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Abstract 

Atmospheric gravity waves (AGWs) are transverse waves that propagate in all directions 

throughout the atmosphere. They arise from a multitude of sources such as: orography, fronts, and 

convection. AGWs are excellent transporters of energy and momentum, which influence atmospheric 

turbulence, temperature, and chemistry. Wave transport and the successive deposition of energy is an 

important component in atmospheric dynamics as they have a large impact on the spatial and 

temporal characteristics of the middle and upper atmosphere. As a result, they play a great role in 

daily weather and long-term climate fluctuations. However, the horizontal resolutions of global 

climate models lack the ability to resolve the scales of the important part of AGWs, and because of 

this, their contributions to global climate simulations are missed.  Thus, their parameterization and 

quantification are essential for improving weather forecast models.  

This thesis focuses on the detection of AGWs through high-altitude ballooning. In December 

2020, radiosondes were sent as payloads through the lower and upper atmosphere, up to about 30 km, 

collecting sounding profiles in South America, before, during and after a total solar eclipse. Half of 

the radiosondes were launched from Tolten, while the other half were launched from Villarrica, 

providing an opportunity to detect AGWs around the Andes mountains and during the total solar 

eclipse. Each radiosonde was launched an hour apart over 48 consecutive hours. Through the 

collection of wind and temperature profiles, and using Euler’s equations of motion, a wavelet-based 

method was used to decompose vertical profiles of horizontal wind into gravity wave packets. To 

parameterize the waves, intrinsic frequency, and horizontal and vertical propagation directions were 

determined using Stokes parameters. The detected AGWs were characterized into three main 

categories: AGWs caused by significant wind shears, mountain waves, and solar eclipse induced 

waves. These results provide parameters for multiple sources of AGWs that can be useful for climate 

change mitigation strategies through improved climate models, which contribute to the quality of life 

for millions.   
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Chapter 1: Introduction  

Motivation  

The Global Forecast System (GFS) is the weather forecast system used by the National 

Centers for Environmental Prediction (NCEP). The entire globe is covered by GFS at a base 

horizontal resolution of 28 km between grid points. When extended to a one – two week forecast, the 

horizontal resolution drops to about 70 km between grid points. Atmospheric gravity waves (AGWs) 

range from hundreds of meters to a few kilometers; GFS does not have the horizontal resolution 

required to account for many important AGWs. It is highly important to incorporate AGWs in 

weather prediction models, as they are great transporters of momentum and energy through 

dissipation and propagation into vertical and horizontal regions. However, scientists have struggled to 

accurately parameterize and characterize such waves for their inclusion in these simulations. The 

motivation behind this work is to detect and characterize AGWs by developing a robust set of 

numerical models, for their future inclusion in systems like the GFS. It is through the inclusion of 

AGWs that things such as storms, hurricanes, etc. can be better predicted and warnings can be sent 

out earlier to keep people safe. This work will focus on the detection of AGWs induced by total solar 

eclipses.  

Introduction to the Atmosphere 

The standard atmosphere is established from global averages of temperature, density, 

chemical composition of air, etc. [1]. It is divided into four main regions: troposphere, stratosphere 

mesosphere, and thermosphere. Each region is separated by transition zones. The transitional area 

between the troposphere and stratosphere is known as the tropopause. The area separating the 

stratosphere and mesosphere is the stratopause, and the mesopause separates the mesosphere and 

thermosphere, as shown in Figure 1.1.  

 Most weather-creating actions and day-to-day experiences happen in the troposphere and 

stratosphere with air density, pressure, and temperature being the three major weather inducers. The 

relationship between the three can be described by the Ideal Gas Law (IGL), shown in Equation 1.1. 

          � = ���                            (1.1) 

The IGL states that pressure, p, is proportional to density, �, temperature, T, and the gas 

constant, R, for air. When one variable is fixed, relationships between the other two are apparent, for 

example, when density is constant, pressure increases with temperature. These relationships are 

important to understand moving forward as the properties of each region of the atmosphere changes 

with increasing altitude.  
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Figure 1.1. The standard atmosphere [2]. 

  

As seen in Figure 1.1, the lowest region of the atmosphere is the troposphere, rising from the 

surface to approximately 12 kilometers (km). Within this region, as altitude increases, the pressure 

decreases from approximately 1000 hectopascal (hPa) to 200 hPa, and temperature decreases from 20 

°C to -60 °C. Described by the IGL, a pressure decrease in the troposphere also results in a drop in air 
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density. As a result, this layer is known to be the most turbulent and convective portion of the 

atmosphere. As a warm air parcel rises through the troposphere, it continues to rise until it cools down 

and becomes denser than the surrounding air. Once this occurs, it falls back down, thus creating a 

natural convective mixing effect.  

The area following the troposphere is referred to as the stratosphere. This area extends from 

approximately 12 km to 50 km. Pressure ranges from 100 mb to 1 mb, however, unlike the 

troposphere, temperature increases from -60 °C to 0 °C. This is due to tropopause inversion layers 

(TIL) [3]. Temperature strongly increases just above a sharp local cold point tropopause [4] due to the 

sun’s radiation being absorbed in the stratosphere’s ozone layer. As a warm air parcel moves up, it 

experiences the surrounding air increasing in temperature, and will rise until it meets an equivalent 

ambient temperature.  

Beyond the stratosphere lies the mesosphere, covering 50 km to 85 km, and the 

thermosphere, covering 85 km up. Similar to the troposphere, the temperature in the mesosphere 

decreases with altitude, and similar to the stratosphere, the temperature in the thermosphere increases 

with altitude. Overall, air density decreases as altitude increases. The combination of all four regions 

described and the variation of temperatures and pressures within them is what makes up a stably 

stratified, or stably layered, atmosphere.  

Introduction to Atmospheric Gravity Waves 

The atmosphere is almost always a stably stratified fluid [5]. Consider the atmosphere at rest 

and an air parcel in equilibrium with its environment. When that air parcel comes across a disturbance 

it is displaced by some distance. It is assumed that during this displacement the air in the parcel does 

not mix with its surroundings and there is no net heat transfer. The air parcel will oscillate 

adiabatically due to the gravitational force trying to restore equilibrium. This phenomenon is known 

as atmospheric gravity waves (AGWs). AGWs can only exist when the atmosphere is stably stratified 

[6]. Disturbances arise from many sources such as mountains, storm fronts, convection, wind shear, 

eclipses, etc. A representative image of AGWs can be seen in Figure 1.2.  

The frequency associated with this oscillation is called the Brunt-Väisälä frequency, N. When 

squared, N2, this frequency is a measure of the atmospheric static stability [3]. Static stability is 

defined as the stability of the atmosphere in a hydrostatic equilibrium with respect to vertical 

displacements [7].  It is important because it greatly influences the generation, propagation, and 

dissipation of AGWs. It acts as a pathway between the background atmosphere and AGWs. For 

example, as a parcel of air moves it is subject to minor changes in the forces that act on it and its 
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speed. If the force causes further changes that tend to restore the parcel of air to its original speed and 

orientation, without external machine or human input, the parcel of air is said to be statically stable. If 

such changes cause further changes that tend to drive the parcel of air away from its original speed 

and orientation, the parcel of air is said to be statically unstable. 

 

Figure 1.2. Atmospheric gravity waves captured by the Terra satellite over the Indiana Ocean in a Moderate 

Resolution Imaging Spectroradiometer (MODIS) image [8]. 

 

When a fluid is bounded above and below, wave propagation happens in the horizontal plane. 

Those that propagate vertically will often be referred to as a standing wave, however, the atmosphere 

has no upper bound. In this case, AGWs are able to propagate horizontally and vertically. Waves that 

have the ability to propagate vertically, in fluid with only one bound, are referred to as internal waves. 

Internal AGWs are transverse waves, meaning that the paths of parcel oscillations are parallel to the 

phase lines in the plane of reference [6]. Their phase is a function of height. Vertical propagation 

plays a huge rule in the atmosphere, especially because AGWs are great transporters of energy and 

momentum. Consider a parcel of air encountering a mountain range, that mountain will force the 
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parcel of air to move upward. It moves from a dense atmospheric layer to a thinner one. The heavier 

parcels of air will be forced downward by gravity resulting in a periodic oscillation [9]. When this 

happens, that transmission of motion throughout the atmosphere can be directed horizontally and 

vertically. AGWs will transport horizontal momentum vertically over many density scale heights. As 

mentioned before, density in the atmosphere decreases with altitude, thus, to conserve wave energy, 

the amplitude of AGWs grows with altitude. Small perturbations in the lower atmosphere will 

become larger in the middle and upper atmosphere, and deposit momentum and energy in unoriginal 

regions. 

Momentum and energy transported from the troposphere to the stratosphere, and above, 

affect global circulation models. Spatial and temporal characteristics of the middle and upper 

atmosphere are impacted, and many numerical models or simulations do not contain the horizontal 

resolutions needed to account for AGWs. To date, the highest model resolution is 20 km [10]. This is 

much higher than the wavelengths of some important AGWs, as they often fall below the range of 20 

km, with typical wavelengths anywhere from hundreds of meters to a few kilometers.  

High-Altitude Weather Ballooning   

 To date, the most accessible way of recording high temporal resolution lower and middle 

atmospheric data needed for AGW parameterization is through high-altitude weather ballooning. 

Weather balloons are manufactured from latex and require helium or hydrogen as a lift gas. They 

come in many different sizes ranging from 200 grams to 1500 grams. When inflated they range in 

diameters of 2.5 feet to 8 feet, however, during a flight their diameters can increase up to four times 

that size. When released into the atmosphere, most weather balloons reach heights of up to 30-40 

kilometers. The main component of high-altitude weather ballooning is the payload. For atmospheric 

science studies, the payload is typically a 20 cm by 4 cm by 6 cm radiosonde package, which is 

capable of gathering data over horizontal distances up to 300 km. An example of a radiosonde is 

shown in Figure 1.3.   
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Figure 1.3. Radiosonde package with meteorological sensors located on the boom (long silver piece). Arduino-

type signal-processing electronic enclosed inside of a Styrofoam housing. 

 

 Radiosondes measure the vertical profile of meteorological variables such as temperature, 

pressure, relative humidity, air density, wind speed and wind direction. A radiosonde rising through a 

gravity wave will experience elliptical motions. The elliptical motion is described by the polarization 

relations for gravity waves, which are described in more detail in Chapter 2. Parameters are calculated 

based on the elliptical characteristics of wind data gathered from these radiosondes. 

The electronic unit consists of three major sections: meteorological sensors, signal-processing 

electronics, and a radio transmitter to send data back to a receiver. The data are transmitted to a 

ground-based receiving and processing station with an accuracy for temperature, relative humidity, 

and pressure of ± 1°C, ± 1%, and ± 3 hPa, respectively [11]. However, this accuracy is based on the 

following key requirements. First, the train connecting the balloon and radiosonde should be long 

enough to avoid any wake effect. Second, surface values are to be collected for sensor calibration. 

Most importantly, the ascent of the apparatus should be maintained at approximately a 5 m/s rise rate. 

This is the optimal rise rate for which these electronic units are calibrated. See Figure 1.4 for a 

representation of the overall system being sent into the atmosphere. The de-reeler slowly unwinds to 

create more than 30 meters between the balloon and radiosonde to avoid wake affects from the 

balloon.  
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Figure 1.4. High-altitude ballooning set-up. The components are (A) latex weather balloon, (B) parachute, (C) 

de-reeler, (D) radiosonde.  
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Common GW Detection Methods Used  

There are two methods most commonly used for extracting wave parameters from radiosonde 

profiles: the wavelet method and hodograph method. This thesis focuses on the wavelet method and a 

more detailed explanation will be seen in Chapter 2. Briefly, the wavelet method performs a wavelet 

transform and applies Stokes parameters to the transformed data to extract wave parameters, such as 

intrinsic frequency, propagation direction, wavelength, etc.  

In the hodograph method, zonal and meridional wind data is plotted on an x-y axis. The plots 

will form an ellipse in the presence of low frequency gravity waves [12]. To fit the data, a least-

square fit method is used, however, other ways of data fitting can be done. Wave parameters are 

extracted from the fit. The horizontal propagation direction is the tilt angle from the least-square fit. 

The ratio of the semi-major to semi-minor axes is proportional to the intrinsic frequency scaled by the 

Coriolis frequency, and the vertical wavelength is found from the vertical extent of the ellipse. The 

hodograph method has been widely used for AGW analysis, however there are limitations to this 

method. Low frequency waves are targeted by the hodograph method and ellipse identification is 

typically done by hand. This introduces possible human error, leading to inconsistencies.  

Research Goal  

Disturbances in a stably stratified atmosphere can occur from a solar eclipse. The obstruction 

of solar irradiance, during a solar eclipse, subsequently inducing AGWs was first proposed in 1970 by 

Chimonas et al. [13]. Since then, many scientists have tried to study the effects of solar eclipses on 

the earth’s atmosphere [14-17]. However, the natural occurring phenomena can make data collection 

difficult, as they only occur in limited places and times. The objective of this research is to develop a 

set of methods in an effort to detect AGWs during a solar eclipse. Various balloon-launches will be 

performed to collect sounding profiles. Launches will occur through-out the Summer of 2020 in 

Moscow, Idaho, with the goal of preparing for a consecutive 48-hour long campaign in Chile for the 

total solar eclipse on December 14, 2020. A mathematical model based off the wavelet method, to 

improve detection of AGWs, will be implemented in MATLAB. It is also of interest to characterize 

AGWs and identify their sources to find correlations between wave parameters associated with 

significant wind shears, topography induced waves, and solar eclipse induced waves.  
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Chapter 2: Theory 

Euler’s Equations of Motion 

Atmospheric observations are made in a coordinate system fixed to the earth. The reference 

frame being used for this analysis is an Eulerian reference frame. This frame of reference is stationary 

relative to the flow, which is useful for extracting values such as velocity, density, temperature, etc. at 

fixed points in space as time passes. It is assumed that the atmosphere is irrotational, frictionless, and 

adiabatic. Thus, Euler’s equations of motion for an irrotational, frictionless, and adiabatic atmosphere 

are used to derive the equations for identifying gravity waves.  

Conservation of mass 

In fluid mechanics, fluid flows into and away from regions. Euler’s equation for the 

conservation of mass explicitly accounts for the flow of mass. Using a cartesian coordinate system, 

one can consider the control volume of an infinitesimal, rectangular cuboid that is fixed in space, as 

shown in Figure 2.1. The horizontal plane is x and y, while z lies in the vertical direction. The 

coordinates have unit vectors of ��, 	�, 
̂,	and velocities of u, v, w, respectively.  

 

 

 

 

 

Figure 2.1. Control volume representing mass flow in and out of a rectangular cuboid. [19] 

 

Figure 2.1 is well known in all transport books, as it aids in the derivation of the mass continuity 

equation 

   
�� � � ∙ ������� = 0                                         (2.1) 

where ���� is the velocity field.  

The mass continuity equation can also be derived from a material perspective. Consider a 

small parcel of air. The conservation of mass is represented by Equation 2.2. 
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��� ��∆�� = 0	                                        (2.2) 

Where 
��� is the material derivative defined by 

��� = � � ���� ∙ �, and V is the volume. 

If both the density and the volume of the parcel can vary, then  

         ∆� ���� � � �∆��� = ∆� ����� � �� ∙ ���� = 0                          (2.3) 

The volume element is again arbitrary; thus Equation 2.3 becomes Equation 2.4, which is equivalent 

to Equation 2.1.  

     
���� � �� ∙ ���� = 0                                                     (2.4) 

Conservation of momentum  

 As described in chapter 1, AGWs are great transporters of momentum. Euler’s conservation 

of momentum equation describes how fluid velocity responds to internal and external forces. 

Consider the same infinitesimal parcel of air described above. Let m(x, y, z, t) be the momentum per 

unit volume of the fluid, where the total momentum is given by Equation 2.5. 

! "	#��                              (2.5) 

The rate of change of the momentum for a fluid mass is described by the material derivative, which is 

equal to the force, F, acting on it as described by Newton’s second law.  

