocation events [62].

Figure 5.2 demonstrates a high level association between the relationships between static

and dynamic detection methods, and what kind of rootkit indicators they target.
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5.3.1 Dynamic Behavior Analysis

Rootkit activities that result in the rootkit fulfilling its intended objectives, such as gaining

persistence, hiding objects and resources, initiating a C2 channel or disabling security devices,

can also create a unique set of indicators that reveal the presence of rootkit activity. Behavior

analysis attempts to detect a rootkit’s presence not by revealing its installation indicators but

by the activities performed as a result of the installation.

Behavior analysis can be performed through two main strategies: dynamic heuristics, which

look for specific indicators of a particular rootkit activity, and machine learning, which takes the

opposite approach, to define how a system behaves normally, and then looks for any deviation

from normal behavior. Machine learning can be used to create a baseline from which heuristic

rules are then created [16] [63].

5.3.1.1 Heuristics

Heuristic rule sets can be used to detect dynamic indicators of rootkit activity. Often, these

rule sets are applied to types of activity, numbers or patterns of system calls seen in real time,

as defined to be unallowable or potentially malicious. Often these indicators are obtained from

virtual environments [16]. The dynamic application of heuristics often reveals indicators of a

rootkit actively fulfilling its operational goals, such as process hiding and modifying data and

code in protected regions of a system. Dynamic heuristics expand on the successes of static

heuristics as they can provide results and adapt to events in real time.

Dynamic heuristics may monitor the integrity of certain regions of kernel code for evidence

that they may have changed. For example, the SHARK hardware–based rootkit detection tool

continually verifies the hashes for critical kernel regions and process identifiers [77].

Execution path analysis is a dynamic heuristic rootkit detection method which counts the

number of instructions executed and then looks for statistical deviations from the expected

number of instructions. This is performed by using the x86 single step mechanism to interrupt

after each instruction in order to count each instruction. This information is then statistically

analyzed and compared to hooked and unhooked versions of kernel APIs. Contrary to execution

path analysis, however, heuristics are not ideal for detecting DKOM attacks, which may not

manipulate execution paths at all [73].

Heuristic analysis may fail if the rules analyzing the system do not dynamically update

with system activity. According to Ahn et al., APT and zero day threats cannot be detected
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strictly through pattern matching methods, which include those based off signatures, rules,

and blacklisting. This necessitates the need for dynamic detection methods which include both

heuristics and data mining techniques [1]. These techniques are discussed in Section 5.3.1.2.

5.3.1.2 Machine Learning

Machine learning is a technique which employs flexible rule sets based off interpretations of large

amounts of data, in which both the dataset and the interpretations are continually updated.

Machine learning is closely related to big data, data mining, and other sciences built around the

gathering and interpretation of large amounts of dynamic data inputs [16]. Machine learning

as applied to possible indicators of rootkit activity is a way of detecting and predicting kernel

attacks, even those not seen in the wild before [66] [5]. As a result, heuristic analysis benefits

from interpretations of this data.

Machine learning is especially useful to generate predictions of possible attacks based off

classification, text mining, clustering, and association [1]. According to Ahn et al., big data

analysis applied in machine learning involves four stages: prediction, classification, relation,

and analysis of atypical data [1]. Prediction of attack possibilities is based off known past

attacks using regression analysis from attack logs. Classification can group new attacks based

on markers from similar attacks. Relation links events based off user activities, and sequences

based on time flow Atypical data consists of other information such as pictures, text, video,

and even social mining [1] [2].

In addition to the collection and classification of large amounts of data, machine learning is

a continually developing field with no defined methodology, but several experimental techniques

to determine an effective way to convert massive amounts of data into actionable information.

For example, the malware target recognition (MaTR) architecture proposed by Dube et al.,

addresses malware detection by employing both static and dynamic techniques with machine

learning for an attempt at a complete detection solution [16]. MaTR employs a three–layer

pyramid structure with static detection serving as the foundation, followed by dynamic detection

methods, and finally results which are determined by human operators. Static methods are

used to quickly scan for candidates for further analysis based off structural anomalies such as

feature sets, nonstandard section names, entry points, and imports/exports of both code and

data. Candidates for dynamic analysis are extracted from this set, and processed according

to machine learning. Machine learning in MaTR is applied as a decision tree with a machine
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learning classifier. Classification decisions are implemented as tree branches and nodes with each

branch applying a different classifier to the sample, and the path from root to leaf determining

the final classification of the sample [16].

Additionally, data collection to support data mining occurs across a wide vector of resources,

not just the local machines. Some of these resources are Firewalls/NIDS, HIDS, databases, web,

application, and other sources. Consequently, machine learning is typically applied to malicious

activity across an array of vectors, not just in the search for rootkits alone [1].

5.3.2 Crossview Detection

Crossview detection specializes at uncovering rootkit concealment activities by comparing two

different views from the same machine. This is also called “difference–based comparison”, and

often reveals evidence of rootkit code and process hiding. For example, to detect hidden files,

a crossview detection utility could compare the results of a raw object enumeration with that

of an application using the system API [9] [77].

One notable project, Strider GhostBuster [83], attempts stealth malware detection by im-

plementing a crossview, difference-based approach. The GhostBuster utility generates a high

level view of a system, which is expected to miss information that the stealth software has hid-

den about itself, and then a low level view of the system which attempts to collect the “truth”

about files and processes through data collection methods that bypass system resources, such

as enumeration APIs [83].

GhostBuster obtains a high level view of the processes presented by the system by using

the NtDll!NtQuerySystemInformation API. The low level view is obtained by using a driver

to manually traverse the Active Process List. This lower scan, however, is not entirely accurate

because it does not intercept processes hidden via DKOM, and so a second scan traverses a

separate kernel data structure, which provides process list information for non-enumeration OS

functions [83].

These scans can be performed “inside-the-box” or “outside-the-box”. The outside-the-box

approach requires making the relevant memory address space available external to the system

with the assumption that data could be retrieved via Direct Memory Access (DMA) and not

alert an infected system. However, there is no guarantee that a stealth software would not

intercept and trap events presented to GhostBuster [83].

The GhostBuster project was successful in detecting Aphex, Hacker Defender, and Berbew
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through comparisons centered around the Active Process List. The FU rootkit could only be

detected with advanced configuration settings but because the Vanquish rootkit injected its

process into several DLLs the GhostBuster detection tool discovered many instances of these

injections. Overall, GhostBuster aims to discover “the truth” via low-level scans but only makes

the assumption that what is discovered is only a “truth approximation” [83].

5.3.3 Dynamic Memory Forensics and Mapping

Dynamic memory forensics methods are much the same as static memory forensics, except

detection methods require a running system and are used to monitor memory accesses that

only occur while the system is in operation.

