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ABSTRACT 

 

The radiant energy released during biomass burning can be measured remotely, and is 

directly related to the biomass consumed during the fire. One source of error associated with 

estimating fire radiative energy (FRE) remotely is the obscuration of the signal by the forest canopy. 

We quantify the relationship between canopy cover and the amount of radiant power observed by 

a sensor from laboratory experiments. A linear decrease in FRP as a result of simulated canopy 

cover increase was observed and attenuation of up to 70% was recorded at closed canopy. We 

applied the canopy correction to thermal imagery collected over a longleaf pine forest in 

northwestern Florida. Pre-fire LiDAR imagery quantified the forest canopy and surface fuels. From 

thermal imagery and LiDAR data we predicted the amount of biomass consumed within 6% of field 

measured fuel consumption from the Florida prescribed burn under a forest canopy. 
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CHAPTER 1: ESTIMATING FIRE RADIATIVE POWER OBSCURATION BY 

TREE CANOPIES THROUGH LABORATORY EXPERIMENTS 

Abstract 

 Estimates of biomass burning in wildfires or prescribed fires are needed to account 

for the production of trace gases and aerosols that enter the atmosphere during combustion. 

Research has demonstrated that the consumption of biomass is linearly related to fire 

radiative energy (FRE) released during the burn. FRE estimates are known to be biased by 

certain environmental characteristics, such as topography and tree canopy cover. Laboratory 

experiments were conducted to assess the influence of canopy cover on the sensor observed 

radiant energy. A range of canopy measurements 0 to 90% along with two classes of 

canopy, non-transpiring living and desiccated branches, were used in the construction of the 

canopy. Attenuation of energy by the canopy was shown to bias estimates by as much as 

70% under a completely closed canopy. Results from this research will contribute to 

reducing the error in estimates of biomass consumption in surface fires burning under a 

forest canopy. 

Introduction 

Fire is a key earth-system process (Bowman et al. 2009). Fire impacts the global carbon 

(C) cycle from both anthropogenic and natural sources, with 1350 – 3400 Tg C emitted from 

land use changes, agricultural practices, and residential uses; and  2750 – 4600 Tg C emitted 

in wildfire events that exhibit high inter-annual variability (Westerling et al. 2006; Wotton 

et al. 2010; Balch et al. 2013) (van der Werf et al. 2010). Biomass burning has many direct 

and indirect effects on the environment, one of which is the production of trace gases and 

aerosols (Crutzen and Andreae 1990). These emissions directly impact atmospheric 
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chemistry and have negative social impacts reducing visibility and creating potential health 

concerns through poor air quality (Andreae and Merlet 2001; Ichoku and Kaufman 2005). 

Deposition of nitrogen from biomass burning stimulates nitrogen limited ecosystems, 

increasing growth rates and C accumulation through increased production (Vitousek et al. 

1997). Understanding emissions from biomass burning is therefore important in 

characterizing the terrestrial-atmospheric C cycle, and many ecological and social impacts, 

both positive and negative (Bowman et al. 2009).  

Traditional methods for estimating biomass burning emissions required extensive 

knowledge of pre-fire fuels, the degree of combustion completeness, and specific emission 

factors to quantify gases and particulates produced (Seiler and Crutzen, 1980). Exploration 

from laboratory experiments of specific chemical compounds and particulates emission 

factors have produced extensive emission rate coefficients under different combustion 

phases (Hardy et al. 2001; Yokelson et al. 2013). However, difficulty remains in the 

characterization of pre-fire fuel loading and the factors inherent within combustion 

completeness (i.e., moisture content, fuel type (i.e., grasses, woody debris), combustion 

phase, fuel mixtures, and vertically and spatially heterogeneous fuel beds).  

As highlighted in the literature an alternative route to overcome the lack of pre-fire fuel 

and combustion completeness characterization is to directly determine the radiant heat 

released (Hardy et al. 2001; Wooster et al. 2005). Research to quantify radiant energy 

released have been conducted at satellite, field, and laboratory scales (Wooster et al. 2005; 

Kremens et al., 2013; Smith et al. 2013). Specifically, instantaneous measurements of fire 

radiative power (FRP, Units: Watts) has been demonstrated to be linearly related to the rate 

of biomass consumed (Kaufman, Kleidman, et al. 1998; Wooster et al. 2005). FRP is a 
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dynamic measurement that changes continuously with regards to fuel characteristics, 

environmental features, weather conditions, and fire’s diurnal variability (Zhukov et al. 

2006; Freeborn et al. 2008; Roberts et al. 2009; Kumar et al. 2011; Smith et al. 2013a). To 

estimate the total amount of biomass consumed across an affected landscape, FRP is 

integrated with time to calculate fire radiative energy (FRE, Unit: Joules), which is linearly 

related to total biomass consumed (Wooster et al. 2005). Three principal methods have been 

developed to estimate FRP that can be generally described as dual-band infrared 

thermometry, 4 μm radiance, and brightness temperature methods (Dozier 1981; Kaufman, 

Justice, et al. 1998). The strengths and weaknesses of these methods for satellite imagery are 

detailed in the literature (Wooster et al. 2003).  

Although the assessment of biomass consumed from FRP and FRE are widely 

conducted, several studies have highlighted sources of uncertainty (Freeborn et al. 2008; 

Boschetti and Roy 2009; Kumar et al. 2011; Smith et al. 2013). Notably, errors can be 

introduced due to the nature of satellite systems with spatial and temporal undersampling 

that does not account for the natural variability of FRP (Boschetti and Roy 2009; Kumar et 

al. 2011). Despite our understanding of its complexity, studies have shown linear 

relationships between the FRP and the rate of biomass consumed (Wooster et al. 2005; 

Freeborn et al. 2008). Coarse spatial resolution satellite sensors have been demonstrated to 

underestimate FRP by as much as 50% due to their inability to detect pixels with little fire 

activity (Kumar et al. 2011),. 

A further source of uncertainty on FRP estimates that has yet to be widely researched is 

the impacts of canopy closure (Freeborn et al. 2008). Specifically, within woodland and 
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forested systems, research is needed to assess the degree to which a thermal signal received 

at the sensor is attenuated by tree canopies. Specific questions we seek to address include: 

1. What is the magnitude of FRP attenuation due to increases in tree canopy cover? 

2. Do canopy characteristics such as living but non-transpiring versus desiccated, affect 

the relationship between emitted and observed power? 