��� ! �����	#� = ! $	#�� 	�                                                  (2.6) 

Equation 2.6 can be rearranged into Equation 2.7.  

! �� �%����� − $ #� = 0	�                                                     (2.7) 

However, the volume is arbitrary, thus Equation 2.7 is transformed to Equation 2.8. 

� �%����� = $                                                              (2.8) 

It is difficult to directly quantify force in this term as not all forces are external to the fluid. This is 

where contact forces such as pressure and viscosity come into play. At the boundary of the fluid the 

pressure is the normal force per unit area.  

#$'( = −�	#)                                                       (2.9) 
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Where $'(  is the pressure force, and dS is a surface element. 

Equation 2.9 can be rearranged to show the pressure force on a volume of fluid is the integral of the 

pressure over its surface.  

$'( = −! �	#)*                                                  (2.10) 

Applying Gauss’s theorem, which relates the flux of a vector field through a closed surface to the 

divergence of the field in the volume enclosed [18], Equation 2.10 is rearranged into the following: 

$'( = −! �	�	#��                                              (2.11) 

The force is non-zero only if the pressure varies in space, therefore it is known as the pressure-

gradient force [18].  

 In large-scale atmospheric flow, the viscous effects are negligible. Therefore, when combining 

external and internal forces, the force is described as: 

$ = 		$'( �	$+(                                                     (2.12) 

Where $+(  is the force due to gravity.  

The conservation of momentum equation is described in Equation 2.13. 

� �%����� = −�	� � �,�             (2.13) 

Equation 2.13 can be broken up into each individual component. The momentum equations for the 

flow in the x and y direction, u and v, result in the following.  

�-�� = − .� �/                                                        (2.14) 

�0�� = − .� �1                                                        (2.15) 

 Unlike the velocities in the x and y direction, the vertical component, w, is parallel to the 

gravitational force, thus resulting in Equation 2.16.  

�2�� = − .� �3 − ,                                                (2.16) 

Equations 2.14 - 2.16 are some of the most important equations for the remainder of this document as 

they will be used in the wavelet analysis for detecting AGWs. These velocities can also be thought of 
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in terms of north, east, south, west, up and down velocities, where u is the velocity of the fluid in the 

east to west direction, v is the velocity of the fluid in the north to south direction, and w is the velocity 

of the fluid upward and downward.   

Conservation of energy  

The conservation of energy is described as Equation 2.17.  

�'�� − 456 ���� = 0                                                  (2.17) 

Where 456 is the speed of sound.  

Equation 2.17 shows that density and pressure are related, which will become important for 

completely ruling out acoustic waves in the atmosphere. 

Wave fundamentals 

Waves can be described using various coordinate systems; however, this thesis uses cartesian 

coordinates of x, y, z, as these are the standards in atmospheric science. A wave is created by periodic 

oscillations of fluid particles. These fluid particles oscillate on surfaces perpendicular to the direction 

of travel of the wave. In general, characteristics that describe a wave are frequency, length, amplitude, 

period, phase, and speed, as shown in Figure 2.2. A single wave is referred to as a periodic 

disturbance described by a single frequency without considering the number of cycles of the 

disturbance [19]. When referring to waves, it considers a group made up of different frequencies, 

amplitudes, lengths, and periods, otherwise known as a wave-packet.  

Wave frequency, ω, can be thought of as the number of waves that pass a fixed point in a 

given amount of time. The more waves that pass, the higher the frequency is, and the more energy it 

contains. A low-frequency wave has less energy than a high-frequency wave with the same 

amplitude, or height of crest. Wavelength, λ, is the distance between any two identical points on the 

wave, or between following crests.  The amplitude, A, of a wave is the difference in height between 

the crest and resting position. The higher the crest, the greater the amplitude is. Wave period, τ, is the 

time required to make one oscillation, or to go from point a to point b, as shown in Figure 2.2. This 

should not be confused with the wavelength or frequency. Although they are related, the wavelength 

is the distance of one propagation and the frequency is the inverse of the wave period. 
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Figure 2.2. Characteristics describing a wave. 

 

Furthermore, another characteristic of waves is the wavenumbers, which are denoted as k, l and m for 

x, y and z coordinates, respectively. The wavenumbers are defined as follows: 

           7 = 689:                       (2.18) 

           ; = 689<                (2.19) 

          " = 689=                             (2.20) 

Where >/, >1, and >3 are the wavelengths in the x, y and z direction, respectively.  

Wavenumbers are essential to describe the direction a wave will travel. This is known as a 

wave vector, and it takes the form shown in Equation 2.21. 

   7�� = 7�� � ;	� �"
̂              (2.21) 
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Equation 2.21 is also referred to as the propagation direction vector.  

 Wave propagation is mostly described in a fluid bounded horizontal plane, however there are 

cases when a fluid is not bounded, thus resulting in horizontal and vertical propagation. In polar 

coordinates, this wave propagation is known as the wave phase, or phase angle, ϕ.  

Consider a wave in a one-dimensional plane described by ?4@A�7� − BC�. One oscillation of 

the wave is a cycle of 2π radians, and each point in that cycle is a phase point. In a two-dimensional 

plane, phase angle is the angle between the radius vector, D�, and horizontal axis, as shown in Figure 

2.3.   

 

 

  

 

 

 

 

 

 

 

 

Figure 2.3. An illustration of phase angle in polar coordinates. 

 

 

The phase angle takes the form of  

                    E = 7�� ∙ D� − 	BC = 7� �"
 − BC                          (2.22) 

Where 

         D� = ��� � 

�                                       (2.23) 

F2	

0	E	
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These relations are important for mathematically understanding propagation in cartesian coordinates.  

 In a two-dimensional (x, z) plane, the wave considered above is written as 

H��, 
, C� = 	ℝ?JKL = ?4@A�7� � "
 − BC�             (2.24) 

Where ℝ is the real part of the complex number, however, for the remainder of the document, only 

the exponential notation will be used. Lines of constant phase angles connect the same points in the 

wave field.  

 Another characteristic of waves is their speed. Consider following a point on a wave such as a 

crest. That crest goes from point a, at time C, to point b, at time C � ∆C. The speed of a wave moving 

through a fluid at which a point of constant phase moves in the direction of a traveling wave is called 

the phase speed, c. The speed can be obtained by differentiating Equation 2.22, with respect to t while 

holding z constant.  

MLM� NL,3 = 7 M/M� − B = 0              (2.25) 

The phase speed in the x-direction can be defined as 

                                                                        4 = OP                             (2.26) 

Long waves travel faster than short waves, and when comprised together, they move at 

different phase speeds. The total energy of the wave-packet remains constant but disperses 

horizontally. The relation between phase speed and direction is known as the dispersion relation. 

 The speed and direction of energy transport is determined by the group velocity, Q+. As 

mentioned before, waves tend to move in wave-packets. Within this wave-packet there are waves 

moving at a speed proportional to its wavelength. The packet is made up of linear waves with varying 

wavelengths, and the dominant wave defining the packet has a local phase and frequency. The phase 

is a function of time and distance, and can be described with the following: 

        
LRS = −7	                                                    (2.27) 

                                                                          
LRT = B                                                   (2.28) 

Equation 2.27 and 2.28 are combined to form        

                            
URT � O/ = 0	                                                   (2.29) 
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Considering B as a function of k yields the following: 

                                                                        
URT � OP P/ = 0	                           (2.30) 

The group velocity is defined as  

          Q+ =	 OP                                                     (2.31) 

thus Equation 2.30 becomes: 

      
P� � Q+ P/ = �VP�� = 0	                         (2.32) 

The dominant wave number is constant when moving at the group velocity.  

The relations developed are important for analyzing AGWs, as they will be distinguished based on the 

characteristics described above.  

Boussinesq Approximation  

AGWs are not the only type of wave found in the atmosphere. Acoustic waves are also very 

much present, and this can make AGW detection difficult. However, through the Boussinesq 

approximation, acoustic waves are eliminated.  

Taking the conservation of momentum, Equation 2.13, the substitutions of � = �W � �. and � = �W � �. are made. This substitution assumes that density and pressure are a function of a slowly 

varying background, �W and �W, and perturbation, �. and �., which will be discussed in further detail 

in the Linear Theory section below. Additionally, the background state is assumed to be in hydrostatic 

equilibrium because there is a balance between the pressure upward and the weight of the 

atmosphere. This yields Equation 2.33.  

�1 � �Y�Z �%����� = − .�Z ��. � �Y�Z ,�                                      (2.33) 

It is assumed that N�Y�ZN < 1, which allows for only density fluctuations to be considered when they 

occur in combination with gravity. This condition is satisfied when the fluid is confined to a layer 

whose thickness, ∆
, is significantly less than the isothermal scale height of the atmosphere, \5. The 

isothermal scale height is defined as  

\5 = ]^_+                                                             (2.34) 

Where �M is the universal gas constant for dry air.  
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 For example, consider a vertical variation of density in an isothermal atmosphere. 

� = �5J`	 =ab                                                       (2.35) 

Taking the derivative of Equation 2.35 results in Equation 2.36.  

�3 = − �cb                                                           (2.36) 

By replacing the derivative with a differential, Equation 2.36 becomes Equation 2.37.  

∆�� = − ∆3cb                                                           (2.37) 

Identifying ∆� as the density perturbation, �., yields the following: 

N�Y�ZN 	= ∆3cb                                                            (2.38) 

Through this relation it is much more apparent that if ∆
 < \5, then N�Y�ZN < 1, thus proving the 

assumption.  

The Boussinesq approximation allows one to neglect fluctuation changes in density due to 

pressure variations, thus a fluid can be treated as incompressible. However, when treating the fluid as 

incompressible 45 → ∞  in Equation 2.17 and the conservation of energy can be broken into two 

terms. The Euler equations are then expressed as   

     
�%����� = − .�Z �	� � �Y�Z ,�                         (2.39) 

    � ∙ ���� = 0                                     (2.40)	
    

fgfT = 0                                     (2.41)	
 Through the approximations made, sound waves are eliminated, and gravity waves are governed by 

Equation 2.39 – 2.41.  

Linear Theory  

Differential equations are great for mathematical representation of variables, however, from a 

computational standpoint they can often be tedious to solve. Linear systems on the other hand are 

much more rapidly solved, as well as more understandable than nonlinear systems. Linear theory 

allows analytical solutions of wave equations. It predicts nonphysical behavior like significant wind 

shears, large temperature gradients, unrealistically stable flows, and more. Hines et al., was the first to 



18 

publish, in 1960, on linear gravity wave theory where he explains the origins of irregular winds and 

turbulence in the middle and upper atmosphere [20].  

Simply put, linear theory separates variables into constant or slowly varying background 

values and small first-order perturbations of these values. Using a two-dimensional reference plane  

(x, z) consider some variable h is expanded into a background state hW and a first-order perturbation h., dependent on time and position. This yields Equation 2.42. 

	h��, 
, C� = hW�
� � h.��, 
, C�                                     (2.42) 

The background state is steady or slowly varying vertically and horizontally uniform. The first-order 

perturbation is assumed to be much smaller than the background state and has no effect on the 

background state.  

The governing equations expressing the momentum in the x and z directions are as follow: 

-� � Q -/ �i -3 = − .� �/                                             (2.43) 

2� � Q 2/ �i 23 = − .� �3 − ,                                    (2.44) 

The governing continuity equation is, 

-/ � 23 = 0                                                       (2.45) 

and the conservation of mass is represented by Equation 2.46 

      
�� � Q �/ �i �3 = 0                                               (2.46) 

Equations 2.43 - 2.46 are linearized using the approach in Equation 2.42, which yield the following 

equations  

-Y� � QW -Y/ �i. -Z3 = − .�Z �Y/                          (2.47) 

2Y� � QW 2Y/ = − .�Z �Y3 − �Y�Z ,                                      (2.48) 

-Y/ � 2Y3 = 0                                                    (2.49) 

�Y� � QW �Y/ �i. �Z3 = 0                                             (2.50) 

The next step is to assume wave-like solutions of the form: 
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Q.��, 
, C� = 	Qj�
�J`K�P/`O��		                                      (2.51) 

i.��, 
, C� = 	ij�
�J`K�P/`O��		                                    (2.52) 

�.��, 
, C� = �j�
�J`K�P/`O��		                                       (2.53) 

�.��, 
, C� = 	�′�
�J`K�P/`O��		                                      (2.54) 

Where Q′, i′, �′, and �′ are used to describe the real and imaginary part of Q., i., �., and �., 

respectively. For example, Q′ = Ql � mQK. 
Equations 2.47 – 2.50 become: 

          −mBQ′ � mQW7Q′ � i′ M-ZM3 = − K�Z 7�′                                (2.55)  

          −mBi′ � mQW7i′ = − .�Z M�jM3 − �j�Z ,                                   (2.56) 

m7Q′ � M2jM3 = 0                                                   (2.57) 

−mB�′ � mQW7�′ � i′ M'ZM3 = 0                                        (2.58) 

The frequency included in the equations above is the apparent frequency measured by the 

observer in a fixed coordinate system. It is of interest to measure the frequency relative to the flow, or 

the intrinsic frequency, Ω, defined as: 

Ω = ω− uW7 = Bq	                                                         (2.59) 

where one horizontal background wind speed direction is included. 

By substituting Equation 2.59 into Equations 2.55 – 2.58, the following are obtained 

mrQ′ − i′ M-ZM3 = K�Z 7�′                                                   (2.60) 

mri′ = .�Z M�jM3 � �j�Z ,                                                       (2.61) 

m7Q′ � M2jM3 = 0                                                                (2.62) 

mr�′ − i′ 'Z+ s6 = 0                                                       (2.63) 

where s6 is the squared Brunt-Väisälä frequency defined as: 
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s6 = − +�Z M'ZM3 	                                                                (2.64) 

Equations 2.60 – 2.63 are known as the polarization equations [20]. It is through these equations that 

the amplitude and phase of a wave, as described in the wave fundamentals section, can be obtained. 

Since i′ appears in Equations 2.60 – 2.63, the phases of other variables are relative to i′. 
 Assume a solution of the form 

i′�
� = ?JKu3 = ?�cos	�"
� � mAmy�"
��                              (2.65) 

The real part of i′ is ?4@A�"
� and the imaginary part is ?Amy�"
�. Thus, taking the same approach 

to expand Equation 2.62 into real and imaginary parts yields Equation 2.66. 

m7Q] − 7QK = −?"4@A�"
� − m?"Amy�"
�                            (2.66) 

Considering only the real part yields the following  

Q] = −?uP 	4@A�"
�                                                     (2.67) 

Depending on the sign of m,	Q] is either in phase with or 180° out of phase with i′.  
 Solving for i′ in Equations 2.60 – 2.63 gives 

      
Mz2jM3z � .�Z M�ZM3 M2jM3 � {Pz|z

}z � P} Mz-ZM3z � P} .�Z M�ZM3 M-ZM3 − 76~ 	i′ = 0										           (2.68) 

It should be noted that the amplitude of AGWs grows with altitude in order to conserve energy. The 

second term in Equation 2.68 signifies the effect of varying atmospheric density on wave amplitude. 

To remove this height dependency, it is assumed that the atmospheric density decreases exponentially 

described by 

�W = �5J`	 =ab                                                                   (2.69) 

Where �5 is the density at the ground surface, then Equation 2.68 becomes 

Mz2jM3z − .cb
M2�
M3 � {Pz|z

}z � P} Mz-ZM3z � P} .cb 	M-ZM3 − 76~ 	i′ = 0										               (2.70) 

Using the integration factor, 

J!� Yzab M3                                                                         (2.71) 
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New variables,	iq, Q�, �̂, ��	are defined for i′, Q′, �′, and �′, respectively as seen in Equations 2.72 – 

2.75.  

i′ = iqJ� =zab                                                                   (2.72) 

Q′ = Q�J� =zab                                                                    (2.73) 

�′ = �̂J� =zab                                                                    (2.74) 

�′ = ��J� =zab                                                                    (2.75) 

By substituting Equations 2.72 – 2.75 and replacing all derivatives with primes, Equation 2.70 

becomes Equation 2.76.  

                       iq jj � { |z��`-��z � -Z���`-Z − .cb
-Z��`-Z − .�cbz − 76~iq = 0                      (2.76) 

Replacing everything in the brackets by "6 Equation 2.76 is simplified to Equation 2.77. 