Certain types of information flow can reveal distinct evidence of malicious activity. For

example, memory allocation and deallocation events can be used to generate a good baseline

for cross-view detection: if dynamic kernel modules are being loaded but do not report the

activity, then this is suspected to be liveness falsification [62].

To detect SSDT hooks one possible method is to load a driver that scans the SSDT and

compares the addresses to those in ntoskrnl. If an SSDT address is outside this range, then

there is a good chance that address is associated with a hooked module. Removal of an SSDT

hook is a little more difficult than detecting the hook. The original address of the API must

be retrieved, and re-written over the malicious address in the SSDT [63]. However, this does

not remove the original malicious code, leaving it available to be used should that address be

known by other malicious modules.

5.3.3.1 Data Flow Analysis

In contrast to static data, which consists of hard–coded values or configuration information,

dynamic data must be observed in real time. Data flow analysis techniques examine data inputs

and outputs throughout the system to detect malicious behavior resulting from those values.

Although malware can reuse existing data structures maliciously or obfuscate the content of

code in order to hide the fact that the code is being used for a malicious purpose, passing data

bypasses the need to modify data structures. Because many detection tools look for changes to

code malicious data is often overlooked [58].

Data-focused detection methods can detect semantic value manipulation (SVM) attacks

and do not require detection of injected code or malicious code sequences [58] [62]. Data flow

analysis is considered to be a method of “semantic aware detection”.
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Semantic aware detection is a method of determining that malware is malicious based on its

response when provided certain inputs. Krueger et al. statically detect kernel level drivers by

having sample code symbolically execute inputs intended to discover “improper kernel memory

accesses” [51]. The fuzz testing utility, MOSS, developed by Prakash et al., evaluates the

mutability of semantic fields by mutating data inputs [58].

Malicious logic resulting from bad data can mask the true effects of a sequence of system

calls, or result in falsified reporting of active processes. These discrepancies can be hard to

detect as it is often the case that misreported or malicious values do not result in deviant

behavior every time information is passed. For example, the Stuxnet rootkit reprogrammed

the PLCs to cause the centrifuges to intermittently spin faster than was allowable. In theory,

if an externally applied cross-view system were able to monitor the values from the PLC’s

commands, this attack may have been detected because reported centrifuge operation values

did not match the actual values [79].

Data-based detection scenarios can text the outputs and effects of data values from these

seemingly legitimate data structures to detect malicious behavior [62]. One downside to data-

based detection, however, is that value-based integrity checking does not always work. Malicious

values may fall within established thresholds [62].

Data access patterns can also be used to generate a limited type of malware signature. The

DataGene utility [69] proposed a way to monitor data in memory that is owned and accessed

by malicious code. Access patterns can reveal the presence of the malware, but this approach is

limited enough by parameters in the operating environment to not produce a universally useful

or robust signature [69].

5.4 Detection Execution Platform

There are three primary types of platforms from which a detection tool can interact with

the host operating system: 1) 3) host–based or networked, 2) hardware–based, or 3) virtual.

Local, or networked machines are generally the easiest platforms from which to host a detection

tool, but are vulnerable to the kernel–level malware. Virtual environments are commonly

used to test incoming files and binaries for malicious behavior before forwarding them to the

intended recipient. Hardware–based solutions can provide immunity to the malware, but are

less developed.

Figure 5.3 displays a simple taxonomy of the types of execution platform available, from
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Figure 5.3: Rootkit Detection Execution Platform Options

which detection utilities can operate.

5.4.1 Local Execution

As addressed in Section 4.3.1, any kernel–based malware detection system can be subverted by

rootkit activity.

Host–based rootkit detection software, which hook into the same kernel–level data structures

as rootkits, have the advantage of observing and detecting rootkit activity. However, they are

vulnerable to being hooked by the rootkit as they rely on the compromised system to provide

information about itself [9] [4].

Additionally, malware detection tools that run at the application level must rely on the

operating system to provide information about the system in order to determine that malicious

activity is occurring. These tools can either be directly subverted by the rootkit or merely

rendered inactive through the presentation of false information by the rootkit–hooked OS.

For example, the Windows Memory Manager, which is responsible for both paging and

translating a process’s virtual address space into real address space, provides useful information

about memory resources being accessed. The problem lies in that if the rootkit has compro-

mised the Memory Manager, then information reported by this component may not be fully

trusted [73]. The Tripwire program, for example, detects file system modifications, but is a

user level program, and thus susceptible to rootkit manipulation and deception [4].

A falsified view of the OS, however, can be very useful for crossview detection. For example,

the GhostBuster tool creates a high level scan of the OS using the ls command line utility. In

contrast, the low level view used for comparison is an out–of–the–box image of a clean bootable
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CD distribution of the same OS being scanned [83].

Interestingly, the development team for the GhostBuster crossview detection tool was aware

that GhostBuster could also be directly targeted by malware. Wang et al. decided to incorporate

rootkit techniques into GhostBuster so that it could operate without being detected. A kernel–

level GhostBuster DLL was created, which then injected into running processes, giving OS

utilities such as Windows Explorer, Task Manager, and RegEdit GhostBuster abilities [83].

Ultimately, host–based malware detection applications and kernel utilities are still prone to

infection by the rootkit itself, and cannot be fully trusted.

5.4.2 Virtualization

Virtual machine introspection (VMI) is a malware detection technique in which potentially

malicious files are executed in a virtual environment while the host OS monitors the guest

OS for malicious activities. This technique can be used locally or by network–based IDSs to

intercept and execute incoming files in a sandbox–like environment before determining whether

the file may be forwarded to its original destination [4].

For example, FireEye’s NX 10000 appliance [54] is an external facing IDS that uses a suite

of virtual machines (VM) to execute files and look for malicious behavior before the packets are

even allowed into the internal network. The VMs are multiple versions of standard operating

systems and browsers, so that files can be executed in an environment closely matching the

target.

The dAnubis program [51], which is an extension to the Anubis malware analysis utility,

uses VMI to look for kernel drivers. Rather than automating the detection process, however,

dAnubis monitors all communications with system memory, and then prints out the results for

human analysis to make determinations on whether the results reveal a malicious driver.

The Strider GhostBuster cross–view detection utility can be launched using virtualization.

As this utility uses an older style of virtualization, the proposed VM is booted from a CD, and

then performs both the high level and low level scans in two separate stages. First, GhostBuster

injects an ASEP hook to the infected boot drive, and then launches a high level scan on the

powered-on machine. After the scan completes, the VM is powered down, the ASEP hook

removed, and then the outside-the-box scan is performed. The lower level scan is compared to

the high level scan, and possible rootkit activity is reported [83].

