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Abstract

Gene regulatory networks are a visual representation of genes and their interactions. In this visual

representation, nodes correspond to genes, while edges correspond to interactions among genes. Learn-

ing the structure of a gene regulatory network from data can provide valuable insights on how genes

regulate one another. Understanding the complex regulatory relationships among genes is key to under-

standing many biological processes. Methods that infer the structure of a gene regulatory network are

powerful tools for understanding these processes. The inference from these methods has a wide range

of applications such as understanding complex traits or diagnosing and treating disease. Probabilis-

tic graphical models or networks describe the statistical dependence between variables in a system and

graphical model based methods are commonly used to infer the structure of a gene regulatory network.

We present a Bayesian graphical model based approach to infer the structure of a network and develop

a Metropolis-Hastings algorithm for the inference. Our method quantifies uncertainty in the inference,

uses edge-level prior probabilities, and incorporates prior or external knowledge of the network structure,

and accounts for multiple data types (for example, discrete, continuous, and mixed). We illustrate the

accuracy and efficiency of our method through simulation studies and compare our method to existing

Bayesian methods. We demonstrate the practical application of our method by applying it to two differ-

ent biological networks. First, we infer a gene regulatory network from individual level genotype and gene

expression data in humans. Second, we infer the combinatorial binding profiles of transcription factors

during Drosophila mesoderm development. We extend our method to infer gene regulatory networks

by including biological assumptions that regulate the relationships between data types. Specifically, we

use the principle of Mendelian randomization to infer causal relationships among genes by incorporat-

ing individual level genotype data in the network. We carry out a wide range of simulation studies on

gene regulatory networks and demonstrate that our method can accurately infer regulatory relationships

among genes.
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Chapter 1: Introduction

1.1 Gene regulatory networks

Gene regulatory networks perform two functions. First, gene regulatory networks provide an intuitive

way to visualize genes and their interactions. A gene regulatory network is made up of nodes and edges

where the nodes represent genes (or gene products) and edges correspond the molecular interaction

between them. Therefore, gene regulatory networks provide a map of genes and the relationship between

them. The edges (or relationships) in a gene regulatory network can be either directed or undirected.

An undirected edge merely describes an association between two genes whereas a directed edge implies a

regulatory or causal relationship between genes. An example of a regulatory relationship is that of a gene

that produces molecules such as transcription factors or small interfering RNA (siRNA) [16] that then

regulate the expression of other genes. How gene expression is regulated is central to many biological

systems and processes. Therefore, an important challenge in biology is to understand the structure of

complex interactions among genes.

At the same time, gene regulatory networks provide a basis for analyzing data from high-throughput

technologies (e.g., microarrays and next-generation sequencing). Recent advancements in these tech-

nologies have lead to a drastic increase in the data used to infer gene regulatory networks. Networks

inferred from these data provide information about the pathway a gene belongs to in a given tissue. In

other words, these networks describe how a particular gene interacts with other genes either directly or

indirectly. These interactions describe the biological function of a gene in terms of its relationship to

other genes instead of merely concentrating on its individual behavior [6, 22]. Accurately inferring gene

regulatory networks has attracted a great deal of scientific interest and has a wide range of applications

[21]. A common application is learning the structure of a network which can guide the design of controlled

experiments [39, 81], be used to better understand complex traits [87], aid in drug design by identifying

target genes or pathways [70, 38, 54], or be used to better understand and diagnose disease [54, 10, 49].

1.2 Gene regulatory network inference

Many computational methods have been developed to learn the structure of a gene regulatory net-

work [57, 85, 7, 19]. Many of these methods can be broken into five main groups: information theory,

Boolean networks, differential equation models, Bayesian networks, and neural networks. We briefly cover

information theory, Boolean networks, differential equation models, and neural networks before covering

Bayesian networks in more detail. Information theory methods infer undirected networks and scale well
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to large networks and use correlation [34], mutual information [9, 59], or conditional mutual information

[93] for the inference. While these methods can handle large networks they are limited because they infer

an undirected network. Boolean network methods [73, 65] first take gene expression and reduce it to two

expression levels (on or off) by applying a cutoff to the data. These methods can infer directed networks

but they lose information by reducing gene expression to either being on or off. Differential equation

models [11, 79, 61] can also infer directed networks and use continuous instead of discrete variables. In

addition, they can model gene expression over time leading to a more detailed inference. Neural net-

work methods have two main classes: Artificial Neural Networks (ANNs) and Recurrent Neural Networks

(RNNs). RNN methods [51, 42] have several advantages over ANN methods [56, 80] as they allow for

non-linear relationships among genes and can be applied to time-series data. While Boolean networks, dif-

ferential equation models, and neural networks provide more detailed inferences than information theory

methods, they are computationally much more expensive and do not scale well to larger networks.

Bayesian networks are a widely used class of probabilistic graphical models [47, 64]. Probabilistic

graphical models or networks represent the joint probability distribution of the variables in a system. In

other words, a graphical model describes how the variables vary in relation to one another. Similar to gene

regulatory networks, nodes in a graphical model correspond to variables, while edges in a graphical model

represent statistical dependence between variables. The joint distribution is encoded in the structure

(which edges are present) of the network. In most cases the structure of a system is unknown beforehand,

and methods used for network inference generally focus on learning this structure [41]. Bayesian networks

are represented by a directed acyclic graph (DAG). A DAG is a graph with only directed edges and no

directed cycles. Under certain circumstances directed edges can be interpreted as causal relationships [18].

Because graphical models can clearly represent complex systems and infer causal relationships between

variables, they are powerful tools for modeling and understanding complex systems and are commonly

used to infer gene regulatory networks.

Many Bayesian network methods have been developed to learn the structure of a network. These

methods can be broken into two classes [40]: constraint-based methods and score-based methods. The

constraint-based methods [72, 14, 4] start with a fully connected graph and conduct a series of marginal

and conditional independence tests between pairs of nodes. The edge is removed if the test does not

reject the null hypothesis which is the two nodes are independent. If an edge is removed additional

conditional independence tests are not performed on the pair of nodes. Marginal and conditional tests

are both used because two nodes may be marginally dependent but this dependence could be explained

away when conditioning on another node or nodes. A major benefit of these algorithms is their efficiency

and scalability to large graphs. However, these algorithms do not provide a measure of uncertainty in
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the inference and can be sensitive to how nodes (i.e., variables) are ordered [14, 4].

Score-based learning methods move through graph space according to a score computed for the graph

given the data. Non-Bayesian methods may take a hill climbing [58, 68] approach to maximize the

score, which is typically based on the likelihood or penalized likelihood. Bayesian methods either sample

directly from a closed-form posterior distribution [71, 48] or use a Markov Chain Monte Carlo (MCMC)

algorithm [27, 24, 30, 66, 33, 63, 29, 44] for the inference. The MCMC methods move through graph

space by proposing new graph structures, scoring them, and determining whether to stay at the current

structure or move to the proposed structure. The Bayesian score-based methods have an advantage of

quantifying uncertainty in the inference. While these methods provide a more detailed inference, by

estimating edge probabilities, they are computationally more expensive and do not scale well to larger

networks. This is due to the size of graph space [13]. For example, a graph with only 19 nodes has more

network structures than the estimated number of atoms in the observable universe. A network of only

19 genes is very small considering the number of genes in the human genome is in the tens of thousands

[15]. Despite the many Bayesian network methods currently available, much work still needs to be done

to efficiently and accurately infer the structure of a gene regulatory network from data.

We present a Bayesian graphical model based method that addresses some of the issues current

methods face. Our method provides a measure of uncertainty in the inference. This is a desirable quality

as not all relationships provide the same amount of signal and are, therefore, not all equally likely. In

addition, our method can take as input a network obtained either from prior knowledge or from a more

efficient, albeit less informative, network inference method. This greatly reduces the search space and

compute time of our method. Our method also specifies a prior probability on individual edges in the

network. An edge-level prior provides a benchmark to compare with the posterior probability and shows

how much the data support an individual edge. Our method also allows for graphs with mixed data

types (e.g., discrete and continuous). Specifically, we include these data types to analyze individual level

genotype, gene expression, and phenotype data. We also include biological assumptions that restrict the

relationships between these data types. For example, we use the principle of Mendelian randomization

[4] to infer causal relationships between genes from individual level genotype and gene expression data.

In addition, our method can be used to identify trait related genes from individual level genotype, gene

expression, and phenotype data.

We demonstrate that our method is widely applicable through simulation studies and real data anal-

yses. We carry out various simulation studies for general networks and demonstrate the accuracy and

efficiency of our method. In addition, we perform many simulation studies that are specific to gene regu-

latory networks. These studies demonstrate that our method can accurately infer regulatory relationships
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among genes by including additional variable types and assumptions in the network. We compare our

method with existing Bayesian and non-Bayesian methods and find that our method is comparable to

or better than existing methods in terms of inference accuracy. We apply our method to real data sets

and show how our method can identify gene regulatory relationships from individual level genotype and

gene expression data. We also infer the combinatorial binding profiles of transcription factors during

Drosophila mesoderm development.
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Chapter 2: Bayesian inference of directed acyclic

graphs with edge-level prior probabilities

Abstract

Graphical models or networks describe the statistical dependence among multiple vari-

ables and are widely used in biology (e.g., gene regulatory networks). Existing Bayesian

methods typically assign prior probabilities for the entire directed acyclic graph, but esti-

mate the posterior probabilities for individual edges. In reality, however, it is much easier

to formulate prior probabilities for an edge than for the entire graph. Edge-level priors

further provide a benchmark for interpreting the posterior edge probabilities. We rep-

resent a graph as a vector of edge states; each edge can be in one of three states: the

two directions when the edge is present, and absence of this edge in the graph. We can

then specify the prior probability of each state for an edge. We develop baycn (BAYesian

Causal Network), a Metropolis-Hastings Markov chain Monte Carlo algorithm, for inference

under this representation. We apply baycn to infer the probabilities of the regulatory re-

lationships among multiple target genes of the same genetic variant in humans, as well as

that of the combinatorial binding of transcription factors in Drosophila mesoderm develop-

ment. Our method is implemented in the R package baycn, which is available on CRAN

(https://CRAN.R-project.org/package=baycn).

2.1 Introduction

Graphical models (or networks), which may include directed and undirected edges, can be used to

represent the statistical dependence among multiple variables and have wide applications in biology, such

as gene regulatory networks [24, 66] and protein-protein interaction networks [28, 92]. Under appropriate

assumptions, directed edges in a network may represent causal (or regulatory) relationships [74, 32, 18].

Directed acyclic graphs (DAGs) [64], also known as Bayesian networks, are graphs with only directed

edges. If undirected edges are viewed as a special case of directed edges, with the two directions being

equally likely, then a general graph with directed and undirected edges can also be viewed as a DAG.

Here, we take this probabilistic approach to graphs and develop a Bayesian method for not only learning

the graph structure but also for quantifying the uncertainty in the inference in the posterior probabilities.

Many Bayesian methods have been developed which explore graph space and draw a sample graph

either directly from a closed-form posterior distribution [71, 48, 88, 52, 89, 26, 36] or, more often, use a

https://CRAN.R-project.org/package=baycn
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Markov Chain Monte Carlo (MCMC) algorithm [55, 25, 27, 30, 33, 63, 29, 44, 45, 43, 67, 83] to sample the

posterior distribution. Using the sample drawn from the posterior distribution, they then estimate the

posterior probability of edge presence/absence [71, 48, 63], or edge direction and absence [55, 25, 27, 30,

33, 29, 44, 45, 43, 67, 83] for the edges in the network. However, interpreting the posterior probabilities

from existing Bayesian methods can be difficult due to two reasons. i) The posterior probabilities of the

two possible directions of the same edge may be independent of each other [88, 52, 89, 36]. For example,

both probabilities may be close to 1, but it is unclear whether this implies that the two directions are

equally likely. ii) It is often unclear what prior should be used when comparing with the posterior. The

prior used by existing Bayesian methods is typically for the entire graph [55, 29, 25, 44, 45, 43, 67, 83]

and does not translate to the probability of a specific state of an individual edge. For example, suppose

that an edge between X and Y is inferred to have a probability of 0.3 in the direction X → Y and 0.1 in

the opposite direction (X ← Y ), what should we conclude? We may reason that the inference does not

support the presence of the edge, as the probability of edge presence is only 0.3 + 0.1 = 0.4. However,

this reasoning implicitly assumes that the prior probability of edge presence is 0.5. In another example,

X → Y is inferred to have a probability of 0.4, and X ← Y 0.15. Two interpretations are possible here.

i) The inference supports X → Y , as the probability of edge presence is 0.55 and the probability of

X → Y is much larger than X ← Y . Here, the implicit prior is also 0.5 for edge presence. ii) The edge

is absent, since there is not enough support for either direction (neither probability is above 0.5). Here,

the implicit prior is 0.5 for at least one direction. Both interpretations can be reasonable, but they are

based on different priors. The examples above show that an edge-level prior is needed for interpretation

of the posterior probabilities, and it is more intuitive and easier to formulate prior probabilities for an

edge than for the entire graph.

We address the issue with the prior when inferring networks from static data in this article. To do so,

we develop a novel representation of a Bayesian network by specifying the graph in terms of the edges and

their states. We specify a prior distribution for the edge states, which provides a benchmark to compare

with the posterior probability. Whether the posterior probability for an edge state is large enough depends

on the corresponding prior. For example, if the prior probability is 0.05 for an edge state (in other words,

one believes that the edge is unlikely to be present a priori), then a posterior probability of 0.3 can already

indicate support from the data for this state, even though 0.3 is not typically considered a large posterior.

Our method can take as input a graph from another more efficient graph inference method (e.g., from a

constraint-based method [40]), which greatly reduces the size of the search space. Our algorithm can also

work with multiple data types: continuous, discrete, and mixed. We demonstrate the performance of our

method through simulation and in two different biological problems. The first examines the regulatory



7

relationships among the target genes of genetic variants, while accounting for confounding variables in the

inference. This data set has discrete and continuous data. The second problem investigates combinatorial

transcription factor binding during Drosophila mesoderm development, using binary binding profiles

which have high correlation among them.

2.2 Methods

2.2.1 The Bayesian graphical model

A graph G = (V, E) is a set of vertices (nodes) V = {1, 2, ..., b} and edges E ⊆ V×V, where V×V

is the set of all ordered pairs of nodes, such as (j, k), which denotes an edge pointing from node j to node

k where j, k ∈ V. The structure (or topology) of the graph is typically defined by the (deterministic)

adjacency matrix A of dimension b× b, where Ajk = 1 and Akj = 0 signify an edge from node j to node

k, and Ajk = 0 and Akj = 1 signify an edge from node k to node j. If Ajk = Akj = 0 there is no edge

between nodes j and k.

We introduce an alternate representation of the graph to directly describe the states of individual

edges with the vector S = (S1, S2, . . . , Sm), where m is the number of edges. Each edge is in one of three

possible states:

Si =


0, if Ajk = 1 and Akj = 0 where j < k;

1, if Akj = 1 and Ajk = 0 where j < k;

2, if Ajk = Akj = 0 (i.e., the edge is absent),

such that

2∑
k=0

Pr(Si = k) ≡ pk = 1. (2.1)

With a slight abuse of notation, we draw connections to the adjacency matrix and define

Pr(Sjk = 0) ≡ Pr(Ajk = 1) and Pr(Sjk = 1) ≡ Pr(Akj = 1), (2.2)

where Sjk with the double subscript denotes the state of the edge between nodes j and k. Under this

notation,

Pr(Sjk = 2) = 1− Pr(Ajk = 1)− Pr(Akj = 1). (2.3)
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Incidentally, if Pr(Si = 0) = Pr(Si = 1) = 0.5, then the ith edge is undirected with the two directions

being equally likely.

When data are available at all the nodes (each node represents a variable), the set of nodes V

corresponds to a vector of random variables T = (T1, T2, ..., Tb)
T . We aim to infer the posterior edge

state probability Pr(Si | T) for all edges. Similar to Equation (2.1), the posterior probabilities of the

three states for an edge also add up to 1. We can also represent these posterior probabilities in a

probabilistic adjacency matrix, where each entry is the probability of one of the two possible directions

(Pr(Sjk = 1) or Pr(Skj = 1)). Existing Bayesian methods generally produce such a posterior probabilistic

adjacency matrix.

The probability of the graph can be written as a product of conditional probabilities where each node

is conditioned on its parents

Pr(T | S,θ) =

b∏
j=1

Pr(Tj | pa(Tj),θj) (2.4)

where pa(Tj) is the set of nodes that are the parents of Tj , θj is the parameter vector for the distribution

of Tj , and θ = {θ1, . . . ,θb}. If pa(Tj) = ∅, where ∅ is an empty set, the probability is reduced to a

marginal probability Pr(Tj | θj).

When we assume normality for the data at each node:

Tj ∼ N(µj , σ
2
j ), (2.5)

µj = β0 +
∑

k∈pa(Tj)

βkTk, (2.6)

where µj is the mean and σ2
j the variance. If the node Tj does not have any parents then µj = β0.

Alternatively, if the data are binary:

Tj ∼ Bernoulli(pj), (2.7)

log

(
pj

1− pj

)
= β0 +

∑
k∈pa(Tj)

βkTk, (2.8)

where pj is the “success” probability. If node Tj does not have any parents then log
(
pj/(1− pj)

)
= β0.

2.2.2 The Metropolis-Hastings MCMC algorithm

We have developed baycn (BAYesian Causal Network), a Metropolis-Hastings algorithm, that proposes

changes to edge states. The input is the binary adjacency matrix of a candidate graph and the data at
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the nodes. The candidate graph may be a fully connected graph, where all pairs of nodes are connected

by an edge. A more efficient approach is to run a fast graph inference algorithm to produce a candidate

graph and use it as the input, even if this graph contains false edges.

Algorithm 1: baycn

input : Data matrix, candidate graph, and prior on edge states
output: Posterior probability of edge states for each edge considered

1 Randomly generate a starting graph S(1) from the candidate graph;
2 for i← 2 to M do
3 Generate a proposal graph S′(t) from the current graph S(t−1);

4 Check for and remove directed cycles in S′(t);

5 Calculate the acceptance probability

α(t) = min

{
Pr(S′

(t)
) Pr(T | S′

(t)
,θ(t)) Pr(S(t−1) | S

′
(t)

)

Pr(S(t−1)) Pr(T | S(t−1),θ(t−1)) Pr(S′
(t)
| S(t−1))

, 1

}
;

6 Generate u from Uniform(0, 1);
7 if u < α(t) then
8 S(t) = S′(t);

9 else
10 S(t) = S(t−1);
11 end

12 end

To generate the proposal graph in Line 3 of Algorithm 1, we first determine the number of edges to

change states by sampling from a binomial distribution B(m, 1/m), where m is the number of edges in

the network and 1/m is the “success” probability. For each of the selected edges, we then sample from a

Bernoulli distribution with probability p to decide which edge state to change to. Since we do not allow

for an edge to remain in the same state, p is determined by the prior of the two remaining edge states.

For example, if an edge in state 0 is selected to change states, and if the prior probability for the edge

states is (p0, p1, p2) = (0.05, 0.05, 0.9), then the probability of switching to state 1 is p = 0.05/(0.05+0.9).

To ensure that the proposal graph does not contain directed cycles, we have further designed two

algorithms as part of the MCMC algorithm: the “cycle finder” algorithm (see Section 2.2.5) finds all

possible cycles given the input graph; and the “cycle remover” algorithm (see Section 2.2.6) removes

all directed cycles from the proposal graph (see Sections 2.2.3 and 2.2.4 for the theorem, proof, and

examples).

This MCMC algorithm generates a sample of graphs represented by edge states. For each edge,

the relative frequencies of the three states in the MCMC sample provide an estimate of the posterior

probabilities of edge states Pr(Si | T).

Through changes in edge states, our algorithm can sample from multiple Markov equivalent graphs

and thus produce posterior probabilities that account for Markov equivalence. With sufficient data,
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the posterior probabilities of edge states should be the same asymptotically as expected under Markov

equivalence.

2.2.3 Identifying and removing directed cycles

In a directed cycle, one can follow the directed edges and return to the starting node (e.g., T1 → T2 →

T3 → T1). Directed cycles can have a higher likelihood than the true graph, a graph with directed edges

but no cycles, and therefore should be removed during the MCMC iterations when generating a proposal

graph.

We have developed a “cycle finder” algorithm (Section 2.2.5) to find all directed cycles (including

overlapping cycles, as well as multiple disjoint ones) in a graph, and a “cycle remover” algorithm (Section

2.2.6) to move out of directed cycles such that the proposed graph is free of directed cycles. It is

plausible that when proposing a new graph, our MCMC algorithm may propose a graph with one or

more directed cycles, try to move out of these directed cycles only to generate a graph with different

directed cycles. Therefore, our algorithm may need to repeatedly identify and remove directed cycles in

one MCMC iteration. However, since we focus on relatively small graphs in this paper, this scenario is

rather unlikely.

Recall that our algorithm next calculates the acceptance probability for the proposed graph relative

to the current one. Although the (repeated) removal of directed cycles enters the calculation of the

transition probability between the current and proposed graph, the probabilities involving the cycles are

in the end canceled in the calculation of the acceptance ratio. Let D be a vector of indices of the edges

that differ between the current graph S and proposed graph S′ and C be an integer vector where the

element cj indicates the number of edges that can change state for the edge denoted by dj (see examples

in Section 2.2.4). These two vectors have the same length, denoted by h. The probability of moving from

S to S′, i.e., Pr(S → S′), is the product of the probabilities of changes at individual edges in D, and

each of these probabilities further consists of two probabilities: the probability that an edge in the graph

is chosen to change states, which is 1/cj , and the probability of edge dj changing from its current state

Sdj
to the state S′dj

, denoted by Pr(Sdj
→ S′dj

). Therefore,

Pr(S→ S′) =

h∏
j=1

1

cj
Pr(Sdj

→ S′dj
) =

h∏
j=1

1

cj

h∏
j=1

Pr(Sdj
→ S′dj

). (2.9)

We prove that the transition probabilities do not depend on the path taken from the current graph to

the proposed graph (the process of introducing and removing directed cycles) but only on the edges that

have different states between the two graphs.
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Theorem 1 When calculating the acceptance probability, α, the transition probability between the current

and proposed graph, Pr(S → S′) and Pr(S′ → S), depends only on the edges whose states are different

between the two graphs.

Proof Recall that S is a vector of edge states representing the current graph G and S′ is a vector of edge

states representing the proposal graph G′. Let D be a vector of indices of the edges that differ between

the current graph S and proposed graph S′ and C be an integer vector where the element cj represents

the number of edges that can change state for the edge represented by dj . These two vectors have the

same length, denoted by h.

We will consider two cases: without and with potential directed cycles in the graph.

Case 1 Without potential directed cycles the probability of moving from the current graph to the pro-

posed graph is

Pr(S→ S′) =

h∏
j=1

1

cj
Pr(Sdj

→ S′dj
)

=

h∏
j=1

1

cj

h∏
j=1

Pr(Sdj → S′dj
). (2.10)

We can use the same procedure of deriving the equation for moving back to the current graph from the

proposed graph. Therefore, the probability can be broken down in the same way when moving backwards:

Pr(S′ → S) =

h∏
j=1

1

cj

h∏
j=1

Pr(S′dj
→ Sdj

). (2.11)

Since there are no potential directed cycles in the network the value cj will always be m which is

the number of edges in the network. Therefore,
∏h

j=1
1
cj

=
∏h

j=1
1
m whether going from S → S′ or

S′ → S and will cancel when calculating the acceptance probability, leaving
∏h

j=1 Pr(Sdj → S′dj
) and∏h

j=1 Pr(S′dj
→ Sdj

).