Methods 

Experimental Setup 

Laboratory experiments were conducted at the Idaho Fire Institute of Research and 

Education (IFIRE) lab located in Moscow Idaho to explore the influence of canopy cover on 

sensor observed radiant energy as suggested by Freeborn et al. (2008). The lab contains an 

indoor climate controlled burn chamber that allows for the reduction of environmental 

effects (Smith et al. 2013). To minimize potential micro-climate variations in temperature 

and humidity within the chamber, experimental measurements were replicated with both 

obscured canopy and non-canopy treatments. A constant heat source was produced using 

three propane burning ceramic heaters (ENERCO, Cleveland, OH, Serial #170700-

09001001) mounted together with an area totaling 0.25 m2 comprising approximately 20% 

of the ground instantaneous field of view of the radiometer. Given the experiment is 

evaluating relative magnitudes of radiative power and is comparing the ratio of obstructed to 

unobstructed; the heat source did not need to encompass the total area of the sensors field of 

view.  

A total of 26 burns were conducted with two types of canopy; desiccated (n=14) and 

living/non-transpiring (n=12).  Approximately 30 ponderosa pine (Pinus ponderosa) 

branches were cut on the day of the experiment and were stored not connected to water. An 
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additional set of cut branches collected as part of another experiment were stored in water 

and after 15 minutes were observed to have ceased transpiration. Desiccated ponderosa pine 

branches were also collected from pre-cut slash piles and were allowed to fully cure to 

ambient conditions before the experiment. During the experiment the branches were 

suspended between the heat source and the radiometer (Figure 2a). Ambient temperatures 

averaged 20 ºC and relative humidity averaged 40.5%. The experiments were performed 

over a continuous range of canopy percentages from 0 – 90%.  

FRP was determined using a dual band radiometer (Dexter Research Center, Dexter, MI, 

Serial # ST60 DX-1001) (0.1–6.5 μm and 8–14 μm) with an effective field of view of 27° 

that was installed 2.44 meters at nadir above the heat source (Kremens et al. 2010). 

Measurements were recorded every 0.5 seconds and calibrated to watts using dual-band 

infrared thermometry  (Dozier 1981). A hot wire anemometer was placed 1.12 meters above 

and centered over the heat source to measure wind speed as part of another experiment. 

Canopy and needle temperatures were measured using type K thermocouples, with interior 

leaf temperature measured by threading a thermocouple inside the leaf and exterior 

temperatures were measure by taping thermocouples to leaves.  

Data Analysis 

A white background was laid on the ground for contrast and hemispherical images were 

taken prior to each burn at nadir and later used to quantify the percentage of canopy cover 

obscuring the radiometers field of view. Hemispherical images were analyzed using the 

Hemiview software package (Delta-T Devices Ltd, Cambridge, UK) and canopy cover 

calculated based on the sensors field of view. Given the heat sources required time to 

achieve a relatively steady state of power output (Figure 1), only values within the 
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asymptote were used in the calculation of the ratio between obscured/unobscured datasets 

(Table 1). To determine whether individual data points were within the asymptote region, a 

non-linear least squares model was fit to the raw data: 

NLS: Y = a – b e - c x     [1] 

Where a is the approximate asymptote value, b is a – the intercept, c = - (log (a-y)/b)/x, 

and y is the value of y at the steepest increase, and x is the value of x at y. Least squares 

models were fitted to the obscured and unobscured FRP data and the ratio of the asymptote 

values were then regressed in a linear model to canopy cover. The full linear model was: 

Yijk = μ + ρi + aj + bk + eijk   [2] 

Where Yijk is the ratio of sensor observed obscured to unobscured radiant power, μ 

grand mean, ρi is the effect for being in the ith group (canopy cover type), aj is the random 

effect of temperature, bk is the random effect of relative humidity, and eijk is the 

experimental error. A t-test with an alpha of 0.05 was performed on the normalized means 

(the ratio over the percent canopy cover) of the two canopy types to determine if there was a 

difference between the two groups. Under a no canopy scenario the power observed by the 

sensor was assumed to be 100% and therefore the intercept of the model was forced to one. 

Results  

Figure 1 illustrates the significant reduction in observed radiant power with increases 

in canopy obstruction, where at 75% canopy cover we observed over 50% reduction in 

radiant power at the sensor. Radiant power decreased at approximately 200 seconds after 

ignition on 63% of the obscured trials, whereas it remained steady for all unobscured runs. 

The canopy obscuration was reduced at lower canopy levels (Figure 1 b-d).  Figure 2 
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demonstrates linear relationships between sensed FRP and canopy cover. A t-test  performed 

on the normalized means (the ratio over the percent canopy cover) for non-transpiring green 

tree branches and desiccated tree branches showed that there was no significant difference 

between the two (n=26, t=1.85, p-value = 0.084). Our laboratory experiment did not show a 

statistically significant difference (alpha = 0.05) between the attenuation of radiant power  

between living non-transpiring and desiccated branches, which makes the developed 

correction factor applicable for a wide range of forest canopies, ranging from young and live 

to old canopies or canopies with beetle-killed branches. Specifically, Figure 3 illustrates the 

modeled reduction in rate of biomass consumed that would be observed under increasing 

canopy cover in surface fires occurring in mixed forest litter (Freeborn et al. 2008) and 

savannah woodlands with a grass understory (Wooster et al. 2005).   

Discussion 

Given proportional increases in FRP will likewise affect FRE these results could be 

extended to create correction factors for landscape-scale derived FRE estimates above 

woodland and forest canopies. With the increased availability of high spatial resolution 

satellite imagery and LiDAR derived canopy cover proxies; FRE corrections for canopy 

cover could be made with high precision at landscape scales.  In areas without spatially 

explicit canopy measurements, landcover datasets such as are available from LANDFIRE or 

similar programs could be used for more generalized corrections of FRE. Under fire 

conditions which result in removal of canopy through torching or crowning, the use of pre-

fire canopy data products could be misleading. In these cases, post-fire geospatial products 

such as aerial photography or fire severity maps that measure crown consumption could be 

consulted to eliminate a FRE correction being erroneously applied.  
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The decrease in observed power at approximately 200 seconds in Figure 1 (A, B, D) 

coincides with observed needle surface temperatures reaching between 45 and 60° C. We 

posit that this effect may be due to the epicuticle waxes of the needles melting (Tribmle et 

al. 1986), reducing the branches ability to regulate water flow and leading to increased 

amounts of water vapor entering the system. Also, the increased variability between the live 

and desiccated canopy groups can potentially be attributed to increased moisture content 

within the non-transpiring living branches  (Vermote et al. 2009).  

Conclusions 

The specific questions we sought to address were: (1) What is the magnitude of FRP 

attenuation due to increases in tree canopy cover? and (2) Do canopy characteristics such as 

living but non-transpiring versus desiccated, affect the relationship between emitted and 

observed power? In terms of (1), we observed clear linear decreases in FRP as a result of 

simulated canopy cover increase. In terms of (2), although the variability increased within 

the living branches, no significant difference was observed between the live and dead 

branches.  