There are several benefits to executing malware using virtualization. Virtual machines are
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cost effective and convenient, easy to manage, and allows consolidation of resources as existing

hardware can be reused for new VMs [4] [84]. Performance is increased, and threats are isolated

from affecting internal resources [4]. Additionally, unlike host–based sandbox environments, the

target VM is a complete OS, within which the rootkit is functionally uninhibited [84]. Even some

utilities claim to not slow down business operations. FireEye claims that the NX10000 device

is capable of performing virtual execution of incoming traffic in an enterprise environment, and

then forwarding acceptable content at speeds averaging 4Gbps to 10Gbps [54].

In addition to executing files and binaries prior to allowing them to execute on the target

machine, VMI can also be used for a type of cross–view comparative detection. The VM

can execute the file, then generate a baseline of results for various processes which can then be

compared to the execution of the same file or process on another machine, real or VM. However,

the obvious problem with this method is that the malware is executing on the victim machine

before a comparison between the two images can raise an alert.

Some rootkit samples are able to detect the presence of a VM environment and change their

actions. Often rootkits will detect a VM, and then decide to not behave maliciously [84]. Some

even have alternate (legitimate) functionality which takes place until it detects that it has been

installed on a legitimate host machine.

Some rootkits can even directly attack the virtualized environment. Prakesh et al. also

warns that the VMI appliance is reading data directly from VM memory, and so if the guest

kernel was also compromised, then threat data cannot be considered accurate [58].

A virtual machine monitor (VMM), for example, which consists of a small code size, is

considered to be a convenient platform from which to monitor host machine integrity. However,

the BluePill rootkit [77] can subvert the VMM and exploit the hardware virtualization support.

BluePill implements its own hypervisor and then loads the host OS or original hypervisor as a

guest and takes over the entire virtual environment.

Although virtualization provides a cost–effective and convenient method of scanning for

rootkits, and is less susceptible to rootkit subversive activities than the target machine, virtu-

alization is not a complete solution.

5.4.3 Hardware

A hardware–based approach is ideal in order to observe the kernel without risk of compromise

by kernel–level malware, and to generate a highly accurate raw enumeration for crossview
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detection [9].

Hardware-based detection utilities have a substantial advantage over the integrity of local

and virtual execution, as they cannot be hooked by kernel–mode–only rootkits. Architectural

support is necessary to establish a direct line of communication between hardware and a de-

tection utility, bypassing the kernel altogether [77].

Some possible hardware implementations are a PCI add–in card, or possibly with a Myrinet

NIC to retrieve valuable information via Direct Memory Access (DMA) [83].

For example, the Copilot is a hardware-based coprocessor that resides on a PCI add–in

card. Copilot serves as a kernel integrity monitor by polling kernel memory for changes in the

hash of critical regions of memory or via pre–defined violations [82] [4] [73]. Copilot continually

sends the results of the RAM acquisition to an isolated co–processor, which then checks for

violations [77].

The Secure Hardware support Against RootKit (SHARK) [77] tool was developed to provide

a direct relationship between each software context and machine hardware. SHARK implements

a hardware assisted PID generation (HPID) and then establishes a dependency between the

HPID and the execution of the process through process table encryption. The SHARK tool

then performs a stealth checker by comparing processes presented to an administrator versus

actual processes registered through the hardware.

5.5 Rootkit Detection Methods Evaluation

Detection tools, both in industry and in research, encompass a broad range of styles of detection

which aim to detect different types of indicators of rootkit activity.

For example, Musavi et al. proposed a method of detecting malicious kernel drivers by train-

ing a classifier on specific features or activities which were likely to reveal evidence of the driver’s

malicious intent. These features include: string activity ratio, anti-analysis, number of system

calls, disassembly size, and constants such as kernel memory offsets [51]. The GhostBuster

tool implemented a cross–view approach by scanning hand–selected regions for comparison,

such as enumeration APIs, and was able to be implemented on both the host and external

hardware [83]. MaTR employed both static and dynamic heuristics with machine learning to

attempt to classify large amounts of threat data [1].

Figure 5.4 demonstrates a high level association between the relationships between static

and dynamic detection methods, and what kind of rootkit indicators they target.
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Figure 5.4: Detection Methods Applied to Rootkit Indicators

5.5.1 Coverage Evaluation

To evaluate coverage it is necessary to draw a distinction between the categories of possible

indicators of rootkit activity.

It is often the case that combination is the most effective coverage, because no detection

method alone can either address all behaviors or all regions within a system. For example:

• Some detection methods may be better than others to detect a particular behavior in one

region, but not within another. For example, an integrity verification–based detection

tool which monitors the Windows Registry may detect ASEP hooks but the ASEP–hook

detection utility would likely not be useful to detect return oriented programming [4].

• Other methods may be applicable to only certain behaviors within a certain region. For

example, integrity verification could detect modifications to standard system modules

but would not be as effective applied to dynamically loaded kernel modules. Cross–

view detection methods may be effective to discover hidden processes, but not necessarily

trojanized modules [84].

Figure 5.5 demonstrates how detection methods as expressed in Chapter 5 typically apply to

the different types of rootkit indicators. Note that this diagram is not perfect as these detection

methods can apply to more than one category of indicator depending on the application of that

method.
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Figure 5.5: Application of Detection Methods to Rootkit Indicators

Detection methods can be used in nearly any combination, applied to nearly any indicator

category to detect the rootkit activity itself. Table 5.2 provides an example of a rootkit activity

that can be detected through different detection methods, depending on the type of rootkit

activity indicator selected.

5.5.2 Conclusions

To gain full detection coverage, it would be easy to say that the goal is to to detect all activity

in each of the three basic types of rootkit activity: injection, overwriting, standalone. However,

because of the dynamic nature of the kernel not all static modifications can be determined to be

malicious. Standalone code which matches malware signatures can be definitively determined

to be malicious. Code for which integrity verification fails can be determined to be tampered.

However, the operating system is vast, and it is difficult to apply integrity verification to every

static component.

Heuristics, both static and dynamic, can identify other types of malicious behavior, such as

unallowable system-call patterns or known malicious tampering (e.g., JMP overwrite). However,

heuristics are not sufficient to provide definitive rootkit detection but rather tend to collect

data that may be 1) previously identified to be malicious and 2) only determined to be through

comparison to a range of values.
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Indicator Category Indicator Detection Method

Simple
indicator

Function handle
address in SSDT is
different than expected
address.

Heuristic memory checking rules
detect jump to address outside
kernel memory region.

Basic static
indicator

Overwriting Integrity verification reveals
difference between actual and
expected SSDT handle addresses.

OS region SSDT Detection tool monitors SSDT
specifically for several vectors of
infection / modification.

