
 

Can biophysical models of pelagic larval dispersal explain the 

observed population structure; case studies from the Gulf of 

Alaska 

 

A Dissertation  

Presented in Partial Fulfillment of the Requirements for the  

Degree of Doctor of Philosophy  

with a  

Major in Bioinformatics and Computational Biology 

in the  

College of Graduate Studies  

University of Idaho  

by  

 Jacek Maselko  

 

 

 

 

Approved by: 

Major Professor: Erkan Buzbas, Ph.D. and Paul Hohenlohe, Ph.D. 

Committee Members: Terry Soule, Ph.D., Ron Heintz, Ph.D. 

Department Administrator: Paul Hohenlohe, Ph.D. 

 

 

 

 

May 2022 



ii 
 

 
 

Abstract 

Numerous marine fish species have a characteristic pelagic larval dispersal stage. 

Understanding how this life history strategy affects the observed population structure of the 

adult groups and the adaptive potential of the species as a whole is therefore of paramount 

importance. In this study, I initially apply RAD-seq genomic analysis to examine the young 

of the year aggregates of Pacific ocean perch (Sebastes alutus) collected in 2014 and 2015 in 

the eastern Gulf of Alaska. I discover that these samples, even from the same haul, contain 

distinct genetic population mixtures indicating pelagic life stage sympatry. I also discover 

differences in selection strength between the two years, indicating that the maintenance of a 

portfolio of adaptive alleles may provide resilience of populations to natural environmental 

variability, where each adult cohort’s genetic composition is influenced by the environmental 

conditions experienced during their first year at sea.  

The apparent disconnect between pelagic stage sympatry and adult stage allopatry 

motivated the development of a stochastic spatio-temporal genetic model to understand the 

effect of biophysical dispersal on the population structure. Here, I develop the spatio-

temporal genetic model utilizing a dispersal matrix and an allele frequency matrix which is 

then tracked over a number of generations. I then validate the genetic model with a suite of 

eight synthetic dispersal matrices and examine the inference via isolation by distance 

regression, STRUCTURE admixture analysis, and principal component analysis. This lead to 

unique insight into how each of these commonly used inference methods differs in their 

ability to differentiate among the synthetic candidate models. I then propose a log likelihood 

model selection framework based on the beta distribution as a viable alternate to determine 

which of the candidate dispersal models best explain the observed population structure based 

on pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 values.  

Finally, I demonstrate the application of the newly developed spatio-temporal genetic 

model to calculate the expected population structure for three fish species in the Gulf of 

Alaska, namely, Pacific ocean perch (Sebastes alutus), arrowtooth flounder (Atheresthes 

stomias), and Pacific cod (Gadus macrocephalus). I use a biophysical dispersal matrix based 

on the Regional Ocean Modeling System (ROMS) and species specific ontogenic life stage 

behavior combined in a previously developed mode, the Dispersal Model for Early Life 
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History Stages (DisMELS) to calculate the expected genetic differentiation. I then describe 

the expected population structure for these three species and apply the PCA, STRUCTURE 

admixture, and IBD regression inference. This is followed by the comparison of Pacific 

ocean perch and Pacific cod biophysical model based expected population structure and the 

observed genetic datasets which reconciles previously contradictory studies. I also 

demonstrate the application of this spatio-temporal genetic model to determine optimal 

sampling strategy in the log likelihood model selection framework. The results presented 

here also suggest that the biophysical based dispersal may be the primary driver behind the 

observed population structure in the marine species with life history strategies characterized 

by pelagic larval dispersal.  
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Chapter 1: Long-lived Marine Species may be Resilient to Environmental 

Variability through a Temporal Portfolio Effect 

“Long-lived marine species may be resilient to environmental variability through a temporal 

portfolio effect.” Ecol Evol. 2020; 10: 6435– 6448. https://doi.org/10.1002/ece3.6378 

Abstract 

Maintenance of a portfolio of adaptive alleles may provide resilience of populations 

to natural environmental variability. We used Pacific ocean perch (POP; Sebastes alutus) to 

test for the maintenance of adaptive variation across overlapping generations. POP are a 

long-lived species characterized by widespread larval dispersal in their first year and a 

longevity of over 100 years. In order to understand how early marine dispersal affects POP 

survival and population structure, we used Restriction Site Associated DNA sequencing 

(RADseq) to obtain 11,146 single-nucleotide polymorphisms (SNPs) from 401 young-of-the-

year (YOY) POP collected during surveys conducted in 2014 (19 stations) and 2015 (4 

stations) in the eastern Gulf of Alaska. Population clustering analysis showed that the POP 

samples represented four distinct ancestral populations mixed throughout the sampling area. 

Based on prior work on larval dispersal of POP, these larvae are most likely from distinct 

parturition locations that are mixing during their pelagic dispersal life stage.  Latent factor 

mixed models revealed that POP larvae face significant selection during their first year at 

sea, which were specific to the year of their birth. Thus each adult cohort’s genetic 

composition is heavily influenced by the environmental conditions experienced during their 

first year at sea. Long-lived species relying on broadcast spawning strategies may therefore 

be uniquely resilient to environmental variability by maintaining a portfolio of cohort-

specific adaptive genotypes, and age truncation due to overfishing of older cohorts may have 

detrimental effect on the population viability.  

Introduction 

Understanding the resilience of biological marine resources to changing 

oceanographic conditions is central to ecosystem-based fisheries management and the 

implementation of adaptive sustainable harvest strategies (Link 2002; Levin and Möllmann 

2015). The ability of populations to respond to disturbances in their habitat is in part 

determined by the genetic diversity present in the population (Parker et al. 2000; Hoffman 
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and Sgro 2011). This genetic diversity, exhibited by a portfolio of available gene variants, 

allows for a quick response if selectively advantageous variants are already present in the 

population (Sunday et al. 2011; Pacifici et al. 2017). Understanding the response of marine 

populations to environmental perturbations will allow us to readily assess the resilience or 

vulnerability of these populations and species. 

Measuring differential survival between subpopulations reveals how environmental 

conditions can influence the overall productivity of exploited populations. For example, 

Schindler et al. (2010) demonstrated that environmental conditions favored the production of 

discrete salmon populations residing in Bristol Bay, Alaska. Maintenance of a portfolio of 

locally adapted genotypes ensured adult returns to the region, but returns to different streams 

were maximized under different environmental conditions. This maintenance of a portfolio of 

adaptive alleles may be a key aspect of resilience of populations to natural environmental 

variability. 

The idea of a temporal portfolio effect, in which adaptive variation is maintained by 

overlapping generations in a temporally variable environment, has been studied in general 

(Ellner and Hairston 1994). For example, many freshwater zooplankton taxa have relatively 

short-lived adults that may be subject to strong selection, but eggs can remain viable for 

decades in sediment, resulting in persistent egg banks that are relatively buffered from 

environmental variation (Brendonck and DeMeester 2003). We hypothesize that a similar 

effect may occur in marine fish species with highly dispersive larvae and long-lived, 

relatively sedentary adults. The genetic composition of each recruitment cohort may reflect 

relatively strong selection during the larval stage, while the adult population would maintain 

genetic variation reflecting multiple cohorts. Here we test this hypothesis using genomic 

methods for detecting population structure and adaptive loci.  

Genomic data allow us to scan for individual and population-level differences across 

the whole genome, and genomics is becoming integral in answering a wide array of 

previously unresolved questions in conservation biology with numerous applications in 

fisheries (Wenne et al., 2007; Barrio et al. 2016; Jasonowicz et al., 2016; Valenzuela-

Quiñonez, 2016; Kumar and Kocour, 2017). It is now possible to estimate, with a high level 

of precision and certainty, the demographic structure of fish populations at small spatio-

temporal scales, and to identify local adaptation from genomic data (Wang and Höök, 2009; 
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Barrio et al., 2016; Catchen et al. 2017; McKinney et al. 2017). RADseq approaches have 

been extensively used to describe various biological and ecological phenomena, such as 

phylogeography, population differentiation and structure, population and individual 

admixture (composition of lineages), genetic diversity, and outlier loci detection, among 

others (Alexander et al. 2009; Andrews et al. 2016; Narum et al. 2013).  

Our model species, the Pacific ocean perch (POP; Sebastes alutus), is a long-lived 

species with its oldest individuals being over 100 years old (Conrath and Knoth 2013). POP 

are the most abundant and economically important rockfish species in the Gulf of Alaska 

(Conrath and Knoth 2013) with landings in excess of 55,000 tons in 2017 (NOAA 2019). 

The fishery is managed using an age-structured model where the vital population rates are 

derived from the abundances of different ages in the catch (Megrey 1988; Hulson et al. 

2017), but the relationship between the abundance of spawning fish and their offspring 

cohort is highly variable and unpredictable. This extreme annual fluctuation in success and 

failures of various year classes has been noted as a characteristic of this and many other 

commercially exploited species (Westrheim 1958; Carlson and Haight 1976).   

POP in the Gulf of Alaska live on the upper slope of the continental shelf. They 

spawn from September through November, with parturition occurring in April through May 

the following year, when larvae rise from demersal spawning habitats on the continental shelf 

break (150 – 400m depth) to surface waters. They then become part of the ichthyoplankton 

and within a few weeks metamorphose to a young-of-the-year form (YOY). They are carried 

in the surface waters by currents and settle out of the water column in nearshore rocky habitat 

by the end of their first year (Carlson and Haight 1976; Major and Shippen 1970). During 

their shoreward movement, larvae grow rapidly and allocate significant amounts of energy to 

creating lipid tissue. This lipid tissue is apparently lost during settlement (Moss et al. 2016), 

suggesting energy acquisition and growth are important determinants of settlement success 

(Hoey and McCormick 2004). They remain in the nearshore habitat for the next few years 

until they join the discrete adult schools residing on the continental shelf and slope (Love et 

al. 2002). They reach sexual maturity at eight to ten years of age and repeatedly spawn until 

their hundredth year or longer (Hulson et al. 2017). These adult schools are genetically 

differentiated and the degree of their differentiation (FST) is correlated to the geographic 

distance between them (Palof et al. 2011).  
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Larval dispersal pathways in POP may be highly variable from year-to-year since 

they mostly depend on ocean currents in a given year (Mundy et al. 2010). An important 

prediction of ocean current and dispersal models (Stockhausen 2009; Stockhausen and 

Hermann 2007) is that in each year, the larvae at a given pelagic location are comprised of 

mixtures of individuals from different spawning locations indicating a high degree of mixing 

among them. However, population genetic studies of young-of-the-year and adults indicate 

there is limited mixing among subpopulations (Palof et al., 2011; Kamin et al., 2014). The 

Kamin et al. (2014) follow up study examined the YOY POP catches corresponding to 

locations near the adults caught by Palof et al. (2011). Their work showed that the collections 

of YOY POP were most related to the linearly closest adult populations. Either widely 

dispersed juveniles are able to return to their natal areas, or survival is maximized among 

locally retained larva, possibly due to local adaptation.  

Here, we test whether POP larvae exhibit signatures of selection that could allow for 

the maintenance of a portfolio of adaptive variation in the multi-cohort adult population. We 

examined YOY POP collected from the eastern Gulf of Alaska during two years (2014 and 

2015), when the oceanographic conditions were drastically different, with 2014 being an 

average temperature year, and 2015 being anomalously warm which is expected to have a 

negative impact on the fish (Cavole et al. 2016; Gentemann et al. 2017; Jones et al. 2018). 

We evaluated the potential for differences in selection strength for YOY POP across years by 

testing whether the fish differed in physiological conditions in 2014 and 2015, measured as a 

body condition index based on weight-length relationships, and total lipid content. We then 

used genotype environment association (GEA) tests with RADseq genomic data to test for 

differences in selection acting on the genome to favor different phenotypes between the two 

years. Finally, we identified candidate biological pathways on which selection was acting in 

the two different YOY cohorts. We predicted that the strength of selection would be higher in 

2015 than 2014 due to the unusually high 2015 sea temperatures, resulting in poor body 

condition and a greater number of SNPs associated with environmental variables and 

physiological condition in the 2015 dataset. These findings may explain the difference in 

recruitment for the 2014 and 2015 cohorts as estimated in the 2017 stock assessment (Hulson 

et al., 2017). 



5 
 

 
 

Materials and Methods 

Sample Collection and Processing 

Young-of-the-year (YOY) POP were collected during NOAA oceanographic surveys 

in the summer of 2014 and 2015 (Figure 1-1). POP larvae and YOY were distinguished from 

congenerics (Kendall et al., 2007) using diagnostic SNPs (Garvin et al., 2011) prior to 

inclusion in this study. The resulting sample size of identified YOY POP was 399 fish in 

2014 and 108 in 2015. 

Fish length, weight, and lipid content for each identified POP fish were measured at 

Auke Bay Laboratories in Juneau, AK. Lipid content was extracted using the Folch method 

(Folch et al. 1957) and quantified using the colorimetric sulpho-phospho-vanillin (SPV) 

method (Chabrol and Charonnet, 1937). Condition index was calculated as the residual value 

from a log(weight)~log(length) linear regression. This index accounts for the different 

lengths due to age of the YOY fish where a positive residual indicates better body condition 

than expected (Froese, 2006).  Finally, for DNA analysis, a small tissue plug was extracted 

through an incision in the abdominal wall that included the heart tissue and stored in 95% 

ethanol.  

Molecular Analysis 

DNA was extracted from the muscle plug from the 515 individual fish into 96-well 

plates with the QIAGEN DNeasy Blood and Tissue Kits as described by the manufacturer 

(QIAGEN, Inc.). In brief, small pieces of tissue (~20 mg) were excised from each muscle 

plug. The tissue pieces were digested in a proteinase solution for at least 3 hours at 

55ºC. Protease digestions were performed in 96 well plates. After digestion, the samples 

were purified with either QIAxtractor or Corbett X-tractor robot producing eluted DNA 

which was stored at -20 ºC.  

RADseq library preparation was done for all 515 samples plus eight samples that 

were replicates according to Ali et al. (2016) and refined by Andrews et al. (2018) using the 

Sbf1 restriction enzyme, which cuts at an eight-base recognition site. Custom eight-base 

biotinylated barcodes were ligated to the cut site allowing multiplexing of groups of 96 

samples. The multiplexed samples were then sheared to 400 bp using Covaris M220 

sonicator. This was followed by a Streptavidin bead assay to exclude sheared fragments that 

did not include the biotinylated barcodes. Illumina’s NEBNext ultra DNA library prep kit 
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was then used to add Illumina adapters with indexes unique to each of the multiplexed 

groups of 96 samples to allow further pooling and Illumina sequencing compatibility. 150 bp 

paired end sequencing was done on two lanes at the Berkeley Genomics Center Laboratory 

(https://qb3.berkeley.edu/gsl/) using Illumina HiSeq 4000.  

Sequencing and Data Processing 

We followed the bioinformatic pipeline described in Andrews at al. (2018; Figure 1-

1), with slight modification for STACKS version 2.0 (Catchen et al. 2013). Briefly, a custom 

PERL script was used to flip the raw reads so that each 140 bp read was aligned starting with 

the barcode, and the Sbf1 cutsite sequence. STACKS 2.0 (Catchen et al. 2013) program 

process_radtags was used to demultiplex the raw reads followed by program clone_filter to 

remove PCR duplicates. BOWTIE2 version 2.3.4.3 (Langmead and Salzberg; 2012) was 

used to align the sequences to Sebastes nigrocinctus reference genomes downloaded from the 

ncbi database (https://www.ncbi.nlm.nih.gov/genome/14568). The S. nigrocinctus aligned 

reads were then processed using the refmap.pl pipeline in STACKS 2.0.  Filtering of the final 

set of SNPs was done using POPULATIONS module in STACKS 2.0 with the minimum 

percent of individuals genotyped at a locus in a population set at 10% and the minimum 

global minor allele frequency of SNPs set at 0.1. Subsequent analysis was conducted using R 

statistical software (R Core Team 2016) using data in genepop format exported from 

POPULATIONS module. 

CLUSTER analysis was conducted using package adegenet (Jombart et Devillard; 

2010) and poppr (Kamvar et al., 2014, 2015) using all samples, including the seven 

remaining replicate pairs (one replicate was not recovered during sequencing) to select the 

optimal set of filters for removing individuals and loci based on the level of missing data. 

These filter settings were varied until the CLUSTER plot showed the paired replicates to be 

most closely related. This resulted in removal of loci which were absent in at least 15% of 

individuals and genotypes having more than 20% of total identified loci missing. For 

subsequent analyses, only one from each pair of replicate samples with the most loci was 

retained. We used the R package sequoia (Huisman, 2017) to identify related individuals, up 

to half – siblings; this program is specifically designed to use large SNP datasets and does 

not require a parent to be present in the sample. This was done for each of the two cohorts in 
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order to make sure no related individuals were included in the Genome-Environment 

Association (GEA) tests. 

We estimated the number of ancestral populations represented in the sample using the 

LEA R package (Frichot and François 2015). The analysis employed population clustering 

analysis with sparse non-negative matrix factorization optimization (sNMF) (Frichot et al. 

2014) to estimate number of ancestral populations represented in the sample. The number of 

populations was determined from the cross entropy criteria and Cattell’s rule (Cattell, 1966) 

from the sNMF output. We favored the sNMF routine because it is robust to departures from 

Hardy-Weinberg equilibrium as compared to Bayesian and Maximum Likelihood approaches 

(Frichot et al. 2014). We also compared the sNMF results to STRUCTURE 2.3.4 (Pritchard, 

Stephens & Donnelly 2000) derived population clustering.  

We examined whether selection pressure is consistent from year-to-year by testing for 

a difference in the number of private alleles, or homozygous loci in each year. The number of 

private alleles that were only found in 2014 but not in 2015 was quantified specifically to 

each sNMF derived population and across all SNPs. To compute whether the number of 

private alleles was significantly different between years, we needed to account for the 

difference in sample sizes between the years. We wrote a custom bootstrap routine in R to 

create a null distribution of the expected number of lost alleles in the smaller sample size by 

selecting without replacement from the larger year’s sample, the reduced sample size. The 

significance (p=0.05) was then based on where the observed number of private alleles lies in 

the null distribution. 

Latent factors mixed model (LFMM) algorithm in R package LEA (Frichot, 2014) 

was conducted to identify loci influenced by selection. For subsequent analysis we imputed 

any remaining missing data (3.5% in 2014 and 4.1% in 2015). The missing genotypes were 

imputed using the random forest algorithm in the R packages randomForestSRC and radiator 

(Gosselin, 2018). We used the R package hierfstat (Goudet, 2005) to estimate pairwise FST 

according to Nei (1987). Significance of FST was calculated through 1,000 permutations of 

population indices. PCA analysis was conducted using the dudi.pca routine in ade4 R 

package (Dray 2007). Environmental variables included in the GEA included sample date 

and latitude, sea water temperature, and chlorophyll concentration. Phenotypic metrics were 

also included in the GEA, including percent lipid content and condition index. This analysis 

https://web.stanford.edu/group/pritchardlab/publications/pdfs/PritchardEtAl00.pdf
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was done for 2014 and 2015 data separately with four latent factors to account for population 

structure while testing for genome-environment association. This was followed by nucleotide 

BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) search of nucleotide sequences and their 

corresponding protein coding gene regions where selection may be occurring. Loci 

annotation and BLAST searches of the associated 140 bp sequences were accepted when 

below the nucleotide and protein e-value threshold of 1𝑥𝑥10−10. BLAST e-value score is the 

probability that the similarity is due to chance. 

