

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Kevin S. McCarty

December 2014

Major Professor: Milos Manic, Ph.D.

Applications of Contextual Fuzzy Operators and

Fuzzy Extensions for Polymorphism, Data

Mining and Analysis

ii

AUTHORIZATION TO SUBMIT DISSERTATION

This dissertation of Kevin McCarty, submitted for the degree of Doctor of Philosophy with a

major in Computer Science and titled “Applications of Contextual Fuzzy Operators and Fuzzy

Extensions for Polymorphism, Data Mining and Analysis,” has been reviewed in final form.

Permission, as indicated by the signatures and dates given below, is now granted to submit

final copies to the College of Graduate Studies for approval.

Major Professor: _____________________________ Date_____________

 Milos Manic, Ph.D.

Committee

Members: _____________________________ Date_____________

Robert Heckendorn, Ph.D.

 _____________________________ Date_____________

 Sergiu-Dan Stan, Ph.D.

 _____________________________ Date_____________

 Vijay Dialani, Ph.D.

Department

Administrator: _____________________________ Date_____________

 Gregory Donohoe, Ph.D.

Discipline’s

College Dean: _____________________________ Date_____________

 Larry Stauffer, Ph.D.

Final Approval and Acceptance

Dean of the College

of Graduate Studies: ______________________________ Date_____________

Jie Chen, Ph. D.

iii

ABSTRACT

System behaviors and processes are often influenced to a large degree by external

conditions. As those conditions change, so must any corresponding behavioral response.

Driving a car from point A to point B when the road is straight and smooth is a dramatically

different operation than if the surface is a sheet of ice with twists and turns. Even more

challenging is when both surfaces are part of the same problem; for example, when a car must

navigate a patch of “black ice” on the highway. Significant changes in the nature of a

problem, such as when a surface changes from asphalt to ice, are referred to as Situational

Discontinuity Problems (SDPs) and present a distinct challenge to computer scientists and

programmers.

First, behaviors which might be appropriate for past problem states are inappropriate

for future states. Second, data discontinuities make it difficult to describe all-encompassing

actions without a “frame of reference”. Even well-known problems such as simple noise and

outliers pose problems for processes. Third is the general uncertainty surrounding SDPs in or

near transition states where multiple approaches are equally desirable.

Traditional approaches to SDPs involve generalizing an existing algorithm. This has

the undesired side-effect of greatly increasing complexity while also providing a diminishing

ability to further extend the algorithm. Fuzzy Contexts, or Fuzzy Logic Type-C with

Fuzzymorphism, is an architecture designed to allow process extensions to solve SDPs or

other disparate problems while also minimizing complexity and diminishing returns.

This dissertation explores prior work and methods used to solve SDPs and their

limitations. It then introduces the notion of Fuzzy Contexts and Fuzzymorphism in a novel

software framework supported with database extensions, a database-driven and XML-based

configuration language, combined with evolutionary and local search techniques. It further

explores the use of the framework and the Type-C architecture in various processes from data

mining to robotic control in order to improve upon existing techniques.

iv

ACKNOWLEDGEMENTS

The author wishes to acknowledge the following individuals for their support and assistance

throughout the academic process:

Miles McQueen

Debbie McQueen

Alice Allen

and, of course, the members of my committee, whose time and input are greatly appreciated.

Finally, the author wishes to acknowledge the tremendous support received from Professor

Milos Manic as advisor, editor and sounding board for ideas. It is hard to conceive that this

dissertation would even have been possible without his input, time and effort throughout the

entire process.

v

DEDICATION

This dissertation is dedicated to Andrea, my wife, and very best friend.

To Marie McCarty, who gave me life and so much more.

Finally to Dr. Richard McCarty, my model in all things.

vi

TABLE OF CONTENTS

Authorization to Submit Dissertation ... ii

Abstract ... iii

Acknowledgements ... iv

Dedication .. v

Table Of Contents .. vi

List of Figures ... xi

List of Pseudo-code ... xvii

List of Tables .. xviii

Chapter 1: Introduction ... 1

1.1: Motivation .. 1

1.2: Objective ... 3

1.3: Dissertation Structure and Contributions ... 4

Chapter 2: Background .. 6

2.1: Problems that could use a little context .. 6

2.2: Using Fuzzy Logic .. 9

2.2.1: Fuzzy Type 1 .. 9

2.2.2: Fuzzy Logic Type 2 .. 10

2.2.3: Nonstationary Fuzzy Sets ... 11

2.2.4: Polymorphic Fuzzy Signatures ... 12

2.2.5: Fuzzy Clustering .. 13

2.3: Other Techniques for Contextual Problem Solving ... 15

2.3.1: Local Search Techniques ... 15

2.3.2: Evolutionary Computation ... 16

2.3.3: Software Engineering and Architecture Issues .. 16

vii

2.3.4: Neural Networks .. 22

2.3.5: Radial Basis Functions ... 23

2.3.6: Subsumption ... 25

2.3.7: Dynamic Programming .. 26

2.3.8: Hybrid Systems .. 27

Chapter 3: Fuzzy Contexts ... 29

3.1: The Need for Context ... 29

3.11: The Situational Discontinuity Problem ... 32

3.2: The Fuzzy Logic Foundation .. 34

3.3: Overview of Fuzzy Contexts in Detail ... 39

3.3.1: How Fuzzy Contexts extend Fuzzy Logic ... 43

3.3.2: What is Fuzzymorphism? ... 45

3.3.3: Advantages of Fuzzy Contexts and Fuzzymorphism ... 47

3.3.4: Is there a Packing Problem? ... 53

3.4: Implementation of Basic Fuzzy Framework and Architecture ... 55

3.4.1: Introduction .. 55

3.4.2: Need for a General Fuzzy Framework to Support Type-C .. 58

3.4.3: Framework Architecture .. 59

3.4.4: Structural Changes to Support Type-C .. 64

3.5: Guidelines for Creating Fuzzy Contexts .. 66

Step 1: Determine Default Context if Necessary ... 66

Step 2a: Define Center ... 66

Step 2b: Define Inner Shape ... 68

Step 2c: Define Outer Shape .. 68

Step 2d: Define Fuzzy Membership Function .. 68

viii

Step 2e: Label the Context ... 70

Chapter 4: Fuzzy Contexts Extensions and Enhancements .. 72

4.1: Architectural Enhancements ... 72

4.1.1: Enhancement #1 – Adding Fuzzy Type-2 Support .. 72

4.1.2: Enhancement #2 – Adding Fuzzy Type-C Support ... 73

4.1.3: Enhancement #3 – Adding Relational Database Support .. 76

4.2: Functional Enhancements ... 81

4.2.1: Enhancement #4 – Adding Memetic-Based Optimization ... 81

4.2.2: Enhancement #5 – Adding Unsupervised Learning Algorithm to Discover New

Fuzzy Contexts ... 87

4.3: Structural Enhancements .. 89

4.3.1: Enhancement #6 - Algorithm Definition Language ... 89

4.3.2: Enhancement #7 - The Wizard Tool .. 97

4.3.3: Enhancement #8 - Hierarchical Technique for Diverse Contextual Dynamic

Programming and Optimization ... 102

4.4: Test Examples ... 110

4.4.1: Basic Framework Tests .. 110

4.4.2: Context Tests .. 115

4.4.3: Other Enhancement Tests ... 125

4.5: Chapter Summary and Comparative Analysis .. 143

4.5.1: TCF vs. Other Frameworks .. 143

4.5.2: TCF vs. Traditional Fuzzy Type-1, Type-2 and other approaches 143

4.5.3: How TCF reduces the problem of over-fitting in ANNs ... 145

Chapter 5: Work in Progress ... 148

Chapter 6: Conclusion .. 150

ix

Summary of Contributions .. 150

Final Note .. 152

References .. 153

Appendices ... 163

Appendix A: Minor Contributions ... 163

Minor Contribution #1: Contextual Fuzzy Hierarchies for Decision Trees (CoFuH-DT) –

An Accelerated Data Mining Technique .. 163

Minor Contribution #2: Contextual Derivation From Decision Trees (CoT-DT) Based on

Advanced Data Mining Techniques and Intelligent Control .. 180

Minor Contribution #3: Applications of Heuristics to Local Search Algorithms 196

Appendix B: Fuzzy Logic Primer .. 207

B.1: Fuzzy Logic Type 1 .. 207

B.2: Fuzzy Logic Type 2 .. 229

B.3: Nonstationary Fuzzy Sets ... 240

B.4: Polymorphic Fuzzy Signatures ... 244

B.5: Hybrid Fuzzy Systems .. 245

B.6: Fuzzy Clustering ... 246

Appendix C: Local Search Techniques ... 251

Appendix D: Neural Networks .. 254

Appendix E: Evolutionary Computation ... 257

E.1: Introduction ... 257

E.2: Natural Selection ... 259

E.3: Recombination .. 260

E.4: Mutation .. 262

Appendix F: Relational Database Concepts .. 263

x

F.1: Introduction ... 263

F.2: The Relational Model .. 267

F.3: Codd’s Rules for Relational Databases ... 269

Appendix G: Advanced Data Mining Techniques ... 278

Appendix H: Local Search Algorithms Pseudo-Code ... 284

H.1: Introduction .. 284

H.2: LSA #1- Hill Climbing ... 284

H.3: LSA #2 - Stochastic Hill Climbing .. 286

H.4: LSA #3 - Stochastic Hill Climb using Descending Deviation Optimizations 288

H.5: LSA #4 - Random Restart Hill Climbing ... 290

H.6: LSA #5 - Simulated Annealing (SA) ... 292

H.7: LSA #6 - Genetic Mutation (GM) .. 294

H.8: LSA #7 - Min Conflicts .. 295

H.9: LSA #8 - Tabu Search .. 297

H.10: LSA #9 - Simulated Annealing Using Descending Deviation Optimizations 299

H.11: LSA #10 – Memetic Mutation .. 302

H.12: LSA #11 – Genetic Mutation Using Descending Deviation Optimizations 303

Appendix I: Database, Data Warehouse and Data Mining Test Software 305

Publications .. 310

Journal Publications ... 310

Peer-Reviewed Conference Publications ... 312

Book Chapters ... 321

Master’s Thesis .. 322

Glossary of Terms ... 324

xi

LIST OF FIGURES

Figure 1 - Grunion by the thousands swarm the beach during a Grunion Run 2

Figure 2 - Different Problems within a Problem Space ... 7

Figure 3 - Type-2 Fuzzy Sets ... 11

Figure 4 – Crisp and Fuzzy Clusters .. 14

Figure 5 - A computer-based neuron ... 22

Figure 6 - A simple artificial neuron .. 22

Figure 7 – A Radial Basis Function using a Gaussian ... 24

Figure 8 – Radial Basis Function Network .. 25

Figure 9 – Subsumption in a Robot ... 26

Figure 10 - Different Problems within a Problem Space ... 31

Figure 11 - Solving a Problem Space Using Multiple Approaches ... 34

Figure 12 - Fuzzy Sets as Triangles ... 35

Figure 13 - Type-2 Fuzzy Sets ... 37

Figure 14 – A Typical Fuzzy Controller .. 38

Figure 15 – Deconstructing an eye into ρ, σ, τ ... 39

Figure 16 – Simple Fuzzy Context .. 40

Figure 17 – Polymorphic action SPEAK for DUCK vs. DOG vs. CAT 46

Figure 18 - Adding Fuzzy Rules Results in Diminishing Returns ... 48

Figure 19 - Overlap of Techniques for a Scheduler ... 48

Figure 20 - Solving a Problem Space Using Multiple Approaches ... 50

Figure 21 - Fuzzy Context Architecture .. 51

Figure 22 - Points in Fuzzy Clusters .. 52

Figure 23 - Type-C membership over a Problem Space .. 53

Figure 24 a, b – Circles in a rectangular container leads to “Packing Problem” 54

Figure 25 – Example Problem Space ... 54

Figure 26 – Fuzzy Contexts overlap and cover a problem space ... 55

Figure 27 – Triangle-shaped fuzzy membership function ... 60

Figure 28 – Fuzzy Framework Architecture .. 64

Figure 29 – A Patch of Ice on a Road .. 67

xii

Figure 30 – Simple Gaussian ... 69

Figure 31 – Gaussian with Fuzzy Hedge ... 69

Figure 32 – Gaussian with Extreme Fuzzy Hedge ... 70

Figure 33 – Original Fuzzy Framework Architecture with Type-2 Extensions 73

Figure 34 – A Vehicle Ready to Navigate a Maze... 75

Figure 35 – DB Set Operations Contrasted with Application and Database Cursor Operations

