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Abstract 

The effects of phosphorus in the Snake River Water Basin are under-studied and there 

is risk for future issues in water quality.  In part, this is due to a lack of a framework to study 

water quality from publicly available sources.  This thesis used an Exploratory Spatial Data 

Analysis (ESDA) framework to explore the relationship between impaired stream locations 

and various point and non-point sources of phosphorus.  ESDA tools utilized are histograms 

to highlight distributions, Global Moran’s I to understand spatial autocorrelation, and 

principal component-based clustering to highlight patterns in data.  Based on the findings of 

the analysis, spatial econometric modeling will establish if there is a need for further 

investigations into water quality, what questions the data might produce, and who needs to 

answer these questions.  More specifically, hydric soils, waste holding capacity, aquaculture, 

manure application, hydroelectric dams, confined animal feeding operations (CAFOs), food 

processors, crop type, septic systems, synthetic fertilizer, and surface flow accumulation 

were tested for spatial correlation against EPA designated stream impairments of phosphorus.  

My analysis shows the strongest support for a Spatial Durbin Model (SDM) regression to 

appropriately visualize spillover effects of phosphorus sources.  Insights gained by this study 

discover previously unknown associations and form hypotheses that can provide future 

policy makers a starting point for further investigation into managing phosphorus in southern 

Idaho. 
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Chapter 1: Introduction 

Study Area 

The Snake River Water Basin (SRWB) (Figure 1 - colored with blue stripes) is the 

most productive aquifer in the country (The Nature Conservancy, 2014).  The SRWB covers 

more than 40% of the state of Idaho and supplies water to more than 500,000 people (IWRB, 

1998; Konikow, 2013; Van Kirk, 2008).  The productivity of an aquifer is its potential to 

sustain groundwater flow.  Transmissivity is a measure of this, referring specifically to the 

acceleration of groundwater transit throughout its entire saturated thickness.  The SRWB has 

a transmissivity anywhere from 100,000 to 1,000,000 ft2 per day (Lindholm, 1996).  The fast 

recharge of water has allowed for the expansion of many human industries which in turn 

increased populations.  The first record of irrigated lands was in 1902 with 569,286 acres 

(U.S. Bureau of the Census, 1921), then increased in 1960 to more than 2 million acres 

irrigated (Mundorff et al., 1964), and most recent estimates find the SRWB supports 2.1 

million irrigated acres (IDWR, 2009).  Respectively in the early 1900s, the SRWB had a 

population of 111,500 people.  In the early 1960s, the population increased to 521,000, and 

nearly 60 years after that 1,440,000 people reside in the area (Mahler, 2019) 

Figure 1: Study Area Comprised of the State of Idaho Boundary with the Magic Valley Counties and SRWB 

and Major Idaho Cities for Reference 
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This study focused on the Magic Valley (highlighted with purple in Figure 1) which 

was selected in part for its potential to bring meaningful science to a large citizen population 

and for its data availability within an important ecoregion.  The Magic Valley includes the 

counties of Blaine, Camas, Cassia, Gooding, Jerome, Lincoln, Minidoka, and Twin Falls.  

The Magic Valley is characterized as a semiarid region that experiences a mean annual 

precipitation of 280 mm (Tasumi & Allen, 2007); and is classified as a North American cold 

desert ecoregion III (Omernik & U.S. Environmental Protection Agency, 2003) which is 

characterized by a dry climate, warm summers, and cold winters.  The mean annual 

temperature is approximately 10°C in the western portion and 6°C in the eastern portion.  

Precipitation during the growing season is negligible with the system largely dependent on 

winter and early spring precipitation in tributary watersheds (Bjorneberg et al., 2008). 

Vegetation in the region is characterized by a sagebrush steppe; sagebrush, bluebunch 

wheatgrass, Idaho fescue, Indian ricegrass, rabbitbrush, fourwing saltbush.  Interesting 

geology includes inactive lava fields and plains.  Ancient volcanic activity created basalt 

formations in the majority of this area.  The landscape has plains and gently sloping hills 

which have an elevation ranging from 640 to about 1,980 meters above sea level (masl) and 

provide habitat for far-ranging mammals like mountain elk, mule deer, pronghorn antelope, 

black bear, coyote, cougar, and bobcat. 

Hydrology of SRWB 

Due to the aquifer’s volcanic rock properties, there is a strong connection between the 

surface water and groundwater.  Basalt and sedimentary aquifers such as the Snake River 

Basin are highly vulnerable to water contamination as mobility of water from surface water 

to groundwater can concentrate contaminants to problematic amounts (Lentz et al., 2018).  

Additionally, the direction and magnitude of these interchanges are often dependent upon 

streamflow volumes and water table elevations.  Figure 2 shows one theorized view of 

groundwater flow direction.   
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These patterns of surface and groundwater interaction have been well described 

(IWRB, 1998).  While the general patterns of connectivity are understood, the complex 

interactions of location, streamflow, and groundwater levels mean that predicting the impacts 

of water management activities is highly context-specific (The Nature Conservancy, 2014).  

For example, groundwater recharge activities may augment streamflow rather than contribute 

to aquifer storage. 

The exchange between surface and groundwater is a unique feature of the study area 

and was an important consideration when researching water quantity and quality.  The 

surface hydrology is centered around the Snake River and waters streaming from that are 

lower gradient, warmer, and sparser than surrounding ecoregions as shown in Figure 3.

Figure 2: Groundwater Flow of the SRWB (Frans et al., 2012)  
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  Within the basin, surface water processes have been highly modified from the 

base or natural flow conditions.  Natural streamflow conditions that were once driven 

primarily by snowmelt have become carefully managed through diversions and reservoir 

operations to satisfy water user rights (Van Kirk, 2008).  Approximately 40% of the total 

water that entered the watershed as irrigation and precipitation is returned to the Snake River 

via the irrigation return flow system (IWRB, 1998).   

SES Approach 

Coupled with the ecology are the human interactions that influence the Magic Valley.  

Settlement within the Snake River area began in the nineteenth century and irrigation 

structures were needed to turn the sagebrush landscape into agricultural lands (Kjelstrom, 

1995).  The Reclamation Act of 1902 funded the construction of dams, reservoirs, and canals 

(Stene, 1997).  The landscape was changed by water diversions creating productive lands 

which led to even more settlement.  This became a feedback loop; as more lands were placed 

into agricultural production, more people moved to the area to be a part of the gainful 

employment.  Over time this meant more water resources needed to be diverted.   

Snake River 
 
 
Direction of surface water movement 

Figure 3: Surface Water Areas of the SWRB (Clark et al., 1998) with Orange Arrows Showing 

Downgradient Streams  
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Creating management plans for communities and for natural resources has become a 

complex task.  First one must understand the ecological processes and natural resources, but 

an understanding of how humans, the social system, interact with the ecological system is 

also needed.  Recent use of the Social-Ecological-System (SES) framework has started to 

make this process easier.  When using SES, we are attempting to create a model that 

acknowledges the complexity of a landscape’s dynamics by having both a social and 

ecological system that is interconnected with feedback loops.  The proposed framework helps 

organize findings and allows for the interdisciplinary identification of different drivers that 

lead to achieving optimum sustainability (Ostrom, 2009).   

The social system of the Magic Valley has changed much of the ecological system 

from sagebrush steppe to cultivable land and population increase trends are fueled by the 

successful agricultural sector.  Cropland increased 0.3% annually from 2002 to 2012 and 

productivity within the lands increased (Villamor et al., 2020).  The region is ranked as one 

of the top 12 U.S. manufacturing communities (IDWR, 2015), due to the many food 

processors.  This has brought many jobs to the area which are reflected in the last census 

taken.  In the 2020 census, there was an average population increase of 6.4% throughout the 

Magic Valley.  In Twin Falls County, there was a 16.1% increase (Idaho Department of 

Labor, 2021), well over the national average.   

This social system has altered not just water resources, but also nutrient cycles.  To 

sustain crops, the nutrient systems have required increased flows.  Synthetic fertilizer use in 

the Snake River Plain rose sharply after 1950 and continues to increase.  Applied synthetic 

fertilizer is efficiently taken up by crops but if it is poorly-timed or over-applied, a fraction of 

it can leach with rain and excess irrigation water (Frans et al., 2012).  

Crops are processed for human consumption but many of the crops are also used to 

feed the dairy industry.  Idaho was the 3rd largest milk producer of the United States in 2020 

(USDA - National Agricultural Statistics Service, 2021).  To accommodate the high 

production, cows are often kept in a Concentrated Animal Feeding Operation (CAFO) 

defined by the EPA as a facility holding more than 700 animals held and raised with no 

cropping sustained over any portion of the facility (U.S. Environmental Protection Agency - 

OW, 2015).  As expected with high milk production, there is also high production of dairy 

cow manure.  Nutrients from animal agriculture can be lost to the outer environment from 
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leaching and runoff (Hooda et al., 2000).  In 2019 The Magic Valley had 580,000+ cows, 

located on approximately 490 dairy farms (Naerebout, 2019).  Nutrients from the manure can 

be offset by applying to croplands, but manure cannot yet be as efficiently used as synthetic 

fertilizer.  Modeling of manure use indicated that 70% of farms would have a deficit of 

nitrogen and 80% would have a surplus of phosphorus, not correctly meeting crop growing 

needs (Leytem et al., 2021). 

Here we finally reach the apex of the situation.  In the current SES, there is a rapid 

increase in the nutrient flows to the system.  By finding ways to reduce inefficiencies, we 

bring the system closer to an equilibrium in which nutrient inputs do not exceed the proper 

agricultural sinks.  My master's thesis was funded by an INFEWS project (Innovations at the 

Nexus of Food Energy and water systems).  We used an SES framework of the food, energy, 

water, and waste systems to find drivers and connections between the agricultural system and 

water systems of our study area.  To measure the sustainability and success of an SES, the 

typologies of food-energy-water systems (FEWs) can be used.  Impacts within these 

individual systems have been well-characterized, we can easily see disputes over water, 

energy, and food access.  Their connections drive demographic, regulatory, economic, and 

climatic factors, just to name a few (Calder et al., 2021).  Only one ecological factor, 

phosphorus in surface water, was investigated to see how FEWs contributed to that system.  

By researching what stresses may occur over time and space with FEWs, we made 

suggestions on how to improve the overall SES. 

My study of the SES in the Magic Valley looks specifically at the drivers of surface 

water quality as it pertains to phosphorus (P), human and non-human interactions, and 

implications of social policies which have influenced the study area.  The research parsed the 

components of the landscapes that contribute, and those that do not, to the interactions among 

phosphorus and surface water in this area.   

Water Quality 

Originally enacted in 1948, the Federal Water Pollution Control Act offered broad 

national objectives to restore and maintain the chemical, physical, and biological integrity of 

the Nation's waters but there was no regulation or structure for integrity.  In 1972, The Clean 

Water Act (CWA) of 1972 (revised version of the 1948 act) established that all waters need 

to support conditions that allow for aquatic life and recreation (U.S. Fish and Wildlife 
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Service, 2000).  This led to the framework we have today for the standard of water integrity 

and how it should be enforced.  In Idaho numerous state agencies are involved in 

administering water quality policies: The Idaho Department of Environmental Quality 

(IDEQ), the Idaho Soil and Water Conservation Commission (ISWCC), the Department of 

Fish and Game (IDFG), and the Idaho State Department of Agriculture (ISDA).  The IDEQ 

has administrative authority to regulate and enforce water quality standards.  The primary 

role of the IDEQ is to issue National Pollutant Discharge Elimination System (NPDES) 

permits, a regulation under the CWA.  These permits regulate the volume of pollutants a 

point source is allowed to discharge into “waters of the United States”.  This protects surface 

waters from point source pollution (an identifiable polluter) but not nonpoint source pollution 

(collective contributions) and does not protect groundwater from pollution (U.S. 

Environmental Protection Agency - OW, 2017).   

NPDES DEFINITIONS: 

i. Pollutant: “Dredged spoil, solid waste, incinerator residue, sewage, garbage, 

sewage sludge, munitions, chemical waste, biological materials, radioactive 

materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and 

industrial, municipal, and agricultural waste discharged into water”. 

ii. Point Source: “Any discernible, confined and discrete conveyance, including, 

but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete 

fissure, container, rolling stock, concentrated animal feeding or vessel or other 

floating craft, from which pollutants are, or may be, discharged.” 

iii. Nonpoint Source: discharges without an identifiable point of discharge.  Not 

required to have an NPDES permit.  

National Pollutant Discharge Elimination System permits specify the type and 

concentrations of contaminants allowed in streams.  The EPA has created federal limitations 

imposed on such discharges.  Dischargers must monitor and report their compliance or non-

compliance with their discharge allowances (Bell, et al., 2017). 