The gene ontology (GO) enrichment analysis was used to determine whether the 

groups of genes associated with each of the environmental variables was enriched for certain 

biological processes. This analysis was done by querying geneontology.org database using 

zebra fish (Danio rerio) as a reference organism, and the alpha level was set at p=0.05 with 

no multiple test correction applied. Subsequently, the biocyc.org and informatics.jax.org 

were queried to determine general biological functions of the gene aggregates.  

Results 

Bioinformatics and Population Grouping 

The total number of raw Illumina sequencing reads for the six plates was 2,983 

million, or on average 497 million per plate. The proportion of reads with a correct barcode 

and restriction enzyme cut site varied from 69% to 83% per plate with an average of 76%. 

Alignment to the S. nigrocinctus reference genome resulted in 79% overall alignment rate, 

with the percentage of aligned reads per sample ranging from 56 to 77% (mean = 71%). 

Filtering of individuals with high percentages of missing genotypes (> 15%) and SNPs with 

low genotyping rates (< 20%) resulted in the final sample size of 398 individual fish (321 in 

2014 and 77 in 2015) and 11,146 SNPs.  

The ancestry analysis revealed the presence of 4 discrete spawning populations. 

sNMF ancestry analysis in LEA revealed 4 populations based on cross-entropy criteria 

(Figure 1-2a, 1-2b). PCA analysis supported the K=4 sNMF derived putative population 

clusters (Figure 1-2c). STRUCTURE (Pritchard et al. 2000) analysis also supported K=4 

populations, but with greater admixture of population 2 and 3 than was estimated via sNMF 

algorithm. All four of these populations were represented in both the 2014 and 2015 

collections (Figure 1-3). Pairwise FST values for genetic differentiation among putative 

population-year combinations revealed consistent differentiation between populations in each 
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year (Table 1-1). Additionally, this difference was conserved across years, meaning little 

differentiation as measured by FST was observed within a population, between years. These 

findings support the results of the ancestry analysis and provide evidence that the 2014 and 

2015 collections are composed of similar mixtures of discrete spawning populations.  

Relatedness analysis showed no related individuals (up to half siblings) in the 

collections. This indicates that the discrete sNMF derived populations are not simply groups 

of closely related individuals. Furthermore, the results of this analysis ensured that no related 

individuals are included in the subsequent genotype-environment association models, which 

is thought to result in higher false positive rates due to lack of independence among the 

samples (Newman et al. 2001; Voight and Pritchard 2005). 

Fewer private alleles were detected in 2015 than in 2014 and this pattern was 

significant when adjusting for the smaller sample size in 2015 (Table 1-2). This analysis was 

done separately for each sNMF-derived population, and we detected private alleles in 

common among all four populations (Table 1-3) indicating the same suite of alleles was not 

detected in 2015. This suggests that 2015 selection was stronger as compared to 2014, 

leading to loss of deleterious alleles in the 2015 cohort, which is consistent with the more 

abnormal oceanic conditions observed in 2015 than in 2014 (Cavole et al. 2016; Gentemann 

et al. 2017; Jones et al. 2018). 

Genotype-Environment Association 

The results of LFMM analysis linking environmental and phenotypic variables to 

SNP variants indicated similar patterns of association with latitude and collection date in 

both years (Table 1-4).  Of the 76 SNPs associated with these variables in 2014 and 305 in 

2015, ten were shared between years (Supplementar materials, Table 1-1). The loci common 

in both years were significantly associated with latitude and collection date only. However, 

because of the sampling being conducted in a generally south to north direction, sampling 

date and latitude are collinear. This may possibly indicate a temporal gradient of selection 

where less fit individuals, those with deleterious alleles die off during their first months of 

life. Therefore the fish collected at later dates may be a subset of the fitter individuals as 

compared to earlier collections. Or there may be a true latitudinal gradient, or a combination 

of both factors contributing in various proportions to a selection gradient. Chlorophyll 

concentration and seawater temperature did not appear to influence loci in 2014, but were 
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associated with 100 loci in 2015. It is important to note the Gulf of Alaska experienced 

unusually warm temperatures in 2015 (Cavole et al. 2016), marked by large sea bird die-offs 

(Jones et al. 2018).  

In 2015, the fish experienced poorer growing condition as compared to 2014 (Cavole 

et al. 2016). This was evident in their weight for a given length when examining the 

condition index graphs (Figure 1-4). Linear regression analysis indicated a significantly 

(p<0.05) lower intercept and steeper slope in 2015 suggesting that smaller fish had poorer 

condition in 2015, but larger fish appeared to be unaffected. Whether the smaller fish died off 

and only larger fish survived is uncertain, although there appears to be a genetic basis of 

selection where a number of loci were identified as being associated with fish body condition 

(% lipid and condition index). This was not observed for the fish collected in 2014. 

Gene Ontology Enrichment 

BLAST search resulted in only six loci being associated with known genes in 2014 

and 24 in 2015 (Supplementary materials, Table 1-2). The broad-scale biological processes 

associated with the gene ontology (GO) enrichment are listed in (Supplementary materials, 

Table 1-3), while detailed information and fine-scale biological processes associated with the 

gene subsets may be found in the supplementary materials. The majority of genes were 

associated with developmental processes: 4 out 5 in 2014 and 108 out of 168 in 2015 

(Supplementary materials, Table 1-3). Intracellular processes were associated with all 

environmental gradients in both years (see supplementary materials). Various developmental 

processes were mostly associated with collection date, chlorophyll-a concentration, latitude, 

water temperature, as well as tissue lipid percentage. Growth associated processes were 

mostly associated with chlorophyll-a concentration, collection date, collection latitude, water 

temperature and tissue lipid percent, but not condition index. Metabolic related processes 

were associated with condition index, latitude, and temperature. Fatty acid and lipid 

metabolism processes were only associated with a temperature gradient. 

Discussion 

Sympatry and Population Structure 

One of the surprising findings of this study was the strong genetic clustering where 

the individuals of respective clusters were dispersed among the sampling locations, as well as 

conserved between the two years (Figure 1-3). This is consistent with the predictions from 
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the DisMELS model (Stockhausen 2009), but in contrast with the findings of Kamin et al. 

(2014), where the collections were mapped to the closest adult groups and no genetic 

clustering was detected. However, their study only used twelve microsatellite markers and 

therefore may have lacked statistical power to detect the finer-scale genetic clustering as the 

RADseq approach we employed here. This inference is supported by the low FST values 

detected here (FST ranging from 0.008 to 0.032 between clusters), because detection of low 

FST values can require markers with high power. Also, the Kamin et al. (2014) study treated 

each haul collection as a sampling unit and conducted tests on the allele frequencies among 

the hauls, transects, locations, and years, but did not examine genetic clustering based on 

individual admixture analysis. However, the presence of genetic structure in our study is 

consistent with Palof et al. (2011), who detected isolation-by-distance population structure in 

the adults. The complete mixing among the genetically distinct groups of YOYs would be 

expected to result in a lack of population structure within just a few generations if the mixed 

fish maintained their grouping through settlement, recruitment and spawning. Our 

observations are consistent with both the DisMELS (Stockhausen 2009) and Palof et al. 

(2011) results indicating dispersal is not the primary mechanism by which POP population 

structure is maintained. 

Our study suggests that distinct POP populations that are sympatric during the larval 

and YOY stage are likely geographically segregated and genetically differentiated during 

spawning. The presence of genetic clusters in spite of larval stage sympatry may indicate that 

once the fish settle out in the nearshore rearing habitat, they may be able to home-in to their 

natal locations over the following few years. If homing to their natal locations begins after 

fish settle out of the water column into their nearshore rearing habitat, then the mixtures of 

genotypes would be evident among larvae as they advected towards shore by cross-shelf 

currents.  

The homing behavior in adult Sebastes spp. has been well documented (i.e. Carlson 

and Haight 1972; Matthews 1990; Carlson at al. 1995). It is unknown, however, when this 

behavior begins. Schools of age 1+ fish are spatially segregated (Carlson and Haight 1976), 

although it is unknown if those individuals are from a single or multiple source populations. 

It may be that these single cohort schools are composed of individuals from multiple sourced 

populations and like salmon, leave the school when natal location is nearby. 
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Homing behavior would result in genetic isolation and population structure consistent 

with our observations. Westrheim (1975) noted that POP schools were separated by 

bathymetry and would not cross deep trenches once in demersal stage. Withler et al. (2001) 

also described POP populations that were genetically distinct, yet lived within close 

proximity of each other, even when sampled in different seasons. Therefore if larvae from 

discrete nearby parturition locations, separated by bathymetric features such as canyons and 

ridges, were jointly entrapped in the oceanic currents, these clusters would resemble our 

observations. If homing to their natal locations begins after fish settle out of the water 

column into their nearshore rearing habitat, then the mixtures of genotypes would be evident 

among larvae as they advected towards shore by cross-shelf currents. 

Another explanation for the fate of these YOY fish is that they are entrained in the 

coastal current and mesoscale eddies and fail to find suitable rearing habitat prior to winter 

settlement and are therefore destined to die, and our sampled fish were already the 

“swimming dead”. The selection that we observed would then be the sign of various 

phenotypes dying at different rates, while the unobserved fish, the ones that did not get 

advected away from natal grounds and mixed with other similar-fated YOYs, are the only 

ones that successfully reach suitable nearby rearing habitat. Westrheim (1958), and Carlson 

and Haight (1976) noted the extreme successes and failures among POP year classes, which 

perhaps may be indicative of advection rate away from the natal grounds or high larval 

mortality, assuming consistent spawning population. 

Genome Environment Association 

Fish employing broadcast spawning strategies characterized by larval and juvenile 

pelagic drift in ocean currents are subject to large interannual variability in oceanic 

conditions (Stockhausen et al., 2018). Stockhausen et al. (2018) refers to this as “running the 

gauntlet”, as it is during this critical life stage that these fish are most vulnerable, 

experiencing the highest rates of mortality. This vulnerability is not only due to the vagaries 

of physical transport, but also due to their physiological condition where they must meet 

energetic demands of acquiring sufficient lipid reserves in order to move to inshore nursery 

areas.  

During years favorable ocean conditions with ample food availability, such as 2014 

for POP, mortality may be low and selection weak, allowing most phenotypes to survive 
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through the pelagic phase and into nearshore settlement. However, during years of 

unfavorable ocean conditions, such as the unusual warming, low primary productivity, and 

low food availability in 2015 for POP, mortality may be high. If this increase in mortality is 

especially high for certain phenotypes, the selection may be strong, with only the most 

favorable phenotypes surviving to settlement.  

Our results show consistent selective forces along the sampling date/latitude gradient 

in both 2014 and 2015 for POP with 10 of the 381 putative selective loci being in common in 

both years (Table 1-4). The LFMM analysis was done independently for each of the years 

and finding the same putative selected loci in both years is surprising. And although the 

LFMM method purportedly accounts for demographic factors such as population mixtures, 

the date/latitude gradient association could be due adult spawning populations being 

differentiated at these loci. Based on timing and location of spawning, their progeny may 

follow the spatio-temporal pattern identified by GEA. This is further supported by the 

distribution of the sNMF identified genetic clusters in relation to their distribution as seen in 

Figure 1-3. Alternatively, this may indicate that the spawning adult populations contain a 

high proportion of alleles at those loci that in 2014 and 2015 years were deleterious to the 

YOY progeny encountering the environmental conditions during their pelagic developmental 

stage. Since POP are very long-lived and may even spawn into their 100th year (Conrath and 

Knoth, 2013; Hulson et al., 2017; Heppell et al., 2010), some of the alleles in the parental 

population are expected to have been selectively advantageous during their respective first 

year at sea; therefore, the alleles that were advantageous when the parents were YOY may be 

deleterious in some oceanic conditions encountered by their progeny decades later. It is then 

expected that patterns of selection as displayed by the subsets of selected alleles would be 

cohort-specific. 

Interannual differences in the strength of selection pressure was evident when 

comparing the 2014 and 2015 YOY POP fish. Due to the larger sample size in 2014 (321) 

than in 2015 (77), we would expect more putative selected loci in 2014 just due to the 

increase in statistical power, but that was not the case. In 2014, the oceanic conditions were 

typical (Cavole et al., 2016), with large YOY abundances in the ocean, and no putative 

selected loci were identified aside from those associated with collection date/latitude. 

However, in 2015, the oceanic conditions were abnormal with warmer sea surface 
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temperatures (Gentemann et al., 2017) and were marked by large seabird die-off (Jones et al. 

2018). This likely resulted in stronger selective pressure on YOY in 2015 and this is 

supported by the greater number of putative selected alleles. Therefore by the time the 2014 

and 2015 cohorts settled out in the nearshore, we expect that most individuals have gene 

variants that were most favorable and selected for by the conditions encountered in that year. 

The difference in the change in condition index indicates different growth conditions 

between the two years. In 2015, the smaller fish had less mass than in 2014, but the larger 

fish had equivalent mass in both years (Figure 1-4). This indicates that in 2015, a much 

warmer year than in 2014, the smaller fish were unable to gain weight as compared to the 

same sized fish in 2014. If the temperatures were still within optima for POP YOY growth, 

then smaller size suggests smaller-sized prey items were either unavailable or of insufficient 

nutritional value to support the higher growth rates predicted by the higher temperature in 

2015. However the larger fish in both years were equally successful at gaining mass. This 

suggests that the environment in 2015 imposed a larger variance in fitness and therefore 

much stronger selection pressure, and this is consistent with the greater number of putative 

selected loci in 2015 than in 2014. This is further supported by the recruitment estimates in 

the 2017 stock assessment with 2014 cohort being 87.5 million and 38.2 million in 2015 

(Hulson et al., 2017). 

Gene Ontology Enrichment 

The GO enrichment analysis yielded particularly interesting and intuitive results. The 

selective processes identified here act during the developmental and high growth larval life 

stage, and 87% of the general biological processes associated with the LFMM identified 

putative selected genes directly corresponded to development and growth. The remaining 7% 

and 5% were associated with intracellular processes and metabolism respectively. 

Furthermore, in 2014, we did not identify any biological processes associated with growth or 

metabolism, indicating that the early life conditions were favorable across the habitat 

surveyed, with little selection acting on those gene variants. The numerous processes 

identified in 2015, however, may be indicative of unfavorable oceanic conditions, leading to 

a significant loss of phenotypes with the deleterious gene variants. Because 2015 was an 

unusually warm year (Gentemann et al., 2017), it is not surprising that these warmer 

temperatures would directly affect metabolic processes. This is underscored by our finding of 
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associations between fatty acid, lipid metabolism, and temperature for 2015, but not for 

2014. 

Fluctuating Selection and Maintenance of Adaptive Diversity 

Our results suggest the presence of a temporal portfolio effect, where a multi-age 

population with overlapping generations maintains a portfolio of genotypes (Ellner and 

Hairston 1994). The interannual variation in oceanic conditions and its effects on the 

selection of POP during their first year at sea prior to settlement may be thought of as a 

“Selective Sieve” (Figure 1-5), where each year presents different sets of selection pressures 

during the early developmental life stage. The selection pressures, in the form of various 

environmental drivers such as ocean temperatures, productivity (chlorophyll-a) and their 

timing vary from year to year resulting in some phenotypes being detrimental in one year, but 

advantageous in another when encountering highly diverse pelagic habitats. The selective 

sieve is therefore specific to the year of the POP pelagic life stage, and therefore unique to 

each cohort which then contains alleles favored by the conditions of their first year. In these 

long-lived species with lifespans of over 100 years, in any one year the larval cohort at 

parturition may be the result of breeding across dozens of spawning aged cohorts (~ 8 to 100 

years old or more). The parental cohorts contain many alleles that are representative of the 

selection due to oceanic conditions during their first year at sea. At parturition, the POP 

larvae contain all of these alleles, however, from parturition to settlement, some of the alleles 

prove to be deleterious as the oceanic conditions do not favor them, and only a subset of the 

larvae containing the advantageous alleles survive until settlement. This is an example of 

fluctuating selection (Bell 2010; Kawecki 2000; Lande 2007), where the direction of 

selection is constantly changing between generations. The species’ life history of long 

reproductive period relative to the time-scale of fluctuating selection maintains genetic 

diversity that is adaptive across a range of environmental variation. 

Population viability in fish employing broadcast spawning strategies is especially 

vulnerable to changing oceanographic conditions. Ocean currents may advect YOY far 

offshore where they will fail to reach their shelf-slope nursery areas. Using ROMS-based 

models, Stockhausen et al. (2018) showed that up to 70% of the YOY failed to reach suitable 

nursery habitats prior to wintertime and were not expected to survive. The ones that are not 

advected out of reach of nursery habitat must still acquire sufficient lipid reserves in order to 
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settle out and overwinter. Interannual differences in ocean temperatures, prey and predator 

abundances and composition will also affect whether the YOY will survive to reach their 

nursery habitats with sufficient lipid reserves to overwinter and eventually recruit to the 

population. Maintaining a high diversity in phenotypes through cohort-specific selection may 

be thought of as a form of diversification bet hedging response to a fluctuating natural 

selection as described by Simons (2009).  

These results underscore the importance of maintaining many cohorts in order to 

maximize the population resilience to environmental variability. POP are vulnerable to age 

truncation where older fish are more likely to be fished since they are exposed to fishing 

longer (Berkeley 2004). The importance of maintaining older age classes in marine fishes has 

long been recognized as being a factor in their recruitment (Longhurst, 2002; Hixon et al., 

2013). Hanselman et al. (2005) noted that age truncation has occurred in POP due to 

unrestricted fishing in the past which led to disproportional absence of 40+ year old fish. 

However, the mechanism of adaptation through maintenance of age-specific advantageous 

alleles would be compromised if whole cohorts are inadvertently fished by depriving 

populations of the advantageous alleles specific to that cohort.  

The uniqueness of the demonstrated cohort-specific selection signatures may allow 

for reconstruction of past oceanographic conditions based on the alleles present in a given 

cohort. The 2015 cohort will therefore represent the alleles favored (or conversely lost) 

during especially warm oceanic conditions as experienced during 2015. It may be possible 

that by examining allele frequencies in an adult cohort, of for example 50-year-old fish, the 

selection pressures encountered during their YOY stage may be revealed. Furthermore, 

ageing of adults based on cohort-specific allelic signatures may also be possible by 

maintaining cohort-specific selected allelic signatures. This may prove especially useful 

since otolith ageing of POP adults is fairly error prone especially for older fish (>20 years 

old) (Beamish, 1979; Stanley, 1986). 