Case 2 With potential directed cycles there can be multiple paths when moving from the current graph

to the proposed graph. Let Ck be a vector where each ckj is the number of edges that can change state

in path k when moving from S to S′ and Ck′ be a vector where each ck
′

j is the number of edges that can

change state in path k when moving from S′ to S. Using equation (2.10) the transition probability of



12

moving from the current graph to the proposed graph when there are multiple paths becomes

Pr(S→ S′) =

K∑
k=1

h∏
j=1

1

ckj

h∏
j=1

Pr(Sdj
→ S′dj

) =

h∏
j=1

Pr(Sdj
→ S′dj

)

K∑
k=1

h∏
j=1

1

ckj
. (2.12)

Similarly, the transition probability when there are multiple paths of moving back to the current graph

from the proposed graph is

Pr(S′ → S) =

K∑
k=1

h∏
j=1

1

ck
′

j

h∏
j=1

Pr(S′dj
→ Sdj

) =

h∏
j=1

Pr(S′dj
→ Sdj

)

K∑
k=1

h∏
j=1

1

ck
′

j

. (2.13)

In equations (2.12) and (2.13) the summation over K represents the different paths (Section 2.2.4) to get

from one graph to another and the last equality holds because the edges that are different between S and

S′ do not depend on the path k.

For each path k

Ck = (ck1 , c
k
2 , c

k
3 , . . . , c

k
h) (2.14)

= (ck1 , c
k
2 , . . . , c

k
j︸ ︷︷ ︸

create cycle(s)

, ckj+1, . . . , c
k
h︸ ︷︷ ︸

remove cycle(s)

) (2.15)

= (m, . . . ,m︸ ︷︷ ︸
j

, ckj+1, . . . , c
k
h). (2.16)

The first j elements can create one or more directed cycles. The remaining h− j elements then remove

the cycle(s) that were introduced in the network and their values are equal to the number of edges that

make up the directed cycle that is being removed. The cycles that are created and removed in any path

k from S to S′ can also be created and removed when moving from S′ to S. Therefore, the equations for

moving from the proposed graph to the current graph will be the same as Equations 2.14 - 2.16 except

for the ′ symbol indicating that we are moving backwards:

Ck′ = (ck
′

1 , c
k′

2 , c
k′

3 , . . . , c
k′

h ) (2.17)

= (ck
′

1 , c
k′

2 , . . . , c
k′

j︸ ︷︷ ︸
create cycle(s)

, ck
′

j+1, . . . , c
k′

h︸ ︷︷ ︸
remove cycle(s)

) (2.18)

= (m, . . . ,m︸ ︷︷ ︸
j

, ck
′

j+1, . . . , c
k′

h ), (2.19)
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and

K∑
k=1

h∏
j=1

1

ckj
=

K∑
k=1

h∏
j=1

1

ck
′

j

. (2.20)

The terms in equation 2.20 will cancel when calculating the acceptance probability and we will be left

with
∏h

j=1 Pr(Sdj
→ S′dj

) and
∏h

j=1 Pr(S′dj
→ Sdj

). �

2.2.4 Examples of removing directed cycles

2.2.4.1 Example 1 – one directed cycle

The candidate graph for this example (Figure 2.1a) consists of five edges. Consider the current

graph in Figure 2.1b with states S = (0, 0, 0, 1, 1) and the proposed graph in Figure 2.1d with states

S′ = (0, 1, 2, 1, 1). Edges #2 and #3 have different states between S and S′ therefore D = 2, 3. There

are two different paths to move from S to S′. In path 1 there are two steps: i) edge #2 changes direction

which creates a directed cycle between nodes T1, T2, and T3 (Figure 2.1c) and ii) the directed cycle is

removed by edge #3 changing from state 0 to 2. Therefore, the first element of C1 is five because in the

first step all five of the edges could change state. The second element of C1 is three because the directed

cycle, consisting of edges #1, #2, and #3, must be removed and only these three edges can change state

to remove this cycle. In path 2 edges #2 and #3 change states in one step and C2 = 5, 5 because for both

edges that are different between S and S′ all five edges could change state. In other words, no directed

cycles were introduced and then removed. If the prior on edge states is p0 = 0.05, p1 = 0.05 and p2 = 0.9

then the probabilities for the two paths are

path 1: Pr(Sd2
→ S′d2

) =
0.05

0.95
, Pr(Sd3

→ S′d3
) =

0.9

0.95
, C1 = 5, 3

and

path 2: Pr(Sd2
→ S′d2

) =
0.05

0.95
, Pr(Sd3

→ S′d3
) =

0.9

0.95
, C2 = 5, 5.

Combining the probabilities from each path we obtain the transition probability of moving to the proposed

graph:

Pr(S→ S′) =
1

5

1

3

0.05

0.95

0.9

0.95
+

1

5

1

5

0.05

0.95

0.9

0.95
=
(1

5

1

3
+
(1

5

)2)0.05

0.95

0.9

0.95
. (2.21)

Any directed cycle created when moving from S to S′ needs to be created when moving from S′ to S.

Therefore, when moving from S′ to S there are also two paths. Path 1 is made up of two steps: i) edge

#3 changes from state 2 to 0 creating a cycle between nodes T1, T2, and T3 and ii) the cycle is removed
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by changing edge #2 from state 1 to 0. For path 2 edges #2 and #3 both change states in one step. The

probabilities for the paths are

path 1: Pr(S′d2
→ Sd2) =

0.05

0.95
, Pr(S′d3

→ Sd3) =
0.05

0.1
, C1′ = 5, 3

and

path 2: Pr(S′d2
→ Sd2) =

0.05

0.95
, Pr(S′d3

→ Sd3) =
0.05

0.1
, C2′ = 5, 5.

The transition probability of moving back to the current graph is

Pr(S′ → S) =
1

5

1

3

0.05

0.95

0.05

0.1
+

1

5

1

5

0.05

0.95

0.05

0.1
=
(1

5

1

3
+
(1

5

)2)0.05

0.95

0.05

0.1
. (2.22)

The term 1
5
1
3+
(

1
5

)2
in equations 2.21 and 2.22 cancels out when calculating the acceptance probability,

α, and we are left with the probability of moving between the states that differ between the current graph

(Figure 2.1b) and the proposed graph (Figure 2.1d). More generally, we can apply the same procedure

to traverse the paths between any two graphs.

a)

T1

T2 T3

T4

1 2

3

4 5

b)

T1

T2 T3

T4

1 2

3

4 5

c)

T1

T2 T3

T4

1 2

3

4 5

d)

T1

T2 T3

T4

1 2

3

4 5

Figure 2.1: Graphs used for illustrating one directed cycle being introduced and then re-
moved. a) The candidate graph showing which edges are considered in the inference. b) The current
graph. c) An intermediate graph between the current graph and the proposed graph where a directed
cycle has been introduced into the network. d) The proposed graph after the directed cycle has been
removed.

2.2.4.2 Example 2 – multiple directed cycles

We show a second more complex example below using the same candidate graph from Figure 2.1a.

If we start with the graph in Figure 2.2a with states S = (0, 0, 0, 1, 1) and the proposed graph in Figure

2.2d with states S′ = (2, 1, 1, 1, 0) there are four edges with different states between the two graphs and

D = 1, 2, 3, 5. There are three different paths to move from S to S′. The steps in path 1 are: i) edges

#2 and #5 change directions creating two directed cycles, the first cycle is between nodes T1, T2, and T3

and the second cycle is between nodes T2, T3, and T4 (Figure 2.2b), ii) edge #1 changes from state 0 to 2
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removing the first cycle (Figure 2.2c), and iii) edge #3 changes direction which removes the second cycle

(Figure 2.2d). The first two elements in the vector C1 are five because all five edges could change state

in the first step which involves two edges changing states. In this step two directed cycles are created

(one involving edges #1, #2, and #3 and the other involving edges #3, #4, and #5). The third element

of C1 is three because only edges #1, #2, and #3 can change state to remove this cycle. The fourth

element of C1 is also three because only edges #3, #4, and #5 can change state to remove the second

cycle. The steps in path 2 are: i) edges #1, #2, and #5 all change states creating one directed cycle

between nodes T2, T3, and T4 (Figure 2.2c) and ii) edge #3 changes direction removing the cycle. Here,

the first three elements of C2 are five because all five of the edges can change state in the first step. In

the second step the cycle made up of edges #3, #4, and #5 must be removed. The fourth element of

C2 is three because one of these edges must change state to remove this directed cycle. In path 3 edges

#1, #2, #3, and #5 all change state in one step. Therefore, C3 is five for all four elements of this vector

because all five edges could change state in this step. If the prior on edge states is p0 = 0.05, p1 = 0.05,

and p2 = 0.9 then the probabilities for the three paths are

path 1: Pr(Sd1 → S′d1
) =

0.9

0.95
,Pr(Sd2 → S′d2

) =
0.05

0.95
,Pr(Sd3 → S′d3

) =
0.05

0.95
,Pr(Sd5 → S′d5

) =
0.05

0.95
,

C1 = 5, 5, 3, 3,

path 2: Pr(Sd1
→ S′d1

) =
0.9

0.95
,Pr(Sd2

→ S′d2
) =

0.05

0.95
,Pr(Sd3

→ S′d3
) =

0.05

0.95
,Pr(Sd5

→ S′d5
) =

0.05

0.95
,

C2 = 5, 5, 5, 3,

and

path 3: Pr(Sd1 → S′d1
) =

0.9

0.95
,Pr(Sd2 → S′d2

) =
0.05

0.95
,Pr(Sd3 → S′d3

) =
0.05

0.95
,Pr(Sd5 → S′d5

) =
0.05

0.95
,

C3 = 5, 5, 5, 5.

Therefore, the transition probability of moving to the proposed graph is

Pr(S→ S′) =
1

5

1

5

1

3

1

3

0.9

0.95

0.05

0.95

0.05

0.95

0.05

0.95
+

1

5

1

5

1

5

1

3

0.9

0.95

0.05

0.95

0.05

0.95

0.05

0.95
+

1

5

1

5

1

5

1

5

0.9

0.95

0.05

0.95

0.05

0.95

0.05

0.95

=

((1

5

)2(1

3

)2
+
(1

5

)3 1

3
+
(1

5

)4) 0.9

0.95

0.05

0.95

0.05

0.95

0.05

0.95
. (2.23)

As in example 1 any directed cycle that is created when moving from S to S′ needs to also be created

when moving from S′ to S. There are also three different paths to move back to S from S′. In path 1

the steps are: i) edges #1 and #3 change states creating two directed cycles the first cycle is between
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nodes T1, T2, and T3 and the second cycle is between nodes T2, T3, and T4, ii) edge #2 changes direction

removing the first cycle, and iii) edge #5 changes direction removing the second directed cycle. Path 2

has two steps i) edges #1, #2 and #3 all change state creating a directed cycle between nodes T2, T3,

and T4 and ii) edge #5 changes direction removing the cycle. In path 3 there is only one step where

edges #1, #2, #3, and #5 all change states. The probabilities for these paths are

path 1: Pr(S′d1
→ Sd1) =

0.05

0.1
,Pr(S′d2

→ Sd2
) =

0.05

0.95
,Pr(S′d3

→ Sd3
) =

0.05

0.95
,Pr(S′d5

→ Sd5
) =

0.05

0.95
,

C1′ = 5, 5, 3, 3,

path 2: Pr(S′d1
→ Sd1

) =
0.05

0.1
,Pr(S′d2

→ Sd2
) =

0.05

0.95
,Pr(S′d3

→ Sd3
) =

0.05

0.95
,Pr(S′d5

→ Sd5
) =

0.05

0.95
,

C2′ = 5, 5, 5, 3,

and

path 3: Pr(S′d1
→ Sd1) =

0.05

0.1
,Pr(S′d2

→ Sd2) =
0.05

0.95
,Pr(S′d3

→ Sd3) =
0.05

0.95
,Pr(S′d5

→ Sd5) =
0.05

0.95
,

C3′ = 5, 5, 5, 5.

Therefore, the transition probability of moving back to the current graph is

Pr(S′ → S) =
1

5

1

5

1

3

1

3

0.05

0.1

0.05

0.95

0.05

0.95

0.05

0.95
+

1

5

1

5

1

5

1

3

0.05

0.1

0.05

0.95

0.05

0.95

0.05

0.95
+

1

5

1

5

1

5

1

5

0.05

0.1

0.05

0.95

0.05

0.95

0.05

0.95

=

((1

5

)2(1

3

)2
+
(1

5

)3 1

3
+
(1

5

)4)0.05

0.1

0.05

0.95

0.05

0.95

0.05

0.95
. (2.24)

The term
(

1
5

)2(
1
3

)2
+
(

1
5

)3
1
3 +

(
1
5

)4
in equations 2.23 and 2.24 cancels out when calculating the

acceptance probability, α, and we are left with the probability of moving between the states that differ

between the current graph (Figure 2.2a) and the proposed graph (Figure 2.2d). More generally, we can

apply the same procedure to traverse the paths between any two graphs.
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b)
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4 5

c)
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T4
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4 5
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T4
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4 5

Figure 2.2: Four graphs used for illustrating multiple directed cycles being introduced and
then removed. a) The current graph. b) An intermediate graph between the current graph and the
proposed graph where two directed cycles have been introduced into the graph. c) An intermediate graph
where one of the directed cycles has been removed. d) The proposed graph.

2.2.5 Cycle finder algorithm

1. Find the nodes that are connected to two or more nodes as a cycle contains at least three nodes

and each node in a cycle has at least one incoming edge and one outgoing edge. To do so, we use

the following steps:

i. Add the adjacency matrix to its transpose.

ii. Sum each row and delete rows (the row indices are preserved) with a sum less than 2.

iii. Apply the following rule to the adjacency matrix

∀Aj,k = 1,


Aj,k = 0 if k /∈ J

Aj,k = 1 if k ∈ J,

where J is the set of remaining row indices in the adjacency matrix.

iv. Repeat steps ii and iii until ∀Aj,k = 1, k ∈ J or the reduced adjacency matrix has two or fewer

rows.

2. Create a tree as deep as possible starting with the node (i.e., root node) whose index is in the first

row of the reduced adjacency matrix. To do this we create a branch, which is a vector of node

indices, for each of the nodes (i.e., child nodes) connected to the root. For each branch we add the

index of the child node to the end of the vector, repeating the process of a child node becoming the

parent node, until we add an index that has been added to the branch previously. If a parent node

has two or more children a new branch is created for each child node.

3. Remove the nodes from the branches that do not belong to the cycle. In addition to the nodes that

create a cycle a branch may also contain nodes outside the cycle. To remove these nodes, we start
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at the last node (i.e., the leaf) of the branches created in the previous step and work up the branch

until we come to a node index that matches the leaf. Nodes above this node are then removed. For

example, a branch may be (3, 4, 1, 6, 5, 2, 1) and the trimmed branch would be (1, 6, 5, 2, 1).

4. Convert the trimmed branches of a cycle into a vector of adjacency matrix coordinates by pairing up

the adjacent nodes in each trimmed branch to produce a vector of edge coordinates. For example,

if a trimmed branch is (1, 6, 5, 2, 1) then the adjacency matrix coordinates for the edges between

the nodes in the cycle are
(
(1, 6), (6, 5), (5, 2), (2, 1)

)
.

5. Generate a vector of edge states from the vector of edge coordinates by considering each pair of

coordinates and comparing the first number to the second number. If the first number is smaller

than the second number the edge state is 0, indicating that the edge points from the node with a

smaller index to the node with the larger index. If the first number is larger than the second number

the edge state is 1, indicating that the edge points from the node with a larger index to the node with

a smaller index. The coordinates vector from the example in Step 4 is
(
(1, 6), (6, 5), (5, 2), (2, 1)

)
and the edge states that form a directed cycle are (0, 1, 1, 1).

6. Use the vector of edge coordinates from step 4 to create a vector of edge indices. For example, the

edge indices for the coordinates
(
(1, 6), (6, 5), (5, 2), (2, 1)

)
are (2, 6, 5, 1).

7. Define each cycle by the edges in the cycle and the states that form a cycle Using the vector of edge

states (step 5) and the vector of edge indices (step 6). The cycle vector for the jth cycle is

(S1, S2, . . . , Sm) (2.25)

where m is the number of edges in the network and each Sk can take one of three values:

Sk =


9 if this edge is not involved in the jth cycle

1 if edge Sk is in state 1

0 if edge Sk is in state 0.

For example, Figure 2.3 shows a graph with two cycles nested within a larger cycle. If the edges

are oriented as shown in the figure the cycle vector for the cycle involving edges (2, 3, 5, 6, 7) with

states S = (0, 1, 0, 0, 0) is

(9, 0, 1, 9, 0, 0, 0),
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and the cycle vector for the cycle involving edges (1, 3, 4, 5, 6, 7) with states S = (0, 1, 0, 0, 0, 0) is

(0, 9, 1, 0, 0, 0, 0).

Even though the cycles in the example above have four edges in common with the same edge

direction for each of these edges, we are able to distinguish between the two cycles by comparing

the cycle vectors elementwise.

T1

T2 T3

T6

T4 T5

1
2

3

4 5 6

7

Figure 2.3: A graph with two nested directed cycles. One directed cycle is made up of edges
{2, 5, 6, 7, 3} and the other with edges {1, 4, 5, 6, 7, 3}. The two cycles have four edges in common.

2.2.6 Cycle remover algorithm

1. For the proposed graph create a cycle vector, from the proposed edge states, for each set of edges

that could form a directed cycle. For example, if the graph shown in Figure 2.4b is the proposed

graph then the cycle vector would be (0, 2, 1, 1).

2. For each set of edges that could form a directed cycle, compare the cycle vector of the proposed

graph with the cycle vector of the directed cycles elementwise. For example, if the graph shown

in Figure 2.4a is the true graph then the cycle vectors for the directed cycles would be (0, 1, 0, 1)

and (1, 0, 1, 0). It is important to note that for each set of edges that could form a directed cycle

there are two cycles: one with the edges oriented clockwise and another with the edges oriented

counterclockwise. The cycle vector (created in the previous step) for the proposed graph is (0, 2, 1, 1)

which does not match either of the directed cycle vectors. Therefore, the proposed graph does not

have any directed cycles.

3. For each directed cycle, randomly select an edge and change it from its current state to a different

state according to the prior probability of edge states.

4. Repeat steps 1 - 3 until there are no directed cycles in the graph.
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a)

T1

T2 T3

T4

1 2

3 4

b)

T1

T2 T3

T4

1 2

3 4

Figure 2.4: Two graphs used for illustrating the steps of the cycle remover algorithm. a) The
true graph and b) the proposed graph.

2.2.7 Relationship to existing Bayesian methods

We compare baycn to five methods (Table 2.1), four of which are also MCMC methods. Two methods

are based on the graph structure: Gibbs [29] and MC3 [55], and two methods are based on node orderings

or node partitions (i.e., subsets of nodes): order MCMC [25, 45] and partition MCMC [44]. These methods

assign a prior for the entire graph or for node orderings/partitions.

We also compare with scanBMA [89], one of the more recent Bayesian model averaging methods

that specifies a prior probability for individual edges [88, 52, 89]. However, scanBMA searches the

space of parents for each node in the network, for example, the possible parent nodes for node X, and

independently the possible parent nodes for node Y . If two nodes X and Y are connected, the posterior

probability of X ← Y and that of X → Y are independent of each other, and can each take the value 1.

As a result, scanBMA is unable to detect the v structure of X → Y ← Z and tends to include an edge

between X and Z: although X and Z are marginally independent, Z becomes dependent on X in the

presence of Y , and scanBMA thus infers both Z and Y to be parents of X, and similarly, both X and Y

to be parents of Z.

2.3 Simulation Studies

2.3.1 Data simulation

We simulated data under seven different topologies (Figure 2.5). Each node follows a normal distri-

bution where the mean is a linear model (Equation 2.6). For all nodes the variance is set to one and the

intercept of the linear model, β0, is set to zero. In addition, all other βs take the same value and are

referred to as the signal strength. We used three values for the signal strength (similar to Badsha and

Fu [4]): 0.2 (weak), 0.5 (moderate), and 1 (strong), and three values for the sample size: 100, 200 and

600. For each topology we simulated 25 data sets under each of the nine combinations of signal strength

and sample size. When summarizing the results, if the results are grouped by, for example, topology, we
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use the output from all the data sets with different sample size and signal strength values.

Meso&SM
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twi.6.8
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(a) M1 (b) M2 (c) GN4

(d) GN5 (e) multi-parent (f) GN11 (g) GN8

Figure 2.5: Seven topologies used in simulation studies. Orange edges have Markov equivalent
edges and cannot be deterministically inferred. Two graphs are Markov equivalent if they have the same
likelihood and represent the same conditional independence [82]. A set of Markov equivalent graphs
form a Markov equivalence class. Here, the graph T1 → T2 → T3 (M1 in a) is Markov equivalent to
T1 ← T2 → T3, and T1 ← T2 ← T3; all depict marginal dependence between T1 and T3 (i.e., T1 6⊥⊥ T3)
and conditional independence given T2 (i.e., T1 ⊥⊥ T3 | T2). In contrast, the graph T1 → T2 ← T3 (M2 in
b), also known as a v structure, has no Markov equivalent graphs. In this graph T1 and T3 are marginally
independent (i.e., T1 ⊥⊥ T3) and conditionally dependent given T2 (i.e., T1 6⊥⊥ T3 | T2). The probabilities
of the edge states for each edge in the inferred graph need to account for Markov equivalence (see the
expected probabilities for the states of each edge in a and b). (c)-(g) Larger networks that contain M1
and M2 as subgraphs. Graphs GN4 (c), GN5 (d), and GN8 (g) all have edges that can potentially form
one or more directed cycles. The multi-parent graph (e) consists of three v structures, and GN11 (f)
consists of two subgraphs separated by a v structure and has more Markov equivalent graphs than the
other networks.

2.3.2 Metrics for assessing method performance

We assess the performance and compare methods using the following metrics:

1. The edgewise Mean Squared Error (eMSE): This is the MSE between the expected and posterior

probabilities of the three states for edge j:

eMSEj =
1

3

2∑
k=0

[
Pr(Sj = k)− Pr(Sj = k | T)

]2
, (2.26)

where Pr(Sj = k) is the expected probability under Markov equivalence. This metric informs us

which edges are more accurately inferred and which ones are not.

2. MSE1: This is the MSE for the whole graph based on three possible edge states. It is the eMSE
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averaged over all m edges in the graph:

MSE1 =
1

m

m∑
j=1

eMSEj =
1

3m

m∑
j=1

2∑
k=0

[
Pr(Sj = k)− Pr(Sj = k | T)

]2
. (2.27)

3. MSE2: This is the MSE between the expected and posterior probabilistic adjacency matrices on

all m edges. This metric is essentially the same as MSE1, but makes it easy to compare with other

Bayesian methods, which generally produce a probabilistic adjacency matrix.

MSE2 =
1

2m

∑
(j,k) or
(k,j)∈E

{[
Pr(Ajk = 1)− Pr(Ajk = 1 | T)

]2
+
[

Pr(Akj = 1)− Pr(Akj = 1 | T)
]2}

.

(2.28)

For baycn, we use the posterior probability for state 0 and state 1 in place of Pr(Ajk = 1 | T) and

Pr(Akj = 1 | T) respectively.