This study provides a scalable method to correct for the bias introduced by the 

canopy’s influence on radiant power reaching the sensor, which will in turn aid in the 

estimation of FRE and biomass consumed. At large-spatial scales application of leaf area 

index based products may provide a route to correct fire radiative power estimates. In 

addition to horizontal canopy cover, other factors will likely contribute to reductions in the 

observed FRP. Specifically, (i) height to live canopy may play a role in whether or not 

needle waxes melt under certain fire conditions;  (ii) the structural stage of the forest (stem 

exclusion, multi-story, old growth, etc) will likely be a significant factor in how FRP is 
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attenuated; (iii) high LAI conditions (such as in tropical forests) may lead to very-high FRP 

attenuation during surface fires; and (iv) moisture content in both surface and canopy fuels 

(live/dead) will likely lead to further reductions in observed FRP (Smith et al. 2013).  In 

summary, we suggest that the relationship developed here is an important step in 

understanding the energy balance for biomass burning that occurs under forested canopies.  
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Table 1. The results from the models fit to the raw data measured by the radiometer given as 

obscured (unobscured) for each laboratory run. If there was no change in the relative 

humidity or temperature between runs then the previous unobscured run was used as the 

control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 

Number 

Estimate 

 W m-2 

Confidence Interval 

W m-2  

  Lower Upper 

Living 1 1110 (2552) 997 (2506) 1034 (2598) 

Living 2 1893 (2617) 1876 (2599) 1909 (2635) 

Living 3 1164 (2523) 1144 (2504) 1184 (2542) 

Living 4 804 (2573) 773 (2555) 835 (2590) 

Living 5 2274 (2485) 2257 (2462) 2290 (2507) 

Living 6 794 (2485) 768 (2462) 820 (2507) 

Living 7 1053 (2574) 1038 (2557) 1066 (2590) 

Living 8 1095 (2491) 1072 (2474) 1117 (2508) 

Living 9 1611 (2754) 1590 (2737) 1631 (2770) 

Living 10 1793 (2513) 1781 (2495) 1804 (2529) 

Living 11 512 (2550) 488 (2526) 535 (2576) 

Living 12 1013 (2905) 997 (2890) 1027 (2920) 

Desiccated 1 1743 (2631) 1731 (2605) 1755 (2657) 

Desiccated 2 658 (2561) 666 (2546) 708 (2576) 

Desiccated 3 1663 (2624) 1644 (2607) 1681 (2640) 

Desiccated 4 929 (2633) 914 (2616) 945 (2648) 

Desiccated 5 2526 (2677) 2512 (2663) 2539 (2694) 

Desiccated 6 1324 (2526) 1308 (2512) 1339 (2539) 

Desiccated 7 1147 (2526) 1131 (2512) 1162 (2539) 

Desiccated 8 2652 (2879) 2614 (2843) 2692 (2913) 

Desiccated 9 879 (2273) 853 (2234) 905 (2312) 

Desiccated 10 2109 (2458) 2066 (2424) 2154 (2491) 

Desiccated 11 2382 (2458) 2358 (2424) 2405 (2491) 

Desiccated 12 1203 (2458) 1177 (2424) 1230 (2491) 

Desiccated 13 1449 (3269) 1430 (3246) 1466 (3291) 

Desiccated 14 2310 (3269) 2281 (3246) 2338 (3291) 

Desiccated 15 2300 (2368) 2272 (2336) 2328 (2399) 



15 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1. Calibrated data of FRP with temporal sampling every 0.5 seconds for four 

different canopy cover levels. Green points represent the obscured data, while brown 

represents the control. The fitted non-linear least squares model is shown as the dashed line 

for the control and dash-dot for the obscured data.  
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Figure 2. (A)Shows the laboratory experimental setup, while (B) shows the effects of 

canopy cover to the rate of biomass consumed under different surface fuels.  
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Figure 3.  Effect of canopy obscuration on the sensor observed radiant energy. The 

regression was combined between canopy types given no significant difference between the 

two canopy cover types. 

 

 

 

 

 

 

 

 

 



18 

 

CHAPTER 2: ESTIMATING FIRE RADIATIVE ENERGY IN A LONGLEAF PINE 

FOREST FROM AIRBORNE THERMAL IMAGERY 

 

Abstract 

 Airborne sensors are best suited for active fire remote sensing given the high spatial 

and temporal resolution needed to accurately characterize fire radiative power on the 

ground. In 2012, the Prescribed Fire Combustion and Atmospheric Dynamics Research 

Experiment (RxCADRE) sought to fill gaps in fire research through collecting a 

multidisciplinary suite of pre-, post- and active-fire measurements from a prescribed fire in 

Northwestern Florida. Here we use the unique data set collected by the RxCADRE team to 

estimate fire radiative energy (FRE) under a longleaf pine canopy using the wildfire airborne 

sensor program (WASP) sensor mounted on a fixed wing aircraft. Pre-fire LiDAR 

measurements quantified the forest canopy cover and surface fuels. Field measurement 

collected pre- and post-fire provided accurate estimates of the amount of biomass consumed 

by the prescribed fire. Through the canopy corrected estimates were we able to produce an 

acceptable estimate of total biomass consumption across the entire burned area. To reduce 

the underestimation that occurs due to canopy obscuration of FRE, we recommend that 

satellite based estimations implement a canopy correction when surface fires occur in a 

forested system.   

Introduction 

Fire radiative power (FRP) has been linked to the rate at which biomass is consumed 

during the combustion process, and FRP can be  integrated over time to compute fire 

radiative energy (FRE) which is related to total biomass consumed through combustion 
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(Wooster et al. 2005). The link between FRE and the amount of biomass consumed, and 

thereafter the derived estimates for trace gas, particulate and aerosols production,  has been 

widely studied by the remote sensing community since Kaufman et al. (1998) first explored 

the relationship. Understanding the details of this relationship is required if the  atmospheric 

modeling community is to produce more accurate estimates of the role of fire in the 

interannual atmospheric carbon budget (Jain et al. 2009). Several studies have sought to 

better understand the physical relationship between FRE and biomass consumption and how 

fuel characteristics may play a role in observed FRE (Wooster 2002; Roberts et al. 2005; 

Kremens et al. 2010, 2012; Smith et al. 2013a). Localized experiments on individual fires 

have been used to estimate the amount of biomass consumed on a landscape scale or used to 

characterize ecological effects of the fire (Smith and Wooster 2005; Boschetti and Roy 

2009; Thorsteinsson et al. 2011). Many studies have been conducted to characterize the 

amount of biomass consumption during fires on a global scale to better understand the 

interannual carbon budget (Ichoku et al. 2008; Vermote et al. 2009; Kaiser et al. 2012). All 

these efforts are focused on understanding the effects of biomass burning on terrestrial and 

atmospheric carbon.  

 Dozier (1981) first measured radiant energy by fitting data from the 3.7 and 11 μm 

bands of sensors onboard the geostationary orbiting environmental satellite (GOES) to a 

Planck function showing the possibility to estimate energy radiated from the Earth’s surface. 

Significant advances in active fire remote sensing were seen from the launch of the 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observation 

Satellite in 1999 and 2000 (Kaufman, Justice, et al. 1998; Kaufman, Kleidman, et al. 1998). 