Conclusions 

We found evidence for different selective pressures for POP YOY across two 

different years that had very different environmental conditions. These results provide 

evidence that long-lived marine species such as POP may be resilient to natural 

environmental variability by maintaining a portfolio of adaptive alleles resulting from 
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selection encountered by each cohort during their most vulnerable life stage from parturition 

to settlement. However, this resilience may be limited to the environmental conditions that 

prevailed in the last few centuries. The “selective sieve” framework may provide valuable 

insights into other species employing similar life history strategies. Hoffman and Sgro (2011) 

note that species facing strong but fluctuating selection pressures, such as YOY POP during 

the pelagic life stage, will have a difficult time adapting. Here, we demonstrated an exception 

where due to the way POP are able to maintain these selected alleles may allow them to be 

especially adaptable under fluctuating environmental conditions. POP have proven to be an 

ideal model species for investigating portfolio effects. By examining relative strengths of 

selection among discrete populations and adult cohorts, it allows us to jointly examine spatial 

and temporal portfolio effects. In the future, we plan to sample across adult populations to 

link genetic variation to larval cohorts and adult habitat/geographic population structure. 



18 
 

 
 

Tables and Figures 

 

Figure 1-1 Locations of the 2014 (yellow) and 2015 (orange) collection of the young-of-the-
year Pacific ocean perch. 
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(a) 

(b) 

(c) 
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Figure 1-2 sNMF ancestry analysis revealed 4 ancestral populations represented by fish 
collected in both 2014 and 2015: (a) cross-entropy plot for the number of populations in 
sample; (b) sNMF population ancestry barplot; and (c) PCA analysis with the colors 
corresponding to the sNMF-derived majority ancestry populations in panel b.  Note that both 
years were included concurrently in the analysis. For clarity year designation is omitted as 
each population cluster contains both years interspersed throughout. 
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Figure 1-3 Spatial distribution and the proportional representation of the putative populations 
in the samples in 2014 (a) and 2015 (b) collections. 

(b) 

(a) 

A (n=12) 
B (n=47) 
C (n=13) 
D (n=5) 

A (n=19) 
B (n=101) 
C (n=100) 
D (n=104) 
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Figure 1-4 Relationships of body length and weight in the 2014 (black and 2015 (red) young-
of-the-year Pacific ocean perch. In 2015, smaller length fish had significantly (p<0.0001) 
smaller mass than in 2014, indicating environmental factors in 2015 may have negatively 
influenced their condition.  
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Figure 1-5 The selective sieve. The five colored plates represent various hypothetical 
environmental forces (such as temperature, chlorophyll density, etc), that are highly variable 
among years. This represent the different selection pressures encountered by the Pacific 
Ocean Perch during initial pelagic life stage. Each years’ cohort therefore contains the alleles 
that were selected for during their first year.  Populations of long-lived adults representing 
multiple cohorts maintain genetic diversity as a result of this temporal variation in selection. 
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Table 1-1 Pairwise FST values (FST below diagonal and p-value above the diagonal) between 
sNMF-derived populations and sampling year. There is little genetic differentiation as 
indicated by FST within a population between years (bolded FST and corresponding p-values). 
 

2014-A 2014-B 2014-C 2014-D 2015-A 2015-B 2015-C 2015-D 

2014-A * 0.001 0.001 0.001 0.021 0.001 0.001 0.001 

2014-B 0.023 * 0.001 0.001 0.001 0.329 0.001 0.001 

2014-C 0.030 0.014 * 0.001 0.001 0.001 0.484 0.001 

2014-D 0.023 0.009 0.012 * 0.001 0.011 0.001 0.303 

2015-A 0.001 0.026 0.032 0.026 * 0.001 0.001 0.001 

2015-B 0.023 0.000 0.013 0.007 0.026 * 0.001 0.017 

2015-C 0.030 0.014 0.000 0.011 0.032 0.013 * 0.001 

2015-D 0.023 0.009 0.011 0.000 0.026 0.008 0.012 * 

 

Table 1-2 Number of private alleles in the given year specific to each sNMF-derived 
population. Private alleles is the number of alleles that were detected in only one year. For 
example, 127 is the number of alleles detected in population A in 2014, but not in 2015.  

Sample Size Private Alleles 

Population 2014 2015 2014 2015 

A 100 47 127 11 

B 103 5 2,101 01 

C 19 12 604 1491 

D 99 13 401 4 
1Indicates that there are significantly fewer alleles lost in 2015 than expected by chance. 

 
Table 1-3 Number of private alleles in common between the sNMF-derived populations that 
were detected in 2014 samples but not in 2015. For example, 30 is the number of alleles 
detected in 2014 in both populations A and B, that were not detected in 2015 in either A or B 
population   
Population A B C 

B 30 
  

C 4 181 
 

D 5 180 74 
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Table 1-4 Results of LFMM analysis and the number of putative loci under divergent 
selection in 2014 and 2015. Note that sampling date and latitude (both are confounded as 
sampling was generally in the northward direction) were consistently associated with 
selection pressure in both years. However, other environmental factors only showed 
signatures of selection in 2015. 

 
Selected Loci 

Gradient 2014 2015 

Latitude 14 56 

Sampling 

date 62 101 

Temperature 0 16 

Chlorophyll 0 100 

% Lipid 0 27 

Condition 

Index 0 5 
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Supplemental Materials 

Supplemental Table 1-1 Putative selected loci and their associated environmental gradient 
that were in common in both 2014 and 2015 years. 

  Environmental Gradient 

Locus Year Date Latitude Chlorophyll 
% 

Lipid 

10101 2014 X       
2015   X     

2088 2014 X       
2015 X X X X 

24006 2014   X     
2015 X   X   

25342 2014 X       
2015 X   X   

2579 2014 X       
2015   X X   

28846 2014 X X     
2015 X X X X 

29782 2014 X X     
2015 X X X   

343 2014 X       
2015 X   X   

8626 2014 X       
2015 X X X   

922 
2014 X X     
2015 X   X   
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Supplemental Table 1-2 List of BLAST matches for the selected loci from LFMM in 2014 and 2015. 

2014 Date Lat 
biogenesis of lysosome-related organelles complex 1 subunit 4-like 
(BLOC-1) X  
 lysine-specific demethylase 5B-B-like, transcript variant X4 
(KDM5B) X  
neurochondrin (NCDN) X  
GREB1-like protein X  
kelch-like protein 36 (KLHL36) X  
WD repeat domain 3 (WDR3) X X 

 

2015 Date Lat Temp Lipid Chl Condition Index 
 collagen type IV alpha 2 chain (col4a2) X      
 DnaJ heat shock protein family (Hsp40) member A2  X X X X  
 keratin, type II cytoskeletal 8-like (KRT8) X    X  
 MDS1 and EVI1 complex locus (mecom) X    X  
phosphoribosyltransferase domain-containing protein 1 (PRTFDC1)  X     
 STE20-like serine/threonine-protein kinase-like (SLK) X X   X  
 teneurin transmembrane protein 1 (tenm1) X X   X  
alanyl-tRNA synthetase (aars)      X 
aldehyde reductase (AKR1A1) gene X X  X X  
alsin-like (ALS2) X   X X  
enkurin, TRPC channel interacting protein (enkur)  X     
erb-b2 receptor tyrosine kinase 4 (erbb4) X      
myotubularin-related protein 13-like (sbf2)  X     
NGFI-A binding protein 1 (nab1) X X  X X X 
nucleoprotein (TPR) X X X X X X 
voltage-dependent L-type calcium channel subunit alpha-1D (CACNA1D)  X     



 

 

28 

putative helicase mov-10-B.2 (MOV-10)  X     
retromer complex component B (vps26b) X X   X  
solute carrier family 25 member 46 (slc25a46) X      
T-box 20 (tbx20) X X X X X  
teneurin-1-like (TENM1) X X   X  
trypsin domain containing 1 (tysnd1)   X    
ubiquitin specific peptidase 32 (usp32), transcript variant X7 X    X  
zinc finger CCCH-type containing 3 (zc3h3) X X  X X  
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Supplemental Table 1-3 Summary of gene ontology and enrichment analysis showing broad biological processes associated with 
selected genes from LFMM analysis.  The numbers in the table indicate how many distinct biological functions were found in each 
category and do not indicate significance or importance of the associated putatively selected alleles. “Total processes” indicates the 
total number of distinct biological processes identified, whereas “Discrete processes” indicates the number of broad biological process 
groups. 

Broad Biological Process 2014 2015  
 Date Chl Date Condition Latitude Lipid % Temp Total 
intracellular processes 1 39 38 22 72 29 12 213 

Development         
cell development  6 5 2 2 1 1 17 
cell adhesion  1 1  1   3 
extracellular matrix organization   1     1 
determination of symmetry      2 2 4 
embryo development  8 6 1  3 3 21 
developmental growth  3 6  1 6 6 22 
anatomical structure/organ development 1 2 2     5 
epithelium development  2 2   2 2 8 
cardiac development  13 11  13 16 16 69 
vasculogenesis  2 2  1 4 4 13 
liver development  1 1  1 1 1 5 
renal system development 1 20 19   1 1 42 
digestive system development  4 4  4 4 4 20 
gland development 2       2 
brain development 2       2 
neuron generation   4     4 
immune system development      1 1 2 
pigment biosynthesis     2   2 

Growth         
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non-developmental growth      1 1 2 
muscle formation  5 5  5 7 7 29 
growth regulation  1 1  1 1 1 5 
organ growth  2 2  2 2 2 10 
cell growth  3 3   1 1 8 
blood production      1 1 2 

Metabolism         
metabolic processes    13 15  8 36 
fatty acid metabolism       3 3 
lipid metabolism       2 2 

Total processes 7 112 113 38 120 83 77 550 
Discrete processes 5 16 18 4 13 18 21  
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Chapter 2: Beyond Isolation by Distance; Population Structure and 

Dispersal 

Abstract 

In order to test whether biophysical dispersal models may describe the population 

structure of marine fish species, I develop a spatio-temporal stochastic genetic model and 

validate it with a suite of synthetic dispersal models. I then apply PCA, STRUCTURE 

admixture analysis and linearized FST on distance regression and show that no single method 

is adequate to describe the underlying population structure model. The effect of multiple age 

cohorts, and cohort specific selection is shown to have a negative impact on the population 

structure inference leading to lack of differentiation as well as phantom populations. Lastly, I 

show how the beta distribution parameters may be used to differentiate candidate population 

dispersal models in a likelihood model selection framework. 

Introduction 

Inferring population structure is one of the primary goals of population genetics. 

Population structure indicates any deviation from the expectation of random mating resulting 

in population heterogeneity. It is now commonplace that a first step after sequencing 

genotypes is to examine the principal component (PCA) plots of sample genotypes for any 

patterns that may result from non-random mating. PCA partitions the total variation of the 

genomic sequence samples in orthogonal space and by plotting the first two components is 

able to visually show underlying patterns in the data in this dimensionally reduced space. 

Oftentimes, this allows the identification of genomic clusters, or individual groups with 

sufficient genetic differentiation. As well, STRUCTURE analysis (Pritchard, 2010; Pritchard 

et al., 2000), infers population structure by assigning individuals to distinct populations as 

well as identify admixed individuals by grouping individuals into groups satisfying the 

Hardy-Weinber equilibrium. Finally, under limited dispersal among geographically divided 

populations the population structure oftentimes can be described as isolation by distance 

where the populations separated by geographic distance are proportionally genetically 

diverged, and this is measured through a linearized FST regression. 

Isolation by distance, first described by Wright (Sewall Wright, 1943), abbreviated 

IBD is a commonly used measure to assess population structure, with inference usually 
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limited to its presence/absence based on significance of the genetic differentiation (FST ) 

regression on spatial distance (i.e. Euclidean geographic distance) (Bradburd et al., 2013; I. 

R. Bradbury & Bentzen, 2007; Duforet-Frebourg & Slatkin, 2016; Jenkins et al., 2010; 

Rousset, 1997; Slatkin & Barton, 1989). However, when the genetic differentiation is more 

complex, or nonlinear, this regression may not result in the apparent significant linear 

relationships, possibly resulting in a failure to detect population structure. 

The nonlinear dispersal, possibly independent of geographic distance has been 

explored through isolation by resistance (McRae, 2006), isolation by environment (Sexton et 

al., 2014; Wang & Bradburd, 2014) and is of primary interest in the field of landscape and 

seascape genetics. Isolation by resistance, unlike geographic distance, aims to estimate the 

landscape resistance pathways among populations (McRae, 2006), while isolation by 

environment estimates connectivity based on the similarity of environments (Wang & 

Bradburd, 2014). These methods exploit the relationship between the physical connectivity 

matrix and the genetic population differentiation (i.e. pairwise FST matrix).  

The most often used approach to estimate the relationship between the connectivity 

matrix and the genetic distance matrix is the Mantel’s test (Mantel, 1967; Sokal, 1979) or 

partial Mantel’s test (Smouse et al., 1986). And although popular in landscape genetics 

methodology (Balkenhol et al., 2009), numerous simulation studies have shown that this test 

tends to suffer from a high type 1 error rate and autocorrelation (Castellano & Balletto, 2002; 

Guillot & ßois Rousset, 2012; Harmon & Glor, 2010; Raufaste & Rousset, 2001; Rousset, 

2002). However, its use continues to persist among researchers (Stéphanie Manel & 

Holderegger, 2013; Storfer et al., 2010). Other methods used to compare the environmental 

distance or connectivity to genetic distance are BIO-ENV (K R Clarke & Ainsworth, 1993), 

RELATE (K. Robert Clarke et al., 2008), multiple regression (Bradburd et al., 2013; 

Legendre & Casgrain, 1994), and others. See (Balkenhol et al., 2009) for a review and 

simulation study comparing these methods in the landscape genetics framework.  

Here, I estimate the association between the environmental connectivity and genetic 

connectivity through the expected genetic population differentiation resulting from a set of 

modeled environmental connectivity matrices. Although not a novel approach (Slatkin, 1980, 

1993), this model differs in that I do not consider migration with the associated exit of 

genotypes, but offspring dispersal, where individuals are never leaving their natal population, 
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only their genetic propagules, i.e. larvae. In addition, I model a life history characteristic in 

numerous marine species with multiple spawning cohorts, and test its effect on population 

differentiation. 

Methods 

Theoretical Population Demographic Framework 

Consider the demographic life history model that is characterized by larval stage 

dispersal, but no subsequent migration, so that the allele frequencies in each of the 

populations only change due to immigration from dispersal and no emigration. The 

demographic life history may then be modeled as follows: 

1. Spawning aggregate at each discrete population may consist of multiple cohorts. 

2. The larvae from each population then disperse according to some dispersal parameter 

matrix. 

3. Selection occurs during the larval stage, and is specific to the year of spawning, and 

hence cohort-specific. 

4. The new, age 0 cohort at each population is then the mixture of offspring surviving 

the pelagic stage to settlement at the destination population. 

5. Adult stage mortality is negligible. 

The demographic process is modeled as a deterministic or a stochastic process 

described by two matrices D, and 𝚾𝚾𝒓𝒓
(𝒕𝒕). The D matrix is a K*K matrix representing dispersal 

probabilities amongst all K populations. The dispersal D matrix remains fixed throughout the 

simulation. The 𝚾𝚾𝒓𝒓
(𝒕𝒕)matrix is a K*L matrix of K populations and L allele frequencies at time 

t, where t denotes the spawning adults and t+1 are the larval offspring during dispersal in a 

given year. There are multiple 𝚾𝚾𝒓𝒓
(𝒕𝒕)matrices, one for each of the R cohorts and only the 

youngest cohort is updated at each time step, while the other cohorts are incremented by each 

time step until they are dropped when they “age out” of the model. 

Consider each population has a dispersal parameter vector 𝛿𝛿k which is the probability of 

dispersal into each of the K populations, including itself so that:  

�𝛿𝛿𝑖𝑖→𝑘𝑘

𝐾𝐾

𝑘𝑘=1

= 1 

And the full dispersal matrix is then: 
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𝑫𝑫 = �
𝛿𝛿1→1 ⋯ 𝛿𝛿1→𝐾𝐾
⋮ ⋱ ⋮

𝛿𝛿𝐾𝐾→1 ⋯ 𝛿𝛿𝐾𝐾→𝐾𝐾
� 

Therefore the allele contribution to the next cohort (t+1) in the kth target population is the 

sum of the larval allele contributions from all populations (i=1, 2, 3,.., K), so that the 

resulting allele frequency 𝑥𝑥𝑘𝑘
(𝑡𝑡+1) may be written as: 

𝑓𝑓�𝑥𝑥𝑘𝑘
(𝑡𝑡+1)|𝑥𝑥1

(𝑡𝑡), 𝑥𝑥2
(𝑡𝑡),⋯𝑥𝑥𝐾𝐾

(𝑡𝑡),𝛿𝛿1→𝑘𝑘, 𝛿𝛿2→𝑘𝑘,⋯ , 𝛿𝛿𝐾𝐾→𝑘𝑘� = �𝑥𝑥𝑖𝑖
(𝑡𝑡+1) 𝛿𝛿𝑖𝑖→𝑘𝑘

∑ 𝛿𝛿𝑖𝑖→𝑘𝑘𝐾𝐾
𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

 
 

(1) 

The function above describes the probability of the x allele being introduced to the kth 

population from all populations, in a given year and is assumed to remain unchanged in that 

cohort until they age out of the model.  

When multiple cohorts form a spawning aggregate, the frequency of the x allele in the 

spawning aggregate population 𝑖𝑖 at time t, is therefore the joint contribution of allele 

frequencies of the mature cohorts in the spawning group R, where R represents the spawning 

age cohorts: 

𝑥𝑥𝑖𝑖
(𝑡𝑡) =

1
𝑅𝑅
�𝑥𝑥𝑖𝑖,𝑟𝑟

(𝑡𝑡)
𝑅𝑅

𝑟𝑟=1

 
 

(2) 

𝑥𝑥𝑖𝑖
(𝑡𝑡) is then the allele frequency in the spawning group from the ith population.  