 .. 80

Figure 36 – Sample Back and Forth Corrections Navigating Maze .. 82

Figure 37 - Determining Peaks and Valleys .. 83

Figure 38 - Peaks with Plateaus ... 83

Figure 39 - Ordered Peaks and Valleys after Processing ... 84

Figure 40 - Creating an Optimal Gradient ... 84

Figure 41 - Set Operation to Isolate True Peaks and Valleys .. 87

Figure 42 – Robot Car Unable to Navigate a Barrier... 87

Figure 43 – An Unsupervised Technique to create a new Context .. 89

Figure 44 - A Fuzzy Function Definition in XML ... 91

Figure 45 - Combining a Term and Fuzzy Function to Create a Fuzzy Set............................. 91

Figure 46 - Defining a Fuzzy Variable in XML .. 92

Figure 47 - Defining an FIS Using the Fuzzy Modeling Language ... 94

Figure 48 – Fuzzy Wizard Variables Page ... 98

Figure 49 – Defining a Membership Function using the Wizard... 99

Figure 50 - A Fuzzy Function Definition in XML ... 99

Figure 51 – Windows for building a Type-1 Fuzzy Inference System 101

Figure 52 - Local Peak Prevents Discovery of Global Solution .. 104

Figure 53. Genetic Mutation .. 105

Figure 54 - Robot in a Maze .. 110

Figure 55 - Robot Navigating Maze Using Framework-Based T1 FLC 112

Figure 56 - Robot Navigating Maze Using Framework-Based T2 FLC 113

Figure 57 (a) - T1-FIS and 53 (b) – GT2-FIS .. 114

Figure 58 – T1-FIS overlaid with GT2-FIS ... 115

Figure 59 – T1-FIS interlaced with GT2-FIS .. 115

xiii

Figure 60 - New maze with terrain features ... 117

Figure 61 – Navigating Terrain Features (a) Transitioning to Canoe (b), Helicopter (c),

Submarine Vehicle (d) ... 118

Figure 62 – Comparison Growth T1-FIS vs Contexts ... 120

Figure 63 – Vehicle Unable to Navigate Barrier ... 122

Figure 64 – Using Contexts to Navigate Barriers in Maze .. 123

Figure 65 – Comparing T1-FIS (left and top) and T1-FIS (right and bottom) with Contextual

Subsumption for (a) left leg of maze, (b) top leg of maze, (c) bottom leg of maze 124

Figure 66 – Comparing GT2-FIS (left and top) and GT2-FIS (right and bottom) with

Contextual Subsumption for (a) left leg of maze, (b) top leg of maze, (c) bottom leg of maze

 .. 124

Figure 67 – A solution for the 8-Queens problem ... 127

Figure 68 - A Robot Car Navigating a Maze ... 130

Figure 69 - A Robot Car Navigating a Maze, Typical FIS – Type 1 FLC 133

Figure 70 - A Robot Car Navigating a Maze, Optimized T1-FIS .. 133

Figure 71 - Bad FIS cause robot car to hit barrier.. 134

Figure 72 - Bad FIS repaired .. 134

Figure 73 - Robot in a Maze .. 135

Figure 74 – Algorithm Learning Contexts ... 136

Figure 75 – The Fuzzy Wizard Tool .. 137

Figure 76 – XML for a Type-1 FIS .. 140

Figure 77 – General Type-2 FIS in Wizard ... 141

Figure 78 – Database Schema for a Fuzzy Configuration ... 142

Figure 79 - A basic, horizontal Decision Tree ... 164

Figure 80 - CoFuH-DT reduction of Decision Tree... 170

Figure 81 - Rule Creation using Decision Tree ... 171

Figure 82 - Normalization of a Decision Tree ... 171

Figure 83 - Fuzzifying customer’s Decision Tree.. 172

Figure 84 - Context unifying 3 clusters.. 173

Figure 85 - Nodes pruned by context ... 173

Figure 86 - Context of shopping type. ... 174

xiv

Figure 87 - Fuzzy deformation under a context. .. 174

Figure 88 - Node growth under normal conditions and contexts. .. 177

Figure 89 - A typical Decision Tree used for data mining ... 180

Figure 90 - A Decision Tree node generation node with attributes 181

Figure 91 - Context spanning several nodes .. 183

Figure 92 - Calculating distance between nodes .. 186

Figure 93 - CoT-DT Step 1 - Creation of Decision Tree ... 187

Figure 94 - Nodes of Decision Tree produce subset si of original set S. 187

Figure 95 - ANN classifier applied to leaf node sets produces clusters. 188

Figure 96 - ANN cluster generation ... 189

Figure 97 - Cluster span over several nodes .. 190

Figure 98 - Sample Decision Tree with cluster-span ... 191

Figure 99 - Comparison of Local/Global Maxima. .. 198

Figure 100 - Bounce out of a Local Maxima Trap... 199

Figure 101 - Pattern in which SA fails to find a solution .. 203

Figure 102 - Simulated Annealing with Descending Deviations ... 204

Figure 103 - A basic, fuzzy description of a person’s height... 211

Figure 104 - Fuzzy description of a person’s height using hedge SOMEWHAT. 213

Figure 105 - A basic, fuzzy description of a person’s height using hedge VERY. 213

Figure 106 A stair-step, crisp implementation. .. 214

Figure 107 - Constructing fuzzy sets from speed ranges. .. 214

Figure 108 - A smooth fuzzy implementation ... 215

Figure 109 – A crisp membership function.. 218

Figure 110 – A Fuzzy Membership Function .. 218

Figure 111 – Trapezoid and Gaussian shaped membership functions 219

Figure 112 – A left trapezoid ... 220

Figure 113 - µA(x) .. 222

Figure 114 - µB(x) .. 222

Figure 115 – Operations on T1 Fuzzy Sets Using Minimum T-Norm Operator 223

Figure 116 – Operations on T1 Fuzzy Sets Using the Maximum T-Conorm Operator 224

Figure 117 – Typical Fuzzy Inference System .. 225

xv

Figure 118 – Fuzzification/Defuzzification Process .. 228

Figure 119 - GT2 Fuzzy Set 𝑨 ... 234

Figure 120 – GT2 Fuzzy Set 𝑩 .. 234

Figure 121 – The resulting Union operation of GT2 Fuzzy Sets 𝑨 and 𝑩............................. 235

Figure 122 – The resulting Intersection operation of GT2 Fuzzy Sets 𝑨 and 𝑩 236

Figure 123 - Fuzzy sets for a thermostat in Barrow, Alaska .. 240

Figure 124 - Fuzzy sets for a thermostat in Phoenix .. 241

Figure 125 - A Fuzzy NFS transition of Fuzzy Type 1 sets... 242

Figure 126 - Fuzzy NFS dimension of uncertainty added to Fuzzy 1 242

Figure 127 - Polymorphic Fuzzy Signature Tree ... 244

Figure 128 – Contrasting K-means and Fuzzy C-means clusters .. 247

Figure 129 – Queens Arranged on Chessboard with no Conflicts ... 251

Figure 130 - Typical space with a global (goal state) and local maxima. 253

Figure 131 - Local Search following gradient and “bounce” out of local maximum. 253

Figure 132 - A biological neuron and its computer-based equivalent. 254

Figure 133 - A simple artificial neuron .. 255

Figure 134 - Single neuron separates two square patterns. .. 255

Figure 135 - Neurons working together separate squares from circles. 256

Figure 136 – A View of Evolution ... 257

Figure 137 – Predators adapt to a preponderance of green beetles .. 259

Figure 138 – Beetles adapt to Predators Preferences by changing color 260

Figure 139 – Recombination of Genotypes ... 261

Figure 140 – Genetic Mutation .. 262

Figure 141 – A Hierarchical Database Design ... 265

Figure 142 – SQL Server Management Studio .. 269

Figure 143 – SQL Server 2012 System Tables .. 270

Figure 144 – 5 part identifier VMWAREBOX.FuzzyContexts.dbo.Algorithm.AlgorithmId 272

Figure 145 – Schema view listing primary key constraints ... 276

Figure 146 - Data Mining Process. .. 279

Figure 147 - Classification of relations among multiple elements. 280

Figure 148 - Amazon.com association links other book titles to a book purchase. 280

xvi

Figure 149 - Predictions (far right dotted lines) from existing data patterns 281

Figure 150 - Linear Regression attempts over a series of data points. 282

Figure 151 - Time series analysis of US Nominal GDP vs. 5-year Treasury Note. 283

Figure 152 - Partial Schema of AdventureWorks sample database 306

Figure 153 – A Decision Tree in SQL Server Analysis Services .. 308

Figure 154 - The Bayes mining model ... 309

Figure 155 - The Neural Network mining model... 309

xvii

LIST OF PSEUDO-CODE

Pseudo-code 1 - A Generalized Contextual Approach .. 8

Pseudo-code 2 – Steps for Dynamic Programming ... 27

Pseudo-code 3 – Implementing a Context ... 33

Pseudo-code 4 - Determine a Context Contribution .. 74

Pseudo-code 5 - Determining the Optimal Path ... 82

Pseudo-code 6 - Set-based algorithm to find peaks and valleys .. 85

Pseudo-code 7 – Construct a Fuzzy Inference System from Modeling Language 95

Pseudo-code 8 - Create an Algorithm from the ADL .. 96

Pseudo-code 9 – Steps for Building a Type-1 Fuzzy Inference System 97

Pseudo-code 10 – Build Fuzzy Inference System from ADL .. 100

Pseudo-code 11 - Finding which algorithms solve a particular problem 107

Pseudo-code 12 - Finding most suitable algorithm for a particular problem 108

Pseudo-code 13 – Navigate Through a Maze .. 111

Pseudo-code 14 – Testing Algorithms against a problem .. 126

Pseudo-code 15 – Fuzzy C-means algorithm ... 250

Pseudo-code 16 – Hill Climbing Algorithm .. 285

Pseudo-code 17 – Stochastic Hill Climb Algorithm .. 287

Pseudo-code 18 – Improved Stochastic Hill Climb Using DD Technique 289

Pseudo-code 19 – Random Restart Hill Climbing Algorithm ... 291

Pseudo-code 20 – Simulated Annealing .. 293

Pseudo-code 21 – Genetic Mutation Algorithm .. 294

Pseudo-code 22 – Min Conflicts Algorithm .. 296

Pseudo-code 23 – Tabu Search Algorithm... 298

Pseudo-code 24 – Improved Simulated Annealing Algorithm Using DD Technique 300

Pseudo-code 25 – Memetic Mutation Algorithm ... 302

Pseudo-code 26 – Improved Genetic Mutation Algorithm Using DD Technique 304

xviii

LIST OF TABLES

Table 1 – Application vs. Database Comparative Analysis – 10,000 rows/objects 78

Table 2 – Application vs. Database Comparative Analysis – 100,000 rows/objects 78

Table 3 – Application vs. Database Comparative Analysis – 1,000,000 rows 79

Table 4 – Application vs. Database Comparative Analysis – 10,000,000 rows 79

Table 5 – Simple Comparison T1-FIS/GT2-FIS .. 114

Table 6 - Comparing Traditional and Contextual Performance ... 116

Table 7 - Extended Traditional vs Contextual Performance .. 116

Table 8 - Comparing Standalone and Contextual T1-FIS .. 120

Table 9 - Comparison of Traditional vs. Subsumptive (Inverted Context) Approaches 124

Table 10 - Comparing Algorithms for the 8-Queens Problem ... 128

Table 11 - Ranking Solutions to the 8-Queens Problem .. 129

Table 12 - Comparative Analysis T1-FIS vs. T2-FIS .. 130

Table 13 - Ranking T1-FIS vs. T2-FIS .. 131

Table 14 - Comparative Analysis and Ranking of Sorting Algorithms 132

Table 15 - Dimensions for a virtual store manager .. 169

Table 16 - Example 2: Node Reduction Under Contexts ... 177

Table 17 - Node Reduction Under Contexts .. 178

Table 18 - Attributes of a typical customer .. 184

Table 19 - Node comparisons using various contexts .. 195

Table 20 - Initial Results of LSA Testing .. 200

Table 21 – Steps for Descending Deviation Optimization Technique 201

Table 22 - Results of Modified Local Search Algorithm Testing .. 205

Table 23 - Fuzzy and Boolean AND Truth Table .. 212

1

CHAPTER 1: INTRODUCTION

1.1: MOTIVATION

Imagine getting a phone call from some government official, “Congratulations, you

have just won 1 million dollars! Buy a plane ticket and fly out here to collect your money.”

How would you feel? Suppose the location was Washington DC and the dollars were US.

Could you book a flight fast enough? How much risk, be it money, time or anything else,

would you be willing to take to collect your paycheck? Probably a lot, because a million

dollars US IS a lot of money. Suppose, however, the call was from Zimbabwe where a

million Zimbabwe dollars is worth about $2800 today [XE 12]. Would you still go? Now

suppose the million dollars is US, but you can only collect if you are willing to give up your

sight for the rest of your life. What would your decision be? What would your decision be if

you were already blind? Each of these scenarios involves the same “million dollars” but the

reactions can be quite different due to the context in which the decision is made.