Estimates of biomass consumption still could not be predicted from the radiant energy 
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products from MODIS, and therefore atmospheric scientists relied on environmental fire 

effects such as burned area for estimating emitted gas species (Ichoku and Kaufman 2005). 

Radiant energy released by a fire was known to be directly related to the amount of biomass 

consumed, but it was not until Wooster et al. (2005) that the linear relationship was 

experimentally demonstrated. Wooster et al. (2005) quantified the relationship of FRE to 

total consumed biomass using fuels and fuel characteristics, and their equation has been 

adjusted for fuel moisture to achieve a more accurate account of biomass consumption given 

fuel moisture levels (Smith et al. 2013a).  

Image acquisition from polar orbiting satellites create their own challenges in the 

pursuit of estimating biomass consumption and trace gas emittance from active fires. The 

coarse spatiotemporal resolutions of images from sensors onboard polar orbiting satellites is 

such that they are unable to accurately capture the variability of FRP, which is needed to 

provide an accurate integration to FRE. Satellite sensors such as MODIS are typically used, 

sacrificing spatial resolution for higher temporal resolution. The reduced spatial resolution 

leads to the reduced ability to capture low intensity fires and the smoldering phase of 

combustion, which produces more emissions (Boschetti and Roy 2009; Barrett and 

Kasischke 2013).  

Atmospheric chemistry influences the amount and range of the electromagnetic 

spectrum that reaches a sensor. Atmospheric transmissivity models such as Moderate 

Resolution Transmission (MODTRAN) use in situ measurements as parameters to quantify 

the absorption of given wavelengths from the electromagnetic spectrum by the atmosphere.  
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Approximately 28% of the global terrestrial lands are forested; with fire occurring 

from boreal to tropical ecosystems, forest fires account for a significant source of emissions 

to the atmosphere. Forested systems provide additional sources of error for estimations of 

FRP. Potential sources of error recognized by Freeborn et al. (2008) include environmental 

factors such as canopy cover and topography. These factors have yet to be studied but could 

have severe dampening effects of the FRP signal originating from surface fires, as observed 

from a satellite sensor.  

In 2011 and 2012, the Prescribed Fire Combustion and Atmospheric Dynamics 

Research Experiment (RxCADRE) gathered a multidisciplinary team of 90 scientists and 

technicians to collect co-located information about pre-fire fuels, fire behavior, and post-fire 

effects. One goal of the RxCADRE project was to obtain fine scale measurements of FRP 

during prescribed fires to reproduce at a landscape scale the relationships between biomass 

consumption and observed radiative energy previously demonstrated at the scale of small 

burning experiments (Wooster et al. 2005, Smith et al. 2013, Ottmar et al. 2015).  

During the fall of 2012, the RxCADRE team planned a prescribed fire in 

Northwestern Florida, on Eglin Air force base (Figure 1). Eglin contains the largest 

remaining contiguous stand of longleaf pine (Pinus palustris), encompassing roughly 

146,500 hectares. Longleaf pine is a fire dependent ecosystem that historically has seen low 

to moderate severity fires with return intervals every 1-3 years; ignition sources came from 

both Native American practices and natural lighting strikes. Frequent fires reduced the 

chances of stand replacing fires by constantly maintaining low surface and ladder fuels, and 

created an environment that promoted a fire dependent ecosystem (Van Lear et al. 2005). 
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The distribution of longleaf pine savannah ecosystems at the time of European settlement 

ranged from Southeastern Virginia to Eastern Texas, encompassing over 35 million hectares. 

Longleaf pine was removed for plantations and was heavily logged to meet production and 

export needs of the 19th century, and were a much needed resource during WWI (Thomas 

Caldwell Croker 1987). Furthermore, due to the fire exclusion practices of the 20th century, 

longleaf pine stands have seen encroachment of hardwood species (Loudermilk et al. 2011). 

Today just over one million fragmented hectares remain. Eglin has a goal of burning over 

28,000 hectares every year in their management of these fire dependent system of longleaf 

pine savannahs and coastal grasslands, which host over 77 rare species that thrive in fire 

dependent systems. Southeastern U.S. is unique in that it has a large window of opportunity 

for prescribed burning due to its climatic conditions, making it ideal for the logistics of 

successfully planning and implementing prescribed burns. The specific objectives of this 

study were to use the high spatiotemporal resolution imagery provided by the RxCADRE 

project to: 

1) Determine the minimum number of FRP observations needed to estimate FRE. 

2) Map fire radiative energy across a forested burn block with varying tree canopy 

cover and understory fuel loadings. 

Methods 

Study Area 

The study area of interest was located on roughly 745 hectares with three burn 

blocks situated in Northwestern Florida on Eglin air force base (Figure 1). We focused on a 

151 ha forested burn block (L2F) dominated by longleaf pine savannah (Ottmar et al. 2015).  

Fuel loadings surveyed on-site  were similar to other studies of longleaf pine fuel beds that 
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experienced fire five years prior to measurements (Parresol et al. 2012, Ottmar et al. 2015b). 

Elevation of the L2F burn block ranged from 4.5 to 20 m above mean sea level. On the day 

of the burn, the relative humidity averaged 50 percent, and the mean temperature was 17° C.  

Airborne data 

A fixed wing aircraft from the Wildfire Airborne Sensor Program (WASP) utilized 

four Phoenix sensors and collected data over three infrared bands, short wave (0.9-1.7µm), 

middle wave (3.0-5.0µm), and long wave infrared (8.0-9.2µm) (Hudak et al. in review). The 

aircraft made multiple passes throughout the duration of the prescribed fire, which lasted for 

roughly three and a half hours. The sensor was able to collect an image, roughly 0.8 km x 1 

km in extent with an average pixel size of 1.5 m x 1.5 m, every 3 seconds, and a total of 716 

images were collected for L2F during the burn. Images were georectified based on the GPS 

system on the inertial measurement unit that accounts for the roll, pitch and yaw of the plane 

as the data are collected.  Optical thickness of the atmosphere was measured pre-fire in situ 

from weather balloons and atmospheric transmission for given wavelengths were estimated 

from the MODTRAN radiative transfer model (Dickinson et al. in review). Images used the 

estimated transmissivity output by MODTRAN to correct for the effect of the atmosphere on 

the observed thermal signal (Bartlett and Schott 2009).  

Field Measurements 

Understory fuel inventories were collected prior to the prescribed burn; including 

pre-fire loadings by fuel classes on 30 (0.5 m X 0.5 m) clip quadrats within the L2F burn 

block, and 30 post-fire consumption plots measured along the same transects with 

alternating locations. Fuel classes included: grasses, forbs, shrubs, hardwood and conifer 
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litter, turkey oak (Quercus cerris), palmetto (Serenoa repens), 1000hr, 100hr, 10hr and 1hr 

fuels, litter and duff ( Hudak et al. 2015). 