Mutation is introduced through mutation parameter μ, to the allele frequencies in the 

spawning aggregate: 

𝑥𝑥𝑖𝑖
(𝑡𝑡+1) = 𝑥𝑥𝑖𝑖

(𝑡𝑡)(1 − 𝜇𝜇) + �1 − 𝑥𝑥𝑖𝑖
(𝑡𝑡)�𝜇𝜇 

The selection parameter 𝑠𝑠(𝑡𝑡+1) is assumed to be specific to the age 0 cohort, 

mimicking the strong selection experienced by each cohort during their pelagic larval 

duration stage regardless of source population since they are expected to experience similar 

pelagic ocean conditions. This models the life history bottleneck that is characteristic of these 

pelagic larval dispersal marine species. The selection parameter is year specific, and applied 

equally to all loci. In a given year, it is drawn from a uniform distribution [-s, s]. The allele 

frequency may then be written as: 𝑥𝑥𝑖𝑖
(𝑡𝑡+1)𝑠𝑠 , so that: 

𝑥𝑥𝑖𝑖
(𝑡𝑡+1)𝑠𝑠 =

�1 + 𝑠𝑠(𝑡𝑡+1)�𝑥𝑥𝑖𝑖
(𝑡𝑡+1)

(1 + 𝑠𝑠(𝑡𝑡+1))𝑥𝑥𝑖𝑖
(𝑡𝑡+1) + (1 − 𝑠𝑠(𝑡𝑡+1))�1 − 𝑥𝑥𝑖𝑖

(𝑡𝑡+1)�
 

 

(3) 
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The above formulation with s bounded by [-1, 1] allows for very strong selection of 

the 𝑥𝑥𝑖𝑖
(𝑡𝑡+1) allele at time t+1 when �0 ≪ 𝑠𝑠(𝑡𝑡+1) ≤ 1� and conversely a strong selection of the 

alternate �1 − 𝑥𝑥𝑖𝑖
(𝑡𝑡+1)� allele �−1 ≤ 𝑠𝑠(𝑡𝑡+1) ≪ 0�.  For example when 𝑠𝑠(𝑡𝑡+1) = 1, the alternate 

allele is assumed to be lethal resulting in 𝑥𝑥𝑖𝑖
(𝑡𝑡+1)𝑠𝑠 = 1, but when 𝑠𝑠(𝑡𝑡+1) = −1, the “main” 

allele is lethal and 𝑥𝑥𝑖𝑖
(𝑡𝑡+1)𝑠𝑠 = 0. When 𝑠𝑠(𝑡𝑡+1) = 0, there is no selection at that loci and 

selection parameter does not change the allele frequencies. Note that the selection is assumed 

to act only on the larval aggregates in a given year, and not other cohorts (i.e. spawning 

aggregates). Therefore, the allele frequencies in each cohort, regardless of age remain a 

function of the selection parameter during their first year of life, or larval stage. The larval 

allele frequency matrix of all the larvae leaving a given population is then denoted as: 𝜒𝜒(𝑡𝑡+1). 

Stochasticity occurs at two stages in the model, first, when the parents at each population are 

chosen to represent the spawning cohort aggregate such that:  

𝑥𝑥𝑖𝑖,𝑟𝑟
(𝑡𝑡+1) =

𝑎𝑎𝑖𝑖,𝑟𝑟
(𝑡𝑡+1)

2𝑁𝑁
, and 𝑎𝑎𝑖𝑖,𝑟𝑟

(𝑡𝑡+1)~𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵(2𝑁𝑁, 𝑥𝑥𝑖𝑖,𝑟𝑟
(𝑡𝑡)) where 𝑥𝑥𝑖𝑖,𝑟𝑟

(𝑡𝑡) is the allele frequency in equation 2, 

or the allele frequencies in the in the ith population spawning aggregate.  

Secondly, a random realization of the fraction of the larval aggregates from each of 

the K populations arriving at the given destination population (k) with probability, 𝛿𝛿𝑖𝑖→𝑘𝑘: 

𝜏𝜏𝑖𝑖
(𝑡𝑡+1)~𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑎𝑎𝑚𝑚(𝑁𝑁, 𝛿𝛿𝑖𝑖→(1:𝐾𝐾)) 

Where N is the larval cohort size, 𝜏𝜏𝑖𝑖
(𝑡𝑡+1) is a K length row vector of the number of individuals 

from ith to all K populations, 𝛿𝛿𝑖𝑖→(1:𝐾𝐾) is the row probability vector of dispersal, and 𝜏𝜏𝑖𝑖
(𝑡𝑡+1) is 

a vector of the number of larvae where ∑ 𝜏𝜏𝑖𝑖→𝑘𝑘
(𝑡𝑡+1)𝐾𝐾

𝑘𝑘=1 = 𝑁𝑁. This results in a K*K matrix 𝚻𝚻(𝒕𝒕+𝟏𝟏) 

representing the number of larvae dispersing among all the populations. Where the 𝑫𝑫 matrix 

is row stochastic, the 𝐓𝐓 matrix is column stochastic, and therefore has to be column 

normalized so that proportional allocation from all K populations to kth population sums to 1, 

and written as 𝚻𝚻𝒖𝒖
(𝒕𝒕+𝟏𝟏).  

The K*L allele frequency matrix of the age 0 cohort at each of the K populations is 

then the matrix product of the transpose of 𝚻𝚻𝒖𝒖
(𝒕𝒕+𝟏𝟏) and 𝝌𝝌(𝒕𝒕+𝟏𝟏): 

𝚾𝚾𝒄𝒄=𝟎𝟎
(𝒕𝒕+𝟏𝟏) = �𝚻𝚻𝒖𝒖

(𝒕𝒕+𝟏𝟏)�
𝑺𝑺
𝝌𝝌(𝒕𝒕+𝟏𝟏)  

(4) 



43 
 

 
 

𝑓𝑓�𝑥𝑥𝑘𝑘
(𝑡𝑡+1)� = �𝑥𝑥𝑖𝑖→𝑘𝑘

(𝑡𝑡+1)𝑠𝑠 𝜏𝜏𝑖𝑖→𝑘𝑘
(𝑡𝑡+1)

∑ 𝜏𝜏𝑖𝑖→𝑘𝑘
(𝑡𝑡+1)𝐾𝐾

𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

 
 

(5) 

Function 𝑓𝑓�𝑥𝑥𝑘𝑘
(𝑡𝑡+1)� is the transition probability of allele frequencies to the next cohort at kth 

population location and can be modeled in a deterministic or stochastic process of species 

with life history strategy described by early life stage dispersal. See algorithm 1 for full 

model implementation. 

GST Population Differentiation 

The fixation index, commonly referred to as FST is used to describe the genetic 

differentiation, especially due to population structure (S. Wright, 1951). Here I use the GST 

formulation based on gene diversity between two population which is an FST analog more 

readily adapted for multiple biallelic loci which is becoming the most common type of 

molecular data  (Jakobsson et al., 2013b; Meirmans & Hedrick, 2011; Nei, 1973).  

The average 𝐺𝐺𝑆𝑆𝑆𝑆 between two populations (𝑖𝑖, 𝑘𝑘) averaged across 𝐿𝐿 loci may then be 

calculated as follows: 

𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘 = 1 −
1

2𝐿𝐿
�(𝑥𝑥𝑖𝑖𝑖𝑖2 + 𝑥𝑥𝑘𝑘𝑖𝑖2 )
𝐿𝐿

𝑖𝑖=1

 

𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘 =
1
𝐿𝐿
��1 − �

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑘𝑘𝑖𝑖
2

�
2
�

𝐿𝐿

𝑖𝑖=1

 

𝐺𝐺𝑆𝑆𝑆𝑆𝑖𝑖,𝑘𝑘 =
𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘 − 𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘

𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘
 

 

 

 

 

 

(6) 

Here I use a corrected version of the standardized Hedrick’s 𝐺𝐺"𝑆𝑆𝑆𝑆 (Hedrick, 2006), 

since GST has been shown to produce biased results especially in pairwise population 

comparisons as would be the case when applying this method to sampled populations from 

larger, unknown metapopulations (Meirmans & Hedrick, 2011): 

𝐺𝐺𝑆𝑆𝑆𝑆𝑖𝑖,𝑘𝑘
" =

2�𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘 − 𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘�
�2𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘 − 𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘��1 −𝐻𝐻�𝑆𝑆𝑖𝑖,𝑘𝑘�

 
 

(7) 

The choice of the initial allele frequency generating function may influence the scale 

of the pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 .  For example, the choice of Beta(1, 1) or uniform on (0, 1), resulted in 

maximal 𝐺𝐺"𝑆𝑆𝑆𝑆 ≈ 0.33, while Beta(0.5, 0.5), maximal 𝐺𝐺"𝑆𝑆𝑆𝑆 ≈ 0.46. 𝐺𝐺"𝑆𝑆𝑆𝑆 has been originally 

proposed (Hedrick, 2006; Meirmans & Hedrick, 2011) as an alternate to FST (S. Wright, 
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1951) and GST (Nei, 1973) to measure population genetic differentiation because they noted 

that their maximum value was dependent on within population heterozygosity, HS.  However, 

(Alcala & Rosenberg, 2019; Jakobsson et al., 2013a) subsequently show that the 𝐺𝐺"𝑆𝑆𝑆𝑆 

likewise is influenced by the frequency of the most frequent allele and derive the relationship 

between the number of subpopulations, the major allele frequency and the maximum 𝐺𝐺"𝑆𝑆𝑆𝑆. 

Therefore when calculating 𝐺𝐺"𝑆𝑆𝑆𝑆, and converting the allele frequencies to major allele 

frequencies (0.5 < 𝑥𝑥𝑖𝑖 < 1), the maximal value of 𝐺𝐺"𝑆𝑆𝑆𝑆 would be smaller than when using 

minor allele frequencies (0 < 𝑥𝑥𝑖𝑖 < 0.5). In this simulations, I do not convert the allele 

frequencies and use the raw frequencies from the simulation with initial frequencies 

generated from Jeffrey’s prior (Beta(0.5, 0.5). 

Population Structure and Larval Dispersal Models 

The larval dispersal model (Figure 2-1) allows for various population structure 

models by changing the dispersal from ith to kth population, or 𝛿𝛿𝑖𝑖→𝑘𝑘 parameters. For 

example, random dispersal occurs when ∀𝛿𝛿𝑖𝑖→𝑘𝑘 ∝
1
𝐾𝐾

; stepping stone, 𝛿𝛿𝑖𝑖→𝑖𝑖+1 ≠ 0,∀𝛿𝛿𝑖𝑖→𝑘𝑘 = 0. 

Therefore by varying the dispersal parameters, different population structure due to larval 

dispersal may be modeled (Figure 2-1 lower panel). Note for random dispersal, for each 

generation, the dispersal parameters (𝛿𝛿𝑖𝑖→𝑘𝑘) were selected at random from a uniform 

distribution (0, 1), which resulted in the overall average  𝛿𝛿𝑖𝑖→𝑘𝑘 ∝
1
𝐾𝐾

 . Because the dispersal 

into a given population may be greater than dispersal out of a population, the total proportion 

of larvae entering a population may exceed 1.0, and the combined contribution of larvae into 

a given population includes donors from multiple populations which are then rescaled by the 

population size to calculate the allele frequencies in the new cohort as described above.  

The simplest and probably the most well studied migration model is the isolation by 

distance, or IBD first proposed by Sewall Wright (1946, 1943). Here, I employ a 

symmetrical IBD, where the larvae disperse amongst populations with the dispersal being 

proportional to distance between them, in all directions.  

The stepping stone migration model is another well studied variation on the IBD 

model where migrants only move between adjacent populations (Kimura & Weiss, 1964). 

The gene flow may be linear or two dimensional as well as unidirectional or bidirectional 

with the rate of migration being equal between the adjacent populations. Here, I use the 
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unidirectional case of dispersal between source population and the adjacent “downstream” 

population, i.e. 𝛿𝛿𝑖𝑖→𝑖𝑖+1 > 0, 𝛿𝛿𝑖𝑖→𝑘𝑘 ≅ 0,  ∀(𝑘𝑘 ≫ 𝑖𝑖). 

The circular stepping stone model is a variation on the stepping stone gene flow in 

that the dispersal from the last population enter the first population. In nature, we may 

encounter this type of dispersal in shoreline habitat organisms residing around a lake or an 

island. 

In the isolation barrier dispersal model, there exists a gene flow barrier with two 

independently evolving groups of populations with no interaction between the two sets. 

However, the populations in each group also undergo an isolation by distance dispersal as 

described above. 

Source island refugia is a case where a single population is isolated from inflow of 

migrants, but is able to contribute migrants to other populations. This may occur in riverine 

systems where a single population is isolated by a barrier (i.e. waterfalls, or fast moving 

water sections) and once swept are unable to return. In contrast, sink island refugia may be 

thought of as the opposite in that a single population receives dispersed larvae into, but no 

larvae leave (aka the hotel California effect). Additionally, in both models, the non-refugia 

populations are totally isolated among themselves with no gene flow except into the refugia 

population (sink island refugia) or out of from a single source island refugia population.  

Lastly, random dispersal and total isolation may be considered as the null models to be 

tested against. In random dispersal the probability of dispersal among populations is chosen 

at random during each time step, including remaining in the source population. In contrast, 

total isolation is characterized by no dispersal, where all progeny remains at the source 

population.  

Parameter Input Values for Larval Dispersal Models 

The choice of population size (N) is of particular importance since both affect the 

scale of differentiation and eventual decay under different dispersal scenarios. In order to 

create a candidate dispersal model generating 𝐺𝐺"𝑆𝑆𝑆𝑆 values on the same scale as observed, the 

choice of population size (N) and migration rate (m) is of particular importance. Slatkin, 

(1993) describes the relationship of gene flow (m) and population size (N) as a function of 

differentiation between two island model populations at equilibrium 𝑁𝑁𝑒𝑒𝐵𝐵 ≈ 1
4

( 1
𝐺𝐺𝑆𝑆𝑆𝑆

− 1), 

where Nm is the number of migrants at each generation step. Here I used this relationship to 
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describe the expected 𝐺𝐺"𝑆𝑆𝑆𝑆 distributions for populations under various two dimensional 

dispersal models. Rearranging the above equation, 𝐺𝐺"𝑆𝑆𝑆𝑆 ≈
1

1+4𝑁𝑁𝑒𝑒𝑚𝑚
, which is then used to 

inform the choice of the number of migrants per generation (𝑁𝑁𝑒𝑒𝐵𝐵) given a desired mean 𝐺𝐺"𝑆𝑆𝑆𝑆 

which is based on the observed population pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 to be tested. Waples  (Waples & 

Gaggiotti, 2006) in their simulation shown that migration rate of 5 migrants per generation 

(Nm=5) resulted in consistent population assignment inference when using STRUCTURE 

(Pritchard et al., 2000) to test for population differentiation. In this simulation therefore the 

migration rate per generation entering any population (𝐵𝐵) was set at 0.005 and an effective 

population size (Ne) of 1,000 individuals each.  

The other critical parameter is the number of time steps required for the simulation. 

Depending on the dispersal model, the transitions among all populations require different 

number of generations until mean pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 and variance become stable. This weak 

stationarity of the dispersal model assures that a dispersal equilibrium among all pairwise 

populations has been sufficiently reached. I use the one sample slope test (Warton et al., 

2012) of the mean and variance of pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 over the previous 100 generations, and once 

the slope is no longer significantly different from 0, I determine that asymptotic behavior has 

been achieved. This ensured that no further simulations would result in change in parameter 

estimates. 

All other parameters (i.e. spawning age, number of cohorts, number of populations) 

can be set to match the life history of the species. Here I initially test the dispersal models 

with no age structuring, where all parents are removed after spawning resulting in discrete, 

non-overlapping generations. I then introduce age structuring, with each population 

composed of 10 cohorts aged 1:10 which randomly contribute to the spawning aggregate and 

next generation of offspring. The number of time steps and generations under these models 

are exchangeable and equal to 1 since the offspring at each time step enter the breeding 

cohort at the next time step. Note that time to stationarity is recalculated for each change in 

age structuring. See algorithm 1 for model implementation. 

All coding, simulation and analysis was carried out in R (R Core Team, 2021). 

STRUCTURE analysis was done using an improved and faster algorithm in LEA (Frichot & 

Francois, 2015), and graph aesthetics employed the packages ggplot2 (Wickham, 2016), 

gridExtra (Auguie, 2017), lemon (Edwards, 2020), RColorBrewer (Neuwirth, 2014), qgraph 
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(Epskamp et al., 2012), scales (Wickham & Seidel, 2020), ggplotify (Yu, 2021), and cowplot 

(Wilke, 2020). 

Observed 𝑮𝑮"𝑺𝑺𝑺𝑺 and Null Dispersal Models 

Given a vector of observed pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 values between populations, each of the 

candidate dispersal models with their corresponding 𝛼𝛼 and 𝛽𝛽 parameters of the Beta 

distribution may be evaluated how well each explains the observed data. Here, I use log 

likelihood approach as the basis of model fit which is proportional to the probability that the 

observed data was generated by the candidate model (i.e.  𝑝𝑝(𝐷𝐷|𝑑𝑑𝑖𝑖𝑠𝑠𝑝𝑝𝑑𝑑𝑟𝑟𝑠𝑠𝑎𝑎𝑚𝑚 𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝑚𝑚 = 𝑘𝑘) ).  

Consider a vector 𝑋𝑋 of observed pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 values for n populations,  𝑋𝑋 =

{𝐺𝐺𝑆𝑆𝑆𝑆1,2 ,𝐺𝐺𝑆𝑆𝑆𝑆1,3 ,⋯𝐺𝐺𝑆𝑆𝑆𝑆𝑛𝑛−1,𝑛𝑛} and K candidate dispersal models: 𝑀𝑀𝑘𝑘~𝐵𝐵𝑑𝑑𝑚𝑚𝑎𝑎(𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘). The 

likelihood is: 

ℒk = �
𝑥𝑥𝛼𝛼𝑘𝑘−1(1 − 𝑥𝑥)𝛽𝛽𝑘𝑘−1

𝐵𝐵(𝛼𝛼𝑘𝑘,𝛽𝛽𝑘𝑘)
𝑋𝑋

 
 

(8) 

log (ℒk) = −nlog (𝐵𝐵(𝛼𝛼𝑘𝑘,𝛽𝛽𝑘𝑘)) + ��(𝛼𝛼𝑘𝑘 − 1)𝑚𝑚𝐵𝐵𝑙𝑙𝑥𝑥𝑖𝑖 + (𝛽𝛽𝑘𝑘 − 1)log (1 − 𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� 
 

(9) 

Because the 𝛼𝛼,𝛽𝛽 parameters may take on very large values due to small 𝐺𝐺"𝑆𝑆𝑆𝑆, and 

necessitates the use of Stirling’s formula, the asymptotic approximation of the beta function 

for large 𝛼𝛼 and 𝛽𝛽 parameters: 

B(α, β) =
Γ(𝛼𝛼)Γ(𝛽𝛽)
Γ(𝛼𝛼 + 𝛽𝛽) =

(𝛼𝛼 − 1)! (𝛽𝛽 − 1)!
(𝛼𝛼 + 𝛽𝛽 − 1)! ≈ √2𝜋𝜋

𝛼𝛼𝛼𝛼−
1
2𝛽𝛽𝛽𝛽−

1
2

(𝛼𝛼 + 𝛽𝛽)𝛼𝛼+𝛽𝛽−
1
2
 

 

(10) 

log�B(α,β)� ≈ 𝑚𝑚𝐵𝐵𝑙𝑙√2𝜋𝜋 + �𝛼𝛼 −
1
2
� 𝑚𝑚𝐵𝐵𝑙𝑙𝛼𝛼 + �𝛽𝛽 −

1
2
� 𝑚𝑚𝐵𝐵𝑙𝑙𝛽𝛽

− �𝛼𝛼 + 𝛽𝛽 −
1
2
� 𝑚𝑚𝐵𝐵𝑙𝑙(𝛼𝛼 + 𝛽𝛽) 

 

(11) 

Dispersal Model Validation 

Candidate larval dispersal models were generated for various dispersal scenarios 

(Figures 2-1, 2-2). The Beta distribution parameters (𝛼𝛼𝑘𝑘,𝛽𝛽𝑘𝑘) were estimated (Appendix 1) 

from the mean and variance of the pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 values for each dispersal model once the 

simulation reached stationarity. The Beta distribution parameters were then estimated for 

each of the stationary dispersal models. Subsequently, an independent set of pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 
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values was calculated for dispersal model. These were then treated as “observed” pairwise 

𝐺𝐺"𝑆𝑆𝑆𝑆 values to test the model fit using the log likelihood approach described above. 