We live in a world of context. As living creatures we respond to stimuli, but as

thinking beings we take that a step further and are able to consider the “context” or

environment in which we operate. Whether it is a reference to time, such as the season; or

temperature, such as hot or cold; or even our state of mind, our actions and behavior are

driven by the contexts around us. Contexts guide our decisions, shape our viewpoints and

even affect our moods. Contexts can be highly intimate and personal, such as your family, or

include a much larger association, such as a city or even a nation. Contexts can be singular,

like a warm day; or form hierarchies of contexts, such as relatively warm period of the day.

More interestingly, a behavior which might appear wildly variant under one context is

perfectly normal under another. Consider the behavior of the California Grunion. For most

of its life it behaves like any other fish [CaGov 14] swimming the shallow waters just

offshore from the California coast. However, during the spring and summer months if the

phase of the moon and the tides are just right, grunion will leave the safety of the water for the

shore to spawn. For brief periods the females dig themselves into shallow holes while the

males curve around them. Thousands of spectators gather during these times to view the

2

paradoxical event; paradoxical because they come to see behavior that is highly usual for fish,

yet completely understandable when taken in context of the need to spawn.

Figure 1 - Grunion by the thousands swarm the beach during a Grunion Run

Contexts can play a similar role in computing. Because real-world information and

processes are messy and often ambiguous, contexts can help to make the unusual

understandable to a human user or an algorithm. Contexts can also allow higher-level

processes to switch between algorithms when a particular approach is clearly warranted or

transition among multiple options when it isn’t. A duck is a duck, but how it moves depends

upon whether it is in the water, on land, in the air or somewhere in between. Likewise a

computer process should be able to switch between different algorithms as the context of the

problem changes. As we ask more and more of computing devices, like robots, we need to

develop the frameworks and tools necessary to allow them operate seamlessly in and among

the differing contexts they are likely to encounter. Like a duck swimming or running faster

before taking flight or slowing down to approach a pond or patch of grass, computing

3

problems must also be able to identify and handle these transitional phases when moving from

one problem space to another.

So what do we mean by “context” in the context (pun intended) of a running process?

Dictionary.com [Random 13] states a context is, “the set of circumstances or facts that

surround a particular event, situation, etc.” In the world of computers, there is a similar idea

known as the state, which describes a particular process at a point during its execution [Sipser

12]. For purposes of this dissertation, consider the state to be the internal condition of a

process component, such as a robot car or a database query. The context, on the other hand,

refers to its external environment: for the car it might be the road it is traveling on and for the

database query a set of query conditions.

1.2: OBJECTIVE

The goal of this dissertation is to introduce and demonstrate the novel concept of

Fuzzy Contexts, or Fuzzy Type-C. It will take existing key concepts of Fuzzy Logic and

other techniques and build upon them to describe the concepts and architecture. In addition, it

will demonstrate how “Contextual Thinking” and a concept called Fuzzymorphism can help

bridge human-computer interactions in a linguistically meaningful way. Once these ideas are

established, the reader will be guided through the implementation of an advanced Fuzzy

Framework.

Using the framework and test examples, the dissertation will demonstrate the

following:

1. What Fuzzy Logic Type-C is and how it can be used.

2. What Fuzzymorphism is and how Fuzzy Contexts achieve Fuzzymorphism.

3. How Fuzzy Logic Type-C fits within general algorithm techniques and advantages

for Type-C implementations as compared to various alternatives.

4. How Fuzzy Logic Type-C is distinguished from Fuzzy Logic Type 1 or Type 2, or

other traditional hybrid and non-hybrid algorithms.

5. How Fuzzy Logic Type-C can be used as a software framework for

implementations

4

6. How a Type-C framework can use a relational database and to achieve better

performance and a simpler architecture over a non-database implementation.

7. How to implement dynamic algorithms and algorithm definitions in support of a

Type-C application.

8. Applications of Fuzzy Contexts in solving a diverse spectrum of problems.

Via the framework the dissertation will apply fuzzified contexts as a way to both

describe and solve certain classes of computing problems and show how these contexts can

improve certain processes by providing a hierarchical framework to seamlessly combine

different algorithmic approaches. The dissertation will also describe a technique to perform

unsupervised decomposition of a problem space into contexts.

Finally the dissertation will explore other potential applications of contexts, such as

contextual pruning of fuzzy decision trees and optimizations of local search techniques.

1.3: DISSERTATION STRUCTURE AND CONTRIBUTIONS

The dissertation is organized as follows:

 Chapter 2 delves into the background of the techniques and problems relevant to

this research topic. It presents a brief literature review of prior solutions,

approaches and some of the resulting issues raised. In particular, the review

discusses Fuzzy Logic and its variants, local search techniques, evolutionary

algorithms, object-oriented design and architecture, advanced data mining

techniques and the role of relational databases in application frameworks.

 Chapter 3 describes Fuzzy Contexts, related constructs and their implementation

from previously published works and new research and how Type-C provides

advantages over traditional approaches. The contribution in this chapter is the

novel concept of Fuzzy Contexts and how it extends and is differentiated from

traditional Fuzzy Logic and hybrid systems approaches:

o Defining the notion of Situational Discontinuity Problems and the types of

problem spaces for which a Type-C solution would be beneficial.

o Presenting prior research in this area.

5

o Giving a description of Fuzzy Contexts and how they might be used to solve

SDPs and some of the advantages they offer over traditional approaches.

 Chapter 4 presents a software framework developed from previously published

works and as part of this dissertation. The contributions in this chapter are the

framework and definition language and its many enhancements

o Describing a novel software framework supporting Fuzzy Type-1, Type-2 and

Type-C implementations.

o Adding relational database extensions

o Providing a Fuzzy Definition Language/Algorithms Definition Language and

Configuration Tools for Type-1 and Type-2 Definitions and Implementations.

o Describing a database-based memetic algorithm and fitness function

o Presenting a set-based technique to determine peaks and valley in a dataset

o Presenting a technique for adaptive Type-C context creation

o Presenting brute-force technique for generic algorithm determination and

optimization

o Comparative analysis with other techniques

 Chapter 5 presents work in progress.

 Chapter 6 presents the conclusion of the research and results of this dissertation

and suggests directions for future work.

 The appendices present more detailed descriptions of the techniques and tools

discussed in Chapters 3, 4. In addition, the Minor Contributions sections present

some published and unpublished research involving contextualization of fuzzy

decision trees and an optimization technique for certain local search algorithms.

6

CHAPTER 2: BACKGROUND

2.1: PROBLEMS THAT COULD USE A LITTLE CONTEXT

Among the many things computer processes do is to solve problems. They do this by

using algorithms. An algorithm is defined as “any well-defined computational procedure that

takes some value or set of values as input and produces some value or set of values as output”

[Cormen 09]. In the decades since the introduction of the first digital computer, many kinds

of algorithms were developed in order to solve specific classes of problems. These algorithms

cover of range of diverse requirements from properly landing on the surface of another planet

to generating the appropriate tone on your computer when you accidently lean on your

keyboard. Each was designed with a specific purpose in mind. For instance, when faced with

a list of names, a developer may decide it necessary to sort them in alphabetical order. To do

this efficiently requires using an efficient sorting algorithm such as a quicksort.

Quicksort is very useful for sorting problems but would it be an appropriate

application for a scheduling problem? Not likely according to [Sipser 12] simply because it

only knows how to operate properly within its own narrow set of requirements. Hence, other

algorithms are needed as problems and requirements change. In the beginning, when

computers were the size of school buses and little more than glorified calculators [Wiki 14],

doing a single process with a single algorithm at a time was generally all that was possible.

Today, however, the school bus-sized computer is a massively parallel system with thousands

of processor cores. Computers the size of a grain of sand have more processing power than

the first generation behemoths and are working their way ever more deeply into our everyday

experience. As a result, computer are asked to do more and more of the tasks we used to do

for ourselves. The glorified calculator is transforming itself into an extension of the human

mind and body.

Therein lies the difficulty. Computers are not living things, but we are expecting them

to understand and react to their environment in the manner of living things. Put another way,

we want computers to understand and apply contexts like we do. Like a duck, for example,

that swims on top of the water and waddles on land and flies through the air, our computers

need to be able to navigate varying terrain features and obstacles, play differing levels of

7

competition and know we really like pancakes for breakfast, but not for dessert. Imagine a

domain of problems in which some solutions are best served using a sorting algorithm and

others using a scheduling algorithm as shown in figure 2.

Figure 2 - Different Problems within a Problem Space

It is not uncommon in a larger domain to see different problem spaces overlap.

Consider, for example, the braking system on a car. Newer model cars employ “anti-lock”

brakes which must tackle two separate problem spaces in particular: one being slowing down

in response to a “brake” request, the other being to maintain control of the car by ensuring the

wheels continue to rotate and not “lock”. When speed is slow and braking is gentle there is

no need for the “anti-lock” function, but when speeds are high and braking is hard the

problem spaces begin to overlap and transitions must occur until the car is able to stop.

Even within a given problem space, circumstances can arise which introduce

“situational discontinuity”. Situational discontinuity occurs when the problem space, for

example, a road, contains occurrences which change the resulting problem significantly, such

as hitting a patch of ice. Because the subsequent behavior must be so different, it is

effectively the same as having to address a different problem space altogether. Living

creatures are naturally well-equipped to adapt to Situational Discontinuity Problems (SDPs).

A duck, for example, swims in the water but waddles on land and flies through the air.

Human beings sweat when it is hot and shiver when it is cold and so on.

8

In the artificial world, however, handling SDPs becomes a matter of using different

algorithms or generalizing a single approach, which is not easy. In data mining, for example,

there are many algorithms used to find interesting information from huge, often disparate data

sets [Han 11]. An experienced data miner needs to be familiar with Decision Trees, Neural

Networks, Linear Regression and a whole host of other algorithms, each of which has

advantages depending upon the underlying patterns in the data [MacLennan 08]. Even

something as simple as a fuzzy thermostat may have some rules for temperature, others for

humidity and still others for time of day in order to handle many different demands for

climate control.

Intuitively it seems obvious that different classes of problems require different

approaches, but the problem with SDPs is that they tend to be ambiguous; hence it can be

difficult to determine when an SDP has occurred and what to do about it. A fuzzy controller

trying to navigate a maze must already deal with a number of navigation problems without

also having to negotiate obstacles such as ice and potholes that it may or may not encounter.

Ideally there would be a generalized contextual approach capable of handling all the

underlying SDPs encountered; one that was efficient, easy to understand and implement.

Pseudo-code for such an approach might look something like the following pseudo-code:

Pseudo-code 1 - A Generalized Contextual Approach

Algorithm: TYPE-C_EVALUATE (contexts, tuple)

Inputs: contexts, a set of fuzzy contexts in which each context represents a problem scenario,

such as ice, potholes, smooth, etc.

: tuple, set of values representing measurements or state of process

Output: crisp result

Begin

1 Test each context to see if it is valid for this state

2 FOR EACH valid context:

3 Determine the corresponding weighting of this context

4 Determine the membership value for this context

5 Run the corresponding context algorithm against tuple

6 Combine algorithm results, weight and membership values

7 Add to final result

8 NEXT context

9 return final result

End

9

This approach allows for a decomposition of a large problem space into a series of smaller

ones with presumably simpler solutions and is useful to avoid the complexity problems of

generalized algorithms [Mendis 10].

2.2: USING FUZZY LOGIC

2.2.1: Fuzzy Type 1

Describing the behaviors of complex systems present many challenges for the

software architect and developer. Foremost among them is the ability to model behaviors that

are by their very nature imprecise [Zadeh 65]. In the “crisp” world, this is a particularly

difficult task since even a small number of inputs requires a complex equation in order to

create a smooth, continuous result. In particular, crisp solutions have difficulty properly

describing behavior at boundaries [Cox 94].

Discontinuity at the boundaries must be smoothed in order for the function to prevent

hyper-oscillation around those values. Fuzzy logic, also known as Type-1 Fuzzy Logic,

introduced by Lofti Zadeh [Zadeh 65], [Taheri 06], [Zadeh 08] addresses these problems by

approximate, rather than precise, descriptions for terms and allows for polyvalent membership

definitions.

As compared to a crisp controller, a fuzzy controller allows for greater linguistic

precision in describing a complex system behavior while at the same time relaxing precision

around the boundary points and elsewhere. This is done through the use of a membership

function µ whose output, instead of the traditional FALSE (0) and TRUE (1) allows for output

of 0, 1 and all values in between. Thus, for a domain D

µ(𝒙) → [𝟎, 𝟏], 𝒙 ∈ 𝑫 (2.1)

A fuzzy membership function defines a fuzzy set fs, which can be described using a

linguistic term. A fuzzy set fs is then a set of ordered pairs

𝒇𝒔 ≡ {〈𝒙, 𝝁(𝒙)〉|𝒙 ∈ 𝑫} (2.2)

10

A fuzzy set can take any convex shape, with each fuzzy set depending upon its membership

function. Fuzzy algorithms are very good at approximating complex polynomials. They also

provide stronger mechanisms for handling noise and uncertainty along with variations among

“expert” definitions than their crisp cousins [Roychowdhury 98]. However, fuzzy logic also

has limitations that pose new problems. Whereas the crisp algorithm has difficulty with the

discontinuity at a boundary, likewise a fuzzy algorithm has trouble handling large

“contextual” changes such as those that occur in SPDs.