Region
type

Address table Detector monitors all standard
address tables for
unexpected/unauthorized changes.

Effect System call rerouted to
rootkit code.

Static memory forensics and call
mapping, or dynamic heuristics
monitoring real time calls, detects
abnormal sequence of instructions
from originating caller.

Objective /
operational
goal

Hide malicious activity
by filtering inputs so
that acceptable values
are always returned.

Cross–view detection observes that
actual values and reported values
differ.

Table 5.2: Detection Methods Applied to Categories of Rootkit Indicators

Crossview detection can detect the presence of misreporting within the system, which is

an activity that relies heavily on both assumptions about what data should be monitored and

corresponding dynamic information as presented by the system. This strategy fails where there

is no alternate data for comparison.

Other methods, such as machine learning, seem to primarily exist to collect data for the

purpose of building thresholds so that comparisons may be run against that data.

While signature based strategies and static identification of malicious call sequences help

to identify a rootkit’s installation, they are not sufficient to provide full detection coverage.

Methods which support a thresholds–based analysis, such as machine learning, use real–time

data for analysis, and naturally produce and update rules and thresholds for the specific system

on which they are implemented.

The combination of these two types of detection do their best to provide full coverage.

However, the application of these methods ultimately comes down to the type of detection tool

and the type of rootkit indicators the authors of the tool decide to collect. In order to improve

the state of rootkit detection, more information is needed regarding the efficiency and difficulty

of applying these methods. With metrics that apply to specific systems, the methods discussed
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in this thesis can be quantified for efficiency and speed of application, in addition to coverage.

Future work in these areas is discussed in Section 7.2.2.
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Chapter 6

Application

This chapter demonstrates the rootkit installation and activities taxonomies presented in Chap-

ter 3 and the detection taxonomies developed in Chapter 5 on the ZeroAccess rootkit.

6.1 The ZeroAccess Rootkit

This section describes the ZeroAccess rootkit and provides an overview of the methods utilized

by ZeroAccess and possible detection methods to discover ZeroAccess using the taxonomies

proposed in this thesis.

Much of the detail in this section is summarized from a thorough analysis by Sophos of the

most common ZeroAccess derivative in circulation in 2012 [90].

6.1.1 ZeroAccess Background

ZeroAccess, also known as “Sirefef”, is a trojan-like kernel-mode rootkit. This trojan is a

component of the ZeroAccess botnet, which had been installed more than 9 million times

by the time it was discovered in 2012. One million of these infections were still active as

of September 2012 [90], and 1.9 million infections were active in 2013 [88]. ZeroAccess also

resurfaced in January 2015 with new infections, but with only approximately 50 thousand

actively participating infected PCs.

ZeroAccess infects 32-bit and 64-bit versions of Windows primarily to carry out click-fraud

and bitcoin mining. For the click-fraud scheme, ZeroAccess displays ads on a computer and

then clicks on them as a user-initiated request. These ad clicks generate revenue for the botnet

operators [12]. At the peak of ZeroAccess’s operations it is believed to have generated in excess

of $100,000 per day [88].

6.1.2 ZeroAccess Weaponization and Delivery

ZeroAccess was a popular payload to use through the Blackhole exploit kit. Weaponized and

distributed by Blackhole, ZeroAccess infected PCs through infected websites. The other main

avenue of distribution was through victim–downloaded trojanized files. ZeroAccess was com-

monly downloaded through a trojanized keygen for DivX Plus 8.0 which was hosted on upload
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sites and as a torrent. ZeroAccess was also distributed through a trojanized copy of the game

Skyrim [90].

6.1.3 ZeroAccess Installation

The ZeroAccess rootkit has been trojanized into both copies of the game Skyrim and an NSIS

installer for a DivX Plus 8.0 keygen [90]. The trojanized keygen is presented as a Nullsoft Script-

able Install System (NSIS) [56] self extractor, which compiles scripts into highly customizable

executable installation programs. These programs include target directory and installation

configurations and usually run at the same privilege level as a standard user. The NSIS self

extractor containes both the DivX Plus 8.0 keygen and an encrypted 7zip file. When the file is

executed, it unpacks the keygen publicly (%Profile%\Application Data\Keygen.exe’) and

the 7zip file secretly, extracting the ZeroAccess dropper [90].

ZeroAccess queries the ZwQueryInformationProcess API to determine which version of

Windows is running and then determines which installation path it will use.

6.1.3.1 32-Bit Installation and Hiding

The kernel-mode rootkit for the 32-bit installer for ZeroAccess loads its code into the kernel by

overwriting a randomly chosen system driver. The original driver and other ZeroAccess files

are encrypted and stored in a location not normally accessed by applications [44] [90].

Other versions of ZeroAccess hid files by creating a hidden volume. As of 2012, ZeroAccess

hid files by creating a legitimate directory under %systemroot%. It encrypts the files with

RC4, converts the folder into a symbolic link to make it inaccessible to standard Windows

APIs, modifies the Access Control List (ACL) for that directory so that its location is unable

to be browsed to.

ZeroAccess hides changes made to the infected driver by hooking the LowerDeviceObject

of the DR0 device (\Driver\Disk). Processes attempting to use the driver are presented with

a clean copy of the driver, but ZeroAccess directly accesses the malicious version without using

the Windows APIs, which only recognize the folder as a symbolic link.

The rootkit driver creates a device named “ACPI#PNP0303#2&da1a3ff&0” which accesses

and decrypts ZeroAccess’s hidden files as needed [90].
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6.1.3.2 64-Bit Installation and Hiding

The 64-bit version of ZeroAccess executes in user memory and does not hook the kernel. To

ensure persistence a file is stored in the user’s AppData folder and a registry entry is created

under HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon.

ZeroAccess hides its files inside the Global Assembly Cache (GAC), which does not diplay

files and folders, but rather launches the Cache Viewer if Explorer is used to view the directory.

(The directory structure can be viewed from the command line, however) [90].

6.1.4 Privilege Escalation

The first attempt to escalate privilege happens when ZeroAccess calls RtlAdjustPrivilege to

give itself SE DEBUG PRIVILEGES, which will only succeed if the user initiating the ZeroAccess

installation is an Administrator. If the user is logged in as a Standard User then ZeroAccess

generates a User Account Control (UAC) popup, which requires an Administrator login.

At this step, social engineering assists privilege escalation. ZeroAccess will not generate

a UAC popup for the purported keygen or Skyrim install, but for a more common program

such as Adobe Flash Installer. ZeroAccess first places a clean, legitimate copy of Adobe Flash

Installer into a temporary directory, and then places a malicious DLL msimg32.dll into the same

directory. Windows prioritizes the execution of local DLLs over that of DLLs in the system

directory, which allows ZeroAccess to abuse Windows’ DLL load order so that the malicious

program can run in the legitimate file’s process address space [90].