Results 

Time to Stationarity 

The allele frequencies were initially generated at random for each population from 

Beta (0.5,0.5), with all age cohorts within a population having equal frequencies. The number 

of generations until stationarity was highly variable depending on the demographic model as 

well as population age structure and ranged from 100 to 1,900 for single cohort age structure, 

and 200 to 10,500 for 10 cohort age structured populations (Figure 2-2, Table 2-1). Total 

isolation required the fewest generations to reach stationarity with 100 and 200 for one and 

10 cohort models respectively. This is expected, since only drift would result in a change in 

allele frequencies from the initial conditions. Similarly, random dispersal took 100 and 200 

generations respectively to reach stationarity indicating speed with which populations mixed 

under this model with both age structures. Stepping stone model took the longest to reach 

stationarity with 1,900 and 10,500 generations for single and ten cohorts respectively. This 

indicated that the propagation of alleles via larval dispersal took the most generations to 

asymptote as the two farthest populations required the most steps between them. This is 

evident when examining the connectivity of each of the models displayed in figure 2-1.   

Notable is the non-monotonic behavior of the average variance of pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 for 

both stepping stone and circular stepping stone models, which is unlike that of the other 

tested dispersal models. The behavior is characterized by initially rapid increase in the 

variance followed by a long decay as the variance reaches stationarity. These two dispersal 

models also are characterized by the longest number of generations until stationarity.  

Population Structure Through Regression 

The IBD regression plots (Figure 2-3) show how the population dispersal models as 

described by the relationship of the pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆
1−𝐺𝐺"𝑆𝑆𝑆𝑆

 and the distance among the populations.  

I used unit distance, where the adjacent populations are one unit apart, and the first and 10th 

population are 10 units apart. Random, total isolation, island refugia sink, island refugia 

source, are indistinguishable from each other with an insignificant slope relationship. 

Symmetrical IBD, stepping stone, circular stepping stone, and isolation barrier models show 
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a positive relationship of genetic differentiation with distance. The circular stepping stone 

was the most distinct, with a semi-circular plot pattern which may possibly be used as a 

diagnostic for these type of dispersals. However, the isolation barrier model although 

statistically significant (p<0.05), is not indicative of a genetic differentiation with distance 

since it only captures the pairwise differentiation within each of the two population groups 

which are under IBD, and the differentiation between the two groups.  

This demonstrates that the IBD regression plots may adequately discriminate 

population structure models with a distinct linear increase in genetic differentiation with 

distance. However, other population structure models are poorly differentiated, and may even 

result in false positive assertion of isolation by distance. 

Population Structure Through PCA 

PCA plots of 100 sampled individuals from each populations showed distinct 

population clustering for each of the dispersal models, except for random dispersal, as 

expected (Figure 2-4). However, without a priori population color coding, some of the 

groupings are less evident. For example, under symmetrical IBD and stepping stone models, 

the two farthest apart populations would be unidentifiable through PCA plots alone. As well, 

the population groupings in the isolation barrier model, with the left population aggregate 

undifferentiated, while the right side is composed of three populations. There is no difference 

in the model between the populations in the left and right group of the isolation barrier 

model.  Likewise, two populations appear to overlap in the total isolation model, but this 

overlap is wholly arbitrary and not indicative of the model specification.  

Age structure increased dispersion pattern in the PCA plots (Figure 2-4b), further 

increasing the inability to differentiate among distinct populations. However, except for the 

random dispersal model where the proportion of variance explained by each of the PCA axis 

is unchanged, all other models show a decrease. The isolation barrier model is now only 

composed of two identifiable population groups, as compared to four under a single cohort 

model, while the circular stepping stone model is sufficiently dispersed to misidentify any 

distinct groups. Stepping stone and symmetrical IBD are now also more diffused, leading to 

an apparent gradient in differentiation, with no distinct population groupings. 
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In contrast, total isolation and island refugia sink dispersal result in a more distinct 

population groupings with all ten populations readily identifiable under the 10 cohort model. 

However, only 8 population groups are identifiable in the no age structured models.  

Population Structure Through STRUCTURE Analysis 

STRUCTURE analysis for single cohort age structure shows good agreement 

between the modeled populations and the putative populations (Figure 2-5). Color 

designation of the STRUCTURE derived putative populations on PCA ordination plots 

(Figure 2-5a) shows the corresponding distinct groups or ambiguity in differentiating the 

populations based on PCA and STRUCTURE admixture (Figure 2-5b). As expected, random 

dispersal model results in a single putative population, while total isolation is correctly 

specifying all ten populations.  Island refugia source and island refugia sink dispersal models 

also were correctly specified using STRUCTURE, but with greater levels of admixture with 

the Island refuge sink model indicating greatest admixture in the sink population (Figure 2-

5b). The symmetrical IBD and circular stepping stone models show large admixture in each 

of the putative populations, but still correctly identify the original modeled populations. 

However both stepping stone and isolation barrier models fail to discriminate among two 

adjacent populations, resulting in a misspecification of the number of original populations.  

The addition of age structuring to the demographic process resulted in a greater 

dispersion in the PCA plots and poorer population discrimination of population admixture for 

some dispersal models when sampling all populations (Figure 2-6). The 10 cohort model 

inference of random dispersal, total isolation, island refugia sink, and island refugia source 

remained unchanged when compared to a single cohort models.  Circular steeping stone and 

symmetrical IBD associated with only three out of the original ten population groups. All of 

the sampled individuals in the circular stepping stone were identified as highly admixed with 

no clear separation among them. The symmetrical IBD model had clear separation of the first 

and last three populations and strong admixture in the middle four populations (Figures 2-5, 

2-6). Stepping stone model was identified as a single population, with some admixture in the 

individuals from the last modeled population. The samples from the isolation barrier were 

estimated as two separate populations with no admixture among them, but no population 

structure within each of the groups. There was no difference in the PCA patterns and 
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STRUCTURE based inference when sampling only a single cohort of out of the ten modeled 

(Figure 2-7). 

Cohort Specific Selection 

Cohort specific selection, mimicking the annual variability in selection experienced 

by numerous marine species during their pelagic larval stage resulted in PCA groupings by 

age under strong (s=0.5) selection (Figure 2-8), with the populations only identifiable for the 

total isolation model. Under total isolation, the first PCA axis, explaining 1.28% of variation 

separated the ten age cohorts, whereas the second axis, explaining 0.62% of variation 

separated the 10 populations. STRUCTURE analysis identified all ten populations correctly, 

but with an admixture of an 11th “population” due to the strong cohort specific selection 

effect. All other dispersal models resulted in two or three putative “populations”, but with the 

groups identified being admixtures of age cohorts. Sampling a single cohort from each 

population did not improve the population identification except for total isolation which 

resulted in correct identification of the ten populations without the admixture of 11th (Figure 

2-9). All other dispersal models resulted in a single cluster as identified by PCA and 

STRUCTURE. Decreasing selection strengths increased the resolution of differentiation 

among the populations and this was specific to the dispersal model, however, sampling a 

single cohort versus a mixture of all ten did not improve population separation.  

Beta Distribution Parameters Describe Population Structure 

The estimated parameters of the beta distribution for each of the dispersal models 

(Figure 2-1) were unique to each of the models (Figure 2-10, Tables 2-2, 2-3). For the 

models with no age structure, the mean 𝛼𝛼 ranged from 1.97 under the stepping stone model 

to 657 for total isolation, while mean 𝛽𝛽 ranged from 9.43 for the isolation barrier and 

235,636 for the random dispersal model. As expected, the mean genetic differentiation, 𝐺𝐺"𝑆𝑆𝑆𝑆 

was smallest for random dispersal (2.32e-5) and largest for total isolation (0.472). Random 

dispersal model also had the smallest variance (1.16e-10), while isolation barrier had the 

largest variance (0.0125).  

Similarly for the age structured models, the largest mean 𝛼𝛼 for total isolation (674), 

while smallest for stepping stone model (0.68), while mean 𝛽𝛽 ranged from 13.15 for the 

isolation barrier and 2.15e8 for the random dispersal model. Genetic differentiation, 𝐺𝐺"𝑆𝑆𝑆𝑆 

was smallest for random dispersal (2.23e-7) and largest for total isolation (0.444), while the 



52 
 

 
 

variance was again smallest for random dispersal (1.16e-15) and largest for symmetrical IBD 

(0.00145). 

The Beta distribution parameter space is non-overlapping for all the candidate 

models, while the mean 𝐺𝐺"𝑆𝑆𝑆𝑆 has considerable overlap (Figure 2-10) indicating that using the 

beta distribution maximum likelihood would differentiate among candidate dispersal models. 

Cross validation of log likelihood of candidate dispersal models verified this with 100% 

correct assignments. 

Discussion 

Population structure, or a difference in allele frequencies between subpopulations, is 

of paramount importance in conservation and management biology. If a population is 

deemed to be panmictic, having no apparent genetic subdivision or genetic structure, and 

large effective population size, Ne, then it is less susceptible to genetic drift and able to 

maintain a large number of potentially adaptive alleles and have greater genetic diversity. In 

contrast, a population of equal size, but divided into subpopulations with limited gene flow 

among them, will be more susceptible to genetic drift, and have a smaller genetic diversity 

and hence more susceptible to perturbations of their adapted niche. This leads to important 

implications in conservation and management biology. 

Conservation biologists will focus on the structured population because of their 

potential lack of resilience, whereas management biologists will be concerned with local 

extirpation due to overexploitation. However, determining what is a population and how to 

measure its structure is not yet completely resolved (Waples & Gaggiotti, 2006; Whitlock, 

1999). In this study as well, even when controlling population parameters, discerning specific 

dispersal system underlying the population structure is still elusive.  

The population structure under the various dispersal models is difficult to 

differentiate when displayed in the ubiquitously applied linearized 𝐺𝐺"𝑆𝑆𝑆𝑆 on distance 

regression (Figure 2-3) where a small change in dispersal model may be indistinguishable. 

This was especially apparent when comparing stepping stone vs. symmetrical IBD, or source 

island refugia vs. isolation barrier. The differences between the stepping stone vs. 

symmetrical IBD regression plots are subtle, yet the underlying dispersal mechanism is vastly 

different. The stepping stone model is simply a unidirectional dispersal to the adjacent 

population only, whereas the symmetrical IBD is bidirectional with dispersal strength 
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proportional to the distance from source population. The extirpation of a single population in 

the stepping stone model would eliminate gene flow between the two groups alienated 

population groups, whereas gene flow would only be marginally slowed under the 

symmetrical IBD model.  As well, the source island refugia is characterized by a single 

population dispersing to all other populations equally, but not receiving any gene flow unto 

itself. In the isolation barrier dispersal model, however, there exist two population groups 

each under IBD, but with no mixing between them. The IBD regression test for significance 

would lead to opposite conclusions, however, with isolation barrier having significant slope, 

but not island refugia source.  This demonstrates the limit of interpretability of the IBD 

regression framework as it has been recognized (Meirmans, 2012).  

Principal components analysis (PCA) is a part of most applied population genetics 

studies and readily applied to SNP data where thousands of biallelic loci are reduced to a two 

dimensional plane. The interpretation of the resulting patterns, however, has been 

controversial and the subject of numerous studies (Elhaik, 2021; Gauch et al., 2019; 

McVean, 2009; Novembre & Stephens, 2008; Reich et al., 2008). As well, in this study, the 

dispersal models are not readily distinguishable, and some of the inherent PCA biases readily 

observable. For example, in figure 2-4a, the PCA projection of the isolation barrier model 

where five populations are isolated from each, but with equal dispersal among them, would 

lead to an erroneous conclusion that the populations in the left most cluster are less 

differentiated than the more distinct groups in the right hand cluster, but correctly display the 

two separated population clusters. Likewise total isolation, island refugia sink and island 

refugia source are indistinguishable in the PCA ordination plot, and would most likely be 

classified as isolated populations. These results show that PCA plots do not adequately 

distinguish among various population structure models, while generating compelling plots. In 

practice, especially when sampling mixed population aggregates of age structured species, 

the representative sample size of individuals from each population is oftentimes unknown. 

This exacerbates population unidentifiability problem and may lead to erroneous conclusions 

of no population structure. 

STRUCTURE admixture analysis (Pritchard et al., 2000) is arguably the most applied 

tool to infer the number of populations represented in a mixture of individual genotypes and 

has been readily adapted since its introduction(Gilbert, 2016). Unlike PCA, STRUCTURE is 
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a model based approach that minimizes the Hardy-Weinberg and uses linkage equilibrium 

within arbitrary clusters thereby determining the number of clusters K, and assign samples to 

each cluster (Pearse & Crandall, 2004). PCA and STRUCTURE have become the most used 

unsupervised clustering methods to determine distinct population groups represented in a 

sample of unknown mixtures of genotypes (Gilbert, 2016; Lawson et al., 2018; Rosenberg et 

al., 2005). However, some researchers began to question how accurate are STRUCTURE 

based population structure inferences (Puechmaille, 2016).  

Here I find that STRUCTURE performed well in discriminating the number of 

modeled populations while also providing unique insight into the dispersal dynamics. For 

example island refugia sink models the dispersal from neighboring populations into a single 

population, with no dispersal out, and this can be seen in the STRUCTURE plot with the 

high admixture in that population only (Figure 2-5b). However STRUCTURE failed to 

identify gene flow out of a single population in the island refugia source model and 

consequently this dispersal model was undistinguishable from total isolation. High degree of 

admixture was correctly identified in the models with high dispersal among all the 

populations  

STRUCTURE had a tendency to underestimate the number of population clusters 

which was contrary to (Frantz et al., 2009) who found that it lead to overestimation of 

population structure with more putative populations than present in the sample. The only case 

where STRUCTURE identified these “phantom” populations was in the models with strong 

cohort specific selection (Figure 2-8d).  It was surprising, however, that although PCA plots 

showed distinct genetic cluster groups corresponding to groups of individual age classes, 

these clusters were not identified as distinct groups in STRUCTURE. As well, in the total 

isolation model, the groups of cohorts and populations are clearly visible in the PCA plot 

(Figure 2-8a, b), but STRUCTURE largely ignores the effect of cohort specific selection, and 

correctly identifies all population clusters, while indicating the presence of an additional 

admixture group. This shows that STRUCTURE is robust in identifying population structure 

when sampling isolated populations with strong cohort specific selection. 

Cohort specific selection may be common in r selected species with pre-adult stages 

experiencing highly variable environment leading to highly variable juvenile mortality, as is 

common in many marine fishes. I modeled this effect here, rather crudely, by applying a 



55 
 

 
 

randomly generated selection parameter (s), where 𝑠𝑠𝑖𝑖~𝑚𝑚𝐵𝐵𝑖𝑖𝑓𝑓𝐵𝐵𝑟𝑟𝐵𝐵(−𝑠𝑠, 𝑠𝑠) on all alleles in the 

ith generation. The resulting PCA and STRUCTURE patterns then represent the effects of 

analysis on selected loci only. When multiple cohorts are sampled, the selection effect 

overwhelms the dispersal effect with distinct PCA clusters, but no STRUCTURE clustering 

(Figure 2-8). When analyzing a single cohort, the cohort cluster effect disappears and single 

population is apparent (Figure 2-9).  As well, comparing results using neutral loci only 

(Figure 2-6) and selected loci (Figure 2-8) may yield different, but informative results. As 

well, when strong cohort selection is present, analyzing multiple cohorts jointly, and 

separately may elucidate complex population dynamics and demography. 

The distribution of pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 values was unique to each of the candidate models 

which motivates the idea of being able to test model fit of observed data and candidate 

dispersal models. The choice of a beta distribution seemed natural since like 𝐺𝐺"𝑆𝑆𝑆𝑆 shares the 

same support of values bounded by 0 and 1, but a normal distribution may be a suitable 

approximation as well. Here, cross validation results for the dispersal models resulted in 

100% accurate assignment for both beta and normal distributions likelihood testing. 

However, I noted considerable multi-modality in the distribution of the observed values, and 

mixture distributions may be more suitable when discerning among models with more subtle 

differences than I test here.   

The pattern in the beta distribution α, β parameter space (Figure 2-10) shows that the 

dispersal models may be an adequate statistic to summarize the dispersal models and testing 

framework for observed data. The shift in the distribution (Figure 2-10a, b) shows the effect 

of the age structure on the parameter estimates which shows how age structure affects 

population structure inference as assessed with PCA, STRUCTURE, and 𝐺𝐺"𝑆𝑆𝑆𝑆 statistics. The 

age structure must therefore be taken into account when designing a hypothesis testing 

framework or to infer the dispersal matrices that may have generated the observed data.  

Incorporating Approximate Bayesian Computation (ABC) approaches (Beaumont et 

al., 2002), may allow the estimation of the dispersal matrices that are likely to have generated 

the observed 𝐺𝐺"𝑆𝑆𝑆𝑆 dataset. The 𝛼𝛼�, and �̂�𝛽 parameters for the observed 𝐺𝐺"𝑆𝑆𝑆𝑆 dataset and 

simulated various population connectivity/dispersal matrices. The location of the 𝛼𝛼�, and �̂�𝛽 

parameters in the candidate models parameter space (i.e. Figure 2-10) may inform the initial 

candidate dispersal model for ABC simulation. The expected 𝐺𝐺"∗𝑆𝑆𝑆𝑆 dataset calculated from 
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the simulated dispersal matrices could then be generated with 𝛼𝛼∗, and 𝛽𝛽∗ test parameters. The 

Euclidean distance from the 𝛼𝛼�, and �̂�𝛽 parameters and the 𝛼𝛼∗, and 𝛽𝛽∗ test parameters would 

then be minimized by adjusting the dispersal matrix parameters. Alternatively, the log 

likelihood may then be used as the test statistic to assess model fit as described here and 

assess the best model fit from a suite of algorithm generated candidate models. 

