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ABSTRACT 

  

Landslide activity in Oregon causes more than $1 billion in property damage every 

year, and has resulted in several casualties over the past decades. The steep topography of the 

region, high-intensity precipitation events during the winter months, and easily weathered 

parent material, contribute to frequent slope failures in western Oregon. This study conducted 

a statistical landslide susceptibility assessment to evaluate the effects of geologic, 

morphologic, physical, and anthropogenic factors on landslide occurrence. Slope, erosion 

potential, hydrologic soil classes, volcanic and sedimentary geologic material, aspect, and 

curvature were identified as important predictors. A comparative analysis of traditional 

logistic regression (LR) and geographically weighted logistic regression (GWLR) was 

completed for the study area. The regression results from the LR and GWLR models were 

compared based on AIC, percentage of deviance explained, and prediction accuracy. The 

outputs demonstrated that GWLR outperformed standard LR in all models. GWLR improved 

prediction accuracy by 6.2% compared to traditional LR. 
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CHAPTER 1: BACKGROUND AND RESEARCH QUESTIONS 

 

It is estimated that landslides in the United States are responsible for 25 to 50 deaths 

annually, as well as damages over $1 billion (Sidle & Ochiai, 2006). With an increasing 

number of people residing and recreating in mountainous regions, the likelihood of loss of life 

and property continues to rise. There are numerous reasons why settlement occurs in 

potentially hazardous areas, including but not limited to, space constraints or a lack of 

financial mobility. Especially in developing nations, the latter is a problematic aspect that 

frequently results in widespread destruction of property, casualties, and severe personal 

hardship. Since mountains have always played an integral role in the development of culture 

and the creation of a viable economy (Price & Butt, 2000), it is not feasible to simply restrict 

settlement and the construction of infrastructure in mountainous terrain. In the Pacific 

Northwest, for instance, transportation routes are confined to valleys due to the topography of 

the region. They allow for the fast and efficient relocation of goods and services from inland 

locations to coastal cities. Road and railroad networks are frequently subject to landslide 

activity which not only endangers human life, but also causes substantial economic damage. 

Currently, there is no efficient alternative that avoids landslide prone areas completely. For 

that reason, communities in the Northwest and other mountainous parts of the world rely on 

accurate landslide predictors to enhance planning efforts and promote resilience.  

Although landslides are accountable for considerable destruction and causalities, it is 

also reported that, in some cases, they are necessary agents providing positive effects for 

ecosystems and biodiversity (Geertsema & Pojar, 2007; Restrepo, et al., 2009). For instance, 

landslides are responsible for significant amounts of natural sediment and biomass in streams 

around the world (Sidle & Ochiai, 2006). Besides adding nutrients to stream systems, large 

woody debris can establish vital pools, encourage periphyton growth, a valuable food source 

for invertebrates, and provide stream shading and shelter to aquatic species. In systems free of 

human interference, landslide activity is controlled by natural processes. However, due to 

increasing anthropogenic influences, extent and frequency of slope movement has been 

altered and continues to change in a rapid way. Many of the physical factors that are 

associated with landslide activity, such as landcover change, rainfall intensity, or water-level 

fluctuation, for example, are directly and indirectly impacted by human activity. Therefore, it 
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is essential to integrate a large variety of physical components in landslide modeling efforts. 

The variance of model parameters across space make regional landslide susceptibility analysis 

challenging. Nonetheless, regional assessment is indispensable for effective, long-term 

planning. By incorporating future climate and land use projections, it would be possible to 

model landslide dynamics and evaluate changes in susceptibility on a temporal scale. This 

would allow land managers to implement zoning changes and adjust management strategies to 

reduce the effects of devastating slope failure events. 

The main goal of this chapter is to convey necessary background knowledge about the 

types and processes of slope movement. It includes an overview of common terminology, 

information about landslide classification schemes, a comprehensive summary of factors 

influencing landslide susceptibility, a section providing context about the role of climate, and 

an outline of various modeling approaches currently available. In view of the complexity of 

this topic and variations in vocabulary among the disciplines involved in landslide research, it 

is essential to define the scope of this research. This study does not focus on the mechanical 

processes that govern slope failure. Instead, emphasis is put on the statistical methodology 

used to model the events and the effects that climate and other predictors have on the spatial 

distribution of landslide activity. 

 

TERMINOLOGY 

 

The process of slope failure in mountainous regions is a geomorphic phenomenon that 

has a long history of altering terrain by eroding and depositing sediment. Landslides are 

responsible for terrestrial diversity and present a powerful force that is shaping the landscape. 

There is a variety of terms that have been utilized to describe this process. Slope failure, mass 

movement, mass wasting, and landslide all define the redistribution of earth masses from 

areas of high to low topographic relief. For that reason, a landslide is a complex form of 

disturbance. Even though classifications and terminology can vary widely, in the United 

States, a landslide is defined as “the movement of a mass of rock, debris or earth down a 

slope” (Cruden D. M., 1991). Gravity is hereby the driving force which clearly distinguishes 

it from other forms of surface erosion where water or wind are the principal transport agents. 

During the process of shallow slope movement (depth <2 m), weaker, upper layers of slope 
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material separate from more stable bed rock. The underlying causes for this separation will be 

discussed later in the chapter. In the case of deep-seated landslides (depth >5 m), weathered or 

fractured bedrock itself can be found among the slide material (Sidle & Ochiai, 2006). While 

shallow landslides are very responsive to individual precipitation or snowmelt events, the 

responsiveness of deep-seated landslides to rainfall mainly dependents on the hydraulic 

properties of the bedrock and soil (Sidle & Ochiai, 2006). 

 

LANDSLIDE TYPES 

 

Besides a distinction between shallow and deep-seated slope failures, the colloquial 

term “landslide” encompasses several different movement types. Even though a variety of 

landslide classification systems have been proposed over the years (Sharpe, 1938; Keefer, 

1984; Hutchinson, 1988), the most widely used scheme in the United States follows the 

system developed by Varnes (1978). It was adopted by the United States Geological Survey to 

explain different types of ground movement and is, for that reasons, utilized in this study. 

Table 1 illustrates the schematics of Varnes’ original classification. An updated version of this 

organization, which encompasses additional parameters like water content and movement 

rates, is illustrated in Cruden and Varnes (1996). The updates significantly enhance the 

number of slope failure classification options available to researchers. None the less, it 

becomes important to note that each individual classification system has a particular 

applicability for approaching the topic of landslides (Sidle & Ochiai, 2006). Scope and 

research objectives must be considered before attempting the selection of a specific 

classification system. 

Knowledge about parent material and type of movement are essential for classifying a 

landslide (Cruden & Varnes, 1996). Rock, debris, and earth describe commonly used types of 

material. Falling, toppling, sliding, spreading, flowing, or a combination thereof, categorize 

downslope movement of mass (Sidle & Ochiai, 2006). Consequently, combining material and 

movement results in a landslide classifications as proposed by Varnes (1978), namely “rock 

fall”, “debris flow”, or “earth slide”, for example. Slides can be classified as “complex’ when 

at least two different types of movement occur within a single slope failure (Varnes, 1978). 

Since various types of movement can predominate in different parts of the moving slope, 
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Cruden and Varnes (1996) recommend further sub-classification into “complex”, 

“composite”, “multiple”, “successive”, and “single”. 

 

Table 1. Abbreviated Classification of Slope Movement (Varnes, 1978) 

          

Type of movement 

Type of material 

Bedrock 

Engineering Soils 

Predominantly Predominantly 

Coarse Fine 

Falls Rock fall Debris fall Earth fall 

Topples Rock topple Debris topple Earth topple 

Slides 
Rotational 

Rock slide Debris slide Earth slide 
Translational 

Spreads Rock spread Debris spread Earth spread 

Flows 
Rock flow Debris flow Earth flow 

(deep creep) (soil creep) (soil creep) 

Complex  (i.e., combinations of two or more types of movement) 

          

     
 

When incorporating temporal aspects into the classification scheme, complexity is 

enhanced further. The rate of movement of a slope failure can be highly variable. Landslides 

occur within seconds, or in the case of a creep, over months or even years. Cruden and Varnes 

(1996), therefore, propose a seven-class velocity scheme that ranges from 16mm/year to 5m/s 

and allows researchers to establish a correlation between velocity and damage probability. In 

general, the higher the velocity of a landslide, the greater the likelihood of loss of life and 

property destruction. Risk assessment can also be supplemented by knowledge about the size 

of a slide event, since large, moderate velocity movements are far less damaging than small, 

rapid failures (Cruden & Varnes, 1996).  

Even though detailed descriptions and classifications of slope movement are helpful 

for engineers and geotechnical staff, Sidle and Ochiai (2006) caution that this complexity can 

be confusing to land managers. For assessing land management impacts and landslide risk, it 

is most important to focus on size, rate of movement, response to climate and seismic activity, 

as well as susceptibility to anthropogenic factors (Sidle & Ochiai, 2006). Researchers must be 

understand that each method of classification has certain limitations. This is demonstrated by 

a case study of the prehistoric Blackhawk landslide in the San Bernardino Mountains (Cruden 
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& Varnes, 1996). As discussed in the literature, it would be extremely challenging to assess 

water content, rate of movement, and other necessary parameters without a thorough 

investigation shortly after the event. In the case of prehistoric landslides or slope failures in 

remote locations that are discovered years after the event, proper reconstruction of important 

parameters may not be feasible. A simpler classification method might be better suited in 

these instances. 

As mentioned earlier, after the introduction of Varnes’ original 1978 classification 

scheme, only minor changes were attempted in subsequent years (Sidle & Ochiai, 2006). In 

the United States, government agencies and researchers appreciate the original classification 

for its simplicity and applicability to a variety of management situations. After careful 

consideration, it was decided to also apply Varnes’ original 1978 classification scheme for the 

purpose of this study. Scope, objective, and audience make it the most appropriate choice. 

 

LANDSLIDE CAUSES 

 

The causes of landslides are numerous but can be categorized into four classes: 

geologic, morphologic, physical, or anthropogenic (Cruden & Varnes, 1996). A distinction 

between natural and management-induced landslide causes becomes increasingly difficult in 

view of substantial anthropogenic changes imposed on the system. Seemingly natural events 

like precipitation patterns, are progressively influenced by anthropogenic forcing. This 

denotes that warming global temperatures alter the frequency and intensity of precipitation 

events. It is, therefore, challenging to establish a distinct classification of influencing factors. 

Overlap, as well as some level of uncertainty in the classification is inevitable. 

Although a landslide can have several different causes, there can only be one trigger 

that initiates the slope movement (Wieczorek, 1996). Triggers are described as an “external 

stimulus…that causes a near-immediate response in the form of a landslide by rapidly 

increasing the stresses or by reducing the strength of slope materials” (Wieczorek, 1996). A 

list of landslide causes, is for that reason, also a comprehensive list of possible landslide 

triggers. The question of landslide occurrence depends heavily on other causal factors that 

simultaneously weaken a slope. In most instances, slope failure transpires after an interplay of 

several unfavorable conditions. Slopes that have been previously weakened by intensive 
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logging or bank cutting may be more susceptible to triggers than heavily vegetated hillsides 

with excellent drainage properties. 

An array of landslide causes is discussed in the scientific literature, including but not 

limited to the geologic composition of parent materials, vegetation cover, or the lack thereof, 

rainfall and snowmelt, slope alterations during road construction, seismic activity, and 

excessive irrigation of hillsides (Sidle & Ochiai, 2006; Swanson & Swanston, 1977; Varnes, 

1978; Wieczorek, 1996; Van Asch, Buma, & Van Beek, 1999). At the core, these factors 

encourage slope failure by either increasing shear stress, contributing to low strength, or 

reducing material strength (Cruden & Varnes, 1996). Natural or anthropogenic processes can 

remove lateral support, steepen slopes, impose surcharges, or weaken internal cohesion. 

Landslide causes have far-reaching implications for the physical properties of the soil mantle, 

and govern the interplay between forces that are acting to either initiate or resist slope failure 

(Swanston D. N., 1984). 

 

Geologic Factors 

 

The geologic composition of the slope material is of tremendous importance for 

landslide susceptibility and risk assessment. Contrasts in, permeability, strength, and 

weathering, can cause certain rock types to be more prone to landslide activity than others. 

Over time, parent material can have deteriorated through natural processes. The geologic 

properties of material have far-reaching implications for particle size distribution, as well as 

the degree and depth of weathering (Swanston D. N., 1984). Texture of the parent material 

governs cohesion and angle of internal friction (Swanston D. N., 1984). It plays a role in the 

relative stability of a slope. However, parameters like water holding capacity and the slope 

gradient also need to be considered for this assessment. In some cases, it is also possible to 

find terrain that is underlain by intrinsically weak slope material. Decomposed rocks, such as 

chemically weathered volcanic tuffs, schists, and serpentinites may possess lower natural 

strength (Cruden & Varnes, 1996). Due to variations in density, geologic materials have 

differing levels of relative strength, the ability to resist failure. Unfavorable locations of fault 

lines, orientation of bedding, or schistosity, for example, can further enhance landslide 

susceptibility (Cruden & Varnes, 1996).  
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In the Pacific Northwest, extensive research has established a relationship between 

geologic composition and landslide susceptibility (Swanston & Swanson, 1976; Swanson & 

Swanston, 1977; Swanston D. N., 1984). It is asserted that especially on the western side of 

the Cascade Mountains, humid, high-precipitation conditions stimulate chemical weathering 

and result in the transformation of volcaniclastic rocks to clays (Swanston D. N., 1984). The 

process is locally extensive and signifies that hillsides underlain by fine-grained sedimentary, 

weathered volcaniclastic, and serpentine-rich rocks, as well as glacio-lacustrine silts and clays 

are susceptible to slope failures if sufficient water input is available (Swanston & Swanson, 

1976). Thus, these parent materials are less prone to landsliding on the semi-arid, eastern side 

of the Cascades (Swanston D. N., 1984).       

Geologic maps are frequently used in developing nations for susceptibility analysis 

because of their broad availability (Sidle & Ochiai, 2006). However, since the strength of 

bedrock is region specific and driven by the extent of weathering, as well as the amount of 

water infiltration, the utility of solely geologic hazard models is problematic. Yet, knowledge 

about the parent material is certainly useful as a general indicator of relative soil stability 

(Swanston D. N., 1984). 