                                      iq jj �"6iq = 0                                                               (2.77) 

If m is assumed to be constant, then the basis of linear theory is 

iq = ?JKu3 � �J`Ku3                                                    (2.78) 

The first term in the brackets of Equation 2.76, 
|z��`-��z, is the buoyancy term. This will dictate 

whether m is real or imaginary. When m is real, the amplitude of the vertical component of the wave 

perturbation velocity varies sinusoidally with height [19].  

 Through linear theory, one can solve for any perturbation variable. This thesis focuses on the 

perturbation velocities of the wind data gathered from the radiosonde. Zink and Vincent [21] simplify 

the polarization relations in a coordinate system aligned with the propagation direction of the wave. 

This gives the following relation 

  �′� = −m �} Q′||                                                              (2.79) 

Where �′� is the perturbation velocity perpendicular to the wave vector, Q′|| is the perturbation 

velocity parallel to the wave vector, and H is the Coriolis frequency, which accounts for the earth’s 

rotation. 

The vertical perturbation velocity is expressed as  
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  i′ = −m P�u Q′||                                                              (2.80) 

Where 7� is the horizontal wave number. 

Additionally, solving for temperature results in the following 

  �� = _j_Z = m |z
+} P�u Q′||                                                      (2.81) 

Where �′ and �W are the perturbation and background temperatures, respectively.  

By plotting �′�	and Q′|| one would see those two sinusoids 90° out of phase form an ellipse. 

Therefore, gravity waves are said to be an elliptically polarized phenomena. 

Wavelet method 

A time series of perturbations consist of wave-like disturbances. As mentioned before, not all 

waves are identical. They vary in frequency and wavelength. They also do not all move in the same 

direction. More often than not, they propagate in every direction. It is important to remember that in 

the lower and middle atmosphere, a wave can break into smaller waves due to the turbulent-like 

disturbances happening when they cross the tropopause. Therefore, what sometimes may appear as a 

single wave is actually a wave-packet consisting of many wavelets. Methods to extract parameters 

from vertical wind and temperature profiles usually rely on the polarization relations of a 

monochromatic wave, a wave consisting of a single frequency, and single horizontal and vertical 

wavenumbers. Such a wave has neither a beginning nor an ending. It extends indefinitely in space and 

time. Realistically, waves do have a beginning, however they can extend over a large distance. This 

makes it difficult to solely analyze one complete wave.  

Existing methods, such as spectral analysis, can only analyze parts of a AGW spectrum. 

Another method is decomposing the vertical profile into different wavelength bands [22-23]. The 

downfall to this is that wave detection is dependent on the height chosen. Narrow height bands favor 

the detection of small wavelengths, drowning the larger wavelengths in the background. Therefore, 

when larger bands are chosen, the larger wavelengths are detected and smaller wavelengths trend in 

the background, causing for an overlap in wave-packet detection [21].  

The wavelet method is a great alternative to previous methods used. The benefit of it is that 

the window height is adaptable based on the wavelength being analyzed. Instead of decomposing 

vertical profiles of horizontal wind into wavelength bands, they are decomposed into gravity wave 

packets [21].  
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Wavelet Transform [24] 

To isolate superimposed AGWs of different frequencies in a sounding, a wavelet transform is 

applied to the horizontal wind data. A wavelet transform is used to analyze time series that contain 

nonstationary power at different frequencies [25]. Consider a time series, ��, where n = 0 ... N-1, with 

equal time spacing, �C, and a wavelet function, ψ0 (η). The wavelet function most closely resembling 

AGWs is the Morlet wavelet, shown in Equation 2.82.  

ψW	�η� = F`Y�JKOZ�J`�zz                                                  (2.82) 

Where BW and η are nondimensional frequency and nondimensional time respectively.  

The Morlet wavelet is a continuous wavelet transform. It also has nonzero contributions meaning that 

its real and imaginary parts are 90° out of phase. The continuous wavelet transform of a discrete 

sequence ��	is defined as the convolution of ��with a scaled and translated version of ψ0 (η)  

���A� = ∑ ��jψ∗ {���`����5 ~	|`.���W                                    (2.83) 

Where * indicates the complex conjugate. A picture of amplitude versus the wavelet scale, s, can be 

constructed by varying s and translating along n. However, it is faster to calculate the wavelet 

transform in Fourier space.  

 The convolution is done N times for each scale. This allows the convolution theorem to do N 

convolutions in Fourier space using a discrete Fourier transform (DFT). The DFT of �� is seen in 

Equation 2.84.  

��P = .|∑ ��J`z�����|`.��W                                                   (2.84) 

Where k = 0…N-1 is the frequency index.  

By the convolution theorem, the wavelet transform is the inverse Fourier transform of the product 

resulting in: 

���A� = ∑ ��P 	ψ(∗�ABP�J`KO����|`.P�W                              (2.85) 

Where ψ(∗�ABP� is the Fourier transform of a function ψ�T�  and BP is the angular frequency defined 

as 
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BP = � 68P|�� ∶ 	7 ≤ |6− 68P|�� :		7 > |6
                                                     (2.86) 

Equation 2.85 makes calculating the continuous wavelet transform at all n simultaneously possible. 

Normalization of the scale is necessary to ensure that the wavelet transforms at each scale are 

comparable to each other. The scale is normalized to have units of energy.  

Power Surface  

The wavelet transform can be divided into its real and imaginary parts. Its real part is referred 

to as the amplitude, |���A�|, and the imaginary part is the phase. The wavelet power spectrum is the 

square of the real part of the wavelet transform, |���A�|6. The power spectrum is crucial in wave 

identification. The power spectrum is constructed from the wavelet coefficients of the vertical profiles 

of zonal and meridional wind components, U and V, respectively. By plotting vertical wavelength and 

power (y-axis) and altitude (x-axis), the surface can be scanned for local maxima. Those meeting a 

threshold corresponding to a perturbation amplitude of 0.1 m s-1 are detected as wave packets. 

Anything lower than this threshold is deemed as noise.  

As part of the power surface, the cone of influence is the region where edge effects become 

important. It is defined as the e-folding time for the autocorrelation of wavelet power at each scale. It 

is chosen to ensure that the wavelet power for a discontinuity at the edge drops by a factor of e-2 and 

edge effects are negligible beyond this point [24]. 

Stokes Parameters  

Wavelet transforms are a bandpass filter with a known response function, thus it is possible to 

reconstruct the time series using deconvolution or an inverse filter [24]. Continuous wavelet 

transforms can be reconstructed using a delta function, shown in Equation 2.87.  

� = .¢£ ! �� M55¤¥W                                                             (2.87) 

Where  

¦� = ! ��¤¥W M55                                                               (2.88) 

The reconstructed time series is the sum of the real part of the wavelet transform over all scales. 

�� = �§��Yz¢£¨Z�W�∑ ℝ {ª��5«�}
5«Yz

	§§�W                                           (2.89) 



25 

Where sj is the smallest scale of the form  

A§ = AW2§5§, j = 0,1,… J                                                  (2.90) 

And J represents the largest scale of the form 

 = �®`. log6 �|��5Z                                                          (2.91) 

 The resulting reconstructed profiles contain the isolated wave packet as their real part and 90° 

phase-shifted version of the imaginary part. The vertical extent of each wave packet is the full width 

at half maximum of the horizontal wind variance of the reconstructed packet [21]. Wind and 

temperature perturbations associated with each wave are of interest to reconstruct, with a special 

interest in perturbation velocities, u’ and v’, shown in Equation 2.92 and 2.93, respectively. 

Qj = ��C�cos	�BC � �.C�                                               (2.92) 

�j = ��C�cos	�BC � �6C�                                               (2.93) 

Where U(t) and V(t) represent slowly varying amplitudes of the wave.   

Through these reconstructed profiles, Stokes parameters can be calculated. Stokes parameters 

were first proposed in 1987 by Vincent and Fritts [26] to estimate gravity wave parameters. Stokes 

parameters are defined as: 

± = Qj6 � �j6                                                                  (2.94) 

² = Qj6 − �j6                                                                 (2.95) 

³ = ��4@A� = 2Q′�′                                                     (2.96) 

´ = ��′Amy�                                                                  (2.97) 

Waves with values of Q and P < 0.05 indicate weak wave activity and are discarded.  

The degree of polarization, d, quantifies the contribution of coherent wave motion to the total 

velocity variance [12], and can be calculated as 

# = ��z¤µz¤¶z�Yz·                                                              (2.98) 

Waves with d < 0.5 indicate weak polarization, and d > 1 indicate a deviation of the data from the 

assumptions made to derive the Stokes parameters.  
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 Additionally, other variables calculated from the Stokes parameters are the horizontal 

propagation direction and axial ratio (AR), Equation 2.99 and 2.100, respectively.  

C¸y2¹ = µ�	                                                                     (2.99) 

AR = cot	�0.5 sin`.�¶·M��	                                             (2.100) 

It is through these relations that waves are characterized in this work. A MATLAB code was designed 

to compute the wavelet transform and wave parameter calculations (See Appendix A).  
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Chapter 3: Materials and Methods  

Over the Summer of 2020, training launches were conducted using 600-gram Totex 

meteorological balloons. These balloon launches took place on the Tower Lawn at the University of 

Idaho, Moscow, Idaho (-46.73006, -117.0134). All, but one launch, took place during the day. These 

preliminary launches were aimed to train a team of students for the 48-hour campaign in Chile during 

the December 14, 2020 total solar eclipse, and to validate all of the operating procedures.  

Collecting ground measurements  

 Ground measurements were collected through a Lufft ground weather station (WS502-UMB 

Smart Weather Sensor). It is a compact weather sensor capable of measuring temperature, relative 

humidity, air pressure, wind direction, wind speed and radiation. Attached to the Lufft is a built-in 

housing for the CR300 data-logger used to interface with the Lufft and a battery to power the overall 

system. To output the data, PC400 software was used on a standard PC. It should be noted that both 

the Lufft and data-logger were set to a baudrate of 1200 Bd and SDI-12, which is an asynchronous 

serial communications protocol for intelligent sensors that monitor environmental data. A standard 

operating procedure for the Lufft set-up can be seen in Appendix B.  

Ground-based receiving and processing station  

 To receive data from radiosondes, a GS-U groundstation from GRAW was used. This radio 

receiver operates at a frequency range of 400 – 406 MHz. Data was continuously collected via the 

radiosonde and measurements were sent to the groundstation at intervals of one second. The GS-U 

was fully controlled via USB by GRAWMET software 5.15, a user interface specifically designed for 

the groundstation. It is through this software that sounding profiles were obtained. An SOP for 

running GRAWMET and initializing a radiosonde can be found in Appendix C.  

Helium fill 

The sondes are pre-calibrated for an average rise rate of 5 m/s. The rise rate of the balloon is 

highly dependent on the amount of helium that goes into it. For example, too much helium will cause 

the balloon to rise at high speeds, but too little will result in slow travel. Knowing how much helium 

to add is complex as it is dependent on several variables such as drag force. To tackle this problem, 

the balloon and payload are treated as a statics problem, as seen in Figure 3.1 and Equation 3.1. 
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Figure 3.1. Force diagram of the balloon system. 

The summation of forces is depicted as 

                                                      0 = $¾-¿1À��1 − $�lÀ+ − $*15�ÁuÂÀ55                                       (3.1) 

Force due to buoyancy is 

                                                               $¾-¿1À��1 = �,��ÀKl�                                                       (3.2) 

Where V is the volume of helium in the balloon at the time of launch, or ground conditions, g is the 

acceleration due to gravity, and �ÀKl is the density of air.  

Force due to drag is 

                                                                $�lÀ+ = .6�ÀKlQ64M?                                                         (3.3) 

Where Q is the rise velocity of the balloon and payload, 4M, is the drag coefficient, and A is the cross 

sectional area.  

Force due to mass is, 

                                                           $*15�ÁuÂÀ55 = �"Ã �"' �"cÁ�,                                      (3.4) 

Where "Ã is the mass of the balloon, "' is the mass of the payload, and "cÁ is the mass of the 

helium. 

z 
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Assuming helium behaves as an ideal gas, the volume of helium in the balloon can be expressed using 

the IGL. 

To get everything in terms of mass of helium, the moles of helium (n) can be expressed as shown in 

Equation 3.5 

                                                                           y = uaÄÂaÄ                                                                   (3.5)   

Where ÅcÁ is the helium molar mass.  

Solving for volume in the IGL, and substituting Equation 3.5 yields Equation 3.6 

                                                                             � = uaÄ]_µÂaÄ                                                              (3.6) 

Where the mass of helium is defined as,  

                                                                          "cÁ = �cÁ�                                                            (3.7) 

Recall that in Equation 3.2, air density is needed. In many cases, air can be assumed to travel as a dry 

air parcel, however, for this system, relative humidity should be considered because the system of 

equations used to calculate mass is heavily dependent on a buoyancy calculation dictated by the 

difference in fluid densities.  

To calculate density of moist air, and assuming it to be an ideal gas, Equation 3.8 can be used.  

       �ÀKl = � ÆÇÈÉ �.¤/��.¤/ÇÊÇÈ �                                                        (3.8) 

Where P is the pressure of the humid air, or ground pressure at launch, �À is the individual gas 

constant of air, �2 is the individual gas constant of water vapor, and x is the humidity ratio. 

 

The humidity ratio can be expressed in terms of a mass basis as follows: 

� = uÊuÈ                                                                (3.9) 

Where "2 is the mass of water vapor in the moist air and "À is the mass of dry air in the moist air.  

The remaining unknown is the cross-sectional area. Assuming the balloon to be a perfect sphere, the 

cross-sectional area can be expressed with Equation 3.10. 

? = 	FD6                                                            (3.10) 
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Where r is the radius of the helium filled balloon.  

The radius of the balloon can be expressed in terms of volume. It is known that volume of a sphere is:  

� = �ËFDË                                                          (3.11) 

Which can be rearranged to form an expression for radius as: 

D = �Ë� �8 YÌ
                                                          (3.12) 

Taking these equations into consideration, results in the following: 

 

                     		0 = �,Í� ÆÇÈÉ �.¤ÎÊÎÈ 		 �.¤�ÎÊÎÈ 		 ÇÊÇÈ Ï − .6 �� ÆÇÈÉ �.¤ÎÊÎÈ 		 �.¤�ÎÊÎÈ 		 ÇÊÇÈ �6¦M? − �"Ã �"' � �cÁ��,            (3.13)  

  

The unknown variables are volume, �, drag coefficient, ¦M, and area, A. Through a trial-and-error 

method of filling balloons with helium and launching them to record their rise rate, a drag coefficient 

of 0.285 was determined to be the most optimal. The data supporting this value is provided in Table 

3-1. 

Table 3-1. Experimentally measured mean rise rates with varying drag coefficients. 

Launch Drag Coefficient Helium-fill Volume 

STP (SL) 

Mean Rise Rate 

(m/s) 

|Error| 

(%) 

1 0.23 1310.56 5.58 10.39 

2 0.23 1309.89 5.29 5.48 

3 0.23 1306.35 4.37 14.40 

4 0.23 1302.87 4.21 15.8 

5 0.3  1301.70 5.995 16.60 

6 0.3 1590.14 5.38 7.06 

7 0.285 1582.80 5.31 5.85 

8 0.285 1488.61 4.98 0.4 

9 0.285 1454.47 5.28 5.37 
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 A Python helium fill code was developed to accurately calculate the helium needed for a 

particular temperature, pressure, relative humidity, payload mass, and balloon mass dependent on the 

day of launch. This code can be found in Appendix D. 

Wavelet Analysis  

Wavelet analysis was performed on the radiosonde profile data collected during training 

exercises. However, before any analysis is done on the profile data, the files are “cleaned” to remove 

any blank rows of data where the radiosonde lost signal with the groundstation. If more than 10 

minutes of consecutive data is missing, the profile is considered bad and analysis is not performed. If 

less than 10 minutes of consecutive data is missing, the rows with missing columns are manually 

deleted from the profiles. There is also the possibility that some flights require being rerun in 

GRAWMET, usually due to improper saving or bugs in the software, which impact the exported data. 