6.1.5 C2 / Botnet

The ZeroAccess communication channel is initated from within the kernel driver and an injected

user memory component, either within explorer.exe or svchost.exe [90].

Some variants of ZeroAccess communicate to an IP address during the installation process to

report information about the compromised machine. Using an HTTP GET request, the domain

name displayed in the “Host” field is randomly generated by a Domain Generation Algorithm

(DGA) which generates a new name within the .cn domain daily. The connection itself does

not require this name, but the Host name is used for authentication, by which the C2 servers

can verify that the request is from a legitimate instance of ZeroAccess before responding [90].

ZeroAccess operates as a peer-to-peer botnet and while it communicates infected machine

information to a C2 server, the payload is connected to a list of peers for downloading additional
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files.

Network communication is either initiated directly by the kernel driver or by a component

that the infected driver placed in user memory, usually in the address space of explorer.exe

or svchost.exe.

The bot executable file contains a list of 256 peer IP addresses and attempts to contact each

one on a fixed port number. It also listens on the same high-numbered TCP port as used for

outgoing connections.

When a ZeroAccess bot connects to another bot, communication is sent using RC4 encryp-

tion with a fixed key, shared by all variants of ZeroAccess. The bot sends a GetL request, which

the peer bot responds with RetL: a list of its 256 IP addresses and files it downloaded with

associated timestamps. A subsequent GetF request lets the bot download each file from that

peer. This provides each bot with an updated list of active peers and the most current versions

of the exploits and malware for the botnet [90].

6.1.6 Additional Activities

Using its newfound privileges, ZeroAccess now takes liberties to disable several security services.

It disables Windows Updates first and then the following:

• Base Filtering Engine (BFE) service, which can disable antivirus scanning capabilities.

• IP Helper service (iphlpsvc), which retrieves network configurations about the local com-

puter.

• Windows firewall service (mpssvc), a host-based network protection and monitoring ser-

vice.

• Windows Defender (WinDefend), the Windows-based anti-virus/anti-spyware solution.

• Windows Security Center service (wscsvc), the location from which users manage the

firewall, malware protection, and other security settings.

• Proxy Auto Discovery service (WinHttpAutoProxySvc), which provides components for

facilitating HTTP requests and responses.

A self-defense mechanism included in the 32-bit verson uses a “bait” process [90], also

known as a “tripwire” process [44], which contains an alternate data stream. If any process
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attempts to execute the bait file, ZeroAccess changes the ACL of the file for that process, then

injects shell code into the process which terminates it. This assists in disabling security tools,

particularly those which use emulation by sandboxing and executing files to determine if they

exhibit malicious behavior [90].

6.2 Taxonomic Evaluation of the ZeroAccess Rootkit

This taxonomic evaluation of the ZeroAccess rootkit is based on the DivX Plus 8.0 keygen

method of delivery. The examples presented in this section demonstrate how rootkit activities

and detection techniques presented in this thesis relate and can potentially provide full coverage

of all rootkit activities.

Not all possible taxonomies for each rootkit activity are presented. Likewise, not all possible

detection taxonomies are presented for each indicator. The application presented in this section

intends to demonstrate that each basic type of indicator may have multiple applicable activity

taxonomies, each of which may have multiple detection taxonomies. This application is not

intended to prove the specifics of full coverage, as this could include thousands of indicators,

each with several taxonomies, and multiple detection techniques applied to each taxonomy.

Table 6.1 applies rootkit activity and detection taxonomies to one indicator for injection–

based rootkit activities. Likewise, Table 6.2 addresses taxonomies applicable to overwriting–

based indicators, and Table 6.3 applies taxonomies to standalone indicators.
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Rootkit Modifications & Taxonomies Detection Taxonomies

Injection–based Indicator Activity Static Dynamic

Modify contents of
%WINDIR%\debug\
usermode\userenv.log [43]

Hide process
→ Plain sight
→ False intent
→ Misreporting

Signature
→ Integrity Verification
Memory forensics
→ userenv.log accessors

Crossview
→ Event
Ommission/Modification
Memory forensics
→ Data flow analysis
→ Real–time accesses

Table 6.1: Injection–based ZeroAccess Rootkit Indicators and Corresponding Detection

Rootkit Modifications & Taxonomies Detection Taxonomies

Overwriting–based Indicator Activity Static Dynamic

Overwrite system driver
Hide physical presence
→ Within file system
→ Hidden
→ Inside application

Signature
→ Integrity Verification
Memory forensics
→ Memory region accesses

Memory forensics
→ Data flow analysis
Behavior analysis
→ Machine learning
→ System call / memory
access patternsHide process → Hidden

→ Invisible
→ Injection

N/A

Hook DR0
LowerDeviceObject

Hide physical presence
→ Outside file system
→ Hook existing object

Signature
→ Integrity verification
Memory forensics
→ Memory region accesses

Behavior analysis
→ Heuristics
Memory forensics
→ Data flow analysis

Hide process
→ Plain sight
→ False identity

Modify Group Policy
Registry keys

Hide process
→ Invisible
→ Disable security

Signature
→ Integrity verification

Behavior analysis
→ Machine learning
→ Security service behaviors

Modify ACL of file for
process accessing bait
process.

Hide process
→ Invisible
→ Disable security

Signature
→ Integrity verification
Static heuristics
→ Data–based heuristics

Behavior analysis
→ Heuristics
→ Security service liveness
Memory forensics
→ Data flow analysis

Table 6.2: Overwrite–based ZeroAccess Rootkit Indicators and Corresponding Detection
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Rootkit Modifications & Taxonomies Detection Taxonomies

Standalone–based Indicator Activity Static Dynamic

New malicious DLL in
Adobe Flash Installer
directory

Hide physical presence
→Within file system
→ Plain sight
→ False identity
→ False name

Signature
→ Integrity verification

Behavior analysis
→ Heuristics
Memory forensics
→ Data flow analysis

New files in unbrowseable
locations within file system.