4. Precision and power for the whole graph. Precision or 1 − False Discovery Rate (FDR) measures

how many of the inferred edges are in the true graph, and power measures how many of the inferred

edges are true edges.

Precision = 1− FDR =
# of true edges inferred

# of inferred edges
(2.29)

Power =
# of true edges inferred

# of edges in true graph
(2.30)

To calculate these metrics for simulated data, we apply a cutoff of 0.5 to the posterior probability of

edge presence (i.e., the sum of the probability of both directions). These metrics ignore the nuances

in the probabilities, but are easy to interpret as percentages and provide a quick indication of the

inference accuracy.

2.3.3 Estimating posterior probabilities of edge states using true edges

as the input

For each topology, we ran baycn once per simulated data set, used a burn-in of 20%, and used the

prior, (p0, p1, p2) = (0.05, 0.05, 0.9), on edge states. For M1, M2, GN4, GN5, and multi-parent topologies

(Figure 2.5a-e), we ran baycn for 30,000 iterations with a step size of 120. For GN8 and GN11 (Figure

2.5f-g), we ran baycn for 50,000 iterations with a step size of 200.
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For this simulation we calculate MSE1 (see Section 2.3.2), which measures the discrepancy between

the expected and posterior probabilities across all edges in the network. In general, the performance

of baycn depends on the signal strength, β, and sample size, N . As expected, for each topology MSE1

decreases as both N and β increase (Table 2.2). The signal strength has a larger effect on MSE1, because

for all seven topologies MSE1 is much lower for a strong signal and small sample size than for a weak

signal and large sample size. A close examination of the graphs inferred for different values of MSE1

shows that an MSE1 of below 0.1 typically corresponds to accurate inference: the direction of each edge

is correctly inferred, and the posterior probabilities of each edge state is similar to that of the expected

probabilities. Using this guideline, we observed that baycn performs well on GN4, GN5, and GN8 for

β = 0.5 even with a small sample size, indicating that baycn can find and remove directed cycles from

the graph. For GN11 baycn can correctly identify the edge directions in smaller subgraphs separated by

a v structure. For both M2 and multi-parent topologies that only contain v structures, MSE1 is nearly

perfect at β = 0.5 and 1 but is much larger at β = 0.2. This is consistent with our observation that it is

generally difficult for existing graph inference algorithms to correctly identify v structures with a weak

signal [4, 5].

2.3.4 Identification of false positive edges and the choice of priors

For this assessment we include a false edge in M1, M2 and GN4, and two false edges in GN11

(Figure 2.6). We used the same data generated in the previous section for these topologies (without

false edges) and ran baycn with the input being the true edges plus the false edges. We explored the

impact of three edge-state priors on the inference, with an increasing probability of the edge being absent:

prior 1: (p0, p1, p2) = (1/3, 1/3, 1/3); prior 2: (p0, p1, p2) = (0.25, 0.25, 0.5), and prior 3: (p0, p1, p2) =

(0.05, 0.05, 0.9).

We calculated the edgewise MSE or eMSE (see Section 2.3.2) for each edge in the network, which

measures the discrepancy between the expected and posterior probabilities for the three edge states.

Similar to the previous section, we use eMSE < 0.1 as the criterion for correct inference. We observed

that baycn can identify false positive edges under prior 3, which assigns a large prior probability to edge

absence (Tables 2.3 - 2.6). In all four graphs the eMSE for the false edges decreases as p2 increases.

On the other hand, the edge probabilities of the true edges are generally estimated correctly under all

three priors, even when the false edges are not properly identified and have a large eMSE (Tables 2.3 -

2.6). This investigation confirms that prior 3 is the prior of choice, as it balances the need to detect false

positive edges and to correctly infer true edges.
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Table 2.2: Performance of baycn on all the graphs used in simulation studies. Features of the
graphs, such as the number of edges and v structures, are listed (also see Figure 2.5). The mean and
standard deviation of MSE1 (on three states of each edge; see Section 2.3.2), sample size N , and signal
strength β are also listed. For each simulation scenario we generated 25 independent data sets and ran
baycn once on each data set.

MSE

β = 0.2 β = 0.5 β = 1

Topology # edges # v structures N mean sd mean sd mean sd

M1 2 0 100 0.1796 0.0949 0.0127 0.0353 0.0011 0.0016
200 0.0734 0.074 0.0014 0.0015 0.0012 0.0013
600 0.0237 0.0326 0.001 0.0009 0.0008 0.0007

M2 2 1 100 0.3384 0.1081 0.0909 0.0919 0 0
200 0.2688 0.0881 0.0597 0.082 0 0
600 0.1323 0.0735 0 0 0 0

GN4 4 1 100 0.2731 0.0711 0.0674 0.0417 0.01 0.0276
200 0.167 0.0554 0.0755 0.0639 0.0046 0.0142
600 0.0839 0.0259 0.0503 0.0602 0.0069 0.0182

GN5 5 1 100 0.2687 0.0785 0.0396 0.0465 0.0022 0.0023
200 0.1562 0.049 0.0171 0.0235 0.002 0.0031
600 0.0684 0.0338 0.0114 0.0483 0.002 0.0024

Mulit-parent 3 3 100 0.3361 0.0961 0.0486 0.0698 0 0
200 0.237 0.0812 0.0032 0.0135 0 0
600 0.1418 0.0625 0 0.0002 0 0

GN11 10 1 100 0.2266 0.0513 0.0353 0.0225 0.0042 0.0031
200 0.139 0.0431 0.0121 0.0162 0.0066 0.0041
600 0.0613 0.0197 0.0047 0.0043 0.0046 0.0039

GN8 8 2 100 0.2959 0.1517 0.0667 0.0666 0.0247 0.0526
200 0.197 0.144 0.0692 0.0962 0.0186 0.0486
600 0.1147 0.1073 0.0556 0.0858 0.0109 0.0467

2.3.5 Comparison with existing Bayesian methods

For the comparison with the MCMC methods we focus on GN4, GN8 and GN11, which have different

levels of complexity (Figure 2.5; Table 2.7). Using the true edges as the input to all the methods, we

ran each method for 30,000 iterations on GN4 and for 50,000 iterations on GN8 and GN11 and used a

burn-in of 20%. We set the step size in baycn to 120 for GN4 and 200 for GN8 and GN11. We used the

default step size for order and partition MCMC, which results in the step size being 30 for GN4 and 50

for GN8 and GN11. Gibbs and MC3 use all of the iterations after the burn-in.

We compare the performance of each MCMC method with MSE2 (see Section 2.3.2), which is calcu-

lated between the expected and posterior probability for the two directions each edge can take across all

edges in the network. Again, we use MSE2 < 0.1 as the criterion for accurate inference. We observed
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Figure 2.6: The black edges (true edges) were used to simulate the data and the red edges
(false edges) were added to the true adjacency matrix as input to baycn.
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Figure 2.7: Boxplots of MSE2 (on the posterior probabilistic adjacency matrix) for baycn
and other Bayesian methods. We simulated data from three topologies: GN4, GN8, and GN11 in
Figure 2.5 with three values of signal strength and sample size. The true edges were used as the input to
each method. We grouped MSE2 (see Section 2.3.2) in different ways to highlight the performance of each
method in different simulation scenarios. (a) The overall MSE2 grouped by method. This plot combines
the MSE2 for all topologies, signal strengths, and sample sizes. (b) MSE2 grouped by method and signal
strength β. Here the MSE2 for all topologies and sample sizes are combined. (c) MSE2 grouped by
method and topology. In these plots the MSE2 for the signal strengths and sample sizes are combined.
Also see Table 2.7.
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that all five methods have similar MSE2, with MC3 having larger mean MSE2 and larger variation (Fig-

ure 2.7a). Since the signal strength is shown in the previous sections to be crucial to the performance,

we grouped the results by signal strength. In general MSE2 decreases as the signal strength increases,

except for MC3 which performs poorly at β = 1 (Figure 2.7b). Grouping the results by topology, we

observed that MSE2 is generally small for GN11, which is not as complex despite having the largest

number of nodes. In summary, across different simulation scenarios, baycn and Gibbs show similar and

better performance than other methods. Partition and order MCMC are slightly worse in some cases,

whereas MC3 is the least accurate and least stable among the MCMC methods.

In addition, we compare with the MCMC methods and scanBMA on GN4. A fully connected graph

was used as the input for the MCMC methods. We calculated precision and power (see Section 2.3.2)

for all methods and MSE2 for the MCMC methods, since the posterior probabilities from scanBMA do

not have the same interpretation as the MCMC methods. We use the cutoff of 0.5 for edge presence

for all methods. Precision is nearly perfect for the MCMC methods in most of the simulation scenarios

(Figure 2.8; Table 2.8). However, for scanBMA precision is lower than all other methods for a strong

and moderate signal, mainly due to its inability to infer the v structure. Power is nearly 100%, for

all methods, for both β = 0.5 and 1 (Figure 2.8; Table 2.8). However, power is low for data sets with

β = 0.2 and the variation is larger for order and partition MCMC, as they tend to infer a higher posterior

probability for edge absence (Tables 2.9 - 2.11). Similar to the results when the true edges were used as

input MSE2 decreases as the signal strength increases. Similar to their performance on power, order and

partition MCMC have a higher mean and variation at β = 0.2. We also note that Gibbs and MC3 have

slightly higher mean MSE2 when β = 1.

To compare the runtime of the MCMC methods, we ran each algorithm on an Intel Xeon D-1540 2.00

GHz processor with 128 GB of memory on data from GN4, GN8, and GN11 with β = 1 and N = 600

(Table 2.12). For all three topologies, order MCMC is the fastest, followed closely by baycn and partition

MCMC. baycn is approximately three times as fast as MC3 and can be 50 times as fast as Gibbs.

2.4 Applications to biological data

2.4.1 Direct and indirect targets of genetic variants

Genetic variants play an important role in regulating the expression of genes [12]. Several large

genomic consortia have identified widespread genetic variants associated with gene expression [46, 78].

Among them, the GEUVADIS (Genetic European Variation in Disease) project measured gene expression

in Lymphoblastoid Cell Lines (LCLs) from a subset of individuals from the 1000 Genomes Project [2],
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Figure 2.8: Boxplots of precision, power, and MSE2 for baycn and other Bayesian methods.
We simulated data from GN4 (Figure 2.5c) with three values of signal strength and sample size. A fully
connected graph was used as the input to each method. We considered an edge present if the posterior
probability for edge presence (the sum of the posterior for the two directions) was greater than 0.5.
Precision, power, and MSE2 (see Section 2.3.2) are grouped by method and signal strength β. For these
plots each metric is combined across all three sample sizes. Also see Table 2.8. The last row only displays
MSE2 for the MCMC methods because scanBMA is unable to determine edge direction from static data.

which measured the genotypes of individuals of multiple ethnicities. GEUVADIS identified a large number

of genetic variants that are associated with the expression of one or more genes: these variants are termed

expression quantitative trait loci (eQTLs), and the associated genes are potential targets of the eQTL.

In particular, 62 eQTLs are associated with more than one gene. However, since the association analysis

examined one eQTL-gene pair at a time, it is unclear which associated genes are more likely to be the

direct targets, and which ones the indirect targets. To address this question, we can infer a network

for each eQTL and its associated genes: genes are more likely to be direct targets if they are directly

connected to the eQTL.

We focused on the European sample, which has a decent sample size of 373, and applied baycn to

each eQTL-gene set. Since the number of nodes in each graph is small, we used a fully connected graph

as the input to baycn with a prior on edge states of (p0, p1, p2) = (0.05, 0.05, 0.9) . We also included the
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constraint that a gene cannot be the parent of an eQTL. We ran baycn once per eQTL-gene set for 30,000

iterations with a burn-in of 20% and a step size of 120. When determining which edges to include in the

inferred graph, we required a posterior probability of > 0.4 for edge presence. In addition, we considered

an edge directed if the difference between the posterior probabilities for the two directions is greater than

0.2.

To validate the graphs inferred from GEUVADIS, we also used data from the GTEx (Genotype-

Tissue Expression) consortium, which collects genotype and gene expression data from over 50 tissues

from approximately 900 individuals [78]. We found that data are available for 46 eQTL-gene sets in

LCLs from 115 individuals in GTEx. We applied baycn to these data with the same parameter settings

as above, and present the results of seven eQTL-gene sets: four sets each involve two genes and three

sets each involve three genes.

We further examined the effect of confounding variables on the inference. On one hand, the gene

expression data in GEUVADIS and GTEx had been normalized using the PEER method [75] to remove

potential impact of demographic variables, batch effect, and other covariates. On the other hand, gene

regulation is a complex process, and genes not included in an eQTL-gene set may also have an impact

on the set. To account for this type of confounding, we included Principal Components (PCs) associated

with each eQTL-gene set in the network inference. We performed a principal component analysis on the

gene expression data for all genes from GEUVADIS. We kept the top ten PCs and calculated the Pearson

correlation between each of these PCs and each eQTL and gene from all the eQTL-gene sets. Then we

tested all pairwise correlations for statistical significance using the q value method [77] with the false

discovery rate (FDR) = 0.05. The PCs that were significantly associated with an eQTL-gene set were

then included in the network as confounding variables. We used a fully connected graph as the input to

baycn for each eQTL-gene set that had at least one PC associated with it (excluding the edges between

any two PC nodes). On each eQTL-gene-PC set we ran baycn for 50,000 iterations with a burn-in of 20%

and a step size of 200. We used the same priors and criteria for edge presence and direction as above.

These analyses show that baycn can identify the regulatory relationship among multiple genes asso-

ciated with the same eQTL, while accounting for the effect of confounding variables (Figure 2.9, Figure

2.10). The posterior probabilities estimated by baycn are largely consistent with the sample correlation

and give a detailed description of the relationship among the variables (Figure 2.10). For example, in

the eQTL-gene set Q8, baycn infers the gene PNP to be a direct target of the eQTL rs11305802 for

both GEUVADIS and GTEx (Figure 2.9a, b), consistent with the correlations (0.56 in GEUVADIS and

0.4 in GTEx). In comparison, baycn infers an edge between rs11306802 and the gene RP11-203M5.8

for GEUVADIS but not for GTEx, also consistent with the correlations (0.41 in GEUVADIS and 0.23
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Figure 2.9: The graph inferred by baycn and correlation heat maps for eQTL-gene set Q8
from GEUVADIS and GTEx. The numbers in the graphs indicate the posterior probability of the
edge for the direction shown. For undirected edges the posterior probability for each direction is shown.
We consider and edge present if the posterior probability of edge presence is greater than 0.4 and an
edge is considered directed if the difference between the posterior probabilities for the two directions is
greater than 0.2. (a) Inferred graph for data from GEUVADIS. A fully connected graph was used as
the input to baycn. (b) Inferred graph for data from GTEx. A fully connected graph was used as the
input to baycn. (c) Inferred graph for data from GEUVADIS with five PCs included in the network as
confounding variables. A fully connected graph (excluding the edges between any two PCs) was used as
the input to baycn. The edges involving PC nodes are shown in gray; the posterior probability for these
edges is not included in the graph but can be found in Table 2.14. (d) and (e) Correlation heat maps for
the nodes of interest.

in GTEx). Similarly, the edge between TMEM55B and RP11-203M5.8 is inferred to be present in both

consortia, also consistent with the correlations, although the direction is ambiguous. Including PCs does

not affect the DAG inference for Q8 and has no or small impact on other eQTL-gene sets (compare Table

2.13 to Tables 2.14 - 2.18).

The graphs inferred by baycn are the same for GEUVADIS and GTEx on the eQTL-gene sets Q20 and

Q50 (Figure 2.10) while for Q21, Q23, Q37, and Q62 the inference is different between the two consortia

(Figure 2.10). The eQTL-gene sets Q20 and Q50 (Figure 2.10) have similar correlation structures (Figure

2.11) between the two consortia which leads to similar posterior probabilities for the inferred edges (Table

2.13). For both Q23 and Q37 (Figure 2.10) no edges are inferred for GTEx. This inference also agrees
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with the correlation structure of the two data sets (Figure 2.11) as the correlation, for both eQTL-gene

sets in GTEx, is close to zero between most variables. Of the five edges inferred in GEUVADIS for Q21

(Figure 2.10) only two edges (rs147156488 – FAM27D1 and FAM27D1 – FAM27A) are inferred for GTEx.

Again if we examine the correlation (Figure 2.11) we can see that the absence of these edges is expected.

For Q62 (Figure 2.10) the only edge inferred for GTEx is between the two genes which is consistent with

the near-zero correlation between the eQTL and the two genes.

When including PCs in the network the inferred graphs remain largely the same. For both Q37

and Q50 the same edges are inferred with and without PCs and the posterior probability for these

edges are nearly identical (compare Table 2.13 to Tables 2.15 - 2.18). The eQTL-gene set Q21 has one

edge less (between rs147156488 and FAM27C) when including the PCs in the network, but the posterior

probabilities for the other edges are similar (compare Table 2.13 to 2.15). The eQTL-gene set Q23 has the

same edges inferred with and without PCs, but the direction of the edge between AGAP9 and AGAP10

is not the same (Figure 2.10).
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Figure 2.12: Correlation heat maps for eQTL-gene-PC sets from GEUVADIS.
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2.4.2 Combinatorial binding of transcription factors

Transcription factors (TFs) regulate the expression of target genes by binding to regulatory sequences

in the genome [17]. Often multiple TFs bind to the same regions and jointly influence gene expression

– this combinatorial binding of TFs has been under intensive research for over two decades [84]. During

early development in Drosophila, Zinzen et al. [94] showed that several TFs bind to cis-regulatory

regions known as cis-regulatory modules (CRMs) during mesoderm differentiation. They measured in

vivo binding for five key TFs using ChIP-chip assays at two hour intervals during mesoderm development

in six tissue types in the embryos of Drosophila melanogaster: Twist (Twi) and Tinman (Tin) were both

assayed from 2-8h, Myocyte enhancing factor 2 (Mef2) from 2-12h, Bagpipe (Bap) from 6-8h, and Biniou

(Bin) from 6-12h. The six tissue types are mesoderm (Meso), somatic muscle (SM), visceral muscle

(VM), mesoderm and somatic muscle (Meso&SM), visceral muscle and somatic muscle (VM&SM), and

cardiac muscle (CM). In particular, the binary binding (binding versus no binding) profiles of TFs at 310

CRMs for tissue-specific genes was key to understand their combinatorial binding. Because of repeated

measurements over time and combinatorial binding, there exist strong correlations among these binding

profiles (Figure 2.14).

Previously, Stojnic et al. [76] analyzed this data set and constructed six separate graphs, one for each

tissue type. Due to the strong correlation among TF binding profiles (e.g., among the five Mef2 binding

profiles), most graph inference methods could not tell them apart and tended to infer a dense network.

This earlier study therefore developed a unique vocabulary to define the dependence structure, as well as

a novel algorithm for inference. However, this vocabulary differed substantially from that of the standard

DAG and therefore was not straightforward to understand. Additionally, the graph inference method

developed in this earlier study was not Bayesian, and it was unclear how reliable an inferred edge was in

the presence of strong correlations.

We applied baycn to the Drosophila data and infer a network for the six tissues and five TFs. The

number of nodes in this graph is fairly large, so we first used MRPC [5, 4] to generate a candidate graph.

Among multiple correlated TF binding profiles that were associated with a tissue type (e.g., between

multiple Mef2 profiles and Meso&SM), MRPC, being a conservative graph inference method, typically

retained only one association. To better understand which binding profile was truly key to the tissue type,

we modified the candidate graph to include additional edges (e.g., we included edges between Meso&SM

and all five Mef2 profiles and all three Tin profiles; see Figure 2.15). We ran baycn for 500,000 iterations

with a burn-in of 0.2 and a step size of 800. We used a prior of (p0, p1, p2) = (0.05, 0.05, 0.9) and required

a posterior probability > 0.4 for edge presence. Again, we considered an edge directed if the difference
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Figure 2.13: The graph inferred by baycn for the transcription factor binding and tissue
expression data [94] of the Drosophila embryo. The five transcription factors are: Twist (Twi),
Tinman (Tin), Myocyte enhancing factor 2 (Mef2), Bagpipe (Bap), and Biniou (Bin) and were assayed
at two hour intervals during the first 12 hours of development. The six tissue types are: mesoderm
(Meso), somatic muscle (SM), visceral muscle (VM), cardiac muscle (CM), mesoderm and somatic muscle
(Meso&SM), visceral muscle and somatic muscle (VM&SM). An edge is considered present if the posterior
probability of edge presence is greater than 0.4 and an edge is considered directed if the difference between
the posterior probabilities for the two directions is greater than 0.2.

between the posterior probabilities for the two directions is greater than 0.2.

Our analysis shows that baycn can identify TFs known to drive tissue differentiation even when the

TFs are highly correlated with one another and while considering the entire network: i) We confirmed the

edge connecting a Twi node with Meso, when Twi is known to be a primary TF required for mesoderm

formation [91]; ii) Twi is also known to directly regulate the expression of both Tin and Mef2 [69]; our

inferred edges are consistent with these results; iii) Tin and Mef2 are essential for the specification of

the dorsal mesoderm [3, 53] and muscle tissue differentiation [50, 8, 31]; in our inferred graph, there are

edges between Meso&SM and these two TFs; and iv) Bap and Bin are both involved in the formation of

visceral muscle [37, 90], and in our inference, both are also in the subgraph for VM.

Furthermore, while it is still difficult to identify which TF in the correlated binding profiles is essential

to a tissue type, baycn is able to remove unlikely edges. For example, although the input graph contained

all the edges between Meso&SM and Mef2 (five binding profiles) and Tin (three binding profiles), baycn
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only inferred an edge between Meso&SM and Mef2 at 2-4h and 4-6h, as well as between Meso&SM and

Tin at 2-4h (Figure 2.13). Additionally, baycn infers an edge between VM and two of the three time

points for Bin (6-8h and 8-10h). It is particularly interesting to note that baycn inferred the edge between

Meso&SM and Tin at 4-6h to be absent with a high posterior probability of 0.812 (Table 2.19), and that

Tin at 4-6h impacts the tissue through Tin at 2-4h and Mef2 at 2-4h. In Stojnic et al., however, we

could only deduce that all three nodes jointly influence this tissue, but were unable to disentangle the

relationships among the TFs. The result from baycn suggests that the binding of Tin and Mef2 at earlier

hours are more influential for tissue formation than the later binding of Tin.

We also ran partition MCMC on this data set and obtained similar results to that described above.

We used the same graph for the input to partition MCMC and ran it for the same number of iterations

and used the same burn-in of 20%. We used 0.5 as the probability cutoff for edge presence because

partition MCMC lacks an edge-level prior. Additionally, even though the data are binary, we used the

option for continuous data when running partition MCMC, the option for discrete data failed. Despite

these differences, both algorithms agree on which edges are present and which are absent (Table 2.20).

On the other hand, the two methods disagree on the direction of 13 inferred edges: for six of these edges,

baycn infers them as directed while partition MCMC infers them as undirected; for five of them, partition

MCMC infers them as directed and baycn infers them as undirected; and for two of the edges, baycn and

partition MCMC infer the opposite direction. We discuss the interpretation of the inferred edge direction

in Discussion.
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Figure 2.14: Heat map of the Pearson correlation for each tissue and transcription factor in
the Drosophila data set.
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Figure 2.15: Graph used as the input to baycn for the Drosophila data analysis. We used the
graph output by MRPC then added additional edges between Meso&SM and the transcription factors
Mef2 and Tin and between VM and the transcription factor Bin.