An SOP on how to rerun data in GRAWMET can be found in Appendix E. Other things to look for in 

data cleaning is ensuring start times and altitudes/coordinates are entered and saved properly. It 

should be noted that the MATLAB wavelet analysis code is designed to read radiosonde profiles of a 

specific form. Specifically, each profile needs to have a heading.  

Radiosonde measurements are not always uniform, especially with varying rise rates and 

interrupted radio signals. In order to perform a wavelet analysis the profile data is interpolated so that 

the data is spatially uniform. Interpolation of the profile data should yield reasonable estimates for 

missing data points based on the known profile data. This step is included in the analysis code and the 

MATLAB can be seen in Appendix A under the “preprocess data” script.  

With clean and spatially uniform data the Wavelet Transform is performed using the 

MATLAB code as detailed in Chapter 2. The wavelet transform uses the Morlet wavelet by default 

(k0=6) and computes the wavelet transform. The outputs for this code will give the wavelet transform 

as well as period, scales, and the cone of influence. Most importantly, the wavelet coefficients are 

determined. These coefficients are the zonal and meridional wind components, denoted as U and V, 

respectively.  

Once the wavelet transform is complete, a power surface is created by S = |�|6 � |�|6. The 

surface is scanned for local maxima on the wavelet surface that are inside the cone of influence. An 

example from one of the training flights is shown in Figure 3.2. After identifying local maxima, the 

extension of the corresponding wave packet in scale and height is recorded, denoted as s1, s2, z1, 

and z2, respectively. This is done by tracing a rectangle around each of the detected local maxima on 
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the constructed power surface by iterating in the four directions until either 25% of peak power is 

reached, or until the power surface begins increasing.  

Figure 3.2. Power surface from one of the training profiles. The dome encompassing everything signifies the 

cone of influence. The rectangles trace local maxima found. Blue dots are waves detected that did not meet the 

criteria of AGWs and red dots meet the criteria. Power surface is used to compare different wavelet power 

spectra to a white-noise power spectrum.  

 

To get the time series for U, V, and T the wavelet surface that is inside of the rectangle traced, or 

local maxima detected, is inverted. A sum of the columns of each is done, and the sum is multiplied 

by a reconstruction constant. The reconstruction constants are defined by Torrence and Compo for 

each of the wavelet types used [24]. For the default Morlet wavelet, the reconstruction factor is 0.776. 

Finally, using the time series just found for U, V, and T, values below 50% of the max power surface 

are filtered out, and Stokes parameters are found as described in Chapter 2. Other wave parameters as 

described by Murphy et al. [27] can also be calculated. Table 3-2 summarizes the intrinsic parameters 

and Table 3-3 lists the ground-based parameters. 
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Table 3-2. Intrinsic parameters [27] 

Parameter Description Equation 

7� Horizontal wave number 7�6 = H6"6s6 ÐBqH6 − 1Ñ 

>� Horizontal wavelength >� = 2F7�  

7 Zonal wave number 7 = 7�AmyE 

; Meridional wave number ; = 7�4@AE 

4̂3 Intrinsic vertical phase speed 4̂3 = Bq" 

4̂  Intrinsic horizontal phase speed 4̂ = Bq7� 

4̂/ Intrinsic zonal phase speed 4̂/ = Bq7  

4̂1 Intrinsic meridional phase speed 4̂1 = Bq;  

4̂+3 Intrinsic vertical group velocity 4̂+3 = − 1Bq" �Bq6 − H6� 

4̂+/ Intrinsic zonal group velocity 4̂+/ = 7s6Bq"6 

4̂+1 Intrinsic meridional group velocity 4̂+1 = ;s6Bq"6 

4̂+� Intrinsic horizontal group velocity 4̂+� = Ò4̂+/6 � 4̂+16  
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Table 3-3. Ground-based parameters 

Parameter Description Equation 

4+/ Zonal group velocity  4+/ = 4̂+/ � QÓ  

4+1 Meridional group velocity  4+/ = 4̂+/ � �̅ 

4+3 Vertical group velocity  4+3 = 4̂+3 

B Ground-based frequency  B = Bq � |7�||QÓ�| cos�E2 − E� 
4/ zonal phase velocity 4/ = 4̂/ � QÓ � �̅;7  

41 Meridional phase velocity 41 = 4̂1 � �̅ � QÓ7;  

4 Phase velocity 4/ = Bq7� � QÓ��4@AE2 − E� 

Q′i′ÓÓÓÓÓÓ Zonal momentum flux  Q′i′ÓÓÓÓÓÓ = −�Bqs6 ,Qj Í�jÓÓÓ � 90�Ó Ï 

�′i′ÓÓÓÓÓÓ Meridional momentum flux �′i′ÓÓÓÓÓÓ = −�Bqs6 ,�j Í�jÓÓÓ � 90�Ó Ï 

Ö× Kinetic energy Ö× = 12 ØQj6ÓÓÓÓ � 	�j6ÓÓÓÓÙ 

³× Potential energy  ³× = ,62s6 �j6ÓÓÓÓ�Ó 	 

Where QÓ and �̅ are the background zonal and background meridional wind components, respectively. 

Horizontal wind direction, degrees clockwise from north, is defined as E2. 
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Chapter 4: Total Solar Eclipse 2020 

Introduction 

On August 21, 2017, data were collected during a total solar eclipse over the United States. 

The campaign, conducted by the University of Montana (UM), took place in Fort Laramie, WY 

(ARTSE2017). Three UM radiosonde launch sites were set-up through-out the path of totality, with 

no more than 55 km in-between each other. In total, 19 radiosondes were launched over the course of 

48 hours, and the wavelet method was used to analyze the data. Wave-like structures with intrinsic 

angular frequencies in the range of 3.3 – 4.2x10-2  s-1 within altitudes of 18-20 km were detected [28]. 

Further, a dominant gravity-wave structure around 19 km with an intrinsic frequency of 

approximately 4.2x10-2 s-1 and a vertical wavelength of about 20 km was measured. The detected 

wave is believed to be solar eclipse induced; however definitive results were inconclusive. The 

campaign also targeted lower flight altitudes, missing key data for stratospheric AGW detection.  

On July 2, 2019, the prior methods were modified to target higher temporal frequency and 

higher altitudes [12]. The eclipse being monitored occurred in South America over Chile and 

Argentina. Eclipse measurements were conducted outside of Andacollo, Chile at the Collowara 

Tourist Observatory. Radiosondes were launched every hour, from 23 hours before totality to two 

hours after, for a total of 25 radiosondes launched over the course of 27 hours. Three solar eclipse 

induced AGWs were detected and their parameters were compared using the wavelet method and 

hodograph method. The wavelet method revealed one high frequency wave at 26 km four hours after 

totality with an intrinsic frequency of 35, an intrinsic period of 40 min, and a propagation direction of 

16°. The hodograph method revealed two solar eclipse induced AGWs 40 minutes after totality. The 

first AGW was detected at 23 km, with an intrinsic frequency scaled by the Coriolis parameter of 3.5, 

a period of 6.7 hours, and a propagation direction of 45°. The second wave was detected at 25 km, 

with an intrinsic frequency scaled by the Coriolis parameter of 5.9, a period of 4 hours, and a 

propagation direction of 49°. The findings during the 2019 campaign were the first unambiguous 

detection of eclipse induced GWs in the middle atmosphere.  
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On December 14, 2020, another total solar eclipse in South America occurred with the path 

of totality going right through Chile, as shown in Figure 4.1. This presented a unique opportunity to 

replicate methods in a similar location to the 2019 eclipse campaign. Two designated launch sites 

were set-up, one in Tolten and the other in Villarrica. Over the course of 48 hours, 50 radiosondes in 

Tolten and 50 in Villarrica were launched every hour. Launches started 24 hours before totality and 

continued for 24 hours after totality. The campaign goal was to detect eclipse induced AGWs in the 

stratosphere using the methods described above.  

Figure 4.1. Total solar eclipse path of totality. 

Efforts to collect atmospheric data was conducted by Montana Space Grant Consortium (MTSGC), 

Idaho Space Grant Consortium (ISGC), and Oklahoma Space Grant Consortium (OKSGC). 

Methods and Materials 

Frequency allocation 

Radiosondes were launched simultaneously in different locations, thus, to avoid frequency 

interference between radiosondes in the atmosphere, a frequency allocation schedule was followed. 

Appendix F summarizes the Villarrica and Tolten frequency allocations and launch times. 

Frequencies were adjusted through GRAWMET when initializing each radiosonde. Each flight was 

identified as the first letter of the launch location and the flight number i.e., the first flight in 

Villarrica is denoted as “V1”.  

Equipment  

Each team transported their Lufft, ground stations, computers, 600-gram balloons, 

radiosondes, parachutes and de-reelers, as well as a designated launch box equipped with things like: 

tape, scissors, scale, gloves, tarp, etc. Helium was purchased in Chile and distributed between the two 
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launch sites. SOPs developed over the Summer, and described above, were followed for helium fill, 

initialization of radiosondes and running the GRAWMET software. Each profile was saved following 

the naming convention of: First letter of launch location_UTC_Date_Computer name. This was done 

in an effort to avoid any confusion between profiles being saved and distributed to other team 

members.  

Wavelet-analysis code modifications 

A major part and most of the work focused on in this thesis is the reanalysis of methods used 

for previous campaigns and their application to data collected in Chile in 2020. Originally, for the 

2019 eclipse, the background was removed using a rolling mean. After further analysis, it was 

decided that the removal of the background was not needed, as the wavelet transform removes any 

background noise. The Morlet wavelet is an amplitude modulated sine wave that closely resembles 

AGWs. Signals in the data that closely resemble a Morlet wavelet will project onto it and through 

convolutions, any background noise is filtered out.  

Additionally, analysis was originally done using a five- meter height sampling frequency 

(hsf), which sets the grid spacing to which all of the data is interpolated to. It is believed that when 

setting the hsf at a low value, such as a five-meter hsf, turbulence effects can be detected. To rule this 

out, data analysis was done using a ten-meter hsf.  

Furthermore, additional checks were implemented. The original checks are followed: 

Check 1: Intrinsic frequencies are between the Coriolis frequency and Brunt- Väisälä frequency. 

Anything outside of this range is non-physical.  

Check 2: Stokes parameters, Q and P, must be greater than 0.05. Anything below indicates weak 

wave activity and should be discarded.  

Check 3: Waves with a degree of polarization, d, must be greater than 0.5 and less than one. A degree 

of polarization less than 0.5 indicate weak polarization. A degree of polarization greater than one 

indicate a deviation of the data from the assumptions made to derive the Stokes parameters.  

Check 4: Local maximum candidate from the power surface should be inside the COI. If it is not, the 

wave is discarded.  

Check 5: Waves must meet a threshold corresponding to a perturbation amplitude of 0.1 m s-1 to be 

detected as wave packets. Anything lower than this threshold is deemed as noise. 

The additional checks implemented in this work are: 
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Check 6: The vertical wavelength should be less than half of the total vertical distance.  

Check 7: The horizontal wavelength should be greater than the balloon drift distance.  

Checks 6 and 7 were suggested by AGW expert, Dr. Jie Gong, as waves should follow these physical 

characteristics.  It should be noted that all of these modifications are included in the MATLAB code 

in Appendix A. 

AGW analysis 

The wavelet method was used to extract wave parameters as described in Chapter 2, and 

following the code in Appendix A. Additionally, to isolate eclipse-induced waves, other potential 

sources were analyzed. Mountain waves were characterized as propagating in the opposite direction 

of the prevailing wind in the intrinsic frame of reference, as well as have ground-based horizontal 

phase speeds near zero [12]. The other major analysis done was to identify significant wind shears. 

These were distinguished as producing AGWs of the same average wind speed as the shear layer and 

propagation direction equal to the direction of the change in wind speed [29]. The Richardson-Index 

(RI) method looks for an RI number between 0 and 0.25. It is believed that between these two values, 

there is a fluid instability that contributes to the formation of AGWs [29]. Additionally, convective 

instabilities can be detected through a similar method. It is seen that when the RI number falls below 

zero, there are convective instabilities [30]. A code in Python, by UM student Hannah Woody, for 

calculating significant wind shear and convective instabilities was developed based on the RI, and is 

provided in Appendix G. 

2020 data results  

The 2020 solar eclipse was the first and only total solar eclipse in 2020. With one-hundred 

radiosondes launched during the campaign, one would expect to gather ample amount of data 

correlating AGWs with the solar eclipse, as this is a unique situation where one criterion can be 

completely isolated based on solar irradiance. However, during the entirety of the eclipse, another 

natural phenomenon, called an atmospheric river, occurred, shown in Figure 4.2. An atmospheric 

river transports water vapor and forms long, narrow regions in the atmosphere. When it makes 

landfall, it releases the water vapor in the form of rain. This phenomenon has made data analysis 

extremely difficult.  



39 

 

Figure 4.2. Image taken from Advanced Basline Imager (ABI) on Geostationary Operational Environmental 

Satellite 16 (GOES-16) operated by the National Oceanic and Atmospheric Administration (NOAA). 

 

Due to such a strong storm, most of the data collected in Villarrica has large gaps of data 

missing, especially in the region of the stratosphere. Luckily Tolten was not impacted as much, with 

only a couple unrecoverable flight profiles. For this reason, data analysis has been solely focused 

using Tolten data sets. Through the wavelet analysis developed, many AGWs have been detected. 

The mean horizontal phase speed of all waves detected is 5.81 m/s with a standard deviation of 3.24 

m/s (n=48). A mean period of approximately 13.43 hours corresponding to a mean intrinsic frequency 

over the Coriolis frequency,  
Oq� , of 1.94 (standard deviation of 0.67) was detected.  

Moon’s shadow  Atmospheric river 
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 Totality occurred right after 17:00 UTC, thus special interest around the time of totality and 

the partial eclipse was taken into consideration for data analysis. To try and identify the potential 

sources of AGWs detected, certain characteristics known to be attributed to AGWs due to convective 

instabilities are evaluated. These characteristics are listed in Table 4-1.  

Table 4-1. Characteristics of solar eclipse induced AGWs. 

Characteristic Reference 

High intrinsic frequency  [31] 

Isotropic horizontal propagation direction  [31] 

Horizontal wavelengths on the order of tens to hundreds of km [32] 

Spatially localized  [32] 

Richardson-index number below zero  [30] 

Higher horizontal phase speed [30] 

 

Profiles centered around totality, flights 20-30, resulted in the following results: 

Table 4-2. Results for profiles centered around totality. 

Flight  Alt of 

detection (km) 

Horizontal 

wavelength (km) 

 

ωq /f Horizontal phase 

speed (m/s) 

Propagation direction 

(deg N from E) 

T20 No gravity waves detected 

 

 

 

T21 

18.033 116.236 2.17 3.67 -47.902 

19.618 117.425 1.67 2.85 11.522 

20.093 226.131 2.01 6.63 19.528 

22.338 132.714 1.72 3.33 152.981 

23.203 320.133 1.35 6.29 45.575 

26.898 100.65 2.70 3.96 168.460 

28.498 365.96 1.65 8.84 258.927 

 

 

 

T22 

14.641 260.861 1.28 4.90 41.690 

17.696 193.04 2.45 6.92 -13.565 

17.826 209.39 1.53 4.70 61.627 

19.371 91.845 2.00 2.68 210.482 

23.891 253.172 1.42 5.25 -82.915 
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27.036 84.792 5.55 6.85 254.029 

27.596 69.931 3.26 3.32 -20.857 

 

T23 

18.551 910.484 1.21 16.15 -50.642 

18.716 107.459 3.19 5.00 -1.757 

28.136 88.684 2.29 2.95 -80.735 

 

T24 

16.589 285.198 1.78 7.43 30.136 

19.069 78.907 2.15 2.47 235.182 

 

T25 

18.478 512.583 1.55 11.62 31.643 

18.508 185.44 1.86 5.04 24.579 

25.768 68.452 3.62 3.61 113.99 

 

T26 

19.409 387.511 1.63 9.21 264.353 

26.144 117.469 2.23 3.81 157.025 

T27 17.873 308.407 1.11 5.00 25.468 

 

 

T28 

17.762 145.788 1.53 3.26 -68.821 

18.402 101.368 2.58 3.81 -39.911 

19.647 244.991 2.29 8.17 -44.307 

21.327 126.121 1.73 3.17 46.429 

 

 

T29 

19.27 79.953 3.9 4.53 30.664 

22.79 167.281 1.44 3.51 53.458 

25.085 224.133 3.17 10.35 232.284 

26.66 134.094 1.93 3.77 -75.570 

 

 

T30 

16.504 97.972 2.72 3.88 -27.080 

19.024 718.621 1.23 12.86 240.946 

20.634 104.588 3.3 5.01 26.367 

25.589 414.338 2.4 14.46 -55.331 

26.719 171.853 1.72 4.31 -76.019 

31.739 74.551 4.04 4.36 -53.832 

 

To visualize the propagation direction and intrinsic frequency, Figure 4.3 plots the results outlined in 

Table 4-2. Each red arrow represents a gravity wave detected and it points in the direction of 
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propagation. The arrows are scaled by the gravity wave’s intrinsic frequency, thus longer arrows are 

indicative of higher intrinsic frequencies.  