As a crisp solution could be improved by adding additional temperature tiers [Cox 94],

likewise an SPD could be improved by the addition of fuzzy rules. However, adding tiers

makes the temperature algorithm significantly more complex; likewise the addition of fuzzy

rules adds significant additional complexity to a fuzzy solution [Mendis 10].

The underlying problem within fuzzy systems, and more generally, all approaches, is

that certain problem domains are more solvable using certain approaches than others. Within

each of these specific problem areas often lies even more specific issues which require ever

more specialized techniques.

Type-2 Fuzzy Logic was designed to address such issues [Mendel 02], but with only

limited success. For instance [Linda 11b], demonstrates how a Fuzzy Type-1 controller was

superior navigating around corners but inferior to a Fuzzy Type-2 controller navigating

smoother surfaces. Even within a particular problem domain, one configuration of a Fuzzy

Inference System (FIS) will be superior for handling a simple maze while another FIS is more

appropriate elsewhere for obstacles.

For a more extensive treatment of Fuzzy Logic Type-1, see the appendix at the back of

this dissertation.

2.2.2: Fuzzy Logic Type 2

Fuzzy Type 1 logic has been proven to be very useful for implementation in a wide

array of difficult problems. However, there are a number of issues with Fuzzy Type 1 logic

[Mendel 02]:

1. Experts can disagree on meaning of linguistics terms.

11

2. Fuzzy sets work best on continuous data.

3. Data can contain noise beyond the ability of Fuzzy Type 1 to handle easily.

Fuzzy Type-2 introduces uncertainty into the fuzzy sets themselves, in effect relaxing

the boundaries of the membership function µ2, so in contrast to Equation 2.1:

𝝁𝟐 = {((𝒙, µ), 𝝁𝟐(𝒙, 𝝁))|∀𝒙 ∈ 𝑫, 𝝁 ∈ [𝟎, 𝟏]} (2.3)

Note also that output of µ2 is also member of the set [0, 1]. Whereas a Type-1 fuzzy

set is a 2-dimensional object, Type-2 fuzzy sets are surfaces as shown in figure 3.

Figure 3 - Type-2 Fuzzy Sets

A Type-2 fuzzy interference system is useful in dealing with problems such extensive

noise or smoothing out erratic behaviors that plague Type 1 controllers.

For a more extensive treatment of Fuzzy Logic Type-2 see Appendix B at the back of

this dissertation.

2.2.3: Nonstationary Fuzzy Sets

Nonstationary Fuzzy Sets (Fuzzy NFS) introduces the notion of variability of fuzzy

sets over some dimension such as time, location, or even noise [Garibaldi 08]. They do this

by giving the resulting Fuzzy Type 1 definitions the flexibility to change according to

requirements, but remain internally consistent at a higher level within the overall Fuzzy

12

Inference System (FIS). In other words, the fuzzy sets change depending upon the value of

the external dimension, but the fuzzy variables and rules remain unaffected.

 The Fuzzy NFS nfs is described as

𝒏𝒇𝒔 = ∫ ∫ 𝝁𝒇𝒔(𝒅, 𝒙)/𝒙/𝒅𝒙∈𝑿𝒅∈𝑫
 (2.4)

Where d is some value along a dimension of the problem domain D and x is a tuple or point

within the set of possible inputs X. Nonstationary Fuzzy Sets provides the dynamic fuzzy

membership function transform, or perturbation function (and resulting sets) able to

accommodate significant changes to the problem space over that dimension. The perturbation

function is simply responsible for adjusting the underlying membership functions as needs

change. The Fuzzy NFS is then able to generate a variable FIS to handle changes in the

problem space which otherwise might cause difficulties to a static Type-1 or Type-2 FIS.

For a more extensive treatment of Nonstationary Fuzzy Sets see Appendix B at the

back of this dissertation.

2.2.4: Polymorphic Fuzzy Signatures

Finally, Polymorphic Fuzzy Signatures (Fuzzy PFS) describe a multidimensional

fuzzy tree of fuzzy sets where each leaf contains a specific fuzzy membership function

[Mendis 10]. A problem domain is recursively decomposed into a hierarchy of subdomains,

each with corresponding meta-information about its attributes. This occurs until

decomposition ends at a leaf node. Each leaf is assigned a unique fuzzy inference system.

Fuzzification occurs by recursively traversing the branches and testing each node’s

meta-information to determine whether input has membership along that path. This process

generates a candidate collection leaf nodes with positive membership. The resulting

collection of leaf nodes’ output is combined using traditional fuzzy functions such as max and

min. The polymorphic fuzzy signature is described as [Mendis 08]:

13

𝝁𝒔𝒊𝒈: 𝑿 → [𝒄𝒊]𝒊=𝟏
𝒌 (≡ ∏ 𝒄𝒊

𝒌
𝒊=𝟏) (2.5)

where ci = {
[𝒄𝒊𝒋]𝒋=𝟏

𝒌
; 𝒊𝒇 𝒃𝒓𝒂𝒏𝒄𝒉 (𝒌𝒊 > 𝟏)

[𝟎, 𝟏] ; 𝒊𝒇 𝒍𝒆𝒂𝒇

As a result, Polymorphic fuzzy signatures allows one to break down an SDP into smaller,

easier to describe, components, each with its own FIS and attribute signature. FIS outputs are

combine and fuzzified, with the resulting defuzzification using traditional methods.

For a more extensive treatment of Polymorphic Fuzzy Signatures see Appendix B at

the back of this dissertation.

2.2.5: Fuzzy Clustering

Clustering is a technique used to groups sets of objects which are similar [Han 11].

Among the many techniques for this is Fuzzy Clustering. In general clustering techniques

seek to create clusters with attributes such that they can assign every object or point to an

individual cluster. In some clustering techniques, such as K-means, clusters have a centroid

and a radius and points that belong to the cluster lie within the radius distance of the centroid.

Similar to crisp logic, any individual point is either a member or NOT a member of any

particular cluster.

Fuzzy C-means clustering, however, seeks to relax the crisp rules of K-means to allow

points to belong to multiple clusters [Hung 11]. The difference is shown in figure 4.

14

Crisp

Fuzzy

Figure 4 – Crisp and Fuzzy Clusters

Fuzzy C-means is similar to K-means in that they both create clusters with centroids

and a radius. The sum or their memberships also adds up to 1, but points in fuzzy C-means

have membership in the range of 0 to 1 rather than just 0 or 1 [Gauge 11]. This gives a points

in fuzzy C-means more flexibility in their associations as well as better handling of outliers

and noise [Tsai 11].

The goal is fuzzy C-means is to minimize an objective function (Matteucci, 2012),

such as:

𝑱𝒎 = ∑ ∑ 𝒖𝒊𝒋
𝒎‖𝒙𝒊 − 𝒄𝒋‖

𝟐
, 𝟏 ≤ 𝒎 < ∞𝑪

𝒋=𝟏
𝑵
𝒊=𝟏 (2.6)

where m is any real number greater than 1

uij is the degree of membership of xi in the cluster j

xi is the ith multi-dimensional data point in the domain

cj is the multi-dimensional centroid of the jth cluster

Fuzzy C-means techniques have been used in hybrid algorithms to handle the

switching and contributions of the appropriate processes dynamically [Palm 98]. This is

because fuzzy metrics provide a useful way to determine how “relevant” an algorithm is at a

particular point.

15

Key to creating fuzzy c-means clusters is the “fuzziness” factor, a constant, greater

than 1 (1 being the hard K-means number), which determines the fuzziness of the clusters.

The higher the number, the greater the number of clusters any individual point may belong.

For a more extensive treatment of Fuzzy Clustering see Appendix B at the back of this

dissertation.

2.3: OTHER TECHNIQUES FOR CONTEXTUAL PROBLEM SOLVING

2.3.1: Local Search Techniques

For state spaces that are sufficiently large, there may be either insufficient time or

computing resources, making a comprehensive search for a solution impractical. In such

cases a solution may still be found using limited resources. This is accomplished by starting

at a random point and using a neighborhood search technique called Local Search [Russell

09].

Instead of trying to examine all possible states, a local search algorithm limits its

search to neighboring states. Examination of the “neighborhood” by a local search algorithm

will often yield a gradient which can be followed to other neighboring states with the prospect

that this may eventually lead to a goal state or local maximum. This type of search can

greatly reduce the cost of computer resources and search time but may also fail in its mission

to reach a goal state. Success or failure depends upon the state space and the type of local

search algorithm used [Martinjak 07].

Some “greedy” local search algorithms, such as Hill Climbing, simply follow the

gradient to its end. Others, such as Simulated Annealing, introduce some random movement

to better their chances of finding a goal state without becoming trapped in a local maximum.

Still others, such as Tabu search combine a random search with a memory to map areas

searched and avoid them if they prove unfruitful [Martinjak 07], [Zheng 06].

Local search algorithms can be combined with additional heuristics to improve their

effectiveness for a given search problem. Local search algorithms are discussed more fully

with pseudo code examples in appendix C and H.

16

2.3.2: Evolutionary Computation

Evolutionary biology is the movement from simple to more complex life-forms over

time [Dawkins 06]. What makes this movement possible is the growing specialization and

interdependency with each new evolutionary step; allowing a complex organism to perform a

greater variety of functions than its simpler predecessor. Instead of a simple life-form having

to perform all the necessary functions of life such as motion, reproduction, eating, etc., the

complex form consists of a series of subsystems, each of which is responsible for a particular

life-sustaining function. Freed from having to worry directly about exactly how to

accomplish a task, such as moving from point A to point B; the complex organism is able to

focus on more abstract tasks, such as finding dinner.

The evolution of computing has progressed in a similar fashion. Ever since the

introduction of the earliest computing devices engineers have sought to emulate evolution by

developing more complex and interdependent computing subsystems. Standalone vacuum-

tube based behemoths programmed by switches [Augarten 84] have evolved into tiny devices

such as the smart phone connected to a vast array of applications, systems and services

existing all over the globe. Freed from having to worry about such things as packet

construction and encryption, data transmission, protocols and error-handling, query

construction, data storage and retrieval, the cell-phone user is also able to focus on more

abstract tasks, such as finding dinner.

2.3.3: Software Engineering and Architecture Issues

Developing any complex software requires the application of software engineering

principles and architecture. Software engineering and architecture have been a primary

concern of software developers and managers since the first software “bugs” were discovered

[Augarten 84] but more so today. The primary reason is that much or most of the “expense”

of a production system lies in its software [Pressman 09]. Perhaps more importantly, the

expense often is greatly dependent upon the quality of the underlying software [McConnell

96]. There are unfortunately many stories about huge cost overruns due to poor software

quality or worse, projects which simply failed. Most notable recently were the failure of 4

states’ attempts to create exchanges for the Affordable Care Act [Haberkorn 13] to the tune of

17

474 million dollars. In many cases the problem is not that developers lacked the skill to build

quality software, rather they lacked a methodology to do so. Software engineering seeks to

introduce a discipline to software development in order install better “habits” among software

developers. Studies have shown that certain software engineering practices result in both

better quality of software as well as reduced development time [McConnell 04], [McCarthy

95].

Software architecture is the foundation upon which software applications are built.

Much like the architecture of a building provides the structure for the building itself, the

software architecture lays the groundwork for an application or suite of applications at

varying levels of complexity. Software architecture complements software engineering in

that it establishes the framework upon which software engineering can express itself.

Software engineering and architecture are major disciplines and too large to be

expounded upon in this dissertation; rather the author will discuss important practical issues

heard, read about or experienced firsthand over decades in the industry.

2.3.3.1: Software Engineering

Most important is the issue of complexity. Many newer software developers, having

long been recognized as top of their class, tend to equate complexity with cleverness. Case in

point: the author, many years ago, working some full-text indexing/retrieval software

managed to come up with a C++ routine requiring a triple pointer. He was quite proud at the

moment, actually having been clever enough to conceive such a process and it worked well

enough. The problem was it added unnecessary complexity to an already difficult piece of

software. In time he had to say good-bye to that triple pointer as the software was refactored

into something less clever, but much more maintainable. Lesson learned.

What developers often don’t realize is that the clever process they concocted can serve

as an impediment to making upgrades or just trying to explain what it going on. Many figure

they won’t forget what they did, until they do, or have no real consideration for the poor

schlub who has to maintain that nasty bit of code later. Let’s rejoin the author some 10 years

after the “triple pointer incident” working on a very complex priority queue for a card-swipe

system. He worked hard to make this rather intricate routine as easy to understand as

18

possible. Fast forward almost 10 years later and he gets a call to make a minor change to this

routine. 15 minutes after loading the project, he was able to locate where the change had to

occur, what the change had to be, make the change, compile and verify the change worked –

after not looking at the code in nearly 10 years. Easiest $250 he ever made. Lesson indeed

learned.