Previous Research on Water Quality 

Attention was drawn to nitrogen as a source of pollution in 2000 when a policy 

memorandum titled “Policy for Addressing Degraded Ground Water Quality Areas” was 

published by the IDEQ to list areas degraded by nitrates that were the top priority for 
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management.  At that time, it became public knowledge that nitrate was the most common 

and widespread contaminant in Idaho (Keene, 2015).  It can be caused by human activities 

like confined animal feeding operations (CAFO), food processing, fertilizers, septic systems, 

and abandoned wells (Keene, 2015; Mitchell, 2011).  Due to nitrates’ very visible effects on 

human health, including blue baby syndrome, there was a push to create Nitrate Priority 

Areas (NPAs) (Thomas, 2006).   

Research specific to the Magic Valley has been focused on nitrogen for this reason.  

In addition, nitrogen transport pathways bind to water, resulting in increased concentration in 

groundwater making it easy to test.  Well testing was already prominent at the time and with 

plentiful data, understanding problematic areas and trends was straightforward.  A thesis 

written by Baumgarten looked at whether the current best management practices (BMPs) that 

the USDA recommended for farmers resulted in significant changes in groundwater nitrate 

levels.  Testing was conducted in two fields in Minidoka County.  Its findings suggested that 

there was a statistical difference between fields that implemented BMPs and those that 

didn’t.  It also noted a curious relationship between crop type and nitrate concentration in the 

well.  In some well locations, crop type had a greater influence on nitrate concentration than 

the implemented irrigation BMPs but not at other well locations.  The author concluded that 

there was a relationship between nitrate and groundwater (spatial relationship was not studied 

specifically) and recommended that the magnitude and variability should be studied further 

to see the effects of BMP implementation (Baumgarten, 1999).   

In conjunction with this study, Carlson, (1999) explored the geostatistical relationship 

that Baumgarten hinted at.  Carlson created a time series comparison based on groundwater 

nitrate concentrations.  The results of the net time series were then compared with sequential 

Gaussian simulations (SGS).  The SGS mapping in the study had consistent results with 

monthly sample collections.  His study was one indication that geostatistical analysis 

methods were a valid way to study groundwater nitrate concentrations.   

Lastly Wolf, 1995 assessed nitrogen and phosphorus loads in surface water to 

determine the effectiveness of BMPs.  A regression model was used to assess if loads 

decreased over a 6-year period.  The type of regression model was not divulged, only that it 

was from an ESTIMATOR program on which information is now lost and obsolete.  This 

study also included only two sites.  Progress with nutrient research has been slow due to the 
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difficulty of establishing routine water testing in which access and money become a 

constraint (Idaho Office of Performance Evaluations, 2014).  Following infrequent well 

testing for nutrients starting in the 1960s, the National Water-Quality Assessment Program 

(NWQAP) was adopted in 1991 (Gilliom et al., 2006).  This created a baseline assessment of 

water-quality conditions in 51 of the nation’s river basins.  It was largely up to “those 

interested” to request a summary report for use (USGS, 2014).  There is no enforcement or 

follow-up written for the program.  All of this is to say that there are methods and indicators 

used for testing nitrogen, that can potentially be used for phosphorus with modifications to 

account for sparse and inconsistent data. 

Phosphorus 

Phosphorus is necessary for all biological processes (Filippelli, 2008) as phosphorus 

is needed for the body to make DNA, proteins, cells, tissues, and ATP.  While essential for 

life on earth, it is in limited supply, as it is an immobile nutrient, and the availability of 

“new” phosphorus through natural means is restricted to weathering of rocks.  The main way 

synthetic phosphorus is introduced is through mining.  Phosphorus content is low in 

mineralized form and comes at a large environmental cost to process it for agricultural uses 

(Smil, 2000).  Phosphorus interacts with mineral and organic matter surfaces through 

diffusion, so it does not readily move through the root zone as other nutrients.  In simpler 

terms, phosphorus mostly binds to sediment particulates as opposed to water particles 

(USGS, 2021).  To read more about phosphorus forms and their abbreviations, refer to 

Appendix A.  

In agricultural ecosystems, soil total nitrogen and soil total phosphorus are the major 

determinants and indicators of soil fertility and quality (Wang et al., 2009). Using animal 

manure to supply a crop’s nitrogen requirements tends to result in applying more phosphorus 

than the plant needs.  When over-applied, phosphorus becomes a problem because it causes 

eutrophication, which is the overgrowth of plant life and the decline of the biological 

community in aquatic systems.  Chronic over-enrichment causes the growth of algal blooms 

which can lead to the following consequences: low dissolved oxygen, fish kills, an 

overabundance of macrophytes, likely increased sediment accumulation rates and species 

shifts of both flora and fauna.  EPA’s 1996 National Water Quality Inventory report 
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identifies excessive nutrients as the leading cause of impairment in lakes and the second 

leading cause of impairment in rivers (U.S. Environmental Protection Agency, 2000).  

To meet crop yield goals, fertilizers and/or animal manure applications are used but 

the continued applications of phosphorus to agricultural land causes phosphorus to 

accumulate and accelerate eutrophication.  In agricultural systems, the phosphorus content of 

surface layers is greater than that of subsoil layers because of direct agricultural application 

and greater biological activity.  Plant available phosphorus can decrease after 6 months if soil 

binding factors such as clay, organic C, Fe, Al, and CaCO3 increase (Sharpley, 1995a). For 

agriculture, manure applications have been N-based.  This leads to a soil increase of 

phosphorus because of the lower N:P ratios in plant uptake.  Phosphorus losses are 

influenced by the rate, time, and method of fertilizer application.  Fertilizer application 

influences the rate of loss depending on the form of phosphorus applied, the amount and time 

of rainfall after phosphorus application, and vegetative cover (Sharpley et al., 2003).  Studies 

had been conducted to understand and control this within agricultural lands (Sharpley & U.S. 

Agricultural Research Service, 1999) 

In 1996, the Environmental Quality Incentive Program was established in the cycle 

update of the U.S. Farm Bill.  It was administered by the NRCS and states were asked to 

adopt the federal policies which created technical and financial assistance to farmers and 

ranchers that could help improve environmental quality (Federal Agriculture Improvement 

and Reform Act of 1996, 1996).  Idaho produced their state compliance plan in 1999.  It 

started the groundwork for creating nutrient management plans that would minimize non-

point pollution, but it pertains only to farms that have land application of animal wastes 

(NRCS Idaho, 1999).  At the time, a phosphorus threshold (TH) was used to develop a 

Nutrient Management Plan (NMP) to keep farms on track for phosphorus compliance.  The 

Figure 4: Threshold Concentration by Resource (Leytem et al., 2017) 
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threshold used a phosphorus soil concentration, and the threshold number was dependent on 

the resource of concern (Figure 4).  If the amount were more than the threshold, the NM 

planner and producer would need to design a plan that would reduce soil test results.   

In 2017, NMPs were updated to utilize a Phosphorus Site Index (PSI) instead and this 

is the currently used standard.  The PSI grades the applicator with two parts; part A 

characterizes the risk of phosphorus loss based on soil properties and hydrologic 

considerations.  Part B characterizes past and current nutrient management practices that lead 

to increases in phosphorus concentrations in soil and potential for loss.  The index ranks risk 

so that when resources are limited, sites with higher scores can be targeted for management.  

TH only measures the amount of phosphorus land applied but has no mechanism for rating 

risk or ranking management priorities.  Under the PSI, a producer could apply as much 

phosphorus as they wanted to the land if the index was within an acceptable range.  This was 

helpful for some producers as they could offload their lagoon and manure pile that normally 

would not be usable.  (Chen & Vermeer, 2020; Leytem et al., 2017).  In 2021, some 

producers have challenged the use of the PSI because they are no longer able to apply 

phosphorus.  Under the threshold rule, they were in compliance, but with the PSI the site 

characteristics of their land increased the risk for transport which created higher PSI 

values.  Currently, the Idaho Dairyman’s Association (IDA) is proposing a HB51 bill to 

allow farm operators the option between the two tests (Idaho Farm Bureau, 2021).  

The study area has unique factors which contribute to the transport of phosphorus.  It 

is challenging to study phosphorus as a water quality issue due to the lack of routine water 

testing.  Even if elevated levels of phosphorus are found in water, those results do not result 

in enforcement.  Those standards that are enforceable are specific to soil testing and only 

apply to animal agriculture, not to crop farmers.  Drawing from previous research that 

implied regression modeling can be used to make inferences about a spatial relationship, the 

next chapter discusses a methodology that included all potential contributors of phosphorus 

to the system, and how to measure phosphorus vulnerability despite having a lack of unified 

data on concentrations.  

Importance of this Research 

With this body of research, my proposal was to update geostatistical models, as these 

studies are widely outdated.  Geostatistical modeling has been greatly improved by modern 
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programming, but it has not yet been applied to study nutrient movement in southern 

Idaho.  Phosphorus, especially in surface waters, has not been researched to the extent that 

nitrogen has.  Studying phosphorus in surface water can help us understand more immediate 

changes to runoff nutrients.  Groundwater testing requires expensive permitting and well 

infrastructure for every new point.  Surface waters can be tested anywhere to help bridge 

spatial gaps in data and could theoretically be done by citizens’ science groups.  Therefore, it 

was important to use an Exploratory Spatial Data Analysis (ESDA) approach to guide the 

choice of appropriate modeling for surface water.   If it is used in the future, we can increase 

our knowledge base of how phosphorus is affecting our communities.  
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Chapter 2: Methodology 

In this chapter, the steps and associated frameworks are presented to meet the 

research aims.  A suite of ESDA techniques were used for the primary analysis to investigate 

how a variable interacts within the spatial neighborhood.  Using a regular non-spatial 

analysis, such as correlation statistical methods, neglects the relationship that the variable has 

in surrounding space and only considers the direct relationship with another variable 

(Abdishakur, 2019).  Independent variables were selected from the literature review of 

nitrogen studies and the review of how the landscape contributes to the biogeochemical 

pathways of phosphorus.  As mentioned earlier, human activities such as confined animal 

feeding operations (CAFO), food processing, synthetic and animal fertilizers, and septic 

systems can influence nitrogen nutrient systems.  The literature review notes different 

environmental indicators that can influence how phosphorus moves through the system.  

Chapters 3 and 4 will further explain how these variables could cause major impacts on 

phosphorus in water systems based on the FEWs.  Using impairments in surface water by 

phosphorus, as opposed to those in groundwater as a response variable is under-researched 

but, in the future, data availability could increase. 

The research aims are described below in Figure 5.  To achieve these aims, several 

frameworks were utilized to meet these objectives as described below. 

Exploratory Spatial Data Analysis 

For the research conducted for this thesis, data was collected to best represent the 

SES components in the Magic Valley relevant to phosphorus in surface water.  The data was 

first analyzed for its distribution by using Moran’s I statistic on each variable to see the 

association between values and location (otherwise known as spatial autocorrelation).  This 

Figure 5: Research Aims 

UNDERSTAND HOW 
FEWS EXISTS SPECIFIC 
TO THE MAGIC VALLEY

ANALYZE CONTRIBUTIONS 
TO PHOSPHORUS IN 

SURFACE WATER

CREATE A METHODOLOGY 
THAT IS “EASIER” TO USE 
AND QUICKLY ADAPTABLE 

AND SPECIFIC
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helps understand if variables are random, dispersed or spatially clustered (Dall’erba, 2009).  

If a variable were clustered, we would infer that a high value means similarly high values 

will be nearby.  A dispersed variable would mean that higher values repel each other.  A 

hypothetical case of this relationship would be that manure application values are dispersed 

as farmers drive away from the site of production, since there is no need for manure at the 

main CAFO site and application would be farther away from each other.  A spatially random 

variable would be uniformly distributed over space.  In this case, the events do not interact 

with each other.  A study with multiple spatial autocorrelative variables violate the 

assumptions for certain sets of regression models.  If one of these independent variables 

ended up being a spatial contributor, there could be ways to condense, or disperse the values 

across the landscape to decrease the phosphorus loss.  Lastly, multiple types of regression 

models were tested for the best-of-fit.  Using statistical tools like R2 value and AIC can 

validate the model’s ability to predict HUC areas with phosphorus.  Likelihood and 

heteroskedasticity tests were used to decide on a model that did not overfit the data.   

Framework for Characterizing Phosphorus Contributions 

SPARROW (SPAtially Related Regressions On Watershed attributes) is a watershed 

modeling technique that relates water quality measurements to attributes of a watershed.  The 

framework is unique in that it uses a watershed delineation to objectively evaluate 

hypotheses about contaminant transport.  Individual watersheds in SPARROW are delineated 

using stream network properties, such as discharge, depth, area, and slope that impact long-

distance nutrient transport (Schwarz et al., 2006).  The SPARROW framework allows 

environmental managers and other stakeholders to identify sources that contribute nutrients 

to waters and to evaluate reduction scenarios (Wise & Johnson, 2013).  This thesis adopted 

the general framework of SPARROW but modified the model to accommodate data that was 

available at our study area resolution.  