Figure 4.3. Tolten AGWs detected around totality. Each slanted line indicates a radiosonde flight, and each 

arrow is an AGW detected. Arrows are scaled by the AGW’s intrinsic frequency, thus longer arrows have 

higher intrinsic frequencies.   

 

 The results indicate three potential AGWs induced by the solar eclipse, which are outlined in 

Table 4-3. The waves being considered occurred within a few hours of totality. These waves stand out 

due to their high intrinsic frequency and high horizontal phase speed, which are known characteristics 

of solar eclipse induced AGWs, as outlined in Table 4-1.  

Table 4-3. Potential solar eclipse induced waves. 

Flight  Alt of detection 

(km) 

Horizontal 

wavelength (km) 

 

ωq /f Horizontal 

phase speed 

(m/s) 

Propagation direction 

(deg N from E) 

T28 19.647 244.991 2.29 8.17 -44.307 

T29 25.085 224.133 3.17 10.35 232.284 

T30 25.589 414.338 2.4 14.46 -55.331 
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To further evaluate them, plots for T28 - T30 of the Richardson-Index number were examined and 

can be seen in Figure 4.4. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.4. Richardson-Index number below zero indicates regions of convective instability. The profiles are 

denoted by (a) T28, (b) T29, and (c) T30. 
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The RI method looks at the gradient of the virtual potential temperature, and when convective 

instability occurs, the gradient falls below zero. Convective instability is obvious in T28 and T30, but 

less so in T29. As seen in Figure 4.4 (a) and (c) there are dense regions of the RI number that fall 

below zero. In Figure 4.4 (b) it is much less apparent, however there is a small region around 25 km – 

30 km that falls below zero. With this in mind, other sources need to be ruled out.   

Propagation direction may not matter in solar eclipse induced gravity waves, but it is useful 

in identifying other sources, such as mountain induced AGWs and wind shear induced AGWs. These 

type of AGWs will also have very distinct characteristics, which can be seen in Table 4-4.  

Table 4-4. Characteristics of mountain and wind shear induced AGWs. 

Source Characteristic Reference 

 

 

Mountain 

Ground-based phase speed near zero [31-33] 

Greater intermittency [33] 

Horizontal propagation directions opposite to the flow of 

wind over topography 

[30] 

Horizontal wavelengths on order of hundreds to thousands 

of km 

[31] 

Dominate horizontal wavelengths at 400 km and 110 km in 

the Andes  

[34] 

   

 

Windshear 

Lower frequency  [31] 

Shear greater than 7.5 m/s every 1000 m  [35] 

Propagating away from shear direction [36] 

Richardson-Index number between 0 and 0.25 [29] 

Phase speed matching wind speed [31] 

 

Flight T20 occurred about five hours before the eclipse, and no gravity waves were detected 

in this profile. The flights following were T21 and T22, which were completed before the partial 

eclipse began. These profiles and other profiles before T20 are great sources to distinguish mountain 

and windshear induced AGWs from solar eclipse induced AGWs. Within T21 and T22, fourteen 

AGWs were detected between both flights. Intrinsic frequencies and phase speeds are not as high 

compared to waves detected in T28 - T30. However, due to the atmospheric river, data analysis is still 

on-going to determine if the waves in T28 - T30 are solar eclipse induced. Mountain and windshear 

sources cannot be completely ruled out yet. Atmospheric river experts have been brought in to help 

with further data analysis. 
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Conclusion 

Since 1970, atmospheric gravity waves induced by solar eclipses have been of great interest 

to many atmospheric scientists. Data collection is tedious and can only be done during isolated 

windows, thus progress in the field is slow-moving. Until 2019, there were no conclusive results 

indicating atmospheric gravity waves are induced by solar eclipses. Since then, using a wavelet-

based method, solar-eclipse induced waves are evident in the middle-atmosphere. In the data 

collected during the 2020 eclipse, promising candidates are being considered, and with further 

analysis there is potential to confirm solar eclipse induced AGWs from the 2020 field campaign.  
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Chapter 5: Conclusion and Future Directions  

Conclusion 

Training launches have led to an improved gravity wave analysis, which will be used for 

future campaigns in an effort to detect solar eclipse induced gravity waves. The 2020 campaign was a 

great opportunity to expand data sets during a total solar eclipse. Over 175 AGWs were detected 

based only on Tolten data. On-going analysis is being completed to identify the sources of these 

waves. Because many of the data sets in the 2020 campaign were overtaken by the atmospheric river, 

the data sets are also of great interest to many atmospheric scientists.  

Future Directions 

UM detected three waves representing the first unambiguous detection of eclipse-induced 

gravity waves in the middle atmosphere during the 2019 solar eclipse. This drove the campaign for 

2020, and with future solar eclipses happening over the next few years, it is of great interest to build 

on the data sets collected. The methods described in this thesis will work as training material for 

future campaign teams, however there is room for improvement on the methods presented.  

With an increase in data sets, it would be valuable to compare results from other gravity wave 

analysis methods. The wavelet-method is promising; however, this method tends to favor higher 

frequency waves, compared to the hodograph method that favors lower frequency waves. Thus, 

developing an analysis method that does not favor certain waves over the other will allow for more 

accurate characterization of AGWs.  

The main analysis is done in MATLAB. However, the limitation here is that MATLAB is not 

an open source, thus resulting in fewer people being familiar with the program. For educational 

purposes, the continuation of this campaign may thrive in an open environment like Python, as it is 

more user friendly. With this in mind, a Python script replicating the MATLAB script was created, 

but analysis comparing the two is on-going. Additionally, other team members are actively 

developing procedures for completing hodograph analyses of the collected data sets to complement 

the analysis in this thesis.  

Finally, everything from data collection to analysis depends on sounding profiles. During the 

2020 eclipse an unprecedented atmospheric river caused most of the profiles from the Villarrica 

launch site to come in with an astonishing amount of missing data. This posed a great challenge in the 

analysis as the team struggled to decide which profiles were usable and which needed to be thrown 

out. It would be beneficial to design a more reliable payload to avoid the loss of data during a storm 

or other natural phenomena.  
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Appendix A - Wavelet-Analysis MATLAB Code  

Main script: runFile 

warning('off', 'MATLAB:polyfit:RepeatedPointsOrRescale'); 
addpath('wave_matlab/'); % for wavelet analysis 
addpath('dnsfnu/'); % for plot coordinates 
addpath('acf/'); % for autocorrelation function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           User defined variables                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dataDirectory = 'C:\Users\Temp\Documents\MATLAB\GW Code December 

2020\ToltenCleaned2\T26'; 
saveDirectory = 'C:\Users\Temp\Documents\MATLAB\GW Code December 

2020\Stokes_parameters\ExtraChecksMarked'; 
% The w/f happened with no correction to wind direction, a window of 
% 12km - 40km, and a heightSamplingFrequency of 5m. 
% heightSamplingFrequency of 7m makes a 90 w/f show up. 
showPowerSurfaces = true; % Do you want to show the wavelet transform 

power surfaces? 
save = true; % Do you want to save the data? It will save in 

saveDirectory. 
lowerCutOffAltitude = 12000; % Altitude where you want to start analysis 
upperCutOffAltitude = 40000; % Altitude where you want to end analysis -  
% a value of 40000 will go to the highest point in the profile. 
latitude = 30.250; % Latitude of launch location, using absolute value for 

Coriolis parameter. 30.25 for test data 
heightSamplingFrequency = 5; 
printData = true; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                            End of user editing                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
textFiles = fullfile(dataDirectory, "*.txt"); 
files = dir(textFiles); 
f1 = figure; 
f2 = figure; 
set(0, 'CurrentFigure', f1); 
hold on; 
set(0, 'CurrentFigure', f2); 
hold on; 
counter = 0; 
first = true; 
minLat = Inf; 
minLon = Inf; 
maxLat = -Inf; 
maxLon = -Inf; 
% Iterate over files in dataDirectory 

  
for i=1:size(files) 
    current = files(i).name; 
    fprintf("Current file: %s\n", current); 
    current = fullfile(dataDirectory, current); 
    try 
        % All analysis logic is in doAnalysis 
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        [latitudeArray, longitudeArray, altitude, data, ~, ~, ~, ~] = 

doAnalysis(current, ... 
            save, saveDirectory, showPowerSurfaces, lowerCutOffAltitude, 

upperCutOffAltitude,... 
            latitude, heightSamplingFrequency, printData); 
        altitude = seconds(altitude); 
        % the rest of the code here is plotting and error checking. 
        if isempty(data) 
            continue; 
        end 
        % Get latitude of bounding box around all radiosondes 
        mLat = min(latitudeArray); 
        mLon = min(longitudeArray); 
        mxLat = max(latitudeArray); 
        mxLon = max(longitudeArray); 
        if mxLon > maxLon 
            maxLon = mxLon; 
        end 
        if mxLat > maxLat 
            maxLat = mxLat; 
        end 
        if mLat < minLat 
            minLat = mLat; 
        end 
        if mLon < minLon 
            minLon = mLon; 
        end 
        % plot the latitude, longitude, and altitude in 3d 
        set(0, 'CurrentFigure', f1); 
        plot3(longitudeArray, latitudeArray, altitude); 
        % 3D plot magnitudes of quiver have to be 0 or else the plot is  
        % weirdly scaled. The 3D plot is just for altitude of detection 

and 
        % propagation direction. 
        magnitudes = 0*data.w_over_f + 0.1; 
        angle = data.propagation_dir_compass; 
        quiver3(data.lon_of_detection, data.lat_of_detection, ... 
            data.alt_of_detection_km*1000, magnitudes.*cosd(angle), ... 
            magnitudes.*sind(angle), zeros(size(angle), 'like', angle), 

0); 
        set(0, 'CurrentFigure', f2); 
        offset = 10; 
        % Plot a vertical line with placeholder, each one offset by 10 

from 
        % each other on the x-axis. 
        altitude = seconds(altitude); 
        placeholder = zeros(size(altitude), 'like', altitude) + 

(counter*offset); 
        plot(placeholder, altitude/1000, 'k'); % plot altitude in km. 
        hold on; 
        % xlim([-15, 160]); 
        % ylim([9, 60]); 
        magnitudes = data.w_over_f; 
        % The magnitudes of the red lines are the axial ratios of the 
        % gravity waves - axial ratio = intrinsic frequency / coriolis 
        % frequency. 
        % The for loop below just plots the red lines in the direction of 
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        % propagation of the gravity wave 
        for q=1:size(data.alt_of_detection_km) 
            x1 = counter*offset; 
            x2 = counter*offset + magnitudes(q)*cosd(angle(q)); 
            y1 = data.alt_of_detection_km(q); 
            y2 = data.alt_of_detection_km(q) + 

magnitudes(q)*sind(angle(q)); 
            [xf, yf] = ds2nfu([x1 x2], [y1 y2]); 
            xf(xf > 1) = 1; 
            yf(yf > 1) = 1; 
            % arrow([x1 x2], [y1 y2]); 
            % annotation(gcf, 'arrow', xf, yf, 'color', '#9a0200', 

'LineWidth', 2) 
            % plot([x1 x2], [y1 y2], 'color', '#9a0200', 'linewidth', 3); 
        end 
        scaleFactor = 15; 
        if first 
            indicesForFilenames = i 
            offsets = counter*offset; 
            first = false; 
        else 
            indicesForFilenames = cat(2, indicesForFilenames, i) 
            offsets = cat(2, offsets, counter*offset); 
        end 
        counter = counter + 1; 
    catch e 

         
        if (strcmp(e.identifier, 'MATLAB:table:UnrecognizedVarName')) 
            fprintf("Data file %s does not contain a variable needed for 

analysis. Rerun sounding.\n", files(i).name); 
            fprintf("----------------------------\n"); 
            continue; 
        end 
        rethrow(e); 
    end 
        fprintf("----------------------------\n"); 
end 
set(0, 'CurrentFigure', f1); 
% xlim([minLon maxLon]) 
% ylim([minLat maxLat]) 
xlabel('Longitude (deg)'); 
ylabel("Latitude (deg)"); 
zlabel("Altitude (m)"); 
title("Gravity wave detection altitudes and directions (deg cw from 

North)"); 
set(0, 'CurrentFigure', f2); 
allFiles = dir(textFiles); 
filenames = allFiles(indicesForFilenames)'; 

  
for i=1:size(filenames, 2) 
   filenames(i).name = filenames(i).name(1:3); 
   filenames(i).name(1) = 'F'; 
end 

  
xticks(offsets); 
yticks([0 10 20 30]) 



53 

xticklabels(["0", "10", "20", "30"])  
xticklabels({filenames.name}); 
set(gca,'XTickLabelRotation', 45, 'fontsize', 16) 
ylabel("Altitude of detection (km)") 
xlabel("Flight number") 
title("Propagation direction and detection altitude of gravity waves", 

'fontsize', 16); 

 

Read the radiosonde data 
function [data] = readRadioSondeData(filename, firstDataLine, 

numHeaderLines) 

if nargin < 2 

    firstDataLine = 21; 
    numHeaderLines = 18; 
end 
opts = detectImportOptions(filename, 'NumHeaderLines', numHeaderLines); 
opts.DataLines = [firstDataLine Inf]; 
data = readtable(filename, opts); 

end 

 

Interpolate for spatial uniformity: preprocessData 

function [alt, u, v, temp, bvFreqSquared] = preprocessData(alt, u, v, 

temp, pressure, time, heightSamplingFrequency) 
% This function resamples the data and removes the background. 
alt = seconds(alt); 
potentialTemperature = (1000.0^0.286)*temp./(pressure.^0.286); % from 

Jaxen 
tt = timetable(alt, u, v, temp, potentialTemperature, time); 
uiq = unique(tt.alt); 
tt = retime(tt, uiq); 
%tt = retime(tt, 'secondly', 'linear'); % interpolate to regular grid 
dt = seconds(heightSamplingFrequency); 
tt = retime(tt, 'regular', 'linear', 'TimeStep', dt); 
% using linear interpolation. 
alt = seconds(tt.alt); 
u = tt.u'; 
v = tt.v'; 
temp = tt.temp'; 
time = tt.time'; 
potentialTemperature = tt.potentialTemperature; 
% remove background winds with a moving mean. 
altExtent = max(alt) - min(alt); 
np = max(fix(altExtent/heightSamplingFrequency/4),  11); 
% enforce uniform spatial sampling... 
% u = averageToAltitudeResolution(u, alt, heightSamplingFrequency); 
% v = averageToAltitudeResolution(v, alt, heightSamplingFrequency); 
% temp = averageToAltitudeResolution(temp, alt, heightSamplingFrequency); 
% potentialTemperature = averageToAltitudeResolution(potentialTemperature, 

alt, heightSamplingFrequency); 
% alt = averageToAltitudeResolution(alt, alt, heightSamplingFrequency); 
bvFreqSquared = bruntVaisalaFrequency(potentialTemperature, 

heightSamplingFrequency); % returns the squared BV frequency. 
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meanU = movmean(u, np); 
meanV = movmean(v, np); 
meanT = movmean(temp, np); 
%These next three lines are where the background gets subtracted, however, 
%we do not need to do this when applying the wavelet transform. We have 
%decided to take the background subtraction out by comenting out the 

lines.  
%u = u - meanU;  
%v = v - meanV; 
%temp = temp - meanT; 
end 

 