 

Morphologic Factors 

 

Morphologic causes of landslide activity include natural processes such as tectonic 

uplifting, glacial rebound, various forms of erosion at the toe of a slope, deposition of material 

at the crest, or vegetation removal through forest fires, insects, and drought (Cruden & 

Varnes, 1996). By altering slope gradients through tectonic activity, hillsides may steepen and 

form fractures. This condition is widespread in the Cascade Range where a chain of 

volcanoes, extending from British Columbia to northern California, has created substantial 

slope angles. Oversteepened valleys are also frequently formed by glacial movements that cut 

deep into the local bedrock, or by rivers and streams that remove material through fluvial 

processes (Varnes, 1978). Steep gradients increase shear stress, and resulting fractures allow 

fluids to infiltrate a hillside at a much faster rate. Intrusion of snowmelt and precipitation 

enhance pore-water pressure and expedite weathering (Cruden & Varnes, 1996; Swanson & 

Swanston, 1977). The lateral pressure created by seepage may intensify when temperature 
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driven swelling and freezing occurs within the slope (Varnes, 1978). The combination of mild 

temperatures and high water content expedites the rate of chemical weathering. It can alter the 

overall cohesion strength of bedrock. This phenomenon is particularly prevalent on the 

western slopes of the Cascades where a transformation of minerals to clays and clay-size 

particles due to humid conditions is evident (Swanston D. N., 1984). 

With the addition of material onto slopes through glaciers, volcanic activity, or wind, 

significant changes in terms of weight, length, and height may alter overall stability. Rapid 

modifications of the weight distribution can cause slope failures, or impact the resilience to 

other triggering mechanisms. Retreating and thinning glaciers in the Cascades left behind 

large amounts of unconsolidated deposits that are easily mobilized (O'Connor, Hardison, & 

Costa, 2001). This material can be rapidly redistributed through processes like debris flows, 

glacial outburst floods, or moraine-dammed lake failures, for instance, resulting in a surcharge 

of material onto slopes, thus enhancing sheer stress. Added weight from vegetation, 

snowpack, or intense rainfall causes similar outcomes (Varnes, 1978). 

When material is removed, particularly at the toe of a slope, stability is also impaired. 

In terms of morphologic forms of removal, Cruden and Varnes (1996) list erosion by waves, 

glaciers, and other fluvial processes. During flooding events, the hydrologic force of water 

can erode underlying support and trigger a slope failure. Subterranean erosion, the removal of 

soluble material, can have similar effects on cohesion strength (Varnes, 1978). In a case study 

focusing on the Zentoku landslide in Japan, a link between high intensity rainfall and 

underground erosion was established (Hong, Yu, & Wu, 2011). For shear zones between five 

and twenty meters, subterranean erosion was found to be most influential (Hong, Yu, & Wu, 

2011). A temporary surge in groundwater flow lead to a removal of material in the shallow 

and medium depths which facilitated failure. 

       

Physical Factors 

 

One of the most important physical causes of slope movement involve the role of 

water through intense rainfall, rapid snowmelt, or changes in water level near rivers, lakes, or 

reservoirs (Cruden & Varnes, 1996). Precipitation and varying ground-water levels, among 

others, result in slope saturation which weakens hillsides and increases landslide risk. Rapid 
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infiltration of rain water temporarily raises pore pressure, and the additional weight of the 

water increases the load on a potentially unstable slope. Piezometric levels control weight and 

the development of positive pore pressure which reduces the overall resistance of the soil to 

sliding (Swanson & Swanston, 1977). Many of these hydrologic landslide triggers are 

correlated to large-scale climatologic processes that transform our planet in a rapid way. 

Especially the effects of shifting precipitation patterns, in terms of magnitude and frequency, 

have far-reaching consequences for the distribution of landslides (Dhakal & Sidle, 2004). In 

addition to intense rainfall events, prolonged periods of above-average precipitation can 

saturate hillsides and result in slope failure (Cardinali, et al., 2006). An extreme precipitation 

event, accounting for 21% of the annual mean rainfall in parts of the Czech Republic in July 

1997, triggered a series of landslides that caused widespread destruction of buildings, 

transportation networks, and reservoirs (Krejčı́, et al., 2002).  

Precipitation thresholds have been extensively studied and present an important aspect 

of landslide susceptibly analysis (Dhakal & Sidle, 2004; Van Asch, Buma, & Van Beek, 

1999; Caine, 1980; Guzzetti, Peruccacci, Rossi, & Stark, 2007; Glade, Crozier, & Smith, 

2000; Dahal & Hasegawa, 2008; Crozier, 1999). Generally, after a certain threshold of 

cumulative precipitation and maximum hourly rainfall intensity is exceeded, slope failure 

occurs (Sidle & Ochiai, 2006). It is extremely difficult to establish overarching thresholds for 

the level of saturation. Thresholds are region specific and vary based on geologic parent 

material, vegetation cover, and slope drainage capabilities (Van Asch, Buma, & Van Beek, 

1999). Furthermore, saturation resulting from a combination of water inputs, such as 

snowmelt and intense rain, can cause failure earlier since the total amount of water imposed 

on the hillside is much higher. As mentioned before, in cases where fractures within the soil 

mantle and bedrock are present, it is much easier for water to infiltrate deep into the hillside 

(Sidle & Ochiai, 2006). Consequently, pore pressure is increased. The total amount of 

moisture that can be facilitated by slopes depends on the water-holding capacity which is 

influenced by antecedent soil moisture and soil texture (Sidle & Ochiai, 2006).  

Additionally, the freezing and thawing of moisture has a number of adverse 

implications for slope stability. First, this seasonal process promotes freeze-and-thaw 

weathering and causes a contraction or expansion of the slope material (Cruden & Varnes, 

1996). As a result, cracks are formed that allow water to flow deep into the hillside. Second, 
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steep terrain that receives its cohesion from ice is negatively affected when thawing occurs. 

Especially the melting of high-elevation permafrost reduces rock stability and enhances 

landslide activity (Stoffel, Tiranti, & Huggel, 2014). In particular, dry creep events could 

increase (Sidle & Ochiai, 2006).  

Other physical causes that have been linked to landslide activity include earthquakes 

and volcanic eruptions. Shaking of the ground may trigger mass movements in hillsides that 

have been weakened by other natural or anthropogenic processes. Earthquakes increase 

transitory stresses that alter the local stress field within a slope (Cruden & Varnes, 1996).  In 

some cases, it has also been reported that a reduction in shear strength can result from seismic 

activity (Varnes, 1978). When frequent earthquakes occur in an area, progressive creeping of 

the slope material may slowly deteriorate shear strength and create favorable conditions for 

slope failure. As mentioned prior, volcanic eruptions can also deposit material that overload a 

slope and cause it to fail. 

 

Anthropogenic Factors 

 

In addition to an array of natural processes that can result in slope failure, the role of 

human activity has become more important in recent decades. Extensive landuse and 

landcover changes in many parts of the world have severely altered the landscape. Large-scale 

development and industrial activities have imposed changes to landcover, climate, and 

hydrologic systems. Especially in mountainous regions, these alterations can have far-

reaching implications for landslide susceptibility. Anthropogenic causes of landslides can be 

categorized into direct and indirect effects. The former includes human activities that directly 

impact some aspect of slope stability, including but not limited to, toe excavation, slope 

loading, drawdown, irrigation, and deforestation (Cruden & Varnes, 1996). The latter 

describes activities that indirectly create favorable conditions for slope failure. For instance, it 

is likely that increased greenhouse gas emissions, resulting from human activity, are shifting 

global climate patterns. These shifts influence the duration, and intensity of precipitation 

which in turn affects slope stability. Due to the complexity of the system, it is often difficult 

to identify the underlying dynamics that encourage favorable changes to landslide parameters.     
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For decades, anthropogenic activity has played a direct role in slope stability. During 

the construction of infrastructure, for instance, landscapes are fundamentally altered. Cruden 

and Varnes (1996) assert that toe excavation can, similar to toe erosion, remove necessary 

support that resists failure. Likewise, mining activities, or urban and industrial development in 

mountainous regions, frequently remove slope material to create more suitable building    

surfaces. During this process, necessary lateral support is removed at the toe of slope. If 

insufficient reinforcement measures are employed during construction, slopes are left highly 

susceptible to landsliding and exposed to the elements. Urbanization and the consequential 

expansion of impervious surfaces may also lead to higher peak floods and enhanced discharge 

that quickly erodes lateral support (Bonnard, Tacher, & Beniston, 2008). Additionally, in 

cases where fill material is carelessly deposited onto a slope, the added weight can overload 

weak parent material and result in failure. The mechanics are comparable to weight 

surcharges by glaciers, volcanic activity, or heavy precipitation (Varnes, 1978).  

In addition to the structural changes presented thus far, road construction also changes 

natural hydrologic pathways (Sidle & Ochiai, 2006). Surface runoff is channeled in culverts 

and subsurface flow may be intercepted by impervious structures. Alteration of drainage 

dynamics for a hillslope may enhance its susceptibility to landslides, because a higher water 

table can result in meeting the saturation threshold much earlier. During rain events, poorly 

drained hillsides can take on less water before reaching complete saturation. Pore pressure 

may spike rapidly once full saturation has occurred. Generally, a decrease in intergranular 

pressure and friction can be observed (Varnes, 1978). In extreme cases, this liquification of 

the slope material may result in debris flows. Reaching the precipitation threshold can also 

result in surface runoff due to the soils inability to take on additional water. In these instances, 

rates of erosion are high and general stability is low (Varnes, 1984). It is important to note 

that the severity of these destabilizing factors depends heavily on design and construction 

standards (Sidle & Ochiai, 2006). Careful planning and proper geotechnical assessments can 

mitigate landslide risk. In view of staggering costs associated with this approach, however, 

crucial evaluations are often ignored.  

Rapid surges in pore pressure, resulting from drawdown or excessive irrigation 

describe an additional anthropogenic cause for landslide activity. The effects of sudden 

changes in water level are naturally prominent along coastlines, rivers, and lakes (Wieczorek, 
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1996). During flooding events or extreme droughts, water levels can fluctuate substantially. 

Yet, drawdown effects can be artificially created through rapid dewatering. Especially near 

reservoirs, with frequently changing water levels due to dams and other obstructions, pore 

pressure changes in hillsides can be observed. When water level rises, pore pressure within 

the hillside increases which reduces effective strength of the slope material (Wieczorek, 

1996). During drawdown, lateral support in banks along channels and reservoirs is removed 

(Varnes, 1984). The effects are similar to toe excavation during road construction. Increases 

in pore pressure are also observed after prolonged irrigation or pipe leakage (Sidle & Ochiai, 

2006). Improperly designed storm drainages that divert water onto unstable areas can also 

result in saturation of slope material. The effects of human induced alterations of hydrologic 

properties are comparable to prolonged rainfall events that fully saturate hillsides. The 

addition of weight and the liquification of slope material contribute to general instability 

Large-scale landcover changes can have a variety of impacts on the strength of slope 

material (Varnes, 1984). When considering the implications of deforestation for landslide 

susceptibility, it becomes apparent that by removing vegetation, several adverse conditions 

are created. First, bare hillsides absorb water faster which causes rapid increases in pore 

pressure to weaken the parent material. The additional weight imposed on the slope further 

intensifies stress. Second, without the additional cohesion strength of a dense root network, 

the soil mantle is more prone to landsliding (Sidle & Ochiai, 2006). Third, evapotransparitive 

properties of life vegetation help to regulate the water level within a slope. This ability is 

significantly impaired when extensive deforestation is occurring. Fourth, fluvial erosion, 

caused by altered runoff characteristics, may reduce toe strength and steepen an already 

stressed hillside. Subsequently, with enough water input from storm events or snowmelt, the 

probability of failure increases substantially. For that reason, it is essential to thoroughly 

analyze the impacts of various landslide causes and incorporate them in site development and 

construction activities. 

 

CLIMATE AND LANDSLIDES IN THE PACIFIC NORTHWEST 

 

In the Pacific Northwest, hydrologic, vegetative, and geologic factors have been 

repeatedly linked to mass movement events (Swanston D. N., 1984). Along Oregon’s coast, 
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landslide activity is prevalent in sedimentary rock and frequent during the rainy season which 

lasts from October to March (Schulz, Galloway, & Higgins, 2012). The combination of heavy 

precipitation, dependency on a vegetative cover, and weak geologic material can facilitate 

regional landslide risk. As outlined in the previous sections, the underlying causes of slope 

failure are well understood and extensively studied. However, the climatic factors that trigger 

landslides and the implications of climate change in the Pacific Northwest, find little 

acknowledgement in the scientific literature.  

The Pacific Northwest receives the majority of its annual precipitation during the 

winter months (O'Connor, Hardison, & Costa, 2001). Intense storm systems deliver 

significant amounts of moisture between October and March. In higher elevations, 

precipitation is stored as snowpack. Due to extended periods of rainfall, many slope failures 

occur during the winter months. As outlined previously, the constant delivery of moisture may 

result in a complete saturation of the slope material. The additional weight of the water, as 

well as enhancements in pore pressure, can trigger mass movements. Similar processes can be 

observed during the spring, when melting snowpack causes overland flow and subsequent 

saturation of the slope material. Rapid surges in temperature during the spring also destabilize 

slopes by reducing soil cohesion provided by frozen water in the soil mantle. In addition, 

mild, humid conditions in coastal proximity encourage chemical weathering and result in a 

reduction of material strength among certain rock classes. The combination of topography and 

climate, make the Pacific Northwest highly susceptible to landslide activity. In view of rapid 

climatic changes, susceptibility will likely increase.    

Currently used climate models suggest that the climate in the Northwest will warm 

over the next century. Historical climate records demonstrate that the Pacific Northwest 

warmed by approximately 0.6°C – 0.8°C since 1901 (Abatzoglou, Rupp, & Mote, 2014). 

