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Abstract

Proteins are the molecular machines that perform the functions necessary for life. Interactions between

proteins and other biomolecules are at the heart of all biological processes in a cell. This thesis explores

how molecular modeling can be used to understand both proteins and their interactions. Examples include

antibody-antigen interactions in Ebola, how proteins might behave in the subsurface oceans of Titan, and

the ability of different software to accurately predict protein interactions. We predict mutations in Ebola

that could lead to antibody escape. We explore aspects of possible life on exoplanets by modeling how

Earth-based proteins would behave in the environment thought to exist in subsurface oceans on Titan.

We analyze a suite of different software to find those that have better predictive capabilities, depending

on the location and type of mutation. In short, we show that molecular modeling can be used to make

predictions about protein behavior and interactions.
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Chapter 1: Introduction

1.1 An Introduction to Molecular Modeling

Molecular modeling is the science of representing molecular structures numerically and simulating

their behavior with the equations of quantum and classical physics [45]. There is an inherent trade-

off between accuracy (highest with quantum compared to classical) and simulation time (shortest with

classical compared to quantum). Pure classical simulations are thus typically used for larger molecular

systems such as proteins, but mixing quantum mechanics with molecular mechanics (QM/MM) is also

possible via the Hartree-Fock or the Kohn-Sham model. These mixed methods can be more accurate,

but much more computationally expensive than pure classical simulations.

Molecular modeling can also be used to study protein structure, energy, and stability in different

environments (see chapter 3), even those that are inaccessible to experiment. Molecular modeling can be

used to calculate binding free energies between proteins and potential therapeutics for cancer or disease

treatments[159, 119]. The process of drug design typically includes molecular modeling to streamline the

drug discovery process[124, 97]. This is done by virtual screening where small molecules are identified

that are most likely to bind to a protein target, such as amyloids. Molecular modeling can be used to

understand escape mutants and identify vaccines that are more robust to evolution (see chapter 2). The

ability of molecular modeling to estimate protein stabilities can be used to understand potential life on

other planets[94].

In order to simulate proteins, it is important to have a 3-D representation. Many methods exist to

extract 3-D structural data such as cryo-electron microscopy (EM)[19], X-ray crystallography[153], and

nuclear magnetic resonance (NMR) spectroscopy[7]. These efforts together have given rise to a dramatic

increase in available 3-D structural data over the past few decades, with more than 160,000 structures

currently in the protein data bank[10]. Once a 3-D protein structure is obtained, it can be simulated and

its energies and stabilities can be analyzed.

1.1.1 Structure Analysis

Molecular modeling can be used to help understand many properties of proteins. For example, simu-

lations of protein complexes can enable us to model the forces driving their assembly, and their stability,

which in turn may help us to understand these processes better.

In the absence of a 3-D structure for a specific protein, homology modeling can be used. Homology

modeling looks at the sequence of the protein with unknown structure and compares it against similar

sequences with known structures. The assumption is that similar sequences lead to similar structures.



2

Provided the sequences are similar enough, this process can provide an accurate estimate of the unknown

structure.

After a simulation is complete the results can be analyzed statistically. Examples of such analyses

include the radius of gyration, root-mean-square fluctuation, or Ramachandran plots to predict protein

structural stability (see chapter 3).

We can also look at the effects of mutations or environmental changes on a protein. Amino acid

changes (called mutations) can destabilize a protein if they are too different from the wildtype amino

acid. Some factors that can influence this destabilization are amino acid size, polarity, and charge of the

mutation compared to the wildtype. Changes in environment can also influence protein stability, such as

the solvent differences (water-ammonia vs water, see chapter 3) or temperature (temperature dependent

mutations, see chapter 5).

1.1.2 Free Energy

The free energy is a statistical mechanical quantity that can be thought of as a measure of the

probability of finding a system in a given state. In biophysics, free energy is used to determine the

folding and binding energies of proteins. The free energy involves both entropy and enthalpy, and will

favor conformations with low enthalpy and high entropy.

Protein folding is the physical process by which the amino acid chain acquires its native 3-D structure.

The resulting 3-D structure (or lack of 3-D structure) is determined by the amino acid sequence or primary

structure[3]. The configuration space of a protein during folding can be visualized as an energy landscape

(see fig. 1.1).

Protein-protein interactions are the physical contacts between two or more proteins. This includes

the case when two proteins bind to each other. The binding free energy (often called binding affinity,

∆GBind, see fig. 1.2) represents the strength of this binding interaction.
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Figure 1.1: The unfolded protein (chain of amino acids) begins at the top of the funnel where it may
assume the largest number of unfolded variations and is in its highest free energy state. Energy landscapes
such as these indicate that there are a large number of possible configurations, but only a single native
(lowest free energy) state. [140].

ΔGBind

Figure 1.2: Graphical depiction of protein-protein binding. δG shows the binding energy required to bind
the two proteins into a single protein complex.
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1.2 Overview of Dissertation

Below is a brief summary of the thesis chapters. These show how molecular modeling can be used to

understand proteins.

1.2.1 Initiating a watch list for Ebola virus antibody escape mutations

The 2014 Ebola virus (EBOV) outbreak in West Africa was the largest in recorded history and resulted

in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid

future epidemics of this magnitude. In this study we have initiated a watch list of potential antibody

escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list

was generated using molecular modeling to estimate stability changes due to mutation. Every possible

mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-

KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list

contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit.

1.2.2 Protein Stability in Titan’s Subsurface Water Ocean

Models of Titan predict that there is a subsurface ocean of water and ammonia under a layer of ice.

Such an ocean would be important in the search for extraterrestrial life since it provides a potentially

habitable environment. To evaluate how Earth-based proteins would behave in Titan’s subsurface ocean

environment, we used molecular dynamics simulations to calculate the properties of proteins with the most

common secondary structure types (alpha helix and beta sheet) in both Earth and Titan-like conditions.

We analyzed protein compactness, flexibility, and backbone dihedral distributions to identify differences

between the two environments. Secondary structures in the Titan environment were found to be less

long-lasting, less flexible, and had small differences in backbone dihedral preferences (e.g., in one instance

a pi helix formed). These environment-driven differences could lead to changes in how these proteins

interact with other biomolecules and therefore changes in how evolution would potentially shape proteins

to function in subsurface ocean environments.

1.2.3 Analysis of Software Methods for Estimation of Protein-Protein

Relative Binding Affinity

Here, eight computational tools were assessed on their ability to accurately predict relative binding

affinities due to single mutations (∆∆G) for eight antibody-antigen and eight non-antibody-antigen

complexes. All methods for predicting ∆∆G values performed worse when applied to antibody-antigen

complexes compared to non-antibody-antigen complexes, with a few exceptions. Rosetta-based JayZ and
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EasyE were able to classify mutations as destabilizing with a 83-98% accuracy. Combining molecular

dynamics with FoldX provided some of the better results for non-antibody-antigen binding affinities with

a correlation coefficient of 0.46. Overall, our results suggest that non-rigorous methods can be used to

quickly approximate destabilizing mutations, but are less accurate with approximating binding affinities.

1.2.4 DmORC

DmORC was an unfinished project, but led to a better understanding of proteins and molecular

dynamics. DmORC was an ongoing project being done in conjunction with experimentalists from the

University of Vermont. The DmORC structure was partially rebuilt in Schrodinger and simulated to look

at stability.
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Chapter 2: Initiating a watch list for Ebola virus

antibody escape mutations

Craig R. Miller,1,2,3 Erin L. Johnson,3 Aran Z. Burke,3 Kyle P. Martin,3,4, Tanya A. Miura,1,3 Holly

A. Wichman,1,3 Celeste J. Brown,1,3, F. Marty Ytreberg3,4

1Department of Biological Sciences, University of Idaho, 2Department of Mathematics, University

of Idaho, 3Center for Modeling Complex Interactions, University of Idaho, 4Department of Physics,

University of Idaho

Published in PeerJ. On this project I contributed by writing the manuscript, analyzing simulations, and

performing some background reading. Writing and editing was done on Overleaf (LATEXwebsite) in collab-

oration with all the co-authors. Results of analysis were shared and discussed in group meetings. The back-

ground reading was done to understand previously written related research. This paper was previously pub-

lished in PeerJ and falls under the NIH public access policy (see https://publicaccess.nih.gov/) and can be

used freely in this thesis. Final publication is available from PeerJ https://dx.doi.org/10.7717/peerj.1674

.

2.1 Introduction

With nearly 30,000 confirmed cases and over 11,000 deaths, the recent Ebola virus (EBOV) epidemic

in West Africa has dwarfed all recorded outbreaks of the disease [26]. Now that the 2014 outbreak appears

to be waning it is critical to develop strategies for treatment and containment to avoid future epidemics

of this magnitude. One important strategy is the development of vaccines. Two vaccines that express the

EBOV envelope glycoprotein (GP) from the 1976 Mayinga strain are in phase III clinical trials: rVSV-

ZEBOV and ChAd3-ZEBOV [39, 141, 96]. Early reports suggest that rVSV-ZEBOV is highly effective at

preventing EBOV infection [49]. A related strategy is antibody-based therapeutics. For example, ZMapp

has been shown to be effective in treating non-human primates and has been used to treat small numbers

of humans with Ebola [123, 14]. The monoclonal antibodies in ZMapp were generated by vaccination of

mice with GP from the 1976 Mayinga strain [161, 122, 123].

A key course of action to prepare for future EBOV outbreaks is to anticipate how the evolution of

antibody escape mutants in the virus might compromise treatment efforts. Antibody escape mutants

have arisen in the laboratory when recombinant vesicular stomatitis viruses expressing the GP protein of



7

EBOV or Marburg virus were grown in the presence of anti-GP antibodies [69]. In that study a single

amino acid substitution conferred viral resistance to the antibodies. Similarily, a single amino acid change

in GP of the EBOV Kikwit 95 strain in a macaque treated with monoclonal antibodies resulted in fatal

infection [121]. Mutational changes in GP have also been found to impact immune responses to the virus;

substitutions at N-linked glycosylation sites can alter antigenicity and immunogenicity, in some cases

preventing binding to the KZ52 antibody [33, 84]. Antibody escape mutants are also known in influenza

A, HIV 1, measles and respiratory syncytial virus infections [134, 40, 128, 168].