In nature, species undergo much more complex demographic life histories than 

simulation possibilities and not all methods may be adequately informative.  Further 

complicating the issue of discerning population structure through dispersal is that populations 

may not be in dispersal drift equilibrium because any change in demographic history will 

take many generations before it can be measured through FST analogues (Varvio et al., 1986; 

Whitlock & McCauley, 1999). Additionally, populations likely start from a panmictic state 

and then undergo drift, mutation, migration, and selection which leads to the observed 

genetic population structuring. In this simulation, I start with wholly differentiated 

populations, then apply drift, mutation, and dispersal which allowed the simulation to reach 

an equilibria at a much faster rate than if the simulation started with equal allele frequencies. 

And yet, it still took thousands of generations to reach equilibria (Figure 2-2), especially in 

the age structured populations. This underscores that these simulations are an idealized, 

simplistic models, but useful nonetheless to test various methodologies that are commonly 

employed for population structure inference in natural populations. As well, in this study, I 

demonstrate the necessity of not relying on a single method when determining population 

structure.   
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Algorithm 1 

1: Initialize population size, N; number of populations K; number of simulated generations T; 
set spawning cohort ages: 𝑅𝑅 ∈ (𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛:𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚); set K*L allele frequencies matrices  X specific 
to each population and equal among cohorts,  𝑥𝑥𝑘𝑘𝑖𝑖~𝑏𝑏𝑑𝑑𝑚𝑚𝑎𝑎(0.5,0.5);set generation t=0; select 
dispersal matrix, D. 

2: for each year step t in 1 to T do 

3:    Create allele frequencies in the spawning aggregates 𝑥𝑥𝑘𝑘 ,𝜌𝜌 for each of the K populations: 

4:    If using selection, select 𝑠𝑠(𝑡𝑡)~𝑈𝑈𝐵𝐵𝑖𝑖𝑓𝑓𝐵𝐵𝑟𝑟𝐵𝐵[−𝑠𝑠, 𝑠𝑠] 

5:    for each population k in K do 

6:        for each spawning age group 𝑟𝑟 ∈ (𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛:𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚) do 

7: For each of L loci, draw number of alleles in the r spawning cohort group in population k: 
           𝑎𝑎𝑘𝑘,𝑟𝑟,𝑖𝑖~𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵(2𝑁𝑁, 𝑥𝑥𝑘𝑘,𝑟𝑟,𝑖𝑖) 

8:        end for 

9:            Calculate matrix K*L matrix Xl,  or the L allele frequencies of larvae released at each 
of the  

           K spawning locations:  

𝑥𝑥𝑘𝑘,𝑖𝑖 =
1

2𝑁𝑁𝑅𝑅
�𝑎𝑎𝑘𝑘,𝑟𝑟,𝑖𝑖

𝑅𝑅

𝑟𝑟=1

 

10:     If including mutation rate, μ: 

𝑥𝑥𝑘𝑘,𝑖𝑖 = 𝑥𝑥𝑘𝑘,𝑖𝑖(1 − 𝜇𝜇) + �1 − 𝑥𝑥𝑘𝑘,𝑖𝑖�𝜇𝜇 

11:     If including selection, s:  

𝑥𝑥𝑘𝑘
(𝑡𝑡)𝑠𝑠 =

�1 + 𝑠𝑠(𝑡𝑡)�𝑥𝑥𝑘𝑘
(𝑡𝑡)

(1 + 𝑠𝑠(𝑡𝑡))𝑥𝑥𝑘𝑘
(𝑡𝑡) + (1− 𝑠𝑠(𝑡𝑡)) �1− 𝑥𝑥𝑘𝑘

(𝑡𝑡)�
 

     end for     

12: Create 𝚻𝚻 K*K matrix by selecting the number of larvae (cohort 0) from each K source 
populations entering each of the K destination populations based on the row probabilities in 
matrix D, or Dk: 

𝛕𝛕𝐤𝐤~𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁, 𝛿𝛿𝑘𝑘) 

13:    Create allele frequencies in the age 0 cohort for each of the L loci and K populations, or 
K*L matrix Xc=0 by matrix multiplication of transposed K*K matrix of the fraction of the 
dispersing larvae, 𝚻𝚻𝒖𝒖 and the K*L larval allele frequency matrix 𝝌𝝌(𝒕𝒕) 

𝚾𝚾𝒄𝒄=𝟎𝟎
(𝒕𝒕+𝟏𝟏) = 𝚻𝚻𝒖𝒖

(𝒕𝒕+𝟏𝟏)𝑺𝑺𝝌𝝌(𝒕𝒕) 

14:    For all populations, drop oldest cohort age 𝑐𝑐 = 𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 and increment the ages of cohorts 𝑐𝑐 ∈
(0:𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚−1) by 1; reset 𝑥𝑥𝑘𝑘,𝜌𝜌 = 0. 

15: end for 
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Tables and Figures 

Table 2-1 Estimated time to stationarity under the various dispersal models. 

Dispersal model single cohort cohorts 1:10 

Random 200 200 

Island refugia sink 300 800 

Total Isolation 100 200 

Symmetrical IBD 900 4,900 

Circular Stepping stone 1,500 8,800 

Stepping stone 1,900 10,500 

Island refugia source 1,400 8,000 

Isolation Barrier 1,300 7,800 

 

Table 2-2 Estimated mean, variance and the calculated beta distribution parameters (𝛼𝛼,𝛽𝛽) of 
the pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 estimates under various simulated population structure models for the 
single age demographic. The values in parentheses contain the standard deviation of the 
simulated values. 

Population Structure μ (sd)  ν (sd)  α (sd)  β (sd) 

Circular Stepping stone 

0.0937 (0.0024) 

9.87e-04 

(6.97e-5) 8.17 (0.28) 79.14 (4.24) 

Island refugia sink 

0.4397 (0.0032) 

8.05e-03 

(9.35e-5) 13.33 (0.08) 16.98 (0.27) 

Island refugia source 

0.2801 (0.0054) 

4.45e-04 

(6.35e-5) 131.98 (18.2) 339.51 (48.23) 

Isolation Barrier 

0.1892 (0.0047) 

1.25e-02 

(8.74e-4) 2.2 (0.08) 9.43 (0.59) 

Random 

2.32e-05 (3.30e-06) 

1.16e-10 

(5.34e-1) 5.34 (1.54) 235,636.36 (82,692.4) 

Stepping stone 

0.0775 (0.0031) 

2.78e-03 

(2.82e-4) 1.97 (0.09) 23.48 (1.72) 

Symmetrical IBD 

0.1267 (0.0029) 

3.89e-03 

(3.05e-4) 3.58 (0.18) 24.69 (1.67) 

Total Isolation 

0.4723 (0.0034) 

1.94e-04 

(4.69e-5) 657.66 (159.23) 735.09 (179.8) 

 

  



59 
 
 

 
 

Table 2-3. Estimated mean, variance and the calculated beta distribution parameters (𝛼𝛼,𝛽𝛽) of 
the pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 estimates under various simulated population structure models for the age 
structure (1:10) demographic. The values in parentheses contain the standard deviation of the 
simulated values. 

Population 

Structure 

μ (sd)  ν (sd)  α (sd)  β (sd) 

Circular stepping 

stone 0.0087 (0.0003) 2.17e-5 (1.56e-6) 

3.54 (0.03) 

403.36 (16.18) 

Island refugia sink 0.4036 (0.0037) 7.25e-3 (1.01e-4) 13.31 (0.06) 19.67 (0.34) 

Island refugia 

source 0.1145 (0.0017) 2.53e-5 (5.83e-6) 

496.05 (121.2) 

3,834.22 (930.39) 

Isolation barrier 0.0837 (0.003) 5.12e-3 (3.97e-4) 1.2 (0.01) 13.15 (0.66) 

Random 2.23e-7 (1.14e-

8) 

1.16e-15 (3.68e-

16) 

47.79 (15.01) 

2.15e+08 (6.63e+8) 

Stepping stone 0.0152 (0.0005) 3.34e-4 (2.17e-5) 0.68 (0.01) 44.18 (1.66) 

Symmetrical IBD 0.0477 (0.0016) 1.45e-3 (1.21e-4) 1.49 (0.04) 29.74 (1.69) 

Total Isolation 0.444 (0.0037) 1.75e-4 (4.12e-5) 674.14 (151.67) 843.97 (189.56) 

  



60 
 
 

 
 

 

 
Figure 2-1 . Theoretical population dispersal models. The arrows indicate the direction of the 
dispersal. The top panel shows the theoretical specification of the dispersal models with the 
𝛿𝛿𝑖𝑖→𝑗𝑗  parameters indicating the magnitude of the pairwise dispersal between the ith and jth 
population. The bottom panels are the directed graph diagram of the dispersal connectivity 
matrices and the heat map showing the magnitude of dispersal connectivity between the 
source and sink populations.  
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Figure 2-2 Time to stationarity plots for the mean and variance of pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 of the 
dispersal models. Stationarity was determined by the outcome of a slope test with no 
significant slope detected. a) left panel are the results with no age structure; b) right panel are 
populations with 1 to 10 aged cohorts interbreeding. The results of the slope test are in table 
2-1. 

 

 

Figure 2-3 IBD regression plots of the linearized 𝐺𝐺𝑆𝑆𝑆𝑆" /(1 − 𝐺𝐺𝑆𝑆𝑆𝑆" ) on unit distance. The mean 
dispersal (m), R2 and the slope p-value for each model are displayed below each 
corresponding graph. In panel a) the models consist of a single cohort, while in panel b) the 
populations are age structured with cohorts 1:10 interbreeding. 
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Figure 2-4 PCA results sampling 100 individuals from each population with the discrete 
populations colored separately. Panel a) indicates the results of a single cohort age structure; 
b) indicates ages 1:10 with 10 individuals sampled from each cohort equating to 100 total per 
population. The model parameters were: Ne=1,000, loci=1,000, Nem=5, n=100. 
 

 
Figure 2-5 STRUCTURE results with best number of putative populations selected by 
STRUCTURE indicated by separate colors for each of the dispersal models with no age 
structure and 100 samples per population. a) The PCA plot with individual samples colored 
corresponding to the STRUCTURE population assignments; b) The STRUCTURE based 
admixture results. The model parameters were: Ne=1,000, loci=1,000, Ne m=5, ages=1:1, 
samples=100. 
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Figure 2-6 PCA and STRUCTURE results for dispersal models with age structures (cohorts 
1:10) with sampling all age classes (n=10) for 100 samples per populations. 
 

 

Figure 2-7 PCA and STRUCTURE results for dispersal models with age structure (cohorts 
1:10), but sampling a single age (1) with 100 samples per population. 
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Figure 2-8 The confounding effect of strong cohort specific selection (s=0.5), demonstrate 
the lack of population discrimination power. Panel a) shows the PCA plot with colors 
denoting the populations, panel b) shows the PCA plot with the colors denoting the ten 
cohorts. Panel c) indicates the PCA plots with STRUCTURE derived putative populations 
denoted in panel d.  
 

 
Figure 2-9 STRUCTURE admixture results under strong selection (s=0.5) and sampling a 
single cohort. Note that only total isolation dispersal model results in a differentiation of the 
10 populations, with all other models only identifying a single population. 
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Figure 2-10 The Beta distribution parameter space of the pairwise 𝐺𝐺"𝑆𝑆𝑆𝑆 under various 
dispersion models using 100 simulations and 1,000 loci. Panel a) is the parameter space of 
the non-age structured population, while panel b) is the parameter space for the age 
structured (1:10) populations. Insets show the mean 𝐺𝐺"𝑆𝑆𝑆𝑆 and standard deviation for each of 
the dispersal model and the respective age structure. Note that both x and y axis are on a log 
scale. 
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Chapter 3: Population Structure Through Biophysical Larval Dispersal 

Models 

Abstract 

Combining the biophysical dispersal models with a stochastic genetic population 

component allows for unique insights into the effect of larval dispersal on population 

structure.  Here I demonstrate the application of the spatio-temporal genetic model developed 

and validated in chapter 2, to calculate the expected population structure for three marine fish 

species, Pacific ocean perch (Sebastes alutus), arrowtooth flounder (Atheresthes stomias), 

and Pacific cod (Gadus macrocephalus) in the Gulf of Alaska. I then use the resulting genetic 

differentiation among the biophysical model zones to demonstrate the utility of this 

methodology by comparing inference on population structure as evident from PCA, 

STRUCTURE and linearized 𝐹𝐹𝑆𝑆𝑆𝑆 on geographic distance regression. This is followed by the 

comparison of Pacific ocean perch (Sebastes alutus) and Pacific cod (Gadus macrocephalus) 

expected population structure and compared to the observed datasets which reconciles 

previously contradictory studies. I also demonstrate the application of this model to 

determine optimal sampling strategy. The results presented here also suggest that the 

biophysical based dispersal may be the primary driver behind the observed population 

structure in the marine species with life history strategies characterized by pelagic larval 

dispersal. I find a surprising concordance between the observed and modeled population 

structure based solely on the Gulf of Alaska biophysical larval dispersal model.  

Introduction 

Understanding population structure in managed fish stocks is of paramount 

importance for sustainable management. Managing a panmictic population as multiple stocks 

is inefficient, while managing multiple stocks as a single stock may lead to overexploitation 

and even extirpation (Kenchington, 2003). However, accounting for stock structure when 

managing fisheries may allow for higher exploitation rates (Spies & Punt, 2015). 

Historically, the predominant approach has been to manage fisheries despite oftentimes 

inadequate knowledge of the target species complex population structure. This lead to calls 

by some researchers for integration of the stock structure into management in order to 



76 
 
 

 
 

maintain sustainable fisheries and biodiversity (Kenchington, 2003; Stephenson et al., 2000). 

Today, this is even more imperative during the recent accelerated environmental change in 

the ocean and need to understand species and population resilience (Sunday et al., 2014). 

Genetic approaches have been integral to elucidate stock structure since population 

structure was the subject of population genetic models since their inception (S. Wright, 1951; 

S. Wright, 1943). However, traditional approaches of using genetics to delineate stock 

structures may not adequately capture the species population structure characterized by 

complex gene flow such as pelagic stage dispersal in fish populations. The most often used 

method to examine whether an isolation by distance (IBD) population structure exists is 

through 𝐹𝐹𝑆𝑆𝑆𝑆/(1 − 𝐹𝐹𝑆𝑆𝑆𝑆) on distance regression (I. R. Bradbury & Bentzen, 2007; Rousset, 

1997). Bradbury & Bentzen (2007) through their simulations of one-dimensional stepping 

stone dispersal simulations and meta-analysis of eighteen anadromous species, found that in 

fact the IBD patterns are non-linear, with slope decreasing with increasing dispersal distance. 

The lack of robustness in 𝐹𝐹𝑆𝑆𝑆𝑆/(1 − 𝐹𝐹𝑆𝑆𝑆𝑆) regression to reliably estimate population 

differentiation with distance as well as advances in increased computational power has led to 

inference based on a landscape/seascape genetics approaches (Balkenhol et al., 2009; Jenkins 

et al., 2010). These approaches have since become the standard methods estimate the 

relationships of population genetic differentiation, dispersal, and environmental and physical 

effects (Stephanie Manel et al., 2005; Stéphanie Manel & Holderegger, 2013).  

Larval dispersal is difficult to study through traditional methods. Not only is larval 

dispersal most often found in r-selected species with a very small proportion of large brood 

surviving, but the dispersal may also involve multiple life stages such as eggs, larvae, and 

juveniles making any tagging attempts futile. This has resulted in an increasing integration of 

biophysical particle tracking models to estimate larval dispersal (Bradburd & Ralph, 2019; 

Levin, 2006). Werner et al. (1993) were one of the first to demonstrate the utility of 

biophysical larval dispersal models to explain larval densities for Cod and Haddock. Since 

then, there have been a number of successful follow up studies (Benestan et al., 2016; 

Diopere et al., 2018; Knutsen et al., 2022; Schiavina et al., 2014; Schunter et al., 2011), with 

the ultimate goal of integrating population genomics and biophysical models towards 

evolutionary-based fisheries management (Baltazar-Soares et al., 2018) 
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Here I present an application of combining biophysical larval dispersal model in a 

spatio-temporal genetic framework developed in chapter 2, to calculate the expected 

population genetic differentiation. The Dispersal Model for Early Life Stages (DisMELS) 

was developed at the Alaska Fisheries Science Center (NOAA/NMFS) 

(https://github.com/wStockhausen/DisMELS). It is an Individual Based Model (IBM) that 

simulates the pelagic dispersal life stage of marine fishes. It combines the Regional Ocean 

Modeling System (ROMS)(Schroeder et al., 2014) output of physical oceanographic 

processes that are time frame specific with species specific life history biological parameters 

to simulate the dispersal of eggs and/or larvae from spawning/parturition locations, through 

pelagic juvenile stages, and eventual settlement in nearshore nursery areas (W. T. 

Stockhausen, Coyle, Hermann, Blood, et al., 2019). I focus on three commercially exploited 

species in the Gulf of Alaska for which the DisMELS results are available, the Pacific ocean 

perch (POP)(W. T. Stockhausen, Coyle, Hermann, Doyle, et al., 2019), Pacific cod (Hinckley 

et al., 2019), and arrowtooth flounder (ATF)(W. T. Stockhausen, Coyle, Hermann, Blood, et 

al., 2019), each with very different early life histories, and calculate the expected population 

structure based on the estimated larval dispersal from DisMELS model results.  

Currently, these IBMs are limited by the absence of tools to empirically test their 

predictions (Hinrichsen et al., 2011; Coyle et al., 2013). In the case of DisMELS predictions, 

the larvae at a given location are aggregates of larval particles originating from various 

zones. The IBM (Stockhausen and Hermann, 2007; Stockhausen, 2009) describing dispersal 

of Pacific Ocean Perch (Sebastes alutus) larvae suggest a high degree of mixing among 

populations. The recent discovery of pelagic mixtures of multiple genotype clusters in POP 

in the eastern Gulf of Alaska (J. Maselko et al., 2020) supports these DisMELS model 

predictions. However, previous genetic studies reveal a strong pattern of isolation by distance 

(Kamin et al., 2014; Palof et al., 2011), which is thought to be inconsistent with the model 

results (W. T. Stockhausen, Coyle, Hermann, Blood, et al., 2019). Resolving this discrepancy 

is critical for understanding how juvenile fish recruit to adult populations. The primary goal 

of this study was therefore to determine whether DisMELS based dispersal can explain the 

observed population structure in the Gulf of Alaska for POP and Pacific cod, with the 



78 
 
 

 
 

secondary goal being to evaluate how the choice of sampling locations may influence 

population structure inference. 