Persistence
→ Survive removal
→ Survive disable
→ Difficult to access

Static heuristics
→ Code–based heuristics
Memory forensics
→ Memory accesses to
unbrowseable regions

Crossview
→ File enumeration
Memory forensics
→ Data flow analysis

Hide physical presence
→ Within file system
→ Hidden
→ Unbrowseable

New kernel loaded filter
driver

Persistence
→ Survive removal
→ Survive disable
→ Dangerous to access

Static heuristics
→ Code–based heuristics

Behavior analysis
→ Machine learning
Memory forensics
→ Data flow analysis

Hide physical presence
→ Hide physical presence
→ Hide code outside file
system

Signature
→ Code–based heuristics

Memory forensics
→ Data flow analysis

New files hidden in GAC
Persistence
→ Survive removal
→ Survive disable
→ Difficult to access

Memory forensics
→ Memory region accesses

Crossview
→ File enumeration
Memory forensics
→ Data flow analysis

Hide physical presence
→ Hide within file system
→ Hidden
→ Unbrowseable

New application
ACPI#PNP0303#2&da1a3ff&0

Hide process
→Hidden
→ Plain sight
→ Own identity

Static heuristics
→ Calling pattern
Signature
→ Malware signatures
Memory forensics
→ Memory region accesses

Memory forensics
→ Data flow analysis
Behavior analysis
→ Machine learning

Table 6.3: Standalone–based ZeroAccess Rootkit Indicators and Corresponding Detection
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6.3 Application Conclusions

The application of the taxonomies to only a few of the ZeroAccess rootkit indicators reveals a

few patterns which may potentially apply to all rootkit indicators.

1. Each static–based indicator can be used in more than one way. For example, overwriting

can be used to modify pointers in kernel code or address tables, or it can be used to

change the values in the Registry to modify Group Policy settings.

2. Each indicator can be associated with multiple taxonomies. For example, hooking the

DR0 LowerDeviceObject hides both the physical presence of the malicious activity as the

change is unseen, but also hides its process by falsifying its identity as a legitimate system

service. Hiding new rootkit files in an unbrowseable location both helps the rootkit persist

as well as hide its physical presence.

3. Each taxonomic representation of a rootkit activity can potentially be associated with

more than one detection taxonomy. For example, the ACPI#PNP0303#2&da1a3ff&0 de-

vice is “hidden” within the normal Windows file system but it can be detected using

multiple methods. This device is known by name and thus could be detected with a

malware signature. Memory forensics may discover that this device communicates with

an unbrowseable part of the file system, while dynamic machine learning could be trained

to recognize a decryptor device.

4. Some detection methods apply to more than one rootkit activity. For example, new files

in an unbrowseable folder are placed in that region for both persistence and hiding. Static

heuristics can detect the persistence of the files by analyzing all unbrowseable regions of a

file system, or static heuristics combined with memory forensics can detect that memory

accesses connect to that region.

5. Not all detection methods are useful for detecting all indicators of rootkit activity. For

example, crossview detection is not a good method for detecting injection inside kernel

modules unless the immediate result of that injection itself goes misreported at another

level.

Through this application, it is possible to conclude that rootkit detection techniques can

potentially provide full coverage to detect all rootkit activities. However, the efficiency and
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practicality of combining these techniques is not yet proven. See Section 7.2.2 for possible

future research and projects in order to determine how detection techniques may be efficiently

applied to provide full coverage detection of kernel–mode rootkits.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the research presented in this thesis and proposes ways that this

research could be furthered to benefit the scientific community. Section 7.1 presents a summary

of rootkit activities and detection methods, as well as conclusions derived from the research and

taxonomies presented in this thesis. Section 7.1.2, in particular, highlights the contributions

this thesis provides to the existing rootkit knowledge base. Section 7.2 proposes future research

and project ideas based on and inspired by this thesis.

Table 7.1 provides a simple roadmap for topics discussed in this chapter.

7.1 Summary of Work

This section summarizes the work performed in this thesis, describes how it addresses objectives

stated in Section 1.3, and meets the contributions identified in Section 7.1.2 in Chapter 1

7.1.1 Research Summary

This section discusses information gleaned from research on both rootkits and their detection

techniques, and then presents conclusions based on this research.

7.1.1.1 Rootkit Summary

Rootkits are debatably the most critical component to the success of APTs. However, rootkits

often go undetected upon delivery and installation because of social engineering tactics. Rootk-

its are dangerous because they are able to gain access to the system kernel, and then perform

all malicious activity with system–level privileges. Once a rootkit gains access to the kernel,

the rootkit completes installation using methods to ensure persistence while hiding evidence

of the physical and behavioral presence of the rootkit. After installation is complete, rootkits

open up a backdoor for communication to either a server or other compromised machines and

download and hide additional malware.

In order to detect and mitigate the threat of APTs, rootkit detection is critical. However,

in order to effectively detect kernel–mode rootkits, the scope of behaviors and system resources

manipulated by rootkits must first be understood.
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Topic Sub–topic Section

Summary of Work 7.1

Research Summary 7.1.1

Contribution 7.1.2

Future Work 7.2

Taxonomy Expansion 7.2.1

Tool Evaluation 7.2.2

Table 7.1: Chapter 7 Roadmap

The rootkit lifecycle can be depicted via the kill chain model, with the steps summarized

as follows:

• Step 1: Reconnaissance (Section 3.2) is the stage where the attacker gleans as much

information about the target as possible to ensure that the malicious package appears

relevant to any targeted insiders and is technically able to take root on the targeted

systems.

• Step 2: Weaponization (Section 3.3) is the stage at which the attacker selects and

prepares the malicious package. This package includes the method of delivery, the carrier

container or file, the exploit that launches the rootkit process, and the rootkit itself.

• Step 3: Delivery (Section 3.4) is the stage at which the attacker deploys the weaponized

rootkit. This method could be active or passive, depending on the desired target, and

can be via physical, such as a USB, or cyber–only, such as web or email. The scenario

commonly used in this thesis is that of a spearphishing attempt, where an attacker sends

a malicious business–relevant document through email to a specific individual at the

targeted company.

• Steps 4–5: Exploitation & Installation (Section 4.1) are the two critical stages for

rootkit activities, with exploitation repeatedly occurring throughout the rootkit instal-

lation process. At this stage, the rootkit plants code, modifies configuration settings,

overwrites pointers, and generates malicious logic through manipulating the order of sys-

tem calls. These activities allow the rootkit to not only plant its code, but in such a way

that the rootkit persists and hides evidence of itself.

• Step 6: Backdoor / C2 (Section 4.2) is the stage at which the rootkit establishes an
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external connection to other rootkit services, typically a C2 server or other compromised

machines as part of a botnet.

• Step 7: Actions (Section 4.3) is the stage at which the rootkit helps facilitate further

compromise. Most commonly, the rootkit uses the backdoor connection to download and

launch additional malware, uses techniques to hide evidence of the new malicious activity,

including disabling security services.

A rootkit’s operational goals as described in Section 4.1.1 consist of 1) covertly entering

a victim’s system (Steps 1–3), 2) exploit the host to elevate privileges (Step 4), 3) install

and persist while hiding evidence of itself (Steps 4–5), and 4) perform other simple malicious

activities (Steps 6–7). These goals are directly fulfilled through the rootkit’s installation, and

these goals also translate more directly to dynamic detection methods than to static detection

methods.