Framework for Creating a Methodology for Future Iterations 

To visually show the modeling process, a Unified Modeling Language (UML) is used 

and has been provided in Appendix B.  UML is a visual language using shapes and arrows to 

represent objects and the association between them to portray system relationships in a 

standardized way.  The diagram used in this manuscript is loosely based on an activity 

diagram, a specific type of UML that captures the dynamics of methods, operations, and 
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functions of a software (Jain, 2017).  In this case, the integrated development environment 

(IDE) used is R Studio.   
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Chapter 3: Data Collection 

Data were selected to represent both the FEWS specific to the Magic Valley SES and 

to accommodate the USGS SPARROW used for general nationwide use.  Reference for the 

sources, units, and definitions are provided in Table 1.  Data representing soil hydrology, 

surface flow accumulation, and waste holding capacity were used to model important drivers 

in the ecosystem for phosphorus loading.  Hydroelectric dams represent the linkage of energy 

and water in a FEWS, and crop type and CAFOs represent food and water in the Magic 

Valley context.  Nutrient sources in SPARROW modeling were organized as nonpoint 

sources: the number of people not living in municipal sewage districts (and thus using septic 

systems), synthetic farm fertilizer, and livestock applications.  Point source data such as 

aquaculture and industrial waste inputs (Wise & Johnson, 2013) were also included.  The 

variables section of the UML diagram below (Figure 6) shows the data and spatial format of 

the datasets.  The data included in “data creation node” was produced with a variety of 

sources and filtered or manipulated to correctly represent the variable.  Variables outside the 

creation node had one source that required little to no editing from how it was originally 

downloaded.  
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Figure 6: Diagram of Selected Variables, a Segment of the UML 
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Table 1: Variable Selection Information and Supporting Frameworks 

Spatial Data Definition Reported Units Source 

Hydric Soils Soils under saturation flooding  
% of hydric soil within 

USDA soil delineation 

(Natural Resources 

Conservation Service & 

Soil Survey Staff, 2019) 

Waste Holding Capacity 
Soil properties that affect the absorption of 

manure and food-processing waste applications 
3 Point Likert scale 

(Natural Resources 

Conservation Service & 

Soil Survey Staff, 2019) 

Aquaculture Fish farm Number of sites / Acres (IDWR, 2017) 

Manure Application EPA estimation manure application Manure kg P/yr. per HUC 
(U.S. Environmental 

Protection Agency, 2014) 

Hydroelectric Dam Dams that create energy by water Number of sites (EIA, 2019) 

CAFO Density Concentrated Animal Feeding Operation  Number of animals 
 (Idaho Power, 2019; ISDA 

2019; IDWR 2019) 

Food Processors 
 Refine food into a product (creameries, cheese 

factories) 
Number of sites 

(Idaho Potato Commission, 

2019; Naerebout, 2019; 

Self-made) 

Crop Type 
Potato, corn, barley, wheat, sugar beet, alfalfa, 

other 

Lbs. P fertilizer 

applied/acre 

(USDA, 2020, Leytem, 

unpublished) 

Septic Systems that manage human wastes  Number of sites (USGS, 2011) 

Artificial Fertilizer 
Manufactured fertilizer which can be wet or 

dry 
kg P/ha/yr. (USGS, 2013) 

Surface Flow Accumulation Areas that water bodies flow into Pixel Value Self-made 

Phosphorus Impair Streams 
Streams with problematic phosphorus 

concentrations 

Phosphorus and  

Total Phosphorus 

(U.S. Environmental 

Protection Agency - OW, 

2015) 
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Nonpoint Source Data  

CAFO 

Despite the EPA classifying CAFOs as a point source, the agency does not have 

facility-specific information for all CAFOs.  For the EPA it is classified as “low enforcement 

priority” as it largely leaves states to regulate (Miller & Muren, 2019).  The EPA suggests 

using NPDES for CAFOs but in Idaho, the Department of Environmental Quality (DEQ), 

issues §401 water quality certifications.  These certificates state that a facility discharge will 

comply with the Clean Water Act and will not cause an exceedance of state water quality 

standards (Idaho DEQ, 2011).  Thus, CAFOs do not have formal, publicly accessible, 

NPDES.  For this reason, CAFOs in this study were classified as nonpoint sources since the 

storage and concentration of manure were unidentifiable.  CAFO locations were constructed 

by combining a variety of sources that had indirect information about names or coordinates.  

The sources synthesized included the data shown in Table 2 below: 
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Table 2: Descriptions of Sources Used for CAFO Locations and Densities 

 

Source Items File type Cow 

amounts 

Location Details 

Idaho Power   322 Point shapefile N Y Locations of CAFOs for research in biodigesters.  

Points were censored with large buffers and 

locations averaging multiple farms 

ISDA 644 Point shapefile N Y Point locations outdated by more than a decade. 

Unknown Online 

Google Map 

122 KML Y Y Appears to be civilian made; no state agencies took 

credit 

IDWR Water 

Rights for 

Animals 

16,707 Polygon shapefile Y N Water rights and claims for animal/farm use.  

Shapefile contained links to PDFs permits which 

occasionally contained dairy animal headcount. 

ISDA milking 

permits 

475 Spreadsheet  Y N Contained dairy licenses with names of dairies but 

no locations 

Ground-truthing 54 GPS coordinates Y Y 2 trip visits to confirm questionable sites.  A 

Garmin GPSMAP 62s navigator was used to mark 

positive feedlot points 

Visual inspection All  DigitalGlobe Quickbird N Y Google Earth inspection at 300ft resolution to KML 
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To perform ground-truthing of these points, a handful of trips were taken to Twin 

Falls county.  Positive feedlot points were marked using a Garmin GPSMAP 62s navigator.  

These coordinates were exported using the BaseCamp ™ program into a KML file which 

was then opened with Google Earth.  The points were marked from the road and not directly 

in the field, so Google Earth was used, shown in Figure 7 below, to edit each point and tag it 

to the adjacent feedlot location.  After this was finished, the points were converted to a point 

shapefile for use in ArcGIS ®.   

All sources were combined into one shapefile, with each attribute referring to a 

different source for estimated dairy cows.  Duplicates were removed using ‘Delete Identical’ 

as well as the ‘Dissolve’ tools within ArcGIS 10.7.1.  The Editor toolbar was used to create 

and modify the polygons of the feedlot area.  It was only necessary to include the areas where 

cows were held and not buildings used for milk processing or other non-animal holding areas 

that sometimes were contained in the water right polygon.  This shapefile shown below in 

Figure 8 represents CAFO density with the assumption that denser CAFOs generated more 

phosphorus.  However, it was also important to consider how much manure was applied as 

fertilizer to nearby farms.   

  

Figure 7: GPS Marked Locations of CAFOs 



22 

 

 

Manure Application 

Dairy manure is a slurry comprising 90%-96% liquid content with the other portion 

consisting of solid components (Lorimor et al., 2004).  Due to the high liquid content, raw 

manure is dense and expensive to move long distances either for field-application as 

fertilizer, or to be processed into compost.  It is often applied in its raw form directly on 

nearby agricultural lands.  The EPA hosts the EnviroAtlas which has geospatial indicators for 

a variety of ecosystem services (U.S. Environmental Protection Agency, 2015).  This dataset 

estimates the application rate of phosphorus (P) as manure on croplands in kilograms 

phosphorus per hectare per year within each subwatershed (12-digit HUC) for 2012 shown in 

Figure 9 below (U.S. Environmental Protection Agency, 2014).  This source represents good 

estimates of concentration but utilizes old feedlot data.  Both datasets, the CAFO density 

¯
Figure 8: CAFO Map as a Heat Density Using the Synthesized CAFO Dataset Described Above. 



23 

 

mentioned earlier, and the manure application discussed here, were used to adequately 

represent the use of manure as fertilizer in the Magic Valley. 

Artificial (Synthetic) Fertilizer 

Idaho Administrative Code (IDAPA) does not currently regulate nutrient application 

for crops (State of Idaho, 2020).  As there is no reporting regulation, synthetic fertilizer 

application rates can only be extrapolated from fertilizer sales at the county level.  To help 

address this gap, the USGS SPARROW model used land cover to assign the fertilizer 

application rate to the farmland areas (USGS, 2013; Wise & Johnson, 2013) - see Figure 10.  

Synthetic fertilizer refers to the manufactured form of fertilizers.  There is a distinction 

between this and manure wastes, as the ratio of NPK is specified in synthetic fertilizers, yet 

manure nutrients vary based on the animal's diet.  Fertilizer is applied according to crop 

Manure kg P/yr.

0.00 - 0.05

0.06 - 0.15

0.16 - 0.32

0.33 - 0.58

0.59 - 1.00

Figure 9: Manure Application Rate of P in HUC 12 According to EPA EnviroAtlas (U.S. Environmental 

Protection Agency, 2015) 
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nutrient requirements, but soil properties, topology, and vegetation can influence how 

fertilizer is retained.  

Crop Type 

Crops are highly dependent on phosphates and consequently uptake phosphorus with 

great efficiency.  Unfortunately, food production accounts for 50-60% of the global 

phosphorus supply, so even small losses from crops are magnified by the scale of crop 

production (Smil, 2000).  The eight primary crops produced in the Magic Valley are alfalfa, 

barley, corn, sugar beets, potatoes, triticale, wheat, and dry beans (USDA NASS, 2018).  The 

CropScape dataset includes the Cropland Data Layer (CDL) which identifies specific crop 

acreage.  The National Land Cover Dataset (NLCD) assembled by the USGS was another 

option that is commonly used for land use.  The CDL is a superior dataset as it is updated 

yearly compared to the NLCD which is updated only every 5 years.  The categories in the 

Legend

Fertilizer Applied
to Farm Land
(kg)

High : 3526

Low : 25

Figure 10: Fertilizer Rates kilograms per Year Inferred from Landscape Nutrient Loadings of Farmlands 

Using Data from (USGS, 2013) 
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NLCD are also limited, and specific crops are not identified as they are in CropScape.  The 

year 2019 was selected as it was the most recent year that had been corrected and verified at 

the time of research.  The data utilizes Landsat 8 imagery with a 30m resolution.  The data 

ranges from mid-80% to mid-90% in accuracy depending on the specific crop (USDA, 

2020).  The CDL data is shown in Figure 11.  

Crop type could indicate phosphorus loadings as nutrients for growth vary with the 

crop needs and uptake.  The values used for crop phosphorus needs were gathered from 

unpublished data produced by Dr. April Leytem, a USDA soil scientist in Idaho (see Table 3 

below).  The CDL was ‘clipped’ to the Magic Valley extent then filtered using ‘extract by 

attributes’ in which the bands for potato, corn, barley, wheat, sugar beet, and alfalfa were 

extracted.  Those values of phosphorus were available through Dr. Leytem’s data whereas 

triticale, wheat, and dry beans were not.  The “other” application rate was used for crops that 

did not have a specified amount. 

¯
Figure 11: Crop Land Cover Data Taken from the CDL Filtered for Relevant Crops (USDA, 2020) 
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Table 3: April Leytem’s Survey Data from Magic Valley Farmers, Unpublished Data 

Crop Type Total P Lbs. applied 

Potato 121.67 

Corn  183.67 

Barley planted  68.67 

Spring wheat 68.67 

Winter wheat 68.67 

Sugar beet 50.33 

Other 50.00 

Alfalfa harvested 34.33 

Point Source Data  

Septic 

Septic systems manage human wastes by removing and processing the waste before 

being released back into the environment.  If the system is compliant with code, it can be a 

safe and effective way to protect surface and groundwater quality in communities.  However, 

if not properly maintained, septic tanks can leak wastes and nutrients into water sources 

which can cause contamination of nearby streams (USGS, 2011).  Septic systems can be in 

active use for those who do not have access to municipal wastewater treatment plants.  There 

are also inactive or “legacy” septic tanks that were built before municipal water treatment 

was available (Wise & Johnson, 2013).  Both are considered since each can pose leakage 

issues. 
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Data for septic systems are available as an extrapolation of the 1990 Census tract 

block group and encompasses possible currently-in-use septic systems and those no longer in 

use (USGS, 2011) as shown in Figure 12 above.  SPARROW modeling indicated that septic 

wastes could contribute phosphorus loading to surface water and therefore were included in 

this study.   

Food Processing 

Dairy foods, meat, and cereals are the largest dietary sources of phosphorus for 

humans (Smil, 2000).  Food processors are required to have an NPDES permit because they 

are defined as point source discharges.  Food processing facilities have a wide variety of 

discharges, commonly reported in complex formulas, and performing the stoichiometry on 

individual forms in all the factories to produce isolated phosphorus amounts is beyond the 

scope of this thesis.  The count of processors was used instead.  The ready availability of 

agriculture has attracted a high density of food processors that refine various crops into foods 

Figure 12: Shapefile of Position Septic Sewer Systems, 22,038 Points Available from the USGS (2011) 
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for human consumption.  According to The Office of the U.S. Trade Representative, Idaho’s 

top three food exports were plant products, dairy products, and processed vegetables (United 

States Trade Representative, 2019).  Two of the top ten planted crops in the Magic Valley are 

sugar beets and potatoes (USDA, 2020) which both are processed within the valley.  The 

number one animal product is milk which is also processed.  Thus, the shapefile included 

data on milk, potato, and sugar beet food processors.  Table 4 shows the number of 

processors in the Magic Valley in 2019 for milk, potatoes, and sugar beets. 