Software complexity also has a number of unintended consequences as well. Consider

two very different software development platforms: Matlab and Visual Basic. Matlab, from

MathWorks, has been around for roughly 30 years but remains in many respects a “fringe”

tool [Moler 04] outside of science and academia. Matlab is a very powerful tool and capable

of doing almost anything software can do. It has a huge set of powerful toolkits that allow it

to do even more. Pick any business IT shop at random, however, and you will be hard-

pressed to find a single developer who has used Matlab. Visual Basic, on the other hand is

widely used in business applications but almost non-existent in the laboratory or university.

Why the discrepancy? The answer has to do with complexity.

Introduced in 1991, within two years it became a staple in business software and by

1995 it was the rapid application development (RAD) tool pushing aside other, more capable

development tools, such as Turbo Pascal, Turbo C++, PowerBuilder, Visual C++, Magic and

others.

So what made Visual Basic so special, so different, so much better than the tools it

replaced? It was definitely cheap compared to some, such as PowerBuilder, but more

importantly, it was easy. Microsoft had built a tool which completely abstracted the

underlying windows application programming interface (API) to a simple drag and drop,

visual canvas. Under older environments, creating a simple application to pop up a “Hello

World!” message box was not an easy process. First one had to build the “window” frame,

hook into the Windows OS messaging system, configure a button, attach an event handler to

the button, attach the button to the frame, add the message and build and display the message

box – and don’t forget the code to clean up the application, turning off the events, discarding

used memory, etc. In all it might entail a couple hundred lines of code along with the

requisite debugging and tweaking. With Visual Basic, you built the same application by

doing the following:

1. Launch the IDE.

19

2. Drag a button from the toolbox, drop it somewhere on the canvas.

3. Double click the button to go to a code page.

4. Add the following code: “MsgBox(“Hello World!”)

It would not be unreasonable to take an entire morning to build the HelloWorld

application the old way, but using Visual Basic it could be done in a couple of minutes.

Why? Because Visual Basic hid all the complexity of Windows behind the IDE. Developers

were liberated from having to deal with Windows API in the same way programmers werre

liberated in the past from binary code (with machine language), then machine languages (with

compilers and higher-level languages). It was a different paradigm and number of custom

applications exploded. Anybody with a little smarts could build real UI-based applications

using any number of tools that arrived on the heels of VB, including Delphi, Java, .NET and

others. The introduction of these tools lead to easier-to-use applications with corresponding

productivity gains that lead to robust growth throughout the roaring (19) 90’s.

What about Matlab? Like Visual Basic, Matlab hides complexity, in this case

functions such as matrix multiplication and inversion, differential equations, etc. Building

software to do complex calculations in a language like Visual Basic is hard, but in Matlab it is

easy (relatively speaking). So in the university or laboratory, where the ability to perform

complex calculations is paramount, a tool such as Matlab is indispensable while a tool like

Visual Basic is much less so.

Hardware and software are, usually, the least costly components of a development

project [McConnell 96], [Pressman 09] with the most costly being personnel time. Software

tools that make it easier to do a particular job are going to be successful. Easier tools usually

lead to faster development time and higher software quality. Software frameworks are the

real-world expression of software architecture and also play a key role in reducing software

complexity by abstracting complex subsystems in much the same way biological systems

have. Software frameworks work hand-in-glove with tools to make programming much

easier and both got a major assist with the development of Object-oriented programming.

Object-oriented programming (OOP), is an idea which has been around since the

1960s, but really took off with the introduction of C++. It was designed to allow the

individual programmer to do reduce complexity at the functional level. Object-oriented

20

programming consists of three pillars: encapsulation, inheritance and polymorphism, each of

which serves to reduce software development complexity. Combining OOP with productive

tools such as Matlab and Visual Basic has resulted in greater functionality and diversity and

overall reach of computer software.

In short, the most important aspect of software engineering is about putting processes

in place to reduce complexity and thereby produce better software, more cheaply and quickly.

This is more easily accomplished through the use of software frameworks and tools which

abstract complex systems into more easily understood and useful components. This leads to

more widespread adoption and use along with the corresponding benefits of such use.

Fuzzy logic has a special place in this paradigm because not only does it allow one to

reduce a complex polynomial into a much simpler fuzzy representation, but it also allows one

to abstract that process into simple linguistic terms which are easier to understand. Fuzzy

contexts take that linguistic ease of fuzzy logic and uses it to turn entire problems spaces into

linguistic terms, allowing for integration of disparate algorithms, or perhaps even tools. It

allows an individual to look at an application at a higher-level, in terms of whole systems

rather than individual algorithms, thereby freeing the individual from the underlying

complexity.

2.3.3.2 Software Architecture

Software architecture, as the foundation upon which a software application is built,

takes a very special role in the development process. Consider the Joint Strike Fighter (JSF)

program. The JSF is intended to develop an aircraft design that is flexible enough to allow a

single aircraft to replace a number of different aircraft. The intent is to make is easier to build

and maintain the JSF as opposed to supporting multiple aircraft types. Beyond a flexible

aircraft, the JSF is also supposed to be better than the aircraft it replaces. It is supposed to

outperform, outmaneuver and outfight legacy aircraft and the competition.

Software architecture similarly must support multiple functions and/or application

processes, whether it is a simple order entry application or an operating system. Like the

frame of a building, it must support whatever array of diverse software tenants is required.

Therein lies the difficulty. If diversity of software is low, as in a simple word processor, then

21

the architecture can be fairly simple. If diversity is high, as in a collaborative system like

SharePoint, then the architecture must be able to support a wide range of requirements.

Like biological entities, computational entities must continue to evolve to solve more

and more complex problems. Doing so will require sophisticated techniques beyond OOP.

To get there requires software that understands and handles contexts much as we do, in order

to solve problems as complex as those we face regularly.

Fuzzy Contexts is a software framework utilizing software engineering techniques, in

particular OOP, as well as fuzzy techniques to hide the complexity of large systems as well as

enable the creation of tools for diverse architectures. As such, it can bring machine even

closer to the human experience. How this is done will be discussed in succeeding chapters.

22

2.3.4: Neural Networks

Neural networks arose from a study of biological neural systems, although only

superficial similarities exist [Schalkoff 97]. The concept of a neural network centers on a

single unit that receives input from one of more sources. The unit is called a neuron and a

collection of neurons action in concert is called a neural network. In the artificial version,

inputs which are passed to an algorithm called an Activation Function that serves as the

threshold as demonstrated in Figure 5.

Figure 5 - A computer-based neuron

The input consists of a value along with “weights” and in the artificial neuron is combined

with all other inputs and a bias. The total is then processed by the activation function, which

outputs one of two values along the Axon, or output. This new model is shown in Figure 6.

Output

Input #1

Input #2

Bias

+1

-1

+2

Weights

Activation

Function

Figure 6 - A simple artificial neuron

The output values allow a neuron to “classify” inputs into one of two categories. The

classification allows a single neuron to distinguish characteristics between points in n-

23

dimensional space. By adjusting the weights on the individual inputs and bias, the neuron can

“learn” to behave in a given fashion; that is, change the way it classifies a given point.

Much like their biological counterparts, artificial neurons can learn by example, but

can also “explore” a space in a process called unsupervised learning [Wang 06], [Zurada 92].

Whereas a single neuron can distinguish or separate points into one of two categories,

multiple neurons working together can be trained to recognize very sophisticated patterns

[Ben 01] or classify objects. Neural networks come in a variety of configurations and display

a variety of behaviors.

Typical uses for a neural network are classification, regression and prediction [Han

11]. Neural networks are used in many commercial applications from image, character and

voice recognition to medical diagnosis, stock market prediction and data mining [Yu 06],

[Han 11].

For a more extensive treatment of Artificial Neural Networks see Appendix D at the

back of this dissertation.

2.3.5: Radial Basis Functions

Radial Basis Function (RBF) networks are similar to Artificial Neural Networks

(ANNs) in that they also accept one or more numeric values as input and generate one or

more numeric values as output. RBF networks can be used to classify data as well as make

predictions and have shown to be a useful machine learning technique [Li 13]. Consider a

problem space D and a set of vectors v1,.., vn ϵ D. A Radial Basis Function is a function such

that for any given v, its influence corresponds to its distance from a centroid v0. Hence, given

an RBF φ each v influences φ based upon the distance from v to v0 [Haykin 09].

Each vi ϵ D influences φ(v) based upon ||vi – v0|| (2.7)

As a result φ is radially symmetric, extending outward from the centroid. As a point

gets nearer to the centroid, its influence, or “contribution” increases. It is very easy to

normalize that contribution to a value between 0 and 1, which allows an RBF to emulate a

24

traditional fuzzy membership function. One typical approach is to use a Gaussian profile for

the RBF. The profile function takes the form of:

𝝋(𝒙) = 𝒆−𝒓
𝟐 𝝈𝟐⁄ (2.8)

Which produces the radial basis function

𝒛(𝒙) = 𝒆𝒙𝒑(
‖𝒙− 𝒙𝟎‖

𝟐

𝝈𝟐
) (2.9)

Figure 7 shows what a Gaussian RBF function might look like.

Figure 7 – A Radial Basis Function using a Gaussian

Clearly, the closer x gets to 𝑥0 the greater the contribution. An RBF network, similar

to an ANN consists of an input layer, an output layer and a hidden layer, demonstrated by

figure 8.

25

Figure 8 – Radial Basis Function Network

RBFs serve as activation functions within the hidden layer the RBF network. The idea

behind RBFs is one emulated by Fuzzy Contexts.

2.3.6: Subsumption

Subsumption is a process whereby complex behavior is decomposed into sub-

behaviors organized into a hierarchy. Lower levels encompass basic behaviors, such as

obstacle avoidance. Higher levels encompass more complex behaviors, such as exploration.

In a subsumptive process all the layers work in parallel, but lower level behavior will

influence higher level behavior, or, put another way, higher level behaviors will “subsume” or

incorporate lower level behaviors when trying to reach a goal [Liu 03].

A robot, for instance, tasked to explore its environment must move from place to

place. In the process of exploring it must also subsume movement. This is useful because

robots contain different components, such as sensors for exploring and actuators for

movement and Subsumption allows for a complex interplay between the two subsystems. In

addition, other basic behaviors such as avoiding obstacles, crucial for proper operation, are set

at even lower levels [Rodrigues 08]. This allows the subsumptive process to suppress or

26

redirect operations in cases where normal methods are unable to handle the current problem

space. A subsumptive controller must be constructed in a fashion similar to that shown in

figure 9.

Figure 9 – Subsumption in a Robot

Fuzzy Contexts also draw inspiration from the application of Subsumption and can

emulate Subsumption using a technique called “context inversion” which will be discussed in

chapter 4.

2.3.7: Dynamic Programming

Dynamic programming (DP) is a method for solving complex problems by breaking

them down into simpler sub-problems (Han, Park, & Kum, 2014), [Cormen 09]. The intent is

to solve the simpler sub-problems first, then combine them into a total solution. DP is a

bottom-up approach to decomposing a problem.

Dynamic programming is traditionally intended as an optimization technique, where

the problem can have many solutions, but from among them there is an optimal solution. For

example, take a sorting problem. Quicksort, heapsort, mergesort and bubblesort are all

27

possible solutions, but only one is considered optimal. DP attempts to discover the most

optimal solution via one or more of the following steps:

Pseudo-code 2 – Steps for Dynamic Programming

1. Characterize the structure of the optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Suppose there is a factory with assembly lines, running at different speeds. While it

might be advantageous to switch from a slower line to a faster one, there is also the cost of the

switch to consider. Using a DP technique, a program can examine each line and weigh the

costs individually, then combine them into an optimal path. Some classic DP problems are

the Knapsack problem and the coin change problem. Dynamic Programming provides a

methodology that can be extended to contexts, as will be demonstrated in Chapter 4.

2.3.8: Hybrid Systems

A hybrid system is considered a combination of dynamic systems each consisting of

either continuous or discrete variables [Cheng 10] or whose state variables change over time

[Du 10] or in response to significant events. As problem spaces become more complex the

ability for any given traditional algorithm to adequately address the problem at hand

decreases, hence the need to have combinations of more specific algorithms, each algorithm

designed to handle a particular problem space. The intent is to combine the targeted

algorithms into a single process to handle a complex problem, but to allow the individual

advantages of the underlying algorithms to apply when appropriate.

This is analogous to a basketball team. Each team has players who excel at shooting,

defending and passing and the coach must try to constantly mix and match his players in order

to provide the best team he can at any point in the game. At times, each player will have an

opportunity for the one-on-one interaction which is his specialty. At other times the same

player will have little influence on the game. Similarly, problems with many facets can be

28

handled by multiple approaches, each of which comes with strengths to maximize and

weaknesses to be avoided.