Sequencing studies have shown that there is a high level of genetic variation in EBOV and that GP

has the largest variation among EBOV proteins [42, 146, 115]. As of August 2015, sequences from the

2014 outbreak show that 106 of the 676 sites in GP experienced a mutation and the strains differ from

the 1976 Mayinga strain used in developing interventions by an average of 20.2 nucleotide changes. Thus,

there is a very real possibility of antibody escape mutants arising in EBOV GP. A recent study found

that none of the genetic changes have altered the function of the virus [110]. However, they did not

consider interactions with antibodies or implications of unobserved mutations.

The purpose of this study is to initiate a watch list of potential antibody escape mutants for the EBOV

GP. We focus on the KZ52 antibody as it is one of the few with an available structure bound to EBOV

GP. KZ52 has virus neutralization activity in vitro and protects guinea pigs from EBOV disease [95, 117].

Although KZ52 does not protect non-human primates from EBOV disease [112], it was originally isolated

from the blood of human EBOV survivors (Maruyama et al., 1999). Using the experimental structure

of the Zaire EBOV GP bound to antibody KZ52 (Fig. 1) [81], we performed molecular modeling to

estimate the folding and binding stabilities for every possible amino acid mutation of GP. Our approach

is general and could be applied to other EBOV epitopes, or other viruses, as experimental structures

become available. We emphasize from the outset that this is an in silico study aimed at identifying

mutations with an increased risk of escaping immune response; our intention is to provoke experimental

research on evolutionary escape in both Ebola and other viral pathogens.

2.2 Methods

2.2.1 Overview

To initiate a watch list for the Ebola virus (EBOV) glycoprotein (GP) it is necessary to determine

how amino acid mutations modify stabilities for GP folding, forming a trimer and binding to the KZ52

antibody. That is, we need to calculate ∆∆G values for binding and folding. Ideally, these calculations

would be performed using a statistical-mechanics-based method such as we have done previously [82, 167].
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Figure 2.1: Structure of Ebola glycoprotein trimer (GP1, gray; GP2, yellow) in complex with the KZ52
antibody as viewed from the side (A) and the bottom (B). GP1 is in gray, GP2 is in yellow and the
structure is after 10 ns of MD simulation. The six watch list sites that are predicted to contain antibody
escape mutants are shown as red spheres and are all located in GP2 (Table 2.2, Fig. 2.2.)

However, such methods are computationally expensive and are not feasible for the current study where it

was necessary to calculate 25,840 values of ∆∆G (340 residues × 19 possible mutations to other residues

× 4 types of stability calculations). Instead, we decided to use a semi-empirical method for calculating

∆∆G values. Because online-only software was not practical given the large number of mutations, we

chose to use the software FoldX [129, 46]. FoldX can be run in parallel on a computer cluster since the

binary is available.

We hypothesized that because protein structures are not static, improvements in ∆∆G estimation

might be achieved by using molecular dynamics simulation to sample the configurational space for the
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proteins and then analyze snapshots from these simulations in FoldX. We selected 20 test systems (10

folding and 10 binding) to assess whether this strategy improves estimation of experimental stability data.

In the Supplemental Information, we describe our criteria for selecting test systems and then show that

using 100 molecular dynamics snapshots and averaging the FoldX results provides more accurate estimates

of ∆∆G as compared to using FoldX on a single experimental structure. The molecular dynamics plus

FoldX methodology we used on the test systems was identically applied to the Ebola system. After

explaining how structures were prepared and arranged, we describe this methodology in the subsections

below.

2.2.2 Stability preparation

Preparation of the test system structures is described in the Supplemental Information. For EBOV

GP, the amino acid sequence was based on the 1976 Mayinga strain obtained from GenBank accession

number AF086833. We downloaded PDB accession number 3CSY as our template structure. The file

3csy.pdb was modified to remove all but one copy each of GP1, GP2, antibody light chain and antibody

heavy chain (one third of the GP-KZ52 trimeric complex). SWISS-MODEL was then used to generate

structures for each of the four chains using 3csy.pdb as a template [4]. The experimental structure

3csy has missing residues 190-213 that are predicted to be intrinsically disordered but SWISS-MODEL

incorrectly generated helical structures for these residues. Thus, we removed residues 190-213 from the

SWISS-MODEL structure and used MODELLER to rebuild the coordinates of the missing residues [125].

The resulting structure had no secondary structure content in residues 190-213. The full trimeric complex

was then created using the symexp command in PyMOL. The final trimer structure (see Fig. 1) contains

three copies each of residues 32-276 for GP1, residues 503-597 for GP2, residues 1-225 for KZ52 heavy

chain and residues 1-216 for KZ52 light chain.

2.2.3 System configuration

Arrangement of the test systems is described in the Supplemental Information. EBOV GP was

configured as four systems: (i) unbound GP1, (ii) unbound GP2, (iii) trimer consisting of three copies

of GP1 and GP2 and (iv) antibody complex consisting of three copies each of GP1, GP2 and the KZ52

antibody. Snapshots from systems (i) and (ii) were used to estimate mutational effects on folding stability

of the unbound proteins GP1 and GP2, respectively. Snapshots from (iii) were used to estimate the affinity

of GP1–GP2 (dimer bind). This was done by calculating the affinity for all three copies of GP1 binding

to GP2 and then dividing this value by three. Snapshots from (iii) were also used to estimate the affinity

for GP1–GP2 dimers binding to one another (trimer bind). This was done by calculating the affinity for
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one GP1–GP2 dimer binding to the other two dimers. Finally, snapshots from (iv) were used to estimate

the GP-KZ52 affinity by calculating the affinity of all of the GP1–GP2 dimers to their corresponding

KZ52 antibodies and dividing this value by three.

2.2.3.1 Molecular dynamics simulations

The software package GROMACS 5.0.3 was used for all MD simulations with the Charmm22* force-

field [52]. The system was placed in a dodecahedral box of TIP3P water and given neutral charge by

adding Na+ and Cl- ions at a concentration of 0.15 mol/L. Each system was then minimized using

steepest decent for 1,000 steps. To allow for some equilibration of the water around the proteins, each

system was then simulated for 1 ns with the positions of all heavy atoms in the complex harmonically

restrained, and then simulated for another 1 ns with no restraints. During the restrained simulations the

temperature of the system was increased linearly from 100 K to 300 K for the test systems and to 310

K for the EBOV GP systems and the pressure was maintained at 1 atm using the Berendsen algorithm.

Production simulations for each system were then carried out for 100 ns with pressure maintained using

Parrinello-Rahman coupling. For all simulations, the LINCS algorithm was used to constrain all bonds

to their ideal lengths and virtual sites were used allowing the use of a 5 fs timestep. The temperature was

controlled using the v-rescale option. Particle mesh Ewald was used for electrostatics with a real-space

cutoff of 1.2 nm. Van der Waals interactions were cut off at 1.2 nm with the Potential-shift-Verlet method

for smoothing interactions. During the 100 ns production simulation snapshots were saved every 100 ps

giving 100 snapshots for each system.

2.2.3.2 FoldX

Each of the 100 snapshots captured during MD simulations was then analyzed using FoldX [129, 46].

We initially minimized structures six times in succession using the RepairPDB command to obtain con-

vergence of the potential energy. All single amino acid mutations were then generated using BuildModel.

Finally, protein folding stabilities were estimated using Stability on the monomer structures and binding

stabilities were estimated using AnalyseComplex on the protein complexes. For each mutation we then

estimated ∆∆G by averaging across all 100 individual snapshots estimates.

2.2.3.3 Thresholds for functionality and antibody disruption

o define the range of stability change where the GP protein is likely to remain functional, we began by

noting that in previous work on the bacteriophage φX174 [102], 77 of 79 (97.5%) of observed functional

mutations have estimated stability effects on both folding and binding in the range −2.5 < ∆∆G <

2.5 kcal/mol. The large amount of available Ebola sequences allows us to survey a set of presumably
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functional mutations in Ebola and ask how many of these are categorized as functional vs non-functional

using this preliminary criteria. We downloaded 922 sequences from the NCBI Virus Variation Ebolavirus

Database on August 20, 2015 [18, 104] (Species = Zaire ebolavirus, Host = Any, Region = Any, Genome

Region = Spike glycoprotein). To this set we appended 39 sequences from Leroy et al. [85] and Wittmann

et al. [162] along with the two escape mutations described in Qiu et al. [121]. We compared all 963

sequences to our reference sequence, GenBank Accession AF086833, and thereby identified 41 mutational

differences (Table 1) within the structured regions modeled here. Four of the 41 mutations (9.8%) have

a functional stability effect (i.e., ∆∆G for monomer folding, dimer binding or trimer binding) that falls

outside the ±2.5 zone. Because our objective is to limit the rate of false exclusions to ≤5%, we expanded

the functional zone to ±3.0. This shifts two of the mutations back into the functional zone, leaving 2 of

41 (4.9%) predicted to be non-functional.

It is worth noting that the observed incidence of two false exclusions in a sample of 41 is consistent

with our method having predictive power to distinguish functional from non-functional mutations. Of the

6,460 possible mutations for GP, our method categorizes 5,303 (82.1%) as functional and 1,157 (17.9%) as

non-functional. If our method lacked predictive power we would expect a random sample of 41 mutations

to contain 33.7 functional and 7.3 non-functional mutants. The binomial probability that such a random

sample would contain ≤2 non-functional proteins by chance is 0.018. Unfortunately, because we lack a

list of known non-functional mutations, we cannot perform the converse test and ask what proportion of

non-functional mutations does our method correctly identify as such.