Table 4: Mapped Food Processors by Agricultural Products in 2019 

Input Food Labels Count of Processors 

Milk 16 

Potato 21 

Sugar beet 15 

Grand Total 52 

Processor point locations were collected by searching through Google Earth for the 

company name while zoomed out to the southern state extent.  The company names were 

collected by various directories.  First was from the Idaho Potato Commission (IPC), a state 

agency, that publishes a yearly shipping and processor directory for potato products.  An 

example of a large processor in southern Idaho included in the directory is McCain Foods 

which produces powdered potatoes that can be made into mash (Idaho Potato Commission, 

2019).  Milk processors include creameries, cheese factories, yogurt, and even protein bars 

which utilize milk whey protein.  The Idaho Department of Agriculture has a list of 

processors and co-ops that are formally recognized by the association as being prominent 

businesses (IDA, 2019). These processors were included in a point shapefile.  Amalgamated 

Sugar Company is also an important food processor, that was added to the shapefile.  The 

locations of all these food processors are shown in Figure 13 below. 
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Aquaculture 

Idaho uses more water to support aquaculture than any other state (Dieter et al., 2018) 

making it important to include for water quality contributions.  As mentioned earlier, farming 

of fish was considered a point source for total nitrogen and total phosphorus, and this data is 

also used in SPARROW.  Idaho aquaculture farms are required by the Clean Water Act to 

have NPDES permits.  These permits are issued by the Idaho DEQ and require water that is 

released from the farm to match the standards of the natural water body it is being released 

into.  Water quantity and water quality are important to aquaculture farms because the water 

they take in must be as clean as possible for the fish to thrive, but those waters cycle from 

springs, through the farms, and back into the Snake River system.  The SPARROW method 

calculates the inputs and outputs of each aquaculture farm, but this was beyond the scope of 

this thesis.  Aquaculture farms were not mapped directly; so, a water rights shapefile was 

Figure 13: Point Shapefile of Food Processing Locations, 52 Points Using the Synthesized Dataset Described 

Above 
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used instead.  A shapefile produced by the IDWR, accessed in 2017, contained polygons 

depicting point of use (POUs).  Water rights in Idaho are represented as areas where water 

can be used from a POU.  Defined POUs have assigned beneficial use(s) under a water right 

which describes for what activity the water is needed and used (IDWR, 2017).  In this case, 

the beneficial use attribute was filtered selecting 'FISH PROPAGATION' and 'FISH 

PROPAGATION STORAGE'.  The shapefile was then ‘clipped’ to the Magic Valley extent.  

There is no source for the locations of these farms.  Sites were checked using Google Earth to 

visually determine if they were still active and to determine accurate boundaries.  Two-

Hundred Forty-Seven (247) farms were confirmed with this method.  The shapefile included 

acreage attached to the water right and in Figure 14 the phosphorus impact operated under 

the assumption that the larger the farm, the larger the phosphorus inputs.   

Figure 14: Dot Density Map of Aquaculture Locations with Dot Sizes Representing Relative Size 
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Hydroelectric Dams 

In the Magic Valley, hydropower is dependent primarily on reservoir operations, and 

spring or early summer runoff.  Additional hydropower facilities further downstream on the 

Snake River are also dependent on hydrologic flow out of the basin (Clark et al., 1998).  

There is evidence to suggest hydropower can affect water quality.  While the facility itself 

does not pollute; the dam can affect the surrounding natural habitat.  The dam constructs a 

reservoir area that can change water temperature and flow.  This can cause water quality 

issues as the concentration of nutrients increases in the dammed reservoir (USGS, 2018).  

The presumption was more dams would provide more areas for phosphorus to become 

bioavailable.  It is important to include energy contributions in a FEW system, thus 

hydroelectric dams were used as an indicator.  

The U.S. Energy Information Administration (EIA) provides a shapefile of power 

plants across the US (EIA, 2019).  The shapefile was ‘clipped’ to the Magic Valley extent 

¯
Figure 15: Point Shapefile of Hydroelectric Dam Locations (EIA, 2019) 
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then the PrimSource attribute was filtered using ‘select by attributes’ in which only 

‘hydroelectric’ was selected.  This resulted in 34 hydroelectric plants mapped as shown in 

Figure 15.   

Natural 

Hydric Soils 

Hydric soils are also important in phosphorus movement since wetland soils can 

function as sinks and sources of phosphorus depending on water residence times and the 

biophysical properties of the soils (Seltzer & Wang, 2004).  Phosphorus has a greater 

potential of movement for runoff and drainage in wetland soils than it does in dryland soils.  

The anaerobic conditions of wetlands speciate Fe which then functions as a sink in dissolved 

phosphorus concentrations.  Phosphorus associates with Fe complexes which act to retain 

phosphorus within the wetland system.  This can decrease phosphorus downstream but 

increases the retention of phosphorus in the upstream hydric areas (Reddy et al., 1999).  

There is also the niche in which shallow waters allow phosphates to circulate more freely 

from soils.  The shallowness of water provides more sunlight through the water column 

promoting photosynthesis and exacerbating eutrophication (Smil, 2000) making some hydric 

soils a high contamination risk.  

Web Soil Survey (WSS) houses the most comprehensive soil data for the United 

States.  It was created by scientists from USDA and can be used for farm or urban planning.  

Spatial resolution is set by soil delineation.  Soil delineations are a map unit that has a 

boundary drawn wherever there is a significant change in the type of soil.  These can vary in 

size and change as new survey data is added.  A layer provided by WSS has a hydric soil 

rating based upon the idea that soils under saturation flooding or ponding during the growing 

season develop anaerobic conditions.  The criteria to determine whether soils were in hydric 

conditions included soil and field indicators that can cause frequent ponding for long 

durations.  The shapefile used a rating system of soil delineation with percent of hydric 

components within the delineation and is shown in Figure 16 (Natural Resources 

Conservation Service & Soil Survey Staff, 2019).   



33 

 

Figure 16: Hydric Soil Ratings (Natural Resources Conservation Service & Soil Survey Staff, 2019) 

Waste Holding Capacity 

Soil properties influence both which human activities can be supported and to what 

extent those activities influence nutrient leaching into waters.  The waste holding capacity 

layer from WSS rates soils to determine how agricultural wastes are likely to be absorbed.  

Manure and food-processing wastes in both solid, slurry, or liquid form are included in the 

layer.  These waste materials can improve crop production if applied as fertilizer as it 

increases the supply of nutrients in the soils.  Manure is the excrement of livestock and 

poultry, and food-processing waste is damaged fruit and vegetables and the peelings, stems, 

leaves, pits, and soil particles removed in food preparation.  The soil’s holding capacity was 

evaluated using absorption properties, plant growth, microbial activity, and erodibility.  The 

shapefile rates the soil classes in qualitative terms: "Not limited", "Somewhat limited”, and 

"Very limited".  Not limited soils would have good performance for retaining and utilizing 

wastes whereas very limited soil would not be able to sustainably hold wastes without major 
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soil reclamation, design, or installation procedures first being implemented.  (Natural 

Resources Conservation Service & Soil Survey Staff, 2019).  Figure 17 illustrates soil 

ratings.  Agricultural wastes do not include toxic or otherwise dangerous wastes in the 

definition so ratings will not account for extreme events. 

Figure 17: Soil Rating for Waste Holding Capacity (Natural Resources Conservation Service & Soil Survey 

Staff, 2019) 

Surface Flow Accumulation 

Phosphorus collects in the surface soil and concentration decreases as the depth of the 

horizon zone increases.  The result is phosphorus movement occurring from erosion and 

surface runoff toward downslope areas (Sharpley, 1995b).  A surface accumulation flow 

creates a raster with channels that represent the flow of sediments and water (ESRI, 2019b), 

in other words, the downslope cell areas of the raster.  The raster was created by using a 

Digital Elevation Model (DEM) which was downloaded from the Idaho Enterprise Open 

Data Portal.  The Idaho DEM tile resolution was at the 1/3 arc-second scale.  Next, the ‘Fill’ 
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tool was executed to remove any sinks; areas that had an undefined drainage direction.  

Finally, the ‘Flow Accumulation’ tool was run on the filled DEM.  The shapefile is shown in 

Figure 18. 

Figure 18: Flow Accumulation Areas 

Impaired Streams 

A concentration of phosphorus does not directly positively correlate with higher 

environmental harm.  As mentioned in the introduction, phosphorus comes in multiple forms, 

bioavailable and not, and can be bound or unbound to soils.  To determine locations at which 

accumulation of phosphorus would be detrimental, the EPA 303(d) Listed Impaired Waters 

dataset was used.  Per the Clean Water Act, states are required to analyze whether its waters 

are meeting water quality standards to support its beneficial uses, or if management needs to 

be implemented.  The Idaho Integrated Report authored in 2016 by the Idaho DEQ addresses 

this regulatory need.  The report was a summary of the monitoring and restoration effort to 

restore the chemical, physical, and biological integrity of Idaho’s waters (Steimke, 2018). 
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The waters contained in the EPA shapefile were only EPA approved Category 5 waters of a 

state’s Integrated Report (see Table 5 for the categories).  

The EPA categorizes waters 1-5 which are described in Table 5 below. 

Table 5:Five Assessment Categories as Defined by the EPA for Use in State Integrated Reports (U.S. 

Environmental Protection Agency - OW, 2010) 

Idaho may have had other bodies of water that are impaired by phosphorus but might 

not have supporting data nor a total daily maximum limit (TMDL) requirement.  Only 

category 5 streams were used as there was enough data to make a determination of 

contamination and the contamination was enough to cause a TMDL requirement (U.S. 

Environmental Protection Agency - OW, 2010).  Those streams are shown in Figure 19. 

  

Category 1: All designated uses are met 

Category 2: Some of the designated uses are met but there is insufficient data to 

determine if remaining designated uses are met 

Category 3: Insufficient data to determine whether any designated uses are met 

Category 4: Water is impaired or threatened but a TMDL is not needed  

Category 5: Water is impaired or threatened and a TMDL is needed 
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Figure 19: Streams Impaired by TP and P (U.S. Environmental Protection Agency - OW, 2010) 
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Chapter 4: Data Distribution and Correlations  

Having characterized the data that were collected, this section describes how the data 

were prepared for use in a regression model.  Data needs to have consistent spatial resolution 

and the values must be normalized to meet assumptions for statistical analysis and validate 

that analysis.  Figure 21 shows the spatial resolution of the data; most data were either 

summarized or averaged within a HUC 12 aggregation.  
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Figure 20: Diagram of Variable Aggregation, a Segment of the UML 
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HUC Usage  

Figure 21: HUC Classifications for the Magic Valley Area.  

The United States Geological Survey has divided the United States into increasingly 

smaller hydrologic units which are classified into four levels: regions, subregions, accounting 

units, and cataloging units.  The units are nested within each other.  Each hydrologic unit is 

identified by a unique hydrologic unit code (HUC).  This study used the HUC 12 which is a 

sub-watershed level for local areas that captures tributary systems (U.S. Geological Survey, 

2020).  More information about HUCs is located in Appendix C.   

HUC Aggregation  

In this chapter all data were appended at the HUC level then a new column was 

created as a phosphorus vulnerability index.  As mentioned in chapter 3, some of the 

phosphorus values are based on actual phosphorus amounts while others were developed 

based on assumptions of how much phosphorus was created and others on environmental 

indicators for phosphorus vulnerability.   
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Table 6: ArcMap Stats Summary Phosphorus Vulnerabilities within HUC Region 

Table 6 shows the summarized statistics from ArcGIS of each shapefile layer.  For 

each layer: minimum value, maximum value, sum, mean, standard deviation, and the number 

of missing values (nulls) were reported.  These values were then normalized between 0-1 to 

make it comparable to the other layers as shown in Table 7.  Explanations of what data was 

included in these values and how they were calculated are within this chapter. 

 

  

Aggregation 

Layer  

Min:  Max:  Sum:  Mean:  Standard 

Deviation:  

Nulls:  

Manure 

Application 

Rate 

0.0 17.8 490.6 1.33 2.8 116 

Aquacultures 

Acres 

0.0 1,502,740.0 4,606,061.0 12,516.47 109,212.5 
 

Hydroelectric 

Dams 

0.0 4.0 34.0 0.09 0.4 
 

CAFO Density 0.0 57,120.0 584,044.0 1,587.08 5,562.0 
 

Food 

Processors 

0.0 4.0 28.0 0.08 0.4 
 

Septic Systems 0.0 1,366.0 22,038.0 59.89 145.4 
 

Phosphorus 

Response 

0.0 36,618.7 306,419.8 832.66 3,890.7 
 

Hydric Soil 0.0 24.3 845.7 2.30 4.4 
 

Waste Holding 

Capacity 

2.0 5.0 940.3 3.05 1.0 60 

Crop Type 0.0 143.1 12123.92 32.95 21.32 
 

Artificial 

Fertilizer 

0.0 3526 465049.42 1263.72 942.86 
 

Accumulation 

Flow 

0.0 9.68 326.74 0.89 1.54 
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Table 7: Summary of Normalized Phosphorus Vulnerabilities within HUC Regions 

The following sections show the basic statistics and distribution of data, Moran’s I, a 

visual of the data in its HUC form, and comments pertaining to the data.  Global Moran’s I 

tests the null hypothesis that the spatial layer being evaluated was randomly distributed.  It 

can help find patterns in complicated data sets and is measured from -1 to 1  (ESRI, 

2019a).  A value of 0 represents perfect randomness, a positive value indicates clustering, 

and a negative value indicates dispersion of values.  Originally it was commonly used for 

disease cases but now is considered a standard for any geostatistical analysis (Jackson et al., 

2010).  When Moran's I is significant, it indicates that the value being assessed is clustered 

(see Chapter 2 for a more detailed discussion) and has directional trends.  This is important 

with phosphorus because it suggests that the nutrient will be concentrated in areas that are 

highly clustered.  