Hybrid algorithms, also called poly-algorithms consist of two or more distinct

algorithms, each of which can solve the same problem, but solve it differently depending

upon input values, constraints and resources. The goal is to maximize the performance of an

algorithm strategically by selecting the appropriate process to handle a given system’s state

and goals. Algorithm selection can be simple, a choice from among many options or baroque,

a choice dependent upon the input. Fuzzy Contexts seeks to combine simple and baroque

options into a hierarchical framework. Chapter 4 covers this technique, while appendix B.5

take a deeper look at hybrid fuzzy systems.

29

CHAPTER 3: FUZZY CONTEXTS

3.1: THE NEED FOR CONTEXT

As discussed in chapter 2, complex problems are becoming more and more common

as computing machines develop ever greater functionality. Generalized solutions to complex

problems often suffer from being overly complicated. One of the primary mechanisms for

dealing with software complexity is through abstraction. Arguably, most of the major leaps in

software were due at least partially to the introduction of an abstraction. Binary code led to

machine code led to compilers led to high-level languages led to object-oriented programming

and so on.

Why is abstraction so important? Recall the evolution of biological organisms and

consider any complex living organism, like yourself. At any given moment thousands

biological processes are going on inside you. There are larger ones involving many biological

systems, such as breathing, digestion and temperature regulation. There are also many

smaller ones such as cell regeneration, exchange of gasses, even simple thought. If we had to

consciously attend to only a few of these processes, we would likely perish within minutes.

There are just too many systems, large and small, to attend to. So why don’t we perish in a

heap of inattentiveness? Simply because our body, through the eons has abstracted more and

more of our inner workings. If we want to go to the fridge and get a snack, we do it more or

less without thinking. Our various internal systems handle the motions, related chemical and

physical processes to enable us to get the snack. This allows us to focus our attention on the

high-level task of acquiring a snack unencumbered by the corresponding low-level tasks

required to simply get to the fridge.

Computing is evolving in much the same fashion. In creating machine code, suddenly

programmers didn’t need to know how to manipulate binary switches. Compilers freed us

from the tedium of arranging machine code. And so it went. In each abstraction, one more

layer of complexity was essentially hidden as the underlying technology was managed

independently of the developer or user. The net result is was software (and hardware to some

extent) grew more functional and comprehensive with each abstraction. Even more important

was its impact on our lives grew ever more intimate, creating a new cycle of demand for more

functionality and abstraction to achieve it. Thomas Watson, chairman of IBM is famously

30

believed to have stated the world market for computers was around 5. At the time, all

computers did was compute ballistic firing tables. By the introduction of the first compiler,

computers had moved into data processing. With the introduction of the operating system

computers made their way into government, air traffic control, finance and industry. Since

then we have created languages such as Ruby, Java, C# and C++ and it is no coincidence that

the 5 computers of Thomas Watson’s imagination have grown into over 100 computers in a

single luxury car (Motavalli, 2010).

However, despite the dramatic growth in the past, competition has only gotten more

intense, not less. Cars in the past took us from place to place, but now they regulate internal

temperature, ensure our brakes don’t lock and even check for blind spots. Some are even

driving themselves. This means the problems car will face will be more complex than ever

before.

Evolution shows us that the best way to address the problem of complexity is to add

levels of abstraction. An architecture designed to do this successfully must allow for greater

problem generalization without the traditional corresponding increase in complexity. One

way to accomplish this is for the architecture to extend traditional fuzzy logic from the level

of the algorithm to the level of the problem itself.

This dissertation proposes such an architecture, called Fuzzy Contexts or Fuzzy Logic

Type-C. Fuzzy logic permits partial membership and values can belong to multiple fuzzy

sets. By breaking down a problem space into smaller contexts and allowing algorithms

themselves to have relaxed memberships in those contexts, a Type-C solution can support

multiple solutions to complex problems. Using Type-C, problem spaces can be decomposed

into smaller, more easily solvable components and fuzzified together under a Type-C

hierarchy.

This dissertation will delve into a number of aspects of the Type-C framework.

Because it intends to be a comprehensive solution for complex problems, it requires a number

of components or “pillars”. The first is the concept, definition, uses and implementation of

the Fuzzy Contexts which will be introduced shortly. The second pillar is the “fuzzymorphic”

behavior which allows transitions and hybridization when contexts overlap. The third pillar is

the learning and optimization techniques.

31

Before going further it is important to lay the groundwork and understand algorithms

and problem spaces in a general sense. An algorithm is defined as “any well-defined

computational procedure that takes some value or set of values as input and produces some

value or set of values as output” [Cormen 09]. In the decades since the introduction of the

first digital computer, many kinds of algorithms were developed in order to solve specific

classes of problems. For instance, when faced with a list of names, a developer may decide it

necessary to sort them using a sorting algorithm such as a quicksort.

Recall that quicksort is very useful for sorting problems [Cormen 09] but would likely

be a very poor application for a scheduling problem [Sipser 12]. Hence, other algorithms are

needed as problems and requirements change. Take another look at a domain of problems in

which some solutions are best served using a sorting algorithm and others using a scheduling

algorithm as shown in figure 10.

Figure 10 - Different Problems within a Problem Space

It is not uncommon in a larger domain to see different problem spaces overlap. Such a

case might be in a car driving in traffic. Speed and distance can differ based upon traffic

conditions, road conditions and weather conditions. In many cases, traffic, road and weather

can combine to create dramatically different responses to events.

32

3.11: The Situational Discontinuity Problem

Even within a given problem space, circumstances can arise which introduce

“situational discontinuity”. Situational discontinuity occurs when the problem space, for

example, a road, contains occurrences which change the resulting problem significantly, such

as hitting a patch of ice. Because the subsequent behavior must be so different, it is

effectively the same having a different problem space altogether. Living creatures are

naturally well-equipped to adapt to Situational Discontinuity Problems (SDPs). A duck, for

example, has to adapt for travel on land, under the water, on top of the water and in the air.

Human beings deal with all kinds of different environments and issues from cold weather to

traffic to dating.

In the artificial world, handling SDPs becomes a matter of using different algorithms

or generalizing a single approach. In data mining, for example, there are many algorithms

used to find interesting information from huge, often disparate data sets [Han 11]. An

experienced data miner needs to be familiar with Decision Trees, Neural Networks, Linear

Regression and a whole host of other algorithms, each of which has advantages depending

upon the underlying patterns in the data [MacLennan 08]. A fuzzy thermostat may have some

rules for temperature, other for humidity and still others for time of day in order to handle

many different demands for climate control.

Intuitively, it seems obvious that different classes of problems require different

approaches, but recall that the problem with SDPs is that they tend to be ambiguous, hence it

can be difficult to determine when an SDP has occurred and what to do about it. A fuzzy

controller trying to navigate a maze must already deal with a number of navigation problems

without also having to negotiate obstacles such as ice and potholes that it may or may not

encounter. Ideally there would be a generalized contextual approach capable of handling all

the underlying SDPs encountered; one that was efficient, easy to understand and implement.

Pseudo-code for such an approach might look something like the following:

33

Pseudo-code 3 – Implementing a Context

Algorithm: TYPE-C_EVALUATE (contexts, tuple)

Input: contexts, a set of fuzzy contexts in which each context represents a problem

scenario, such as ice, potholes, smooth, etc.

: tuple, set of values representing measurements or state of process

Output: crisp result

Begin

1 Test each context to see if it is valid for this state

2 FOR EACH valid context:

3 Determine the corresponding weighting of this context

4 Determine the membership value for this context

5 Run the corresponding context algorithm against tuple

6 Combine algorithm results, weight and membership values to get final result.

7 NEXT context

8 return final result

End

This approach is useful to avoid the complexity problems of generalized algorithms

[Mendis 10].

Among the many challenges for the software architect and developer is the ability to

model behaviors that are very difficult to describe [Zadeh 08], [Surprise 13]. In the “crisp”

world, this is a particularly difficult task since even a small number of inputs requires a

complex equation in order to create a smooth, continuous result [Cox 94].

In particular, crisp solutions have difficulty properly describing behavior at

boundaries. For example, a crisp thermostat trying to maintain a specific temperature might

find itself frequently turning on and off as the temperature modulates around a desired level,

an inefficient behavior. Discontinuity at the boundaries must be smoothed in order for the

function to prevent the sort of hyper-oscillation around those values that leads to inefficiency

or worse [Cox 95].

In more extreme cases, changes at these boundaries can be significant enough to

require rapid and substantial changes in program behavior rather than a gradual modification.

For example, consider an automated car driving along a smooth road that hits a patch of ice.

These Situational Discontinuities (SDs) require a radically different behavior, much more so

than a simple thermostat.

34

So while techniques such as fuzzy logic can address the thermostat problem, SDs

require an even more dynamic approach [McCarty 14b]. Hybrid approaches [Cheng 10], [Liu

07], algorithmic extensions and subsumptive processes [Yongjie 06] have each been used to

address SDs but each comes with correspondingly higher degrees of complexity and resource-

intensive requirements as a trade-off [Mendis 10].

Fuzzy Contexts, or Fuzzy Logic Type-C attempts to reduce both complexity and

resource requirements of SDs through a novel use of fuzzy techniques and linguistic methods

combined with an object-oriented approach. This is accomplished through a highly dynamic

and flexible architecture which attempts to decompose SDs into smaller, more easily solved

subspaces, each with associated fuzzy terms, membership functions and algorithms as

illustrated in figure 11. Then the framework recombines the parts into whole system of

“contexts” which describe processes at a higher, more human-understandable level.

Figure 11 - Solving a Problem Space Using Multiple Approaches

3.2: THE FUZZY LOGIC FOUNDATION

For a more detailed description of Fuzzy Logic, Type-1 and Type-2, please refer to

Appendix A.

Fuzzy logic, also known as Type-1 Fuzzy Logic, introduced by Lofti Zadeh [Zadeh

65] uses “uncertain”, rather than precise, descriptions for terms and allows for polyvalent

35

membership definitions. As compared to a “crisp” or traditional controller, a fuzzy controller

allows for greater linguistic precision in describing a complex system behavior while at the

same time relaxing precision around the boundary points and elsewhere. Recall this is done

through the use of a membership function µ whose output, instead of the traditional FALSE

(0) and TRUE (1) allows for output of 0, 1 and all values in between. Thus, for a domain D

µ(𝒙) → [𝟎, 𝟏], 𝒙 ∈ 𝑫 (3.1)

A fuzzy membership function defines a fuzzy set fs, which can be described using a

linguistic term such as WARM. A fuzzy set fs is then a set of ordered pairs

𝒇𝒔 ≡ {〈𝒙, 𝝁(𝒙)〉|𝒙 ∈ 𝑫} (3.2)

A fuzzy set can take any convex shape, with each fuzzy set depending upon its

membership function. Triangles are one common shape. A fuzzy definition for the room

temperature becomes a union of fuzzy sets as shown in figure 12.

Cool Warm Hot

Figure 12 - Fuzzy Sets as Triangles

Each fuzzy set contributes partially to the final result depending upon the resulting

µ(x). Fuzzy algorithms are very good at approximating complex polynomials and provide

stronger mechanisms for handling noise and uncertainty along with variations among “expert”

definitions than their crisp cousins.

However, fuzzy logic also has limitations that pose new problems. Whereas the crisp

algorithm has difficulty with the discontinuity at a boundary, likewise a fuzzy algorithm has

trouble handling an SDP such as when an obstacle presents itself.

36

In the thermostat problem, a crisp solution could be improved by adding additional

temperature tiers [Cox 94]. Likewise an SPD could be improved by the addition of fuzzy

rules. However, adding tiers makes the temperature algorithm significantly more complex;

likewise the addition of fuzzy rules adds significant additional complexity to a fuzzy solution

[Mendis 10]. Just as Fuzzy Logic was necessary to solve the crisp boundary discontinuity

problem, so there is a need for an approach to solve situational discontinuities within SDPs.

The underlying problem within fuzzy systems, and more generally, all approaches, is

that problem domains are often more “solvable” using certain approaches than others. Within

each of these specific problem areas often lies even more specific issues which require ever

more specialized techniques.

For instance [Linda 11b] demonstrates how a Fuzzy Type-1 controller was superior

navigating around corners but inferior to a Fuzzy Type-2 controller navigating smoother

surfaces. Even within a particular problem domain, one configuration of a Fuzzy Inference

System (FIS) will be superior for handling a simple maze while another FIS is more

appropriate elsewhere for obstacles.

A number of methods were introduced to extend fuzzy systems while also trying to

limit the corresponding increase in complexity. Prior work in this area involves the use of

Fuzzy Type-2 [Linda 11a], [Linda 11b], [Mendel 02], [Hagras 12] and Nonstationary Fuzzy

[Garibaldi 08] sets and Polymorphic Fuzzy Signatures [Mendis 08], [Mendis 10].