How sensitive is the size of the watch list to the rate of false exclusions? The following argument

suggests that even if the false exclusion rate could be reduced to zero, it would have a very small effect

on the watch list. The application of a functional zone between ±3.0 kcal/mol along with an antibody

disruption criteria of ∆∆G > 2.0 kcal/mol leads to a watch list of 34 mutations. Of the 6,460 possible

mutations, our method categorizes 1,157 as non-functional. If 5% of these are actually functional, it

suggests that we have omitted approximately 6,460(0.05) = 58 mutations from the set of functional

mutations. However, very few of these would likely disrupt antibody binding. Among all 6,460 mutations,

66 (or ≈1%) are identified as disrupting antibody binding. Assuming false exclusion is independent of

antibody disruption, we would expect that 58(0.01) = 0.6, or less than one mutation being falsely omitted

from the watch list.

2.3 Results and Discussion

We identified potential antibody escape mutations for the watch list by considering every possible GP

mutation and finding those that disrupt binding between GP and KZ52 but do not disrupt the ability of
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Figure 2.2: Watch list mutations are those that disrupt KZ52 antibody binding but not GP folding
and trimer formation. For each possible GP mutation, only the maximum of folding stability, dimer
binding stability (interaction of GP1 and GP2) or trimer binding stability (interaction of a GP1-GP2
dimer with other dimers) is plotted on the y-axis. Symbols in the inset legend indicate which of the
three is plotted. The GP-KZ52 binding affinity is plotted on the x-axis. Mutations with x-axis values
−3 < ∆∆G < 3 kcal/mol are considered functional since they are likely to retain the ability to fold and
form trimers (regions A and D). Mutations with y-axis values ∆∆G > 2 kcal/mol have the potential
to disrupt antibody binding (regions C and D). The watch list mutations (region D) are those that are
likely to be both functional and disrupt antibody binding. The reasoning behind using a different cutoff
for functional as compared to antibody binding is described in the main text.

GP to fold and form a complex. The GP protein is cleaved into two subunits, GP1 and GP2, and the final

structure is a trimer consisting of three GP1–GP2 dimers (Fig 2.1). We used a combination of molecular

dynamics and FoldX [129, 46] because preliminary analysis of 20 test systems showed that combining

these methods improved our ability to predict experimental results (see Supplemental Information). To

our knowledge, this method has not been used in previous studies.

Our conceptual approach to creating a watch list is to identify mutations that are both functional and

disrupt antibody binding. We therefore sought to remove mutations that are non-functional and, from

those that remain, identify the ones that disrupt antibody binding. The function of GP is to mediate

viral entry into the cell. There are multiple ways mutation can disrupt this function. For example,

studies have shown that mutations in GP can reduce infectivity [61, 157, 30], transduction and host cell

binding [34, 17]. Another way to be non-functional is for a mutation to render GP unable to fold and
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bind together to form a stable complex. Here we focus on this stability aspect of functionality and remove

those mutations our model predicts will not fold or form a complex. It is important to appreciate that

our approach is conservatively inclusive: if we could remove all non-functional mutations instead of the

subset identified as unstable, the watch list would be reduced in size.

Identifying mutations that disrupt antibody binding but not the ability to fold and bind into a

functional complex requires defining thresholds on changes in stability (∆∆G) for both criteria. These

criteria should be conservative to reduce exclusion of mutations that could compromise treatment efficacy

from the watch list. For functionality, previous work on a coat protein in a different virus [102] indicated

that the stability effect of virtually all observed mutations is in the range of −2.5 < ∆∆G < 2.5 kcal/mol.

To determine if those criteria also hold for EBOV GP, we compared 963 available sequences of GP,

identified 41 mutations in the structured regions that have arisen in natural or lab populations, and

found that four of the 41 (9.8%) were classified as non-functional. To be conservative, we expanded the

functional zone to −3.0 < ∆∆G < 3.0 kcal/mol. This functional threshold is more inclusive and reduces

our error rate to below 5%: two of the 41 mutations (4.9%) are falsely classified as non-functional (Table

1). As we reason in the Methods, even if the false exclusion rate could be driven to zero, we expect

it would change our watch list very little. For disruption of antibody binding, we used a threshold of

∆∆G > 2.0 kcal/mol. This was based on refining our preliminary threshold by 0.5 kcal/mol, but in the

opposite direction so as to be more inclusive. The implications of this threshold choice and alternatives

to it will be discussed below.

Figure 2.2 provides a graphical illustration of how mutations were selected to be on the watch list.

The maximum functional stability for all mutations is plotted against the corresponding change in the

antibody binding affinity. The 34 mutations in the lower right quadrant are those that belong on the

watch list since they are classified as both functional and disruptive to antibody binding. The specific

mutations on the watch list are given in Table 2.2. If any of the mutations in this table appear in a

real population, it indicates an increased risk of escaping the normal immune response. One of these

mutations (N550K) has already appeared in humans thought to have been infected by gorillas in Central

Africa between 2001 and 2003 [85]. This mutation is present in all sequenced isolates from that outbreak.

In contrast to constructing a simple list of all possible mutations near an epitope, the watch list in

Table 2.2 is quite specific. The 34 watch list mutations are concentrated at just six residues and all of

these lie at the interface between GP2 and KZ52, as one might intuitively expect from the structure

(Fig. 2.1). Yet, most mutations of GP sites that are within four angstroms of the KZ52 antibody are not

predicted to disrupt antibody binding. Only six of the 23 (26%) interface sites and 34 of 437 (7.8%) of

the possible mutations at these sites are on the watch list.
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In order to facilitate use of other possible criteria and/or thresholds, the Supplemental Information

includes a sortable and searchable spreadsheet with all 6,460 mutations of GP. We provide this spreadsheet

because we recognize that the relationship between antibody binding affinity and the ability of the

antibody to neutralize EBOV is not well understood. Work in influenza suggests that as affinity decreases,

the ability of an antibody to neutralize a virus decreases rapidly and in a non-linear fashion [76]). This

makes intuitive sense because the relationship between the change in affinity and the change in the ratio

of bound to unbound antibody is nonlinear; ∆∆G values of 1.0, 1.5 and 2.0 kcal/mol correspond to

changing the ratio from 19 to 8.1 to 3.5% of its original value. The size of the watch list depends on how

we define the threshold for antibody binding (Fig. 2.2). If the threshold is lowered from 2.0 to 1.5 to

1.0, the watch list grows from 34 to 49 to 73 mutations. This highlights the need for more experimental

studies that assess how disrupting antibody binding influences immune response.

Davidson et al. [30] recently conducted an alanine-scanning mutagenesis study on GP that can be

qualitatively compared to our work. Specifically, they individually mutated each residue of the GP protein

to alanine and measured changes in GP-KZ52 binding affinities relative to the unmutated form. They

identified five residues that are critical for KZ52 antibody binding: C511, N550, D552, G553, and C556.

Three of these sites are found on our watch list in Table 2.2 (N550, D552, and G553) and 25 of the 34

(74%) watch list mutations are found at these three sites. For the two other critical residues identified by

Davidson et al. [30] (C511 and C556), our results agree that antibody binding is disrupted by mutations

at these sites, but we estimate that folding is also disrupted, and hence the exclusion from the watch

list. If we ignore our criteria that mutations do not disrupt folding stability or the formation of dimers

and trimers, we identify eight residues where at least one mutation will disrupt KZ52 antibody binding:

N506, C511, P513, N550, D552, G553, C556, G557 (all individual mutations can be obtained from

the spreadsheet in the Supplemental Information). Overall, we conclude that our results are generally

consistent with the findings of Davidson et al. [30].

The watch list remains incomplete and putative for several reasons. First, although our list was

generated for one EBOV epitope and its interactions with the KZ52 antibody, it is known that there

are multiple epitopes (Fig. 2.3). Indeed, a recent study found mutations of a conserved threonine in the

EBOV mucin-like domain that is required for protection by the 14G7 antibody [115]. This highlights

the need for more experimental structures of antibodies interacting with viral proteins. With more

experimental structures, it would be possible to expand the watch list to incorporate more epitopes.

Second, the watch list only includes substitutions that are predicted to individually disrupt antibody

binding while remaining functional. It is alternatively possible that immune escape could arise by the

accumulation of several changes, each of modest stability effect but with a large cumulative effect on
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antibody binding. How multiple substitutions interact to produce cumulative effects on stability is not

well understood and is an important consideration for future studies. Third, the watch list has not been

experimental validated (except in its general consistency with the work of Davidson et al. [30]) either in

terms of mutational effects on GP folding and binding affinities, nor on the downstream immune system

consequences. Our hope is that this work will motivate such research.

Figure 2.3: Structure of Ebola GP1-GP2 trimer complex (A) and individual GP1-GP2 dimer (B) with
structural epitopes from KZ52 and other known linear epitopes. KZ52 is in green, other known linear
epitopes are in blue [8]. The watch list generated for the current study is for the green region only, since
structures are required for the method used, highlighting the need for more experimental structures of
Ebola with antibodies.