Wavelet transform 

classdef WaveletTransform 
    %WaveletTransform  
    %   This class acts as a logical grouping of variables for a wavelet 
    %   transform. The transform and inverse transform rely on the 
    %   same parameters (s0, dj, dt) so keeping the parameters grouped 

with 
    %   the transform will reduce the mental overhead incurred by trying 

to 
    %   pass the same set of parameters to the forward and backward 
    %   transform. 

     
    properties 
        s0; 
        dj; 
        dt; 
        u_wind_component; 
        v_wind_component; 
        powerSurface; 
        uWavelet; 
        vWavelet; 
        waveletScales; 
        fourierWavelength; 
        tempWavelet; 
        coi; 
        alt; 
        sig95; 
    end 

     
    methods 
        function obj = WaveletTransform(u_wind_component, 

v_wind_component, temperature, dt) 

  
            pad = 1; % Use padding to help with edge effects. 
            dj = 0.125/8; % Value of dj determines scale resolution of the 

transform. 
            s0 = 2*dt; % Minimum resolvable scale. dt is just the sampling 

rate - 
            % either in time or space. 
            obj.u_wind_component = u_wind_component; 
            obj.v_wind_component = v_wind_component; 
            obj.s0 = s0; 
            obj.dj = dj; 
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            obj.dt = dt; 
            [obj.uWavelet, ~, obj.waveletScales, ~] = 

wavelet(u_wind_component, dt, pad, dj, s0); % wave, period, scale, COI 
            lag1 = acf(u_wind_component', 1); 
            [sigU, ~] = wave_signif(u_wind_component, dt, 

obj.waveletScales, 0, lag1); 
            [obj.vWavelet, ~, ~, obj.coi] = wavelet(v_wind_component, dt, 

pad, dj, s0); % coi is the same for all transforms of the same data. 
            lag1 = acf(v_wind_component', 1); 
            [obj.tempWavelet, ~, ~, ~] = wavelet(temperature, dt, pad, dj, 

s0); 
            [sigV, ~] = wave_signif(v_wind_component, dt, 

obj.waveletScales, 0, lag1); 
            obj.sig95 = (sigU + sigV)'*(ones(1,size(u_wind_component, 

2))); 
            obj.powerSurface = abs(obj.uWavelet).^2 + 

abs(obj.vWavelet).^2; 
            obj.sig95 = obj.powerSurface ./ obj.sig95; 
            obj.fourierWavelength = 1.03 * obj.waveletScales; % magic 

number from Torrence and Compo. 
        end 

         
        function [u_wind_reconstructed, v_wind_reconstructed, 

tempReconstructed, meanVerticalWavelength, windVariance] = 

invertWindowedTransform(obj, windowedWaveletTransform) 
            % Reconstruct the wave packet at altitudes of interest and 
            % scales of interest by adding up the wavelet coefficients at 
            % the scales of interest. This is an implementation of 

equation 
            % 11 in Torrence and Compo, 1998. The difference is that we 
            % keep both the real and imaginary parts of the reconstruction 
            % to use in later analysis. 
            scale_index_1 = windowedWaveletTransform.scale_index_1; 
            scale_index_2 = windowedWaveletTransform.scale_index_2; 
            alt_index_1 = windowedWaveletTransform.alt_index_1; 
            alt_index_2 = windowedWaveletTransform.alt_index_2; 
            constant_coef = obj.dj * sqrt(obj.dt) / (0.776*pi^(1/4)); % 

Constant from Torrence and Compo, 1998, given in 
            % table 2 and applied in equation 11. 
            windowed_scales = 

obj.waveletScales(scale_index_1:scale_index_2); 
            windowed_u_wavelet = obj.uWavelet(scale_index_1:scale_index_2, 

alt_index_1:alt_index_2); 
            u_wind_reconstructed = constant_coef*sum(windowed_u_wavelet ./ 

sqrt(windowed_scales)', 1); % sum over all scales. 
            windowed_v_wavelet = obj.vWavelet(scale_index_1:scale_index_2, 

alt_index_1:alt_index_2); 
            windowedTempWavelet = 

obj.tempWavelet(scale_index_1:scale_index_2, alt_index_1:alt_index_2); 
            tempReconstructed = constant_coef*sum(windowedTempWavelet ./ 

sqrt(windowed_scales)', 1); 
            v_wind_reconstructed = constant_coef*sum(windowed_v_wavelet ./ 

sqrt(windowed_scales)', 1); 
            meanVerticalWavelength = 

mean(obj.fourierWavelength(scale_index_1:scale_index_2)); % the dominant 

wavelength is taken 
            % to be the mean of the wavelengths over the scale range of 
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            % interest. Same as in Murphy, 2014. 
            windVariance = abs(u_wind_reconstructed).^2 + 

abs(v_wind_reconstructed).^2; 
        end 

         
        function [uWindInverted, vWindInverted] = 

invertWaveletTransform(obj) 
            % This inverts the entire wavelet transform. 
           constantCoef = obj.dj * sqrt(obj.dt) / (0.776*pi^(1/4)); % 

Magic from T&C. 
           uWindInverted = constantCoef*sum(real(obj.uWavelet) ./ 

sqrt(obj.waveletScales)', 1); % sum over scales 
           vWindInverted = constantCoef*sum(real(obj.vWavelet) ./ 

sqrt(obj.waveletScales)', 1);  

            
        end 

         
        function [a, b, c, d] = clipWindowedTransformToValue(obj, 

localMaxRow, localMaxCol) 
            % clipWindowedTransformToValue either clips the windowed 
            % transform to thresholdValue, or clips it to the next point 
            % where the surface starts rising again. 
            maxValue = obj.powerSurface(localMaxRow, localMaxCol);     
            thresholdValue = 0.25*maxValue; 
            column = obj.powerSurface(:, localMaxCol); % extract whole 

column 
            row = obj.powerSurface(localMaxRow, :); % extract whole row 
            % need the locations of the first minima on each side of the 
            % local max in both row and column. These locations will 

define 
            % the windowed power surface before we clip it to 
            % thresholdValue. 
            [a, b] = findMinimaClosestToIndex(abs(column-thresholdValue), 

localMaxRow); 
            [c, d] = findMinimaClosestToIndex(abs(row-thresholdValue), 

localMaxCol); 
            % index into this window and make sure there's only 
            % one peak inside this window. 
            if b > size(obj.powerSurface, 1) 
                x = size(obj.powerSurface, 1); 
                fprintf("%d , %d\n", x, b); 
            end 
            if d > size(obj.powerSurface, 2) 
                x = size(obj.powerSurface, 2); 
                fprintf("%d , %d\n", x, d); 
            end 

             
        end 

  
    end 
end 
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Windowed Wavelet Transform 

classdef WindowedWaveletTransform 
    % Container class to store indices 
    % of the windowed wavelet transform. 
    properties 
        scale_index_1; 
        scale_index_2; 
        alt_index_1; 
        alt_index_2; 
    end 

     
    methods 
        function obj = WindowedWaveletTransform(scale_index_1 , 

scale_index_2, alt_index_1, alt_index_2) 
            %UNTITLED Construct an instance of this class 
            %   Detailed explanation goes here 
            obj.scale_index_1 = scale_index_1; 
            obj.scale_index_2 = scale_index_2; 
            obj.alt_index_1 = alt_index_1; 
            obj.alt_index_2 = alt_index_2; 

  
        end 
    end 
end 
  

Data analysis: doAnalysis 

function [latitudeArray, longitudeArray, altNonFiltered, dataBlock, 

waveletTransform, clippedAlt, gWaveLocations, windSpeed] = doAnalysis(f, 

save, saveDir, showPowerSurfaces, lowerCutOffAltitude, 

upperCutOffAltitude, latitude, heightSamplingFrequency, printData) 
% does g-wave analysis for a radiosonde sounding. 
if nargin < 6 
    upperCutOffAltitude = 40000; % flights never reach 40km. 
end 
if nargin < 5 
    lowerCutOffAltitude = 12000; 
end 
if nargin < 4 
    showPowerSurfaces = false; 
end 
if nargin < 3 
    saveDirExists = false; 
else 
    saveDirExists = true; 
end 
if nargin < 2 
    save = false; 
end 
if save 
   [~, saveFileName, ~] = fileparts(f); 
   % default save in same directory. 
   saveFileName = strcat(saveFileName, '_gravity_wave_parameters.csv'); 
   % if a data directory is provided, use it. 
   if saveDirExists 
      saveFileName = fullfile(saveDir, saveFileName); 
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   end 
end 
data = readRadioSondeData(f); 
[maxAlt, mai] = max(data.Alt); 
[~, lai] = min(abs(data.Alt(1:mai) - lowerCutOffAltitude));  
[~, mai] = min(abs(data.Alt(lai:mai) - upperCutOffAltitude)); 
mai = mai + lai; 
if maxAlt < lowerCutOffAltitude && upperCutOffAltitude == 40000 
    % filter data to altitude bounds 
    fprintf("Flight %s did not reach %d m\n", f, lowerCutOffAltitude); 
    latitudeArray = [];  
    longitudeArray = []; 
    altNonFiltered = []; 
    dataBlock = []; 
    waveletTransform = []; 
    clippedAlt = []; 
    gWaveLocations = []; 
    windSpeed = []; 
    return 
elseif upperCutOffAltitude ~= 40000 && data.Alt(mai) < 

(upperCutOffAltitude) 
    fprintf("Flight %s did not reach %d m\n", f, upperCutOffAltitude); 
    latitudeArray = [];  
    longitudeArray = []; 
    altNonFiltered = []; 
    dataBlock = []; 
    waveletTransform = []; 
    clippedAlt = []; 
    gWaveLocations = []; 
    windSpeed = []; 
    return 
elseif mai == lai + 1 
    latitudeArray = [];  
    longitudeArray = []; 
    altNonFiltered = []; 
    dataBlock = []; 
    waveletTransform = []; 
    clippedAlt = []; 
    gWaveLocations = []; 
    windSpeed = []; 
    return 
end 
mai = mai - 1; 
% Prepare data 

  
latitudeArray = data.Lat_( 1:mai); 
longitudeArray = data.Long_(1:mai); 
latitudeArray = latitudeArray(~isnan(latitudeArray)); 
longitudeArray = longitudeArray(~isnan(longitudeArray)); 
altNonFiltered = data.Alt(1:mai); 
altNonFiltered = altNonFiltered(~isnan(altNonFiltered)); 

  
data = data(lai:mai, :); 
data = rmmissing(data); 
ws = data.Ws; 
windSpeed = ws; 
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wd = data.Wd; 
pressure = data.P; 
alt = data.Alt; 
temp = data.T+ 273.15; 
time = data.Time; 

  
u = -ws .* sind(wd); % from MetPy 
v = -ws .* cosd(wd); %  

  
% heightSamplingFrequency = 5; 
fprintf("height sampling frequency %d\n", heightSamplingFrequency); 
[alt, u, v, temp, bvFreqSquared] = preprocessData(alt, u, v, temp, ... 
  pressure, time, heightSamplingFrequency); 
clippedAlt = alt; 
% calculate constant values to use in analysis 
coriolisFreq = coriolisFrequency(latitude);  
% finally, do the wavelet transform. 
wt = WaveletTransform(u, v, temp, heightSamplingFrequency); 
waveletTransform = wt; 
% get local maxima that (could) correspond to gravity wave packets 
% "Peaks were identified as a function of scale and altitude" - MAL2014. 

  
[rows, cols] = find(imregionalmax(wt.powerSurface, 8)); % 8 for 8-

connectivity 

  
%LMaxFinder = vision.LocalMaximaFinder('MaximumNumLocalMaxima', 10000, 

'Threshold', 300); 
%idx = LMaxFinder(wt.powerSurface); 
%rows = idx(:,2); 
%cols = idx(:,1); 

  
% Sort by most power... works now but could use improvement! 
pow = zeros(size(rows)); 
newrows = pow; 
newcols = pow; 
for k = 1:size(pow) 
    pow(k) = wt.powerSurface(rows(k), cols(k)); 
end 
[pow,ind] = sort(pow, 'descend'); 
for r = 1:size(pow,1) 
   newrows(r) = rows(ind(r)); 
   newcols(r) = cols(ind(r)); 
end 
rows = newrows; 
cols = newcols; 

  

  
if showPowerSurfaces 
    f1 = figure; 
    set(0, 'CurrentFigure', f1); 
    colormap parula; 
    [X, Y] = meshgrid(alt, wt.fourierWavelength); 
    % Log scale is a temporary testing mechanism... 
    surf(X, Y, log(wt.powerSurface), 'edgecolor', 'none'); 
    % imagesc(alt, wt.fourierWavelength, (wt.powerSurface)); 
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    [~, titleName, ~] = fileparts(f); 
    titleString = sprintf("%s", titleName); 
    title(titleString, 'Interpreter', 'none'); 
    hold on; 
    plot(alt, wt.coi, 'k') 
    %legend('cone of influence'); 
    %scatter3(alt(cols(1)), wt.fourierWavelength(rows(1)), 

max(wt.powerSurface(:)), 'k*') 
    ylabel('vertical wavelength (m)', 'FontSize', 14); 
    xlabel('altitude (m)', 'FontSize', 14) 
    c = colorbar('FontSize', 14); 
    c.Label.String = 'power surface, (m^2/s^2)'; 
    %c.Label.Interpreter = 'latex'; 
    set(gca, 'YDir', 'normal'); 
    set(gca, 'YScale', 'log'); 
    view([0,90]); 
    xlim([alt(1), alt(length(alt))]); 
    ylim([wt.fourierWavelength(1), 

wt.fourierWavelength(length(wt.fourierWavelength))]); 

     
end 
gWaveDetected = false; 
first = true; 
xValuesForPolygon = 1:size(wt.powerSurface, 2); % get n columns     
yValuesForPolygon = wt.coi; % y values that we must check  
gWaveLocations = []; 
while size(rows) > 0   
     % filter local maxima to COI. 
     % create a polygon with the COI and query whether or not the x and y 
     % values (cols(i) and waveletScales(i)) are within that polygon. 
     if ~inpolygon(cols(1), wt.waveletScales(rows(1)), xValuesForPolygon, 

yValuesForPolygon) 
         % if local maxima candidate is not inside COI polygon, skip it. 
         rows = rows(2:end); 
         cols = cols(2:end); 
         continue; 
     end 
     % clip the wavelet transform to a box (s1, s2, a1, a2) that  
     % corresponds to where the power surface equals 1/4Smax 
     [s1, s2, a1, a2] = wt.clipWindowedTransformToValue(rows(1), cols(1)); 
     if s1 == 0 || s2 == 0 || a1 == 0 || a2 == 0 
         % Too close to an edge. 
         % This is Keaton -- why are we checking just two edges? And why 

are 
         % we even doing this check??? 
         rows = rows(2:end); 
         cols = cols(2:end); 
         continue 
     end 

      
     wwt = WindowedWaveletTransform(s1, s2, a1, a2); % helper object to 

ease passing parameters in to invertWaveletTransform 
     % invert the wavelet transform in the windowed transform to get a 

wave 
     % packet. 
     % "Wavelet coefficients in the vicinity of the peak were used to 
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     % reconstruct temperature and wind perturbations associated with each 
     % wave around the wave altitude ``z'' and to estimate the vertical 
     % wavelength, lambda_z" - MAL2014. 
     [ui, vi, tempi, lambda_z, horizWindVariance] = 

wt.invertWindowedTransform(wwt); 
     lambda_z = wt.fourierWavelength(rows(1));  % Peak value not mean 
     % ^ u reconstructed, v reconstructed, temp reconstructed, vertical 
     % wavenumber. 
     % estimateParametersFromWavePacket thresholds wave candidates based 

on 
     % criteria laid out in Murphy et al, 2014. 
     [maxVal, ~] = max(horizWindVariance); 
     fwhm = find(horizWindVariance >= 0.5*maxVal); 
     ui = ui(fwhm); 
     vi = vi(fwhm); 
     tempi = tempi(fwhm); 
     [~, ~, Q, theta, axialRatio, degreeOfPolarization] = 

estimateParametersFromWavePacket(ui, vi, tempi); 

      
     if showPowerSurfaces 
        set(0, 'CurrentFigure', f1); 
        scatter3(alt(cols(1)), wt.fourierWavelength(rows(1)), 

max(wt.powerSurface(:)), 'b*'); 
     end 

      
     if theta == 0 
         % theta = 0 when wave packet does not pass filtering criteria. 
         rows = rows(2:end); 
         cols = cols(2:end); 
        continue; 
     end      
     % theta = azimuthFromUnitCircle(rad2deg(theta)); 
     theta = rad2deg(theta); 
     % all equations below from Murphy et al, 2014: 
     % "Radiosonde observations of gravity waves in the lower stratosphere 
     %   over Davis, Antartica", table 2. 
     intrinsicFreq = coriolisFreq*axialRatio; %1/s 
     bvMean = mean(bvFreqSquared(a1:a2)); % Get the mean squared Brunt-