  

Normalized 

Aggregation 

Layer  

Min:  Max:  Sum:  Mean:  Standard 

Deviation:  

Nulls  

Manure 

Application 

Rate 

0.00 1.00 27.57 0.07 0.16 116.00 

Aquacultures 

Acres 

0.00 1.00 3.07 0.01 0.07 
 

Hydroelectric 

Dams 

0.00 1.00 8.50 0.02 0.11 
 

CAFO Density 0.00 1.00 10.22 0.03 0.10 
 

Food 

Processors 

0.00 1.00 7.00 0.02 0.11 
 

Septic Systems 0.00 1.00 16.13 0.04 0.11 
 

Phosphorus 

Response 

0.00 1.00 8.37 0.02 0.11 
 

Hydric Soil 0.00 1.00 34.75 0.09 0.18 
 

Waste Holding 

Capacity 

0.00 1.00 247.64 0.80 0.15 
 

Crop Type 0.00 1.00 93.37 0.25 0.15 
 

Synthetic 

Fertilizer 

0.00 1.00 131.89 0.36 0.27 
 

Accumulation 

Flow 

0.00 1.00 33.77 0.09 0.16 
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Manure Application  

Manure application, determined by Moran’s I, was clustered with p = < .001, or less 

than 1% likelihood that this clustered pattern could be the result of random chance.  Because 

manure is heavy and expensive to transport, manure applications are not transported far from 

CAFOs.  Figure 22 has a large skew to the left demonstrating there is not a mix between 

small and large application amounts. 

Figure 22: Manure Application Frequency Distribution of the HUCs Containing Values Greater than 0  

 

Figure 23: HUC 12 with Phosphorus Vulnerability of Manure Application 

Phosphorus 
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116 HUCs had no data available for manure distribution resulting in null values (Figure 

23).  No spatial aggregation was needed as the data was already provided in the HUC 12 

areas by the EPA.  The only changes to the data were the normalization adjustments.  

Sum Spatial Join  

Spatial joins affix data from one feature layer's attribute table to another from a 

spatial perspective.  Essentially it takes the attribute data of the join feature and associates it 

with the spatial area of the target feature.  In this case, all variable data needed to be 

aggregated into the HUC watershed units to meet the regression assumption that predictor 

variables are spatially consistent across all layers.  Potential sources of phosphorus were 

summed within a HUC area to form a phosphorus vulnerability index.  When working with 

unknown phosphorus amounts, the assumption is that an increased occurrence of a source 

will lead to more phosphorus accumulation.  

Aquaculture  

The aquaculture farm area was estimated by drawing polygons around each 

facility.  It was assumed that the larger the aquaculture operation, the larger the potential 

phosphorus output.  Thus 1 was assigned to the largest summed areas and 0 to areas with no 

aquaculture.  20 HUCs had aquacultural acreage (Figure 25) most of which were in the 

western part of the Snake River.  The data distribution Moran’s I statistic indicated that the 

layer was significantly clustered with p < .001. 

Figure 24: Aquaculture Frequency Distribution of the HUCs Containing P Ranking Values Greater than 0   
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The majority of HUCs have smaller aquaculture farms but there is a bimodal 

distribution in which there are some large-scale aquaculture farms but none that are medium-

sized (Figure 24).  

Hydroelectric Dams 

The number of hydroelectric dams were summed within the HUC.  This produced 22 

HUCs with the majority of hydroelectric dams along the Twin Falls Snake River area 

(Figures 26 and 27). 

Number of
Sites / Acres

0.00

0.01 - 0.06

0.07 - 0.11

0.12 - 0.27

0.28 - 1.00

¯
Phosphorus 
Vulnerability  
Measured by 

Figure 25: HUC 12 with Phosphorus Vulnerability of Aquaculture Farms   

Figure 26: Dam Frequency Distribution of the HUCs Containing Values Greater than 0 
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The Moran’s I statistic suggested that the pattern of hydroelectric dam placement did 

not appear to be significantly different than random as p = .18 and the null hypothesis (of no 

difference from random distribution) cannot be rejected.  

Figure 27: HUC 12 with Phosphorus Vulnerability of Hydroelectric Dams 

CAFO  

The count of dairy cows was summed within each HUC.  Active milking cows were 

selected as this produces the highest amount of excreted phosphorus in the life cycle of dairy 

cattle (Lorimor et al., 2004).  The 1 rating, or the highest output of expected phosphorus, 

refers to HUCs with the greatest number of cows.  HUCs containing no cows were rated 0 

Figure 28.  In Figure 29 the largest sum of CAFOs were located in Jerome and Cassia 

counties. 

Number of Sites

0.00

0.01 - 0.25

0.26 - 0.50

0.51 - 0.75

0.76 - 1.00

¯
Phosphorus 
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Figure 28: CAFO Frequency Distribution of the HUCs Containing Values Greater than 0 

The Moran’s I statistic denoted that the layer was significantly clustered p < .001.  

Figure 29 HUC 12 with Phosphorus Vulnerability of CAFO Count  

Food Processors  

Similar to the hydroelectric dam layer, food processor instances with a 1 rating 

contained the most facilities, and a 0 contained none (Table 7, Figures 30 and 31). 
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Figure 30: Food Processor Frequency Distribution of the HUCs Containing Values Greater than 0 

Moran’s I statistic concluded the layer was significantly clustered with p = .013  

Figure 31: HUC 12 with Phosphorus Vulnerability of Food Processors   

Septic System  

There were a range of numbers of septic systems in HUCs with a 1 rating containing 

the most facilities and 0 containing none (Table 7, Figures 32 and 33). 
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Figure 32: Septic System Frequency Distribution of the HUCs Containing Values Greater than 0  

The Moran I statistic indicated that the layer was significantly clustered with p < .001  

Figure 33: HUC 12 with Phosphorus Vulnerability of Septic Systems   

Phosphorus Response  

Idaho DEQ reports Category 5 waters, those that are impaired or threatened and for 

which a TMDL is needed.  For creating a dependent variable, the length of the impaired 

stream indicates the HUC is showing a stronger response to unknown explanatory variables.  

Number of
Septic
Systems

0.00

0.01 - 0.05

0.06 - 0.14

0.15 - 0.34

0.35 - 1.00

¯
Phosphorus 
Vulnerability  
Measured by 
 

F
re

q
u

en
cy

 

P Vulnerability of Septic Systems 



50 

 

The Category 5 stream length of total phosphorus (TP) and phosphorus (P) were overlapped, 

then the length of the stream was summed into total kilometers.  HUCs with the longest 

impaired streams, or the higher km, were rated with a 1 rating, and no known impairments 

rated 0 (Figures 34 and 35).  The Moran’s I statistic indicated that the layer was significantly 

clustered with p < .001  

Figure 34: Phosphorus Response Frequency Distribution of the HUCs Containing Values Greater than 0  

Figure 35: Phosphorus Response Stream Length Summed among HUC 12 Aggregation 
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Average Spatial Join 

This section explains the variables that were used to compute the “average” 

summarization within the HUC 12 boundary.  Data layers that had known phosphorous 

amounts, or that were environmental indicators were averaged within a HUC to 

accommodate the variance between values.  For best display purposes, 0 was placed in a 

category level then Natural Breaks were used for the rest of the symbology level 

classification. 

Hydric Soils 

Soils were rated by percent of components containing hydric soils.  The mean soil 

percentage was used to aggregate the HUCs.  A higher percentage of hydric components 

were rated 1 for more phosphorus potential and 0 for HUCs containing no hydric properties 

(Table 7).  The Moran’s I statistic indicated that the layer was significantly clustered, with p 

= 0.00  

Figure 36: Hydric Soils Frequency Distribution of the HUCs Containing Values Greater than 0  

The northern areas of the Magic Valley had larger percentages of hydric soils but 

more than half of HUCs rated low on this measure of phosphorus vulnerability (Figures 36 & 

37).  
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Figure 37: HUC 12 with Phosphorus Vulnerability of Hydric Soils 

Waste Holding Capacity  

The WSS designed this layer as a shapefile with three qualitative rankings of how 

well the soil can hold wastes (Figure 39).  A soil ranking of “not limited” denotes that the 

soil would reasonably hold waste applications without releases to the environment.  This was 

rated numerically as 0.33.  HUCs that were “very limited” would be prone to runoff of waste 

and were rated with 1 being a high risk for phosphorus release potential (Table 7).  

Table 8: Waste Holding Capacity Ranking  

WSS Qualitative Rating  Quantitative Assignment  

Not Rated  0 

Not Limited  0.33 

Somewhat Limited  0.66 

Very Limited  1 

There were 60 areas that had no available data resulting in null values (Table 6).  The 

Moran’s I statistic suggested that the layer was significantly clustered with p = < .001  
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Figure 38: Waste Holding Capacity Frequency Distribution of the HUCs Containing Values Greater than 0  

The frequency distribution is skewed to the right and indicates that the majority of 

HUC soils are not good for holding wastes in the Magic Valley Area (Figure 38).  Jerome 

and Blaine counties have a few areas with lower phosphorus vulnerability (Figure 39).   

Figure 39: HUC 12 with Phosphorus Vulnerability of Waste Holding Capacity   

P̄hosphorus 
Vulnerability  
Measured by 
Average
Waste
Holding
Capacity
Limitation

0.00

0.01 - 0.40

0.41 - 0.60

0.61 - 0.80

0.81 - 1.00

F
re

q
u

en
cy

 

P Vulnerability of Waste Holding Capacity 



54 

 

Crop Type  

Synthetic phosphorus fertilizer applied, and crop uptake was estimated by 

unpublished data produced by Dr. April Leytem in 2020 and used for HUC boundaries.  

County level data for phosphorus balance is available in the (Leytem et al., 2021) 

publication.  Crop uptake was subtracted from the average phosphorus applied to measure 

excess phosphorus.  The excess phosphorus was then normalized to produce the phosphorus 

ranking for this layer (Table 9).   

Table 9: Crop Type Ranking  

The normalized value of excess P was then spatially joined with each HUC unit.  

Sugar beets were ranked as the least vulnerable and corn as the most vulnerable for P losses.  

Moran’s I concluded the layer was significantly clustered with p < .001  

Figure 40: Crop Type Frequency Distribution of the HUCs Containing Values Greater than 0  

When all excess phosphorus from crops were averaged into a HUC unit, the 

vulnerability distribution was lower (Figure 40).  There is a ring effect where HUCS farther 

away from the Snake River increased in vulnerability but decreased at the Magic Valley 

boundary (Figure 41).   

  Total P lbs. 

applied 

Average P uptake 

(lbs./acre) 

Excess P lbs. P Ranking 

Sugar Beet  50.33  56.00  -5.67  0.00  

Alfalfa  34.33  26.70  7.63  0.09  

Other  50.00  36.76  13.24  0.13  

Spring Wheat  68.67  44.90  23.77  0.20  

Winter Wheat  68.67  44.90  23.77  0.20  

Barley  68.67  44.60  24.07  0.20  

Potato  121.67  34.80  86.87  0.62  

Corn   183.67  40.60  143.07  1.00  

F
re

q
u

en
cy

 

P Vulnerability of Crop Type 



55 

 

Figure 41: HUC 12 with Phosphorus Vulnerability of Crop Type  

Artificial (Synthetic) Fertilizer  

HUCs, where a greater mass (kg) of fertilizer was applied, were ranked higher, and 

no use of phosphorus fertilizer application was ranked 0 (Table 7).  Moran’s I statistic 

suggested that this layer was significantly clustered with p = <.001   

Figure 42: Synthetic Fertilizer Frequency Distribution of the HUCs Containing Values Greater than 0  
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Based on the frequency distributions (Figure 42) most HUC are moderately 

vulnerable (0.45-0.70) with the highest synthetic phosphorus likely being applied in south 

Minidoka County.  

Figure 43: HUC 12 with Phosphorus Vulnerability of Synthetic Fertilizer  

Surface Flow Accumulation  

Surface flow accumulation had a pixel value that represents areas of greater water 

accumulation.  Pixel values were averaged within a HUC, and the highest average pixel value 

was given a 1 whereas 0 represented areas with no surface water accumulation (Figures 44 

and 45).  Moran’s I statistic suggested that the layer was significantly clustered with p < .001. 
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Figure 44: Surface Flow Accumulation Frequency Distribution of the HUCs Containing Values Greater than 0 

The vulnerable areas are west of the Snake River and the Malad River (See Figure 45 

for vulnerability and Figure 3 for river locations). 