In summary, we have initiated a watch list of potential antibody escape mutations of EBOV by

considering the interactions between GP and antibody KZ52. This initial watch list contains 34 mutations

in six sites in GP2, and one of these mutations (N550K) was seen in humans in a previous outbreak. We

believe initiating a watch list is an important first step to predicting how the evolution of EBOV could

undermine treatment efforts. Our intention is that the watch list motives experimental research testing

the strategy we have employed. This study further emphasizes the need for more experimental structures

of antibodies interacting with EBOV in order to produce a comprehensive watch list. We highlight the

need for ongoing monitoring of EBOV sequences in human outbreaks. If mutations on the watch list

appear in human populations infected by EBOV, treatment with vaccines or antibody therapies may

be compromised. Furthermore, if mutations from the watch list arise and increase in frequency within

an immunized population, it would suggest that the virus is responding to selective pressure exerted by

the vaccine. Monitoring will be much more powerful as the watch list is expanded and experimentally

validated. Finally, we suggest that the approach used here is general and could be applied to other viruses

for which experimental structures are available.
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Mutation Antibody binda Dimer bindb Trimer bindc Monomer foldd

N107D 0.00 -0.09 0.00 1.31
L111F 0.00 0.00 0.00 2.31
I129V 0.00 0.05 0.02 0.77
D150A 0.00 0.00 0.01 0.6
D163N 0.00 1.12 0.57 0.39
I170L 0.00 0.01 0.02 2.31
I170F 0.00 0.03 0.05 16.48
V181I 0.00 0.05 0.00 -0.73
T206M -0.30 -0.33 0.01 -0.14
G212D 0.00 0.19 -0.04 -0.11
Y213H 0.00 0.41 -0.01 1.27
Y214H 0.00 -0.01 0.00 0.18
T216P 0.00 -0.01 0.00 2.27
R219K 0.00 0.00 0.00 0.00
A222V 0.00 0.00 0.00 -0.11
E229K 0.00 0.00 0.00 -0.17
T230A 0.00 0.00 0.00 0.62
T240N 0.00 0.00 0.00 0.86
S246P 0.00 0.00 0.00 -1.11
L254I 0.00 0.00 0.00 0.81
L254V 0.00 0.00 0.00 1.39
Q255R 0.00 0.00 0.00 0.1
I260R 0.00 0.00 0.00 1.78
T262A 0.00 0.00 0.00 -0.08
W275L 0.00 0.00 0.00 0.09
A503V -0.17 0.09 0.00 0.1
Q508R 0.16 -0.03 0.00 0.54
Y517C 0.01 0.26 0.01 1.38
G524D -0.01 0.14 2.31 2.12
A526T 0.00 0.02 0.56 0.80
I527T 0.00 0.18 0.15 1.04
P537L 0.00 0.23 0.42 0.53
I544T 0.00 0.36 -0.01 0.47
E545D 0.00 0.5 0.00 0.46
N550K 4.59 0.01 0.00 0.62
D552N 1.76 0.23 0.00 0.13
A562D -0.06 2.98 0.02 0.67
L571R 0.00 0.05 2.34 0.27
L573R 0.00 2.78 -0.25 1.30
W597F 0.00 0.07 0.48 -0.11
W597C 0.00 0.35 3.51 0.26

Table 2.1: Model predicted effects on stability of 41 observed mutations in EBOV GP. The one observed
mutation that is also on the watch list is indicated in red. The two mutations that our methods falsely
excludes as non-functional are indicated in blue. All numerical entries are ∆∆G values in units of
kcal/mol.
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GP2 mutationa Antibody bindb Dimer bindc Monomer foldd

N506W 3.40 0.04 -0.41
N506Y 2.56 0.09 -0.55
P513H 2.52 0.01 0.95
P513W 2.19 0.01 0.86
N550Q 3.76 0.01 0.92
N550K 4.59 0.01 0.62
N550P 3.82 0.14 2.20
N550F 10.01 0.03 2.09
N550H 5.50 0.03 1.81
N550I 5.28 0.02 1.66
N550E 3.49 -0.04 1.14
N550R 5.34 -0.03 0.98
N550W 13.52 0.02 2.29
N550V 2.08 0.02 1.74
N550Y 13.52 0.04 1.98
N550M 3.29 0.02 -0.15
D552S 2.10 0.75 0.33
D552Q 2.19 0.36 0.29
D552K 2.61 0.28 0.16
D552T 2.40 1.01 1.47
D552F 4.11 0.43 0.14
D552A 2.17 0.71 0.48
D552H 4.53 0.55 0.29
D552G 2.61 0.39 0.01
D552R 3.30 0.26 0.34
D552W 5.05 0.41 0.61
D552V 2.41 0.75 1.95
D552Y 4.71 0.42 0.13
G553M 8.77 -0.01 2.94
G557F 2.26 0.13 -1.34
G557H 3.72 0.67 -0.05
G557R 2.29 0.17 -0.62
G557W 3.21 0.69 -1.32
G557Y 2.81 0.14 -1.19

Table 2.2: Watch list mutations and their effects on stability. All numerical entries are ∆∆G values
in units of kcal/mol. a) The 34 mutations are distributed among six sites in GP2. b) Binding affinity
between GP and the KZ52 antibody. c) Binding affinity between GP1 and GP2. d) Folding stability for
GP2. Binding affinity results for forming the GP trimer are all zero and are not shown. Note: aBinding
affinity between GP and the KZ52 antibody. bBinding affinity between GP1 and GP2. cBinding affinity
between three GP1-GP2 dimers. dFolding stability for GP2.



19

Chapter 3: Protein Stability in Titan’s Subsurface
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3.1 Introduction

Despite the lack of sunlight, extreme pressures, and high temperatures, chemotrophic bacteria take

advantage of the products of water-rock interactions to survive at Earth’s deep-sea vents [108]. Earth

may not be the only body to host such habitable niches. Subsurface oceans are considered confirmed [50]

on the jovian moons Ganymede, Callisto, and Europa [74, 24, 73, 59, 60, 21] and the saturnian moons

Enceladus and Titan [59, 60]. Hidden under ice crusts tens to hundreds of kilometers thick, the liquid

water environments of these ocean worlds interact with rocky cores, albeit to different extents (Sohl et

al.,2010), making them excellent targets in the search for life elsewhere in the Solar System due to the

potential confluence of liquid water, chemical building blocks, and energy sources [90, 50].

Titan’s subterranean oceans may be seeded with the hydrogen and carbon necessary for Earth-like

biochemistry. Evidence for this possibility comes from measurements of Titan’s atmosphere. Nitrogen

and methane dominate the bulk composition at 98% and 1.8% respectively, with a multitude of trace

gases probably including some oxygen species [28, 53]. Ultraviolet photons from the Sun, energetic

particles from Saturn’s magnetosphere, and galactic cosmic rays drive photolysis of methane and nitrogen

throughout Titan’s atmosphere, leading to various chemical reactions that create a variety of complex

organic compounds [155, 29, 154, 107]. Eventually, the products of this chemistry form haze particles

about a micron in size [145] that fall to the surface, blanketing Titan’s terrain in an organic-rich layer
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estimated at over 2 × 105 km3 [89]. However, the current rate of photolysis could not have been sustained

over the lifetime of the Solar System without exhausting the current atmospheric inventory of methane.

Forward modeling suggests that all the methane in Titan’s atmosphere today would be consumed within

30 Myr [166, 160]. One way to bala nce this consumption with the 1 Gyr age suggested by the 12C/13C

ratio observed by both Cassini [93, 109] and Huygens [107] is through continuous or episodic replenishing

of methane from Titan’s interior [144, 25]. In such a scenario, methane from the rocky interior dissolves in

the subsurface ocean before outgassing [91] and could be delivered to the surface via cyrovolcanoes [143].

The possibility of organics going down into the ocean is compelling—especially given the evidence that

amino acids can quickly form when liquid water interacts with lab analogs of Titan’s haze [106, 105]—but

beyond the scope of this paper and will be left to future research. Additionally, Titan’s subsurface ocean

is thought to contain ammonia to ensure the ocean remains liquid over the age of Titan [27, 43, 38]. Thus,

Titan’s subsurface ocean may contain hydrogen, carbon, nitrogen. (The presence of ammonia in Titan’s

subsurface ocean should not prevent Earth-like biochemistry, as terrestrial extremophiles can thrive in

high pH [9.0–11.6] solvents [120].)

At 5150 km in diameter and with a bulk density of 1881 kg/m3, a high-pressure ice (ice VI) likely

separates Titan’s ocean from the rocky core today [91, 138, 44]; however, this layer may not inhibit water-

rock interactions. Journaux et al., for example, demonstrated how brines at certain high temperatures

and pressures can be transported through an ice VI layer to the ocean [67, 151]. It is also possible that

earlier in Titan’s history the ocean may have both been in direct contact with the rocky core (facilitating

hydrothermal reactions) as well as received exogenic cometary and chondritic material from meteorite falls

and impacts [130]. Fortes [37] outlines several similarities between Titan’s evolving ocean environment

and extreme environments on Earth.

Previous work has been done to look at the effects of pressure and temperature on protein flexibility

[126, 70, 57] and adaptation [23, 131, 101]. Piezophiles, organisms that live in high pressures, are not

well understood, but the high pressure limit of known life is around 1.1 kbar [133, 100, 58]. Alkaliphiles,

organisms that typically live in pH values between 9 and 12, can thrive in a variety of environments as

long as the basicity is optimum [72, 78, 79]. Combining the traits of these two extremophiles would result

in an organism able to live and thrive in an environment similar to that of the subsurface ocean of Titan.

In this work, we build on the hypotheses of Fortes [37]. Instead of answering whether molecules can

form in Titan’s ocean (today or in some earlier epoch), we explore how biologically relevant molecules

might behave in Titan’s ocean. Some studies have been done that show the folding of proteins in different

organic solvents can lower folding free energy [165] or can function similarly to water in an aqueous-organic

solvent [136]. This study does not analyze the folding or binding of proteins but rather the integrity of
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a protein over the course of a simulation. In Section 2, we describe the molecular dynamics simulations

that we used to study Earth-based proteins in both Earth and Titan-like conditions. In Section 3, we

analyze the results, measuring protein compactness, flexibility, and backbone dihedral angle distributions.

Section 4 discusses the implications of the results for Titan and other Ocean Worlds, and we conclude in

Section 5.

3.2 Materials and Methods

3.2.1 Protein folding

Inside biological cells on Earth, ribosomes manufacture proteins by sequentially adding individual

amino acids in a chain according to instructions in messenger RNA as copied from the cell’s nuclear

DNA. Knowledge of the amino acid sequence alone does not allow us to directly infer the resulting

protein’s chemical behavior, however. After their manufacture, proteins fold in on themselves in a manner

governed by their own self-affinity and electrical interactions with the surrounding solvent. Therefore, in

Titan’s high-pressure water-ammonia subsurface ocean proteins might behave differently than they do in

biological systems on Earth.

Those different shapes and the variability thereof would necessarily alter the functionality of the pro-

tein. We see similar situations in extreme environments on Earth, where, for instance, high-temperature

single-celled organisms living in deep-sea vents have evolved distinctly different versions of common pro-

teins that specifically tailor their amino acid sequence to match their environment (at high temperature,

for instance, deletions of large swaths of protein helps those proteins behave similarly to non-deleted ones

at room temperature [6]). In that high-temperature situation, proteins typically work better with fewer

large ancillary residues so as to not have excessive conformal variation with high internal kinetic energy.