Climate models predict that over the next century, warming trends between 0.1°C and 0.6°C 

per decade are possible in the Northwest (Mote & Salathe, 2010). Warming trends have 

serious effects on landslide potential in the Pacific Northwest for several reasons. First, 

increasing temperatures will alter snowpack and cause shifts in the timing of spring runoff 

(Clark, 2010). Thawing permafrost may destabilize slopes (Stoffel, Tiranti, & Huggel, 2014) 

and greater spring runoff may cause overland flow. In addition, earlier snowmelt runoff has 

been linked to increased wildfire occurrence throughout the western United States 
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(Westerling, Hidalgo, Cayan, & Swetnam, 2006). Because soil stability depends in large part 

on vegetation cover (Sidle & Ochiai, 2006), rises in wildfire frequency, corresponding to 

climate change, may increase landslide occurrence. Second, precipitation from extreme and 

heavy events is known to increase relative to more moderate events (Karl & Knight, 1998; 

Bonnard, Tacher, & Beniston, 2008). Model predictions indicate an increasing probability of 

intense future precipitation events in the United States (Groisman, et al., 2005), as well as 

increased spring precipitation in the Pacific Northwest (Miles, Snover, Hamlet, Callahan, & 

Fluharty, 2000). Since correlations between rainfall intensity and the occurrence of landslides 

are well established (Dhakal & Sidle, 2004), regional landslide susceptibility could expand 

significantly under future climate conditions. Especially shallow landslide potential is likely 

to increase in the 21st century, due to their vulnerability to prolonged, high-intensity storm 

events (Bonnard, Tacher, & Beniston, 2008).  Complex modeling efforts are necessary to 

mitigate landslide risk, and protect valuable resources. 

 

MODELING APPROACHES 

 

There are many approaches to landslide hazard assessment. Two factors that 

distinguish the various approaches include data requirements and their utility at different 

scales. In its simplest form, landslide hazard analysis utilizes topographic, geologic, and 

landslide inventory data to conduct a qualitative assessment of a region. High risk areas are 

identified based on historic landslide events, geologic composition of the parent material, and 

slope and aspect parameters. Expert knowledge of the mechanics and the relationships 

between variables relating to slope failure is mandatory for producing useful hazard maps. 

The process can be extremely time consuming and statistical justification of the decision-

making is challenging. A contrasting approach involves the statistical analysis of predictor 

variables for discovering underlying relationships within the data. By building sophisticated 

statistical models, landslide susceptibility can be evaluated at various scales. Data availability 

is the primary limiting factor for this approach. In addition, it requires a broad understanding 

of the processes being modeled and can be very computing intensive for regional evaluations 

of susceptibility. Turner and McGuffey (1996) propose a classification scheme that groups 

landslide hazard assessment approaches into four unique categories: landslide inventory, 
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heuristic approaches, statistical approaches, and deterministic approaches. There are 

additional classification schemes available that vary slightly in terms of grouping and 

terminology but, generally, they follow a similar pattern (Guzzetti, Carrara, Cardinali, & 

Reichenbach, 1999; Sidle & Ochiai, 2006). Most importantly, it is crucial to understand that 

the utility of each modeling approach is governed by the research objectives of individual 

studies. It is up to the researcher to decide on an approach that is most appropriate for the size 

of the study area and the goals of the analysis. 

 Aerial photography and field surveys can be helpful for creating landslide inventories 

and for mapping the spatial distribution of landslides. By calculating densities of known 

landslide locations, it is possible to gain a basic understanding of slope failure activities on a 

regional scale. Examples include an inventory of landslide deposits for San Mateo County, 

CA for computing densities and drawing isopleth maps (Wright, Campbell, & Nilsen, 1974). 

It allows for a quantitative comparison of landslide events in various parts of the county and 

gives decision-makers the opportunity to allocate resources for localized, in depth analyses. 

This approach assumes that future landslide events will likely occur in areas of previous 

failure. Several comparable methods have been proposed over the years (Campbell, 1973; 

DeGraff, 1985). The results can be very helpful for general regional planning purposes. 

However, although density calculations are fast, simple, and inexpensive, there are several 

limitations with this approach. Most importantly, terrain is quantified based on proximity to 

known or predicted landslide locations. This may become problematic in terms of prediction 

accuracy, because most environmental factors vary temporally and spatially. Distance based 

approaches do not account for the complexity of slope failure and are, for that reason, more 

appropriate for initial exploratory landslide analyses. They should be supplemented by more 

detailed models or localized, geotechnical evaluations.  

Heuristic approaches incorporate geomorphologic expert knowledge in the mapping of 

landslides, and can be characterized as either geomorphic analysis or qualitative map 

combination (Turner & McGuffey, 1996). In both cases, a priori knowledge of all landslide 

causes and instability factors within a study region is necessary (Guzzetti, Carrara, Cardinali, 

& Reichenbach, 1999). Geomorphic analysis, a mostly qualitative approach, relies on the 

expertise of scientists to accurately assess the landslide hazard during field surveys (Turner & 

McGuffey, 1996). Decision rules for hazard assessment are, therefore, place specific and not 
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always entirely clear. As mentioned before, this denotes that quantification of decision rules 

and reproducibility of the research is difficult. Usually, outcomes (i.e. susceptibility 

classifications) cannot be applied to a new study area. To address this problem, a qualitative 

map combination approach can be used (Sarkar & Kanungo, 2004; Gorsevski, Jankowski, & 

Gessler, 2006). Instead of assessing landslide hazard in the field, expert knowledge is 

employed to assign weighting values to parameter maps (Turner & McGuffey, 1996). For 

example, after classifying site data into unique groups for slope, geology, landcover, and 

precipitation regimes, individual weights are assigned for each category and spatial unit (e.g. 

raster cells or polygons) based on knowledge of causal landslide factors. Weighting values are 

then summed for each spatial unit. Cells with large summation values correspond to high 

susceptibility, whereas units with lower counts are less likely to fail. This approach allows for 

a thorough analysis of the decision-making process, and makes it possible to replicate the 

results. The impacts of various parameters on hazard zonation are easily accessible to land 

managers. One of the drawbacks to this approach includes potential generalization. 

Furthermore, insufficient field data may lead to improper weighting of factors and 

misclassification of hazard zones (Turner & McGuffey, 1996). 

Another popular approach to landslide modeling involves the use of statistics to 

establish hazard zones. In essence, statistical models rely on the assumption that the 

relationship between past landslides and instability factors allows inferences for future events 

(Guzzetti, Carrara, Cardinali, & Reichenbach, 1999). Statistics are used to determine the 

combination of casual factors that have resulted in previous slope failures to identify areas 

where similar conditions exist (Turner & McGuffey, 1996). Statistically based models can be 

either of bivariate (Soeters & Van Westen, 1996) or multivariate form (Baeza & Corominas, 

2001; Carrara, 1983). Both methods have been successfully used to map hazard zones. 

Applicability of approaches should be determined on a case-by-case basis. Discriminant 

analysis (Carrara, et al., 1991), linear and logistic regression (Lee, Won, Jeon, Park, & Lee, 

2015; Gorsevski, Gessler, Foltz, & Elliot, 2006), and neural networks (Ermini, Catani, & 

Casagli, 2005) are among the most popular methods currently used (Guzzetti, Carrara, 

Cardinali, & Reichenbach, 1999). Statistical landslide analysis examines instability factors for 

each mapping unit within a study region and compares it to the landslide presence or absence 

data for that respective unit. Mapping units can include grid-cells, terrain units, unique-
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condition units, slope-units, and topographic units (Guzzetti, Carrara, Cardinali, & 

Reichenbach, 1999).  

Finally, deterministic approaches have been extensively used to assess landslide 

susceptibility (Terlien, Van Westen, & Van Asch, 1995; Gökceoglu & Aksoy, 1996; 

Gorsevski, Gessler, Boll, Elliot, & Foltz, 2006). They require a relatively homogeneous 

distribution of geomorphic and geologic parameters, which makes them most appropriate for 

smaller areas (Sidle & Ochiai, 2006). None the less, the increasing availability of GIS 

technology has made deterministic modeling also applicable over larger studies areas, but 

substantial computing power is necessary to execute the models (Turner & McGuffey, 1996).  

Deterministic models utilize physical laws to calculate factors of safety (Fs). Depending on 

input parameters like pore pressure distribution or soil thickness, a factor of safety is 

calculated. Values significantly greater than 1 corresponds to stable slopes. As the factor of 

safety approaches 1, the hillside becomes increasingly unstable. If Fs ≤ 1, theoretically, slope 

failure is inevitable. Even though it is an advantage to have quantitative values of stability, 

Turner and McGuffey (1996) caution that oversimplification among deterministic models can 

be problematic as well.      

 

RESEARCH QUESTIONS 

 

As outlined in this chapter, there is an array of modeling approaches available to 

landslide researchers. However, most traditional methodologies are designed for local 

susceptibility assessment only, and are not useful at regional scales. In addition, 

considerations about spatial non-stationarity in environmental data is often overlooked. Many 

environmental modeling inputs are spatially autocorrelated, and the impacts of individual 

predictors on landslide susceptibility vary across space. Without accounting for these spatial 

patterns, predictions may be inaccurate. For that reason, this study includes a regional, 

geographically weighted (GWR) logistic regression approach to landslide susceptibility 

analysis. Under some circumstances, GWR can significantly improve overall performance 

and accuracy of model predictions. Furthermore, GWR outputs offer a great level of detail 

that allow for better model calibration and mapping of individual coefficients across space.  
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Since GWR presents a relatively new modeling approach, academic landslide 

literature is limited on the topic. None the less, it is a technique that is gaining popularity in 

other fields and could significantly improve overall performance of susceptibility models. By 

considering spatial relationships, modeling results may improve in ways that can assist land 

managers in allocating limited financial resources and implement mitigation strategies at a 

regional scale. To determine the improvements possible with these approaches, and the 

insights they might provide into the underlying factors driving landslide susceptibility, the 

following research questions were pursued in this study: 

 

1. For a large region in western Oregon, how well can a traditional logistic regression 

model predict regional landslide susceptibility? 

2. Does the model performance improve with different modeling approaches, such as 

disaggregating the region into smaller areas, and using geographically weighted 

logistic regression? 

3. Do the data and modeling approaches in this study provide insight into the role of 

geologic factors versus climatic factors in predicting landslide susceptibility? 
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CHAPTER 2: METHODODOLOGY 

 

THE STUDY AREA 

 

The study area encompasses a large portion of the State of Oregon, stretching from the 

Pacific coast to the Cascade Range. Data availability, the driving force behind this selection, 

resulted in a study area covering the following counties in their entirety: Benton, Clatsop, 

Columbia, Coos, Curry, Josephine, Lincoln, Polk, Tillamook, Washington, and Yamhill. The 

remaining counties located in the eastern part of the study area, including Clackamas, 

Douglas, Jackson, Lane, Linn, Marion, and Multnomah, are only partially covered in this 

study due to a lack of soils data. In view of the importance of soil parameters for landslide 

modeling, it was decided to exclude portions that are not part of the USDA/NRCS Gridded 

Soil Survey from this research. The geographic extent of the study area, therefore, stretches 

from approximately 125º W to 122º W and 46º N to 42º N.  

Topography in the study area exhibits great variety, including a lower elevation 

coastal range that separates the shore from inland locations, the Klamath Mountains in the 

southwestern part of Oregon, the fertile, centrally located Willamette Valley that stretches 

from north to south across several counties, and the Cascade Range that bounds the study area 

to the east. Elevations range from sea level along the shore, to high alpine settings over 2000 

meters in the east. The landscape is shaped by active plate tectonics and continued volcanic 

activity. Several volcanic peaks are located throughout the Cascade Mountains, most notably, 

Mount Hood (3425m), Mount Jefferson (3199m), the Three Sisters (southern peak 3157m), 

and Mount McLoughlin (2894m). Tectonic activity in the region is responsible for frequent 

earthquakes and volcanic eruptions which play an integral role in landslide dynamics. The 

presence of volcanic activity has created severe slope angles of more than 70 degrees in parts 

of the study area, resulting in slope instability concerns due to oversteepening. 
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Figure 1. Overview of the Study Area 

Geologic composition and soil parameters in the study area are also heavily influenced 

by volcanic activity. In the Cascade Range, the local geology is dominated by volcanic, 

volcaniclastic, igneous intrusive, and sedimentary rocks (O'Connor, Hardison, & Costa, 

2001). Coastal regions are comprised of largely sedimentary and volcaniclastic rocks 

(Swanston D. N., 1984), while the Willamette Valley is dominated by sediments that 

originated from multiple Ice Age flooding events. The most prominent soil types in the study 

area include mollisols, generally associated with grassland ecosystems, inceptisols, often 

found on steep slopes in forested regions, and volcanic based soils, such as andisols, found in 

the northwestern part of the state. 

The study area is situated in a temperate maritime climate with mild, wet winters and 

dry summers.  In coastal proximity, temperatures depict little variability throughout the year. 

Mean annual temperatures reach approximately 12ºC in coastal regions. Further inland, 
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temperatures are a function of elevation with milder temperatures in the valley bottoms and 

colder conditions in alpine settings. Mean annual temperature varies between 11ºC in the 

lower elevations and 7ºC in higher elevations. Prevailing westerlies move air masses from the 

Pacific Ocean towards the Cascade Range where orographic lifting causes significant 

precipitation. Because of a northward expansion of the eastern Pacific high pressure system 

during the summer months, most precipitation falls between October 1st and May 31st 

(O'Connor, Hardison, & Costa, 2001). Precipitation increases with rising elevation, while 

temperatures decrease (Swanson & Swanston, 1977). An analysis of the west-east 

precipitation profile depicts 2000-3500mm of annual normal rainfall in the coastal range, 900-

1200mm in the Willamette Valley, and 2500-3500mm on the western slopes of the Cascades. 

In higher elevations, winter storms form extensive snowpack that can last throughout the 

summer months.  

Mountain ranges and higher elevation portions of the study area are generally covered 

by conifer forest. The timberline in the Cascades ranges from 2200-2500m (O'Connor, 

Hardison, & Costa, 2001) and forests consist of Douglas fir, western hemlock, and other 

coniferous tree species (Swanson & Swanston, 1977). In valley bottoms and lower elevations, 

shrub and herbaceous cover dominate the landscape. The fertile plain of the Willamette 

Valley allows for a variety of agricultural operations, and provides space for the three major 

population centers, Portland, Salem, and Eugene. Main transportation routes are confined to 

river valleys and lower elevations due to the challenging topography of the region. 

  

DATA SOURCES AND PROCESSING 

 

Spatial datasets including landcover, elevation, geology, soils, climate, and historic 

landslide locations were obtained for the State of Oregon. Selection of appropriate 

environmental parameters was based on scientific literature and the physiographic setting of 

the study area. For the purpose of GIS-based modeling, spatial data was downloaded in raster 

format, or converted to raster cells with 30m spatial resolution. This allowed for a better 

transition between ArcGIS and other statistical software packages used in the study. One 

exception to this approach involved the acquisition of a landslide inventory. In this case, 

latitudes and longitudes for known landslide locations were downloaded to a geodatabase as 
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point feature. The reasoning for this decision was based on the study objectives which 

required a link between past climate conditions and landslide locations. Relevant geospatial 

layers, consisting of continuous and discrete variables, were imported into a preliminary 

geodatabase for further processing. The following paragraphs summarize data acquisition and 

function as a reference for future landslide susceptibility assessment in Oregon.   