Figure 45: HUC 12 with Phosphorus Vulnerability of Surface Flow Accumulation  
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Aggregation Properties  

To visualize how the variables interact with each other, a k-mean clustering 

visualization was used (Figure 46).  Clustering, under the definition of traditional statistics, 

are a variety of techniques that find similar subgroups of observations within a dataset.  It is a 

statistical tool that does not use spatial information, only the attributes of the data.  The 

factoextra package for R (Kassambara & Mundt, 2020) has a K-Means type of clustering 

function called fviz_cluster which uses an unsupervised learning algorithm, and the user 

defines K; the number of clusters the computer needs to assign data to.  K is selected by 

considering values on scree plots and what visually creates the most useful interpretations.   

The observations are assigned to a cluster group based on the first two principal 

components of the dataset which account for 46% of the variance.  Creating cluster groups 

based on all 12 variables would be difficult due to the variation of each variable from all 

observations.  But a principal component analysis reduces the number of variables by 

removing unnecessary explanatory information from the dataset and creating new variables 

Cluster 

Groups 

¯
Figure 46: Magic Valley HUCs Groups by Similar Attributes per R Clustering 

1 

2 

3 
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that successively maximize the percentage of variance explained.  Most of the information is 

still retained but it is simpler for the algorithm to identify similarities.  For these principal 

components, the first dimension is mostly comprised of manure application rate, septic 

systems, accumulation flow, hydroelectric dams, and the second dimension: crop type and 

waste holding capacity.  Four k-means were selected based on the distinguishable cluster 

groups.  Increasing past four caused overlapping of clusters making it difficult for analysis.  

Only cluster group 4, seen in the legend on Figure 46, incorporates all known HUCs 

with phosphorus impairments (see Figure 35 for comparison).  It also includes other HUC 

units with no known phosphorus impairments.  If we are to assume that the similarities of the 

regions are due to being in the same cluster group, we could make a reasonable argument that 

the other HUCs may also have phosphorus impairments if they were tested.  This can be 

thought of as a phosphorus priority area. 

During the process of aggregation, strong clustering patterns were visible and 

confirmed with Moran’s I.  All variables were significantly clustered other than hydroelectric 

dams which were shown to be random.  The majority of variables had a left skew 

distribution.  Notable deviations were waste holding capacity had a right skew distribution, 

synthetic fertilizer had closer to a normal distribution.  Both food processors and 

phosphorous response variables had multimodal distributions.  Due to the spatial 

autocorrelation and distribution skews, a regression model needed to be selected that could 

resolve the spatial properties of the data.  The spatial econometric regression family was 

selected as it accounts for spatial effects in regression analysis.    
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Chapter 5: Regression Modeling 

The first section of this chapter covers the model selection process including the key 

decisions based on an understanding of the available data and how it might be represented in 

space.  Relevant questions include:  

a. How is our data distributed? 

b. Do the data parameters meet the assumptions of the regression model 

selected? 

c. How well does a regression model explain the variance?  

Answers to these questions will come from the analysis of spatial statistics that integrate 

mathematics directly into space.  This integration can be created by introducing spatial 

weights (W) coefficient within modeling.  Choices must not merely apply traditional 

statistical methods to data that just happens to be spatial.  In this study, regression modeling 

was used to find a mathematical model that best fit the existing data (the independent 

variables) to the response variable.  Among all the choices of regression models, spatial 

econometric models have a unique ability to incorporate simultaneous feedback between 

regions located in space.  This fits well with the SES theory that humans and nature have a 

dynamic relationship (Virapongse et al., 2016).  After identifying the family of regression 

models best suited to the data and our objectives, we then start a “specification search” that 

involves selecting a statistical model based on its ability to pass validation tests.  Fitness tests 

are run to determine if the model’s predicted values are close to the observed data points and 

the models found to perform well can be called “best of fit”.  In this regression, the predicted 

or response variable is impaired phosphorus streams.  The final modeling step involves 

validating regression results.  In addition, the Breusch-Pagan test was applied, which parses 

out if the model is predicting properly across all areas.  This chapter is divided into two 

sections discussing decisions that were made for modeling the data.  First the analysis of 

appropriate regression parameters and then the validation of the selected model. 

Analysis 

Much of the preliminary work described in earlier chapters provides a comprehensive 

understanding of the data and what it is expected to show so that an accurate model selection 

and refinements to the model can be made.  Many regression models exist, and it is a 

common mistake to mis-specify data by using the wrong regression.  There are rules and 
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assumptions for different types of regression, occasionally there is disagreement about 

models based on disciplines (traditional statistics vs. spatial statistics).  Both disciplines 

agree, however, that a mis-specified model is an incomplete model.   

Ordinary Least Squares (OLS) is the starting point for all spatial regression analyses 

and its representation is shown in the equation below: 

y = X β + ɛ 

OLS creates a single equation for a global model where the Y response can be 

explained by X variable(s), β is the vector of X variable slope plus ɛ the error term (Scott & 

Pratt, 2009).  The data from the Magic Valley poses two problems for the proper use of OLS.  

The first problem is that OLS assumes the data is normally distributed.  OLS gives the most 

accurate p-values with normally distributed variables, otherwise, p-values and coefficients 

are unreliable for correct interpretation.  Most of the explored explanatory variables in the 

Magic Valley had a left skew distribution.  The second problem of OLS is autocorrelated 

variables.  Notice there is no W coefficient in the OLS equation because it is not an 

inherently spatial model.  Therefore, spatial clustering can introduce an over-counting type of 

bias, known as autocorrelation, which also renders model interpretation unreliable.  

Similarly, most independent variables were spatially clustered.  Traditional statisticians 

would correct for autocorrelation but when using spatial statistics, clustering and skewness is 

an important story of human and environmental behavior and removing that will impair the 

ability to make recommendations (ESRI, 2020).  OLS is within the umbrella of spatial 

econometric models, but a more advanced model that handles spatial autocorrelation and 

skewness well is available and would suit the data better (LeSage & Pace, 2009; Scott & 

Pratt, 2009).  To create an equation that manages the complexity of spatial data, a spatial 

weight must be added.  

As stated above, spatial weights appear as a matrix W in a written regression 

equation.  To integrate spatial relationships, a spatial weights matrix type must be selected.  

The construction of spatial weights determines how spatial dependence (degree of spatial 

autocorrelation) is expressed between regions.  In other words, you set parameters in a 

computational program for how closely to relate regions, if they are close, they are defined as 

neighbors.  It is important to choose a matrix structure that best represents how spatial 

variables are thought to interact with each other.  Then to conclude the analysis section, a 
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specification search is conducted to find a regression model that best interprets neighbor 

interactions.   

Spatial Weights 

Defining how regions select neighbors in R can be done in two ways, contiguity, or 

distance.  In the simplest categorization, neighboring units can be those that include common 

vertices (contiguous) which are then assigned a binary weight 1 (touching) or 0 (non-

touching).  The other case has neighbors defined by a distance buffer and the spatial weight 

may not be binary but based on a distance.  When there are defined regions with neighbors 

such as states, counties, or HUC 12 boundaries, we use contiguous nearness because 

neighbor units are not uniform.  Nonuniform areas cannot be defined using only one distance 

therefore it wasn’t useful to use a distance weight.  The two most common contiguity weights 

are queen and rook which assign neighbors shown in Figure 47. 

Figure 47:Visual of Spatial Weight in a Matrix (Briggs Henan University, 2010)  

Rook will result in fewer neighbors which is helpful in instances of uniform polygon 

units to get finer resolution of neighboring regions.  It is customary practice for irregular 

polygons to use a queen weight as it can better deal with potential inaccuracies due to it 

having broader neighboring assignments (Anselin, 2020).  HUC units vary in area and shape, 

so a queen configuration was used to give spatial weight to the data using the poly2nb 

function in spdep package for R (Bivand et al., 2013).   

Model Selection 

Spatial econometric models rely on the dependence between observations 

incorporating spatial autocorrelation to make theoretical assumptions about how phosphorus 

pollution migrates (or doesn’t) between regions.  Figure 48 shows the full family of spatial 

econometric models.  When we believe neighbor relationships exist between regions then 

there are 3 ways in which the regression model can reflect this: 
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•  Lag x: values of explanatory variables in one region predict the dependent 

values in another region (WXθ) 

• Lag y: the value of the dependent variable spills across regions (ρWy) 

• ɛ: when residuals are related to each other across space (λWu) (Burkey, 2018) 

To incorporate all these relationships the most complex econometric model is the 

Manski Model. 

y = ρWy + Xβ + WXθ+ λWu+ϵ 

This regression equation includes the most terms; lagged dependent (ρWy), lagged 

explanatory (WXθ), lag error (λWu) and the basic explanatory (Xβ) and error (ɛ) variables.  

Notice the inclusion of the W coefficient, which creates the neighbor relationship between 

spatial regions which we call lag.   

Lag effects support the SES idea that our landscape has complex interactions that 

cause feedback loops within the systems (Virapongse et al., 2016).  Both social and 

ecological variables can be evaluated on the indirect, direct, or total effects in changing the 

system’s entropy as discussed in Chapter 1.  When we include one or more of these regional 

terms into a more advanced econometric model, we can then make inferences on what 

neighborhood effects “spillover” into other regions.  Spatial econometric models are mostly 

used for economics modeling, but they have also been used for pollution studies as you can 

quantify direct and indirect effects from pollution sources using empirical analysis (Feng et 

al., 2018; LeSage, 2014).   

The Manski model is rarely used as it is extremely difficult to solve for all the terms, 

and interpreting the neighbor effects is too complex and not useful for making scientific 

recommendations (Elhorst, 2014).  A better place to start is one of the branches from the 

Manski model as seen in Figure 48.  
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Figure 48: Spatial Econometric Model and its Decompositions, Adapted from (Burkey, 2018) 

If we assume a term is not spatially explicit, we set the W to 0 thus restricting a term 

creating a “smaller” equation.  Figure 48 shows the restricted forms of the Manski model 

which allow the research to explore the spatial relationship between terms deemed important 

using a simpler equation form.  However, a problem can result if it is unknown which terms 

have a spatial relationship.  In that case, one would first decide if the model needed to be 

local or global.  A global model contains a spatially lagged y meaning one region’s impact 

will cause a ripple effect into all other regions even if they aren’t specified as neighbors.  A 

local model has regions only affecting their neighbor regions and will have no feedback 

effects.  What we know about our response variable y, is that it is a shared resource that 

passes through multiple regions in a connected way.  Because of our y variable, surface water 

phosphorus contamination, we know it has endogenous interactions so a global model will 

better represent the SES (LeSage, 2014).  

To select the best model within the global branch, there are a few methods but the 

most common is the top-down approach suggested by Lesage and Pace (2009).  Since OLS 

doesn’t seem to be sufficiently complex for spatial interactions, it is suggested a spatial 

Durbin model is a good starting place with a top-down global model.  Figure 49 shows the 

nested models of the spatial Durbin.  It’s a hierarchy, SDM is nested within Manski, and 

SLX, SEM, and SAR are nested within SDM.  The spatial terms (W) are set to zero to reduce 

to a “smaller” equation.  It is easy to test whether to restrict the model to give a better fit.  

Global 

Local 

Manski Model 

y = ρWy + Xβ + WXθ + u 

u=λWu+ϵ 
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Another possibility would be to restrict down to an OLS and be confident that the p-value is 

not overinflated.   

Figure 49: Global Spatial Econometric Model Search and their Decompositions, Adapted from (Burkey, 2018; 

LeSage & Pace, 2009) 

The Spatial Durbin Model (SDM) excludes the lag error term but considers Lag X 

and Lag Y.  This model is most informative as both types of neighbor effects can be 

evaluated.  The cost of ignoring the spatial dependencies in the error is relatively low as 

compared to omitting the other terms (Elhorst, 2014).  The other models nested within spatial 

Durbin only look at spatial interactions of one term.  For more clarity, Table 10 provides the 

models and terms in which spatial neighbors are evaluated.  

Table 10: Models and the Spatial Terms Considered 

Model Spatial Term Evaluated 

Manski Model ρWy, Xβ, WXθ, λWu 

Durbin (SDM) ρWy, WXθ 

Lag Error (SEM)  λWu 

Lag Y (SAR) ρWy 

Lag X (SLX) WXθ 

OLS   
Using a validation process we can evaluate whether these neighbors’ relationships 

exist and restrict the model for those.  We can then test each term individually to see if it 

performs better than the larger model.   

Spatial Durbin Model 

(SDM) 

y = ρWy + Xβ + 

WXθ+ ɛ 

Spatial Lag X (SLX) 

y = Xβ + WXθ+ ɛ 

Spatial Lag Y (SAR) 

y = Xβ + ρWy + ɛ 

OLS 

y = Xβ + ɛ 

Spatial Error Model (SEM) 

y = Xβ + u  

u =λWu+ϵ 

λ = 0 

Θ = -ρβ 
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Validation 

Validation of the spatial econometric model starts with a likelihood ratio test to see if 

the model needs to be restricted to a smaller form.  Other fitness tests: R2, Akaike 

information criterion (AIC), and Bayesian information criterion (BIC) are used to view the 

regression’s performance.  Then a final regression assumption of homoskedasticity is tested 

to understand how confidently we can interpret the results of the final selected model.  