2.5 Discussion

Here we present an alternative Bayesian approach to DAG inference. We have developed a new and

coherent representation of a graph in terms of edge states. A prior distribution can then be assigned to

an edge, and the posterior probabilities of edge states can be compared to the corresponding prior and

interpreted accordingly. We have developed an MCMC algorithm for sampling under this representation.

Our algorithm deals with directed cycles, accounts for Markov equivalence, and is applicable to diverse

data types: continuous, discrete, and mixed. We have demonstrated through simulation studies that

baycn is fast and can accurately estimate the edge probabilities in general, and that it performs as well

as or better than current Bayesian methods in terms of precision, power, and MSE. This model makes

it easy to experiment with different beliefs about the edge states: we can increase or decrease the prior

probability for a certain edge state. With a suitable prior for edge states, baycn can correctly estimate

edge probabilities both when the true edges are the input and when false edges are included in the input.

However, the graphs we have analyzed here are fairly small and additional work is needed to handle much

larger graphs.
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We have used a generally conservative cutoff to interpret the posterior probabilities. In simulation

studies, we used 0.5 as the cutoff value for the posterior probability of edge presence when calculating

precision and power. This value is a natural choice for other Bayesian methods under comparison, since

edge-level prior probabilities are unavailable. With baycn, 0.5 can be over conservative, especially when

prior 3 of (p0, p1, p2) = (0.05, 0.05, 0.9) is used. Under this prior, a posterior probability of say, 0.2, for

each of the two directions can already indicate strong evidence for edge presence, even though the edge

presence probability is 0.4 in this case. However, precision and power for baycn with such a conservative

cutoff are still nearly perfect in most cases and comparable to or better than other methods. When

analyzing real data, we use a slightly lower cutoff of 0.4, as the edges inferred under this cutoff are more

consistent with our interpretation of the correlations. In addition, to determine edge direction we use the

cutoff of 0.2 for the difference between the posterior probabilities for edge direction. We demonstrate that

while 0.2 is not a large difference it is sufficient to consider an edge directed. If we take multiple MCMC

samples and just consider edge presence, then for any given edge we can approximate the proportion for

one direction with a normal distribution. By the central limit theorem, the mean for this distribution is

p and the standard error is
√
p(1− p)/n, where p is the proportion of the specified direction and n is the

size of the MCMC sample. For example, if the posterior probabilities for the two directions are 0.4 and

0.6 and we have a sample of 200, then the standard error would be
√

0.4× 0.6/200 = 0.0346. Therefore,

a difference of 0.2 between the two directions is already well into the tail of this distribution.

Another caveat when interpreting the inferred network is that the direction of an edge indicates

statistical dependence. With additional assumptions, the direction may also indicate the actual, causal

mechanism. In the application of the multiple target genes, for example, we constrained the edges between

a genetic variant and a gene expression variable to always point to the gene expression variable. This is

consistent with the biological principle that DNA regulates RNA, but not the other way around. With

this constraint, other directed edges may suggest regulatory relationships. For example, the subgraph

rs11305802 → PNP → TMEM55B in Figure 2.9, which is unaffected by the confounding variables we

considered here, likely suggests that the eQTL rs11305803 regulates gene TMEM55B through gene PNP.

In the application to the transcription factor binding data, however, no suitable constraint was applied.

As a result, the direction in Figure 2.13 should be interpreted carefully. For example, the subgraph

tin.4.6 → mef2.2.4 → Meso&SM indicates that the association between Tin at 4-6h and the tissue can

be explained away by Mef2 at 2-4h; in other words, the formation of Meso&SM is more directly driven

by Mef2 binding at 2-4h than by Tin binding at 4-6h. It cannot be interpreted as Tin binding at 4-

6h regulates Mef2 binding at 2-4h. Similarly, the subgraph VM&SM → mef2.10.12 → mef2.8.10 also

indicates that the association between Mef2 at 8-10h and VM&SM can be explained away by the later
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binding of Mef2 at 10-12h, meaning that the formation of VM&SM is more directly associated with Mef2

binding at a later time than at an earlier time. Again, it cannot be interpreted as VM&SM regulates TF

binding.

Table 2.3: The mean and standard deviation of the edgewise MSE for each edge in topology
M1. We used the data sets previously simulated for M1 and included one false edge with the true edges
in the input to baycn. We ran baycn with three different priors on edge states for each data set. The
rows in gray represent false edges.

eMSE: Topology M1

Prior 1 Prior 2 Prior 3

N Edge mean sd mean sd mean sd

100 1 0.0109 0.006 0.0078 0.0047 0.002 0.0026
2 0.2853 0.0568 0.1859 0.0618 0.0131 0.0139
3 0.0107 0.0061 0.0091 0.0059 0.0014 0.0015

200 1 0.0116 0.0067 0.0075 0.005 0.002 0.0027
2 0.2861 0.0816 0.1953 0.0992 0.03 0.0614
3 0.0109 0.0063 0.0094 0.0046 0.0019 0.0025

600 1 0.0127 0.0062 0.008 0.0056 0.0008 0.001
2 0.2665 0.038 0.1593 0.052 0.0095 0.0068
3 0.0139 0.0085 0.0062 0.004 0.0016 0.0021

Table 2.4: The mean and standard deviation of the edgewise MSE for each edge in topology
M2. We used the data sets previously simulated for M2 and included one false edge with the true edges
in the input to baycn. We ran baycn with three different priors on edge states for each data set. The
rows in gray represent false edges.

eMSE: Topology M2

Prior 1 Prior 2 Prior 3

N Edge mean sd mean sd mean sd

100 1 0.1366 0.0269 0.1197 0.0199 0.0224 0.026
2 0.4035 0.0368 0.3285 0.0548 0.0656 0.0666
3 0.1461 0.025 0.1241 0.0226 0.0232 0.028

200 1 0.1329 0.0262 0.1215 0.0222 0.0297 0.0354
2 0.4111 0.0373 0.3474 0.0612 0.0863 0.0975
3 0.1391 0.0227 0.1209 0.0245 0.0317 0.0396

600 1 0.1369 0.0207 0.1183 0.0221 0.0236 0.0164
2 0.4062 0.0347 0.3362 0.0459 0.0647 0.0377
3 0.1378 0.028 0.1186 0.0223 0.0224 0.0149
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Table 2.5: The mean and standard deviation of the edgewise MSE for each edge in topology
GN4. We used the data sets previously simulated for GN4 and included one false edge with the true
edges in the input to baycn. We ran baycn with three different priors on edge states for each data set.
The rows in gray represent false edges.

eMSE: Topology GN4

Prior 1 Prior 2 Prior 3

N Edge mean sd mean sd mean sd

100 1 0.0101 0.0182 0.011 0.0165 0.0418 0.0797
2 0.011 0.0204 0.0098 0.0192 0.0431 0.0821
3 0.2235 0.1185 0.1368 0.1257 0.0301 0.1031
4 0.0085 0.0148 0.0078 0.0132 0.0462 0.0817
5 0.0087 0.0162 0.0107 0.0203 0.0459 0.0888

200 1 0.0012 0.0023 0.0019 0.0036 0.0152 0.0414
2 0.0004 0.0013 0.0012 0.004 0.0156 0.0462
3 0.2154 0.079 0.1139 0.0669 0.005 0.0083
4 0.0013 0.002 0.0023 0.0045 0.0181 0.0432
5 0.0003 0.001 0.0013 0.0043 0.012 0.0317

600 1 0.0008 0.0015 0.0009 0.001 0.0103 0.0387
2 0 0 0 0 0.0102 0.0402
3 0.2534 0.1019 0.1544 0.1028 0.0092 0.0201
4 0.0007 0.0012 0.0012 0.0015 0.011 0.038
5 0 0 0 0 0.0112 0.0503
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Table 2.6: The mean and standard deviation of the edgewise MSE for each edge in topology
GN11. We used the data sets previously simulated for GN11 and included two false edges with the true
edges in the input to baycn. We ran baycn with three different priors on edge states for each data set.
The rows in gray represent false edges.

eMSE: Topology GN11

Prior 1 Prior 2 Prior 3

N Edge mean sd mean sd mean sd

100 1 0.0023 0.0035 0.003 0.0038 0.0046 0.006
2 0.2976 0.1311 0.2084 0.1464 0.0386 0.1027
3 0.2931 0.0658 0.2039 0.0851 0.0168 0.0239
4 0.0018 0.0028 0.0035 0.0033 0.009 0.0104
5 0.0029 0.0046 0.0037 0.0048 0.0087 0.0116
6 0.0045 0.007 0.0043 0.0064 0.0038 0.0044
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0.0009 0.0011 0.0014 0.0023 0.0037 0.005
10 0.0018 0.002 0.002 0.0025 0.0107 0.0153
11 0.002 0.0019 0.0024 0.0029 0.0097 0.0132
12 0.0016 0.0018 0.0016 0.0026 0.0044 0.0057

200 1 0.0048 0.0046 0.0033 0.0042 0.0029 0.0036
2 0.286 0.1233 0.1938 0.1334 0.0338 0.0753
3 0.3161 0.0676 0.2138 0.0676 0.0188 0.0152
4 0.0032 0.0052 0.0028 0.0038 0.0076 0.0092
5 0.0026 0.0043 0.0029 0.006 0.0069 0.0085
6 0.0041 0.0056 0.0032 0.0056 0.0039 0.0052
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0.0006 0.0009 0.0004 0.0005 0.008 0.0137
10 0.0013 0.0016 0.0007 0.0013 0.0115 0.0148
11 0.0018 0.0021 0.0014 0.002 0.0093 0.0112
12 0.0021 0.0025 0.0012 0.0018 0.0038 0.0041

600 1 0.0069 0.0069 0.0052 0.0058 0.0048 0.0056
2 0.2735 0.0938 0.1783 0.0949 0.0147 0.0231
3 0.3436 0.1118 0.2446 0.129 0.0557 0.1172
4 0.0049 0.0062 0.0028 0.003 0.0108 0.0147
5 0.0024 0.0029 0.0017 0.0021 0.0077 0.0112
6 0.0027 0.003 0.0015 0.0015 0.0024 0.0023
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0.0006 0.0008 0.0009 0.0013 0.0031 0.0036
10 0.0015 0.0018 0.0023 0.0033 0.0058 0.0069
11 0.0017 0.0021 0.0029 0.0047 0.0066 0.0087
12 0.0026 0.005 0.0022 0.0041 0.0046 0.0047
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Table 2.7: Mean and standard deviation of MSE2 when the true skeleton was used as input.

MSE2

GN4 GN8 GN11

Method N β mean sd mean sd mean sd

baycn 100 0.2 0.2305 0.0351 0.2707 0.0294 0.1743 0.0259
0.5 0.0987 0.0607 0.0951 0.0401 0.0514 0.0322
1 0.015 0.0414 0.0286 0.0549 0.0064 0.0047

Gibbs 100 0.2 0.2034 0.0292 0.2483 0.0276 0.1504 0.0215
0.5 0.1009 0.0286 0.0873 0.0242 0.0439 0.03
1 0.0221 0.0357 0.0313 0.0518 0.0005 0.0003

MC3 100 0.2 0.2039 0.0279 0.2488 0.0283 0.1508 0.0202
0.5 0.1022 0.0325 0.0888 0.027 0.0438 0.0299
1 0.1913 0.2189 0.1573 0.124 0.0003 0.0002

order 100 0.2 0.3144 0.0563 0.368 0.0375 0.271 0.0336
0.5 0.1187 0.0436 0.0997 0.0384 0.0657 0.0374
1 0.0146 0.0195 0.0309 0.0432 0.0069 0.0023

partition 100 0.2 0.2505 0.0423 0.316 0.025 0.2067 0.0247
0.5 0.1125 0.0388 0.1202 0.0478 0.0656 0.0329
1 0.0213 0.023 0.0393 0.05 0.0291 0.0223

baycn 200 0.2 0.1796 0.0484 0.2129 0.0372 0.1308 0.0269
0.5 0.1132 0.0958 0.1302 0.0792 0.0182 0.0243
1 0.0069 0.0214 0.0649 0.1041 0.0098 0.0062

Gibbs 200 0.2 0.1716 0.0487 0.2071 0.0345 0.1239 0.0248
0.5 0.106 0.0683 0.0871 0.031 0.0134 0.0269
1 0.0015 0.0052 0.0005 0.0018 0.0004 0.0004

MC3 200 0.2 0.1725 0.0472 0.2071 0.035 0.1237 0.0252
0.5 0.1152 0.0966 0.1083 0.0626 0.0133 0.0268
1 0.2132 0.2264 0.2105 0.1217 0.0003 0.0002

order 200 0.2 0.2743 0.0793 0.2993 0.053 0.2052 0.0459
0.5 0.1089 0.072 0.0857 0.032 0.0322 0.0327
1 0.0067 0.0182 0.0051 0.0024 0.0087 0.004

partition 200 0.2 0.2035 0.045 0.2605 0.0325 0.1653 0.0327
0.5 0.1034 0.0628 0.1136 0.0561 0.0426 0.0259
1 0.0075 0.0133 0.013 0.0171 0.0327 0.0216

baycn 600 0.2 0.1235 0.0372 0.1721 0.0813 0.0908 0.0288
0.5 0.0755 0.0903 0.1005 0.0992 0.0071 0.0064
1 0.0104 0.0273 0.0301 0.0686 0.0068 0.0059

Gibbs 600 0.2 0.125 0.0272 0.1674 0.0724 0.0864 0.0276
0.5 0.0893 0.0835 0.0651 0.0431 0.0006 0.0012
1 0 0 0 0 0.0005 0.0004

MC3 600 0.2 0.1241 0.0282 0.1683 0.0741 0.0868 0.0274
0.5 0.229 0.2196 0.1316 0.1398 0.0005 0.0013
1 0.2311 0.2266 0.2232 0.1151 0.0003 0.0002

order 600 0.2 0.1351 0.0397 0.1648 0.069 0.1055 0.0382
0.5 0.0891 0.0898 0.0518 0.0433 0.0146 0.0158
1 0.0018 0.0006 0.0038 0.0005 0.0109 0.0052

partition 600 0.2 0.1257 0.028 0.1665 0.0615 0.1 0.0305
0.5 0.091 0.0803 0.0736 0.0792 0.0394 0.02
1 0.001 0.0015 0.0059 0.0146 0.0477 0.0389



45

Table 2.8: The mean and standard deviation of precision, power, and MSE2 for topology
GN4. A fully connected graph was the input to each algorithm. When calculating precision and power
we considered an edge present if the sum of the posterior probabilities of the two directions was greater
than 0.5.

Precision Power MSE2

Method N β mean sd mean sd mean sd

baycn 100 0.2 0.94 0.2077 0.43 0.2654 0.2398 0.0326
0.5 0.982 0.0627 0.98 0.0692 0.1235 0.0478
1 0.9707 0.0841 1 0 0.0439 0.0387

Gibbs 100 0.2 0.942 0.206 0.5 0.2602 0.2163 0.0303
0.5 0.984 0.0554 1 0 0.1212 0.0299
1 0.9093 0.1184 1 0 0.0938 0.0592

MC3 100 0.2 0.942 0.206 0.49 0.265 0.2155 0.0312
0.5 0.976 0.0663 1 0 0.1215 0.0329
1 0.9093 0.1184 1 0 0.0945 0.0683

order 100 0.2 0.80 0.4082 0.29 0.2126 0.315 0.0562
0.5 0.99 0.05 0.96 0.0935 0.1197 0.0502
1 0.992 0.04 1 0 0.0193 0.0287

partition 100 0.2 0.96 0.2 0.36 0.2051 0.2546 0.04
0.5 0.982 0.0627 0.98 0.0692 0.1118 0.0357
1 0.976 0.0663 1 0 0.0287 0.0311

scanBMA 100 0.2 0.88 0.3317 0.35 0.25 - -
0.5 0.948 0.0952 0.97 0.0829 - -
1 0.7927 0.0281 0.99 0.05 - -

baycn 200 0.2 0.99 0.05 0.74 0.2222 0.1812 0.0427
0.5 0.992 0.04 1 0 0.101 0.0769
1 0.984 0.0554 1 0 0.0307 0.0427

Gibbs 200 0.2 0.98 0.0692 0.77 0.2155 0.1763 0.0383
0.5 0.992 0.04 1 0 0.1134 0.0555
1 0.952 0.0872 1 0 0.0521 0.0476

MC3 200 0.2 0.98 0.0692 0.77 0.2155 0.1765 0.0376
0.5 0.992 0.04 1 0 0.1189 0.0619
1 0.96 0.0816 1 0 0.0525 0.0452

order 200 0.2 0.9067 0.2809 0.48 0.2385 0.2768 0.0782
0.5 1 0 1 0 0.1072 0.0721
1 0.992 0.04 1 0 0.011 0.0349

partition 200 0.2 0.9867 0.0667 0.59 0.2026 0.2087 0.0448
0.5 0.992 0.04 1 0 0.1043 0.0646
1 0.992 0.04 1 0 0.012 0.0261

scanBMA 200 0.2 0.9787 0.0763 0.67 0.225 - -
0.5 0.8747 0.1077 1 0 - -
1 0.8 0 1 0 - -

baycn 600 0.2 0.992 0.04 1 0 0.133 0.0358
0.5 0.992 0.04 1 0 0.0954 0.096
1 0.992 0.04 1 0 0.0125 0.0102
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Precision Power MSE2

Method N β mean sd mean sd mean sd

Gibbs 600 0.2 0.992 0.04 0.99 0.05 0.1274 0.0219
0.5 0.992 0.04 1 0 0.0982 0.0741
1 0.992 0.04 1 0 0.0163 0.0156

MC3 600 0.2 0.992 0.04 0.99 0.05 0.131 0.0225
0.5 0.992 0.04 1 0 0.1098 0.093
1 1 0 1 0 0.0153 0.0124

order 600 0.2 1 0 0.96 0.1181 0.1395 0.0391
0.5 1 0 1 0 0.0909 0.0903
1 1 0 1 0 0.002 0.0008

partition 600 0.2 1 0 0.97 0.1099 0.1288 0.0272
0.5 1 0 1 0 0.0869 0.077
1 1 0 1 0 0.0016 0.0018

scanBMA 600 0.2 0.976 0.0663 0.99 0.05 - -
0.5 0.8 0 1 0 - -
1 0.8 0 1 0 - -
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Table 2.9: Posterior probability from the first 7 data sets of GN4 with N = 100 and β = 0.2.
Rows in gray are the false edges, edge numbers with -v are the edges that make a v structure, and edge
numbers in bold are the edges where baycn inferred a true edge as present but partition MCMC did not.

Posterior Probability

baycn partition

Data set Edge zero one two zero one two

1 1 0.08 0.045 0.875 0.032 0.04 0.928
2-v 0.12 0.085 0.795 0.045 0.047 0.908
3 0.025 0.055 0.92 0.03 0.026 0.944
4 0.08 0.045 0.875 0.044 0.029 0.928
5 0.265 0.21 0.525 0.173 0.117 0.709
6-v 0.48 0.515 0.005 0.536 0.463 0.001

2 1 0.435 0.405 0.16 0.405 0.358 0.237
2-v 0.045 0.075 0.88 0.025 0.027 0.948
3 0.035 0.1 0.865 0.025 0.04 0.935
4 0.245 0.32 0.435 0.209 0.289 0.501
5 0.2 0.36 0.44 0.145 0.244 0.611
6-v 0.505 0.44 0.055 0.516 0.434 0.05

3 1 0.515 0.385 0.1 0.473 0.349 0.178
2-v 0.285 0.285 0.43 0.177 0.226 0.597
3 0.19 0.34 0.47 0.161 0.213 0.626
4 0.085 0.045 0.87 0.039 0.037 0.924
5 0.25 0.435 0.315 0.204 0.363 0.433
6-v 0.15 0.25 0.6 0.126 0.133 0.741

4 1 0.14 0.105 0.755 0.101 0.097 0.802
2-v 0.185 0.19 0.625 0.126 0.132 0.742
3 0.055 0.095 0.85 0.051 0.081 0.868
4 0.085 0.06 0.855 0.056 0.047 0.897
5 0.455 0.54 0.005 0.511 0.488 0.001
6-v 0.185 0.18 0.635 0.105 0.121 0.774

5 1 0.16 0.175 0.665 0.142 0.152 0.706
2-v 0.175 0.115 0.71 0.076 0.06 0.864
3 0.09 0.09 0.82 0.047 0.031 0.921
4 0.06 0.095 0.845 0.025 0.026 0.949
5 0.075 0.06 0.865 0.036 0.052 0.911
6-v 0.485 0.46 0.055 0.499 0.464 0.037

6 1 0.165 0.25 0.585 0.153 0.132 0.714
2-v 0.52 0.475 0.005 0.469 0.491 0.04
3 0.045 0.08 0.875 0.032 0.04 0.928
4 0.03 0.025 0.945 0.03 0.029 0.941
5 0.1 0.125 0.775 0.066 0.057 0.877
6-v 0.06 0.035 0.905 0.036 0.022 0.941

7 1 0.48 0.43 0.09 0.416 0.383 0.201
2-v 0.065 0.085 0.85 0.05 0.045 0.905
3 0.05 0.05 0.9 0.039 0.06 0.901
4 0.11 0.04 0.85 0.059 0.024 0.918
5 0.145 0.18 0.675 0.097 0.117 0.786
6-v 0.16 0.2 0.64 0.13 0.116 0.754
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Table 2.10: Posterior probability from the first 7 data sets of GN4 with N = 200 and β = 0.2.
Rows in gray are the false edges, edge numbers with -v are the edges that make a v structure, and edge
numbers in bold are the edges where baycn inferred a true edge as present but partition MCMC did not.

Posterior Probability

baycn partition

Data set Edge zero one two zero one two

1 1 0.415 0.38 0.205 0.389 0.257 0.354
2-v 0.425 0.515 0.06 0.419 0.459 0.122
3 0.095 0.045 0.86 0.037 0.032 0.93
4 0.075 0.09 0.835 0.037 0.054 0.909
5 0.14 0.115 0.745 0.056 0.091 0.853
6-v 0.605 0.395 0 0.599 0.392 0.01

2 1 0.33 0.67 0 0.272 0.728 0
2-v 0.335 0.645 0.02 0.231 0.692 0.077
3 0.03 0.075 0.895 0.015 0.031 0.954
4 0.23 0.16 0.61 0.121 0.079 0.8
5 0.37 0.34 0.29 0.204 0.172 0.623
6-v 0.525 0.475 0 0.475 0.509 0.016

3 1 0.37 0.385 0.245 0.298 0.294 0.408
2-v 0.32 0.285 0.395 0.218 0.19 0.592
3 0.025 0.07 0.905 0.02 0.016 0.964
4 0.13 0.085 0.785 0.072 0.065 0.863
5 0.335 0.535 0.13 0.349 0.43 0.221
6-v 0.32 0.44 0.24 0.253 0.286 0.461

4 1 0.11 0.13 0.76 0.07 0.051 0.879
2-v 0.415 0.29 0.295 0.3 0.181 0.519
3 0.135 0.07 0.795 0.052 0.046 0.901
4 0.115 0.19 0.695 0.076 0.125 0.799
5 0.235 0.25 0.515 0.141 0.188 0.671
6-v 0.385 0.525 0.09 0.378 0.461 0.161

5 1 0.51 0.48 0.01 0.498 0.47 0.032
2-v 0.41 0.4 0.19 0.383 0.312 0.305
3 0.035 0.045 0.92 0.019 0.021 0.96
4 0.045 0.035 0.92 0.016 0.021 0.963
5 0.505 0.485 0.01 0.484 0.494 0.022
6-v 0.335 0.385 0.28 0.231 0.304 0.465

6 1 0.225 0.17 0.605 0.146 0.103 0.751
2-v 0.56 0.44 0 0.591 0.403 0.006
3 0.4 0.48 0.12 0.47 0.367 0.163
4 0.03 0.05 0.92 0.021 0.02 0.959
5 0.34 0.605 0.055 0.31 0.562 0.127
6-v 0.285 0.295 0.42 0.17 0.19 0.641

7 1 0.335 0.36 0.305 0.248 0.233 0.519
2-v 0.27 0.235 0.495 0.166 0.157 0.677
3 0.075 0.035 0.89 0.02 0.019 0.961
4 0.105 0.12 0.775 0.059 0.082 0.859
5 0.325 0.46 0.215 0.234 0.406 0.359
6-v 0.425 0.575 0 0.439 0.546 0.015
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Table 2.11: Posterior probability from the first 7 data sets of GN4 with N = 600 and β = 0.2.
Rows in gray are the false edges, edge numbers with -v are the edges that make a v structure, and edge
numbers in bold are the edges where baycn inferred a true edge as present but partition MCMC did not.