Pre-fire fuels in the L2F burn block ranged from 2.0– 38.9 Mg ha-1 and averaged 8.9 

Mg ha-1 prior to a correction to include duff, which increased the mean fuel load to 10.80 

Mg ha-1. The fuel loading was comparable to what other studies have found to be 

representative of longleaf pine stands that have burned approximately 3 - 5 years prior to 

measurements (Parresol et al. 2012).  Post-fire consumption ranged from 0 – 95 % with an 

average of 58.9 %. Three highly instrumented plots (HIP) were located within the burn 

perimeter of L2F and contained a radiometer and an infrared camera. Another 72 0.5 m x 0.5 

m clip plots recording pre-fire and post-fire fuels were located around 3 HIPs (Hudak et al. 

2015). Fuel moistures were derived from five samples of each fuel class across the L2F burn 

block.  

Pre-fire LiDAR data were collected on L2F and used to produce raster datasets of 

canopy characteristics and surface fuel loads. Mean canopy cover calculated from LiDAR 

for L2F was 37.3%. Surface fuels derived from LiDAR, averaged 6 kg m-1 with a minimum 

of 2 and a max of 16 kg m-1 (Hudak et al. 2015) 

Analysis methods 

Images were constrained to a threshold provided by in situ dual band radiometers 

that measured post-fire background radiant emittance (from a blackened surface) at 1070 W 

m-2. By identifying an accurate background radiant emittance we reduced the bias that is 

typically associated with the mixing of smoldering and background radiation within a pixel 

that accounts for roughly 6% of FRE within a mixed smoldering and cooling pixel (Wooster 
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et al. 2003). Any pixel radiating above this threshold was considered a fire pixel, any pixel 

that was below the threshold was considered background noise or no fire present at sensor 

pass over. Complete time histories of radiant energy were extracted from every pixel that 

experienced fire and spatial references were maintained through time.  

We compared the number of observations of four adjacent pixels to find the 

minimum number of FRP observations needed to integrate to FRE with reasonable accuracy. 

By choosing pixels located next to each other we could assume that fuel loadings should be 

similar, and therefore max values and distribution of FRP observations over time should be 

very similar across those pixels. The four selected pixels had 90, 67, 24, and 10 observations 

respectively. To aid our understanding of the error associated with a given number of 

observations a bootstrapping method was used on subsamples of a point with 127 

observations. For each unique set of subsamples a 1,000 replicates were ran with mean and 

standard deviation recorded, and confidence intervals calculated for each set of subsamples.  

The high temporal resolution of airborne imagery is well suited for pixel level 

integration of FRP to FRE as discussed in Boschetti and Roy (2009). This method assumes 

that the duration of the fire at that location is based on the first and last observation of the 

sensor.  Integration to FRE was done using the trapezoidal method on all selected pixels. 

Biomass consumption estimates were calculated following the method described in Wooster 

et al. (2005), for the selected fire pixels. 

Biomass combusted (kg) = 0.368 (± 0.015)* FRE (MJ)    Equation 1 
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Each pixel was assigned a percent canopy cover based on the LiDAR derived product, and 

canopy cover correction of FRE was calculated given the methods from Chapter 1. 

FREcc (MJ) = FREobs / (1 - 0.007 (± 0.0016)*CC)   Equation 2 

 Where FREcc is the canopy corrected FRE, FREobs is FRE integrated from observed FRP, 

and CC is the percent canopy cover for that pixel. Biomass consumption estimates were 

calculated from the corrected FRE values and compared to the uncorrected estimate of total 

biomass consumed for all given pixels.   

 Spatially discrete measurements of FRE were obtained for pixels selected from the 

minimum threshold of 10 observations. Following Boschetti and Roy (2009), we used a 

kriging method of interpolation across the burned area to compute total FRE for the entire 

L2F burn block. Kriging provides a linear estimate between two points with weighted 

averages of surrounding points. We used a spherical semi-variogram model and 12 

surrounding points as inputs for the interpolation model. Kriging was performed on both 

pre- and post- canopy corrected FRE pixels.  

 Results 

Image processing 

Of the 716 images collected for L2F burn block, 568 of those images contained 

pixels that burned in the prescribed fire (Figure 2). The total unburned area was 26 of the 

151 hectares, defined as all pixels that never received an observation that exceeded the 1070 

W m-2 threshold.  

Selection of minimum number of FRP observations per pixel 
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 The comparison of the four fire pixels with different number of FRP observations, 

90, 67, 24, 10 respectively, shows that all four pixels retained similar maximum FRP values 

along with a similar distribution of observations (Figure 3). Assuming the pixel with 90 

observations capture 100 % of the energy released during the fire within that pixel, then the 

remaining pixels captured 80, 59, and 23 % of the total energy respectively. The 

bootstrapping was performed on a pixel with 127 observations, and 1,000 replicates 

provided the mean average FRE estimated from subsets of observations ranging from 5 to 

120 (Table 1). We found that on average 10 observations captured 67 % of the total energy 

possible. A 95% confidence interval showed that 10 observations captured between 20 and 

115 percent of the radiant energy (Table 1). By selecting pixels with at least 10 observations 

we would cover 38% of the total L2F burn block or 47 hectares. The error associated with 

each pixel used in discrete estimates of FRE is shown in Figure 4.  

Integration to FRE 

 Integration from FRP to FRE was done using the trapezoidal method on all fire 

pixels with a minimum of 10 observations. FRE on the individual pixels was summarized to 

812,497 MJ across the 47 hectares which translates to 299 Mg of biomass consumption 

according to equation 1 (Wooster et al. 2005). The total surface fuels available for 

consumption was 513 Mg from the area used for discrete FRE measurements. Pre-canopy 

corrected FRE estimated 58.3% consumption over the area. Canopy correction was 

performed based on equation 2, on the estimated FRE using the LiDAR product for percent 

canopy cover. The corrected FRE estimated 1,166,531 MJ across the 47 hectares which 

translates to 429.3 Mg of biomass consumed, equaling 83.6% consumption (Figure 5). 

Estimates of pre-corrected FRE are similar to those reported by Hudak et al. (2015), of 
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58.9% observed consumption that was measured in situ post fire, whereas the corrected 

consumption exceeds those observed by 24.7%.  

The results from the kriging procedure reduced the percent consumption under both 

pre- and post-canopy corrected FRE. The total surface fuels available for consumption for 

the entire burned area was 1350 Mg. Pre-corrected FRE increased to 1,633,840 MJ from 

discrete estimates and the corrected FRE increased to 2,017,606 MJ across the entire burned 

area. This resulted in total biomass consumed for the L2F burn block at 601.3 and 873.9 Mg 

respectively and biomass consumption of 44.5% and 64.7% respectively (Table 2).  