A kernel–mode rootkit’s installation takes place by modifying static system attributes,

specifically through 1) injection, 2) overwriting, and 3) the placement of standalone code or

executables. Any run–time rootkit behaviors or activities can be directly attributed to some

malicious influence on the system generated by some combination of these three static attributes.

7.1.1.2 Detection Summary

Detection methods can be either analyzing 1) static attributes of a system, 2) dynamic behav-

iors, or 3) a combination of both. Analysis techniques can emphasize analysis of static code, or

static or dynamic data attributes.

Static detection methods can be summed up as either applying 1) signature based detection

or 2) pattern–matching heuristics to determine that code or data has been modified or has the

potential to perform malicious actions through its inherent logic. Static detection methods can

detect rootkit indicators directly relating to the rootkit’s static installation, such as evidence

of injection, overwriting, and standalone code.

Static heuristics can analyze code intention and detect some instances of malicious logic and

filter drivers. Static detection methods are not effective at detecting run–time indicators. Run–

time indictors include: injected processes, process hiding, and abnormal numbers of system calls.

Additionally, static detection methods cannot always make determinations that a modification

is malicious because the use of that modification may not be apparent.
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Dynamic detection methods monitor the running system and look for runtime indicators.

Behavior analysis analyzes the system for evidence of rootkit activity, particularly the fulfilment

of its objectives, namely process hiding. Behavior analysis is achieved through heuristics sup-

plemented by machine learning techniques which adapt to changes in the system over time and

make determinations from patterns in large amounts of data. Crossview detection compares

two different views of the same system to search for discrepancies in information communicated

to the system and to the user, which helps reveal rootkit indicators such as process hiding and

liveness falsification.

Dynamic detection methods can detect many of the same indicators as static detection meth-

ods, but apply those indicators to a dynamic environment. For example, integrity verification

of kernel code can be checked continually in a dynamic environment.

It is possible that the application of both static and dynamic detection techniques can

provide full coverage of all rootkit indicators and each of the different detection methods can

be used alone or in combination to detect the same rootkit indicator. The application of these

methods into modern detection tools is left up to the discretion of the developer. Research

surveyed does not clearly indicate the most effective blend of techniques for rootkit detection.

7.1.1.3 Conclusions

1. Kernel–mode rootkits are supported by a static installation. Because all mali-

cious behaviors of a kernel–mode rootkit are rooted in static configurations, detecting

its static installation of injection, overwriting, and standalone code could be considered

ideal. Revealing every static indicator of a rootkit’s existence would not only reveal the

full extent of the rootkit’s installation and capabilities, but would also conveniently help

facilitate any subsequent removal attempts (notwithstanding the difficulties of restoring

each modification to its original state). Additionally, detection of the first stages of a

rootkit installation could help advance rootkit detection technology from a purely reac-

tive state to a semi-predictive state, preventing the rootkit from completing its installation

and ultimately preventing it from fulfilling its mission.

2. It is not feasible to identify a kernel–mode rootkit by static indicators alone.

There are two major problems with the assumption that detecting a kernel–mode rootkit

can be performed through static–only detection. First, not every static modification per-

formed by a rootkit can be seen as definitively malicious. Therefore, dynamic detection
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techniques are necessary to observe the behavior of a system in order to determine that

certain static attributes are used to generate malicious or deviant behavior. Second,

rootkit installations are launched through unpredictable exploits. Depending on the na-

ture of the exploit, installation can unfold in any arbitrary sequence of events, provided

adequate privileges to necessary resources have been obtained by the rootkit. Because of

this, detection techniques would need to monitor every possible rootkit installation vector

within the system in order to detect the earliest stages of installation.

3. Detection methods provide full, overlapping coverage, but the most efficient

application of these methods is not clear from research. Both static and dynamic

detection methods can detect multiple aspects of a single rootkit indicator. There were

no rootkit indicators for which a detection method did not exist. However, the likelihood

of detecting that particular indicator given related indicator interactions and the state of

the system is much less clear from the research, for which more information is necessary.

Additionally, preferred combinations of rootkit techniques were not addressed in the re-

search surveyed, as many tools tended to focus on detecting a single rootkit indictor using

a single method.

4. More information is needed to properly evaluate tools and techniques to pro-

vide a realistic full-coverage rootkit detection scenario. While it is possible to

assume a full-coverage scenario by choosing some combination of methods that apply

to each vector of rootkit installation and behaviors, there is little data to support the

practicality of such a scenario. Detection metrics for various implementations and pro-

posals for which methods would work best in specific environments would greatly enhance

decision–making. This topic is addressed as a possible future project in Section 7.2.2.

7.1.2 Contribution

The contribution of this thesis as identified in Section 1.4, aims to contribute to the scientific

commmunity in the following ways. Each identified contribution objective is highlighed along

with an explanation of how this thesis met that objective.

1. Providing a taxonomic framework through which rootkit objectives, activities,

and detection methods can be more easily understood and communicated.

This thesis provides taxonomic frameworks for rootkit objectives, in particular actions
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taken to hide both its dynamic and static presences, and rootkit installation activities. A

taxonomic framework for detection methods as applied to rootkit installation and behav-

ioral indicators is also presented.

2. Making it easier to understand exactly where existing rootkit detection tools

provide rootkit detection coverage and for which rootkit activities these tools

could be further developed in order to improve coverage.

The detection taxonomy provides a framework for evaluating the capabilities of rootkit

detection tools. Although this thesis does not directly evaluate specific rootkit detection

tools to evaluate their coverage, the taxonomy presented provides a method by which tools

and other malware detection methods may be evaluated for rootkit detection coverage.

3. Providing graphical depictions which increase understanding of rootkit activ-

ities and how they relate to their respective attack spaces and to each other.

These visualizations also help facilitate understanding of how detection meth-

ods apply to the rootkit attack space and demonstrate both overlaps and over-

sights as related to existing rootkit detection techniques.

Each rootkit activity and detection method is accompanied by a taxonomic depiction

demonstrating the relationships or objectives of each vector of activity.

7.2 Future Work

In order to advance the science of rootkit detection, there are several areas in which more

information is necessary in order to determine a) the most effective application of detection

methods, and b) areas in which the science is inadequate to make those determinations. These

topics are both best addressed through research involving the collection and evaluation of

existing information, and through projects, the output of which fills in identified knowledge

gaps.