Posterior Probability

baycn partition

Data set Edge zero one two zero one two

1 1 0.61 0.39 0 0.511 0.489 0
2-v 0.345 0.325 0.33 0.224 0.148 0.627
3 0.065 0.03 0.905 0.02 0.012 0.968
4 0.065 0.045 0.89 0.016 0.016 0.968
5 0.405 0.595 0 0.491 0.509 0
6-v 0.29 0.26 0.45 0.091 0.142 0.767

2 1 0.61 0.39 0 0.632 0.368 0
2-v 0.585 0.415 0 0.641 0.359 0
3 0.025 0.055 0.92 0.009 0.014 0.978
4 0.05 0.05 0.9 0.017 0.014 0.969
5 0.36 0.64 0 0.424 0.576 0
6-v 0.445 0.555 0 0.401 0.589 0.01

3 1 0.63 0.37 0 0.615 0.385 0
2-v 0.465 0.465 0.07 0.379 0.384 0.237
3 0.13 0.095 0.775 0.037 0.034 0.929
4 0.095 0.15 0.755 0.019 0.03 0.951
5 0.44 0.56 0 0.426 0.574 0
6-v 0.645 0.355 0 0.54 0.46 0

4 1 0.57 0.43 0 0.469 0.53 0.001
2-v 0.555 0.39 0.055 0.368 0.431 0.201
3 0.065 0.065 0.87 0.007 0.01 0.983
4 0.085 0.055 0.86 0.007 0.01 0.983
5 0.63 0.37 0 0.505 0.495 0
6-v 0.45 0.55 0 0.495 0.505 0

5 1 0.545 0.455 0 0.586 0.414 0
2-v 0.515 0.485 0 0.602 0.392 0.006
3 0.025 0.045 0.93 0.007 0.006 0.986
4 0.065 0.04 0.895 0.012 0.01 0.978
5 0.525 0.475 0 0.439 0.559 0.002
6-v 0.355 0.645 0 0.425 0.575 0

6 1 0.765 0.23 0.005 0.758 0.233 0.009
2-v 0.645 0.355 0 0.682 0.314 0.004
3 0.15 0.07 0.78 0.02 0.015 0.965
4 0.06 0.05 0.89 0.007 0.006 0.986
5 0.33 0.67 0 0.232 0.768 0
6-v 0.375 0.625 0 0.283 0.711 0.006

7 1 0.425 0.575 0 0.46 0.54 0
2-v 0.4 0.6 0 0.5 0.5 0
3 0.055 0.06 0.885 0.006 0.012 0.981
4 0.06 0.06 0.88 0.012 0.017 0.97
5 0.5 0.5 0 0.569 0.431 0
6-v 0.45 0.55 0 0.534 0.46 0.006
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Table 2.12: The mean runtime in seconds across 25 data sets. For each topology 25 data sets
were generated with β = 1 and N = 600 and each algorithm was run once per data set and the runtime
in seconds was recorded. All algorithms were run on an Intel Xeon D-1540 2.00 GHz processor with 128
GB of memory.

Runtime

Topology baycn Gibbs MC3 order partition

GN4 4.49 235.00 11.94 1.78 3.93
GN8 8.11 363.91 22.49 2.88 7.97
GN11 7.07 380.97 23.52 3.10 9.39
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Table 2.13: Posterior probabilities from baycn on eQTL-gene sets from GEUVADIS and
GTEx. A fully connected graph was used as the input to baycn.

Posterior Probability

GEUVADIS GTEx

Set Edge zero one two zero one two

Q8 rs11305802-TMEM55B 0.210 0.000 0.79 0.250 0.00 0.750
rs11305802-RP11-203M5.8 0.410 0.000 0.59 0.360 0.00 0.640
rs11305802-PNP 1.000 0.000 0.00 0.990 0.00 0.010
TMEM55B-RP11-203M5.8 0.525 0.465 0.01 0.330 0.58 0.090
TMEM55B-PNP 0.155 0.845 0.00 0.145 0.41 0.445
RP11-203M5.8-PNP 0.185 0.815 0.00 0.180 0.71 0.110

Q20 rs142060986-RP11292F9.1 0 0 1 0.00 0.00 1.00
rs142060986-FAM27E1 1 0 0 0.95 0.00 0.05
RP11292F9.1-FAM27E1 0 1 0 0.17 0.47 0.36

Q21 rs147156488-FAM27C 0.450 0.000 0.550 0.000 0.000 1.000
rs147156488-FAM27A 0.000 0.000 1.000 0.000 0.000 1.000
rs147156488-FAM27D1 0.550 0.000 0.450 1.000 0.000 0.000
FAM27C-FAM27A 0.525 0.010 0.465 0.055 0.040 0.905
FAM27C-FAM27D1 0.450 0.550 0.000 0.055 0.035 0.910
FAM27A-FAM27D1 0.015 0.495 0.490 0.100 0.370 0.530

Q23 rs150605045-AGAP9 1.0 0.0 0 0.015 0.00 0.985
rs150605045-AGAP10 1.0 0.0 0 0.000 0.00 1.000
AGAP9-AGAP10 0.4 0.6 0 0.180 0.16 0.660

Q37 rs3858954-GOLGA6L19 0.660 0.000 0.34 0.020 0.00 0.980
rs3858954-GOLGA6L9 0.310 0.000 0.69 0.095 0.00 0.905
rs3858954-GOLGA6L20 0.960 0.000 0.04 0.205 0.00 0.795
GOLGA6L19-GOLGA6L9 0.030 0.040 0.93 0.045 0.07 0.885
GOLGA6L19-GOLGA6L20 0.345 0.655 0.00 0.055 0.05 0.895
GOLGA6L9-GOLGA6L20 0.145 0.855 0.00 0.065 0.07 0.865

Q50 rs7124238-SBF2-AS1 0.22 0.00 0.78 0.18 0.00 0.82
rs7124238-SWAP70 1.00 0.00 0.00 1.00 0.00 0.00
SBF2-AS1-SWAP70 0.12 0.88 0.00 0.17 0.83 0.00

Q62 rs9426902-S100A6 0.845 0.00 0.155 0.095 0.00 0.905
rs9426902-S100A4 0.420 0.00 0.580 0.090 0.00 0.910
S100A6-S100A4 0.720 0.28 0.000 0.530 0.47 0.000
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Table 2.14: Posterior probabilities from baycn for eQTL-gene set Q8 from GEUVADIS with
five PCs included in the network as confounding variables. A fully connected graph (excluding
the edges between PC nodes) was used as the input to baycn. The rows highlighted in gray indicate the
edges between the nodes of interest.

Posterior Probability

Edge zero one two

rs11305802-TMEM55B 0.170 0.000 0.830
rs11305802-RP11-203M5.8 0.805 0.000 0.195
rs11305802-PNP 1.000 0.000 0.000
rs11305802-PC1 0.240 0.000 0.760
rs11305802-PC2 0.195 0.000 0.805

rs11305802-PC6 0.255 0.000 0.745
rs11305802-PC7 0.125 0.000 0.875
rs11305802-PC9 0.370 0.000 0.630
TMEM55B-RP11-203M5.8 0.150 0.820 0.030
TMEM55B-PNP 0.330 0.670 0.000

TMEM55B-PC1 0.385 0.615 0.000
TMEM55B-PC2 0.085 0.550 0.365
TMEM55B-PC6 0.015 0.055 0.930
TMEM55B-PC7 0.050 0.030 0.920
TMEM55B-PC9 0.260 0.730 0.010

RP11-203M5.8-PNP 0.760 0.240 0.000
RP11-203M5.8-PC1 0.075 0.145 0.780
RP11-203M5.8-PC2 0.085 0.240 0.675
RP11-203M5.8-PC6 0.315 0.685 0.000
RP11-203M5.8-PC7 0.175 0.115 0.710

RP11-203M5.8-PC9 0.035 0.060 0.905
PNP-PC1 0.190 0.715 0.095
PNP-PC2 0.135 0.845 0.020
PNP-PC6 0.040 0.065 0.895
PNP-PC7 0.565 0.180 0.255

PNP-PC9 0.165 0.695 0.140
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Table 2.15: Posterior probabilities from baycn for eQTL-gene set Q21 from GEUVADIS with
two PCs included in the network as confounding variables. A fully connected graph was used as
the input to baycn. The rows highlighted in gray indicate the edges between the nodes of interest.

Posterior Probability

Edge zero one two

rs147156488-FAM27C 0.000 0.000 1.000
rs147156488-FAM27A 0.000 0.000 1.000
rs147156488-FAM27D1 1.000 0.000 0.000
rs147156488-PC1 1.000 0.000 0.000
rs147156488-PC3 1.000 0.000 0.000

FAM27C-FAM27A 0.510 0.030 0.460
FAM27C-FAM27D1 0.000 1.000 0.000
FAM27C-PC1 0.250 0.030 0.720
FAM27C-PC3 0.180 0.140 0.680
FAM27A-FAM27D1 0.000 0.510 0.490

FAM27A-PC1 0.145 0.050 0.805
FAM27A-PC3 0.555 0.115 0.330
FAM27D1-PC1 0.245 0.220 0.535
FAM27D1-PC3 0.160 0.125 0.715

Table 2.16: Posterior probabilities from baycn for eQTL-gene set Q23 from GEUVADIS with
two PCs included in the network as confounding variables. A fully connected graph (excluding
the edges between PC nodes) was used as the input to baycn. The rows highlighted in gray indicate the
edges between the nodes of interest.

Posterior Probability

Edge zero one two

rs150605045-AGAP9 1.000 0.000 0.000
rs150605045-AGAP10 1.000 0.000 0.000
rs150605045-PC1 1.000 0.000 0.000
rs150605045-PC8 1.000 0.000 0.000
AGAP9-AGAP10 0.720 0.280 0.000

AGAP9-PC1 0.595 0.385 0.020
AGAP9-PC8 0.495 0.455 0.050
AGAP10-PC1 0.065 0.065 0.870
AGAP10-PC8 0.035 0.080 0.885



54

Table 2.17: Posterior probabilities from baycn for eQTL-gene set Q37 from GEUVADIS with
one PC included in the network as a confounding variable. A fully connected graph was used as
the input to baycn. The rows highlighted in gray indicate the edges between the nodes of interest.

Posterior Probability

Edge zero one two

rs3858954-GOLGA6L19 0.660 0.000 0.340
rs3858954-GOLGA6L9 0.335 0.000 0.665
rs3858954-GOLGA6L20 0.965 0.000 0.035
rs3858954-PC1 0.100 0.000 0.900
GOLGA6L19-GOLGA6L9 0.035 0.055 0.910

GOLGA6L19-GOLGA6L20 0.335 0.665 0.000
GOLGA6L19-PC1 0.665 0.210 0.125
GOLGA6L9-GOLGA6L20 0.175 0.825 0.000
GOLGA6L9-PC1 0.110 0.030 0.860
GOLGA6L20-PC1 0.135 0.050 0.815

Table 2.18: Posterior probabilities from baycn for eQTL-gene set Q50 from GEUVADIS with
two PCs included in the network as confounding variables. A fully connected graph (excluding
the edges between PC nodes) was used as the input to baycn. The rows highlighted in gray indicate the
edges between the nodes of interest.

Posterior Probability

Edge zero one two

rs7124238-SBF2-AS1 0.195 0.000 0.805
rs7124238-SWAP70 1.000 0.000 0.000
rs7124238-PC1 0.135 0.000 0.865
rs7124238-PC5 0.465 0.000 0.535
SBF2-AS1-SWAP70 0.035 0.965 0.000

SBF2-AS1-PC1 0.035 0.020 0.945
SBF2-AS1-PC5 0.015 0.040 0.945
SWAP70-PC1 0.550 0.415 0.035
SWAP70-PC5 0.280 0.720 0.000
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Table 2.19: Posterior probabilities inferred by baycn for the Drosophila data set. The graph
output from MRPC was used as the input to baycn with the addition of the edges: VM-bin 6.8,
VM-bin 10.12, Meso SM-tin 4.6, Meso SM-tin 6.8, Meso SM-mef2 4.6, Meso SM-mef2 6.8, Meso SM-
mef2 8.10, and Meso SM-mef2 10.12.

Posterior Probability

Edge zero one two

Meso-twi 2.4 0.282 0.644 0.074
VM-bin 6.8 0.126 0.462 0.412
VM-bin 8.10 0.172 0.474 0.354
VM-bin 10.12 0.076 0.054 0.870
SM-mef2 10.12 0.440 0.208 0.352

CM-bin 10.12 0.420 0.196 0.384
Meso SM-tin 2.4 0.102 0.534 0.364
Meso SM-tin 4.6 0.024 0.164 0.812
Meso SM-tin 6.8 0.180 0.040 0.780
Meso SM-mef2 2.4 0.226 0.556 0.218

Meso SM-mef2 4.6 0.174 0.282 0.544
Meso SM-mef2 6.8 0.024 0.050 0.926
Meso SM-mef2 8.10 0.052 0.056 0.892
Meso SM-mef2 10.12 0.036 0.048 0.916
VM SM-bin 10.12 0.504 0.282 0.214

VM SM-twi 2.4 0.378 0.622 0.000
VM SM-mef2 10.12 0.738 0.262 0.000
tin 2.4-tin 4.6 0.332 0.668 0.000
tin 2.4-twi 4.6 0.526 0.464 0.010
tin 4.6-twi 4.6 0.548 0.382 0.070

tin 4.6-twi 6.8 0.522 0.476 0.002
tin 4.6-mef2 2.4 0.932 0.066 0.002
tin 4.6-mef2 4.6 0.972 0.028 0.000
tin 6.8-bin 6.8 0.300 0.576 0.124
tin 6.8-bap 6.8 0.494 0.506 0.000

bin 6.8-bin 8.10 0.604 0.396 0.000
bin 6.8-bin 10.12 0.494 0.408 0.098
bin 6.8-bap 6.8 0.746 0.216 0.038
bin 8.10-bin 10.12 0.500 0.500 0.000
twi 2.4-twi 4.6 0.224 0.776 0.000

twi 4.6-twi 6.8 0.400 0.596 0.004
twi 4.6-mef2 4.6 0.992 0.008 0.000
twi 6.8-mef2 6.8 0.890 0.110 0.000
mef2 2.4-mef2 6.8 0.604 0.284 0.112
mef2 2.4-mef2 10.12 0.310 0.610 0.080

mef2 4.6-mef2 6.8 0.008 0.992 0.000
mef2 6.8-mef2 8.10 0.624 0.376 0.000
mef2 8.10-mef2 10.12 0.172 0.828 0.000
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Table 2.20: Posterior probabilities inferred by baycn and partition MCMC for the Drosophila
data set. The same graph was used as the input for both algorithms. Both algorithms agree on which
edges are present and which are absent. The rows highlighted in gray are the edges where the posterior
probabilities for edge presence are different (e.g., different directions may be inferred).

Posterior Probability

baycn partition

Edge zero one two zero one two

Meso-twi 2.4 0.282 0.644 0.074 0.22 0.70 0.08
VM-bin 6.8 0.126 0.462 0.412 0.11 0.68 0.21
VM-bin 8.10 0.172 0.474 0.354 0.45 0.50 0.05
VM-bin 10.12 0.076 0.054 0.870 0.16 0.13 0.71
SM-mef2 10.12 0.440 0.208 0.352 0.55 0.33 0.12

CM-bin 10.12 0.420 0.196 0.384 0.61 0.34 0.05
Meso SM-tin 2.4 0.102 0.534 0.364 0.21 0.73 0.06
Meso SM-tin 4.6 0.024 0.164 0.812 0.04 0.28 0.68
Meso SM-tin 6.8 0.180 0.040 0.780 0.03 0.17 0.80
Meso SM-mef2 2.4 0.226 0.556 0.218 0.34 0.66 0.00

Meso SM-mef2 4.6 0.174 0.282 0.544 0.44 0.20 0.36
Meso SM-mef2 6.8 0.024 0.050 0.926 0.07 0.13 0.80
Meso SM-mef2 8.10 0.052 0.056 0.892 0.14 0.14 0.72
Meso SM-mef2 10.12 0.036 0.048 0.916 0.11 0.14 0.75
VM SM-bin 10.12 0.504 0.282 0.214 0.45 0.51 0.04

VM SM-twi 2.4 0.378 0.622 0.000 0.32 0.65 0.03
VM SM-mef2 10.12 0.738 0.262 0.000 0.74 0.26 0.00
tin 2.4-tin 4.6 0.332 0.668 0.000 0.20 0.80 0.00
tin 2.4-twi 4.6 0.526 0.464 0.010 0.52 0.48 0.00
tin 4.6-twi 4.6 0.548 0.382 0.070 0.82 0.18 0.00

tin 4.6-twi 6.8 0.522 0.476 0.002 0.74 0.26 0.00
tin 4.6-mef2 2.4 0.932 0.066 0.002 0.87 0.12 0.01
tin 4.6-mef2 4.6 0.972 0.028 0.000 0.96 0.04 0.00
tin 6.8-bin 6.8 0.300 0.576 0.124 0.68 0.29 0.03
tin 6.8-bap 6.8 0.494 0.506 0.000 0.76 0.24 0.00

bin 6.8-bin 8.10 0.604 0.396 0.000 0.89 0.11 0.00
bin 6.8-bin 10.12 0.494 0.408 0.098 0.85 0.15 0.00
bin 6.8-bap 6.8 0.746 0.216 0.038 0.54 0.45 0.01
bin 8.10-bin 10.12 0.500 0.500 0.000 0.54 0.46 0.00
twi 2.4-twi 4.6 0.224 0.776 0.000 0.11 0.89 0.00

twi 4.6-twi 6.8 0.400 0.596 0.004 0.53 0.47 0.00
twi 4.6-mef2 4.6 0.992 0.008 0.000 0.94 0.06 0.00
twi 6.8-mef2 6.8 0.890 0.110 0.000 0.50 0.50 0.00
mef2 2.4-mef2 6.8 0.604 0.284 0.112 0.34 0.59 0.07
mef2 2.4-mef2 10.12 0.310 0.610 0.080 0.54 0.44 0.02

mef2 4.6-mef2 6.8 0.008 0.992 0.000 0.35 0.65 0.00
mef2 6.8-mef2 8.10 0.624 0.376 0.000 0.52 0.48 0.00
mef2 8.10-mef2 10.12 0.172 0.828 0.000 0.13 0.87 0.00
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Chapter 3: A Bayesian graphical model approach

to gene regulatory networks with individual

level data

Abstract

Gene regulatory networks are biological networks that describe the interaction between

genes. By measuring gene expression at the individual level, it is possible to infer a net-

work directly from data. However, without additional information, such as an individual’s

genotype, it is not possible to infer a regulatory relationship from observational data. We

modify the general-purpose network inference method (baycn) which we developed previ-

ously to infer a gene regulatory network. Here, we propose baycn for Gene Regulatory

Networks (BGRN) which incorporates individual level genotype data to infer causal rela-

tionships between genes. Our method not only infers the structure of the network but also

provides a measure of uncertainty for the inference. We explore the performance of BGRN

through extensive simulations and show that it is able to accurately infer the regulatory rela-

tionships between genes. We demonstrate that BGRN can accurately infer a network while

accounting for some types of confounding variables and that for other types of confounding

BGRN does not perform as well. We also show the impact of the number of confounding

variables on inference accuracy. We demonstrate that BGRN can correctly identify trait

related genes when the correlation between them is low, but when the correlation is high

inference accuracy depends on the number of genes that regulate the trait.

3.1 Introduction

A gene regulatory network is a graph that illustrates the interactions among genes and describes how

gene expression is regulated at a given point in time. The genes in the graph are represented by nodes

and an edge represents a relationship between genes. Gene regulatory networks can be inferred directly

from individual level gene expression data. With recent advancements in high-throughput technology

(e.g., microarrays and next-generation sequencing) the availability of gene expression data has grown

tremendously. Along with the growth in data, the research performed on inferring the regulatory rela-

tionship among genes has also greatly increased. For example, gene regulatory networks have been used

extensively to better understand how genes contribute to complex traits and diseases [87]. Learning the
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structure (the relationships between genes) of a gene regulatory network can shed light on what genes are

potentially driving disease [49, 54]. This information can be used to more effectively diagnose and treat

[70, 54] disease. Therefore, understanding the structure of a gene regulatory network is of great scientific

interest.

Many methods have been developed to infer a gene regulatory network [57, 85, 7, 19]. Here, we

focus a class of methods based on probabilistic graphical models or networks. In general, these methods

use observational gene expression data to learn the structure of the network. The structure inferred by

these networks represents the statistical dependence among genes and additional information, such as

an individual’s genotype, is needed to also infer a causal relationship between genes. The use of genetic

variants as instrumental variables [20] is a technique for inferring causal relationships from observational

data and is known as the principle of Mendelian randomization (PMR) [4]. A few recent network inference

methods [4, 35] employ this technique and include individual level genotype data in the network to infer

a variety of causal relationships among genes. However, using genetic variants as instrumental variables

is not commonly used by current network inference methods.

In general, current network inference methods use data normalization techniques, such as probabilis-

tic estimation of expression residuals (PEER) normalization [75], to account for the effect of potential

confounding from environmental, technical, or demographic variables. They do not explicitly account for

the affect of confounding variables on the inferred network by including them as variables in the network.

Gene regulation is a complex process and genes not included in the network could play a role in the regu-

latory relationships among genes in the network. A method, Genomic Mediation analysis with Adaptive

Confounding adjustment (GMAC), recently developed by Yang et al. [86] explicitly accounts for the

effect of genes outside the network by performing a principal component analysis on the genome-wide

expression data and including the top principal components (PCs) in the network. The top PCs capture

a large portion of the signal from the genome-wide expression data and serve as a proxy for unknown

confounding variables. However, GMAC focuses on inferring one type of relationship (X → Y → Z) and

is not applied to larger networks. Furthermore, they consider three types of confounding variables but

when they perform the inference two of these types of confounding variables are filtered out and only the

third type is accounted for.