The spatio-temporal genetic model employed here allows for a comparison of the 

results to the observed genetic differentiation as measured by pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 based on 

microsatellite data for POP (Palof et al., 2011), and RAD-seq SNP data for Pacific cod 

(Drinan et al., 2018). The model results are genetic differentiation between the simulated 

zones, and a number of simulated zones are concordant with the sampling locations used in 

the above studies for POP and Pacific cod which allows for direct comparison. I also show 

the effect of the choice of sampling locations on the population structure inference and 

propose a method to evaluate the optimal sampling strategy that reflects the overall 

population structure given a subsample of locations. Given that there is no available genetic 

data on arrowtooth flounder, the method proposed here, may well inform future sampling 

strategy in order to best elucidate their population structure.  

Methods 

Dispersal matrices were obtained from DisMELS model runs (W. Stockhausen, 

2007). DisMELS is an individual based model (IBM) that combines the regional oceanic 

modeling system (ROMS)(Shchepetkin & McWilliams, 2005) outputs which provide three-

dimensional model of oceanographic currents, temperature and salinity. The ROMS output is 

then overlaid with species specific early life stage biological processes that influence the 

larval survival and transport. These processes include water temperature, diel vertical 

migration and temperature-dependent survival. The results of the species specific DisMELS 

model runs are then trajectories of “individual” particles from spawning locations, pelagic 

duration, and settlement locations. Individuals that then successfully reach the settlement 

locations are based on the duration of larval particle at suitable settlement nursery habitats 

(W. Stockhausen, 2007). 

The Gulf of Alaska DisMELS comprised of thirteen, ~150km wide along shore zones 

including spawning and nursery areas. The locations within the zones were then modeled as 

suitable habitats of egg deposition (arrowtooth flounder and Pacific cod) or parturition 

(Pacific ocean perch) areas as well as species specific suitable settlement areas (Figure 3-1b). 

The DisMELS output (Figure 3-1c) was generated for a 16 year period (1996-2011) for 
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Pacific ocean perch and arrowtooth flounder (W. T. Stockhausen, Coyle, Hermann, Blood, et 

al., 2019; W. T. Stockhausen, Coyle, Hermann, Doyle, et al., 2019), and 19 year period 

(1995-2013) for Pacific cod (Hinckley et al., 2019). All the model runs for each species were 

then averaged to obtain the mean pairwise dispersal parameters δ𝑖𝑖→𝑘𝑘, between 𝑖𝑖𝑚𝑚ℎ spawning 

and 𝑘𝑘𝑚𝑚ℎ settlement location (Figure 3-1a). The resulting graphical representation of the 

strength of the connectivity among the zones for each of the species is depicted in Figure 3-2 

with the top row heatmaps showing relative strength of connectivity and a directed graph 

diagram on the bottom row indicating direction of the connectivity only. 

The three species (POP, ATF, and Pacific cod) all share early life history 

characterized by pelagic stage dispersal, but having very different ontogeny. Pacific ocean 

perch females are internally fertilized in the winter and then give live birth to anywhere from 

10,000 to 300,000 larvae per female in the spring (Conrath & Knoth, 2013). The POP IBM 

then simulates the life history from this parturition stage where the particles are released from 

300-600m isobaths and their pathways to nearshore settlement stage juveniles. Successful 

“particles” were those that as settlement stage juveniles, were entrapped for a minimum of 30 

days near suitable nursery areas between September and November (Figure 3-2; W. T. 

Stockhausen, Coyle, Hermann, Blood, et al., 2019).  

In contrast, arrowtooth flounder spawn in the water column between December and 

February at depths >400m (Blood et al., 2007). Each female releases 250,000-2,400,000 eggs 

in prolonged spawning events (Bouwens et al., 1999; Debenham et al., 2019). The 

arrowtooth flounder DisMELS IBM then simulated the episodic egg deposition from 

December to April at depths of 300 to 700m to nearshore juvenile settlement from August to 

October (Figure 1; W. T. Stockhausen, Coyle, Hermann, Blood, et al., 2019). 

Pacific cod spawn from April to May on the sea bottom at around 200m depth, where the 

eggs are then attached to the substrate (Dunn & Matarese, 1987; Hinckley et al., 2019). Each 

female lays approximately 1-3 million eggs (Thomson, 1962). They hatch approximately 2 

weeks later and move up in the water column (Laurel et al., 2008). They reach inshore 

nursery areas by July (Figure 4; Hinckley et al., 2019). 

The mean DisMELS generated dispersal matrix 𝐷𝐷𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠 reflected a very high 

dispersal rate (>0.65) (Table 3-1) which would result in a panmictic population and therefore 
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the off diagonal elements needed to be rescaled by a factor 𝜌𝜌𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠.  In order to maximize the 

signal of the dispersal matrix, the expected migration rate of 0.005 was chosen based on the 

results of the spatio-temporal genetic model verification conducted in chapter 2. The 

retention factor was calculated as the ratio of the DisMELS dispersal based on the average 

column mean less diagonal elements to expected migration rate of 0.005. The off diagonal 

elements were then divided by 𝜌𝜌𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠  (Table 3-1). The adjusted 𝐷𝐷𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠 were then row 

normalized in order to reflect the probabilities of dispersal from 𝑖𝑖𝑚𝑚ℎ to 𝑘𝑘𝑚𝑚ℎ zone.  

The specific model parameters used were based on the verified model behavior (see 

chapter 2), with 1,000 loci, mutation rate of 1e-6, population size of 1,000, and migration as 

described above of Nm=5, and stochasticity=TRUE. The age structure was chosen to reflect 

the life history of each species:, Pacific ocean perch spawning ages of 10-98 years (Pacific 

Ocean Perch | NOAA Fisheries), arrowtooth flounder, 7-27 years (Arrowtooth Flounder | 

NOAA Fisheries, n.d.), and Pacific cod, 5-20 years (Pacific Cod | NOAA Fisheries). 

The spatio-temporal model was then ran for each species for a maximum of 30,000 

year steps and stationarity, calculated as no change in the mean 𝐺𝐺𝑆𝑆𝑆𝑆"  and variance 𝐺𝐺𝑆𝑆𝑆𝑆"  for the 

previous 100 year steps. The linearized 𝐺𝐺𝑆𝑆𝑆𝑆
"

1−𝐺𝐺𝑆𝑆𝑆𝑆
"  was then plotted against distance (km) between 

the zones, where distance was calculated as the midpoint distance between adjacent zones, 

and the distance between non-adjacent zones as the sum of the distances between the 

intermediate zones. Subsequent analysis was based on sampling 100 genotypes from each 

zone where the number of alleles per locus (0=aa, 1=Aa, 2=AA) were drawn from a binomial 

distribution with probability equal to the allele frequency.  

PCA analysis was conducted using the R (R Core Team, 2021) pcomp() function and 

plotted using ggplot2() (Wickham, 2016). I used LEA (Frichot & Francois, 2015) snmf() 

function to calculate the STRUCTURE like admixture coefficients. Mapping of putative 

populations in the DisMELS designated zones throughout the Gulf of Alaska was done using 

the marmap (Pante & Simon-Bouhet, 2013) package.  

The Pacific ocean perch observed pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 data was based on microsatellite 

analysis from (Palof et al., 2011). The Pacific cod observed pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 data was based on 

RAD-seq analysis (Drinan et al., 2018). Both of the observed datasets were culled to retain 
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only the observations from locations corresponding to the DisMELS designated zones. 

Pacific ocean perch observed data corresponded to the DisMELS population zones (1, 2, 4, 6, 

9, 10, 12), and the Pacific cod data corresponded to zones 1, 6, 8, 11, and 12. This allowed 

for a direct comparison of the observed and model predicted population structure inference 

using PCA, STRUCTURE, and regression analysis. STRUCTURE analysis was performed 

separately on the subset of the zones corresponding to the observed datasets. 

Sampling strategy evaluation was done by selecting the subset of five zones that 

when sampled would result in the population structure inference that was the best and worst 

model fit as compared to sampling all zones. The model fit was calculated using the log 

likelihood framework. First I calculated the parameters of the beta distribution from the 

pairwise 𝐺𝐺𝑆𝑆𝑆𝑆"  based on sampling all zones. I then calculated the log likelihood for all the 

combinations of sampling of five zones only. The best and worst fit models were determined 

by the subset resulting in the highest and lowest log likelihoods respectively. STRUCTURE 

analysis was performed on the subsets identified as the best and worst model fit. 

Results 

The number of year steps required to achieve weak stationarity determined as the 

point when the mean 𝐺𝐺"𝑆𝑆𝑆𝑆 for the previous 100 year steps has not changed, was the 

maximum simulation runs of 67,300 for POP, 9,500 for ATF, and 19,500 for Pacific cod 

(Table 3-1). This corresponds to approximately 4,500 generation for POP, assuming a 

generation time of 15 years, 1,000 generations for ATF and 2,000 for Pacific cod assuming 

generation time of 10 years for both species.  

Expected Population Structure 

The results of the spatio-temporal genetic model show a significant IBD relationship 

of genetic differentiation with distance between zones for POP (𝑅𝑅2 = 0.092,𝑝𝑝 = 0.024), and 

Pacific cod (𝑅𝑅2 = 0.787,𝑝𝑝 < 0.001), but not ATF (𝑅𝑅2 = 0.002,𝑝𝑝 = 0.776) (Figure 3-3). 

However, principal component plots show the presence of distinct clusters for the three 

species (Figure 3-4). Pacific ocean perch model appears to show four groups with zones 1, 2, 

and 3 being separate, distinct groups and a single group in the zones 4-12. Likewise, 

arrowtooth flounder model shows distinct groups for zones 1, 2, 3, and single group of zones 

4-12. In contrast, the Pacific cod model, shows a more of an isolation by distance pattern (see 
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chapter 2), with gradual transition of genetic differentiation from zones 1 to 12, with zone 13 

being more distinct. 

STRUCTURE analysis based on 100 genotypes sampled from each zone showed very 

different admixture patterns among the three species modeled. For Pacific ocean perch, 

STRUCTURE analysis identified 3 putative population groups (Figure 3-5). There were three 

distinct groups associated with zones 1-3 that then persisted throughout the Gulf of Alaska. 

Zone 1 had little admixture, with zone 2 admixture of a second genetic group followed the 

third population group (blue) off of cross sound. All three putative groups are then admixed 

in relatively equal proportions resulting in a concurrent detection of distinct groups from 

Yakutat and further west. The model also predicted that most of the zones consisted of the 

three sympatric genotypes (zone 4, 5, 6, 7, 8, 10, 12) originating from zone 1, 2, and 3. 

Likewise two distinct genotypes present at zones 9, and 11 consisting of genotypes found in 

zone 2 and 3. 

Arrowtooth flounder resulted in 6 putative populations with five unique with little 

admixtures in zones 1-5, and sixth admixed population spread out over western Gulf of 

Alaska zones 6-12 (Figure 3-6). Unlike Pacific ocean perch, there were no zones where 

apparent sympatry of genotypes was present. In contrast to STRUCTURE which identified 6 

population groups, PCA distinguished only 4 clusters, with zones 1-3 being most distinct and 

zones 4-12 grouped in a single cluster.  

STRUCTURE analysis of Pacific cod model showed a much greater admixture in the 

majority of the zones, except zone 1-3 being the only zones with little admixture (Figure 3-

7). These genotypes were then propagated throughout the Gulf of Alaska and are found in all 

the zones, except zone 13 in Cook Inlet. Two additional genotypes are identified in zone 11, 

12, and 13 with zones 11, and 12 containing all 3 genotypes, while zone 13, the only zone 

that did not contain the prevalent genotype from eastern Gulf of Alaska. PCA also indicated 

the presence of three clusters, but they were not concordant with the STRUCTURE derived 

population groups.  

Model Validation 

There were eight sample locations from (Palof et al., 2011) Pacific ocean perch 

microsatellite data set that corresponded to the DisMELS zones, namely zones 1, 2, 4, 6, 9, 
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10, 11, and 12 (Figure 3-8). The linearized 𝐹𝐹𝑆𝑆𝑆𝑆 regression on zone distance, showed a 

significant positive slope for the Palof (𝑅𝑅2 = 0.332, p = 0.001) and DisMELS simulated 

(𝑅𝑅2 = 0.157, p = 0.037) dataset. The observed and simulated pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 values had a 

correlation of 0.184 (Mantel test 𝑝𝑝 = 0.129). The PCA plot indicates the presence of three 

population clusters, while the STRUCTURE analysis indicates the presence of all three 

groups corresponding to the genotypes in the full dataset. These genotypes are also predicted 

to be found throughout the sampling area with zone 1 containing only two, while the rest of 

the zones containing all three sympatric genotypes.  

There were five sites for the observed Pacific cod RAD seq data from (Drinan et al., 

2018) study that corresponded to the DisMELS zones 1, 6, 8, 11, and 12 (Figure 3-9). Both 

observed and DisMELS derived genotypes showed a significant positive slope when 

regressing the linearized 𝐹𝐹𝑆𝑆𝑆𝑆 on zone distance, indicative of isolation by distance with 𝑅𝑅2 =

0.713 (𝑝𝑝 = 0.002), and  𝑅𝑅2 = 0.646 (𝑝𝑝 = 0.005) for the observed and modeled data 

respectively. Unlike the full DisMELS simulated data which represented three putative 

genotypes, the subset only contained two with sympatry in zones 11 and 12 in the Aleutian 

chain. The observed (Drinan et al., 2018) and DisMELS derived pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 matrices were 

significantly correlated with 𝑟𝑟 = 0.72 (Mantel test 𝑝𝑝 = 0.03). 

Effect of Sampling Design 

The effect of the choice of the subset of five zones to sample from all thirteen was 

dependent on which species model was used (Table 3-2). For Pacific ocean perch, the five 

zones which best (log(ℒ) = 228.9) described the full dataset were 1, 4, 5, 6, and 7 (Figure 

3-10, top) with a log likelihood of 228.9. This resulted in a significant linear IBD relationship 

of genetic differentiation with distance (𝑅𝑅2 = 0.482; 𝑝𝑝 = 0.031), and two distinct 

STRUCTURE derived populations. The sampled zones are also predicted to contain the two 

genotypes in equal proportions in zones 4, 5, 6, 7, and a single genotype in zone 1. In 

contrast, the worst model fit (log(ℒ) = −2,921.5) was when sampling zones 4, 8, 9, 10, and 

12 (Figure 3-10, bottom). This resulted in an apparent panmictic population inference when 

examining PCA and STRUCTURE plots, with the single genotype distributed throughout the 

sampling area. However, the resulting regression plot showed a significant slope with (𝑅𝑅2 =

0.962; 𝑝𝑝 < 0.001) but with pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 values two orders of magnitude smaller than in the 
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best model. Note that zone 4 is included in both the best and worst fit models. In the presence 

of the zones in the best model fit, both PCA and STRUCTURE identifies two sympatric 

population clusters, while in the worst model fit, only a single cluster is identified.  

The five zones that were most representative (log(ℒ) = 104.75) of the overall 

population structure of arrowtooth flounder were 1, 9, 10, 11, and 12 (Figure 3-11, top). 

These five zones represented only two putative populations out of total of 6 identified with 

the full model as indicated by the STRUCTURE and PCA plots. However, unlike when 

sampling all zones, the best model subset displayed a significant genetic differentiation with 

distance (𝑅𝑅2 = 0.95; 𝑝𝑝 < 0.001). In contrast, the worst model fit (log(ℒ) = −27,796.6) was 

when sampling zones 8, 9, 10, 11, and 12 (Figure 3-11, bottom). This resulted in no apparent 

genetic differentiation with zone distance (𝑅𝑅2 = 0.044; 𝑝𝑝 = 0.562), and an apparent 

panmictic population as indicated by both PCA and STRUCTURE analysis.  

For Pacific cod, sampling zones 7, 8, 9, 10, and 13 would result in inference most like 

(log(ℒ) = 223.4) the full data set (Figure 3-12, top). They showed significant differentiation 

with distance (𝑅𝑅2 = 0.048;𝑝𝑝 = 0.544), and two distinct STRUCTURE derived populations 

in zones 7 and 13, and admixture of the two in the other zones. PCA plot, however, indicated 

a possible presence of a third population cluster, which was not indicated in the 

STRUCTURE analysis. Sampling sites 1, 2, 3, 5, and 6 resulted in the worst model fit 

(log(ℒ) = −1,331.1), but with a significant association between genetic differentiation and 

zone distance(𝑅𝑅2 = 0.709; 𝑝𝑝 = 0.002) (Figure 3-11, bottom). However, STRUCTURE 

analysis indicated the presence of a single dominant population genotype in zones 1-3 with 

slight admixture of a second genotype in zones 5 and 6, but no presence of two genotypes in 

any of the zones. PCA plot as well, suggested a presence of a single putative population 

cluster. 

Discussion 

Combining the spatio-temporal genetic model with the IBM larval dispersal allowed 

for novel insights into the long term effects of dispersal on population structure. The results 

presented here demonstrate that the DisMELS based larval dispersal may accurately describe 

the observed linear isolation by distance pattern in the Gulf of Alaska Pacific cod and to a 

lesser degree Pacific ocean perch populations. Additionally, the seemingly inconsistent 
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findings of minimal dispersal leading to genetic population structure (Kamin et al., 2014; 

Palof et al., 2011) and DisMELS predicted long distance larval advection are in fact 

consistent, especially in light of some recent findings where sympatric populations were 

found in young of the year pelagic aggregates as well as adult populations using RAD-seq 

and WGS approaches respectively (Maselko et al., 2020; Timm, L in prep).  

The Pacific cod population structure in the Gulf of Alaska has been consistently 

described as having an isolation by distance genetic differentiation with limited gene flow 

among adjacent populations (Cunningham et al., 2009; Drinan et al., 2018). This is also 

supported by the simulation results presented here, with strong concordance between 

simulated and observed genetic differentiation patterns (Figure 3-9). In fact, when controlling 

for sampling location, both observed and modeled populations had positive and significant 

IBD genetic differentiation with distance (𝑅𝑅2 = 0.713, p = 0.002 and 𝑅𝑅2 = 0.646, p =

0.005 respectively). The two datasets were also positively and significantly correlated (𝑟𝑟 =

0.72, Mantel test 𝑝𝑝 = 0.03) suggesting that the model accurately captured the observed 

population structure when sampling corresponding sites. This is unsurprising since the 

DisMELS generated dispersal matrix (Figure 3-2) shows a decay in dispersal rates with 

increasing distance to nonadjacent zones. This is indicative of the classic isolation by 

distance model (Sewall Wright, 1943) that has been extensively applied ever since (Jenkins 

et al., 2010). Therefore it appears that the DisMELS model captured the Pacific cod larval 

dispersal accurately, suggesting that the majority of their dispersal may in fact occur during 

the pelagic larval and juvenile stage at relatively small distances. 