Discussion 

Estimating FRE 

With the discrete measurement of FRE we were able to accurately estimate the 

biomass consumption at 58.3% with the pre canopy-corrected estimates, compared to field 

measurements of 58.9% consumption. Post canopy-corrected estimates over-estimated 

biomass consumption by 24.7%. We conclude that the correction is accurately measuring 

the energy at discrete locations given that these areas may have higher fuel loads, comprised 

mainly of longleaf pine litter, compared to those where canopy cover is reduced (Parresol et 

al. 2012). Also Hudak et al. (2015) observed that large woody fuels may have been 

undersampled during the field data collection, which would add significant energy to the 

FRE estimate. Another factor that could be causing the higher estimate of biomass 

consumption when applying canopy-correction is the partial combustion of needles and 

branches within the canopy itself that occurred during the fire. Burn severity maps may be 

used to identify areas that experienced increased fire severity in terms of tree mortality. 

These areas could be masked from the canopy-correction to reduce biasing the estimate. In 
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the northeastern area of the burn block (see Figure 6), we see that the area experienced 

roughly a 90% increase in the amount of biomass consumed compared to the average of the 

burn block. This increase can be attributed to either torching of individual trees or crowning 

fire. 

The high temporal resolution of the aerial thermal image acquisitions provided by 

the WASP system enabled capture of the peak power more precisely and with higher 

frequency than the typical sensors onboard polar orbiting satellites. Detailed information 

about the heating and cooling process enabled us to accurately estimate FRE for discrete 

locations within the burn unit. We were also able to record the energy release from the 

smoldering combustion and cooling process after the flaming fire front passed, which is 

typically lost due to the coarse spatial resolution of polar orbiting and geo-stationary 

satellites (Wooster et al. 2003). We were able to predict the amount of biomass consumed 

by the prescribed fire in the L2F forested burn block using kriging interpolation of FRE 

estimated from the airborne WASP sensor, compared to in situ field measurements of 

consumed biomass. Field consumption data estimated that 858.6 of the total 1350 Mg of 

biomass were consumed across the entire burned area of L2F. Canopy corrected estimated 

biomass consumed from the WASP sensor resulted in 873.9 Mg overestimating field 

measured consumption by 5.4%. The need to account for canopy in FRE estimates is evident 

in that pre canopy-corrected underestimated consumption by nearly 257.3 Mg, with 601.3 

Mg of total consumed biomass or 44.5% consumption (Table 2). 

The relationship between observed FRE and consumed biomass is also affected by 

the water content of the fuels, because the heating and evaporation of water in the fuels 
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consume energy. Therefore to achieve similar observed FRE measurements more biomass 

would need to be consumed as fuel moisture increases (Smith et al. 2013a). For example, 

estimating the water content of our fuels at 10% would increase our total biomass consumed 

from canopy corrected kriging estimate from 873.9 to 952.3 Mg. While this overestimates 

field measurements by 10.9% it was noted that field measurements may have undersampled 

large woody fuels. Furthermore, surface fuel consumption does not account for the biomass 

consumed by torching of tree canopies. Therefore, future studies may more accurately 

estimate the biomass consumed by the fire if fuel moisture measurements are available.  

Temporal Sampling 

 Despite the similarities between maximum FRP values and distribution of 

observations given in Figure 3, we found that the use of the trapezoidal method of 

integration can lead to significant underestimation of FRE.  Even under a high level of 

sampling with 90 observations over the duration of the fire in this particular location (~ 1.5 

hours) the maximum FRP value was only observed once. Likewise dropping to 67 

observations a single observation of maximum FRP was acquired, the next closest 

observation was ~ 4000 W m-2 lower than the max FRP observed (see Figure 3B). This 

confirms what is already known about the issues of temporal undersampling of satellite 

based methods for FRP estimation. We show in detail that it is very unlikely that peak power 

will be observed from a polar orbiting sensor (Roy et al. 2006; Kremens et al. 2010). While 

multiple observations of FRP were achieved at discrete location, FRE derived from minimal 

observations (n = 10) reduced the estimated FRE by as much as 80% (Table 1). 
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Conclusion 

The need to accurately account for the amount of biomass consumed during wildfires 

is a necessity for the atmospheric modeling community and for a better understanding of the 

global carbon budget. This study has shown that given adequate spatiotemporal resolution 

imagery, it is possible to accurately estimate FRE and biomass consumption under varying 

canopy cover conditions. Unlike studies conducted with satellite data, the temporal 

resolution of data obtained from sensors mounted on an airplane was adequate to estimate 

discrete measurements of FRE giving reliable points for spatial interpolation. The methods 

described in Chapter 1 have proved to be a useful technique in correcting for canopy cover 

when estimating FRE in a forested system. Kriging proved to be a reliable method for 

interpolation from the discrete measurement despite the lack of data in the eastern portion of 

the burn block (see Figure 5). 

To accurately estimate the amount of biomass consumed during a fire from FRE 

estimates, many factors needed to be accounted for outside of the spatiotemporal 

undersampling that is typical with current satellite based sampling methods. Here we have 

addressed the need to correct for the obscuration of radiant energy by a forest canopy, but 

fuel moisture, topography, fuel loading characteristics, and ground validation, as recognized 

by others, still need to be addressed (Freeborn et al. 2008; Kremens et al. 2010; Smith et al. 

2013b).  
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Table 1. Error associated with the number of observations given the assumed total energy, 

47.16 (MJ), by the pixel with the highest number of observations (127). Confidence 

intervals for the energy estimated along with the percent of total energy estimated.  

Point Id = 

2165414 
n =127 FRE (MJ) = 47.16 

Confidence Int. 

(MJ) 

% Est. 

Confidence 

Observations 
Mean 

(MJ) 

Std. 

Dev 

% Energy 

Capturing 
lower upper lower upper 

n=5 24.4 15.5 51.7 0 55 0 116 

n=10 31.74 11.5 67.3 9 54 20 115 

n=20 36.98 7.89 78.4 22 52 46 111 

n=30 39.57 6.33 83.9 27 52 58 110 

n=40 40.68 5.22 86.3 30 51 65 108 

n=50 41.69 4.28 88.4 33 50 71 106 

n=60 42.74 3.65 90.6 36 50 75 106 

n=70 43.86 3.12 93.0 38 50 80 106 

n=80 44.31 2.7 94.0 39 50 83 105 

n=90 45.14 2.34 95.7 41 50 86 105 

n=100 45.8 2.04 97.1 42 50 89 106 

n=110 46.5 1.64 98.6 43 50 92 105 

n=120 46.95 1.06 99.6 45 49 95 104 
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Table 2. Summary of the results from the integration to FRE and the block wide FRE 

estimates from kriging interpolation. Biomass consumptions are all reported following 

Wooster et al. (2005) and are very similar to those measured in the field (58.9) Hudak et al. 

(2015). Biomass was calculated across the burn block using average field measurements. 