We build on our previous method BAYesian Causal Network (baycn) [60] which is a general-purpose

network inference method for inferring directed acyclic graphs (DAGs). Our method, baycn, quantifies

the uncertainty of the inference by estimating the posterior probability for edge direction and absence

for each edge in the network, specifies edge-level prior probabilities, and accounts for prior or outside

knowledge of the network structure. We develop baycn for Gene Regulatory Networks (BGRN) which is
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designed specifically for inferring gene regulatory networks. Our contributions include adding different

variable types which allows for additional information, such as individual level genotype and phenotype

data, to be included in the network. We also include assumptions (such as the PMR) that restrict the

edge direction between variable types. When incorporating the PMR genetic variants are used to help

infer causal relationships between genes. In addition to including genotype and phenotype data we also

explicitly account for confounding variables by including them as nodes in the network and explore the

effect of confounding variables on the inference. We show through multiple simulation studies that BGRN

can effectively use genotype data to accurately infer a variety of regulatory relationships among genes.

We demonstrate when BGRN can account for the effect of confounding variables and when the type

of confounding variable or the number of confounders adversely affect inference accuracy. Finally, we

explore the effect of network structure on identifying trait related genes. We illustrate that when the

correlation among these genes is low BGRN can accurately identify the trait related genes. However,

when the correlation is high among the trait related genes inference accuracy depends on the number of

genes that regulate the trait.

3.2 Model

3.2.1 Basics of graphical models and notation

In general, a graph G = (V, E) is a set of vertices (or nodes) V = {1, 2, ..., b} and edges E ⊆ V×V,

where V×V is the set of all ordered pairs of nodes, such as (j, k), which denotes an edge pointing from

node j to node k where j, k ∈ V. In this example node j is referred to as the parent and node k as the

child. Here we use the representation of a graph we previously developed in baycn [60] which defines a

graph in terms of the edges and the states an edge can take. Under this representation a graph is denoted

by a vector of edge states S = (S1, S2, . . . , Sm), where m is the number of edges considered and each edge

can be in one of three possible states (see [60] for additional details).

We review the distribution of the original variable from baycn as well as describe the distribution of

the additional variables added to BGRN. The set of nodes V corresponds to a random vector

X = (U1, U2, . . . , Uj , Tj+1, . . . , Tk,Wk+1, . . . ,Wb)
T ,

where each Uj and Wj represent discrete random variables and each Tj represents a continuous random

variable. In this paper we consider the U nodes as genetic variants (e.g., copy number variation or

expression quantitative trait loci), the W nodes as clinical phenotypes (e.g., disease or medical condition),
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and the T nodes represent genes (i.e., gene expression). It is important to note that while the model is

presented with these node types in mind BGRN is not limited to only analyzing genomic data and can

be applied to any data that follow these distributions. We assume the Uj variables to have a multinomial

distribution

Uj ∼ Multinomial(pj1 , pj2 , . . . , pjo−1
), (3.1)

where there are o levels. The Tj variables are assumed to follow a normal distribution

Tj ∼ N(µj , σ
2
j ), (3.2)

µj = β0 +
∑

k∈pa(Tj)

βkUk +
∑

l∈pa(Tj)

βlTl, (3.3)

where pa(Tj) is the set of parents of node Tj and σ2
j the variance. If the node Tj does not have any

parents then µj = β0. We assume the Wj variables to be binary where:

Wj ∼ Bernoulli(pj), (3.4)

log

(
pj

1− pj

)
= β0 +

∑
k∈pa(Wj)

βkUk +
∑

l∈pa(Wj)

βlTl, (3.5)

where pj is the “success” probability. If node Wj does not have any parents then log
(
pj/(1− pj)

)
= β0.

3.2.2 Graph assumptions

We include several biological assumptions or restrictions between the different variable types. The first

assumption we use is the principle of Mendelian randomization (PMR) which is necessary for inferring

causal relationships from observational data. The gold standard for determining a causal relationship is

the randomized controlled trial (RCT). However, it is often not possible or ethical to carry out an RCT

when dealing with human subjects. The PMR is an alternative approach to an RCT in that it assumes

alleles are randomly assigned to individuals in a population. Because alleles are assumed to be randomly

assigned to an individual and are independent of any other factors they can be used as an instrumental

variable. Two more assumptions are necessary when using genetic variants as instrumental variables: i)

the genotype causes the phenotype – not the other way around and ii) the genotype is independent of any

confounding variables that are associated with the genes. Incorporating the PMR means the following

constraint is placed on the network: genetic variants are always the parents of genes. By including the

PMR we are able to uniquely infer the direction of more edges in the network because the PMR breaks
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up the Markov equivalence classes of a graph. When using the PMR directed edges represent a statistical

relationship between genes. These edges can also imply the causal or regulatory relationship among genes,

but a directed edge does not guarantee a causal relationship and care should be taken when interpreting

directed edges as causal effects [18].

Two graphs are Markov equivalent [82] if they represent the same conditional independence structure.

Multiple Markov equivalent graphs form a Markov equivalence class. For example, the graph X → Y → Z

has two other Markov equivalent graphs X ← Y → Z and X ← Y ← Z. Due to Markov equivalence

network inference methods are unable to distinguish between these three graphs and are, therefore, unable

to determine the true direction of the edges. If, however, X was restricted to be the parent of Y the

graph X → Y → Z has no other Markov equivalent graphs and, with this restriction in place, network

inference methods can determine the true direction of the Y − Z edge.

We include an additional restriction in the network that involves clinical phenotype variables. We use

the assumption that a clinical phenotype is influenced by genetic variants and genes. In other words, the

clinical phenotypes are restricted to always being the children of genetic variants and genes. Both the

PMR and clinical phenotype assumptions reduce the space of DAGs searched by BGRN.

When including edges between two genetic variant nodes we assume there is no regulatory relationship

among them. However, in the Metropolis-Hastings algorithm a directed edge will always be proposed

between the two nodes, but the inference should reflect the Markov equivalence between the nodes with

the two directions being equally likely.

3.2.3 Metropolis-Hastings algorithm

Here we demonstrate how the additional node types and assumptions affect the Metropolis-Hastings

algorithm we developed previously [60]. The key steps from the original algorithm remain the same.

However, while the input and main steps of the algorithm are the same, there are several differences

which allow for the PMR and clinical phenotype assumptions to be incorporated into BGRN. First, we

include additional steps in the Metropolis-Hastings algorithm when using the biological assumptions to

ensure the edges between the different variable (or node) types are oriented in the correct direction. Line

1 of Algorithm 2 ensures that all edges from the genetic variant nodes are oriented so the genetic variant

is the parent of all other variable types. This step also checks that the clinical phenotype variables are

not the parents of any other variable types. If any edges violate these restrictions the direction of these

edges is reversed. The same procedure of checking for and correcting edge directions occurs again on

Line 4 of Algorithm 2. After this point we do not need to check for violations of the PMR or clinical

phenotype assumptions because the edges involving the genetic variant or clinical phenotype nodes are
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not changed again until the next iteration of the algorithm. For example, the graph proposed at Line 6 in

Algorithm 2, after directed cycles have been removed, cannot have a genetic variant or clinical phenotype

edge oriented in the wrong direction because cycles can only occur among variables of the same type

(e.g., gene expression variables).

Algorithm 2: BGRN

input : Data matrix, candidate graph, and prior on edge states
output: Posterior probability of edge states for each edge considered

1 Randomly generate a starting graph S(1) from the candidate graph;
2 Check for and correct any violations of the PMR and clinical phenotype assumptions in S(1);
3 for i← 2 to M do
4 Generate a proposal graph S′(t) from the current graph S(t−1);

5 Check for and correct any violations of the PMR and clinical phenotype assumptions in S′(t);

6 Check for and remove directed cycles in S′(t);

7 Calculate the acceptance probability

α(t) = min

{
Pr(S′

(t)
) Pr(T | S′

(t)
,θ(t)) Pr(S(t−1) | S

′
(t)

)

Pr(S(t−1)) Pr(T | S(t−1),θ(t−1)) Pr(S′
(t)
| S(t−1))

, 1

}
;

8 Generate u from Uniform(0, 1);
9 if u < α(t) then

10 S(t) = S′(t);

11 else
12 S(t) = S(t−1);
13 end

14 end

The steps added to Algorithm 2 which carry out the PMR and clinical phenotype assumptions do not

affect the transition probability and acceptance ratio calculations. These calculations are not affected

because they only depend on the current and proposed graphs and the additional steps that enforce these

assumptions occur as a part of generating a starting (Line 1) and proposal (Line 4) graph. Therefore, a

graph is never proposed, or accepted, with an edge oriented in a way that violates the PMR and clinical

phenotype assumptions.

We also change how the log likelihood of the network is calculated to account for the distributions of

the two discrete variable types. We assume the genetic variant nodes follow a multinomial distribution

(Equation 3.1) and we use ordinal logistic regression [62] when calculating the likelihood of a genetic vari-

ant that has one or more parents. We assume the clinical phenotype nodes follow a binomial distribution

(Equation 3.5) and we use logistic regression to calculate the log likelihood when a clinical phenotype

has one or more parents.
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3.3 Simulation study

3.3.1 Data simulation

We simulated data under two main scenarios: graphs without confounding variables and graphs with

confounding variables. The simulations without confounding variables can be further broken down into

two different studies. We refer to these two simulation studies as PMR and clinical phenotype.

For the PMR simulations we consider seven different topologies (Figure 3.1) which have different

numbers of nodes, edges, and v structures. Topologies M1, M2 (a v structure), M3, and M4 are the

building blocks of larger more complex graphs. We use these graphs to test the ability of BGRN to

correctly identify edge directions in simple graphs. The multi-parent graph is made up of multiple v

structures which other network inference algorithms struggle in correctly identifying the direction of all

the edges [4]. The star and layer topologies are made up of multiple M1 models and represent common

structures found in biological systems [1]. We simulated data with a sample size of 50, 200, and 500 with

signal strength values of 0.2, 0.5, and 1. These simulations demonstrate how BGRN can use the PMR to

uniquely infer the direction of more edges in the network.

(a) M1

U

T1 T2

(b) M2

U

T1 T2

(c) M3

U

T1 T2

(d) M4

U

T1 T2

(e) Multi-parent

U T1 T2

T3

(f) Star

U

T1

T2 T3 T4 T5

(g) Layer

U

T1 T2 T3

T4 T5 T6 T7

Figure 3.1: Seven topologies used in the PMR simulation studies. In these topologies the U
nodes represent genetic variants and the T nodes represent gene expression. (a)-(d) Small graphs that
are the building blocks of larger networks. M2 is also known as a v structure. (e) This topology is made
up of multiple v structures. (f)-(g) Larger topologies that are made up of multiple M1 subgraphs.

For the confounding variable simulations we consider four topologies (Figure 3.2) with three different

types of confounding variables: common parent, common child, and intermediate (Figure 3.2). We

simulated data with a sample size of 200, 500, and 1500. We also used the signal strength values of 0.2,

0.5, and 1 between the non-confounding variables. We used a signal strength of 0.2 for all edges between

a confounding and non-confounding variable, even when the signal strength between the non-confounding
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variables is 0.5 or 1. For topologies M1, M2, and M3 we simulated data for graphs with 2, 5, and 10

confounding variables between nodes T1 and T2. For the layer topology we simulated data for graphs

with two confounding variables one between nodes T1 and T5 and another between nodes T2 and T6. We

chose these two edges because from simulations without confounding variables these two edges had the

lowest and highest eMSE (Equation 2.26) respectively. We only simulated data with the common parent

and intermediate confounding variables for the layer topology.

M1 M2 M3 Layer

Common parent

U

T1 T2

CCC

U

T1 T2

CCC

U

T1 T2

CCC

U

T1 T2 T3

T4 T5 T6 T7

C1 C2

Common child

U

T1 T2

CCC

U

T1 T2

CCC

U

T1 T2

CCC

Intermediate

U

T1 T2

CCC

U

T1 T2

CCC

U

T1 T2

CCC

U

T1 T2 T3

T4 T5 T6 T7

C1 C2

Figure 3.2: Four topologies and three confounding variable types used in simulation studies.
In these topologies the U nodes represent genetic variants, the T nodes represent gene expression, and
the C nodes represent confounding variables. In graphs M1-M3 C represents a vector of confounding
variables.

For the clinical phenotype simulations we simulated data for a wide range of topologies. We generated

data with sample sizes of 500, 1,000, and 2,000 and signal strength values of 0.2, 0.5, 1, 1.2, and 1.5.

For the same topology we also varied the number of true parents of the clinical phenotype and varied

which gene expression variables were the true parents. The signal strength for the edges to the clinical

phenotype is the same as the signal strength between the genetic variant and gene expression variables

for the values 0.2, 0.5, and 1. However, when the signal strength between the genetic variant and gene

expression variables is either 1.2 or 1.5 the signal strength for the edges to the clinical phenotype is fixed
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at 1.

For all simulation studies we generated data for genetic variants under a multinomial distribution

(Equation 3.1) with three levels where (p1, p2, p3) = (0.3025, 0.4950, 0.2025). We generated data under a

normal distribution with the mean following a linear model (Equation 3.3) for the gene expression and

confounding variables. We generated data under a Bernoulli distribution with the log odds following a

linear model (Equation 3.5) for the clinical phenotype. For both the normal and Bernoulli distributed

variables if the node does not have any parents, then the linear model is reduced to the intercept β0. For

simplicity, we set the variance to one for all normally distributed variables. The intercepts are set to zero

for all linear models, and all other βs take the same value. We refer to the β coefficients of the parents

as the signal strength. For all topologies in the three simulation scenarios we simulated 25 independent

data sets for each combination of topology, signal strength, and sample size.

3.3.2 Identifying causal relationships using the principle of Mendelian

randomization

For each topology, we ran BGRN once per simulated data set, used a burn-in of 20%, and used the

prior (p0, p1, p2) = (0.05, 0.05, 0.9) on edge states. For the M1, M2, M3, M4, and multi-parent topologies

(Figure 3.1a-e) we ran BGRN for 30,000 iterations and a step size of 120. For the layer and star topologies

(Figure 3.1f-g) we ran BGRN for 75,000 iterations with a step size of 300.

For this simulation study we calculate precision, power, and MSE1 (see Section 2.3.2) to measure

inference accuracy. We use the cutoff of 0.4 for edge presence when calculating precision and power.

Precision is one nearly for the M1, M2, M3, and multi-parent topologies for all three sample sizes when

the signal strength is 1. For the star and layer topologies, which are made up of multiple M1 models,

precision is close to one for all three sample sizes when the signal strength is 1 and when the signal

strength is lower (0.2 or 0.5) precision is also close to one for a large sample size but decreases as the

sample size decreases. Power is near one for all topologies and all sample sizes when the signal strength

is 0.5 and 1. These results show that BGRN correctly identifies the true edges the majority of the time

when the signal strength is high or when the sample size is large but it tends to infer some false edges as

present, for larger topologies, under these circumstances.

We also assess the performance of BGRN with MSE1. We use the cutoff of MSE1 < 0.1 to indicate

accurate inference (see [60] for more details). Overall, both the sample size N and signal strength β play

a role in how well BGRN performs as MSE1 decreases as both N and β increase (Table 3.1). Even for

a sample size of only 50 MSE1 < 0.1 for a strong signal for all seven topologies. For a moderate signal

(β = 0.5), MSE1 falls below the 0.1 cutoff for the larger sample sizes. However, for a moderate signal
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strength and a sample size of 50, MSE1 is above the cutoff or just below it. Therefore, a strong signal is

needed for very small sample sizes for the inference to be accurate.
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Figure 3.3: Boxplots of precision and power for BGRN. For each topology we simulated 25
independent data sets for each combination of signal strength and sample size. A fully connected graph
was used as the input to BGRN. We considered an edge present if the posterior probability for edge
presence (the sum of the two directions) was greater than 0.4.
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Table 3.1: The mean and standard deviation of MSE1 (Equation 2.27) for all topologies in
the PMR simulation study. For each combination of topology, sample size, and signal strength we
simulated 25 data sets and ran BGRN once per data set. We used a fully connected graph as the input
to BGRN.

MSE1

β = 0.2 β = 0.5 β = 1

Topology N mean sd mean sd mean sd

M1 50 0.2773 0.2162 0.1248 0.1441 0.0687 0.12
200 0.1869 0.1748 0.0401 0.0716 0.0296 0.0466
500 0.0911 0.109 0.0323 0.0706 0.029 0.0634

M2 50 0.2608 0.2133 0.1282 0.1418 0.0471 0.0657
200 0.1398 0.1429 0.0364 0.0587 0.0202 0.0433
500 0.0579 0.0755 0.0338 0.0781 0.0153 0.0238

M3 50 0.2526 0.2212 0.1463 0.1752 0.0157 0.0452
200 0.1842 0.2034 0.0096 0.0339 0.0035 0.0071
500 0.047 0.1076 0.0055 0.0151 0.0122 0.048

M4 50 0.3241 0.1708 0.1333 0.1527 0.0597 0.103
200 0.1874 0.1823 0.0117 0.0269 4e-04 9e-04
500 0.0421 0.0966 2e-04 7e-04 3e-04 9e-04

Multi-parent 50 0.2355 0.2254 0.0936 0.1257 0.0319 0.0738
200 0.1484 0.1596 0.0265 0.0488 0.0084 0.0296
500 0.0715 0.0862 0.0249 0.0563 0.0175 0.0518

Star 50 0.1568 0.2082 0.0858 0.1324 0.0291 0.0612
200 0.0992 0.1489 0.0246 0.0431 0.0215 0.0391
500 0.0569 0.0901 0.0245 0.0524 0.0251 0.0582

Layer 50 0.134 0.1981 0.0717 0.1254 0.0379 0.0751
200 0.0898 0.1389 0.0319 0.0676 0.0213 0.0445
500 0.0478 0.08 0.0218 0.0503 0.0217 0.0515

3.3.3 Estimating posterior probabilities in the presence of confounding

variables

For each topology, we ran BGRN once per simulated data set, used a burn-in of 20%, and used

the prior (p0, p1, p2) = (0.05, 0.05, 0.9) on edge states. For the M1, M2, and M3 topologies (Figure 3.2

columns 1-3) we ran BGRN for 30,000 iterations and a step size of 120. For the layer topology (Figure

3.1, 4th column) we ran BGRN for 50,000 iterations with a step size of 200. For topologies M1 and M2

we used the true edges and a fully connected graph as the input. For the layer topology we also used

two different inputs to BGRN: the true edges and a fully connected graph between the non-confounding

variables in addition to the true edges involving the confounding variables. For topology M3 we only

used the fully connected graph as the input as we wanted to test how confounding variables affected the
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inference when an edge is not present between two nodes. When there are either 5 or 10 confounding

variables in topologies M1, M2, and M3 we performed a principal component analysis (PCA) on the

confounding variables. After performing the PCA we kept the top two principal components (PCs) and

included them in the network as confounding variables. The amount of variation for the top two PCs for

each type of confounding variable is shown in Table 3.3. We used the same inputs for topologies M1-M3

with 5 and 10 confounding variables as with two confounding variables.

We assess the performance of BGRN with the eMSE (see Section 2.3.2 for details) on the edges

between the nodes where confounding variables are present (e.g., the T1−T2 edge in topologies M1-M3).

We do not use the whole graph MSE as a measure of inference accuracy as we are most interested in

how the presence of confounding variables affect the inference of the edges where confounding variables

are present. In addition, previous simulation studies (for example, the previous section using the PMR)

have shown that inference accuracy is generally low when the signal strength is 0.2 which is the signal

strength used for confounding variables. Therefore, we expect the eMSE for the confounding variable

edges to be high. For all topologies, sample sizes, and number of confounders the eMSE for the edges

where confounding variables are present (e.g., the T1−T2 edge in topologies M1-M3) is zero or near zero

when the true edges are the input and the signal strength is 1 (Tables 3.4 and 3.5). The majority of the

time the eMSE falls below the 0.1 cutoff when the signal strength is 0.5. However, there are a few cases,

usually when the number of confounders is 10, that the eMSE is much higher than this cutoff (Table 3.4).

When a fully connected graph is used as input the type of confounding variable greatly affects inference

accuracy (Table 3.2). For example, when common parent confounding variables are present in topologies

M1 and M2 the posterior for edge presence for the U − T2 edge increases as the sample size increases.

When this edge is inferred present, the T1 − T2 edge is inferred in the opposite direction of the true

direction with a high posterior probability. The T2 − T6 edge in the layer topology also suffers from this

effect at larger sample sizes in the presence of common parent and intermediate confounding variables

(Table 3.2). In this topology the U − T6 edge is inferred present and the direction of the T2 − T6 edge is

inferred in the opposite direction from the true direction.

Overall the T1 − T2 edge is largely unaffected by confounding variables for topology M3 when 2

confounding variables are present (Table 3.2). However, in the presence of common parent confounding

variables this edge is often inferred as present when there are 5 or 10 confounding variables in the network

(Table 3.6). These results show that unless the signal strength is lower or the number of confounding

variables is high the presence of confounding variables between two nodes does not cause an edge to

be inferred as present between them. In summary, when a fully connected graph is used as the input

inference accuracy depends on the type of confounding variable present (Table 3.2). On the other hand,
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the type of confounding variable does not affect inference accuracy, for a strong signal, when the true

edges are used as the input. This is the case even when there are a large number of confounding variables

in the network (Table 3.4).
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Table 3.2: The mean and standard deviation of the eMSE for the T1−T2, T1−T5, and T2−T6
edges with 2 confounding variables. The input to BGRN was a fully connected graph.

eMSE

β = 0.2 β = 0.5 β = 1

Topology Type CV N edge mean sd mean sd mean sd

M1 Common parent 200 T1-T2 0.2547 0.1157 0.1409 0.1391 0.1157 0.1157
500 T1-T2 0.2149 0.096 0.105 0.1396 0.4045 0.2161
1500 T1-T2 0.0944 0.1222 0.0434 0.0615 0.5918 0.1342

Common child 200 T1-T2 0.3781 0.144 0.0628 0.0899 0.022 0.0312
500 T1-T2 0.2313 0.1351 0.03 0.0564 0.0161 0.0287
1500 T1-T2 0.1174 0.0842 0.0178 0.0296 0.0197 0.0445

Intermediate 200 T1-T2 0.2761 0.1203 0.1751 0.1737 0.0425 0.0696
500 T1-T2 0.2396 0.1145 0.0727 0.1005 0.023 0.034
1500 T1-T2 0.1035 0.1463 0.0251 0.0356 0.0378 0.0499

M2 Common parent 200 T1-T2 0.2543 0.1177 0.1419 0.1569 0.1417 0.1878
500 T1-T2 0.2125 0.1306 0.0845 0.1206 0.2302 0.1618
1500 T1-T2 0.1173 0.0896 0.027 0.0532 0.5116 0.1745

Common child 200 T1-T2 0.4182 0.1588 0.1268 0.1309 0.0303 0.0446
500 T1-T2 0.2756 0.0993 0.0368 0.0535 0.0557 0.0532
1500 T1-T2 0.1709 0.1095 0.0589 0.0586 0.0497 0.0596

Intermediate 200 T1-T2 0.2385 0.1091 0.1782 0.1805 0.0873 0.1389
500 T1-T2 0.1802 0.1196 0.1202 0.1257 0.2752 0.187
1500 T1-T2 0.1167 0.0994 0.0131 0.0446 0.2927 0.2053

M3 Common parent 200 T1-T2 0.0248 0.0459 0.0133 0.017 0.0121 0.0179
500 T1-T2 0.0091 0.019 0.0101 0.0217 0.0356 0.0872
1500 T1-T2 0.0219 0.0405 0.0077 0.008 0.012 0.0111

Common child 200 T1-T2 0.0171 0.0233 0.0112 0.0131 0.0079 0.006
500 T1-T2 0.0224 0.0437 0.0226 0.0619 0.0155 0.0248
1500 T1-T2 0.0547 0.0932 0.0179 0.0244 0.0252 0.0432

Intermediate 200 T1-T2 0.0153 0.021 0.034 0.0865 0.011 0.0135
500 T1-T2 0.0352 0.0748 0.0104 0.0288 0.0316 0.0893
1500 T1-T2 0.0119 0.0156 0.0068 0.0075 0.0221 0.0701

Layer Common parent 200 T1-T5 0.2693 0.1392 0.0257 0.0493 3e-04 8e-04
T2-T6 0.2362 0.0872 0.0962 0.1675 0.0837 0.1822

500 T1-T5 0.1377 0.1424 0.0051 0.019 0.0332 0.0747
T2-T6 0.1545 0.2351 0.0705 0.186 0.1862 0.2724

1500 T1-T5 0.113 0.1289 3e-04 0.0012 0.015 0.0365
T2-T6 0.2933 0.3377 0.2933 0.3377 0.2588 0.3196

Intermediate 200 T1-T5 0.2436 0.1458 0.0265 0.0588 0.0047 0.0173
T2-T6 0.2506 0.1279 0.0816 0.1028 0.1119 0.2312

500 T1-T5 0.1669 0.1365 0.0075 0.0181 9e-04 0.0035
T2-T6 0.23 0.2463 0.2415 0.3101 0.1203 0.2489

1500 T1-T5 0.0526 0.0598 0 1e-04 0 0
T2-T6 0.32 0.3399 0.2667 0.3333 0.2133 0.3174
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Table 3.3: The average percent of variation explained by the top two PCs for networks with
5 or 10 confounding variables.