Recall that Fuzzy Type-2 introduces uncertainty into the fuzzy sets themselves, in

effect relaxing the boundaries of the membership function µ2, so in contrast to Equation 3.1:

𝝁𝟐 = {((𝒙, µ), 𝝁𝟐(𝒙, 𝝁))|∀𝒙 ∈ 𝑫, 𝝁 ∈ [𝟎, 𝟏]} (3.3)

Note also that output of µ2 is also member of the set [0, 1]. Recall that whereas a

Type-1 fuzzy set is a 2-dimensional object, Type-2 fuzzy sets are surfaces as demonstrated in

figure 13.

37

Figure 13 - Type-2 Fuzzy Sets

A Type-2 fuzzy interference system is useful in dealing with problems such extensive

noise or smoothing out erratic behaviors that plague Type 1 controllers.

Recall that Nonstationary Fuzzy Sets (NFS) introduces the notion of variability of

fuzzy sets over some dimension such as time, location, or even noise. The NFS nfs is

described as:

𝒏𝒇𝒔 = ∫ ∫ 𝝁𝒇𝒔(𝒅, 𝒙)/𝒙/𝒅𝒙∈𝑿𝒅∈𝑫
 (3.4)

where d is some value along a dimension of the problem domain D and x is a tuple or point

within the set of possible inputs X. Nonstationary Fuzzy Sets allow for a dynamic fuzzy

membership function (and sets) able to accommodate significant changes to the problem

space. A perturbation function adjusts the underlying membership functions as needs change.

The NFS is then able to generate a variable FIS to handle changes in the problem space which

otherwise might cause difficulties to a static Type-1 or Type-2 FIS.

The Fuzzy Logic Type-C, or Fuzzy Contexts is based upon precepts drawn from

Object Oriented Programming (OOP), Fuzzy Logic and Radial Basis Functions (RBFs).

Among the core goals of OOP is to make programming simpler and more reusable by

abstracting common base functionality across disparate objects [Pressman 09]. This

technique is called “polymorphism” and is accomplished via class inheritance as well as

38

through the use of interfaces. Fuzzy Contexts seek to extend polymorphism using fuzzy

constructs.

One of the most common and arguably successful implementations of fuzzy logic is its

combination with rule-based systems, generally referred to as a Fuzzy Inference System (FIS)

[Cox 95]. The FIS performs a nonlinear mapping from an input data vector to a scalar output.

It is typically composed of defined fuzzy sets combined with linguistic terms, a fuzzy rule

base and a Defuzzifier as shown in figure 14. In a typical FIS, input is fuzzified from crisp

numbers to fuzzy values. These values are then run through a fuzzy inference engine and test

against the rule base to determine a corresponding rule “contribution”. Contributions are

recombined in the defuzzification process to produce a crisp results.

Figure 14 – A Typical Fuzzy Controller

Work by [Kirillov 14]. [Slavicek 13], [Octave 13] and others has produced a number

of useful software frameworks for implementing a Type-1 FIS (T1-FIS). Others [Karnik 14]

have also produced frameworks for implementing a Type-2 FIS. Fuzzy Contexts builds upon

their work and others such as the [Moreno 12] introduction of a Fuzzy Definition Language

called XFSML. The XFSML allows for a storage and retrieval of Type-1 fuzzy components

in order to implement a dynamic T1-FIS. This paper takes the XFSML a bit further by

introducing a novel Algorithm Definition Language (ADL) for more generalized algorithm

definitions including Type-2 as well as a database implementation for both Type-1 and Type-

2 ADLs.

Fuzzy Contexts borrows much of its technique from the methods described here.

39

3.3: OVERVIEW OF FUZZY CONTEXTS IN DETAIL

A Fuzzy Context, �̂�𝑖is a multidimensional object consisting of a crisp centroid core

and a fuzzy shell [McCarty 14b]. The boundaries of the core and shell are expressed as a

series of points and/or function defining the convex boundaries of the core, 𝜌, the inner fuzzy

shell, 𝜎 and the outer fuzzy shell, 𝜏.

The core serves as an algorithmic classifier. Any and all inputs that lie within the core

are considered to be completely addressable by the corresponding context algorithm. For

example, an image of a face might be broken down into contexts for the eyes, nose and skin.

A contextual core for the context EYE might consist of the pupil and iris only since they are

easily distinguishable from other parts of the face as demonstrated in figure 15.

Figure 15 – Deconstructing an eye into ρ, σ, τ

Hence the core, 𝜌, is defined by a set of points and a function 𝜌𝑖(x) that defines the

boundaries of the core.

�̂�𝒊𝝆 ≡ 𝝆𝒊(𝒙), 𝒙 = [𝒙𝟏, . . , 𝒙𝒍] (3.5)

The 𝜎 defines the outermost boundary of the core. It is where the fuzzyiness begins to

happen as (similar to the RBF) the contribution of the algorithm diminishes as a point moves

40

further from the core down to zero. In the case of the eye it is where the iris ends and the

sclera begins as shown in figure 15. It is defined similarly to 𝜌.

�̂�𝒊𝝈 ≡ 𝝈𝒊(𝒙), 𝒙 = [𝒙𝟏, . . , 𝒙𝒎] (3.6)

Finally the outermost boundary of the outer shell is where algorithm applicability falls

to zero. In the case of the eye in figure 15, it is where the sclera meets the eyelid. Since the

sclera and eyelids are different for each eye, it is advantageous to define a certain fuzziness

where the two come together. The outer shell defined by 𝜏 is constructed similarly to the

others.

�̂�𝒊𝝉 ≡ 𝝈𝒊(𝒙), 𝒙 = [𝒙𝟏, . . , 𝒙𝒏] (3.7)

Hence any given contextual shape, 𝛾 for any context �̂�𝑖 is a function of series of points

x, y and z and their associated constructs:

�̂�𝒊𝜸 ≡ 𝝆𝒊(𝒙)𝝈𝒊(𝒚)𝝉𝒊(𝒛), 𝒙 = [𝒙𝟏, . . , 𝒙𝒍], 𝒚 = [𝒚𝟏, . . , 𝒚𝒎], 𝒛 = [𝒛𝟏, . . , 𝒛𝒏] (3.8)

In simplest form (aside from a singleton) the context consists of a centroid point, an

inner radius defining an inner sphere and outer radius describing the distance between the

boundaries of the inner and outer spheres. The resulting fuzzy context looks like a solid

sphere within a fuzzy sphere such as shown in figure 16.

Figure 16 – Simple Fuzzy Context

41

There is no restriction to the boundaries of the shells except that along any line

intersecting the context the Euclidean distance from the centroid to the inner shell is less than

the distance to the outer shell.

√‖�̂�𝒊𝜸
𝒄 − �̂�𝒊𝜸

𝒊𝒓‖
𝟐
≤ √‖�̂�𝒊𝜸

𝒄 − �̂�𝒊𝜸
𝒐𝒓‖

𝟐
 (3.9)

One other constraint that must be observed, similar to the intermediate value theorem

for an ascending function, is that given two points a, b within a context and a point between

them c, along some line through the centroid, the membership value of c must lie between the

membership values of a and b and not decrease the closer you move to the center.

∀𝒂, 𝒃, 𝒄 | 𝒇𝒅(𝒂) ≤ 𝒇𝒅(𝒄) ≤ 𝒇𝒅(𝒃) ⇒ 𝝁(𝒂) ≤ 𝝁(𝒄) ≤ 𝝁(𝒃) (3.10)

In standard form the context takes as input a vector and returns a scalar output.

�̂�𝒊𝜸(𝒙) = 𝝁𝒊𝜸(𝒙)𝝋𝒊(𝒙), 𝒙 = [𝒙𝟏, . . , 𝒙𝒌] (3.11)

Where 𝜇𝑖𝛾(𝑥) is the corresponding fuzzy membership function for the context �̂�𝑖𝛾 and

𝜑𝑖(𝑥) is its assigned algorithm. Also similar to RBF and Artificial Neurons, the Type-C

architecture can combine the individual contexts into a network, although it is not a

requirement. Hence a Type-C implementation combines all the individual contexts over the

universe of discourse.

�̂�(𝒙) = ∑ 𝝁𝒊𝜸(𝒙)𝝋𝒊(𝒙), 𝒙 = [𝒙𝟏, . . , 𝒙𝒌]
𝒏
𝒊=𝟏 (3.12)

Membership evaluation is similar to the signature method employed by PFS, for a

given �̂�𝑖𝛾 with centroid 𝑥𝑐 is as follows:

𝝁�̂�𝒊𝜸 = {

𝟏, ‖𝒙 − 𝒙𝒄‖ ≤ 𝒓𝒊𝒏𝒏𝒆𝒓
𝝁𝒊𝜸, 𝒓𝒊𝒏𝒏𝒆𝒓 < ‖𝒙 − 𝒙𝒄‖ < 𝒓𝒐𝒖𝒕𝒆𝒓

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (3.13)

42

The Fuzzy Context also has the capability to “invert”, in which case membership

gradually goes to 0 as a point moves closer to the centroid. This is useful in creating

subsumptive behavior [Yongjie 06] where generic behaviors are overridden by specific ones.

𝝁�̂�𝒊𝜸 = {

𝟎, ‖𝒙 − 𝒙𝒄‖ ≤ 𝒓𝒊𝒏𝒏𝒆𝒓
�̅�𝒊𝜸, 𝒓𝒊𝒏𝒏𝒆𝒓 < ‖𝒙 − 𝒙𝒄‖ < 𝒓𝒐𝒖𝒕𝒆𝒓

𝟏, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (3.14)

43

3.3.1: How Fuzzy Contexts extend Fuzzy Logic

Fuzzy Contexts, or Fuzzy Type-C extends the concepts of the Fuzzy Logic,

Polymorphic Fuzzy Signatures (PFS) and Nonstationary Fuzzy Systems (NFS) into a rich

framework supporting the use of multiple, distinct approaches to solve varied problems.

Recall that Fuzzy Type-1 seeks to make it easier to describe and implement complex

polynomials via approximation using a series of fuzzy sets and linguistic terms. Similarly,

Fuzzy Contexts attempt to make it easier to describe and resolve complex problem spaces via

a series of space decompositions, each combined with an algorithm and linguistic “context”.

This particular construct serves to differentiate Type-C implementations from traditional NFS,

PFS or even hybrid systems, for example, Neuro-Fuzzy. In a traditional hybrid or other

approach, the resulting hybridization is in reality, still a single algorithm; albeit a more

complex one. The resulting problem space expands, but is still finite, being bounded by the

hybrid approach. Moreover, just as a Fuzzy Logic set provides a readily understandable

description via linguistic terms, so also does Type-C provide a natural linguistic context to a

problem space, rendering a more precise definition of the original problem context. Note

also, that for a Fuzzy Context associated with an algorithm reduces to the algorithm (such as a

Type-1 FLC) within the core, 𝜌.

Consider, for example, an application to do facial recognition. Features, such as the

eyes and mouth, require a different approach then the hair or chin. A neuro-fuzzy hybrid

approach attempts to recognize features and determine the appropriate algorithmic approach

by creating a series of fuzzy rules to determine which features predominate and respond

accordingly [Gomathi 10]. It may look for skin-tone, hair color, eye color, etc. and decide

how to proceed based upon the resulting fuzzy rules. The limitation is that each feature

requires adding an entirely new set of rules, yet each set of rules is functionally equivalent to

every other set.

Suppose our facial recognition software is very simple has rules for skin-tone. There

might be rules (consisting of fuzzy sets) such as DARK and LIGHT and TAN. The test of

skin-tone requires testing 3 fuzzy sets. Easy enough, but what if the person is flushed from

running to the subway on a hot afternoon. Adding rules to account for flushed faces means

adding the FLUSHED fuzzy set and increasing the rules to (at least) FLUSHED AND DARK,

44

FLUSHED AND LIGHT, FLUSHED AND TAN, DARK, FLUSHED, TAN. Now suppose

the face is sweaty. Now there has to be at least 12 rules: SWEATY AND FLUSHED AND

DARK, FLUSHED AND DARK, SWEATY AND DARK, DARK and so on.

Each of these rules must be tested unless even more logic is applied to trim the sets of

rules. The problem is that logic, say if face is SWEATY then only use rules that have

SWEATY, still by limited a lack of context. SWEATY when hot is not the same as

SWEATY when cold (CLAMMY). Adding temperature (HOT or COLD) just makes the

problem that much more complicated, particularly when it comes to deciding what underlying

fuzzy sets to use. Is there a definition for SWEATY that will work for both hot and cold

situations? What of the underlying logic? Can the algorithm reliably trim rules without

losing some of the intended precision?