Total biomass available for consumption for total burned area is 1,350,000 kg and 513,000 

kg for the discrete measurements of FRE.  

 

FRE (MJ) 

(Discrete 

Measurements) 

FRE (MJ) 

(Kriging 

Interpolation) 

Biomass 

Consumption 

(Mg) 

(Discrete) 

Biomass 

Consumptio

n (Mg) 

(Kriging) 

Percent 

Consumed 

Discrete 

(Kriging) 

Pre-Correction 812,497 1,633,840 298.9 601.3 58.3 (44.5) 

Post-

Correction 
1166531 2,374,757 429.3 873.9 83.6 (64.7) 
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Figure 1. Study area map of Eglin air force base in Northwestern Florida with clip plots for 

collecting fuel data. 
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Figure 2. L2F forested plot with all 568 images containing at least one fire pixel.  The green 

hatched area represents the unburned portion of the L2F burn block. No FRP observations 

were recorded in these pixels during the time of the burn and we assume that those pixels 

were unburned.  
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Figure 3. Complete time histories of four adjacent pixels with different number of 

observations recorded by the WASP sensor. (A) Pixel with a total of 90 observations and 

shows the entire heat up and cool down period of the fire. (B) Pixel with had a total of 67 

observations which retains a similar distribution to (A). (C) A pixel with 24 observations 

loses some of the initial heat up and the length of the cool down time observed in (A). (D) A 

pixel with 10 observations keeps a similar maximum value but loses much of the heat up 

and cool down period of the fire. Integrating to FRE (in Mega Joules) using the trapezoidal 

method of integrating gave 13.33, 10.76, 7.9, and 3.1 (MJ m-2) for pixels A, B, C, and D 

respectively.  
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Figure 4. Map of the error associated with each point based on the number of observations 

made by the WASP sensor, total possible energy is 47.16 (MJ m-2). Confidence Intervals 

are based on subsampling a point with 127 observations over the duration of the fire.  
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Figure 5. Map of FRE for pre-canopy correction, (A) and (B) along with post canopy 

correction. Total increase between pre and post correction was 354.1 MJ which resulted in 

an increase in biomass consumed by 130.3 Mg.  
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Figure 6. Estimation of biomass consumption for (A) uncorrected and (B) canopy corrected 

using Wooster et al.’s (2005) conversion between FRE and consumed biomass. The canopy 

correction increased the amount of biomass consumed by 130.3 Mg across the 47 hectares. 

Most apparent changes occur in extremely high valued areas from the uncorrected image. 
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Figure 7. Map of the Kriging interpolation for both (a) pre and (b) post canopy corrected 

FRE estimates. It is difficult to see the degree of change at the plot level. The difference in 

FRE is 1,633.8 and 2,374.8 MJ respectively which resulted in a difference of 272.6 Mg of 

biomass consumed.  
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Appendix A 

R-Code for Statistical Analysis of Laboratory Data 
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Fitting a Non-Linear Least Squares Model to Find the Average Asymptote 

 

data <- read.csv("H:\\Cali_All.csv", header = T) 

 

### a = approx. asymptot, b = a - intercept, c = c= -log((a-y)/b)/x where y is the steepest part 

of curve and x is x value under y 

 

modelcc<-nls(data = data, Green_Nine ~ a-b*exp(-c*Time), start = 

list(a=1200,b=200,c=0.06931), control=nls.control(maxiter=200)) 

modelnb <- nls(data = data, Green_NineNB ~ a-b*exp(-c*Time), start = list(a=2700, 

b=1700, c=0.0318), control=nls.control(maxiter=200)) 

confint(modelcc) 

confint(modelnb) 

summary(modelcc) 

summary(modelnb) 

 

Fitting Linear Models to Canopy Cover and Fraction of Sensor Reaching FRP 

 

green <- read.csv("H:\\Moscow_CanopyObscuration\\Outputs\\Green.csv", header = T) 

des <- read.csv("H:\\Moscow_CanopyObscuration\\Outputs\\Desiccated.csv", header = T) 

 

intercept <- 1.0 

fit <- lm(I(MW.Ratio - intercept) ~ 0 + X..Cover, green) 

fit2 <- lm(I(MW.Ratio - intercept) ~ 0 + X..Cover, des) 

summary(fit) 

summary(fit2) 
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Appendix B 

R-Code for Analysis of Field Data Collected from RxCADRE 
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Reordering Data for Analysis 

 

L2F_first <- read.csv("H:\\RxCADRE_L2F_2012\\Excel\\Quart1.csv", header = T) 

L2F_second <- read.csv("H:\\RxCADRE_L2F_2012\\Excel\\Quart2.csv", header = T) 

L2F_third <- read.csv("H:\\RxCADRE_L2F_2012\\Excel\\Quart3.csv", header = T) 

L2F_fourth <- read.csv("H:\\RxCADRE_L2F_2012\\Excel\\Quart4.csv", header = T) 

 

L2F_first <- L2F_first[,c(3:574)] 

L2F_second <- L2F_second[,c(3:574)] 

L2F_third <- L2F_third[,c(3:574)] 

L2F_fourth <- L2F_fourth[,c(3:574)] 

 

mask1 <- subset(L2F_first, count == 0) 

mask2 <- subset(L2F_second, count == 0) 

mask3 <- subset(L2F_third, count == 0) 

mask4 <- subset(L2F_fourth, count == 0) 

mask <- rbind(mask1,mask2,mask3,mask4) 

write.csv(mask, file = "F:\\RxCADRE_L2F_2012\\Excel\\Mask.csv") 

 

newl2f1 <- subset(L2F_first, count >= 10) 

newl2f2 <- subset(L2F_second, count >= 10) 

newl2f3 <- subset(L2F_third, count >= 10) 

newl2f4 <- subset(L2F_fourth, count >= 10) 

 

newl2fmelt1 <- melt(newl2f1, id.vars = c("pointid", "count", "POINT_X", "POINT_Y")) 

names(newl2fmelt1)[names(newl2fmelt1) == 'variable'] <- 'time' 

newl2fmelt2 <- melt(newl2f2, id.vars = c("pointid","count", "POINT_X", "POINT_Y")) 

names(newl2fmelt2)[names(newl2fmelt2) == 'variable'] <- 'time' 

newl2fmelt3 <- melt(newl2f3, id.vars = c("pointid","count", "POINT_X", "POINT_Y")) 

names(newl2fmelt3)[names(newl2fmelt3) == 'variable'] <- 'time' 

newl2fmelt4 <- melt(newl2f4, id.vars = c("pointid","count", "POINT_X", "POINT_Y")) 

names(newl2fmelt4)[names(newl2fmelt4) == 'variable'] <- 'time' 