Section 7.2.1 identifies areas in which the taxonomy proposed in this thesis can be expanded

to include more robust information, and contribute to decisions on how to apply rootkit de-

tection methods for full coverage. Section 7.2.2 proposes projects in which existing rootkit

detection methods and tools can be analyzed in order to improve the knowledge and applica-

tion of information about current rootkit detection technologies.
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7.2.1 Taxonomy Expansion

The kernel–mode rootkit taxonomy presented in this paper is by no means complete. The

focus of this thesis is centered primarily on kernel–only rootkits, but this is only a subsection

of possible modern rootkit implementations.

Section 4.4 addresses advanced rootkits which utilize some kernel–mode capabilities, but

are not limited to this domain of computing. These types of rootkits are not dependent on the

OS, are less likely to be detected using standard heuristics, and can only be detected through

the use of targeted tools and techniques [73].

Some possible rootkits to add to the existing taxonomy include:

• Virtualization rootkits, the detection of which necessitates feedback that bypasses the

compromised kernel. For example, the SHARK architecture uses a crossview detection

strategy to compare hardware feedback to OS–provided data to detect malicious activ-

ity [77] [73].

• Memory–based rootkits, which generally evade static detection techniques as they run

only in memory. These rootkits, however, still rely on other static configurations to some

degree [77].

• Hardware–specific rootkits, such as GPU–based rootkits [25], System Management Mode

(SMM), PCI, MBR/“bootkits”, and BIOS rootkits [86] [73] [9] [22].

• SCADA/ICS rootkits. For example, the rootkit used in the Stuxnet APT [91] [72].

These advanced rootkits, which use a combination of kernel–level techniques and specialized

methods, provide a new layer of information that can be researched, evaluated, and appended to

the existing rootkit taxonomy. Detection methods for these rootkits should also be evaluated,

and determinations of the coverage for each detection method can be either appended to the

existing taxonomy, or entered into a new taxonomy to address these advanced threats.

In particular, research on rootkits which specifically target ICS/SCADA systems may neces-

sitate the creation of a new taxonomy to understand both the limited scope of rootkit activity

and limited possible implementations of ICS/SCADA rootkit detection methods. Additionally,

research should address the difficulties of implementing malware detection platforms in SCADA

systems and the scope of damage possible through certain implementations of these detection

methods.
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7.2.2 Tool Evaluation

One major deficiency in existing information regarding rootkit detection tools and methods

is a practical means of comparing these detection resources. It would be highly valuable to

develop a framework to understand the applications, coverage, and efficiencies of known tools

and techniques. Additionally, information can be created by implementing these various tools

and techniques, so that data exists by which efficiencies and coverage may be evaluated.

• A rootkit detection comparison framework would help both research and industry deter-

mine the most practical rootkit detection methods, as well as plan future rootkit research

projects (both improving existing technology and developing new technologies).

This framework should facilitate understanding the scope of coverage and application of

known rootkit tools and techniques, by comparing and differentiating detection applica-

tions across different platforms and by the different rootkit indicators detected. Critical

information to be included in this framework is that of resources utilized by any detection

system, so that detection capabilities can be evaluated to be practical and provide best

coverage. In particular, this detection framework should support quantifiable data, such

as resource–specific metrics and the load of both the detection tool and the system under

analysis.

• Data collection on existing rootkit detection tools and techniques may be necessary to

support a rootkit detection comparison framework. This project would consist of selecting

a few rootkit detection techniques – with similar implementations and which intend to

detect similar rootkit indicators – and running tests to compare the efficiency and coverage

provided by these tools under a fixed set of conditions. Tool comparison information is

not readily available and would be highly valuable for decision–making for future research

and rootkit detection tool implementation.

Once sufficient data is collected on tools with similarities to one another, it may be

beneficial to expand this research to include different types of implementations. For

example, VMI tools versus hardware–based tools for detecting injected processes.
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Appendix A
Acronyms

Acronym Definition

ACL Access Control List

ADS Alternate Data Streams

AFIT Air Force Institute of Technology

API Application Program Interface

APT Advanced Persistent Threat

APT1 PLA Unit 61398

ASEP Auto Start Extensibility Point

BEP Browser Exploit Pack

C2, C&C, CnC Command and Control

DDoS Distributed Denial-of-Service

DGA Domain Generation Algorithm

DKOM Direct Kernel Object Manipulation

DLL Dynamically Linked Library

DMA Direct Memory Access

DoS Denial of Service

ELF Executable and Linking Format

GAC Global Assembly Cache

GOT Global Offset Table

HMI Human-Machine Interfaces

HPID Hardware Assisted PID

HTRAN HUC Packet Transmit Tool

IAT Import Address Table

ICS Industrial Control Systems

ICS-CERT Industrial Control Systems Cyber Emergency Response Team

IDS Intrusion Detection System

IDT Interrupt Descriptor Table

IP Intellectual Property

IPC Inter–process Communication

LKM Loadable Kernel Module

LM–CIRT Lockheed Martin Computer Incident Response Team

LSP Layered Service Provider

MIF Malware Infection Framework

MSF Metasploit Framework

OSINT Open Source Intelligence

P2P Peer-to-Peer
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PLA People’s Liberation Army

PLC Programmable Logic Controllers

PnP Plug-n-Play

RAT Remote Administration Tool

ROP Return–Oriented Programming

SCADA Supervisory Control and Data Acquisition

SCI System Call Interface

SET Social Engineer Toolkit

SHARK Secure Hardware support Against RootKit

SIEM Security Information and Event Management

SMI System Management Interrupt

SMM System Management Mode

SSDT System Service Descriptor Table

SVM Semantic Value Manipulation

UAC User Account Control

VFS Virtual File System

VM Virtual Machine

VMI Virtual Machine Introspection

VMM Virtual Machine Monitor

VNS Virtual Network Services
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Appendix B
Compilation of Taxonomies

Rootkit Kill Chain Taxonomies

Figure 3.3: Taxonomy of Reconnaissance Methods

Figure 3.6: Taxonomy of Weaponization Methods

Figure 3.7: Taxonomy of Physical Delivery Methods
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Figure 3.8: Taxonomy of Cyber Delivery Methods

Figure 4.5: Concealment Methods for Physical Existence
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Figure 4.6: Concealment Methods for Process Evidence

Figure 4.4: Rootkit Persistence
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Figure 4.7: Backdoor Implementation Methods

Figure 4.8: C2 Objectives: Persistence and Hiding

Figure 4.9: C2 Communication Considerations
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Figure 4.10: Layers of Rootkit Installation Indicators
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Rootkit Detection Taxonomies

Figure 5.1: Static Rootkit Detection Taxonomy

Figure 5.2: Dynamic Rootkit Detection Taxonomy
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Figure 5.3: Rootkit Detection Execution Platform Options

Figure 5.4: Detection Methods Applied to Rootkit Indicators
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Figure 5.5: Application of Detection Methods to Rootkit Indicators