The fundamental element of this study is a statewide landslide inventory, SLIDO 3.2, 

published by Oregon’s Department of Geology and Mineral Industries [DOGAMI]. The latest 

release is based on a project that commenced in 2007, intended to provide users with a base 

level of landslide data (Burns, Madin, & Ma, 2008). It offers a comprehensive, georeferenced 

collection of landslide research, totaling 12,095 historic events for release 3.2. The database is 

a compilation of a variety of published and unpublished studies for the State of Oregon. 

Newer releases included the addition of landslide deposits from Light Detection and Ranging 

(LiDAR), improvements to the database structure, and a procedure for continual updates 

(Burns & Watzig, 2014). SLIDO offers a comprehensive source of information for landslide 

research and contains crucial attributes like landslide type, date of failure, and slope angle, 

among others. The date component, listed for a significant number of records, permitted the 

modeling of past climate conditions utilized in this study. 

The inventory includes landslide dates from the 1990s to 2014. However, due to the 

large variety of studies compiled in SLIDO, landslide data can vary greatly in terms of scale 

accuracy, and focus (Burns & Watzig, 2014). In addition, no efforts were made to verify the 

original data used in SLIDO (Burns & Watzig, 2014). Date components reflect the date of 

discovery and may not coincide with the actual failure date of the landslide. It is, therefore, 

necessary to emphasize that modeling outputs cannot replace site-specific geotechnical 

investigations. Instead, the results of this study should be used as a tool for regional planning 

and decision-making. After removing SLIDO records with missing date components, 

excluding failure events of the move class “rockfall”, and eliminating slope movements 

outside of a 30m road buffer, a total of 1097 historic landslides were located within the study 

region. As mentioned earlier, data selection was driven by study objectives, focusing on road 

related landslides and their relationship with climate variables. Since rockfalls are generally 

associated with seismic activity, rather than precipitation and other hydrologic factors (Sidle 

& Ochiai, 2006), a decision was made to exclude such failure events from the analysis. 
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Figure 2. SLIDO 3.2 Historic Landslides vs. Modeling Inputs 

Crucial physical landslide predictor variables, including slope, aspect, elevation, and 

curvature were derived from a 10m digital elevation model (DEM), acquired from the USGS 

(United States Geological Survey, 2016). Elevation products are made available as part of 

their 3D Elevation Program. The downloaded dataset provides continuous, statewide coverage 

of elevation parameters and complies with standard USGS data procedures. Geographic 

coordinates are in units of decimal degrees and elevation values are reported in meters. The 

DEM uses the North American Datum of 1983. Geospatial elevation data is useful for a 

variety of modeling applications, including hydrologic, resource, and habitat modeling. For 

this study, DEMs were utilized to compute slope, aspect, and curvature values across the State 

of Oregon. Additionally, planform and profile curvature were calculated for the study area. 

An elevation raster grid was created from the DEM, and all data layers were aggregated to 

30m spatial resolution for alignment with other model inputs at coarser spatial resolution.  
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Vegetation cover, an additional variable for comprehensive landslide analysis, was 

obtained from the LANDFIRE Project (United States Geological Survey, 2013). Their most 

recent product combines field survey data, satellite imagery, and statistical techniques to 

create a spatially explicit landcover dataset for the continental USA. LANDFIRE classifies 

existing landcover in 47 unique categories at a spatial resolution of 30 meters. Due to the 

Source Parameter Classes Source Parameter Classes

SLIDO 3.2 Inventory Landslide present gSSURGO Soils Erosion Potential: Severe

Landslide absent Erosion Potential: Moderate

USGS DEM Topography Slope Erosion Potential: Slight

Aspect Available Water Storage 0-150cm

Elevation Hydrologic Group A

Curvuture Hydrologic Class B

Planform Curvutrure Hydrologic Class C

Profile Curvuture Hydrologic Class D

LANDFIRE Landcover agricuklture METDATA Climate Normal Annual Precipitation

barren Precipitation Anomaly Day of Landslide (DOL)

developed Precipitation Anomaly 1 day before landslide

developed-upland Precipitation Anomaly 2 days before landslide

roads Precipitation Anomaly 3 days before landslide

shrub/herbaceous cover <50% Precipitation Anomaly 4 days before landslide

shrub/herbaceous cover >50% Precipitation Anomaly 5 days before landslide

snow Precipitation Anomaly 6 days before landslide

tree cover <50% Precipitation Anomaly 7 days before landslide

tree cover >50% Cumulative Precipitation Anomaly 1 day before landslide

water Cumulative Precipitation Anomaly 2 days before landslide

OGDC-6 Geology Volcaniclastic Cumulative Precipitation Anomaly 3 days before landslide

volcanic rocks Cumulative Precipitation Anomaly 4 days before landslide

vent and pyroclastic rocks Cumulative Precipitation Anomaly 5 days before landslide

terrestrial sedimentary rocks Cumulative Precipitation Anomaly 6 days before landslide

sediments Cumulative Precipitation Anomaly 7 days before landslide

metamorphic rocks Absolute Precipitation Day of Landslide (DOL)

melange rocks Absolute Antecedent Precipitation 1 day before landslide

marine volcanic rocks Absolute Antecedent Precipitation 2 days before landslide

marine sedimentary rocks Absolute Antecedent Precipitation 3 days before landslide

invasive extrsusive rocks Absolute Antecedent Precipitation 4 days before landslide

intrusive rocks Absolute Antecedent Precipitation 5 days before landslide

gSSURGO Soils Alfisols Absolute Antecedent Precipitation 6 days before landslide

Andisols Absolute Antecedent Precipitation 7 days before landslide

Entisols Normal Annual Temperature

Histosols Temperature Anomaly Day of Landslide (DOL)

Inceptisols Temperature Anomaly 1 day before landslide

Mollisols Temperature Anomaly 2 days before landslide

Spodosols Temperature Anomaly 3 days before landslide

Ultisols Temperature Anomaly 4 days before landslide

Vertisols Temperature Anomaly 5 days before landslide

Temperature Anomaly 6 days before landslide

Temperature Anomaly 7 days before landslide

Temperature Day of Landslide (DOL)

Antecedent Mean Temperature 4 days before landslide

Antecedent Mean Temperature 7 days before landslide

Antecedent Mean  Temperature 14 days before landslide

Antecedent Mean Temperature 28 days before landslide

Table 2. Summary of Predictor Variables
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large extent of the study area, closely related landcover classes were collapsed into smaller 

groups to avoid the problem of separation during logistic modeling. The phenomenon of 

separation in models for binary responses arises when the covariates perfectly predict the 

dependent variable. Separation results in infinite coefficients and standard errors. By 

reclassifying the landcover data from 47 to 11 categories, problems related to separation are 

minimized. The final classification distinguishes between water, snow, agriculture, barren, 

developed, developed-upland, roads, tree cover >50%, tree cover <50%, shrub and 

herbaceous cover >50%, and shrub and herbaceous cover <50%.  

Geologic data for landslide modeling was downloaded from Oregon’s Geospatial Data 

Library. Release 6 of the Oregon Geologic Data Compilation, OGDC-6, was published by 

DOGAMI in 2015 and offers comprehensive, statewide geologic data (Smith & Roe, 2015). 

Like Oregon’s landslide inventory, OGDC-6 is a compilation of a variety of published and 

unpublished studies with the purpose of making best known geologic mapping available to the 

public. The feature classes contained in OGDC-6 provide detailed information about fault 

lines, bedding, foliation, and other geologic parameters. For this study, general geologic rock 

types were used to describe the underlying parent material of the region. 11 unique geologic 

classes were extracted from OGDC-6 for modeling purposes. As other landslide research has 

demonstrated, the geologic composition can have far-reaching implications for overall slope 

stability (Sidle & Ochiai, 2006). In Oregon’s Cascades and Coastal Range, for instance, a link 

between altered volcaniclastic rocks and slope failure has been observed (Swanston D. N., 

1984).  

Several important modeling components related to soils, were derived from the 

Gridded Soil Survey Geographic Database (gSSURGO), published by the United States 

Department of Agriculture. gSSURGO is an extension of the traditional soil survey product 

and formatted as file geodatabase (USDA/NRCS, 2014). The inclusion of 10-m raster data for 

soil units allows for high-resolution, statewide mapping of soil parameters. The highest level 

in soil taxonomy was chosen in this study to differentiate between soils. 9 out of 12 orders of 

soil taxonomy are distributed throughout the study region. They include alfisols, andisols, 

entisols, histosols, inceptisols, mollisols, spodosols, ultisols, and vertisols. Next, soil 

parameters related to erosion potential, hydrologic properties, and water storage capacity were 

obtained from gSSURGO for all map units in the study area. The hydrologic soil group 
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classification scheme provides valuable information about infiltration rates, runoff potential, 

texture, and soil composition throughout the soil horizon. They are important factors for 

landslide susceptibility and need to be considered for comprehensive modeling. 

Finally, detailed meteorological data was downloaded for all landslide and non-

landslide points based on location and date. The University of Idaho’s Gridded Surface 

Meteorological Dataset (METDATA), was used to model past climate conditions. 

METDATA covers the contiguous United States with 4-km spatial resolution, and a temporal 

range from 1979 to 2016 (Abatzoglou, 2013). Daily precipitation and temperature values were 

extracted to compute 30-year normals, anomalies, cumulative anomalies, as well as 

antecedent rainfall and temperature conditions. These calculations were completed for 1097 

landslide locations, and 22,997 non-landslide points. The temporal component for non-

landslide points was established by analyzing the date range of landslide points and assigning 

a random date within that range. Since landslides used in this study occurred from 1996 to 

2010, non-landslide dates cover the same timeframe. Modeling results could have been 

improved if the statistical distribution of landslide dates was considered during random date 

generation. Since, most random number generators utilize a uniform distribution, the 

underlying shape of the input data is disregarded. By matching the distribution of dates, more 

precise outputs could have been achieved. 

 

METHODS 

 

 Data in this study was used to model the presence or absence of landslides along major 

roadways. The incorporation of climate variables was achieved by extracting historical 

precipitation and temperature values from METDATA. Other physical modeling inputs were 

assumed stationary. Except for landcover, latest releases of data products were utilized for 

modeling inputs. In the case of landcover, a 2011 product was selected because it most closely 

replicated the temporal range of the landslide inventory. Following the processing of 

environmental predictors in ArcGIS 10.3 and MATLAB, an exploratory data analysis was 

performed to discover underlying patterns and signals within the data. Subsequently, an 

exploratory regression in ArcGIS was used to evaluate all possible combinations of predictor 

variables. This step was important for recognizing issues of multicollinearity and spatial 
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autocorrelation. After defining a set of candidate explanatory variables, an ordinary least 

squares (OLS) model was fit. When no more improvements to the OLS model were possible, 

the raw data was imported into MATLAB for final logistic modeling and GWR4 for 

geographically weighted logistic regression (GWLR). Figure 3 outlines the modeling 

framework that was employed in this study.     

 

 

Figure 3. Flow-chart of Methodology 

A grouping analysis was conducted in ArcGIS with all landslide/non-landslide point 

locations. By segmenting the inventory data into sub-regions, improved landslide predictions 

could be achieved. The subset of data was grouped based on the “mean annual temperature” 

attribute, because it allowed for the most appropriate segmentation of data points. By using 

temperature as the grouping variable, it was possible to create four groups with enough 

sample points to conduct a logistic regression analysis. During the grouping process, ArcGIS 

evaluates the optimal number of groups based on a Calinski-Harabasz pseudo F-statistic. By 

running the tool, the software is seeking to find natural clusters in the data. Groups are 

classified so that all features within a group are most similar, but groups themselves are 

significantly different from each other. Based on variable selection and nearest neighbor 

criteria, the grouping analysis classified four unique clusters for the study region. All 
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exploratory regression analysis was repeated for each sub-region. Global Logistic and GWR 

models were fit for all four groups, as well as the entire study region. Figure 4 displays the 

final segmentation of data points.  

 

Figure 4. Normal Annual Temperature Segmentation of Data Points 

Statistical Techniques 

 

Logistic regression modeling in this study was completed in MATLAB. Like other 

statistical software packages, MATLAB allows for the fast and efficient processing of large 

datasets using a variety of analytical techniques. At its core, multivariate logistic regression 

analysis is appropriate for predicting the presence or absence of a phenomenon. A thorough 

discussion about assumptions, fit, and interpretation of logistic regression can be found in 

Hosmer et al. (2013). Logistic regression is among the most popular approaches for landslide 

modeling (Guzzetti, Carrara, Cardinali, & Reichenbach, 1999). Partly, this is the case because 

the method is very similar to standard linear regression, with the exception that the dependent 

variable, y, has a dichotomous outcome of either 1 or 0 (e.g. presence or absence of a 

landslide). By employing an appropriate link function, the logit, linear estimates between 
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positive and negative infinity can be transformed to probabilities between 0 and 1. From a set 

of continuous and discrete environmental variables, the model predicts the probability of 

landslide occurrence. An s-shaped curve is fitted to model the relationship between the 

dependent variable (y) and the predictor variables (xn). The logistic regression model takes on 

the following form (Equation 1.1). 

 

 𝑝(𝑦 = 1|𝑥) =
𝑒𝛽0+𝛽1𝑥𝑛

1+𝑒𝛽0+𝛽1𝑥𝑛
      (1.1) 

 

In this case, the probability of an outcome y=1 is computed by estimating values for the 

coefficients β0, the intercept, and β1, the slope of a predictor variable xn. The least squares 

methodology that is often used in linear regression to estimate unknown parameters is not 

feasible for dichotomous outcomes (Hosmer, Lemeshow, & Sturdivant, 2013). Therefore, a 

maximum likelihood approach is employed to estimate β. 