As a first step toward understanding how the conditions in Titan’s subsurface ocean affect protein

folding and movement, we simulate the behavior of representative proteins computationally. The goal of

these initial calculations is not to design an alien biochemistry compatible with Titan’s ocean but rather

to broadly determine the effects of aspects of that ocean such as high pressure and ammonia content.

3.2.2 Protein selections

Three types of proteins were chosen to simulate the two most common secondary structures on Earth:

alpha helices and beta sheets [10]. These proteins were chosen from the CATH protein database [132, 80]

by selecting the most common motif of that secondary structure. For example, one of our chosen motifs

containing primarily alpha helices was selected by using the following steps: (1) Opened the website

http://www.cathdb.info/browse/tree. (2) Chose “1 Mainly Alpha.” (3) Chose the largest number of folds,
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“1.10 Orthogonal Bundle.” (4) Chose the largest number of superfamilies, “1.10.287 Helix Hairpins.” (5)

Chose the largest number of Domains, “1.10.287.610 Helix hairpin bin.” (6) Chose example protein ,

“3uq8.” (7) Looked at sequence to ensure that chain A amino acids 3–61 is the appropriate fragment.

(8) Downloaded protein structure from the RCSB protein data bank and edited file to include only the

amino acids that are within the appropriate fragment. The proteins chosen were 3uq8 and 1xmk (mainly

alpha), 3ulj and 4unu (mainly beta), and 4g1q and 2gxq (mixed alpha/beta).

3.2.3 System preparation

The idea is to create a system that replicates an Earth environment at sea level and a Titan environ-

ment at the bottom of its subsurface ocean. We chose a practical temperature of 300 K and a pressure

of 1 bar. For Titan we also chose 300 K. This decision was made based on an assumption that there

would be hydrothermal vents, noting that a similar assumption has been made about Titan’s neighbor,

Enceladus [54]. The pressure chosen for the Titan environment was 1000 bar. This would correspond to

a depth of about 10 km below Earth’s ocean’s surface. On Titan, using an aqueous ammonia solution

density of 0.89 g/cm3 [111] and a gravitational constant of 1.35 m/s2 [64], we would get a pressure of 1

kbar at a depth of about 80 km below Titan’s surface. This does not consider several variables such as ice

thickness, ice density, or compressibility. However, this shows that a plausible pressure and temperature

were used for the Titan environment.

Therefore, setting up the simulations, the Earth environment was set to a temperature of 300 K,

pressure of 1 bar, and pure water. The deep Titan ocean environment used the same temperature as

Earth but with 3 orders of magnitude larger pressure (1000 bar) and a eutectic water-ammonia mixture

[37]. The three protein types were separately placed in each environment for a total of six simulations.

3.2.4 Molecular dynamics simulations

The software package GROMACS 5.1.2 was used for all molecular dynamics simulations with the

Amber99sb*-ildnp forcefield [52]. The Earth system was placed in a dodecahedral box of TIP3P water

[66]. A TIP3P water model was chosen, as it is a good balance of accuracy and computational efficiency.

The Titan system was placed in a dodecahedral box of a eutectic mixture of TIP3P water and 32%

weight ammonia at a density of 0.89 g/cm3 [37]. Each system’s energy was minimized by using steepest

descent for 1000 steps. To allow for some equilibration of the water around the proteins, each system was

then simulated for 1 ns with the positions of all heavy atoms in the complex restrained via a harmonic

potential, and then simulated for another 1 ns with no restraints. During the restrained simulations, the

temperature of the system was increased linearly from 100 to 300 K, and the pressure was maintained
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at 1 atm using the Berendsen algorithm. Production simulations for each system were then carried out

for 100 ns with pressure maintained using Parrinello-Rahman coupling. For all simulations, the LINCS

algorithm [51] was used to constrain all bonds to their ideal lengths allowing for a timestep of 2 fs. The

temperature was controlled using the v-rescale option. Reaction-Field-zero was used for electrostatics

with a real-space cutoff of 1.2 nm. The Van der Waals interaction cutoff was set to 1.2 nm with the

Potential-shift-Verlet method for smoothing interactions.

3.2.5 Analyzing data

Radius of gyration of a protein is a measure of its compactness; smaller values correspond to more

compact protein shape. The radius of gyration measurements were obtained using the GROMACS com-

mand gmx gyrate, and histograms were then generated using python. The root-mean-square fluctuation

(RMSF) is a measure of how much an atom fluctuates about its average position, that is, the secondary

structure flexibility. RMSF plots were obtained by running the GROMACS command gmx rmsf. RMSF

values were converted to log form and used to color the protein using PyMOL 1.7 (blue for low RMSF

values and red for high). Secondary structures plots as a function of simulation time were generated using

the GROMACS command gmx do dssp [98, 147]. Ramachandran plots show the distribution of backbone

dihedrals that largely determine a protein’s conformation and secondary structure preference during sim-

ulation. These results were generated using the GROMACS command gmx rama, and histograms were

generated by subtracting the Earth measurements from the Titan measurements.

3.3 Results

Radius of gyration histograms are shown in fig. 3.1 and illustrate the compactness of the proteins. The

peaks of each plot represent the most likely radius of gyration value for each protein in each environment.

A difference in peak location represents either a more or a less compact protein (smaller radius of gyration

is more compact). Our results show that proteins in the Titan environment experience a shift in the

peaks toward a lower radius of gyration value in both the alpha and mixed alpha/beta as compared to

the Earth environment. The beta shows no or negligible shifting of its peaks. The shifted plateau in the

mixed alpha/beta 4g1q Earth environment is caused by the C-terminus of the protein moving to a new

conformation.
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Figure 3.1: Radius of gyration for all proteins over the simulation. A shift to the left is a more com-
pact protein, while a shift to right is less compact. The Titan environment experiences a shift in its
peaks toward a lower radius of gyration value in both the alpha and mixed alpha/beta compared to the
Earth environment. The beta shows no or negligible shifting of its peaks. The shifted plateau in the
mixed alpha/beta 4g1q Earth environment is caused by the C-terminus of the protein moving to a new
conformation.

Root-mean-square fluctuation results are in fig. 3.2 and show how much atoms fluctuate about their

average position. The RMSF value was converted to a log form and overlaid onto a frame from the largest

cluster of the simulation. The gradient ranges from blue to white to red, with blue being most stable and

red being least stable. Proteins in the Titan environment experience larger maximum RMSF values as

compared to the Earth environment but lower RMSF values on average.
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Figure 3.2: Root-mean-square fluctuations for each amino acid in the protein systems. Larger fluctuations
are shown in red and smaller in blue. Proteins in the Titan environment experience larger maximum
RMSF values as compared to the Earth environment but lower RMSF values on average.

Secondary structure results are shown in fig. 3.3 and demonstrate how the local structure of each
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amino acid in the protein changes over the course of the simulation. The vertical axis is the amino acids

in the protein, the horizontal axis is the simulation time, and Table 1 shows the color definitions for each

secondary structure type. The emphasized region highlights that the protein does not become a specific

secondary structure type in the Earth environment, in contrast to the Titan environment where the same

region becomes a pi helix.
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Color Structure
White Coil
Red Beta sheet
Black Beta bridge
Green Bend
Yellow Turn
Blue Alpha helix
Purple Pi helix
Gray 3-helix

Figure 3.3: Secondary structures for each amino acid of one of the protein systems over the simulation.
Table 1 shows the color definitions used for each secondary structure type. The emphasized region high-
lights that the protein does not stabilize into a specific secondary structure type in the Earth environment
in contrast to the Titan environment where the same region stabilizes into a pi helix.

Ramachandran plots are shown in fig. 3.4 and represent the distribution of backbone dihedral angles

phi and psi that largely determine the protein’s conformation for each protein as a two-dimensional

histogram. These plots are made from subtracting the Earth dihedral distribution values from the Titan

values. The gradient ranges from brown to blue-green; brown shows dihedrals that are favored in the

Titan environment, and blue-green shows dihedrals that are favored in the Earth environment. In the

Titan environment, the phi angle propensity is similar to the Earth environment, but the psi angle shifts

from about -50 degrees to -25 degrees.
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Figure 3.4: Ramachandran plots for all protein systems in the current study. Generally, the top left
quadrant is beta sheets, and the bottom left quadrant is alpha helices. The gradient ranges from brown
to blue-green; brown shows angles that are favored in the Titan environment, and blue-green shows angles
that are favored in the Earth environment. In the Titan environment, the phi angle remains similar to
the Earth environment, but the psi angle shifts from -50 degrees to -25 degrees.

3.4 Discussion

The radius of gyration results in fig. 3.1 show that the beta sheet proteins simulated in this study

are unaffected by the difference in environment between Titan and Earth. By contrast, our results show

the Titan environment leads to slightly more compact alpha helix proteins. We believe that the beta

sheet proteins are less affected due to the higher number of stabilizing hydrogen bonds present in beta

secondary structures. The beta sheets in these proteins have on average five hydrogen bonds compared
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to alpha helices that have three hydrogen bonds.

The results in fig. 3.2 show that proteins in the Titan environment have lower average RMSF values

than the Earth environment likely due to a combination of the high pressure and water-ammonia of the

Titan environment suppressing atom fluctuations. Even though alpha helices are generally less long-

lasting in the Titan environment (as shown in fig. 3.3), one protein had an alpha helix stabilize into

a long-lasting pi helix (see fig. 3.2, beta, protein 2). Further studies will be needed to understand the

mechanisms behind these differences.