Fitness Tests 

The likelihood ratio test assesses the goodness of fit of two nested statistical models, 

a smaller model versus a more complex model.  The test calculates the likelihood function at 

maximum probability for the two different models; then, the two scalars are compared to see 

which is a better fit to the sample data (LeSage, 2014).  The null hypothesis is to restrict the 

model to a simpler form.  Rejecting the null hypothesis means the model should not be 

restricted but should use the larger more complex model.  To perform this test in R the 

LR.Sarlm function in spatialreg package can be used (Bivand et al., 2013).   

Table 11: R Output of Likelihood Tests between Models 

 Log-Likelihood  

Model Small Model SDM ρ-value 

OLS  374.25 408.62 0.000 

SLX 404.61 408.62 0.005 

SAR 388.67 408.62 0.000 

SEM 380.51 408.62 0.000 

All values predict that a spatial Durbin model is a significant improvement over a small 

model and so a restriction was not performed (Table 11).  For completeness, other common 

goodness of fit verifications are included.   

Table 12: R Output of Fitness Tests Between Models 

Model R2 AIC BIC 

OLS  0.32 -722.49 -671.69 

SLX 0.42 -761.22 -667.43 

SAR 0.39 -749.34 -694.63 

SEM 0.36 -733.03 -678.31 

SDM 0.44 -767.23 -669.53 

Traditional R2 is a test for use on linear models only but a pseudo R2 can be used in 

nonlinear cases.  The pseudo R2 is the ratio of 1 minus the sum of squared residuals divided 

by the total sums of squares.  This test indicated the SDM was a better fit for the data.  R2 
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works to find a model that minimizes error but the downside is that in minimizing error you 

maximize complexity and create an overfit model (Aragones et al., 2002).  AIC and BIC are 

both penalized-likelihood criteria tests, in that they penalize for complexity in addition to 

error.  It is good to run multiple types of fitness tests to find the balance between complexity 

and error.  Both criteria are often used for non-nested models and choose the optimal 

predictor subsets in the regression.  The AIC is a frequentist approach to estimate the 

difference between the true likelihood function for the data and the fitted likelihood function 

of the model.  BIC is based on the probability of a model being true under a Bayesian setup. 

Bayesian, unlike a frequentist approach, incorporates the number of observations with the 

number of parameters (complexity) against the goodness of fit.  For both scores, a lower 

value indicates better fit or a higher likelihood with fewer parameters (Penn State University, 

2020).  BIC indicated that SLX and SDM were the best model choices with a negligible 

difference.  AIC indicated that an OLS model was the best fit.  It is unusual for AIC to pick a 

less complex model than BIC as BIC penalizes more heavily for complexity due to the added 

penalty working with larger data.  As a Bayesian model the BIC increases the probability of 

selecting a true model the larger a training data set is.  AIC does not depend directly on 

sample size so perhaps that accounts for the differences in selection.  While most scores point 

to SDM  (Table 12), we have one last test we can perform  

Heteroskedasticity 

Another regression assumption to consider is that the error (residual) is 

homoskedastic.  In essence, homoskedasticity means the predicted value of the dependent 

variable from the regression model is consistent across all the known values.  Breaking the 

assumption indicates that residuals are heteroskedastic, which might predict areas with high 

values accurately but low dependent variable areas inaccurately, as one example (Floch & 

Saout, 2018). The usual test for heteroskedasticity is the Breusch-Pagan test which sets the 

null hypothesis as the error variance is homoskedastic but the alternative hypothesis is 

heteroskedasticity is present (Floch & Saout, 2018).  The R package used for the Breusch-

Pagan test is lmtest with the function bptest (Zeileis & Hothorn, 2002) which fits a linear 

regression model to the residuals of the model and calculates how much variance there is 

between errors and the explanatory variables.  
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Figure 50: R Terminal Output for Breusch-Pagan Test 

 

The results (Figure 50) support the alternative hypothesis that there is 

heteroskedasticity.  While the result is unfortunate it’s not uncommon.  SDM models exhibit 

a great deal of heterogeneity arising from the presence of the additional W terms; lagged 

dependent (ρWy), and lagged explanatory (WXθ), (LeSage & Pace, 2009).  When 

interpreting regression results, because the model’s parameters are variable, 

heteroskedasticity is going to affect errors and p-values.  It will not affect or bias coefficients 

which can still be interpreted.  There is variability in how serious to take this violation and 

how to distinguish heterogeneity and correlations (Floch & Saout, 2018).  In spatial 

econometrics, experts recommend that for values of p close to alpha 0.05, one might be more 

skeptical but values of several magnitudes can still be confidently viewed as highly probable 

of rejecting the null hypothesis (Burkey, 2018).  There are ways a statistician could alter the 

data to create a more homoskedastic model, but it requires diagnosis and multiple methods 

may be employed.  This is ultimately beyond the scope of this thesis so regression 

coefficients will only be interpreted with certainty and correlations with caution.   
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Chapter 6: Conclusion 

The spatial Durbin regression model was determined to be the regression that best fit 

the data while minimizing overfitting.  The results of the model are shown below (Tables 13-

16).   

Results 

In the spatial Durbin model, the spatially lagged Y term ρWy has output results from 

the R terminal that show Rho (ρ) is 0.239.  Rho explains the impact that the spatially lagged 

Y multiplier has on neighboring Y values.  In other words, how the change of phosphorus 

impairments in one HUC impacts the neighboring HUC impairment.  The first set of reported 

X values are Xβ, beta (β) is the vector of X variables individually in Table 13.  

Table 13: Beta X coeffects of Spatial Durbin showing the direct impacts 

Variables 

Coefficient 

(β) Std. Error Z-Score ρ-values 

(Intercept) -0.01 0.01 -0.80 0.42 

Waste Holding Capacity   -0.004 0.03 -0.15 0.88 

Manure Application Rate  0.001 0.07 0.27 0.78 

Crop Type 0.005 0.04 0.09 0.93 

Septic Systems  -0.014 0.08 -0.20 0.84 

Synthetic Fertilizer   0.009 0.03 0.28 0.78 

Hydroelectric Dams  0.342 0.05 5.98 < .001 

Accumulation Flow   0.009 0.04 0.33 0.74 

Food Processors  0.119 0.06 1.89 0.06 

Hydric Soil   -0.013 0.04 -0.33 0.74 

Aquaculture Farms 0.291 0.07 3.93 < .001 

CAFO Density  -0.059 0.06 -1.07 0.28 

These beta coefficients are the direct impacts; how the change of a particular phosphorus 

vulnerability indicator changes the impairment of surface water due to phosphorus.  For the 

spatially lagged X terms WXθ, the R terminal reports the theta (θ - labeled as lag 

coefficients) which are the neighboring X vector values as seen in Table 14.   
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Table 14: Beta X coeffects of Spatial Durbin showing the indirect impacts 

Variables 

Lag 

Coefficients 

(θ) 

Std. Error Z-Score ρ-values 

Waste Holding Capacity   0.01 0.04 0.32 0.75 

Manure Application Rate  -0.47 0.11 -3.42 <.001 

Crop Type 0.04 0.07 0.47 0.64 

Septic Systems  0.08 0.15 0.42 0.68 

Synthetic Fertilizer   0.05 0.04 0.99 0.32 

Hydroelectric Dams  0.71 0.12 4.01 < .001 

Accumulation Flow   -0.10 0.08 -1.09 0.28 

Food Processors  0.10 0.14 0.39 0.70 

Hydric Soil   -0.03 0.05 -0.48 0.63 

Aquaculture Farms 0.60 0.14 2.99 < .001 

CAFO Density 0.15 0.12 1.17 0.24 

For a HUC’s measure of phosphorus vulnerability, indirect impacts are those that affect the 

regions neighboring the immediate area.  The coefficients with a positive sign in Tables 13 

and 14 can be interpreted as having an increase in explanatory value when surface water 

phosphorus increases nearby.  Negative coefficients indicate increasing the response variable 

will decrease the value of the explanatory variable. 

 The sum of direct impacts coefficient (DI) and indirect impacts coefficient (II) create 

the value of total impacts coefficient (TI) or DI+II = TI.   

Table 15: Columns marked with a black dot are the contributing most to total impacts 

 Total Impacts Breakdown 

Variable 

Direct  Indirect 
Total 

Impacts 

Indirect 

Contribution to 

Total Impacts 

Waste Holding Capacity     ● 0.010 78% 

Manure Application Rate    ● -0.472 99.89% 

Crop Type   ● 0.047 90% 

Septic Systems    ● 0.062 85% 

Synthetic Fertilizer     ● 0.056 84% 

Hydroelectric Dams    ● 1.048 67% 

Accumulation Flow     ● -0.096 92% 

Food Processors  ●   0.224 47% 

Hydric Soil     ● -0.048 73% 

Aquacultures Farms    ● 0.891 67% 

CAFO Density   ● 0.095 72% 

 



71 

 

A change in 1 unit of X, will lead to the increase or decrease of phosphorous vulnerability by 

the total impact's amount throughout the whole region.  In Table 15, the total impacts 

coefficient was divided by the indirect coefficient to show the percent contribution to the 

total impacts.  While coefficient values are interesting, they might not be meaningful to the 

model.  The p-value of the coefficient tests whether the coefficient influences the predictor.  

The null hypothesis states that changes in the coefficient are not associated with changes in 

the response variable.  Below in Table 16, the p-values from both direct, indirect, and total 

impacts coefficients are condensed for better viewing and interpretation.  

Table 16: P values of the direct and indirect impacts of the Spatial Durbin 

 Simulated ρ-values 

Variables Direct Indirect Total 

Waste Holding Capacity   0.87 0.73 0.76 

Manure Application Rate  0.96 < .001 < .001 

Crop Type 0.94 0.59 0.60 

Septic Systems  0.85 0.65 0.72 

Synthetic Fertilizer   0.69 0.24 0.14 

Hydroelectric Dams  < .001 < .001 < .001 

Accumulation Flow   0.85 0.31 0.35 

Food Processors  0.05 0.59 0.28 

Hydric Soil   0.71 0.54 0.33 

Aquacultures Farms < .001 < .001 < .001 

CAFO Density 0.29 0.32 0.58 

The econometric framework recommended using simulated ρ-values for interpretation 

(Burkey, 2018) has the advantage that it picks the p with the highest frequency.  This is 

useful for data that isn’t normally distributed or a complex model that has multiple 

interacting variables.  One thousand (1000) simulation repetitions were used to generate 

probable p-values.  Significant results suggest that hydroelectric dams and aquaculture may 

have direct, indirect, and total impacts on water quality pertaining to phosphorous as their 

usage increases.  Direct neighbors could be affected by an increase of food processors to a 

less confident extent.  Manure application was significant with negative indirect and total 

impacts.  As phosphorus in surface water increases manure application in its neighboring 

regions will decrease phosphorus vulnerability.  

Discussion 

Explaining the significance of aquaculture and dams could be due to the spatial 

dependence that both activities have with surface water and not necessarily representing a 
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phosphorus impairment in the model.  Dams and aquaculture are built right on top of streams 

or are nearby diversions from streams that might be unfairly biasing the model.  A more 

optimistic view could be that there is an underlying process in these anthropomorphic 

activities that change the stream resulting in a higher value of phosphorus.  Both aquaculture 

and dams change the geomorphology of stream networks by straightening natural bends and 

increasing temperatures which increase the amount of erosion and sediment, in the water.  In 

addition, the hold times of water that these activities create also increase residency times 

which would allow phosphorus concentrations to accumulate and speciate from the soil 

before being released into the environment.  Neither hydric soils nor surface flow 

accumulation was identified as significant.  A possible explanation could be that it is less 

about where phosphorus settles, and more about the capture, hold, and release process that 

makes phosphorus more available in surface waters (Bol et al., 2018).  Both activities pond 

water for a period of time then release it, which stirs up settled sediments in the water 

column.  A third postulation could be that NPDES permits are required from both activities, 

so water testing is more routine, which created an abundance of data for the model, versus 

areas where surface water testing is rare, and issues may not be reflected in the data.  

Food processors were also shown as significant but to a lesser extent (in the 5% 

range) and only for direct impacts.  Food processing has some similarities to hydroelectric 

dams and aquacultures.  It had somewhat of a spatial dependence on surface streams as water 

is needed to cool down machinery and effluents after treatment need to be released.  It also 

utilizes NPDES permitting which makes data more abundant and publicly available.  