In its simplest form, a model consisting of only two predictor variables, slope and 

aspect, would take on the form outlined in Equation 1.2. For a set of predictor variables, the 

logistic regression model estimates the likelihood of landslide occurrence. One intercept and  

     

 𝑝(𝑦 = 1|𝑥) =
𝑒−6.93+0.09∗𝑆𝐿𝑂𝑃𝐸+0.43∗𝐴𝑆𝑃𝐸𝐶𝑇

1+𝑒−6.93+0.09∗𝑆𝐿𝑂𝑃𝐸+0.43∗𝐴𝑆𝑃𝐸𝐶𝑇
   (1.2) 

 

one slope coefficient is estimated based on the regression inputs. In Equation 1.2, coefficients 

of 0.09 and 0.43, for the explanatory variables slope and aspect, indicate that landslide hazard 

increases as the values of these variables increase. If these coefficients were negative, this 

would denote that landslide hazard decreases as the values for slope and aspect increase. 

None the less, by fitting one equation for all data points, a significant amount of 

spatial variability remains unaccounted for. Traditional logistic regression approaches do not 

consider the spatial dependence of environmental input parameters. To solve this problem, an 

extension to standard global logistic modeling is utilized in this study. Geographically 

Weighted Regression (GWR) incorporates local spatial relationships into a traditional 

regression framework (Fotheringham, Brunsdon, & Charlton, 2002). Mathematically, 



30 

 

Geographically Weighted Logistic Regression (GWLR), extends the standard equation for 

logistic regression (Equation 1.1.) with a spatial component (Equation 2.1).   

 

 𝑝(𝑦 = 1|𝑥) =
𝑒(𝛽0(𝑢𝑖,𝑣𝑖)+𝛽1(𝑢𝑖,𝑣𝑖)𝑥𝑛)

1+𝑒(𝛽0(𝑢𝑖,𝑣𝑖)+𝛽1(𝑢𝑖,𝑣𝑖)𝑥𝑛)
    (2.1) 

 

The coordinate combination (ui,vi) is the location of a regression point i. For a model with 100 

present and 100 absent cases, GWLR would evaluate a regression equation for 200 regression 

points. The selection of predictor variables remains static, but intercept and slope estimates 

are dynamic and dependent on location. This allows for an assessment of spatially varying 

regression coefficients.  

In GWLR, local estimates are obtained by analyzing the neighborhood around 

regression points. A moving kernel evaluates data points based on their distance to the 

regression point and assigns weights (Fotheringham, Brunsdon, & Charlton, 2002). Closer 

data points are weighted heavier than points farther away. When data are sparse, a local model 

might be calibrated on very few data points when a fixed kernel size is selected 

(Fotheringham, Brunsdon, & Charlton, 2002). This could result in larger standard errors and 

is, therefore, undesirable. Since distances between data points varied significantly for the 

study area, fixed kernel sizes were inappropriate for local estimation of regression parameters. 

Instead, an adaptive Gaussian distribution was used in this study, because it is designed to 

adapt its size based on the data density (Fotheringham, Brunsdon, & Charlton, 2002). 

Consequently, in areas were data are sparse, kernels become larger and vice versa. The 

geographically weighted regression was carried out in GWR4. Optimal bandwidths for the 

adaptive kernels was evaluated based on Akaike Information Criterion (AIC) minimization.    
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CHAPTER 3: RESULTS 

 

EXPLORATORY ANALYSIS 

 

During the initial stages of modeling, the landslide inventory data was analyzed in 

MATLAB. Standard exploratory techniques were employed to study underlying processes in 

the data. Figure 5 illustrates the distribution of movement classes among the 1097 failure 

events. The high frequency of fill-failures results from resampling the original landslide 

inventory to satisfy study objectives. Fill-failures generally occur in regions of low relief, 

describing the failure of material associated with road-construction, mining, and other 

development (FEMA, 1989). Since it was the goal of this analysis to model the presence or 

absence of landslides along major roadways, many incidents involve the failure of fill 

material. The processes that trigger failures are identical to the landslide mechanics discussed 

in chapter 2. For all failure types identified in Figure 6, hydrologic factors play a significant 

role. 

The distribution of landslides throughout the year is analyzed in Figures 7 through 11. 

For each sub region, as well as the global inventory, landslide dates were utilized to 

categorize failures by month. As mentioned before, this classification depends on the quality 

of the landslide inventory. Since no detailed field investigations were completed to verify 

these dates, it is possible that the month of failure coincides with the date of discovery rather 

than the actual date of failure. None the less, the histograms offer a good overview of the 

temporal distribution and help with the investigation of causal factors.  

For the global inventory (Figure 7), incorporating groups 1 through 4, the largest 

number of landslides occurred during the months of August, May, and July, respectively. The 

large number of failure events during the summer months suggests that precipitation may not 

have been the driving forces behind these events, since July and August are usually the driest 

months of the year. An investigation of August landslides revealed that the majority of 

failures, 122 fill failures and 25 landslides, were recorded between 8/23/2010 and 8/26/2010 

along state route 47 near Clatskanie, OR. It is possible that this distribution reflects a large-

scale DOT effort to survey and record past landslide events, or that seismic activity had 

triggered several failures during that week. In summary, most frequent failures for groups 1, 
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2, 3, and 4, occurred in August, September, May, and February, respectively. While more 

events were reported during the summer months for groups 1, 2, and 3, most landslide events 

for group 4 occurred in the winter.      

Winter landslides between November and March for the entire region totaled 296 

events. From April to October, 801 events were registered. Figure 5 illustrates the distribution 

of summer and winter landslide, as well as a grouping of landslide events by year. It is 

noticeable that failure dates grouped by year appear clustered. For example, nearly all 

landslides in the southwestern part of the study region occurred in 2000 and numerous slope 

failures were reported in 2005 for the northern road segments of Highway 101. There are two 

likely explanations for these observed patterns. First, it is possible that government agencies 

received additional funding during those years and were mandated to locate and record 

historic failures in a particular region. However, only landslides with a particular date 

associated with them in the inventory were used in this analysis, suggesting that this is 

unlikely to be the main cause of this clustering. Generally, uncertainty regarding the date of 

failure was expressed in the inventory by simply leaving the date field blank or reporting just 

the year of failure instead of a specific date. In the SLIDO 3.2 landslide inventory, for 

instance, multiple records contain date attributes expressed as “1996?” or “1996-1997”. This 

suggests that the actual dates for these events weren’t entirely clear. Second, as mentioned 

previously, it is possible that special climatic conditions, such as prevalent storm tracks in 

years of particularly heavy precipitation, or other triggering mechanisms, such as volcanic 

eruptions or earthquakes, caused regional failures in certain parts of the study region. A local, 

statistical assessment of predictor variables is necessary to validate or refute such theories.  
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Figure 5. Yearly and Seasonal Distribution of Landslide Events 
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Figure 6. Move Classes of Landslide Inventory 

 

Figure 7. Distribution of Landslides (Global) 

 

Figure 8. Distribution of Landslides (Group 1) 

 

Figure 9. Distribution of Landslides (Group 2) 

 

Figure 10. Distribution of Landslides (Group 3) 

 

Figure 11. Distribution of Landslides (Group 4) 
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Long-term, gridded metrological observations were helpful for examining climatic 

conditions around the date of failure. By extracting relevant precipitation and temperature 

values based on latitude and longitude, composite graphs could be generated. Antecedent 

climate conditions for all sub regions are displayed in Figures 12 through 15. Composites are 

computed by averaging absolute, daily temperature and precipitation data across group 

samples. The resulting graphs showcase group specific climate conditions as a function of 

lead days before the reported slide. However, since group samples included landslides from 

1996-2010, seasonality among groups is substantial. The graphs can help to explain some of 

the logistic regression parameter estimates, but can’t replace event specific investigations.  

 

 

Figure 12. Antecedent T and PPT 30 Days Before Landslide Event (Group 1) 

 

Figure 13. Antecedent T and PPT 30 Days Before Landslide Event (Group 2) 
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Figure 14. Antecedent T and PPT 30 Days Before Landslide Event (Group 3) 

 

Figure 15. Antecedent T and PPT 30 Days Before Landslide Event (Group 4) 
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variability can certainly influence magnitude of the composite graphs. Without a uniform 

sample, bias from wet or dry years can potentially skew these composites. To account for 

some of the spatial variability in precipitation and temperature patterns, absolute values were 

compared to climate normals. Equations 3.1 and 3.2 were used to compute temperature and 

precipitation anomalies, respectively. 

 

   𝑇𝑎𝑛𝑜𝑚 = 𝑇𝑑𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛 − 𝑇𝑑𝑎𝑖𝑙𝑦𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦    (3.1) 

 

  𝑃𝑃𝑇𝑎𝑛𝑜𝑚 =
𝑃𝑃𝑇𝑑𝑎𝑖𝑙𝑦

𝑃𝑃𝑇𝑑𝑎𝑖𝑙𝑦𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦
∗ 100    (3.2) 

 

Temperature anomalies are calculated by subtracting 30-year normals from the 

average daily temperature for a given day. Outputs reflect the temperature departure from 

normal in units of degrees. For precipitation, daily precipitation is divided by the 30-year 

normal precipitation for that day. This ratio is multiplied by 100 to obtain a percentage of 

normal. The following graphs, Figure 16 and 17, illustrate anomalies as a function of lead 

days before the reported slope failure.  

 

 

Figure 16. Antecedent T Anomalies 

 

Figure 17. Antecedent PPT Anomalies 
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5 days before the landslide are between 150% to 300% above normal. However, these spikes 

are not significant and should not be used for inferences about the data. Only one distinct 

signal could be identified when plotting composite anomalies for group 3 landslides between 

November and March (Figure 18). Precipitation anomalies increased to approximately 600% 

above normal 4 days before the landslide event. For the other sub regions, no clear weather 

drivers could be identified. In terms of temperatures, group 2 displayed a strong gradient of 

positive departures from normal of magnitude 2.2 ºC on day 7, to negative departures of 2.3 

ºC on the day of landslide. For group 4, temperatures were generally warmer than normal 

before the failure date.  

 

 

Figure 18. Precipitation Anomaly for Winter Landslides (Group 3) 
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3 and 4. The sign of the coefficients, as one might suspect, is positive for “severe” and 

“negative for “slight”. This denotes that landslide hazard increases as “severe” erosion 

potential increases, and that susceptibility decreases as “slight” erosion potential increases. 

Similarly, highly correlated geologic, hydrologic, and topographic classes were collapsed for 

Table 3. The results offer an overview of predictor importance for the study region.  

The topographic variable slope was included in all models. This observation is 

consistent with results found in the common landslide literature. As slope angle increases, 

greater resisting forces are necessary for preventing failure. Depending on the composition of 

slope material and other environmental factors, stability can be significantly impaired on 

steeper hillsides. Additionally, hydrologic soil group classifications were frequently included 

in the logistic regressions. Hydrologic groups provide valuable information for landslide 

modeling, because their classification is based on soil composition. The distribution of sands, 

silts, and clays throughout the soil horizon allow for inferences about runoff potential, the rate 

of water transmission, and water holding capacity. Based on particle size, cohesion strength 

estimations can be attempted.  

Table 3. Frequency of variable inclusion in LR models 

       
Predictor Global Group 1 Group 2 Group 3 Group 4 % Inclusion 

       
Erosion Potential 1 1 1 1 1 100 

Hydrologic Soil Group 1 1 1 1 1 100 

Slope 1 1 1 1 1 100 

Geology_Volcanic 1 0 1 1 0 60 

Aspect 1 1 0 0 1 60 

Curvature 0 1 0 1 1 60 

Vegetation Trees 1 1 0 1 0 60 

3day Antecedent PPT 1 1 0 0 1 60 

Day5_PPT Anomaly 1 0 1 0 0 40 

DOL_PPT Anomaly 1 0 0 0 1 40 

Day1_T Anomaly 1 1 0 0 0 40 

Day2_T Anomaly 0 0 1 1 0 40 

Day 7_T Anomaly 1 0 1 0 0 40 

Andisols 1 1 0 0 0 40 

Ultisols 0 0 1 1 0 40 

Elevation 0 0 0 1 1 40 

Geology_Sediments 0 1 0 1 0 40 

Geology_Marine Sedimentary 1 0 0 0 1 40 

              

Notes: Highly correlated predictor variables were combined 
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Other topographic variables, including aspect and curvature, were among the 

predictors in 3 of the 5 models. Aspect is commonly incorporated in landslide modeling 

because of its effects on local energy budgets and erosion rates. In the northern hemisphere, 

exposure to sun light is greater on southern slopes than on northward aspects. This can have a 

direct impact on vegetation density, and soil moisture, which are directly related to slope 

stability. Curvature was found among modeling parameters 60% of the time. It is often used 

in landslide susceptibility analysis because of its impact on hydrology. For example, in 

regions were planform curvature is concave, surface and groundwater channeling leads to 

increased activity of earth flows (Ohlmacher, 2007). 

In terms of landcover, the vegetation class “trees” was included in the global model, as 

well as in sub regions 1 and 3. As mentioned in previous sections, root cohesion, erosion 

control, and pore pressure reduction through evapotranspirative processes are among the 

benefits of dense overstory vegetation. Indices for vegetation density, or landcover classes, 

are often used in landslide research because of their known correlation to slope stability. From 

the list of precipitation and temperature variables, 3 day antecedent precipitation was included 

in 3 of the 5 models. By summing absolute daily precipitation for the day of landslide and 3 

preceding days, antecedent moisture is computed. Excessive delivery of precipitation causes 

several adverse effects including, liquification of slope material, fluctuations in groundwater 

flow, and weight surcharges.  

Other climate variables, soil classes, and geologic parameters were included in 2 of the 

5 models. Temperature anomalies for day 1, 2, and 7 before a landslide event, were found to 

improve model fit. During the winter months, rapid temperature fluctuations can enhance 

lateral pressure through frost action, or alter internal cohesion. Andisols, soil that is formed 

from volcanic ash, was a good predictor variable for the global model and region 1. This soil 

class is highly correlated with volcanic and volcaniclastic rock types. Sediments and marine 

sedimentary rocks were included in some logistic regression models. In Oregon’s Coastal 

Range, deeply weathered siltstone and sandstone, the major lithologic constituents of marine 

sedimentary rocks, are often associated with creep and earthflow activity (Swanston D. N., 

1984).  

The results for the 5 logistic regressions models are displayed in Tables 4 through 8. 

Overall model fit improved when the dataset was segmented into regions. While the global 
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model only explained 23% of the deviance, regional models explained 36% to 75%. In 

addition, AIC scores were substantially lower for the regional models compared to the global 

model. The fitted model for region 2, demonstrated the best performance among the models. 

All but one explanatory variable, volcaniclastic geology, were significant at the 95% 

significance level. The model explained 75.3% of the deviance and had the lowest AIC score. 