The secondary structure results in fig. 3.3 show that the alpha helix region of one of the three proteins

is more long-lasting in the Titan environment. In the Earth environment the helix region changes between

different types of secondary structures: bends, turns, alpha helices, and pi helices. Turns and bends are

similar in structure, but turns have hydrogen bonds whereas bends do not. In the Titan environment the

helix region changes to a turn and then becomes a pi helix. The pi helix could be important because it

shows Titan favoring a conformation that is not common for Earth conditions [36]. A pi helix is a helix

with five hydrogen bonds compared to an alpha helix that has three. Due to the increase in hydrogen

bonds, the pi helix is much more energetically favorable than an alpha helix. This suggests that proteins

in the Titan environment may interact with other biomolecules with different biochemistry compared to

Earth.

The Ramachandran plots in fig. 3.4 show that the Titan environment favors slightly different angles

for the alpha helices. These different angles prefer a psi angle of about -25 degrees, whereas the phi angle

remains the same. This psi angle difference is likely the result of differences in the preferred secondary

structure types in the Titan environment, for example, a pi helix instead of an alpha helix. From these

results, it appears that life on Titan would have similar beta sheets as Earth, allowing comparable proteins

to form on Titan as on Earth.

3.5 Conclusion

In summary, protein secondary structure elements have different properties in a Titan environment

compared to Earth. In the Titan environment alpha helices tended to be less flexible (fig. 3.2) and

preferred slightly smaller psi dihedral backbone angles compared to an Earth environment (fig. 3.4).

Protein structures were more compact in the Titan environment compared to an Earth environment (fig.

3.1). Most secondary structure elements were less long-lasting on Titan, but on rare occasions alpha

helices were more long-lasting (see fig. 3.3) compared to the Earth environment. This study should be

considered a starting point for a larger study to understand how proteins, protein-ligand complexes, and

protein-protein complexes could fold, interact, and function in subsurface oceans such as those on Titan.
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4.1 Introduction

Biophysical modeling of protein-protein interactions provides insight into how and why proteins behave

in specific ways. Mutations of the amino acids that make up these proteins play an essential role by

introducing diversity into genomes. The more accurately mutation-induced changes in protein-protein

binding can be determined, the more accurately we can predict loss-of-function phenotypes for previously

uncharacterized point mutations. To understand living organisms, it is thus vital to have a comprehensive

knowledge of how protein complexes interact under physiological conditions, that is, to determine their

binding affinities and how these affinities can be modified[5]. Many researchers have developed and

utilized computational methods to predict ∆∆G values, including values caused by single- or multiple-

amino acid mutations. Experimental biophysical methods can quantitatively measure ∆∆G values for

protein interactions, but these methods are typically costly, laborious, and time-consuming since all

mutants must be expressed and purified[35, 71, 77].

Recently developed computational methods attempt to address the computational cost while accu-

rately predicting ∆∆G values by including more precalculation informational variety and using prediction

algorithms that fall into several categories. Some of these methods rely on known protein structures us-

ing functions that predict the energetic perturbation introduced by the mutation. Other methods train
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machine learning methods on large data sets to combine selected physical, statistical, and empirical fea-

tures for stability predictions. The most promising in terms of accuracy are rigorous methods based on

statistical mechanics that use molecular dynamics (MD) simulations and are capable of addressing confor-

mational flexibility and entropic effects; however these approaches are computationally highly expensive

[11, 139, 47]. By contrast, non-rigorous, computationally less expensive, methods have been developed

using the static all-atom protein complex structure.

In this work, we evaluate the ability of eight non-rigorous methods to predict amino acid mutation-

induced free energy changes in protein binding in cases both for which an atomic-resolution structure

is available and for which binding affinities of wild-type and mutant forms have been measured. To

investigate whether any of these methods have a good trade-off between speed and accuracy, we chose 16

protein-protein test complexes with empirical ∆∆G values for observed mutations. Each test complex had

at least 10 mutations occurring at different sites with varying empirical ∆∆G values. We calculated the

∆∆G values for each mutation with each method and compared the results with empirical ∆∆G values.

Our hypothesis is that software methods using a wider variety of information will provide more accurate

binding affinity and interface destabilization predictions than those relying on a single descriptive energy

function and will do so with far less computational expense.

4.2 Methods

4.2.1 Compilation of Experimental ∆∆G Values

To assess the performance of a range of protein-protein binding affinity prediction methods, we first as-

sembled a dataset containing mutations with known experimental relative binding affinity change (∆∆G)

values. This list was assembled from Structural Kinetic and Energetic database of Mutant Protein Inter-

action (SKEMPI) version 2.0[65]. While generating this list, we considered four aspects: (i) type of the

protein-protein complex; (ii) availability of quality 3-D structural information; (iii) range of experimental

∆∆G values; and (iv) the type of mutations at differing sites on the complex. Our final dataset con-

tained 654 mutations from 16 protein-protein complexes and their respective experimental ∆∆G values.

We further categorized these 16 complexes as either non-antibody-antigen (non-Ab) or antibody-antigen

(Ab). Table 1 shows the complexes in our dataset with their respective non-Ab and Ab categories and

the number of mutations associated with each complex. The dataset contains a total of 401 non-Ab

mutations and 253 Ab mutations.
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Non-Ab Ab
PDB # Mutations PDB # Mutations
1a4y[114] 32 1bj1[103] 10
1brs[20] 30 1jrh[137] 42
1cbw[127] 31 1mlc[15] 11
1iar[48] 36 1vfb[12] 48
1jtg[87] 37 1yy9[86] 16
1lfd[55] 19 2jel[118] 43
1ppf[13] 190 3hfm[113] 71
2wpt[99] 26 4i77[149] 12

Table 4.1: Dataset containing all 16 protein complexes listed by PDB IDs and number of experimental
mutants per complex for both Ab and Non-Ab categories.

4.2.2 Selection of Protein-Protein Binding Affinity Programs

Binding affinity prediction programs were chosen as those that had both a distinct approach to

binding affinity calculation, and for which software was functional in October 2019 and available either

online or upon request to the author. We also selected methods that utilize 3-D structural information

of the protein complex. Table 2 summarises each method selected in this study, its approach, and its

type of scoring function to calculate binding affinities. For simplicity, we categorized scoring functions,

mathematical functions to calculate ∆∆G values of the selected programs as semi-empirical, statistical, or

physics-based. Semi-empirical methods replace as many calculations as possible with pre-calculated data

that are an integral part of the program. These semi-empirical methods were calibrated using existing

crystal structures. Statistical methods use pre-calculated data and consider changes in coarse structural

features such as the change in overall volume. Physics-based methods use energy functions to estimate

enthalpic binding contributions. These programs were used to predict ∆∆G values for each mutation on

our experimental list shown in Table 1. Detailed protocols for predicting ∆∆G values using each selected

method is provided in the Supplemental Information.

4.2.3 Comparing Experimental and Predicted ∆∆G Values

To carry out statistical analysis of our results we built an in-house Python script that uses a com-

bination of libraries including matplotlib, numpy, pandas, statistics, scipy, and sklearn. (Supplemental

information file X) Using this script, we compared predicted ∆∆G values to experimental for each method.

To evaluate the predictive ability of each method tested, we compared concordance, Pearson, Kendall,

and Spearman rank correlation coefficients using our script. Note that we distinguish methods that were

calibrated to predict ∆∆G values from methods that compute metrics that are expected to linearly

correlate with ∆∆G values. This distinction is important, as for optimal performance we expect a
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Name Brief Description Scoring Function Calibrated
Runtime

(CPU hours)

BindProfX[163,
16]

Interface profile score
based on conservation
of homologous inter-
faces

Semi-Empirical X
1ppf = 3.03 CPUh
1yy9 = 3.03 CPUh

BindProfX plus
FoldX v3[163, 16]

Profile score weighted
and combined with
FoldX energy potential

Semi-Empirical X
1ppf = 1.81 CPUh
1yy9 = 1.81 CPUh

iSEE[41] Random forest model
using structural, evo-
lutionary, and energy-
based features

Statistical
1ppf = 0 CPUh *
1yy9 = 0 CPUh *

DCOMPLEX
v2[88]

Structural ideal-gas
reference state poten-
tial

Physics-Based
1ppf = 0.013 CPUh
1yy9 = 0.001 CPUh

EasyE v1.0[152,
56]

GMEC-based method
utilizing the Rosetta[2,
116] energy function

Statistical
1ppf = 0.48 CPUh
1yy9 = 0.09 CPUh

JayZ
v1.0[152, 56]

Partition-function
method utilizing
Rosetta[2, 116] energy
function

Statistical
1ppf = 0.14 CPUh
1yy9 = 0.21 CPUh

FoldX v4[46, 129] Empirical energy score
based on various en-
ergy parameters (e.g.
van der Waals, solva-
tion, electrostatics, hy-
drogen bonding)

Semi-Empirical X
1ppf = 0.42 CPUh
1yy9 = 0.16 CPUh

MD[1] + FoldX
v4[46, 129]

Molecular dynamics
used to explore con-
formation space and
generate snapshots;
FoldX score calculated
for each snapshot and
averaged

Semi-Empirical X
1ppf = 941 CPUh

1yy9 = 4093 CPUh

Table 4.2: Selected programs with a short summary of their approach and scoring function. Runtimes are
listed for a representative protein complex for Ab (1yy9, 1058 AA) and Non-Ab (1ppf, 274) categories.
1yy9 is roughly four times bigger than 1ppf, which may or may not affect the total runtime.
* Runtime is significantly less than a second (note: preparation time is non-trivial and requires additional
steps).
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regression line that passes through the coordinate origin and has a slope of 1. In such a case all correlation

coefficients would be equal to 1.

To compare the discriminating power of the methods, we obtained ROC curves. These curves quantify

the ability of a method to correctly classify point mutations as destabilizing (∆∆G ¡ -0.5 kcal/mol) or

neutral/stabilizing (∆∆G ¿ -0.5 kcal/mol). ROC curves that are skewed toward a higher true positive

rate (sensitivity) classify mutations more accurately, as quantified by area under curve (ranging between

1.0 and 0.5 for perfect and chance classification, respectively).