Vaisala frequency over the height range of the gravity wave packet 
     if ~((sqrt(bvMean) > intrinsicFreq) && (intrinsicFreq > 

coriolisFreq)) 
         % if the intrinsic frequency is greater than the buoyancy 
         % frequency or if it's less than the coriolis frequency, the 
         % gravity wave is not physical, so skip it. 
         rows = rows(2:end); 
         cols = cols(2:end); 
         continue 
     end 
    %gWaveDetected = true; 
     %fprintf("m:%f\n", lambda_z); 
     m = 2*pi / lambda_z; % vertical wavenumber (1 / meters) 
     %k_h = 

sqrt(((coriolisFreq^2*m^2)/(bvMean))*(intrinsicFreq^2/coriolisFreq^2 - 

1)); % horizontal wavenumber (1 / meters) 
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     k_h = 

sqrt(((coriolisFreq^2*m^2)/(bvMean))*(intrinsicFreq^2/coriolisFreq^2 - 

1));  % CHANGED FOR NOW, PEAK BV! 
     intrinsicVerticalGroupVel = -(1 / (intrinsicFreq*m))*(intrinsicFreq^2 

- coriolisFreq^2); % m/s 
     zonalWaveNumber = k_h*sin(theta);% 1/m 
     meridionalWaveNumber = k_h*cos(theta); % 1 / m 
     intrinsicVerticalPhaseSpeed = intrinsicFreq / m; % m/s 
     intrinsicHorizPhaseSpeed = intrinsicFreq / k_h; % m/s 
     %intrinsicZonalGroupVel = zonalWaveNumber * bvMean / (intrinsicFreq * 

m^2); % m/s 
     intrinsicZonalGroupVel = zonalWaveNumber * bvMean / (intrinsicFreq * 

m^2);  % CHANGED FOR NOW, PEAK BV! 
     %intrinsicMeridionalGroupVel = meridionalWaveNumber * bvMean / 

(intrinsicFreq * m^2); % m/s 
     intrinsicMeridionalGroupVel = meridionalWaveNumber * bvMean / 

(intrinsicFreq * m^2);  % CHANGED FOR NOW, PEAK BV! 
     intrinsicHorizGroupVel = sqrt(intrinsicZonalGroupVel^2 + 

intrinsicMeridionalGroupVel^2); % m/s 
     lambda_h = 2*pi / k_h; % horizontal wavelength (m) 
     altitudeOfDetection = alt(cols(1));%mean(alt(a1:a2)); % mean of the 

altitude range as the central altitude of the gravity wave. 
     [~, detectionIndex] = min(abs(altNonFiltered - altitudeOfDetection)); 
     latitudeOfDetection = latitudeArray(detectionIndex); 
     longitudeOfDetection = longitudeArray(detectionIndex); 
     Period_minutes = (2*pi/intrinsicFreq)/60; 

      
     %These next if statments are additional checks suggested from Dr. Jie 
     %Gong 

      
     %This check makes sure the vertical wavelength < (deltaz)/2 
     if m > (alt(length(alt))-alt(1)) 
         disp("2nd check") 
         set(0, 'CurrentFigure', f1); 
         scatter3(alt(cols(1)), wt.fourierWavelength(rows(1)), 

max(wt.powerSurface(:)), 'g*'); 
         rows = rows(2:end); 
         cols = cols(2:end); 
         continue 
     end 

      
     %This check makes sure that the horizontal wavelength >> balloon 

drift 
     %distance  
     %The following equation is the distance formula 
     %We included a conversion for the latitude and longitude to represent 
     %kilometers 
     if lambda_h/1000 < sqrt(((max(latitudeArray)-

min(latitudeArray))*110.574)^2+((max(longitudeArray)-

min(longitudeArray))*111.320*cos(latitudeOfDetection*pi/180))^2) 
        disp("3rd check") 
        %disp(lambda_h/1000) 
        %disp(sqrt(((max(latitudeArray)-

min(latitudeArray))*110.574)^2+((max(longitudeArray)-

min(longitudeArray))*111.320*cos(latitudeOfDetection*pi/180))^2)) 
        set(0, 'CurrentFigure', f1); 
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        scatter3(alt(cols(1)), wt.fourierWavelength(rows(1)), 

max(wt.powerSurface(:)), 'g*'); 
        rows = rows(2:end); 
        cols = cols(2:end); 
        continue 
     end  
     %Suggested checks end here 

      
     gWaveDetected = true; 

      
     xCoordsOfWindow = [a1 a1 a2 a2]; 
     yCoordsOfWindow = [s2 s1 s1 s2]; 

      
     if showPowerSurfaces 
        set(0, 'CurrentFigure', f1); 
        scatter3(alt(cols(1)), wt.fourierWavelength(rows(1)), 

max(wt.powerSurface(:)), 'r*'); 
        plot(polyshape(alt(xCoordsOfWindow).', 

wt.fourierWavelength(yCoordsOfWindow)), 'FaceAlpha', 0, 'EdgeColor', 'r'); 
     end 

      
     % Check for other peaks inside the same rectangle as current peak 
     k = 1; 
     while k <= size(rows) 
         if inpolygon(cols(k), rows(k), xCoordsOfWindow, yCoordsOfWindow) 
             % Remove peak from list if inside the rectangle of current 
             % peak 
             rows = cat(1,rows(1:k-1),rows(k+1:end)); 
             cols = cat(1,cols(1:k-1),cols(k+1:end)); 
             k = k - 1; 
         end 
         k = k + 1; 
     end 

      

      
     %data = [altitudeOfDetection/1000, coriolisFreq, latitudeOfDetection, 

longitudeOfDetection, lambda_z/1000, lambda_h/1000, 

azimuthFromUnitCircle(theta), theta, axialRatio, Period_minutes, 

intrinsicVerticalGroupVel, intrinsicHorizGroupVel, 

intrinsicVerticalPhaseSpeed, intrinsicHorizPhaseSpeed, 

degreeOfPolarization, Q, max(alt), min(alt), bvMean]; 
     data = [altitudeOfDetection/1000, coriolisFreq, latitudeOfDetection, 

longitudeOfDetection, lambda_z/1000, lambda_h/1000, 

azimuthFromUnitCircle(theta), theta, axialRatio, Period_minutes, 

intrinsicVerticalGroupVel, intrinsicHorizGroupVel, 

intrinsicVerticalPhaseSpeed, intrinsicHorizPhaseSpeed, 

degreeOfPolarization, Q, max(alt), min(alt), bvMean]; 
     header = {'alt_of_detection_km' 'coriolisFreq' 'lat_of_detection' 

'lon_of_detection' 'vert_wavelength_km' 'horiz_wavelength_km' 

'propagation_dir_compass' 'propagation_dir_unit_circle' 'w_over_f' 

'period_min' 'int_vert_group_vel_ms' 'int_horiz_group_vel_ms' 

'int_vert_phase_spd_ms' 'int_horiz_phase_spd_ms' 'degreeofpolarization' 

'stokes_param_Q' 'max_alt_m' 'min_alt_m' 'mean_squared_Brunt_Vaisala'}; 

  
     if first 
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         dataArray = data; 
         gWaveLocations = [cols(1) rows(1)]; 
         first = false; 
     else 
         dataArray = [dataArray; data]; 
         gWaveLocations = [gWaveLocations; cols(1) rows(1)]; 
     end 

      
     if printData  
        fprintf("Alt: %f, L_z: %f, L_h: %f, Theta (compass): %f, w/f: %f, 

period (hours): %f, Vert. group vel: %f, Horiz. group vel: %f, Vert. phase 

spd: %f, Horiz. phase spd: %f, Brunt-Vaisala: %f\n", 

altitudeOfDetection/1000, lambda_z/1000, lambda_h/1000, 

azimuthFromUnitCircle(theta), axialRatio, (2*pi/intrinsicFreq)/3600, 

intrinsicVerticalGroupVel, intrinsicHorizGroupVel, 

intrinsicVerticalPhaseSpeed, intrinsicHorizPhaseSpeed, bvMean); 
     end 
end 
if save && ~isfile(saveFileName) && gWaveDetected 
         % check if the file exists - if it doesn't, write a header to 
         % the file to ease further analysis. 
         % writecell([header; num2cell(data)], saveFileName); 
         % PROP DIR> azimunth from unti cirlc 
         dataBlock = array2table(dataArray, 'VariableNames', header); 
         writetable(dataBlock, saveFileName); 

          
elseif save && isfile(saveFileName) && gWaveDetected 
         % if the file does exist, append to it. 
         % There is no overwrite functionality, so it's possible to run 
         % the analysis multiple times and write duplicates to a file. 
         % This must be taken care of in later analysis. 
         dlmwrite(saveFileName, dataArray, 'delimiter', ',', '-append'); 
         dataBlock = array2table(dataArray, 'VariableNames', header); 
end 
if ~gWaveDetected 
    fprintf("No gravity waves detected.\n"); 
    dataBlock = []; 
elseif gWaveDetected 
    dataBlock = array2table(dataArray, 'VariableNames', header); 
end 
end 

 

Coriolis Frequency 

function [f] = coriolisFrequency(latitude) 
%Calculate Coriolis frequency at latitude. 

  
f = 2*7.2921e-5*sind(latitude); 
end 

  

Brunt- Väisälä Frequency 

function [N2] = bruntVaisalaFrequency(potentialTemperature, 

heightSamplingFrequency) 
% Calculates BV frequency for a whole sounding, using 
% N^2 = g/theta * dtheta / dz, where theta is potential temperature. 



65 

% Validate vertical profiles of bvfreq w/ papers 
g = 9.8; 
N2 = (g ./ potentialTemperature) .* gradient(potentialTemperature, 

heightSamplingFrequency);  
end 

 

Find minima closest to index  

function [id1, id2] = findMinimaClosestToIndex(array, index) 
%   Gets the two closest minima on either side of index in array. 
%   Returns the indices into the array of the minima. 
[~, locs] = findpeaks(-array); % find the maxima (the negative minima). 
locs = sort(locs); 
id2 = 0; 
id1 = 0; 
if size(locs, 1) == 1 
    sz = size(locs, 2); 
else 
    sz = size(locs, 1); 
end 
for i=2:sz 
    if (locs(i-1) < index) && (locs(i) > index) 
        id1 = locs(i-1); 
        id2 = locs(i); 
    end 
end 
end 

 

Extract window around local max 

function [windowedWaveletTransform] = 

extractWindowAroundLocalMax(powerSurface, localMaxCol, localMaxRow) 
% Returns a custom object that makes inverting the wavelet power surface 

easier. 
ofs = 99; 
n_rows = size(powerSurface, 1); 
n_cols = size(powerSurface, 2); 

  
first_row = localMaxRow - ofs; 
last_row = localMaxRow + ofs; 
first_col = localMaxCol - ofs; 
last_col = localMaxCol + ofs; 
if first_row < 1 
   first_row = 1; 
end 
if last_row > n_rows 
   last_row = n_rows; 
end 
if last_col > n_cols 
   last_col = n_cols; 
end 
if first_col < 1 
   first_col = 1; 
end 
windowedWaveletTransform = WindowedWaveletTransform(first_row, last_row, 

first_col, last_col); 
end 
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 Estimate parameters from wave packet  

function [D, P, Q, theta, axialRatio, degreeOfPolarization] = 

estimateParametersFromWavePacket(uWavePacket, vWavePacket, tempWavePacket) 
%   Estimate gravity wave parameters from a wave packet using the Stokes 
%   parameters method. 
u = real(uWavePacket); 
v = real(vWavePacket); 
vWavePacketHilbertTransformed = imag(vWavePacket); 
% Stokes parameters from Murphy et al, 2014, Appendix A. 
I = mean(u.^2) + mean(v.^2); 
D = mean(u.^2) - mean(v.^2); 
P = mean(2*u.*v); 
Q = mean(2*u.*vWavePacketHilbertTransformed); 
degreeOfPolarization = sqrt((P^2 + Q^2 + D^2)) / I; 
% perform filtering based on Stokes parameters and degree of polarization. 
% TODO test DOP threshold values and examine 'depolarization' in Murphy et 
% al 
if abs(Q) < 0.05 || abs(P) < 0.05 || degreeOfPolarization < 0.5 || 

degreeOfPolarization > 1 
    theta = 0; 
    axialRatio = 0; 
    degreeOfPolarization = 0; 
    Q = 0; 
    return; 
else 
    theta = 0.5 * atan2(P, D); % Zink, 2000 eqn 3.14 TODO investigate 

atan2 
    % Axial ratio 
    axialRatio = abs(cot(0.5*asin(Q/(degreeOfPolarization*I)))); 
    % Murphy et al (2014), Koushik et al (2019), and Vincent (1989) 
    % Look at phase b/t u' and T+90' 
    % From the polarization relations, we know that u' and T' are +-90 deg 
    % out of phase, depending on the sign of the horizontal wavenumber. 