Important predictor variables with positive coefficients included available water storage 

(AWS0150), slope, ultisols, severe erosion potential, hydrologic group D, precipitation 

anomaly 5 days before the landslide, and temperature anomaly on day 7. This denotes that 

landslide hazard increases as these variables increase. Negative coefficients for precipitation 

anomaly on day 7, cumulative precipitation anomaly 1 day before the landslide, temperature 

anomaly on day 2, and antecedent mean temperature for the 4 days preceding the landslide 

event suggest that landslide hazard decreases as these parameters increase. 

The results for physical variables are consistent with the academic landslide literature. 

Slope generally exhibits a positive relationship, since steeper slopes increase the likelihood of 

landslide occurrence. Greater resisting forces are necessary to prevent hillsides with greater 

slope angles from failing. Similarly, with increasing water storage capacity, shear stress is 

enhanced due to the additional weight that is imposed on the slope once the soil becomes 

completely saturated. Soils with greater water storage capacity can retain more moisture 

which inadvertently leads to greater weight surcharges. The significant positive relationship 

between landslide hazard and severe erosion potential is also in agreement with other 

landslide research conducted. As a soils’ k-factor, the factor of soil erodibility, increases, 

removal of lateral support during heavy rain or snowmelt events becomes more likely. 

Therefore, soils with larger k-factors, such as silts, have higher risks for lateral or underlying 

support removal. These soils are easily detached and produce high rates of runoff. Thus, 

increasing the landslide hazard substantially. The positive coefficient for hydrologic group D, 

is a result of the classification for this soil group. Group D soils have the greatest runoff 

potential and swell substantially due to their large clay content. When hydrated, clay rich soils 

expand and significantly increases lateral pressure. This process contributes to slope 

instability, and can also be observed in ultisols. As expected, the estimate for utilsols is 

positive. Thus, enhancing landslide hazard. 
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Interpretation of climate variables is more difficult, since only one clear weather driver 

for winter landslides in group 3 was identified during the exploratory analysis. None the less, 

the general distribution of anomalies shown in Figures 16 and 17, allows for some explanation 

of the sign of parameter estimates. In terms of temperatures, the logistic regression model for 

group 2 estimated positive coefficients for temperature anomaly on day 7, but negative 

coefficients for temperature anomaly on day 2, and antecedent mean temperature for the 4 

days preceding the landslide. Composite temperature anomalies for group 2 showed that 

temperatures were 2.2 ºC above normal on day 7, but 2.0 ºC below normal on day 2. The 

parameter estimate on day 2 is negative, because landslide hazard decreases as below normal 

temperature approach normal. This is also the case for 4-day antecedent mean temperature.  

On the contrary, since composite temperatures were above normal on day 7, landslide hazard 

increases as temperatures depart above normal. In general, this suggests that above normal 

temperatures increase the landslide hazard.  

For the precipitation estimates, explanation of the results is more challenging. The 

parameter estimate is positive for precipitation anomaly on day 5, but a negative on day 7. 

This is inconsistent with the landslide literature which suggests a positive relationship 

between precipitation anomalies and landslide hazard. The sign of the coefficients is most 

likely a remnant of two factors relating to data processing. First, by assigning dates to non-

landslide locations based on a uniform distribution, inconsistencies among climate predictors 

may have been introduced. This denotes that the underlying distribution of landslides 

throughout the year was not considered. Second, since the landslide inventory covered events 

between 1996 and 2010, inter-annual variability among events is substantial. In order to better 

model the process of slope failure, it would be necessary to consider this variability during the 

exploratory analysis.  
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Table 4. Logistic Regression Results for Global Model  

       
Variable Estimate SE z(Est/SE) Exp(Est) Significance 

       
Intercept -2.068944 0.226485 -9.135012 0.126319 ** 
AspectCos 0.287005 0.157524 1.821977 1.332431  
Slope 0.108272 0.013662 7.925123 1.114351 ** 
Veg_TreeLe -0.079366 0.313127 -0.253462 0.923702  
Andisols -0.086238 0.303002 -0.284612 0.917376  
Mollisols 0.309022 0.236165 1.308499 1.362092  
Erosion_se 0.97272 0.21734 4.475571 2.645129 ** 
Marine_sed 0.167396 0.210212 0.796319 1.182223  
Volcanic 0.179022 0.300758 0.595236 1.196047  
Hydro_D 0.498957 0.222076 2.24679 1.647003 ** 
PPTanom_5day 0.111555 0.032753 3.405925 1.118016 ** 
PPTanom_DOL -0.280624 0.071347 -3.933222 0.755313 ** 
PPTante_3day 0.020455 0.003474 5.888562 1.020666 ** 
TMEANanom_7day 0.07765 0.029323 2.648148 1.080745 ** 
TMEANanom_1day -0.103927 0.034233 -3.035898 0.901291 ** 

        

             
Deviance: 800.75043 Classic AIC: 830.75043 AICc: 831.404381 

Percent deviance explained: 0.229841 BIC/MDL: 900.051528    

         

Notes: ** - Significant at 0.05 level 
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Table 5. Logistic Regression Results for Group 1 

       
Variable Estimate SE z(Est/SE) Exp(Est) Significance 

       
Intercept -6.9306 1.462412 -4.739157 0.000977 ** 

AspectCos 0.429173 0.332896 1.289212 1.535987  
PlanformCu -0.638643 0.54615 -1.169355 0.528009  
Slope 0.094223 0.028319 3.327151 1.098805 ** 

Veg_TreeLe -0.681719 0.633525 -1.076073 0.505747  
Andisols -0.398118 0.508978 -0.782192 0.671582  
Erosion_se 0.874368 0.472821 1.849258 2.397359  
Sediment 0.376443 0.455458 0.826516 1.457092  
Hydro_B -0.066494 0.436236 -0.152428 0.935668  
PPT_AnnoNormal 0.000865 0.000458 1.889832 1.000866  
PPTcumanom_5day -0.917947 0.41835 -2.194211 0.399338 ** 

PPTante_3day 0.048486 0.0144 3.367135 1.049681 ** 

TMEANanom_4day 0.318886 0.107659 2.962009 1.375594 ** 

TMEANanom_1day -0.355113 0.106071 -3.347878 0.701094 ** 

TMEANante_28day 0.282353 0.05889 4.794549 1.326247 ** 

        

             
Deviance: 178.616997 Classic AIC: 208.616997 AICc: 211.225692 

Percent deviance explained: 0.355775 BIC/MDL: 258.091757    

         

Notes: ** - Significant at 0.05 level 
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Table 6. Logistic Regression Results for Group 2 

       
Variable Estimate SE z(Est/SE) Exp(Est) Significance 

       
Intercept -4.03479 1.968465 -2.049714 0.017689 ** 

AWS0150 0.233255 0.084541 2.759065 1.262703 ** 

Slope 0.144803 0.050126 2.888777 1.155812 ** 

Ultisols 2.564067 1.160461 2.209525 12.988531 ** 

Erosion_se 3.472505 1.081043 3.21218 32.217353 ** 

Vol_clasti -2.17992 1.127207 -1.933913 0.113051  
Hydro_D 3.417953 1.051934 3.249208 30.50689 ** 

PPTanom_7day -1.675434 0.633318 -2.645484 0.187227 ** 

PPTanom_5day 0.486979 0.134857 3.611084 1.627393 ** 

PPTcumanom_1day -2.481549 0.676588 -3.667739 0.083614 ** 

TMEANanom_7day 0.631215 0.1415 4.460883 1.879893 ** 

TMEANanom_2day -0.820006 0.201159 -4.076409 0.440429 ** 

TMEANante_4day -0.539581 0.126671 -4.259705 0.582993 ** 

        

             
Deviance: 68.36516 Classic AIC: 94.36516 AICc: 96.32215 

Percent deviance explained: 0.753425 BIC/MDL: 137.243286    

         

Notes: ** - Significant at 0.05 level 
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Table 7. Logistic Regression Results for Group 3 

       
Variable Estimate SE z(Est/SE) Exp(Est) Significance 

       
Intercept 10.230961 6.530723 1.566589 27749.17514  
Curvature -0.084309 0.354156 -0.238057 0.919147  
Elevation -0.010463 0.004542 -2.303878 0.989591 ** 

Slope 0.181732 0.045478 3.996035 1.199293 ** 

Veg_TreesM -2.230947 1.163251 -1.917855 0.107427  
Mollisols 2.05861 0.651612 3.159258 7.835069 ** 

Ultisols 1.833474 0.744092 2.464041 6.25558 ** 

Erosion_sl -1.459742 0.599128 -2.436443 0.232296 ** 

Vol_clasti 1.089021 0.940854 1.157481 2.971362  
Sediment -0.275518 0.552716 -0.49848 0.759179  
Hydro_A 1.217375 1.220699 0.997277 3.378308  
PPT_DOL -0.070475 0.040969 -1.720195 0.931951  
PPTante_5day 0.021457 0.006364 3.371514 1.021689 ** 

TMEAN_AnnoNormal -0.995976 0.527006 -1.889876 0.369363  
TMEANanom_2day 0.139517 0.085801 1.62605 1.149718  
TMEANante_7day -0.005681 0.041542 -0.136759 0.994335  

        

             
Deviance: 161.839506 Classic AIC: 193.839506 AICc: 196.812183 

Percent deviance explained: 0.416287 BIC/MDL: 246.612583    

         

Notes: ** - Significant at 0.05 level 
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Table 8. Logistic Regression Results for Group 4 

       
Variable Estimate SE z(Est/SE) Exp(Est) Significance 

       
Intercept -0.638647 1.028223 -0.621118 0.528006  
AspectCos 1.113228 0.477405 2.331832 3.04417 ** 

Curvature 0.847601 0.390019 2.173229 2.33404 ** 

Elevation -0.010198 0.004028 -2.531977 0.989854 ** 

Slope 0.130717 0.036635 3.568047 1.139645 ** 

Veg_Roads 1.590637 0.535823 2.968584 4.906872 ** 

Alfisols 2.319329 0.83936 2.763212 10.16885 ** 

Erosion_sl -1.220315 0.659134 -1.851391 0.295137  
Marine_sed 0.264544 0.523252 0.505577 1.302837  
Volcanic 2.569393 1.675687 1.533337 13.0579  
Hydro_C 1.050883 0.543717 1.932777 2.860176  
PPTanom_DOL -0.411469 0.161304 -2.550891 0.662676 ** 

PPTante_3day 0.014477 0.007811 1.853394 1.014583  
TMEANante_14day -0.116614 0.074431 -1.566726 0.889929  

        

             
Deviance: 118.23726 Classic AIC: 146.237256 AICc: 149.348367 

Percent deviance explained: 0.431399 BIC/MDL: 188.38615    

         

Notes: ** - Significant at 0.05 level 
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GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION 

 

Individual group data was imported in GWR4 where a geographically weighted 

logistic regression was performed. For each group and for the global case, the same 

independent variables were used for the GWR as were used during the logistic regression 

phase of the analysis. Therefore, the global model contained 15 exploratory variables, and 

groups 1, 2, 3, and 4 had 15, 13, 16, and 14 independent variables, respectively. A golden 

bandwidth search, utilizing AICc minimization, was selected for finding the optimal 

bandwidths for each of the 5 models. AICc is the Akaike information criterion corrected for a 

small sample bias. An adaptive Gaussian distribution was chosen to estimate varying 

coefficients across the study area. As mentioned previously, this type of function would 

reduce the effects of sparse data availability in parts of the study region, and worked best for 

this analysis. Tabular regression outputs for all models can be found in Tables 9 through 13. 

Individual parameter estimations are calculated for all regression points and vary across 

space. Therefore, result tables appear slightly different compared to traditional regression 

outputs. Mean, range, and other descriptive statistics are computed for individual explanatory 

variables to summarize the distribution of parameter estimates. 

Regression diagnostics suggest that group model 2 provided the best fit for the data. 

The AIC of 70.5 for this sub region was substantially lower than scores computed for the 

other geographically weighted regression models. In addition, group model 2 explained 

88.4% of the deviance, which is the highest percentage out of all models. Even though the 

optimal bandwidth for this group of 78.6 km was quite large, the results are still acceptable 

since data points for this sub region were more dispersed as shown in Figure 4. Group 1 had 

the lowest bandwidth of 55.2 km but only explained 55% of the deviance.        

 For geographically weighted regressions, cartographic visualization is an efficient 

way for displaying parameter estimates and associated levels of significance across space. 