The last significant variable identified by the spatial Durbin was the manure 

application rate that showed a negative relationship for the total impacts.  Initially, this was 

puzzling, but when viewing what contributed to the total impacts, indirect impacts 

contributed overwhelmingly (99.8%); which was abnormally high compared to the other 

variables.  Manure application had 116 HUCs with no data available, meaning a third of the 

HUC dataset for the Magic Valley did not have data.  To have indirect impacts contributed 

almost exclusively to the total impacts yet be underrepresented in data, contributed to an 

oversensitive response. 
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Table 17 lists a summary of impact results.  This ESDA findings provided more 

questions than solutions.  Moving forward, in future iterations, there are steps we can take to 

further improve our understanding of phosphorus in surface water.   
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Table 17: A Summary of all SDM Results Including Both Significant and Insignificant Variables with Possible Explanations of Results  

 
 

Variable Direct  Indirect Total Explanation 

Hydroelectric Dam & 
+ + + 

● Strong spatial dependence on surface streams   

● Change the geomorphology of stream networks  

Aquacultures Acres  
+ + + 

● Residency times 

● NPDES permitting 

Food Processors  + + + 
● Strong spatial dependence on surface streams   

● NPDES permitting 

Crop Type & + + + ● Nonpoint sources may diffuse through the watersheds 

Synthetic Fertilizer   + + + ● Release rates of phosphorous could be constant as it moves through the watersheds 

Hydric Soil   - - - 
● Hydric Soils function as a sink rather than a source as its indirect and total impact 

also have a negative relationship 

Accumulation Flow   + - - 

● Accumulation of phosphorus stays in the region hence the positive direct 

relationship.  Because phosphorus is contained in the low surface areas as a 

catchment, there is little spillover effect, and the surrounding areas benefit.   

Manure Application 

Rate  
+ - - 

● Missing data  

● Release rates of phosphorus ebbs as it moves through the watersheds 

Waste Holding 

Capacity   
- + + 

● Soil properties are conducive to phosphorus leaving the regions and settling in a 

neighboring region as seen by the positive indirect and total impacts 

CAFO Density - + + 

● On the farm nutrient loss is minimal, but outside the farmgate, we see a 

phosphorus impact by the positive indirect and total impacts.   

● County boundaries influence CAFO density  

Septic Systems  - + + 

● The number of septic systems that are leaking is negligible 

● Many systems could have been updated to municipal treatments 

● Areas with large clustering of septic systems (urban areas) may have more funding 

for treatment.  Neighboring regions  
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Limitations 

Widely accepted frameworks were followed when selecting ESDA techniques, but 

other analysis frameworks might be better suited for this data.  While the best-known 

practices were utilized and empirical knowledge guided the exploratory analysis, this 

approach to data collection and modeling may still not be the best method possible.  The 

following are limitations that came about through this process.  Fitness tests were run to 

confirm the best regression modeling for the set of data.  Ultimately there is always the 

possibility of misspecification due to lack of data, data quality, and heteroskedasticity.  

Writing statistical programs make validation faster and more efficient, but it also poses 

problems as the more tests that are run, the more likely you are to find confirming results.  

Choices in using HUC 12 as the aggregation units for data and the assumption that feedback 

loops are bound mostly within HUC 12 regions built into the spatial weighting of 

neighboring HUCs might not be accurate for all cases.  Data quality was variable as some 

came directly from authoritative sources that had known amounts of phosphorus while others 

were based on qualitative knowledge of the system that had inferred the existence of 

phosphorus.  Some data were represented by the presence of an event or count data and 

might not directly imply phosphorus output.   

Lack of consistently collected or available data caused a variety of problems.  As 

many variables as possible were researched that pertained to phosphorus in surface waters of 

the Magic Valley but due to lack of and difficulty obtaining data, some possible explanatory 

variables were left out.  One value not originally included that may need to be in future 

iterations is beef cattle.  It was estimated in the year 2020 that over 495,000 beef cattle and 

635,000 dairy cows were raised in Idaho (USDA, 2020b). Only dairy cow manure was 

included in this model.  Originally beef cattle manure wasn’t included because the density of 

cattle, as opposed to dairy cows, is lower, with more land per cattle unit.  Also, cattle are 

moved from grazing lands to agricultural fields in the winter, and finally to CAFOs for 

finishing which makes spatial representation difficult.  Similar to dairy cows, no source listed 

locations of farms and headcounts simultaneously.  It wasn’t possible to calculate the spatial 

distribution of both industries so dairy alone was selected.  Poultry farms were not included 

as it isn’t a dominant animal in the state but its N:P ratio is higher than cows so it may be 

worth researching.  Finally, heteroskedasticity was confirmed in the regression which made 
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the interpretation of results more cautionary than confident.  This could be due to a lack of 

phosphorus data in surface water or needed transformations of data.  I will make some 

recommendations on how to improve this model in the future below.   

Recommendations 

The results of the spatial Durbin model were interesting, but it became apparent that 

the manure application layer needed to be removed from the next iteration unless missing 

data can be reduced.  Aquaculture and dams should be researched to see whether their 

significance is due to the spatial dependence that both activities have with surface water as 

was picked up by the y response, or due to an underlying process in these anthropomorphic 

activities that changes the stream.  Based on the data, I would recommend starting with the 

transformation of the response variable.  There are multiple types of transformations: log, 

square root, etc. so, more research would need to be done to find the right transformations for 

the data assumptions (Frost, 2017).  The advantage of using a SDM to model phosphorus 

vulnerability is that its spillover effects are flexible (Eilers, 2019).  Using the total impacts, 

we can change variable X and see how phosphorus may change across the landscape 

allowing future modeling of scenarios.  For these purposes, I think SDM is the best 

regression model.   

Earlier it was mentioned that data fell into four groups based on similar principal 

components, one of which highlighted all the current impaired HUC in addition to 12 others.  

I speculate a phosphorus priority area could be created from the cluster group.  Taking the 12 

HUCs we can delegate which water reaches are likely to be impaired but are not yet listed.  

Table 18 identifies ten waterways that would fit the criteria for a proposed priority area.  The 

largest water reaches were selected because they are not limited to one property, meaning 

monitoring will not unfairly fall to one person.  These water reaches are named, so there is a 

defined area and recognition which will help with public opinion as it will be seen as a 

community resource.  I recommend these reaches be tested routinely for phosphorus surface 

water increases as the attributes are similar to those that have already been placed on the 

EPA’s Listed Impaired Waters 303(d) Category 5. 

  



 

 

77 

Table 18: Proposed Phosphorus Priority Reaches to Test  

Longest Reaches Length (m) Associated HUC 12 

J Canal 35,910  
170402121003, 170402091305, 

170402091306, 170402091307 

Little Wood River 33,030  170402190906 

Snake River 30,929  170402091306, 170402091307 

South Gooding Main Canal 28,750  170402190904, 170402190906 

Lateral S-19 23,489  170402121004 

S Canal 22,005  170402121003 

Main Drain 19,641  170402091207 

Mud Creek 19,301  170402121005 

Malad River 19,252  170402190905 

B Canal 19,186  170402120108 

The y response variable is considered weak under the current model as data is based 

on the known observations of surface phosphorus impairments but not the severity of 

impairment.  It also leaves out waters that are impaired but don’t get tested due to a variety of 

barriers or areas that are only seasonally impaired.  In another scenario, incorporation of 

quantitative phosphorus from soil and groundwater phosphorus might resolve the 

heteroskedasticity issue without the need for a transformation, which is the current 

hypothesized reason for the cause of heteroskedasticity in this thesis.  If relying solely on 

surface water, an alternative source of the heteroskedastic readings would have to be 

determined.  A balance should be maintained between more interpretable results and 

reducing manipulation of the data.  Some solutions might include running the Breusch-Pagan 

test on each explanatory variable individually to find and fix heteroskedasticity to avoid 

having to transform the dataset.  No outliers were removed in this study to preserve the 

natural distribution of data a decision made prior to the knowledge of its heteroskedastic 

nature.  An alternative option is to remove outliers just from variables flagged for 

heteroskedasticity (Klein et al., 2016).  This is tricky as most datasets have a skew, but it is 

possible that on the larger datasets outliers could be removed without altering coefficient 

results significantly.  A weighted regression could be implemented so that each data point 

has a weight based on the variance of its fitted values which would reduce the residuals.  This 

is not an intuitive approach and finding theoretically correct weights can be difficult and 

time-consuming (Bobbitt, 2020; Frost, 2017).   
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Summary  

Within this study area, water quality has been affected by a growing population and 

agricultural sector.  Due to the natural properties of the aquifer, there is a strong connection 

between surface and groundwater.  Studying phosphorus is complicated as there is no routine 

water testing or enforcement that creates a solid database of values.  Therefore, it was 

important to study phosphorus in a surface water context.  The ESDA approach was 

conducted to better understand what this would look like and how to improve future 

modeling of the Magic Valley area.  In this spatial analysis, variables were selected based on 

knowledge of the SES of the Magic Valley.  Data was then aggregated into spatial regions 

based on the SPARROW watershed modeling technique created by USGS.  With variables 

processed for a spatial regression, a queen spatial weights matrix was selected.  Global 

Econometric regression models were considered then validated using the likelihood test, R2, 

AIC, and BIC tests.  The spatial Durbin model was selected based on those tests and it was 

then tested for heteroskedastic characteristics.   

Hydroelectric dams and aquaculture both showed significant direct, indirect, and total 

impacts in the Magic Valley.  It is unclear whether this is due to an actual phosphorus 

relationship, or that these variables will always coincide with HUCs waterways as will the 

response variable.  The majority of variables contributed with an indirect impact showing 

that this is a community issue, and the spillover effects of all potential phosphorus sources 

are a likely cause of surface water impairments.  I would recommend the use of a SDM to 

simulate phosphorus in surface water in the future, provided there are adequate response 

variable data.  With currently available data, I cannot suggest this as a useful method for 

surface phosphorus water data without modifications.  Future research can include either well 

and soil data or involve performing a transformation of the Y variable to try and fix the issue 

with heteroskedasticity.  I also made suggestions based on clustering groups where there are 

likely to be areas of phosphorus impairments, which can help narrow down resources to help 

with future studies.   
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Appendix A 

Phosphorus Definitions and Explanations: phosphorus forms especially relevant to the study area (agricultural areas) and where it might be found in the 

landscape, along with whether it can be absorbed (Dabkowski & White, 2015; Davis, 2008; Kaiser, 2018)  

  

Forms Formula Other Names or 

Forms 

Bioavailability Usual Source Description 

Phosphorus P 
P, elemental 

phosphorus 
Unavailable 

Exists as part of a 

molecule 
Rare in nature. 

Total Phosphorus All forms TP,  NA 
Animal waste and 

food residues 

Total amount of phosphorus in 

the soil.  This information has 

limited agronomic use as it does 

not indicate bioavailability but 

all forms of phosphorus. 
      

Organic 

phosphates 
H3PO4 Organophosphates 

Not easily broken 

down 

Animal waste and 

food residues 

ATP energy transfer between 

cells.  Are esters of phosphoric 

acid. 

Inorganic 

Phosphate 

[HPO4]2- and 

[H2PO4]- 

Condensed 

phosphates, 

Polyphosphates, 

Orthophosphate 

Readily Available 
Mined from in 

rock or ore 

Used to produce agricultural and 

industry products (food 

additives).  Are salts of 

phosphoric acid. 

Orthophosphate [PO4]3- 
Phosphate, Reactive 

Phosphorus 
Very Reactive 

Fertilizers used 

for agriculture 

and residential 

purposes  

Mammals use for structural 

material of bone and plants for 

nutrient uptake. 

Condensed 

Phosphates 
(X(H2PO4)2) 

Pyrophosphate, 

Metaphosphate, 

Polyphosphate 

Very Reactive 

Naturally 

occurring in 

water or can be 

synthetic 

Bonds to a metal cation.  

Common use in food processing 

      

Dissolved 
 

DP 
  

Filtered in laboratory. 

Particulate 
 

PP 
  

Unfiltered in laboratory. 
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Appendix B 

Full UML Diagram showing ESDA Elements and Decisions:  Steps are broken down starting with variable creation indicating which format the data was 

collected in represented by color.  Then the steps for data preparation to aggregate the different data formats into the same boundary and file type.  Analysis of 

data utilizing ESDA tools to determine weights matrix.  Finally, the validation section included tests that were researched and used for model selection.   
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Appendix C 

HUC Delineations and Definitions from Largest to Smallest: Hydrologic Unit Code (HUC) are the levels of classification in the hydrologic unit system.  This is a 

reference for the area size of units and alternative names in the literature.  (NRCS, 2007) 

Hydrologic 

Unit 

Hydrology Feature 

Name 

Level Total in 

US 

Classification Details 

2 REGION  1st 21 Regions 
 

4 SUBREGION  2nd 222 Subregions Each Region has from 3 to 30 

Subregions 

6 BASIN  3rd 352 Accounting Unit 
 

8 SUBBASIN  4th 2149 Cataloging Unit The smallest is 448 K Acres (700 

mi²).  Most are much larger 

10 WATERSHED  5th Not 

completed 

Watershed 5th Level 

(Was formerly called 

HUC-11) 

Typically, from 40 to 250 K Acres 

(62 to 390 mi²)  

12 SUBWATERSHED  6th Not 

completed 

Watershed 6th Level 

(Was formerly called 

HUC-14) 

Typically, from 10 to 40 K Acres 

(15 to 62 mi 

 