DisMELS predicted larval dispersal for Pacific ocean perch and arrowtooth flounder 

was considerably more complex (Figure 3-2), yielding little insight of the expected 

population structure or difference between the two species based solely on the dispersal 

matrices. However, once the spatio-temporal genetic model was applied, the differences in 

the expected population structures became apparent with arrowtooth flounder showing a 

strong pattern of distinct, isolated populations in the eastern Gulf of Alaska and a single 

putative population west of Kayak Island with some admixture from the eastern populations 

(Figure 3-6). This pattern was not evident when examining the IBD regression plots for ATF 

(Figure 3-3, middle), which showed no significant IBD relationship, demonstrating the 
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complex population structures resulting from larval dispersal. POP did have a significant 

IBD relationship (Figure 3-3, top), however, the expected population structure for POP is 

dominated by little admixture in the southeastern Gulf of Alaska, but high admixture in the 

western and the Aleutians (Figure 3-5). This suggests that both arrowtooth flounder and to a 

lesser degree, Pacific ocean perch, may be vulnerable to local extirpation in the eastern Gulf 

of Alaska, but less so in the western part. However, this pattern could be due to DisMELS 

model truncation, since no influx of larvae from south of Dixon entrance is modeled. 

Therefore the populations in zones 1-4 may have under estimated admixture from 

populations outside the area. 

Recent study by Timm, L (in prep) of whole genome sequencing data of Pacific 

ocean perch adult collections from 2017 and 2019 shows a distribution of five distinct 

genotype groups throughout the Gulf of Alaska (Figure 3-13).  Note that the genotype groups 

A, B, C, and D correspond to the POP larval aggregates (Jacek Maselko et al., 2020). It also 

shows that many of the genotype groups are co-occurring in close proximity, which is 

predicted by the modeled results here. This supports the conclusion presented here that the 

observed population structure are greatly influenced by the oceanographic currents during the 

pelagic larval dispersal and the IBM may explain most of the observed variation and 

distribution of the genotypes including sympatry. 

The model predicted high admixture in the Pacific ocean perch populations are 

indicated in the apparent sympatry of different population genotypes (Figure 3-5) with 

population B originating near Cross Sound being the dominant genotype in all populations to 

the west. As well, POP larval collections were composed of four distinct genetic groups 

(Maselko et al., 2020) indicating sympatry during both the pelagic larval and adult stages 

(Figure 3-13). However, this seemed inconsistent with the previous genetic studies (Kamin et 

al., 2014; Palof et al., 2011; Withler et al., 2001) which indicated an isolation by distance 

pattern. In the Palof et al. (2011) study, there were distinct adult populations with limited 

gene flow. Likewise, in the (Kamin et al., 2014), juvenile POP, were found to be in close 

geographic proximity to their genetically similar adult groups. As well, (Withler et al., 2001) 

described distinct adult POP populations at small spatial scales in British Columbia 

suggesting little dispersal among them. However, the genetic model results here, suggest 
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long distance dispersal of >1,000 km, yet the resulting genetic differentiation inference are 

similar to the observed patterns (Figure 3-8). 

Comparing the POP IBD regressions shows a similar pattern between the observed 

POP microsatellite data (Palof et al., 2011), and the modeled SNP data presented here when 

controlling for sampling locations (Figure 3-8). Both the observed and modeled data sets 

show significant positive slope (𝑅𝑅2 = 0.332, p = 0.001 and 𝑅𝑅2 = 0.157, p =

0.037 respectively), but they were not significantly correlated (𝑟𝑟 = 0.184, Mantel test 𝑝𝑝 =

0.129). Unlike, Pacific cod, where both data sets were based on SNPs, the lack of 

concordance may also be influenced by the difference in genetic markers used since Palof et 

al. (2011) used microsatellites, and the spatio-temporal genetic model used here simulates 

SNPs. Nonetheless, the surprising agreement between the modeled population structure and 

the predicted mixtures of genotypes in the observed larval aggregates (Maselko et al., 2020) 

and adult collections (Timm, L, in prep) (Figure 3-13) suggests that, similarly to the 

concordance found in Pacific cod, the utility of the DisMELS model results to predict 

expected population structure due to IBM derived dispersal. 

Some of the discrepancy for the Pacific ocean perch model is that the model results 

are of genetic differentiation when dispersal-drift-mutation equilibrium is reached. However, 

for POP, the weak stationarity was not achieved until 67,300 year steps which is possibly 

unrealistic considering the Bering land bridge, and ice age were influencing the Gulf of 

Alaska in the Pleistocene as recently as 10,000 years ago (Stewart & Lister, 2001). 

Therefore, the lack of dispersal-drift-mutation equilibrium could be a shortcoming of this 

model, since it is highly unlikely that these populations are in the drift-migration (dispersal) 

equilibrium (Whitlock & McCauley, 1999). However, it may be possible to determine the 

number of year steps parameter by comparing the resulting population structure at a given 

time to the observed population structure using the model selection criteria used here. This 

may elucidate additional insight into the species life history and population structure. 

The retention parameter, which is used to adjust the off-diagonal elements of the 

dispersal matrix so that the average total dispersal into each zone was 0.005, allowed for the 

maximum resolution of STRUCTURE and PCA results as showed in chapter 2 and (Waples 

& Gaggiotti, 2006). This shows that there may be considerable larval retention that is not 
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captured by the DisMELS model which in raw form predicts panmictic population due to the 

resulting magnitude of dispersal (>0.8). It could also mean that since the DisMELS does not 

take survival into account, that there is mortality proportional with distance from natal 

populations. Maselko et al. (2020) did find that there is a significant association of allele loss 

with collection date and latitude but not in the change in population group composition. This 

indicates that all populations were equally affected. Alternatively, and perhaps more 

contentiously, apparent retention could also be due to homing behavior after juvenile 

settlement in the nursery habitat, distant from their natal populations as they may be. The 

homing ability of marine fish is commonplace, although not fully understood especially 

when large portion of dispersal occurs during larval stages. Homing has been well 

documented in salmon, eel, and even recently Atlantic cod (Bonanomi et al., 2016; Svedäng 

et al., 2007). The natal homing ability of marine reef fish, where the larvae use soundscape, 

sun, magnetic field, and olphactory acuity to find settlement habitats has received the most 

attention (Leis et al., 2011). And although the barrier to imprinting due to metamorphosis 

from larvae to adults is still contentious in fish (I. Bradbury & Laurel, 2007), it has been well 

documented in arthropods (Blackiston et al., 2008). The presence of large larval aggregates 

composed of distinct population groups as observed by Maselko et al. (2020) with no 

discernable difference in the larval condition among the groups suggests that adult homing 

behavior in POP and not larval stage mortality is the most likely explanation. 

As expected, the choice of sampling locations has large effect on the population 

structure inference, and underscores the importance of sampling over a broad geographic 

scales. Note that both POP and ATF population structure is defined by a single outgroup in 

the southeastern Gulf of Alaska and the remaining genotypes from zones in the western Gulf 

of Alaska. The poorest fit for both ATF and POP was when sampling only the western Gulf 

of Alaska resulting in an apparent panmictic population inference. This underscores the 

importance of incorporating these types of dispersal models when designing a sampling 

strategy, especially when trying to designate management units for exploitation, where the 

incorrect population structure inference may lead to overexploitation or even extirpation. 

This model could also be used in a management strategy evaluation by identifying 

populations most at risk for loss of diversity due to overexploitation, and conversely the most 
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resilient ones. Whilst the DisMELS model results can be used to estimate the relative 

dispersal and immigration of larvae among the populations, combining the spatio-temporal 

genetic model may illuminate the long term loss of genetic diversity in the metapopulations 

due to local extirpation. For example, using the genetic population delineations (i.e. 

STRUCTURE, PCA) to describe management units may result in a preservation of genetic 

diversity, which may be especially important during accelerated environmental change 

(Sunday et al., 2014).  

Finally, the spatio-temporal genetic model employed here relies on the evolution of 

neutral markers as a function of dispersal, thereby ignoring any local adaptation (Selkoe et 

al., 2016). However, local adaptation may play a role in larval retention or homing (Funk et 

al., 2012), but is not accounted for here. Incorporating a spatially explicit selection 

parameters, simulating local adaptation may allow for a further refinement of the model, as 

well as inform zones of at risk populations. 
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Tables and Figures 

Table 3-1 Model parameters for the three species. Life history parameters were minimum and 
maximum spawning ages. The Years to Stationarity was calculated by running the simulation 
until the slope of the mean and variance of all pairwise population 𝐹𝐹𝑆𝑆𝑆𝑆 values did not change. 
For Pacific ocean perch simulation, the stationarity is not achieved even after 30,000 years, 
but I did not carry the simulation further. 

Larval Dispersal Model 
Minimum 
Age 

Maximum 
Age 

Years to 
Stationarity 

Raw m Retention 
Factor 𝜌𝜌 

Final m 

Pacific ocean perch 10 98 67,300 0.845 169.0 0.005 
Arrow tooth flounder 5 20 9,500 0.857 171.4 0.005 
Pacific cod 6 27 19,500 0.623 124.6 0.005 

 

Table 3-2 Results of sample design evaluation for a subset of 5 zones to determine which 
subset best explains the overall population structure. 

POP α β 𝐿𝐿𝐵𝐵𝑙𝑙(ℒ) Sampled Zones 

Full Set 0.41 24.49 
 

 

Best Fit 0.60 25.05 228.86 1, 4, 5, 6, 7 

Worst Fit 1.05 3,082.85 -2,921.51 4, 8, 9, 10, 12 
    

 

ATF α β 𝐿𝐿𝐵𝐵𝑙𝑙(ℒ)  

Full Set 0.93 7.26 
 

 

Best Fit 0.45 4.07 104.75 1, 9, 10, 11, 12 

Worst Fit 1.80 3,392.99 -27,796.64 8, 9, 10, 11, 12 
    

 

Pacific cod α β 𝐿𝐿𝐵𝐵𝑙𝑙(ℒ)  

Full Set 0.58 21.41 
 

 

Best Fit 0.65 21.77 223.44 7, 8, 9, 10, 13 

Worst Fit 1.57 930.99 -1,331.07 1, 2, 3, 5, 6 
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Figure 3-1 Map of the Gulf of Alaska depicting the modeled area. a) Conceptual model of the 
larval dispersal where each of the 𝛿𝛿𝑖𝑖→𝑘𝑘 parameters describe the probability of larvae 
dispersing from 𝑖𝑖𝑚𝑚ℎ population and settling and recruiting to the 𝑘𝑘𝑚𝑚ℎ population. The 𝛿𝛿𝑖𝑖→𝑘𝑘 
parameters are obtained from the individual based DisMELS (GitHub - 
WStockhausen/DisMELS: A Java-Based Framework for Developing/Running Individual-
Based Models(IBMs) for Marine Species with Pelagic Early Life Stages., n.d.) model runs 
that incorporate ocean circulation and life history parameters specific to the species. b) Map 
depicting the 13 modeled spatial zones in the Gulf of Alaska of larval release and settlement 
used in the DisMELS model to calculate the 𝛿𝛿𝑖𝑖→𝑘𝑘 parameters. c) shows an example of 
DisMELS model graphical output where the left panel are the pathways during early larval 
dispersal stages and right hand panel are the subsequent stages. Yellow indicating pathways 
of “successful” larvae and magenta being the “unsuccessful” runs. 
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Figure 3-2 Graphical representation of the D dispersal probability matrices obtained from the 
DisMELS model for the three species, Pacific ocean perch (POP), Arrow tooth flounder 
(ATF), and Pacific cod. The top row heat maps depict the strength of dispersal with darker 
colors denoting higher probability. The bottom row are the corresponding directed graphs 
that show a different representation of the connectivity among the DisMELS population 
zones. 
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Figure 3-3 The expected IBD regression plots for the three species using the pairwise 
linearized 𝐺𝐺"𝑆𝑆𝑆𝑆/(1 − 𝐺𝐺"𝑆𝑆𝑆𝑆) on the cumulative distance between zones (km). Based on the 
biophysical dispersal model, there is an expected significant IBD relationship for POP and 
Pacific cod, however, ATF shows no significant genetic differentiation with distance. 
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Figure 3-4 PCA plot of the genetic simulation results and sampling 100 individuals from 
each population-zone across all age classes. The PCA plot colors correspond to the 
population-zone location colors on the map to the right. 
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Figure 3-5 STRUCTURE derived putative populations for Pacific ocean perch (POP) based 
on sampled 100 individuals per DisMELS population zone. The map depicts where the 
corresponding, colored putative populations are proportionally found in the sampling area 
and is based on the 100 genotypes population assignments from STRUCTURE analysis at 
each sampling location. PCA representation shows 3 distinct clusters with a possible fourth 
one. The STRUCTURE plot show a single (green), distinct population group (in the farthest 
southeastern zone), and immediately followed by admixture from another population 
(orange) in the adjacent zone to the northwest. The third population group (blue) appears off 
of cross sound. All three putative groups are then admixed in relatively equal proportions 
resulting in a concurrent detection of distinct groups from Yakutat to east of Kodiak island, at 
which point only two admixed populations are evident to the west. The main break in 
genotype distribution appears around Kenai Peninsula.  
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Figure 3-6 STRUCTURE derived putative populations for Arrow tooth flounder (ATF) based 
on sampled 100 individuals per DisMELS population zone. The map depicts where the 
corresponding, colored putative populations are proportionally found in the sampling area 
and is based on the 100 genotypes population assignments from STRUCTURE analysis at 
each sampling location. The PCA plot shows 4 distinct population clusters with obscured 
groups in the middle of the plot, possibly indicating a non-linear variation in the genotype 
groups. The STRUCTURE admixture analysis indicates 6 distinct groups with increasing 
admixture from the eastern to western Gulf of Alaska. The zones in the eastern part of Gulf 
of Alaska are composed of distinct, putative populations, with little admixture among them. 
However from outside of Prince William Sound, to the west, there is only a single, dominant 
population identified with little admixture from the eastern populations. The map depicts 
where the corresponding, colored putative populations are spatially distributed.  
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Figure 3-7 STRUCTURE derived putative populations for Pacific cod based on sampled 100 
individuals per DisMELS population zone. The map depicts where the corresponding, 
colored putative populations are proportionally found in the sampling area and is based on 
the 100 genotypes population assignments from STRUCTURE analysis at each sampling 
location. PCA plot suggest 3 genotype clusters, but they are not concordant with the 
STRUCTURE derived clusters. STRUCTURE analysis shows a single population throughout 
the eastern Gulf of Alaska which then progressive admixture originating from zone 13 (Cook 
Inlet). The farthest west zones indicate the presence of some admixture from other putative 
populations. The map depicts where the corresponding, colored putative populations are 
spatially distributed. 
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Figure 3-8 Comparing the observed and modeled population structure for Pacific ocean 
perch. The observed data set was adapted from (Palof et al., 2011) where the sampled 
locations were matched to the DisMELS population zones (1, 2, 4, 6, 9, 10, 12).  The 
matching subset of the linearized pairwise observed 𝐹𝐹𝑆𝑆𝑆𝑆 values for both the observed and 
modeled populations was then regressed on the coast distance.  Both observed and modeled 
populations had positive and significant scale of genetic differentiation with distance (𝑅𝑅2 =
0.332, p = 0.001 and 𝑅𝑅2 = 0.157, p = 0.037 respectively). The observed and simulated 
pairwise 𝐹𝐹𝑆𝑆𝑆𝑆 values had a correlation of 0.184 (Mantel test 𝑝𝑝 = 0.129).  The map depicts 
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where the corresponding, colored putative populations are proportionally found in the 
sampling area and is based on the 100 genotypes population assignments from STRUCTURE 
analysis at each sampling location. Both STRUCTURE and PCA plots indicate the presence 
of three populations clusters with clusters A and B (orange and blue) dominating eastern Gulf 
of Alaska, while clusters B and C (blue and green) dominating western part with the 
dominant break occurring outside of Prince William Sound.  
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Figure 3-9 Comparing the observed and modeled population structure for Pacific cod. The 
observed data set of linearized 𝐺𝐺"𝑆𝑆𝑆𝑆 was adapted from (Drinan et al., 2018) where the 
sampled locations were matched to the DisMELS population zones (1, 6, 8, 11, 12).  The 
matching subset of the linearized pairwise observed 𝐹𝐹𝑆𝑆𝑆𝑆 values for both the observed and 
modeled populations was then regressed on the coast distance.  Both observed and modeled 
populations had positive and significant scale of genetic differentiation with distance (𝑅𝑅2 =
0.713, p = 0.002 and 𝑅𝑅2 = 0.673, p = 0.004 respectively). There was significant positive 
(Mantel test 𝑝𝑝 = 0.03) correlation (𝑟𝑟 = 0.72) between the observed and simulated pairwise 
𝐺𝐺"𝑆𝑆𝑆𝑆 values. The map depicts where the corresponding, colored putative populations are 
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proportionally found in the sampling area and is based on the 100 genotypes population 
assignments from STRUCTURE analysis at each sampling location. The STRUCTURE plot 
show a single distinct population group in the southeastern and central part of the State, a 
second group in the Kodiak area. Note that the PCA plot appears to show 3 clusters, 
STRUCTURE analysis was only able to identify 2 distinct groups with admixture among 
them, which did not appear to match the PCA clusters. 
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Figure 3-10 Results of the effect of sampling location to determine “best” and “worst” subset 
of five locations to sample under the POP model. The full model included all 12 population 
zones with the best subset (top row) had the highest log-likelihood (228.9) when populations 
1, 4, 5, 6, 7 are sampled and lowest log likelihood (-2,921.5) when populations 4, 8, 9, 10, 12 
are sampled. Note that the worst fit model results in a highly significant apparent IBD 
relationship, but only a single STRUCTURE derived putative population. 
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Figure 3-11 Results of effect of sampling locations to determine “best” and “worst” subset of 
five locations to sample under the ATF model. The full model included all 12 population 
zones with the best subset (top row) had the highest log-likelihood (104.75) when 
populations 1, 9, 10, 11, 12 are sampled and lowest log likelihood (-27,796.64) when 
populations 8, 9, 10, 11, 12 are sampled. The best subset inference would result in identifying 
two distinct populations groups with little admixture, however, a panmictic population results 
from the worst sampled zones. 
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Figure 3-12 Results of the effect of sampling location to determine “best” and “worst” subset 
of five locations to sample under the Pacific cod model. The full model included all 13 
population zones with the best subset (top row) had the highest log-likelihood (223.4) when 
populations 7, 8, 9, 10, 13 are sampled and lowest log likelihood (-1,331.1) when populations 
1, 2, 3, 5, 6 are sampled. The best model would result in a non-significant IBD relationship, 
but strong PCA and STRUCTURE clustering. In contrast, the worst model results in a 
significant IBD relationship, but a single cluster detected with PCA, and some STRUCTURE 
detected admixture from another population which is not evident in the PCA plot. 
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Figure 3-13 Distribution of putative populations based on STRUCTURE analysis of adult 
POP collections from 2017 and 2019 (Timm, L). Populations A-D correspond to the 
populations identified in larval aggregates described in chapter 1 of this dissertation. 
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Deriving parameter estimation of the Beta(α,β) distributed GST values: 
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