Figures 19 through 23 show parameter estimates and pseudo t-values for the explanatory 

variable slope. This independent variable was selected for visualization purposes, because it 

was a significant contributor in all 5 regression models. For that reason, examination of 

varying parameter estimates across sub regions is possible. Map classification of coefficient 

estimates was based on a 5 class Natural Breaks grouping, available in ArcGIS. For t-values, 
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Table 9. GWLR Results for Global Model 

           

 Estimate 

Variable Mean STD Min Max Range Lwr Quartile Median Upr Quartile Interquartile R Robust STD 

             
Intercept -2.220742 0.275027 -2.986973 -1.695606 1.291367 -2.362408 -2.231198 -2.072355 0.290053 0.215013 

AspectCos 0.422868 0.233667 -0.045716 1.013789 1.059505 0.273064 0.365459 0.644521 0.371458 0.275358 

Slope 0.113499 0.022551 0.05878 0.152447 0.093667 0.098229 0.117953 0.130899 0.032669 0.024217 

Veg_TreeLe -0.006352 0.279796 -0.493671 0.675642 1.169313 -0.250334 0.005259 0.195195 0.445529 0.330266 

Andisols -0.0548 0.600039 -0.874646 1.671702 2.546349 -0.51674 -0.291729 0.466812 0.983552 0.729097 

Mollisols 0.446254 0.689362 -0.50843 1.634742 2.143172 -0.26389 0.466212 1.145985 1.409875 1.045126 

Erosion_se 1.142606 0.333401 0.539019 1.672695 1.133677 0.824614 1.240835 1.400327 0.575713 0.42677 

Marine_sed 0.277292 0.212411 -0.190496 0.806976 0.997472 0.150804 0.302626 0.368649 0.217845 0.161486 

Volcanic 0.044305 0.326971 -0.711809 0.94123 1.653039 -0.171651 0.02843 0.224099 0.39575 0.293365 

Hydro_D 0.604021 0.243781 0.125438 1.1067 0.981262 0.396169 0.625456 0.806137 0.409968 0.303905 

PPTanom_5day 0.081679 0.10891 -0.224163 0.242796 0.466959 0.005165 0.086966 0.175261 0.170095 0.12609 

PPTanom_DOL -0.269318 0.074973 -0.411179 -0.130517 0.280662 -0.323598 -0.258747 -0.218579 0.105018 0.077849 

PPTante_3day 0.017544 0.004393 0.005667 0.025098 0.019431 0.013673 0.018504 0.021355 0.007682 0.005694 

TMEANanom_7day 0.09619 0.132916 -0.102889 0.345194 0.448083 -0.016896 0.060529 0.233975 0.25087 0.185967 

TMEANanom_1day -0.095767 0.072065 -0.210277 0.030727 0.241004 -0.164672 -0.092487 -0.024767 0.139904 0.10371 

           

                      

Deviance: 658.587222 AIC: 747.215362 AICc: 752.914499      
% deviance explained: 0.366573 BIC/MDL: 951.94961 Bandwidth: 159.493231 km     

             

Notes: Robust STD is given by (interquartile range / 1.349)  
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Table 10. GWLR Results for Group 1 

           

 Estimate 

Variable Mean STD Min Max Range Lwr Quartile Median Upr Quartile Interquartile R Robust STD 

             
Intercept -8.241576 2.017516 -11.774341 -5.53331 6.241031 -9.90937 -8.208953 -6.216639 3.692731 2.737384 

AspectCos 0.652359 0.2567 0.222308 1.08841 0.866101 0.421844 0.743306 0.8509 0.429057 0.318055 

PlanformCu 0.039525 1.073289 -1.917352 1.419043 3.336395 -0.621266 0.41895 0.900777 1.522043 1.128275 

Slope 0.085622 0.017184 0.054364 0.116602 0.062237 0.071323 0.086695 0.095533 0.02421 0.017946 

Veg_TreeLe -0.599512 0.477719 -1.600953 0.067184 1.668137 -0.8773 -0.459402 -0.261941 0.615359 0.45616 

Andisols -0.208319 0.328496 -0.563435 0.62028 1.183715 -0.441691 -0.372642 -0.03919 0.402501 0.29837 

Erosion_se 1.217292 0.282366 0.363789 1.752687 1.388898 1.072385 1.258602 1.432912 0.360527 0.267255 

Sediment 0.391292 0.17499 -0.026619 0.675712 0.702331 0.303346 0.389083 0.540808 0.237463 0.176029 

Hydro_B -0.283207 0.290088 -0.833127 0.116755 0.949882 -0.503106 -0.253032 -0.026951 0.476155 0.352969 

PPT_AnnoNormal 0.001035 0.000399 0.000279 0.001677 0.001398 0.000777 0.001118 0.001369 0.000593 0.000439 

PPTcumanom_5day -1.160746 0.899943 -3.185696 -0.254048 2.931648 -1.558183 -0.849873 -0.44588 1.112303 0.824539 

PPTante_3day 0.058384 0.02757 0.02584 0.11675 0.09091 0.039304 0.045708 0.075929 0.036625 0.027149 

TMEANanom_4day 0.439511 0.16161 0.15654 0.660287 0.503747 0.374356 0.490516 0.564087 0.189731 0.140646 

TMEANanom_1day -0.501272 0.234914 -0.899443 -0.128478 0.770964 -0.710408 -0.514674 -0.307137 0.403271 0.298941 

TMEANante_28day 0.351281 0.118839 0.214852 0.594899 0.380047 0.241823 0.336313 0.441182 0.199359 0.147783 

           

                      

Deviance: 124.826076 AIC: 184.186197 AICc: 194.942001      
% deviance explained: 0.549785 BIC/MDL: 282.080456 Bandwidth: 55.166278 km     

             

Notes: Robust STD is given by (interquartile range / 1.349)  
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Table 11. GWLR Results for Group 2 

           

 Estimate 

Variable Mean STD Min Max Range Lwr Quartile Median Upr Quartile Interquartile R Robust STD 

             
Intercept -1.87242 3.271334 -6.843229 4.68508 11.52831 -5.514502 -1.227677 1.02551 6.540012 4.848045 

AWS0150 0.225796 0.163779 -0.037968 0.535177 0.573145 0.084941 0.215092 0.389854 0.304913 0.226029 

Slope 0.18558 0.08399 0.018155 0.318252 0.300097 0.16063 0.190023 0.254264 0.093634 0.06941 

Ultisols 3.959437 1.349135 1.724711 6.508462 4.783751 2.98336 4.116588 4.99757 2.01421 1.493114 

Erosion_se 3.860735 0.435854 3.268993 4.99067 1.721677 3.443378 3.905338 4.165789 0.72241 0.535515 

Vol_clasti -2.910826 1.794523 -6.03014 0.882621 6.912761 -4.258015 -3.558786 -1.925021 2.332994 1.729425 

Hydro_D 4.261716 0.909517 2.961422 6.491871 3.530449 3.562541 4.277704 4.902036 1.339495 0.992954 

PPTanom_7day -2.169668 0.597915 -3.886805 -1.494144 2.392661 -2.599474 -2.062849 -1.684404 0.91507 0.678332 

PPTanom_5day 0.618537 0.071186 0.466673 0.832058 0.365385 0.579727 0.629401 0.660017 0.08029 0.059519 

PPTcumanom_1day -3.771742 1.252874 -6.157772 -1.596969 4.560803 -4.829314 -3.825008 -3.136197 1.693117 1.25509 

TMEANanom_7day 0.840135 0.252255 0.365657 1.248787 0.88313 0.766253 0.853784 1.043899 0.277646 0.205816 

TMEANanom_2day -1.177948 0.286204 -1.720497 -0.707801 1.012696 -1.41458 -1.185642 -1.021954 0.392626 0.29105 

TMEANante_4day -0.763548 0.183338 -1.166859 -0.444247 0.722612 -0.896117 -0.757055 -0.626982 0.269135 0.199507 

           

                      

Deviance: 32.22465 AIC: 70.532907 AICc: 74.825858      
% deviance explained: 0.883774 BIC/MDL: 133.709301 Bandwidth: 78.639493 km     

             

Notes: Robust STD is given by (interquartile range / 1.349)  
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Table 12. GWLR Results for Group 3 

           

 Estimate 

Variable Mean STD Min Max Range Lwr Quartile Median Upr Quartile Interquartile R Robust STD 

             
Intercept 3.757066 9.038995 -10.322587 16.296004 26.618591 -6.235416 5.202041 12.612342 18.847758 13.971652 

Curvature 0.21837 0.456679 -0.352018 1.47856 1.830578 -0.179587 0.182348 0.44744 0.627027 0.464809 

Elevation -0.012344 0.002348 -0.01913 -0.008737 0.010393 -0.013825 -0.011804 -0.010514 0.003311 0.002454 

Slope 0.29892 0.103895 0.170113 0.533626 0.363513 0.204087 0.303049 0.395788 0.191701 0.142106 

Veg_TreesM -2.089403 2.127447 -6.462891 1.53015 7.993041 -3.762207 -1.845592 -0.119027 3.643179 2.700652 

Mollisols 2.414814 0.799272 1.119359 3.913746 2.794387 1.824226 2.176416 3.262304 1.438078 1.066033 

Ultisols 2.792148 1.075984 1.490538 4.641008 3.150471 1.59663 3.088747 3.93506 2.338431 1.733455 

Erosion_sl -1.392978 0.555843 -2.793752 -0.334533 2.459219 -1.7121 -1.500181 -1.006164 0.705936 0.523303 

Vol_clasti 0.333871 0.566972 -0.877902 1.280127 2.158028 -0.053074 0.170137 0.846241 0.899316 0.666653 

Sediment 0.383081 0.930569 -0.928337 1.973537 2.901874 -0.641305 0.711028 1.284209 1.925514 1.427364 

Hydro_A 3.646132 2.510089 1.182972 9.016602 7.83363 1.392095 2.62542 6.029884 4.637788 3.437945 

PPT_DOL -0.024403 0.063405 -0.129676 0.075757 0.205433 -0.092278 -0.018971 0.040472 0.13275 0.098406 

PPTante_5day 0.03078 0.012057 0.015927 0.052246 0.036319 0.017867 0.030453 0.043156 0.02529 0.018747 

TMEAN_AnnoNormal -0.639499 0.536552 -1.480783 0.291564 1.772347 -1.085415 -0.875708 -0.048875 1.036541 0.768377 

TMEANanom_2day 0.182304 0.100284 -0.004228 0.519328 0.523556 0.121021 0.172321 0.201062 0.080041 0.059334 

TMEANante_7day 0.046528 0.125525 -0.126115 0.29606 0.422174 -0.087197 0.039342 0.175327 0.262524 0.194606 

           

                      

Deviance: 94.72185 AIC: 153.481376 AICc: 164.005477      
% deviance explained: 0.658363 BIC/MDL: 250.385159 Bandwidth: 68.000000 km     

             

Notes: Robust STD is given by (interquartile range / 1.349)  
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Table 13. GWLR Results for Group 4 

           

 Estimate 

Variable Mean STD Min Max Range Lwr Quartile Median Upr Quartile Interquartile R Robust STD 

             
Intercept -0.676712 0.231484 -1.165786 -0.329252 0.836534 -0.851836 -0.687361 -0.465177 0.386659 0.286626 

AspectCos 1.163647 0.420752 0.640674 1.726941 1.086268 0.743158 1.020906 1.564307 0.821149 0.608709 

Curvature 0.782375 0.164332 0.554054 1.074864 0.520811 0.631001 0.733626 0.952866 0.321864 0.238595 

Elevation -0.012608 0.003906 -0.020742 -0.008834 0.011908 -0.015015 -0.011472 -0.009053 0.005962 0.00442 

Slope 0.135086 0.0334 0.094701 0.200764 0.106062 0.107114 0.119439 0.164991 0.057877 0.042904 

Veg_Roads 1.728733 0.452897 1.261355 2.563979 1.302624 1.329082 1.522867 2.173304 0.844222 0.625813 

Alfisols 2.281058 0.350475 1.916122 2.744884 0.828763 1.940614 2.100376 2.698478 0.757864 0.561797 

Erosion_sl -1.163577 0.145692 -1.326401 -0.907563 0.418837 -1.300259 -1.215806 -0.987713 0.312546 0.231687 

Marine_sed 0.467034 0.386795 -0.11935 1.021972 1.141322 -0.009296 0.557665 0.834435 0.84373 0.625449 

Volcanic 3.234278 0.265984 2.799501 3.924894 1.125393 2.998323 3.233084 3.357551 0.359227 0.266292 

Hydro_C 1.306299 0.094939 1.168193 1.492997 0.324804 1.217176 1.289911 1.387591 0.170415 0.126327 

PPTanom_DOL -0.37641 0.091321 -0.542205 -0.23546 0.306745 -0.478155 -0.343537 -0.317776 0.160378 0.118887 

PPTante_3day 0.01877 0.015189 0.000976 0.045853 0.044877 0.00443 0.019954 0.030099 0.025668 0.019028 

TMEANante_14day -0.136773 0.021494 -0.177822 -0.115382 0.06244 -0.159203 -0.125444 -0.120247 0.038956 0.028877 

           

                      

Deviance: 94.284934 AIC: 137.583603 AICc: 145.284277      
% deviance explained: 0.546585 BIC/MDL: 202.761852 Bandwidth: 78.947204 km     

             

Notes: Robust STD is given by (interquartile range / 1.349)  
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traditional cut points of 1.96 and 2.58, corresponding to the 95% and 99% significance levels, 

respectively, were selected (Fotheringham, Brunsdon, & Charlton, 2002). Parameter estimates 

for slope were positive in all 5 models, suggesting that landslide hazard increases as slope 

increases. The 5-class grouping of parameter estimates in Figures 19 through 23 shows how 

estimated coefficients change across space. 

For the global model (Figure 19), modeling results suggest that parameter estimates 

for the variable slope vary substantially across the study area. While lower estimates tend to 

cluster in the northwest and the central part of the study region, higher values are found in the 

southern part. This sort of detail, which is very important for the interpretation of results, is 

lost when a standard logistic regression approach with one single global average parameter 

estimate is used. Most estimates are significant at the 99% level. When examining the t-values 

for region 1 and 2, on the contrary, it becomes clear that significance of parameter estimates 

also varies across space. For region 1, many parameter estimates are not significant at the 

95% level in the northwestern part, but highly significant in the south. Subsequently, in region 

2, a north-south trend is evident. Estimates become more significant as we move south across 

sub region 2. This is an interesting discovery since the global logistic regression model 

suggested that the variable slope was significant for all sub regions. 

An Inverse Distance Weighting (IDW) interpolation was computed for GWR model 

predictions, to visualize landslide susceptibility across the study region. Major roads were 

buffered to limit the interpolation. Since all landslide events used in this analysis were located 

along roads, interpolation outputs with increasing distance from roads become less accurate. 

Subsequently, these areas were excluded from the final map product. A more spatially 

uniform landslide inventory would be necessary for creating a continuous prediction surface. 

Without it, predictions in remote areas have little statistical significance. The results of the 

IDW interpolation are displayed in Figure 24. Areas of low landslide susceptibility include 

the Willamette Valley, where little topographic variability is evident, and the southeastern 

part of the study area. Higher probability of landslide occurrence was computed for the 

Portland urban area and several road segments along Highway 101 and State Route 42. Along 

the coast, easily weathered sedimentary rocks and porous volcanic formations contribute to 

the landslide hazard. In addition, steep, west facing slopes influence susceptibility in these 

areas.          
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Figure 19. GWLR Estimate and Significance of Slope Variable (Global Model) 

 

Figure 20. GWLR Estimate and Significance of Slope Variable (Group 1)  
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Figure 21. GWLR Estimate and Significance of Slope Variable (Group 2) 

 

Figure 22. GWLR Estimate and Significance of Slope Variable (Group 3) 
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Figure 23. GWLR Estimate and Significance of Slope Variable (Group 4) 
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Figure 24. Interpolated GWR Predictions 
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MODEL COMPARISON 

 

When analyzing the outputs from the traditional logistic regression and the 

geographically weighted logistic regression models, it becomes clear that the GWLR models 

outperformed standard techniques across all sub regions. Overall fit improves significantly 

when applying a GWLR. This suggests that GWLR predictions are more accurate. In 

addition, since GWLR also accounts for some of the spatial non-stationarity, results are more 

reliable across the study region. As outlined in the previous sections, AIC scores are 

consistently lower and GWLR models explain more of the deviance. Table 14 summarizes 

model diagnostics for the two approaches. 