 

newl2fmelt1$time <- gsub("X", "", newl2fmelt1$time) 

newl2fmelt1$time <- gsub(".", ":", newl2fmelt1$time, fixed = T) 

newl2fmelt1$time <- strptime(newl2fmelt1$time, "%H:%M:%S") 

newl2fmelt1$time <- as.POSIXct(newl2fmelt1$time) 

newl2fmelt1$pointid <- as.factor(newl2fmelt1$pointid) 

newl2fmelt2$time <- gsub("X", "", newl2fmelt2$time) 

newl2fmelt2$time <- gsub(".", ":", newl2fmelt2$time, fixed = T) 

newl2fmelt2$time <- strptime(newl2fmelt2$time, "%H:%M:%S") 

newl2fmelt2$time <- as.POSIXlt(newl2fmelt2$time) 

newl2fmelt2$pointid <- as.factor(newl2fmelt2$pointid) 

newl2fmelt3$time <- gsub("X", "", newl2fmelt3$time) 

newl2fmelt3$time <- gsub(".", ":", newl2fmelt3$time, fixed = T) 

newl2fmelt3$time <- strptime(newl2fmelt3$time, "%H:%M:%S") 
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newl2fmelt3$time <- as.POSIXlt(newl2fmelt3$time) 

newl2fmelt3$pointid <- as.factor(newl2fmelt3$pointid) 

newl2fmelt4$time <- gsub("X", "", newl2fmelt4$time) 

newl2fmelt4$time <- gsub(".", ":", newl2fmelt4$time, fixed = T) 

newl2fmelt4$time <- strptime(newl2fmelt4$time, "%H:%M:%S") 

newl2fmelt4$time <- as.POSIXlt(newl2fmelt4$time) 

newl2fmelt4$pointid <- as.factor(newl2fmelt4$pointid) 

 

start_time <- newl2fmelt1$time[1] 

newl2fmelt1$seconds <- start_time - newl2fmelt1$time 

newl2fmelt1$seconds <- as.numeric(newl2fmelt1$seconds*-1) 

start_time2 <- newl2fmelt2$time[1] 

newl2fmelt2$seconds <- start_time2 - newl2fmelt2$time 

newl2fmelt2$seconds <- as.numeric(newl2fmelt2$seconds*-1) 

start_time3 <- newl2fmelt3$time[1] 

newl2fmelt3$seconds <- start_time3 - newl2fmelt3$time 

newl2fmelt3$seconds <- as.numeric(newl2fmelt3$seconds*-1) 

start_time4 <- newl2fmelt4$time[1] 

newl2fmelt4$seconds <- start_time4 - newl2fmelt4$time 

newl2fmelt4$seconds <- as.numeric(newl2fmelt4$seconds*-1) 

 

sub_new1 <- (newl2fmelt1[sample(which(newl2fmelt1$value >0)),]) 

ordered1 <- (sub_new1[order(sub_new1$seconds),]) 

sub_new2 <- (newl2fmelt2[sample(which(newl2fmelt2$value >0)),]) 

ordered2 <- (sub_new2[order(sub_new2$seconds),]) 

sub_new3 <- (newl2fmelt3[sample(which(newl2fmelt3$value >0)),]) 

ordered3 <- (sub_new3[order(sub_new3$seconds),]) 

sub_new4 <- (newl2fmelt4[sample(which(newl2fmelt4$value >0)),]) 

ordered4 <- (sub_new4[order(sub_new4$seconds),]) 

 

point_1 <- newl2fmelt4[newl2fmelt4$pointid == 3843884,] 

point1 <- newl2fmelt1[newl2fmelt1$pointid == 2236726,] 

point2 <- newl2fmelt1[newl2fmelt1$pointid == 2236727,] 

point3 <- newl2fmelt1[newl2fmelt1$pointid == 2236728,] 

point4 <- newl2fmelt1[newl2fmelt1$pointid == 2236729,] 

point5 <- newl2fmelt1[newl2fmelt1$pointid == 2236790,] 

 

Integrating FRP to FRE and Bootstrapping FRP Subsamples 

 

set.seed(5) 

sample = NULL 

mn = NULL 

repeat{ 

  sub_sample <- (point_1[ sample( which(point_1$value> 1070), 20), ]) 

  new_sample <- sub_sample[order(sub_sample$seconds),] 

  a <- trapz(new_sample$seconds, new_sample$value) 
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  sample <- append(sample,a) 

  mn <- append(mn, mean(sample)) 

  plot(new_sample$seconds, new_sample$value, type= "l") 

  len <- length(sample) 

  if (len > 10) 

    break; 

} 

 

mean(sample) 

sd(sample) 

 

points1 <- split(ordered1, ordered1$pointid, drop = FALSE) 

points2 <- split(ordered2, ordered2$pointid, drop = FALSE) 

points3 <- split(ordered3, ordered3$pointid, drop = FALSE) 

points4 <- split(ordered4, ordered4$pointid, drop = FALSE) 

 

FRE1 <- NULL 

FRE2 <- NULL 

FRE3 <- NULL 

FRE4 <- NULL 

id <- unique(newl2fmelt1$pointid) 

id2 <- unique(newl2fmelt2$pointid) 

id3 <- unique(newl2fmelt3$pointid) 

id4 <- unique(newl2fmelt4$pointid) 

 

for (i in points1){ 

  FRE_1 <- trapz(i$seconds, i$value) 

  #print(FRE_1) 

  FRE1 <- append(FRE1,FRE_1) 

} 

for (i2 in points2){ 

  FRE_2 <- trapz(i2$seconds, i2$value) 

  #print(FRE_2) 

  FRE2 <- append(FRE2,FRE_2) 

} 

for (i3 in points3){ 

  FRE_3 <- trapz(i3$seconds, i3$value) 

  #print(FRE_3) 

  FRE3 <- append(FRE3,FRE_3) 

} 

for (i4 in points4){ 

  FRE_4 <- trapz(i4$seconds, i4$value) 

  print(FRE_4) 

  FRE4 <- append(FRE4,FRE_4) 

} 
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fredf1 <- data.frame(id, FRE1) 

fredf2 <- data.frame(id2, FRE2) 

fredf3 <- data.frame(id3, FRE3) 

fredf4 <- data.frame(id4, FRE4) 

 

names(fredf1)[names(fredf1) == 'FRE1'] <- 'FRE' 

names(fredf1)[names(fredf1) == 'id'] <- 'pointid' 

names(fredf2)[names(fredf2) == 'FRE2'] <- 'FRE' 

names(fredf2)[names(fredf2) == 'id2'] <- 'pointid' 

names(fredf3)[names(fredf3) == 'FRE3'] <- 'FRE' 

names(fredf3)[names(fredf3) == 'id3'] <- 'pointid' 

names(fredf4)[names(fredf4) == 'FRE4'] <- 'FRE' 

names(fredf4)[names(fredf4) == 'id4'] <- 'pointid' 

 

total <- rbind(fredf1, fredf2, fredf3, fredf4) 

write.csv(total, file = "F:\\RxCADRE_L2F_2012\\Total_New_FRE.csv" ) 

 