We also used our script to parse the results on the basis of several physico-chemical and structural

features to allow us to evaluate the methods based on these characteristics: wildtype amino acid type,

mutant amino acid type, protein-protein interacting versus antibody-antigen, secondary structure classi-

fication of the mutation[142, 68], coordination number[148], Sneath index[135], mostly α-helical proteins

versus mostly β-sheet proteins versus a mix of both α-helical and β-barrel proteins, percent exposure,

location of the mutation, change in charge, change in polarity, change in volume, and whether or not

the mutation location is predicted as an active or passive residue[150, 32, 156]. The script also outputs

scatter plots, correlation plots, receiver operating characteristic (ROC) curves, and box plots to visualize

the data, as well as correlations and standard deviations for each method. All plots in this manuscript

were generated using this script.

4.3 Results and Discussion

The purpose of our study was to assess the ability of eight different relative binding affinity calculation

methods (see table 4.2) to compare the estimated ∆∆G values with experiment (see fig. 4.1. We tested

the performance of these methods using 16 different protein complexes (see table 4.2) with a total of 654

single amino acid mutations. We also looked at the computational speed of each method in the context

of accuracy to determine its efficiency. Here, we analyze and discuss the results for Ab and non-Ab

categories separately.

4.3.1 Non-Antibody-Antigen Results

The most correlating software is EasyE and the least correlating is iSEE (See figure 4.1 & 4.2). JayZ

and EasyE are similar and consistently have the best correlation for non-Ab mutations. JayZ ran the 190

mutations of 1ppf in 507 seconds for an average of one mutation every 2.7 seconds. EasyE ran the 190

mutations of 1ppf in 1732 seconds for an average of one mutation every 9.1 seconds.The distribution

of experimental ∆∆G values for all non-Ab complexes is as follows: 13% of point mutations resulted

in ∆∆G values of less than -0.5 kcal/mol, considered destabilizing; 31% between -0.5 and 0.5 kcal/mol,
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Figure 4.1: Calculated ∆∆G values (x-axis) compared to experimental ∆∆G values (y-axis) for each
method tested in this study. Black, red, and blue lines are simple linear regressions from which Pearson
correlations are derived. The red points are a scatter for Ab complexes and the blue points are for non-
Ab complexes. The dashed line is the y = x line measuring perfect agreement between predicted ∆∆G
and the experimental ∆∆G values. The solid black, red, and blue lines indicate a linear relationship
between calculated and experimental observations for all data points, antibody-antigen complexes, and
non-antibody-antigen complexes respectively. The top values in black, red, and blue match the root-
mean-square error and the bottom values match that correlation coefficients for all values, Ab values,
and non-Ab values respectively.

considered neutral; and 56% greater than 0.5 kcal/mol, considered stabilizing.

Figure 4.3 shows the ROC plot for all software and non-Ab complexes. JayZ [0.84], EasyE [0.83],

DCOMPLEX [0.82], FoldX [0.79], and MD+FoldX [0.76] are the highest areas under the curve (AUC).
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Figure 4.2: Performance of each method in predicting true ∆∆G values (concordance correlation coeffi-
cient), linearly correlated ∆∆G values (Pearson correlation coefficient), and rank order (Spearman and
Kendall rank order correlation coefficient). The error for each method is reported under the correlation
points. In total, there were 401 Non-Ab point mutations as designated by n=401.

Of all of these, DCOMPLEX has a much faster runtime. If the goal is to determine stabilizing and

destabilizing non-Ab mutations, DCOMPLEX offers results similar to JayZ and EasyE, but at a fraction

of the time. As above, JayZ runs one mutation every 2.7 seconds, EasyE every 9.1 seconds, but

DCOMPLEX runs one mutation every 0.25 seconds.

All methods tested were trained on databases consisting mostly of non-Ab complexes, thus the cor-

relation should be higher for these complexes as opposed to antibody-antigen complexes. It is possible

that the true correlation is a combination of linear and rank correlation because Pearson and Spearman

consistently correlated the best or second best. EasyE is the best option for balancing accuracy and

speed. For destabilization/stabilization prediction, DCOMPLEX is recommended for its combination of

speed and accuracy.

Table 4.3 shows eight different data subsets with two correlation coefficients per method. Can identify

certain subsets that perform well in certain areas but not others. By removing worse performing subsets,

a better idea of which method performs better for different subsets.

Table 4.3 also gives an idea of which methods perform better for non-Ab or Ab. EasyE has the highest

correlation for non-Ab for five out of eight subsets. For the subsets it did not have the highest correlation,

it had either the second or third highest correlation. This shows EasyE performs fairly well with non-Ab

complexes compared to the other methods tested. Ab complexes are less straightforward. MD+FoldX
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Figure 4.3: Receiver operating characteristic curves of the classification of variants that are more desta-
bilized or less destabilized than 0.5 kcal/mol. The values in the legend represent the area-under-curve
(AUC). The higher the value, the better the prediction capability of the method.

has the highest correlation for Ab complexes for three of the eight subsets. BindProfX+FoldX and

DCOMPLEX both have the highest correlation for two of the eight subsets. An interesting trend is that

the methods that have the highest correlation for non-Ab complexes do not have the highest correlation

for Ab complexes.

4.3.2 Antibody-Antigen Results

The most correlating software for Ab complexes was MD+FoldX and the least correlating was iSEE

(See figure 4.4). MD+FoldX is the most computationally expensive method, but can provide much better

correlation than other software.

Figure 4.5 shows the ROC plot for all software and Ab complexes. The distribution of experimental

∆∆G values for only antibody-antigen complexes were as follows: 5% of point mutations resulted in

∆∆G values of less than -0.5 kcal/mol, considered destabilizing; 40% between -0.5 and 0.5 kcal/mol,

considered neutral; and 55% greater than 0.5 kcal/mol, considered stabilizing. JayZ [0.97], EasyE [0.98],

FoldX [0.85], and MD + FoldX [0.82] all had the highest AUC. JayZ and EasyE do remarkably well at

determining if the mutation in an Ab complex is destabilizing or not. Compared to non-Ab complexes,

all methods performed better for antibody-antigen complexes except for FoldX and DCOMPLEX which
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Table 4.3: All methods correlation coefficients with respect to certain subsets. “”WT Gly or Pro” are
wildtype amino acids that are either glycine or proline. “WT Non-Gly and Non-Pro” are wildtype amino
acids that are neither glycine nor proline. “Alpha Helix” are mutations that occur in a helix structure.
“Beta Sheet” are mutations that occur in a beta structure. “Surface Exposure” are mutations that
occur in an amino acid that is up to 10% solvent accessible. “Neutral Charge” is a neutrally charged
wildtype amino acid mutating to a neutrally charged mutant amino acid. “Hydrophobic to Polar” is
a hydrophobic or polar wildtype amino acid mutating to a polar or hydrophobic mutant amino acid,
respectively. “Larger Vol Changes” is a mutant amino acid that is greater than 40% larger than the
wildtype amino acid. Values that are bolded are the highest correlation coefficients for each method and
protein type. Values that are red or blue are the highest correlation coefficients for each subset, red for
non-Ab and blue for Ab. The red and blue are the dominant representations.

were marginally worse. EasyE is recommended for a better stabilization prediction and offers a fairly

quick solution. EasyE ran 16 mutations of 1yy9 in 336 seconds for an average of one mutation every 21

seconds.

MD+FoldX ran 16 mutations of 1yy9 in 941 CPUh for an average of one mutation every 58.8 CPUhs.

DCOMPLEX offers a slightly lower correlation but is much less computationally expensive. It ran 16

mutations of 1yy9 in 5.0 seconds for an average of one mutation every 0.35 seconds.

MD+FoldX does much better with accuracy, at a much larger cost of runtime. For destabilization/sta-

bilization prediction, EasyE or JayZ are the best options for balancing accuracy and speed.

4.3.3 Discussion

We hypothesized that methods utilizing a wide variety of information to predict relative binding

affinity and interface destabilization would be more accurate than methods based on a single descriptive
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Figure 4.4: Performance of each evaluated method in predicting true ∆∆G values (concordance cor-
relation coefficient), linearly correlated ∆∆G values (Pearson correlation coefficient), and rank order
(Spearman and Kendall rank order correlation coefficient). The error for each method is reported under
the correlation points. In total, there were 253 Ab point mutations as designated by n=253.

Figure 4.5: Figure 4.5: Receiver operating characteristic curves of the classification of variants that
are more destabilized or less destabilized than 0.5 kcal/mol. The values in the legend represent the
area-under-curve (AUC). The higher the value, the better the prediction capability of the method.
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energy function and would do so in a computationally efficient manner. Based on the subsets we were able

to analyze, our results suggest a more complex picture as each method has both strengths and limitations

in predicting binding behavior. There is likely an intricate interplay of protein characteristics, as shown

in Table 3, that limits the ability of current tools to predict binding affinity and interface destabilization

with both speed and accuracy in multiple protein subsets.

Figure 4.1 summarizes our ability to estimate ∆∆G values for single mutations. None of the meth-

ods show a high correlation, highlighting the continued need for better implementation of our growing

knowledge of protein characteristics into reliable and efficient tools for predicting protein behavior. JayZ

and EasyE both have correlations of 0.49 for all single mutations, and have higher correlations of 0.61

and 0.62 (respectively) for non-Ab complexes. MD+FoldX had a correlation of 0.39 for Ab complexes.

MD+FoldX appears to do better at non-trivial complexes. Software is typically trained on non-Ab com-

plexes which is why MD+FoldX performed somewhat lower than others in that category. But for the

Ab complexes, it had the best correlation. All methods have higher correlations for non-Ab complexes

than Ab complexes. In general, the Pearson correlation coefficient for the various methods are all rela-

tively average. However, JayZ and EasyE have high Pearson correlation coefficients, meaning the data

is most likely linear in nature. The concordance correlation coefficient performed the worst or second

worst of all correlation coefficients. Spearman rank correlation had better correlation than Kendall rank

correlation in every method. It is possible that the true correlation is a combination of linear and rank

correlation because Pearson and Spearman consistently correlated the best or second best. Based on

predictive accuracy alone, JayZ and EasyE appear to be the best overall predictor of relative binding

affinity and perform especially well with non-Ab complexes. MD+FoldX outperforms all other methods

when analyzing Ab complexes.