 

Table 14. GWLR - LR Model Comparison 

      

 AIC  % deviance explained  

      
  LR GWLR   LR GWLR 

      
Global 830.750 747.215  0.230 0.367 

Group 1 208.617 184.186  0.356 0.550 

Group 2 94.365 70.533  0.753 0.884 

Group 3 193.840 153.481  0.416 0.658 

Group 4 146.237 137.584  0.431 0.547 

            

      
 

For the global model, AIC improvements were most significant. An improvement of 

more than 83 points suggests that the GWLR model provides a much better fit to the data. 

Since both models were trained with the same selection of landslide and non-landslide points, 

it can be concluded that GWLR presents a more practical approach for the data used in this 

study. On average, applying a geographically weighted regression lowered AIC scores by 36 

points. Across all sub regions, GWLR models explained more of the deviance than standard 

logistic regression models. For region 4, the GWLR explained 65.8 percent of the deviance 

which is an improvement of more than 24% compared to the traditional approach. On 

average, GWLR explained 16% more deviance than LR models. 

In terms of accuracy, GWLR model predictions were better across all regions. 

Classification tables 15.1 through 19.2 compare correctly and incorrectly identified landslide 
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events for each model. A traditional cutpoint of p=0.5 was used to distinguish between 

present and absent cases. Sensitivity, the proportion of correctly identified landslides, and 

specificity the proportion of correctly identified non-landslide points were computed for each 

model. In addition, overall model accuracy was calculated. Greatest improvements could be 

observed for region 1, where accuracy improved by 9.5% when moving from a standard 

logistic regression model to a geographically weighted logistic regression approach.   
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Table 15.2 Classification Table Based on Global GWLR 

      

            

  Observed Total  

 Predicted 0 1    

 0 295 80 375  

 1 60 315 375  

 Total 355 395 750  

           

Sensitivity 79.7% Specificity 83.1% Accuracy 81.3% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 16.2 Classification Table Based on Group 1 GWLR 

      

            

  Observed Total  

 Predicted 0 1    

 0 86 14 100  

 1 13 87 100  

 Total 99 101 200  

           

Sensitivity 86.1% Specificity 86.9% Accuracy 86.5% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 16.1 Classification Table Based on Group 1 LR 

      

            

  Observed Total  

 Predicted 0 1    

 0 80 20 100  

 1 26 74 100  

 Total 106 94 200  

           

Sensitivity 78.7% Specificity 75.5% Accuracy 77.0% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 15.1 Classification Table Based on Global LR 

      

            

  Observed Total  

 Predicted 0 1    

 0 276 99 375  

 1 98 277 375  

 Total 374 376 750  

           

Sensitivity 73.7% Specificity 73.8% Accuracy 73.7% 

      

Notes: Cutpoint of p=0.5 was selected for classification 
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Table 17.2 Classification Table Based on Group 2 GWLR 

      

            

  Observed Total  

 Predicted 0 1    

 0 96 4 100  

 1 2 98 100  

 Total 98 102 200  

           

Sensitivity 96.1% Specificity 98.0% Accuracy 97.0% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 18.2 Classification Table Based on Group 3 GWLR 

      

            

  Observed Total  

 Predicted 0 1    

 0 87 13 100  

 1 8 92 100  

 Total 95 105 200  

           

Sensitivity 87.6% Specificity 91.6% Accuracy 89.5% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 18.1 Classification Table Based on Group 3 LR 

      

            

  Observed Total  

 Predicted 0 1    

 0 86 14 100  

 1 20 80 100  

 Total 106 94 200  

           

Sensitivity 85.1% Specificity 81.1% Accuracy 83.0% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 17.1 Classification Table Based on Group 2 LR 

      

            

  Observed Total  

 Predicted 0 1    

 0 93 7 100  

 1 4 96 100  

 Total 97 103 200  

           

Sensitivity 93.2% Specificity 95.9% Accuracy 94.5% 

      

Notes: Cutpoint of p=0.5 was selected for classification 
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Table 19.2 Classification Table Based on Group 4 GWLR 

      

            

  Observed Total  

 Predicted 0 1    

 0 65 10 75  

 1 12 63 75  

 Total 77 73 150  

           

Sensitivity 86.3% Specificity 84.4% Accuracy 85.3% 

      

Notes: Cutpoint of p=0.5 was selected for classification 

Table 19.1 Classification Table Based on Group 4 LR 

      

            

  Observed Total  

 Predicted 0 1    

 0 60 15 75  

 1 14 61 75  

 Total 74 76 150  

           

Sensitivity 80.3% Specificity 81.1% Accuracy 80.7% 

      

Notes: Cutpoint of p=0.5 was selected for classification 
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CHAPTER 4: DISCUSSION 

 

A comparative analysis was performed in this study to assess the results of global and 

local logistic regression modeling. 85 candidate predictor variables were analyzed to discover 

relationships between environmental factors and landslide occurrence. Logistic regression 

(LR) was chosen for this research, because it is often counted among the most popular 

approaches for landslide susceptibility mapping (Guzzetti, Carrara, Cardinali, & Reichenbach, 

1999). Traditional logistic regression modeling was compared to a more advanced technique, 

geographically weighted logistic regression (GWLR), that has been successfully used in other 

fields of science. GWLR is appropriate for datasets with great spatial variability, because it 

accounts for the spatial non-stationarity that is evident in most environmental data and 

produces more reliable results. For landslide hazard analysis, however, GWR has only been 

applied in a small number of studies (Chalkias, Kalogirou, & Ferentinou, 2011; Erener & 

Düzgün, 2010; Sabokbar, Roodposhti, & Tazik, 2014). None the less, these studies concluded 

that geographically weighted approaches provided more realistic predictions and offered 

greater spatial detail. It not only allowed for better interpretations of modeling estimates, but 

also improved the understanding of the role of local contributors. Regression outputs for the 

analysis conducted in this study confirmed such conclusions.  

The models in this study captured several physical landslide processes. Many of the 

predictor variables that were found to be significant, have also been identified as vital 

components in other landslide research. Especially the role of slope, erosion potential, 

hydrologic groups, and geologic parent material on landslide susceptibility was consistent 

with the scientific literature. In all 5 models, the predictor slope had a positive parameter 

estimate which suggests that landslide susceptibility increases as slope increases. As slope 

gradients become steeper, shear stress on the parent material increases and greater resisting 

forces are necessary to prevent failure. This positive relationship is commonly observed in 

landslide susceptibility models. Furthermore, the parameter estimates for erosion potential 

were consistent across all models. Estimates were positive for severe erosion potential, and 

negative for slight erosion potential. This denotes that slopes with easily detachable soils are 

more prone to landslide activity. As the factor of soil erodibility, increases, removal of lateral 

support during heavy rain or snowmelt events becomes more likely. Soils with large k-factors, 
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such as silts, have higher risks for lateral or underlying support removal. Soil erodibility also 

plays an important role when analyzing hydrologic soil groups. Hydrologic Group D was 

included in two of the five regions and exhibited a positive parameter estimate. This result is 

consistent with the underlying mechanics of landslide activity. Since soils in group D have the 

greatest runoff and swelling potential, due to their large clay content, when adequately 

hydrated, clay rich soils expand and significantly increases lateral pressure. Enhanced shear 

stress contributes to slope instability and may result in slope failure. A similar process can 

also be observed in ultisols which have a clay-rich subsurface horizon. Finally, model results 

indicated that volcanic and sedimentary parent material contributed to the landslide hazard. 

Depending on the region, landslide susceptibility increased as these geologic classes 

increased. Deeply weathered siltstone and sandstone along Oregon’s Coastal Range are often 

associated with creep and earthflow activity. In addition, volcanic material is prone to 

landslide activity because it has low internal cohesion when weathered. 

Sensitivity and specificity computations verified that GWLR models were more 

accurate in predicting landslide and non-landslide events than standard logistic regression. 

Geographically weighted regressions improved accuracy by a range of 2.5% for sub region 2 

to 9.5% for group 1. This suggests that GWLR models provided a better fit for data used in 

this study and improved the accuracy of the models. In addition, the variance of parameter 

estimates between sub regions indicated that the segmentation of data into sub regions was 

well rationalized. The magnitude of parameter estimates, as well as the selection of predictor 

variables used for each model, varied substantially across groups. Group models performed 

better than the global GWLR which also supports grouping of data into sub regions. 

Calibrating the grouping analysis and improving on the segmentation of data could further 

improve modeling results greatly. For example, by computing more precise inter-point 

distances, the sub regions could be adjusted for a more natural grouping. This would lower the 

GWR bandwidth and enhance model results.   

Besides significant improvements in AIC and other modeling diagnostics, GWLR 

provided a more detailed output. Results for the variable slope (Figures 19–23) suggest that 

parameter estimates are not stationary across the study region. Instead, results vary 

significantly for various parts of western Oregon. For group 3, slope parameter estimates 

range from 0.170 to 0.534. This denotes that model estimates can deviate substantially for 
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different locations. An examination of predictor influence across the study region would not 

be possible with standard logistic regression. By applying a GWR, it is possible to interpret 

these results and, subsequently, recalibrate the model or the grouping of data to account for 

spatial patterns in the predictors. Similarly, parameter significance is dynamic across space. 

While global logistic models suggested that the explanatory variable slope was significant at 

the 95% confidence level for all sub regions, an examination of the geographically weighted 

regression results revealed that this was not the case for all regions. While the parameter is 

highly significant in most parts of the study area, there are also parts were slope is not a 

significant predictor. Especially in groups 1 and 2, the spatial difference of predictor 

significance is noticeable. This kind of information is lost when a traditional global logistic 

regression model is applied.  

Even though GWR presented many advantages over traditional logistic regression 

modeling for the data used in this study, there are several limitations that must be addressed. 

First, the distribution of parameter estimates may be a result of model misspecification 

(Fotheringham, Brunsdon, & Charlton, 2002). Second, it has been noted that multicollinearity 

issues among local regression coefficients may invalidate any interpretation of the parameter 

estimates (Wheeler & Tiefelsdorf. 2005). Without applying standard diagnostic techniques, it 

is possible to encounter local collinearity even if the predictor variables are independent. 

Third, GWR is limited by the edge effect. Coastal landslide locations, for example, do not 

have the full 360-degree influence as landslides in the interior. Even though an adaptive 

kernel minimizes this problem, it is still important to note that the edge effect can bias 

parameter estimates. Finally, GWR addresses some of the non-stationarity in environmental 

data, but it does not explicitly model covariance. For that reason, researchers must apply 

caution and utilize diagnostic techniques to assure that parameter estimates can be interpreted 

accurately.        

The modeling results for this analysis confirmed that GWLR models are a suitable 

alternative to standard logistic regression approaches. Traditional landslide research has not 

yet incorporated geographically weighted regression for hazard mapping. There is only a 

limited number of landslide studies that utilize this technique. Even though these studies 

confirmed the utility of GWR, which is also demonstrated in this analysis, it has not yet 

achieved broad acceptance in the field of landslide susceptibility analysis. In part, this can be 
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attributed to the innovative nature of this approach, and the fact that most statistical packages 

and mapping software do not incorporate geographically weighted regression. However, it is 

likely that future releases will include GWLR due to the rising popularity of the approach.  

By considering the spatial correlation among regression parameters, the explanatory 

power of models increases. Since landslide research relies on the accuracy and reliability of 

predictions, improved models enhance the utility of susceptibility analyses. Constant 

evaluation of new approaches is necessary to assure that the field of hazard research utilizes 

the most innovative and appropriate techniques for a given objective. Only under these 

circumstances, it is possible for decision-makers to effectively mitigate the effects of slope 

failure and protect the population. In view of climatic changes that affect the frequency and 

distribution of landslide events, more localized models that account for the spatial variability 

are needed to predict slope failures effectively. The level of detail that is produced by GWLR 

models allows us to study the influence of predictors at the local level and analyze how 

independent variables change across space. This knowledge is invaluable for thorough 

landslide analysis. It gives researchers the opportunity to examine the underlying relationships 

that influence landslide susceptibility at the local level.       
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CHAPTER 5: LIMITATIONS AND FUTURE RESEARCH 

 

Even though quality issues in the landslide inventory had created some conflicting 

results among climate predictors, overall, GWLR models presented an improvement 

compared to standard logistic regression. Inconsistent recording of landslide dates made 

recreating past climate conditions around the date of failure a challenging task. Clear weather 

drivers could only be identified in Group 3, where precipitation anomalies for winter 

landslides between November and March spiked significantly 4 days before the failure. 

However, since other sub regions lacked any significant relationships between weather drivers 

and landslide occurrence, parameter estimates for temperature and precipitation may not be 

accurate. To improve these predictors, it would be necessary to build independent models for 

different time periods. This would account for the seasonality in the landslide data. In 

addition, future research should incorporate a close examination of the landslide inventory to 

assure that recorded dates coincide with the date of failure and not the day of discovery. 

Moreover, the approach for extracting climate data at non-landslide locations also needs to be 

updated. Instead of assigning a random date using a uniform distribution, non-landslide dates 

should be computed by analyzing the temporal distribution of landslide events. This means 

that a higher frequency of winter landslides in the inventory must be reflected by the non-

landslide date attribute as well. Modeling predictions could be significantly enhanced if not 

only spatial variation was considered, but also temporal variability.      

Due to the high frequency of landslide events during the summer months, it is also 

advisable to investigate seismic predictor importance in future modeling efforts. As explained 

previously, a large number of slope failures occurred in August, the driest month of the year. 

Therefore, it is important to consider additional independent variables such as distance to fault 

lines, for example, to assure that no significant predictors are omitted from the analysis. 

Seismic data was not incorporated in this study because of its complexity at regional scales. 

However, for smaller study areas it is feasible to obtain geospatial data for tectonic uplift, 

volcanic eruptions, and other seismic activity efficiently.   

The use of improved vegetation products could also enhance model accuracy. Since 

landcover is dynamic, it is proposed to utilize remotely sensed data to compute vegetation 

indices for a given time period. First, this would replace categorical landcover data with a 
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continuous measure of vegetation cover. For logistic regression with a limited number of 

landslide events, this would reduce the problem of separation and enhance quality of 

predictions. Second, by computing vegetation indices for several temporal ranges, it may be 

possible to evaluate the effects of landcover change on the distribution of slope failures. 

Geographically weighted modeling outputs would, consequently, not only account for spatial 

non-stationarity, but also address temporal variability.  
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