Percent variation of top 2 PCs

β = 0.2 β = 0.5 β = 1

Topology Type CV N # CV mean sd mean sd mean sd

M1 Common parent 200 5 0.4687 0.0133 0.4689 0.0137 0.467 0.0145
10 0.2653 0.0095 0.2693 0.0095 0.2677 0.0074

Common child 5 0.4914 0.0163 0.5184 0.0161 0.5693 0.025
10 0.3169 0.016 0.3372 0.0194 0.4062 0.0188

Intermediate 5 0.4803 0.0179 0.4792 0.014 0.4779 0.0133
10 0.2802 0.0104 0.2848 0.0086 0.2821 0.0103

Common parent 500 5 0.4478 0.0091 0.4438 0.01 0.4441 0.0099
10 0.2414 0.0053 0.2419 0.005 0.242 0.0056

Common child 5 0.4795 0.0081 0.4966 0.0116 0.5499 0.0151
10 0.2945 0.0105 0.3225 0.0086 0.3978 0.0121

Intermediate 5 0.4527 0.0113 0.4523 0.0074 0.4617 0.0115
10 0.2568 0.0082 0.2632 0.0067 0.2702 0.0072

M2 Common parent 200 5 0.4666 0.0168 0.4689 0.0192 0.4713 0.0127
10 0.2711 0.007 0.2656 0.0072 0.2672 0.0102

Common child 5 0.4956 0.0181 0.5127 0.0194 0.5459 0.0201
10 0.3102 0.0126 0.3344 0.0166 0.3757 0.0149

Intermediate 5 0.4757 0.0169 0.478 0.0217 0.4787 0.0113
10 0.2763 0.0109 0.2795 0.011 0.2813 0.0134

Common parent 500 5 0.4441 0.0097 0.4389 0.0077 0.445 0.0088
10 0.2412 0.006 0.2423 0.0046 0.2438 0.0069

Common child 5 0.4783 0.0109 0.4976 0.0093 0.526 0.0145
10 0.2968 0.01 0.3195 0.0122 0.3643 0.0114

Intermediate 5 0.4554 0.0088 0.4518 0.0091 0.4522 0.0118
10 0.2576 0.0066 0.2576 0.0075 0.2595 0.0093

M3 Common parent 200 5 0.4682 0.0145 0.4653 0.0113 0.463 0.0126
10 0.2704 0.0083 0.2665 0.01 0.2724 0.0087

Common child 5 0.4905 0.0176 0.5017 0.0224 0.5168 0.0213
10 0.3028 0.0128 0.3129 0.014 0.3515 0.0158

Intermediate 5 0.4737 0.0146 0.4832 0.0156 0.4798 0.0155
10 0.2806 0.0114 0.2799 0.0115 0.2878 0.0118

Common parent 500 5 0.4402 0.009 0.438 0.0094 0.4424 0.0097
10 0.2425 0.005 0.2414 0.0042 0.2424 0.0059

Common child 5 0.4714 0.0094 0.4784 0.0111 0.5056 0.0112
10 0.2875 0.0084 0.2968 0.0074 0.3328 0.014

Intermediate 5 0.4526 0.0092 0.4548 0.0124 0.4604 0.0097
10 0.262 0.0076 0.2598 0.0057 0.2694 0.0079
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Table 3.4: The mean and standard deviation of the eMSE for the T1 − T2 edge in topologies
M1 and M2. The true edges were used as the input to BGRN.

eMSE for the T1 − T2 edge

β = 0.2 β = 0.5 β = 1

Topology Type CV N # CV mean sd mean sd mean sd

M1 Common parent 200 2 0.2299 0.1208 0.1195 0.1771 0 0
5 0.1809 0.072 0.0793 0.137 0 0
10 0.2359 0.1124 0.194 0.2279 0.0051 0.0241

500 2 0.2008 0.0878 0.0433 0.1407 0 0
5 0.1575 0.0864 0.1218 0.1948 0 0
10 0.2291 0.147 0.0308 0.0638 0 0

Common child 200 2 0.3883 0.1499 0.037 0.1022 0 0
5 0.5177 0.0728 0.0833 0.1241 0 0
10 0.4287 0.1583 0.4027 0.1573 0 0

500 2 0.2306 0.158 0.0063 0.0259 0 0
5 0.4966 0.0677 0.0235 0.0825 0 0
10 0.1827 0.1512 0.2805 0.228 0 0

intermediate 200 2 0.258 0.1208 0.1563 0.2133 0 0
5 0.1895 0.1441 0.0766 0.1377 0 0
10 0.2305 0.1157 0.0321 0.0891 0.0012 0.0062

500 2 0.2091 0.1278 0.0367 0.1044 0 0
5 0.1218 0.1326 0.0011 0.0053 0 0
10 0.1128 0.1365 1e-04 5e-04 0 0

M2 Common parent 200 2 0.2571 0.1362 0.0987 0.1786 0.0019 0.0094
5 0.1699 0.0991 0.0506 0.0978 0 0
10 0.1509 0.0602 0.0751 0.1523 0 0

500 2 0.2062 0.1579 0.0394 0.124 0 0
5 0.1611 0.1035 0.0374 0.1275 0 0
10 0.1392 0.1061 0.0058 0.0288 0 0

Common child 200 2 0.4158 0.1586 0.1009 0.1534 0 0
5 0.5474 0.0457 0.1174 0.1786 0 0
10 0.4077 0.1117 0.3324 0.2017 0 0

500 2 0.2434 0.1206 0.0118 0.0378 0 0
5 0.5287 0.0765 0.035 0.0716 0 0
10 0.2341 0.1118 0.0758 0.1386 0 0

Intermediate 200 2 0.2386 0.1091 0.1702 0.2147 0 0
5 0.2647 0.1371 0.1343 0.212 1e-04 4e-04
10 0.157 0.0911 0.0965 0.1673 0 1e-04

500 2 0.1889 0.1297 0.0286 0.0665 0 0
5 0.1237 0.1045 0.0409 0.1368 0 0
10 0.1292 0.0845 0.0153 0.0414 0 0



73

Table 3.5: The mean and standard deviation of the eMSE for the T1 − T5 and T2 − T6 edges
from the layer topology. The true edges were used as input to BGRN.

eMSE

β = 0.2 β = 0.5 β = 1

Topology Type CV N edge mean sd mean sd mean sd

Layer Common parent 200 T1-T5 0.2632 0.1408 0.0128 0.0437 0 0
T2-T6 0.1757 0.0723 0.0574 0.101 0 0

500 T1-T5 0.1191 0.1379 0 0 0 0
T2-T6 0.2403 0.2633 0.0096 0.041 0 0

Intermediate 200 T1-T5 0.2435 0.149 0.0264 0.0874 0 0
T2-T6 0.2096 0.1001 0.0846 0.1113 0 0

500 T1-T5 0.1323 0.1201 0.0027 0.0124 0 0
T2-T6 0.2226 0.2229 0.1302 0.2662 0 0

Table 3.6: The mean and standard deviation of the eMSE for the T1 − T2 edge in topology
M3. The input to BGRN was a fully connected graph.

eMSE

β = 0.2 β = 0.5 β = 1

Topology Type CV N # CV mean sd mean sd mean sd

M3 Common parent 200 2 0.0248 0.0459 0.0133 0.017 0.0121 0.0179
5 0.1102 0.1236 0.1154 0.1398 0.1397 0.1697
10 0.4177 0.1684 0.3978 0.1691 0.2591 0.1805

500 2 0.0091 0.019 0.0101 0.0217 0.0356 0.0872
5 0.2607 0.2106 0.2342 0.2098 0.2774 0.2344
10 0.4858 0.0984 0.5041 0.0266 0.4876 0.06

Common child 200 2 0.0171 0.0233 0.0112 0.0131 0.0079 0.006
5 0.0402 0.0463 0.0179 0.0202 0.034 0.0462
10 0.0914 0.1455 0.0662 0.0705 0.0589 0.0999

500 2 0.0224 0.0437 0.0226 0.0619 0.0155 0.0248
5 0.0586 0.0425 0.015 0.0125 0.0372 0.0636
10 0.0779 0.1201 0.0211 0.0297 0.0211 0.0233

Intermediate 200 2 0.0153 0.021 0.034 0.0865 0.011 0.0135
5 0.0968 0.146 0.0303 0.0507 0.0233 0.0733
10 0.1223 0.1826 0.1279 0.1721 0.0202 0.0338

500 2 0.0352 0.0748 0.0104 0.0288 0.0316 0.0893
5 0.043 0.0804 0.0135 0.0209 0.025 0.053
10 0.0737 0.13 0.0441 0.0894 0.0334 0.099
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3.3.4 Genes causal to a single clinical phenotype

For the clinical phenotype simulations we ran BGRN with two different inputs for each topology. For

the first input, we used the true edges for the inner graph (the edges of the genetic variants and genes)

and all of the edges to the clinical phenotype. For the second input, we only considered all possible edges

to the clinical phenotype. We refer to the second input as the multi-parent input. When we used the

multi-parent input to BGRN we ran it for 20,000 iterations with a step size of 32 (unless stated otherwise).

Table 3.7 shows the number of iterations and the step size for each size of topology considered when the

true edges plus all the edges to the clinical phenotype were used as the input.

Table 3.7: The number of MCMC iterations and step size according to the number of nodes
in the network.

# nodes Iterations Step size

5-6 20,000 32
7-8 50,000 80
9-10 75,000 120
13 100,000 160

In the following simulation studies, we focus on networks with one clinical phenotype node. We explore

the effect of topology on identifying trait related genes. We examine how the number of true edges and

the correlation among genes affect the inference of trait related genes. We demonstrate the difficulty in

choosing an appropriate prior when dealing with densely connected networks. We also compare BGRN

with the widely used variable selection method Least Absolute Shrinkage and Selection Operator (LASSO)

on networks with a high correlation among genes.

3.3.4.1 Effect of topology on identifying trait related genes

The inference of the clinical phenotype (i.e., W ) edges is unaffected by other edges in the network. In

other words, if all possible edges for a given topology are considered in the inference or if only the edges

to W are considered, the posterior probabilities for the W edges will be nearly identical between the two

analyses. This is due to two factors. First, we place a constraint on the network such that the clinical

phenotype is always the child of other variable types. Second, the likelihood of a network can be written

as a product of conditional probabilities [74, 40] where each node is conditioned on its parents:

Pr(X | S,θ) =

b∏
j=1

Pr(Xj | pa(Xj),θj), (3.6)
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where pa(Xj) are the parents of Xj . Therefore, the likelihood for the clinical phenotype is the highest,

given a sufficient signal in the data, when all of the true edges to W are present and the clinical phenotype

will contribute the same amount to the likelihood of the entire graph no matter which input is used. This

is the case regardless of which other edges are included in the inference. Table 3.8 shows the average

difference in the posterior probability for each edge between the two inputs when the sample size is 500.

The average difference is calculated across the three edge states for each clinical phenotype edge. The

largest difference between posterior probabilities for the two inputs is near 0.05 and many of the differences

are near zero (Table 3.8 and Figure 3.8) across all three signal strength values. Such a small difference

between the posterior probabilities of the two inputs shows that, because of the constraint placed on

the clinical phenotype node, the addition of other edges in the input does not affect the inference of the

clinical phenotype edges. Therefore, when the clinical phenotype edges are the focus of the inference the

input does not need to include the edges in the inner graph (i.e., edges between other variable types)

which greatly reduces the search space and runtime.
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Table 3.8: The average posterior probability difference for the W edges. The difference is
calculated from the posterior probability for each W edge between the two inputs to BGRN. The rows
in gray indicate true edges.

Posterior Probability Difference

β = 0.2 β = 0.5 β = 1

Topology Edge mean sd mean sd mean sd

U-W 0.0135 0.0134 0.0075 0.0128 6e-04 0.0022
T1-W 0.0144 0.0152 0.0011 0.0018 0 0
T2-W 0.0095 0.0085 0.0015 0.0041 0 0

U T1 T2

T3 W

T3-W 0.0101 0.0069 0.0109 0.0082 0.0089 0.008

U-W 0.0142 0.0117 0.0079 0.0087 0.0101 0.0086
T1-W 0.0086 0.0063 0.0121 0.0106 0.0115 0.0082
T2-W 0.0136 0.0107 0.0126 0.0102 0.0111 0.0065
T3-W 0.0122 0.0115 0.0043 0.0061 0.0052 0.007
T4-W 0.0141 0.0096 0.0141 0.0089 0.0142 0.0094
T5-W 0.0094 0.0106 7e-04 0.0015 6e-04 0.002
T6-W 0.0114 0.0065 0.0097 0.0082 0.0126 0.0104

U

T1 T2 T3

T4 T5 T6 T7

W

T7-W 0.0092 0.0086 0.0033 0.005 5e-04 0.0015

U-W 0.0111 0.0103 0.0105 0.0106 0.0125 0.0107
T1-W 0.0123 0.0082 0.0024 0.0059 0.002 0.0039
T2-W 0.0126 0.0085 0.0089 0.0059 0.013 0.0106
T3-W 0.011 0.0081 0.0106 0.0076 0.0096 0.0085
T4-W 0.0117 0.0091 1e-04 3e-04 0 0
T5-W 0.009 0.0083 6e-04 0.002 1e-04 3e-04

U

T1 T2

T3 T4

T5 T6

W

T6-W 0.0086 0.006 0.0118 0.0078 0.0127 0.0112

U-W 0.0154 0.011 0.0159 0.0102 0.0106 0.0075
T1-W 0.013 0.0119 0.0058 0.0076 0.0089 0.009
T2-W 0.0113 0.0075 0.0175 0.0133 0.0142 0.0094
T3-W 0.0157 0.016 0.0014 0.0034 1e-04 4e-04
T4-W 0.0124 0.0106 0.0109 0.0067 0.0101 0.0074
T5-W 0.0146 0.0097 0.0029 0.0047 0.0091 0.008
T6-W 0.0124 0.0104 0.0116 0.0095 0.0115 0.0086
T7-W 0.0104 0.0083 0.0011 0.0032 4e-04 9e-04

U T1

T2 T3

T4

T5 T6

T7T8

W

T8-W 0.0139 0.0106 0.0119 0.0097 0.0119 0.0098

U1-W 0.0129 0.0093 0.0116 0.0104 0.0135 0.009
U2-W 0.0108 0.0085 0.0115 0.0094 0.0143 0.0128
U3-W 0.0145 0.0136 0.0117 0.0132 0.0108 0.0097
U4-W 0.0084 0.0069 0.0086 0.0085 0.0094 0.0064
U5-W 0.0158 0.0097 0.0105 0.0068 0.0099 0.0069
T1-W 0.0121 0.0086 0.0119 0.0065 0.0156 0.0114
T2-W 0.0149 0.0145 0.0012 0.0018 6e-04 0.0022
T3-W 0.0154 0.0117 0.0089 0.0087 0.0113 0.0105
T4-W 0.0128 0.0114 0.0025 0.0056 0.0014 0.0041
T5-W 0.0151 0.0145 0.0012 0.0028 0.0012 0.0026
T6-W 0.0114 0.0112 0.0125 0.0094 0.0099 0.0078
T7-W 0.0149 0.0093 0.0113 0.008 0.0121 0.0092

U1

U2U3

U4

U5

T1

T2T3

T4

T5

T6T7

T8

W

T8-W 0.014 0.0087 0.0155 0.0114 0.0135 0.0107
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Topology

U

T1

T2 T3 T4 T5

W

Posterior Probability Difference

β = 0.2 β = 0.5 β = 1

Edge mean sd mean sd mean sd

U-W 0.0121 0.0101 0.0091 0.0081 0.0118 0.0088
T1-W 0.0178 0.0156 0.0025 0.0029 0.0084 0.0108
T2-W 0.0141 0.0135 0.002 0.0036 1e-04 4e-04
T3-W 0.0104 0.0076 0.0105 0.008 0.013 0.0076
T4-W 0.0112 0.0096 0.0013 0.0032 0 0
T5-W 0.0122 0.0094 0.0101 0.0074 0.0119 0.0106

U

T1

T2

T3

T4

W

Posterior Probability Difference

β = 0.2 β = 0.5 β = 1

Edge mean sd mean sd mean sd

U-W 0.0125 0.0083 0.0117 0.0099 0.0129 0.0097
T1-W 0.0121 0.0106 0.0022 0.003 0.0067 0.0084
T2-W 0.0091 0.0073 0.0025 0.0032 0.0054 0.0076
T3-W 0.0074 0.0076 0.0083 0.0144 0.0045 0.0079
T4-W 0.012 0.0099 0.0019 0.0049 5e-04 9e-04

U

T1

T2

T3

T4

W

Posterior Probability Difference

β = 0.2 β = 0.5 β = 1

Edge mean sd mean sd mean sd

U-W 0.0116 0.0116 0.0119 0.0098 0.0157 0.0139
T1-W 0.0108 0.0114 0.0095 0.0129 0.0099 0.0118
T2-W 0.0103 0.0117 0.0058 0.008 0.0082 0.0091
T3-W 0.0131 0.0115 0.0036 0.0086 0.0098 0.0117
T4-W 0.0147 0.0102 0.003 0.0074 0.0033 0.0052

Figure 3.4: The average posterior probability difference for the W edges. The difference is
calculated between the posterior probability of the three edge states for each W edge when the input
contains the edges in the inner graph in addition to all the W edges and when the input contains just the
edges to W . The difference between the posterior for each edge is then averaged across the three edge
states. The average difference for each edge is then averaged across the 25 data sets simulated for each
combination of topology, signal strength, and a sample size of 500. The topologies shown on the left are
the graphs used to generate the data. The rows in gray indicate the true edges.

3.3.4.2 Effect of correlation and number of parents on identifying trait

related genes

Here we use the edgewise power to measure the inference accuracy for specific edges in the network.

The edgewise power is calculated across the inferred network from multiple independent data sets from
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the same topology and is defined by:

Edgewise power =
# of times edge is inferred

# of independent data sets
. (3.7)

When calculating the edgewise power, we use 0.4 as the cutoff for edge presence (unless otherwise stated).

We consider the correlation to be low if all the correlations are in the 0.70s or lower and we consider the

correlation to be high if all the correlations are in the 0.70s or higher. In this section when we refer to

the correlation we only consider the correlation among the true parents of the clinical phenotype. For

this simulation study we also take into account the number of parents the clinical phenotype has. For

example, we consider the clinical phenotype to have few parents if it has less than four true parents. We

consider the clinical phenotype to have many parents if it has more than four true parents.

BGRN can accurately identify trait related genes for both low and high correlation values depending

on the number of true parents the trait has. The edgewise power for the true edges is near one when

the correlation is low among the true parents of the trait (Figures 3.5 - 3.6). This is true whether or

not the trait has few or many true parents. In addition, the edgewise power for most of the false edges

is near zero (Figures 3.5 - 3.6). On the other hand, when the correlation is high inference accuracy

depends on the number of true parents the trait has. For example, when the trait only has a few true

parents the edgewise power is near one for the true edges and near zero for the false edges (Figure 3.7).