While accuracy is generally the main driver for choosing a computational method, computational

efficiency is also important. Here, we discuss each method as it performs in both speed and accuracy for

predicting ∆∆G values. For all single mutations and our non-Ab subset, EasyE and JayZ both performed

better than FoldX, a finding that appears to fit our hypothesis given both utilize a layered approach to

energetic computations. However, while JayZ appears to be a faster method, EasyE is computationally

equivalent to FoldX. DCOMPLEX, a physics-based method arguably on par with FoldX in terms of

informational variety, performs better than FoldX for all single mutations and almost as well as FoldX

for non-Ab mutations in a fraction of the time. MD+FoldX is on par with DCOMPLEX for all single

mutations and similarly to FoldX in non-Ab mutations, but is by far the most computationally expensive

method analyzed. Although BPX+FoldX implements several factors in its algorithm, computation time

was longer than all but MD+FoldX without a concomitant improvement in correlation. It must be
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noted, however, this method is perhaps the most accessible given the easy-to-use online server interface

and performs similarly to FoldX for all single mutations and non-Ab mutations. BindProfX utilizes the

same scoring profile as BPX+FoldX without the FoldX calculations. In this case, accuracy decreased

while calculation speed remained similar to BPX+FoldX. iSEE, the least correlating method, employs

the widest variety of information to obtain relative binding affinity predictions and is the fastest of all

methods, if the non-trivial preparation time is ignored.

For Ab complexes, MD+FoldX completely negates our hypothesis in that it was the most correlating

method, followed by DCOMPLEX. iSEE is again the fastest of all methods but also the least correlating.

BindProfX, JayZ, and EasyE utilize a wide variety of information and have similar correlations but do

not approach the accuracy of MD+FoldX. Here, BPX+FoldX and DCOMPLEX performed similarly, but

DCOMPLEX has the advantage of speed. For Ab complexes, no method can really be recommended as

both accurate and efficient, although DCOMPLEX appears to do surprisingly well for not being calibrated

given its fast runtime.

Figures 4.3 and 4.5 show the ROC curves for each method’s ability to classify mutations as either

destabilizing or neutral/stabilizing. For non-Ab complexes, JayZ and EasyE have the best predictive

ability followed by DCOMPLEX. In terms of speed, DCOMPLEX is faster than either JayZ or EasyE.

Here, given the similarities in predictive ability, the tradeoff between speed and accuracy is best deter-

mined by the user. For Ab complexes, JayZ and EasyE performed very well, followed by MD+FoldX. If

mutation classification is the primary need, JayZ or EasyE are both recommended over MD+FoldX due

to their much faster runtime.

Some of these software have much longer runtimes but similar correlations. Thus, if the outcome only

needs to be so good, the faster software would be ideal. In the case of the fastest runtime, iSEE computes

all mutations instantly, but performs poorly for both non-Ab and Ab. DCOMPLEX does much better

at stabilization prediction and correlation. If speed is the most important parameter, DCOMPLEX

would be a good choice for general binding affinity calculations. As can be seen in Table 3, some of

the aforementioned methods performed extremely well, and even in some cases efficiently, in certain

subcategories but were less effective in others, highlighting the need for understanding how the interplay

of these protein characteristics actually affect computational accuracy and resource usage.

Our main result is that we have identified several computational methods that predict relative binding

affinity. While some complexes can be easily approximated using quick and less rigorous, more novel and

unique complexes will most likely have improved accuracy utilizing molecular dynamics. The in-house

script can parse any aforementioned parameters, and combined with the known runtimes above, one of

the identified softwares should be used to get the fastest and most accurate relative binding affinity. The
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dataset and accompanying python script should be enough for a user to determine correlations and ROC

curves for all factors shown in Table 3. The script could also be used to elucidate strengths and potential

problem areas for any given method and protein subset, allowing users to determine the best predictive

method for the types of mutations in which they are interested beyond what is discussed in this section.

4.4 Conclusion

In this article, we have described several computational methods and tested them to predict the effects

of single mutations on protein-protein binding affinity. We have shown that some methods perform better

than others depending on the complex such as EasyE for non-Ab complexes and MD+FoldX for Ab

complexes. Moreover, JayZ and EasyE predicted the signs of relative binding free energy (∆∆G) values

of studied mutations with high accuracy compared to any other method. In future work, we could look

at more complexes or different methods to expand and better refine our conclusion on the predictive

capability of each method.
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Chapter 5: DmORC

5.1 Introduction

Drosophila melanogaster (Dm) is a species of fly in the family Drosophilidae. The origin recognition

complex (ORC) directs DNA replication throughout the genome and is required for its initiation. ORC

is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome [83].

DmORC is a protein complex with six chains.

In this study we were looking at mutations in ORC2 (Chain B, PDB ID 4xgc) and ORC3 (Chain C,

PDB ID 4xgc) and how they affect the relative binding affinity with a DNA complex. Dm samples were

taken along the east coast of the United States and two mutations were found in some populations [9].

The populations that contained the mutations depended on the physical location where the sample was

collected. ORC2 contained the mutation T321P and ORC3 contained the mutation S339N. Both T321P

and S339N appeared more often in species that existed at a colder and lower (towards the North Pole)

latitude.

T321P

S339N

Figure 5.1: The Drosophila melanogaster origin recognition complex (DmORC) is of immense interest
in the scientific community due to its similarity to the human ORC. (PDB ID 4xgc[31]). The 3D image
on the left is the complete DmORC structure. The 3D image on the right is ORC2 and ORC3 bound
to DNA. S339N and T321P are non-synonymous amino acid variants. Residue 339 in chain C has been
observed to mutate from a Serine to an Asparagine and Residue 321 in chain B has been observed to
mutate from Threonine to a Proline.
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5.2 Methods

Using Schrodinger, DmORC was trimmed to only contain ORC2 and ORC3, since these are the only

chains with observed mutations. Each ORC structure was divided into a main section and a winged

hinge (WH). The WH was assumed not to contribute to the complex since the mutations were located

in the main sections. Protein Preparation Wizard was used to preprocess, optimize, and minimize the

structure [92]. The Structure Prediction tool was used to find and compare homologs. It then applied

homolog characteristics and rebuilt portions of the intrinsically disorder portions of the structure using

an energy-based method.

After the primary structure was built, we focused on secondary structures. Prime was used to run

Monte Carlo simulations that forced secondary structures into disordered regions of the protein chains

[62, 63]. Secondary structure was predicted for each chain using several intrinsically disordered structure

predictors (I-TASSER[164], SpotFold[22], NetSurfP[75]). The structure was then processed through a 10

ns molecular dynamics simulation to ensure there were no steric clashes and confirm stability.

The disordered regions of DmORC were also rebuilt using Modeller[158]. This method was a quicker

compared to Schrodinger, but turned out to be less effective. After analyzing the structure, it was decided

that the rebuilt disordered regions were less reliable. Modeller has ways of refining the loops it has rebuilt,

but it does not compare the structure to homologs. This means it only using statistical mechanics to

rebuild the disordered regions, and not similar known protein sequence structures.

5.3 Results and Discussion

The results from the MD simulation showed some promise for understanding the effects of the two

temperature sensitive mutations on DmORC. However, after discussion with our experimental collabora-

tor, it was determined that the structure needs to be built again to include the WH portions. This will

be left for future work.
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Figure 5.2: The green region represents ORC2 and the cyan region represents ORC3. The purple region
is what was rebuilt using Schrodinger.
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Chapter 6: Conclusion

6.1 Summary

In our study of Ebola (see chapter 2), we showed that molecular modeling can be used to simulate

the interactions between antibodies and antigens. In-silico experiments, while less accurate than in-vitro

or in-vivo, are much faster. We calculated the effects of thousands of mutations to identify those that

disrupt antibody binding. This type of modeling has applications in drug design and development of

vaccines.

In our study of Titan’s subsurface ocean (see chapter 3), we showed that molecular modeling can

be applied to the extra-terrestrial search for life. An ammonia-water solvent was made to simulate an

alien environment, and Earth-based protein structures were simulated in this environment. Although we

have no concrete clues as to what exists in the subsurface ocean of Titan, we’ve shown that Earth-based

proteins containing beta sheets are stable and could exist in a Titan environment. This type of research

has applications in the universal search for life.

In our study of binding affinity software (see chapter 4), we’ve shown the accuracy of binding free

energy calculations for eight different methods. By comparing the raw data, the ideal software can be

chosen for a specific system or mutation. This research is leading to a better understanding of both

computational models and the importance of the physical attributes of the mutations and how it impacts

appropriate software choice.

6.2 Future Research

Our study of Ebola set a precedence for understanding how evolution can impact treatment of a viral

disease. This same method could be used to generate watch lists for any virus with known structures.

The method could also be refined by adding more simulation time to allow for more accuracy, or adding

other methods depending on the mutation type or location (see chapter 4).

Future research for the our Titan project could include calculating binding and folding energies,

protein functionality changes, or intrinsically disordered proteins. The approach is very general; different

solvent or proteins could be used. Binding energies could shed some light on whether or not these new

environments help or hinder protein functionality, or whether novel binding mechanisms could exist in

other environments.

The research we did looking at mutation binding energy accuracy with different software is general

and thus can be applied to many different binding systems. Two ideas, in particular, can be readily
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expanded. More methods could be used to offer even more options. Or, more systems and experimental

data can be included to better refine and optimize the results. The script we used to parse data is general

and can be easily applied to other data sets. Additionally, some future research could involve improving

the script by adding plots, features, or a better interface.

DmORC is important to our understanding of DNA replication and cell division. The next step for

this project is to build the DmORC structure with the winged hinges of ORC2 and ORC3. Ideally the

entire DmORC structure (six chains) should be rebuilt, but it’s unclear if the other chains have any effect

on the mutations. Once the structure is built, it can be simulated and analyzed. Ideally, DmORC should

be simulated at different temperatures to compare to the experimental data.
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