The  
    % polarization relations are in a frame that is traveling with the 

wave  
    % in the same direction, so we have to rotate the zonal wind component  
    % (u) to align with the wave's direction. 
    rotationMatrix = [cos(theta) sin(theta); -sin(theta) cos(theta)]; 
    uv = [uWavePacket; vWavePacket]; 
    uvRotated = rotationMatrix * uv; 
    % axialRatio = abs(mean(uv(1, :)) / mean(uv(2, :))); 
    uPar = uvRotated(1, :); 
    % vPerp = uvRotated(2, :); 

     
    % Coherence function, from Zink 2000 
    gamma = mean(uPar.*conj(tempWavePacket)) ./ 

sqrt(mean(abs(uPar).^2).*mean(abs(tempWavePacket).^2)); 

     
    phase = atan2(imag(gamma), real(gamma)); 
    if phase <= 0 
        theta = theta + pi; 
    end 
    if axialRatio < 1 
        % i.e. if the intrinsic frequency is less than the coriolis 
        % frequency. This does not agree with theory, so the wave packet  
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        % is discarded. 
        % Assing NaN to unphysical values? 
        theta = 0; 
        axialRatio = 0; 
        degreeOfPolarization = 0; 
        Q = 0; 
        return; 
    end 
end 
end 

 

Filter wave packet candidates 

function [goodMaximaRows, goodMaximaCols] = 

filterWavePacketCandidates(waveletTransform, localMaximaRows, 

localMaximaCols) 
%filterWavePacketCandidates Filters wave packet candidates by calculating 

the Stokes 
%parameters and degree of polarization. If Q < 0.05 || P < 0.05, the 
%candidate is discarded. If d < 0.5 | d > 1, the candidate is also 
%discarded. Otherwise, the file name, bounding box (s1, s2, z1, z2), the 
%position of the local max, and the parameters are stored. 

  
goodMaximaRows = zeros('like', localMaximaRows); 
goodMaximaCols = zeros('like', localMaximaCols); 
k = 0; 
for i=1:size(localMaximaRows, 1) 
    % first, clip the local maxima to 1/4Smax. 
    currentMaxRow = localMaximaRows(i); 
    currentMaxCol = localMaximaCols(i); 
    %windowedWaveletTransform = 

extractWindowAroundLocalMax(waveletTransform.powerSurface, currentMaxCol, 

currentMaxRow); 
    [row_index_1, row_index_2, col_index_1, col_index_2] = 

waveletTransform.clipWindowedTransformToValue(currentMaxRow, 

currentMaxCol); 
    if row_index_1 == 0 || row_index_2 == 0 || col_index_1 == 0 || 

col_index_2 == 0 
       %fprintf("Maxima too close to power surface edge. Most likely noise 

anyway.\n"); 
       continue; 
    end 
    oneQuarterMaxWindow = WindowedWaveletTransform(row_index_1, 

row_index_2, col_index_1, col_index_2); 
    [u, v, temp, ~] = 

waveletTransform.invertWindowedTransform(oneQuarterMaxWindow); 
    [theta, axialRatio, degreeOfPolarization] = 

estimateParametersFromWavePacket(u, v, temp); 
    if theta == 0 || axialRatio == 0 || degreeOfPolarization == 0 
        %fprintf("Wave packet did not satisfy critera\n"); 
        continue; 
    end 
    k = k + 1; 
    goodMaximaRows(k) = currentMaxRow; 
    goodMaximaCols(k) = currentMaxCol; 
end 
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goodMaximaRows = goodMaximaRows(1:k); 
goodMaximaCols = goodMaximaCols(1:k); 
end 

 

Average to altitude resolution  

function [averagedArray, averagedAlt] = averageToAltitudeResolution(array, 

altitude, resolution) 
%   Averages a time series of data to a given altitude resolution. Steps: 
%   walk through the altitude array, keeping a running sum of the values 

in 
%   "array" at the same indices. When altBegin - altEnd > resolution, 
%   divide the sum by the number of indices between altBegin and altEnd, 
%   and store it in a new array - averagedArray. 

  
averagedArray = zeros('like', array); 
averagedAlt = zeros('like', altitude); 
altBegin = altitude(1); 
altEnd = altitude(1); 
k = 0; 
s = 0; 
nPoints = 0; 
for i=1:size(altitude, 1) 
    altEnd = altitude(i); 
    s = s + array(i); 
    nPoints = nPoints + 1; 
    if (altEnd - altBegin) >= resolution 
        k = k + 1; 
        averagedArray(k) = s / nPoints; 
        averagedAlt(k) = altBegin + (altEnd - altBegin) / 2; 
        s = 0; 
        altBegin = altEnd; 
        nPoints = 0; 
    end 
end 
averagedArray = averagedArray(1:k); 
averagedAlt = averagedAlt(1:k); 
end 

  

 

Azimuth from unit circle  

function [azimuth] = azimuthFromUnitCircle(theta) 
%   Theta is in degrees. This function converts theta from degrees 
%   counterclockwise from east to degrees clockwise from north. 
%   Detailed explanation goes here 
azimuth = 450 - theta; 
if (azimuth > 360)  
    azimuth = azimuth - 360; 
end 
end 
 

Plot gravity waves  

function plotGravityWaveData(data, altitudeArray, ... 
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    waveletTransform, gWaveLocations, clippedAlt, axes1, axes2) 
    placeholder = zeros(size(altitudeArray), 'like', altitudeArray); 
    plot(axes2, placeholder, altitudeArray/1000, 'k'); % plot altitude in 

km. 
    hold(axes2, 'on'); 
    % The magnitudes of the red lines are the axial ratios of the 
    % gravity waves - axial ratio = intrinsic frequency / coriolis 
    % frequency. 
    % The for loop below just plots the red lines in the direction of 
    % propagation of the gravity wave 
    offset = 0; 
    if ~isempty(data) 
        for q=1:size(data.alt_of_detection_km) 
            x1 = offset; 
            magnitude = data.axial_ratio(q); 
            angle = data.propagation_dir(q); 
            x2 = offset + magnitude*cosd(angle); 
            y1 = data.alt_of_detection_km(q); 
            y2 = data.alt_of_detection_km(q) + magnitude*sind(angle); 
            plot(axes2, [x1 x2], [y1 y2], 'r', 'DisplayName', 'g-wave'); 
        end 
    end 
    xlim(axes2, [-5 5]); 
    title(axes2, "Gravity wave altitude of detection and propagation 

direction", 'FontSize', 8); 
    ylabel(axes2, 'Altitude (km)'); 
    set(axes1, 'XTickMode', 'auto', 'XTickLabelMode', 'auto'); 
    set(axes1, 'YTickMode', 'auto', 'YTickLabelMode', 'auto'); 
    %set(app.UIAxes_2, 'XTickMode', 'auto', 'XTickLabelMode', 'auto'); 
    set(axes2, 'YTickMode', 'auto', 'YTickLabelMode', 'auto');  
    if ~isempty(waveletTransform) 
        imagesc(axes1, clippedAlt, waveletTransform.fourierWavelength, 

log10(waveletTransform.powerSurface)); 
        hold(axes1, 'on'); 
        plot(axes1, clippedAlt, waveletTransform.coi, 'k'); 
    end 
    if ~isempty(data) && ~isempty(gWaveLocations) 
        s = scatter(axes1, clippedAlt(gWaveLocations(:, 1)), 

waveletTransform.fourierWavelength(gWaveLocations(:, 2)), 'ro'); 
        legend(axes1, s, 'gravity wave'); 
    end 
    if ~isempty(waveletTransform) 
        ylim(axes1, [waveletTransform.s0 Inf]); 
        ylabel(axes1, 'Wavelength (m)'); 
        xlabel(axes1, 'Altitude (m)'); 
    end 

  
end 
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Appendix B - Lufft Set-Up 
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Appendix C - SOP for Running GRAW and Initializing Radiosonde 

❖ BEFORE STARTING GRAWMET: 

➢ Open the radiosonde-careful to not the end of the sensor. The initialization cable can 

be plugged into the sonde.  

➢ Do not switch on radiosonde until told so 

❏ Turn on the Ground Station and connect before starting GRAW program 

❏ Open Grawmet 5.15 

❏ Weigh the payload, latitude, longitude and altitude record for future use 

❏ Plug in the radiosonde (do not switch on, repeat do not turn on) 

❏ Click on the tab to the left of the Start tab 

❏ Open General settings (notebook icon) 

❏ Click on the Program Settings tab >  Communications tab 

❏ Detect both Com Ports and Receiver 

❏ Click the back arrow and exit 

❏ Click Sounding/Simulation (do not use wizard) 

❏ Click initialize radiosonde 

❏ If initialization fails 3 times switch to a new sonde 

❏ Set sonde and Ground station to proper frequency (idaho team: 401.010) 

❏ Enter ground station values recorded from Lufft 

❏ Check them with the kestrel  

❏ Click start sounding  

❏ Enter  lat/long and altitude  (both lat and long requires negative signs in chile) 

❏ Confirm raw data is coming in 

❏ Turn on radiosonde to on position 

❏ Start filling balloon 

❏ Unplug radiosonde from computer  

❏ Hang it to acclimate same height as the lufft 

❏ The radiosonde has 10 minutes to acclimate 

❏ Double check raw data is still coming in 

❏ Get the sonde and attach it to the balloon 

❏ Launch balloon  
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Appendix D - Helium Fill Code  
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Appendix E - Rerunning Profiles in Graw  

❏ Open GRAW 

❏ Click on Sounding/Simulation (do not start the Wizard) 

❏ On the left tab click on simulation  

❏ Open zip file of desired profile to be ran. 

❏ Make sure all inputs are correct 

❏ Click start  

❏ When reports are done, a message window at the bottom will indicate the completion 

of reports created 

❏ Go to reports 

❏ Click on profile data  

❏ Save profile data as a txt file. 

❏ W#_L#_hhmmUTC_mmddyy_computer_Profile 
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Appendix F - Frequency Allocations for Eclipse 2020 

Table F-1. Frequency allocations for Villarrica during 2020 solar eclipse. 

GSU Flight ID UTC Frequency (MHz) Saving Convention 

  December 13th 2020 

ID-1 V1 16:02 401.610 V1_UTC_121320_Computer 

ID-2 V2 17:02 404.810 V2_UTC_121320_Computer 

ID-1 V3 18:02 401.610 V3_UTC_121320_Computer 

ID-2 V4 19:02 404.810 V4_UTC_121320_Computer 

ID-1 V5 20:02 401.610 V5_UTC_121320_Computer 

ID-2 V6 21:02 404.810 V6_UTC_121320_Computer 

ID-1 V7 22:02 401.610 V7_UTC_121320_Computer 

ID-2 V8 23:02 404.810 V8_UTC_121320_Computer 

  December 14th 2020 

ID-1 V9 00:02 401.610 V9_UTC_121420_Computer 

ID-2 V10 01:02 404.810 V10_UTC_121420_Computer 

ID-1 V11 02:02 401.610 V11_UTC_121420_Computer 

ID-2 V12 03:02 404.810 V12_UTC_121420_Computer 

ID-1 V13 04:02 401.610 V13_UTC_121420_Computer 

ID-2 V14 05:02 404.810 V14_UTC_121420_Computer 

ID-1 V15 06:02 401.610 V15_UTC_121420_Computer 

ID-2 V16 07:02 404.810 V16_UTC_121420_Computer 

ID-1 V17 08:02 401.610 V17_UTC_121420_Computer 

ID-2 V18 09:02 404.810 V18_UTC_121420_Computer 

ID-1 V19 10:02 401.610 V19_UTC_121420_Computer 

ID-2 V20 11:02 404.810 V20_UTC_121420_Computer 

ID-1 V21 12:02 401.610 V21_UTC_121420_Computer 

ID-2 V22 13:02 404.810 V22_UTC_121420_Computer 

ID-1 V23 14:02 401.610 V23_UTC_121420_Computer 

ID-2 V24 15:02 404.810 V24_UTC_121420_Computer 

MT-1 V25 15:32 400.810 V25_UTC_121420_Computer 

ID-1 V26 16:32 404.010 V26_UTC_121420_Computer 

ID-2 V27 17:32 402.810 V27_UTC_121420_Computer 
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ID-1 V28 18:32 400.010 V28_UTC_121420_Computer 

ID-2 V29 19:32 403.210 V29_UTC_121420_Computer 

ID-1 V30 20:32 400.010 V30_UTC_121420_Computer 

ID-2 V31 21:32 404.010 V31_UTC_121420_Computer 

ID-1 V32 22:32 403.210 V32_UTC_121420_Computer 

ID-2 V33 23:32 400.010 V33_UTC_121420_Computer 

ID-1 V34 00:32 403.210 V34_UTC_121420_Computer 

ID-2 V35 01:32 400.010 V35_UTC_121420_Computer 

ID-1 V36 02:32 403.210 V36_UTC_121420_Computer 

  December 15th 2020 

ID-2 V37 03:32 400.010 V37_UTC_121520_Computer 

ID-1 V38 04:32 403.210 V38_UTC_121520_Computer 

ID-2 V39 05:32 400.010 V39_UTC_121520_Computer 

ID-1 V40 06:32 403.210 V40_UTC_121520_Computer 

ID-2 V41 07:32 400.010 V41_UTC_121520_Computer 

ID-1 V42 08:32 403.210 V42_UTC_121520_Computer 

ID-2 V43 09:32 400.010 V43_UTC_121520_Computer 

ID-1 V44 10:32 403.210 V44_UTC_121520_Computer 

ID-2 V45 11:32 400.010 V45_UTC_121520_Computer 

ID-1 V46 12:32 403.210 V46_UTC_121520_Computer 

ID-2 V47 13:32 400.010 V47_UTC_121520_Computer 

ID-1 V48 14:32 403.210 V48_UTC_121520_Computer 

ID-2 V49 15:32 400.010 V49_UTC_121520_Computer 

ID-1 V50 16:32 403.210 V50_UTC_121520_Computer 

 

Table F-2. Frequency allocation for Tolten during 2020 solar eclipse. 

GSU Flight ID UTC Frequency (MHz) Saving Convention 

  December 13th 2020 

OK-1 T1 16:02 400.010 T1_UTC_121320_Computer 

OK-2 T2 17:02 403.210 T2_UTC_121320_Computer 

OK-1 T3 18:02 400.010 T3_UTC_121320_Computer 

OK-2 T4 19:02 400.010 T4_UTC_121320_Computer 

OK-1 T5 20:02 403.210 T5_UTC_121320_Computer 
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OK-2 T6 21:02 400.010 T6_UTC_121320_Computer 

OK-1 T7 22:02 403.210 T7_UTC_121320_Computer 

OK-2 T8 23:02 400.010 T8_UTC_121320_Computer 

  December 14th 2020 

OK-1 T9 00:02 400.010 T9_UTC_121420_Computer 

OK-2 T10 01:02 403.210 T10_UTC_121420_Computer 

OK-1 T11 02:02 400.010 T11_UTC_121420_Computer 

OK-2 T12 03:02 403.210 T12_UTC_121420_Computer 

OK-1 T13 04:02 400.010 T13_UTC_121420_Computer 

OK-2 T14 05:02 403.210 T14_UTC_121420_Computer 

OK-1 T15 06:02 400.010 T15_UTC_121420_Computer 

OK-2 T16 07:02 403.210 T16_UTC_121420_Computer 

OK-1 T17 08:02 400.010 T17_UTC_121420_Computer 

OK-2 T18 09:02 403.210 T18_UTC_121420_Computer 

OK-1 T19 10:02 400.010 T19_UTC_121420_Computer 

OK-2 T20 11:02 403.210 T20_UTC_121420_Computer 

OK-1 T21 12:02 400.010 T21_UTC_121420_Computer 

OK-2 T22 13:02 403.210 T22_UTC_121420_Computer 

OK-1 T23 14:02 400.010 T23_UTC_121420_Computer 

OK-2 T24 15:02 403.210 T24_UTC_121420_Computer 

MT-2 T25 15:32 402.410 T25_UTC_121420_Computer 

OK-1 T26 16:32 400.010 T26_UTC_121420_Computer 

OK-2 T27 17:32 401.610 T27_UTC_121420_Computer 

OK-1 T28 18:32 404.810 T28_UTC_121420_Computer 

OK-2 T29 19:32 401.610 T29_UTC_121420_Computer 

OK-1 T30 20:32 404.810 T30_UTC_121420_Computer 

OK-2 T31 21:32 401.610 T31_UTC_121420_Computer 

OK-1 T32 22:32 404.810 T32_UTC_121420_Computer 

OK-2 T33 23:32 401.610 T33_UTC_121420_Computer 

OK-1 T34 00:32 404.810 T34_UTC_121420_Computer 

OK-2 T35 01:32 401.610 T35_UTC_121420_Computer 

OK-1 T36 02:32 404.810 T36_UTC_121420_Computer 

  December 15th 2020 
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OK-2 T37 03:32 401.610 T37_UTC_121520_Computer 

OK-1 T38 04:32 404.810 T38_UTC_121520_Computer 

OK-2 T39 05:32 401.610 T39_UTC_121520_Computer 

OK-1 T40 06:32 404.810 T40_UTC_121520_Computer 

OK-2 T41 07:32 401.610 T41_UTC_121520_Computer 

OK-1 T42 08:32 404.810 T42_UTC_121520_Computer 

OK-2 T43 09:32 401.610 T43_UTC_121520_Computer 

OK-1 T44 10:32 404.810 T44_UTC_121520_Computer 

OK-2 T45 11:32 401.610 T45_UTC_121520_Computer 

OK-1 T46 12:32 404.810 T46_UTC_121520_Computer 

OK-2 T47 13:32 401.610 T47_UTC_121520_Computer 

OK-1 T48 14:32 404.810 T48_UTC_121520_Computer 

OK-2 T49 15:32 401.610 T49_UTC_121520_Computer 

OK-1 T50 16:32 404.810 T50_UTC_121520_Computer 
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Appendix G - Windshear and convective instabilities code  
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