However, when the signal strength is 1.5 for the chain 3 topology the edgewise power for some true edges

is much lower (Figure 3.7). As the number of true parents increases the edgewise power for the true edges

decreases (Figure 3.8). In summary, BGRN can correctly identify trait related genes when the correlation

among them is low, but when the correlation among the trait related genes is high the performance of

BGRN depends on the number of true parents the trait has.
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Topology Edgewise power Correlation of true parents

Feed
forward
loop 4

U

T1

T2

T3

W

Edge β = 0.5

U-W 0.04
T1-W 1
T2-W 1
T3-W 1

0.00
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0.50

0.75
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GN6
U

T1 T2

T3 T4

T5 T6

W

Edge β = 0.5 β = 1

U-W 0.08 0
T1-W 1 1
T2-W 0 0.04
T3-W 0.04 0.08
T4-W 1 1
T5-W 1 1
T6-W 0.12 0.08 0.00

0.25

0.50

0.75

1.00

0.5 1

GN8

U T1

T2 T3

T4

T5 T6

T7T8

W

Edge β = 0.5 β = 1

U-W 0 0.04
T1-W 1 0.96
T2-W 0.08 0
T3-W 1 1
T4-W 0 0.08
T5-W 0.04 0.04
T6-W 0.08 0.04
T7-W 1 1
T8-W 0.04 0.12

0.00

0.25

0.50

0.75

1.00

0.5 1

Feed
forward
loop 4

U

T1

T2

T3

T4

W

Edge β = 0.5

U-W 0.12
T1-W 1
T2-W 0.96
T3-W 1
T4-W 1

0.00

0.25

0.50

0.75

1.00

0.5

Figure 3.5: Edgewise power tables and box plots of the correlation between continuous
variables. The topologies in the left column depict the true graphs that generated the data. The middle
column shows the edgewise power for all W edges in the network. Rows for the true edges are highlighted
in gray. The right column shows the box plots for the correlation between the true parents of W .
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Topology Edgewise power Correlation of true parents

Feed
forward
loop 5

U

T1

T2

T3

T4

T5

W

Edge β = 0.5

U-W 0.04
T1-W 0.96
T2-W 0.92
T3-W 0.96
T4-W 1
T5-W 1

0.00

0.25

0.50

0.75

1.00

0.5

Star

U

T1

T2 T3 T4 T5 T6

W

Edge β = 1 β = 1.2

U-W 0.12 0.12
T1-W 0.04 0.16
T2-W 1 1
T3-W 1 1
T4-W 1 0.96
T5-W 1 1
T6-W 1 1 0.00

0.25

0.50

0.75

1.00

1 1.2

GN13

U1

U2U3

U4

U5

T1

T2T3

T4

T5

T6T7

T8

W

Edge β = 0.5 β = 1

U1-W 0 0
U2-W 0.08 0.04
U3-W 0.04 0.08
U4-W 0.12 0.2
U5-W 0.08 0.08
T1-W 0.92 0.96
T2-W 1 1
T3-W 0.12 0.04
T4-W 1 1
T5-W 1 1
T6-W 0.08 0.12
T7-W 0.96 0.88
T8-W 0.08 0.16

−0.25

0.00

0.25

0.50

0.75

1.00

0.5 1

Figure 3.6: Edgewise power tables and box plots of the correlation between continuous
variables. The topologies in the left column depict the true graphs that generated the data. The middle
column shows the edgewise power for all W edges in the network. Rows for the true edges are highlighted
in gray. The right column shows the box plots for the correlation between the true parents of W .
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Topology Edgewise power Correlation of true parents

Feed
forward
loop 3

U

T1

T2

T3

W

Edge β = 1

U-W 0
T1-W 0.96
T2-W 0.96
T3-W 1

0.00

0.25

0.50

0.75

1.00

1

Chain 3

U

T1

T2

T3

W

Edge β = 1.2 β = 1.5

U-W 0 0.08
T1-W 0.96 0.84
T2-W 0.88 0.64
T3-W 1 1

0.00

0.25

0.50

0.75

1.00

1.2 1.5

Figure 3.7: Edgewise power tables and box plots of the correlation between continuous
variables. The topologies in the left column depict the true graphs that generated the data. The middle
column shows the edgewise power for all W edges in the network. Rows for the true edges are highlighted
in gray. The right column shows the box plots for the correlation between the true parents of W .
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Topology Edgewise power Correlation of true parents

Feed
forward
loop 4

U

T1

T2

T3

T4

W

Edge β = 1

U-W 0.04
T1-W 0.84
T2-W 0.76
T3-W 0.92
T4-W 1

0.00
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0.75

1.00
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T1

T2

T3

T4

W

Edge β = 1.2 β = 1.5

U-W 0.04 0.12
T1-W 0.92 0.6
T2-W 0.72 0.72
T3-W 0.88 0.44
T4-W 1 0.96
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Feed
forward
loop 5

U

T1

T2

T3

T4

T5

W

Edge β = 1

U-W 0.04
T1-W 0.68
T2-W 0.68
T3-W 0.84
T4-W 72
T5-W 0.96
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0.75

1.00
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Chain 5

U

T1

T2

T3

T4

T5

W

Edge β = 1.2 β = 1.5

U-W 0.08 0.08
T1-W 0.64 0.4
T2-W 0.76 0.64
T3-W 0.76 0.64
T4-W 0.68 0.56
T5-W 0.88 0.8

0.00
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0.75

1.00

1.2 1.5

Figure 3.8: Edgewise power tables and box plots of the correlation between continuous
variables. The topologies in the left column depict the true graphs that generated the data. The middle
column shows the edgewise power for all W edges in the network. Rows for the true edges are highlighted
in gray. The right column shows the box plots for the correlation between the true parents of W .
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3.3.4.3 Method comparison for identifying trait related genes with high

correlation

We compare BGRN with LASSO on networks with few true trait related genes and high correlation

among all genes in the network. LASSO is widely used as a variable selection tool. However, it is unclear

how it performs in scenarios with high correlation. For this simulation study we generated data under

two main topologies (Figure 3.9) with high correlation among all the genes. In these topologies only two

genes in the network are the true parents of the clinical phenotype. For this analysis we used the version

of LASSO implemented in the glmnet [23] R package.

We focus on the feed forward loop and chain topologies (Table 3.10) which have a high correlation

between the gene expression variables in the inner graph (the non-clinical phenotype variables). To create

a high correlation among the gene expression variables for the chain topologies we increased the signal

strength to 1.2 and 1.5 between the variables in the inner graph. Even though the signal strength is above

one for the inner graph, we keep the signal strength for the parents of the clinical phenotype at one. The

structure of the feed forward loop topologies creates a high correlation among the gene expression nodes

without increasing the signal strength above one, therefore, we use a value of one for the signal strength

for all feed forward loop topologies in this section. For each topology we simulated 25 independent data

sets for each combination of topology and signal strength and used a sample size of 500.

We ran BGRN for 10,000 iterations on each topology with a burn-in of 20% and a step size of 16. We

used the prior of (p1, p2, p3) = (0.05, 0.05, 0.9) and we consider an edge present if the posterior probability

for edge presence is > 0.4. When analyzing the data using LASSO we selected values for the shrinkage

penalty parameter λ using the cross validation function [23]. This function returns two λ values. The

first, λ.min, is the λ value that has the lowest MSE across the cross validation sets. The second, λ.1se,

is the largest λ value that has an MSE within one standard deviation of λ.min and creates a model with

the fewest variables. For models inferred by LASSO we consider an edge present if the β coefficient of the

variable is not zero. For BGRN we only consider the edges from the genetic variant and gene expression

variables to the clinical phenotype node and for LASSO the clinical phenotype is the response variable

with all other variables considered as predictor variables.

We compare the performance of BGRN and LASSO with the edgewise power (Equation 3.7) for all

clinical phenotype edges. For BGRN the edgewise power for the true edges is nearly one in all scenarios

(Table 3.9), one exception is the T2−W edge in the chain topology when the signal strength is 1.5 (Table

3.9). The edgewise power of the true edges for LASSO is one in all scenarios (Table 3.9). On the other

hand, the edgewise power for the false edges is near zero for BGRN. Again, the exception is for the chain
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topology with a signal strength of 1.5 where the edgewise power of the T5 −W edge is 0.32. When using

λ.min from LASSO for variable selection the edgewise power for all the false edges is high (Table 3.9). In

other words, LASSO infers false edges as present most of the time. The edgewise power decreases for the

false edges when the model is inferred with λ.1se, but it can still be high (> 0.5) for some edges. Overall,

BGRN outperforms LASSO in identifying trait related genes when the correlation is high between genes

as LASSO tends to infer far more false edges than BGRN.
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Figure 3.9: Six networks used in method comparison for identifying trait related genes. Both
the feed forward loop and chain topologies have high correlation among the genes.
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Table 3.9: The edgewise power for BGRN and LASSO for the feed forward loop and chain
topologies. The rows highlighted in gray are the true edges.

Edgewise power

T1, T3 T1, T4 T2, T5

LASSO LASSO LASSO

Topology Edge BGRN λ.min λ.1se BGRN λ.min λ.1se BGRN λ.min λ.1se

Feed U-W 0 0.52 0 0.04 0.68 0.12 0.08 0.64 0.16
forward T1-W 0.96 1 1 1 1 1 0.12 0.36 0.12
loop T2-W 0 0.6 0.28 0.08 0.56 0.12 1 1 1

T3-W 1 1 1 0.04 0.52 0.6 0.12 0.44 0.4
T4-W 0.08 0.36 0.16 1 1 1 0.08 0.36 0.4
T5-W 0.04 0.48 0.16 0.04 0.52 0.44 1 1 1

Chain U-W 0.16 0.68 0.16 0.08 0.72 0.16 0 0.72 0.08
β = 1.2 T1-W 1 1 1 1 1 1 0.12 0.52 0.32

T2-W 0.04 0.6 0.4 0.12 0.48 0.28 0.92 1 1
T3-W 1 1 1 0 0.64 0.52 0.12 0.6 0.6
T4-W 0 0.32 0.08 1 1 1 0.04 0.28 0.24
T5-W 0.08 0.36 0.2 0.04 0.6 0.44 1 1 1

Chain U-W 0.04 0.56 0.16 0.04 0.6 0.2 0.04 0.8 0.16
β = 1.5 T1-W 0.92 1 1 0.84 1 1 0.08 0.56 0.44

T2-W 0.12 0.64 0.52 0.16 0.6 0.56 0.68 1 1
T3-W 0.96 1 1 0.08 0.56 0.48 0.08 0.2 0.24
T4-W 0.08 0.44 0.32 0.92 1 1 0.04 0.48 0.48
T5-W 0.16 0.48 0.4 0.32 0.52 0.56 1 1 1

Table 3.10: The Pearson correlation between the continuous variables for the feed forward
loop and chain topologies.

Correlation

Topology Min. 1st Qu. Median Mean 3rd Qu. Max.

Feed forward loop 0.7200 0.8000 0.8500 0.8529 0.9000 0.9600
Chain β = 1.2 0.6500 0.7700 0.8500 0.8461 0.9200 0.9700
Chain β = 1.5 0.8400 0.8800 0.9400 0.9307 0.9800 0.9900

3.3.4.4 Comparison of priors for traits with many parents

In this simulation study we compare the effect of different prior probabilities on inference accuracy

for densely connected networks. We focus on the feed forward loop (FFL) topology where all genes

are the parents of the clinical phenotype. Again, we chose this topology because it produces high cor-

relation among the genes. We compare the inference from four different priors: prior 1 (p1, p2, p3) =

(1/3, 1/3, 1/3), prior 2 (p1, p2, p3) = (0.25, 0.25, 0.5), prior 3 (p1, p2, p3) = (0.2, 0.2, 0.6), and the default
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prior (p1, p2, p3) = (0.05, 0.05, 0.9). For each prior, we ran BGRN once per data set for 10,000 iterations,

used a burn-in of 20%, a step size of 16, and used the multi-parent input which consists of just the

clinical phenotype edges. To assess the performance of the different priors we calculate the edgewise

power (Equation 3.7) and eMSE (see Section 2.3.2). For priors 1-3 we consider an edge present if the

posterior probability of edge presence is > p1 + p2 + 0.2. For example, if we are using prior 2 then we

would consider an edge present if the posterior for edge presence is > 0.25+0.25+0.2 = 0.7. When using

the default prior we consider an edge present if the posterior for edge presence is > 0.4.

There is no clear choice of which prior to use when dealing with densely connected graphs that have a

high correlation among genes. This arises from the need to balance identifying true and false edges and

the fact that when the correlation is high there are multiple graph structures that produce a similarly

high likelihood. For example, when the signal strength is one, the edgewise power for the FFL 5 topology

is similar for the true edges when either prior 1 or the default prior are used (Table 3.11). This is

counter intuitive because the default prior heavily favors edge absence while prior 1 favors edge presence.

However, this occurs because graphs where all true edges are present have a similar likelihood to graphs

with one or two true edges missing. Therefore, when the Markov chain is at the true graph and a new

graph is proposed with one or two true parents missing the proposed graph will be accepted often. In

other words, even if the prior probability favors edge presence the acceptance ratio (Algorithm 2) is small

enough that the proposed graph will be accepted often, reducing the edgewise power for the true edges.

This is less of a problem when there are fewer genes in the network or when the correlation among genes

is lower. For example, the edgewise power for the true edges for prior 1 is higher than for the default prior

for topology FFL 4 with a signal strength of 1 (Table 3.11). In addition, when the correlation between

genes is lower (e.g., when the signal strength is 0.5) the default prior outperforms other priors (Table

3.11) as the edgewise power is near one for the true edges and the edgewise power for the false edge is

lower than for the other priors.

It is also unclear what prior is best when using the eMSE to compare performance. The eMSE is

the lowest, for the true edges, when using prior 1 (Table 3.12). This is the case because the posterior

probability for edge presence will be closer to one, for all edges, which is the expected probability for the

true edges. On the other hand, the eMSE is the highest for the false edges when using prior 1. Again,

this occurs because the posterior probability for edge presence is high for the false edges when using prior

1 and the expected probability for edge presence for these edges is zero. Furthermore, the eMSE for

the true edges is higher when using the default prior (Table 3.12) as the posterior probability for edge

presence will be smaller (closer to zero). For this same reason the eMSE for the false edges is the smallest

when using the default prior. Priors 2 and 3 have a low eMSE for true edges, but not as low as prior 1
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(Table 3.12). Likewise, the eMSE is lower for the false edges when using priors 2 and 3, but not as low

as the default prior. Therefore, priors 2 and 3 do not offer a favorable compromise between prior 1 and

the default prior.

In summary, both the edgewise power and eMSE show that there is not one prior that performs best

when a trait has many parents and the correlation among them is high. The default prior performs

well at not inferring the false edges as present. However, it does not perform as well for either metric

in identifying the true edges. At the opposite extreme is prior 1 which highly favors edge presence.

This prior performs well at finding the true edges when using the eMSE to measure inference accuracy.

However, when using the edgewise power as the metric, the performance for prior 1 is similar to that

of the default prior. Prior 1 also performs poorly at identifying false edges when using both metrics to

measure inference accuracy. Priors 2 and 3 show similar trends to prior 1 in that they perform well at

identifying the true edges but their performance is poor when it comes to identifying false edges.

Table 3.11: The edgewise power for the feed forward loop 4 and 5 topologies for four different
priors on edge states. The true edges are highlighted in gray.

Edgewise power

prior 1 prior 2 prior 3 default

Edge 0.2 0.5 1 0.2 0.5 1 0.2 0.5 1 0.2 0.5 1

U-W 0.16 0.2 0.16 0.24 0.36 0.28 0.24 0.36 0.32 0.04 0.12 0.04
T1-W 0.84 1 1 0.84 1 1 0.84 1 0.96 0.84 1 0.84
T2-W 0.88 0.96 0.84 0.92 1 0.92 0.92 1 0.96 0.88 0.96 0.76
T3-W 0.76 1 0.96 0.84 1 0.96 0.84 1 0.96 0.68 1 0.92

FFL 4

T4-W 0.68 1 1 0.72 1 1 0.76 1 1 0.48 1 1

U-W 0.08 0.08 0.08 0.24 0.08 0.12 0.2 0.08 0.2 0.08 0.04 0.04
T1-W 0.72 0.96 0.76 0.76 0.96 0.8 0.76 1 0.84 0.64 0.96 0.68
T2-W 0.8 0.92 0.76 0.84 0.96 0.88 0.84 0.96 0.88 0.68 0.92 0.68
T3-W 0.84 1 0.88 0.92 1 0.88 0.92 1 0.88 0.72 0.96 0.84
T4-W 0.88 1 0.8 0.92 1 0.84 0.96 1 0.88 0.8 1 0.72

FFL 5

T5-W 0.8 1 0.96 0.92 1 0.96 0.88 1 0.96 0.64 1 0.96
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Table 3.12: The edgewise MSE for the feed forward loop 4 and 5 topologies for four different
priors on edge states. The true edges are highlighted in gray.

Edgewise MSE

prior 1 prior 2 prior 3 default

Edge mean sd mean sd mean sd mean sd

U-W 0.3833 0.0849 0.2678 0.1082 0.1908 0.1077 0.0231 0.0268
T1-W 0.011 0.0228 0.0253 0.0498 0.0404 0.076 0.1404 0.174
T2-W 0.0071 0.0167 0.0187 0.0427 0.0311 0.0631 0.121 0.1577
T3-W 0.0128 0.0214 0.0318 0.0485 0.0489 0.0665 0.1798 0.1642

FFL 4
β = 0.2

T4-W 0.0136 0.021 0.0315 0.0403 0.0531 0.0583 0.2219 0.1901

U-W 0.4155 0.1119 0.2994 0.1495 0.2292 0.152 0.0617 0.1114
T1-W 0.001 0.0028 0.0029 0.0075 0.0049 0.0131 0.0391 0.0699
T2-W 9e-04 0.003 0.0019 0.0061 0.0043 0.0133 0.0337 0.0861
T3-W 0 1e-04 3e-04 0.0016 6e-04 0.0028 0.009 0.0439

FFL 4
β = 0.5

T4-W 0 0 1e-04 2e-04 1e-04 3e-04 0.0025 0.0064

U-W 0.3833 0.0946 0.2539 0.109 0.1908 0.1108 0.0281 0.0486
T1-W 0.0019 0.0035 0.0074 0.014 0.0152 0.0297 0.0937 0.1446
T2-W 0.0056 0.0116 0.0138 0.0257 0.0212 0.0383 0.1016 0.1557
T3-W 0.0024 0.0079 0.0061 0.0176 0.0103 0.0313 0.0518 0.1196

FFL 4
β = 1

T4-W 0 1e-04 0 1e-04 1e-04 2e-04 0.002 0.0058

U-W 0.3626 0.0923 0.2415 0.1147 0.1751 0.1118 0.0269 0.044
T1-W 0.016 0.0262 0.0364 0.058 0.053 0.0791 0.1777 0.2027
T2-W 0.009 0.0166 0.0242 0.0413 0.0377 0.0562 0.156 0.1741
T3-W 0.0092 0.0181 0.0219 0.0387 0.039 0.0647 0.1519 0.1553
T4-W 0.005 0.0108 0.0146 0.0279 0.0251 0.0446 0.1123 0.1402

FFL 5
β = 0.2

T5-W 0.0074 0.0127 0.0215 0.0326 0.0369 0.0557 0.1762 0.1823

U-W 0.3599 0.0804 0.2276 0.0957 0.1658 0.0973 0.0209 0.0429
T1-W 0.0011 0.0043 0.0039 0.0148 0.0056 0.021 0.0343 0.0956
T2-W 0.002 0.007 0.0068 0.0243 0.0105 0.0377 0.0437 0.1224
T3-W 3e-04 0.0012 0.0011 0.0052 0.0016 0.0077 0.0143 0.0616
T4-W 3e-04 0.0011 7e-04 0.0019 0.0013 0.0034 0.0243 0.0544

FFL 5
β = 0.5

T5-W 1e-04 2e-04 1e-04 3e-04 2e-04 7e-04 0.0048 0.0156

U-W 0.3726 0.0925 0.2512 0.1119 0.183 0.1236 0.0419 0.1181
T1-W 0.0121 0.0223 0.0272 0.0449 0.0451 0.0715 0.1617 0.1911
T2-W 0.0076 0.0142 0.0198 0.031 0.0346 0.051 0.1553 0.1905
T3-W 0.0061 0.0144 0.0151 0.0343 0.0233 0.0506 0.0838 0.1467
T4-W 0.006 0.013 0.0169 0.0296 0.03 0.0536 0.1339 0.1852

FFL 5
β = 1

T5-W 0.0013 0.0059 0.0034 0.0135 0.0072 0.0312 0.0349 0.107

3.4 Discussion

We have presented BGRN which is a Bayesian graphical model based method for inferring gene

regulatory networks from individual level data. Our method incorporates genotype data to infer causal

relationships among genes from observational data, allows for phenotype data to be included in the
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network, and employs assumptions to regulate the relationship between data types. This method is an

extension of our previous work which efficiently learns the structure of a network, provides a measure of

uncertainty in the inference, and allows for edge-level prior probabilities.

We carried out extensive simulations under a wide range of scenarios to show how BGRN performs

when including genotype data in the network and applying the PMR assumption. We show that when

using the principle of Mendelian randomization, BGRN has high precision and power for a variety of

networks commonly found in biological systems. We demonstrated that BGRN can account for the effect

of confounding variables by treating them as nodes in the network. We also identified types of confounding

variables that can greatly affect inference accuracy and showed that the number of confounders can also

adversely impact the inference. We also investigated how the structure of a gene regulatory network

affects the inference of clinical phenotype (or trait) related genes. We demonstrated that the presence of

additional edges in the network (e.g., edges between non-clinical phenotype variables) does not affect the

inference of the clinical phenotype edges. Therefore, the inference of a network with clinical phenotype

variables can be broken into two subgraphs. The first subgraph only considers the relationships in

the inner graph (edges between non-clinical phenotype variables). The second subgraph focuses only

on the edges from the genetic variant and gene expression variables to the clinical phenotype variable.

Considering these two subgraphs separately greatly reduces the runtime of BGRN without sacrificing

inference accuracy. We showed that the correlation and how densely connected the true network is both

play a role in how well BGRN performs on identifying trait related genes. We also compared BGRN with

the common variable selection method LASSO. We found that BGRN outperforms LASSO in inference

accuracy for networks when the correlation is high among genes and the clinical phenotype has few true

parents. We explored the effect of prior probabilities on densely connected graphs and demonstrate the

difficulty in selecting an appropriate prior when the correlation is high for densely connected networks.

The simulations carried out here are on relatively small graphs and additional work is needed in order

for BGRN to scale up to larger networks. More work also needs to be done to better understand and find

a solution for the affect common parent confounding variables have on the inference. Future directions

also include carrying out more method comparison simulations with additional existing methods to show

how BGRN performs in comparison.
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Chapter 4: Conclusion and discussion

4.1 Conclusion

We have developed baycn as a general-purpose graph inference method that provides a measure of

uncertainty in the inference, specifies an edge-level prior, and can take a candidate graph as the input.

We represent a graph in terms of the edges and the states they can take. This representation allows for

edge-level prior probabilities to be specified. An edge-level prior provides a direct comparison with the

posterior and shows how much the data support an individual edge. This benchmark allows for more

sensible cutoffs to be set for determining edge presence and direction. An edge-level prior also allows

flexibility in representing prior beliefs on how densely connected the network is. In addition, baycn allows

for a candidate graph to be used for the input. The edges included in the inference can be selected from

prior knowledge (e.g., results from previous work or experiments) or from the output of another more

efficient network inference method. Using an input graph reduces the space searched by baycn which

greatly decreases the runtime.

We extended baycn and developed BGRN which has the same advantages mentioned previously for

baycn but is specifically designed to infer gene regulatory networks from individual level data. To take

advantage of the genetic data available we included additional variable types in BGRN. Including genetic

variants in the network and using the principle of Mendelian Randomization allows for more accurate

inference and for causal relationships to be inferred among genes. The clinical phenotype assumption

allows networks with clinical phenotype data to be split into two different subgraphs. The first subgraph

consists of the edges between the genetic variant and gene expression nodes. The second subgraph only

involves the edges from the genetic variant and gene expression nodes to the clinical phenotype node.

Inferring these two subgraphs separately reduces runtime without sacrificing the inference accuracy of

either subgraph. These features make both baycn and BGRN highly adjustable and applicable to a wide

range of problems.

4.2 Discussion

We make several assumptions that need to be considered when applying our methods to real data. i)

When using the principle of Mendelian randomization BGRN can infer causal relationships among genes.

However, care needs to be taken in how directed edges are interpreted when this principle is not being

used. Both baycn and BGRN learn the statistical dependence among variables and additional information

is needed in order for causal relationships to be inferred. Not all directed edges will represent a causal
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relationship [18]. ii) We showed that when using the clinical phenotype assumption a network can be

broken into two subgraphs when performing the inference. However, if this assumption is violated then

the network can no longer be inferred as two separate subgraphs. iii) We assume that the relationship

among variables is linear. It is not clear how baycn and BGRN will perform in scenarios when there is

a non-linear relationship between variables. Therefore, the results from our methods should be treated

carefully if applied to networks with variables that could have a non-linear relationship.

4.3 Future work

We have applied our baycn and BGRN to relatively small graphs and more work is needed in order for

them to scale up to larger more complex networks. Possible areas of improvement include how directed

cycles are found and removed as the number of potential directed cycles can increase dramatically for

densely connected networks. Improvements can also be made to how a graph is represented in code.

Currently we employ two representations of a network: edge state vectors and adjacency matrices both

of which represent the edges in the network and their direction. These two representations are used to

perform different calculations and a conversion between them takes place at each iteration. In addition,

all code is written in the R language and the speed of our method would improve if portions of the

algorithm were written in C++.

Additional areas for future work include analyzing other real data sets. Our method can analyze

networks with three different variable types. So far we have analyzed real data sets that involve genotype

and gene expression data. However, we have not performed any analyses that include all three types of

data. For example, we have not applied BGRN to real data sets that include an individuals phenotype,

such as disease state, in addition to the genotype and gene expression data. An analysis using these data

types would provide a measure of uncertainty on the inference of trait related variants and genes. Other

applications of our method include incorporating epigenetic data in the network such as DNA methyla-

tion to determine whether gene expression regulates methylation or the other way around. Additional

comparisons with existing methods, both in simulated and real data, need to be done to show how our

method performs in comparison and where additional improvements are needed.
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