Analogous to Zadeh showing how fuzzy sets can simplify a complex polynomial,

fuzzy contexts can simplify the facial recognition through the use of contexts. In the example

above DARK, LIGHT and TAN, FLUSHED, SWEATY comprise a core fuzzy inference

system, with different contexts for temperature. Each contexts has its own FIS, adapted

specifically for the context. Such a contextual system might read like this

Context – HOT DAY

 DARK, LIGHT, TAN, FLUSHED, SWEATY (sets adapted for skin tone when

temperature is hot)

Context – COLD DAY

 DARK, LIGHT, TAN, FLUSHED, SWEATY (sets adapted for skin tone when

temperature is cold)

Similar to Type-1, the resulting solution is determined by the corresponding

contribution of each context. This is achieved by calculating the membership of a given tuple

in the context. In short, a Fuzzy Context is an extensible, hierarchical framework that uses a

fuzzy membership function to associate a specific algorithm to a context within a problem

space. Fuzzy Logic Type-C combines Fuzzy Contexts and their corresponding problem

spaces into a polymorphic algorithmic approach.

Type-C is also intended to also provide a relatively light-weight framework around

any particular algorithm. Test results will show that a Type-C implementation add only a

45

small amount of overhead and can actually reduce the processing requirements of an

implementation in some cases.

3.3.2: What is Fuzzymorphism?

The three pillars of object-oriented programming are encapsulation, inheritance and

polymorphism [Purdum 12]. Of these, polymorphism is the least understand and most

underutilized. Polymorphism is derived from the Greek, meaning “many shapes” or forms

and is understood in computer science to be a technique whereby an object can assume

different forms or attributes. These forms depend upon the type of descendent object that was

instantiated but appear outwardly to the caller to be identical.

As a way of thinking about it, consider the science of Taxonomy [CLT 03],

[Taxonomy 14]. Taxonomy is simply a methodology to group living organisms together

based upon things they have in common. Similarly, polymorphism seeks to create objects

which can be used interchangeably based upon a common interface. The difference is that

whereas in Taxonomy, we consider physical traits, in Polymorphism we are more interested in

function. For example consider an “animal”. It can be whatever you like but think about the

functions the animal can perform that are common to all other animals.

One example of a common function is motion. All animals have the capability to

move to and fro, even though they have very different ways to go about it. Another is

“speaking”. Virtually all animals can make some sort of sound when necessary. An object-

oriented animal therefore might have two functions: MOVE and SPEAK. The

implementation of MOVE and SPEAK, however, differ based upon the actual animal

instantiated.

For example, consider the DOG object and DUCK object, both derived from an

ANIMAL class. We implement a MOVE function (run) and a SPEAK function (bark) for

DOG. We implement a MOVE function (waddle) and a SPEAK function (quack) for DUCK.

Later as part of a collection of ANIMAL objects (call it a ZOO), we have a DOG and a

DUCK. We can then perform a loop:

46

FOR EACH ANIMAL IN ZOO

 ANIMAL.MOVE

 ANIMAL.SPEAK

NEXT ANIMAL (3.15)

Here’s where the power of polymorphism becomes apparent. When the calls to

ANIMAL.MOVE and ANIMAL.SPEAK occur, the compiler checks for the kind of animal

ANIMAL happens to be at the moment and then makes the appropriate underlying function

call. The calling function, however, does not have to know anything about the ANIMAL

other than it can speak and move, therefore it can remain blissfully ignorant of HOW it should

speak or move. Thus polymorphism allows the caller to be able to work with animal objects

without having to know anything about the specific types of animals. A simple example of

polymorphism is illustrated in figure 17.

Figure 17 – Polymorphic action SPEAK for DUCK vs. DOG vs. CAT

Fuzzymorphism takes polymorphism into the realm of fuzzy logic. Just as a fuzzy

value is to a bivalent crisp value, so a fuzzymorphic function is to a polymorphic one. Take

another look at the DUCK object. Earlier, we suggested that MOVE was a waddle, but is that

really true? How does a DUCK really move? A DUCK can paddle on the water, swim in the

47

water, waddle on land, and fly through the air; therefore a more complete DUCK is really a

series of sub-objects:

a. DUCK_UNDER_WATER

b. DUCK_ON_WATER,

c. DUCK_ON_LAND,

d. DUCK_IN_AIR.

The traditional polymorphic ANIMAL function MOVE for the DUCK object is now

either DUCK_UNDER_WATER.MOVE, DUCK_ON_WATER.MOVE, etc. But what about

when a DUCK is taking off or landing? In traditional polymorphism, a function is of a certain

type (say, waddle) or it is not. A fuzzymorphic function, however, can consist of multiple

algorithms, hence it can be part waddle and part fly for a context TAKING OFF FROM

LAND or part fly and part paddle for a context LANDING ON THE WATER or anything

else that makes contextual sense.

Fuzzymorphism is then able to handle transitions from one context to the next. It can

also handle any space where membership within one or more contexts is ambiguous. It does

this by applying algorithms fractionally, depending upon a current input’s membership within

corresponding contexts.

3.3.3: Advantages of Fuzzy Contexts and Fuzzymorphism

Traditional approaches take an existing algorithm and try to generalize over a larger

problem domain. Typically this is accomplished by adding complexity to the algorithm. For

instance, a neural network adds neurons while a fuzzy controller adds fuzzy rules, both at a

cost of complexity to an algorithm with correspondingly diminishing returns [Mendis 10].

For example a simple fuzzy controller designed to solve a navigation problem can perform

quite well with a small number of rules. Adding new rules gives the controller more

capability, but each new rule expands the solution on a smaller and smaller scale. Conversely

each new rule greatly increases the system’s complexity [Mendis 08]. Even within a problem

space suited for a particular approach, an algorithm can still fall victim to problems of

complexity and diminishing returns as illustrated by figure 18.

48

Figure 18 - Adding Fuzzy Rules Results in Diminishing Returns

Furthermore, there are times when multiple approaches may be equally worthy at

certain stages of a process. Consider the example of a scheduler - one with a small number of

possible configurations may be best served with a global ranking system; while a larger

number of configurations may require some sort of local search technique [Russell 09]. The

effectiveness of these different approaches can overlap, creating an intersection of

subdomains as demonstrated in figure 19.

Figure 19 - Overlap of Techniques for a Scheduler

In this situation, either approach is acceptable. More importantly, the union of the two

spaces gives the combined algorithms a larger surface area with less overall complexity than

trying to extend either approach separately. The problem lies in determining the situation, or

49

“context” in which to apply one algorithm or the other. For another example of how a context

applies, albeit in a different way, consider an inventory control problem at a department store.

Seasonal contexts dictate which items are most import to maintain inventory and how much.

As before with the scheduler, an inventory control system needs to account for the season, or

context, in order to be most efficient, this time at maintaining inventory levels.

Living things incorporate contexts quite well, we are naturally in tune with our

external situation; but applying contexts to artificial processes requires a mechanism to both

identify a given context as well as the best algorithmic behavior to apply, along with behavior

at transition points where the “best” algorithm is ambiguous. Fuzzy logic provides a useful

foundation for exploiting this imprecision and creating and using contexts [Zadeh 08]. With

Fuzzy Type-C, diverse problem spaces can be combined without sacrificing the simplicity and

power of individual problem solving techniques. Consider a problem space P over a domain

D. It consists of a collection of states s, which is a tuple of si values, each si value belonging

to D.

𝑷 ≡ {𝒔 = 𝒔𝟏, . . , 𝒔𝒏, 𝒔𝒊𝝐𝑫} (3.16)

An algorithm a, such as a Type-2 FIS operates on P taking as input an sp and generates

a result rp.

𝒂 ≡ 𝒇(𝒔), 𝒇(𝒔𝒑) = 𝒓𝒑 (3.17)

A fuzzy “signature” is a collection of problem states, upon which the algorithm works

efficiently, hence:

𝒇𝒔𝒊𝒈 = ∑ 𝒂𝒔𝒊
𝒏
𝒊=𝟏 , 𝒔 ∈ 𝑷, 𝒔𝒊 ∈ 𝑫 (3.18)

The “context” is the combination of the algorithm, the signature and all the associated

states along with a membership function µc. µc determines membership within a given

context of any particular state si.

50

𝑪𝒊 = {𝒇𝒔𝒊𝒈𝒊 , 𝒂𝒊, ∑ 𝒔𝒊 , 𝝁𝒄𝒊 , 𝒔𝒊 ∈ 𝑷, 𝝁𝒄𝒊(𝒔𝒊) ∈ [𝟎, 𝟏]} (3.19)

The Type-C FIS contains all the contexts associated with P.

𝑪 = ∑ 𝑪𝒊
𝒏
𝒊=𝟏 (3.20)

Figure 20 demonstrates how this approach might handle a complex problem domain.

Figure 20 - Solving a Problem Space Using Multiple Approaches

Hence, Fuzzy Type-C encapsulates multiple problem solving approaches by

associating a “signature” of an environment with a distinct Type-1, Type-2 FIS or other

algorithm and all the potential states the algorithm was designed to address.

Because the new contexts can be added as a problem space expands, a Type-C FIS

allows an expansion of a problem space into a larger domain without having to overly

generalize.

The Type-C architecture consists of the following major components:

1. A set of inputs as a tuple

2. A series of contexts. Each context consists of:

a. Fuzzy signature

b. Membership function

c. Algorithm that receives the input tuple and returns a result.

3. Results fuzzifier

51

4. Optional optimizer/contextualizer for dynamic optimization and automated

learning. It determines if the error rate is acceptable, otherwise will strive to

optimized an existing context or generate a new context.

5. Defuzzifier that takes fuzzified output and generates a crisp result.

The architecture is illustrated by figure 21.

Figure 21 - Fuzzy Context Architecture

The Contexts Fuzzifier component uses a technique similar to that of fuzzy

classification to determine membership of a context. Unlike in crisp sets where a data point is

either in or not in a set, fuzzy classifications allow a point to have membership in multiple

sets as shown in figure 22.

Fuzzy clusters are very useful in creating “transition” sets from one problem space to

another within a domain. Transitions are those in-between areas where contexts overlap,

where any single algorithm is not likely to generate the best result. Likewise fuzzy clusters

can determine membership of a given tuple with a transition set for a given context while

allowing for membership in multiple contexts. Cluster, and context, creation and membership

is determined using techniques such as discussed in [Ming-Chuan 01].

52

Figure 22 - Points in Fuzzy Clusters

At runtime a Type-C FIS determines the “contextualization” of each input tuple using

each context’s corresponding membership function. Any context whose membership value is

greater than zero will have its corresponding algorithm run and its output fuzzified.

Defuzzification is achieved using traditional fuzzy methods

𝕽 =
∑ 𝒘𝒊𝒂𝒊(𝒔𝒊)𝝁𝒄𝒊(𝒔𝒊)
𝒏
𝒊=𝟎

∑ 𝝁𝒄(𝒔𝒊)
𝒏
𝒊=𝟎

, 𝒔𝒊 ∈ 𝑫, 𝝁𝑪(𝒔𝒊) > 𝟎 (3.21)

Where ℜ is crisp result, si is an input tuple in a domain D, wi is the weight, µc is the

context membership and ai is the intrinsic function for any context whose µc is greater than

zero.

Fuzzymorphism occurs when contexts overlap as might occur in a problem space

similar to that in figure 23. As a state moves away from the center of one context and closer

to the center of another, the resulting defuzzification will take on more of the characteristics

of the closest underlying context algorithm, hence a Type-1 FIS might slowly morph to a

Type-2 FIS for example. Figure 23 illustrates the concept.

53

Figure 23 - Type-C membership over a Problem Space

Fuzzymorphism allows a Type-C based system containing multiple approaches to

dynamically “morph” into the one most suitable for the problem at hand. In the case of

multiple Type-1 FIS, Type-C performs similarly to a Nonstationary Fuzzy System. However,

because Type-C is algorithm independent, the framework will support any algorithm capable

of accepting the input tuple and producing a corresponding output, allowing for a much more

diverse approach.

3.3.4: Is there a Packing Problem?

The Packing Problem occurs when trying to fit a series of “objects” into a container

such as one shown in figure 24. No matter how tightly packed the circles are, they will

invariably leave some space (indicated by the hash marks in 24b).

54

Figure 24 a, b – Circles in a rectangular container leads to “Packing Problem”

The aim of a packing solution is to pack the container with maximal density [Lopez

11]. When looking at Fuzzy Contexts, the question of whether the contexts can completely

cover a problem space arises. It becomes a packing problem. Again look at the problem

space example in figure 25.

Figure 25 – Example Problem Space

Do Fuzzy Contexts have to worry about the Packing Problem? The answer is no, for 2

separate reasons: 1) Fuzzy Contexts can overlap, hence it is relatively easy to overcome the

limitations suffered by a series of regular objects as shown in figure 26.

55

Figure 26 – Fuzzy Contexts overlap and cover a problem space

Second, Chapter 4 will show how Fuzzy Context can take many different shapes and

sizes, so long as the shape is convex, including a single point. So even if no overlap was

allowed there exists a covering space (although it may not be finite) of convex shapes or

points.

3.4: IMPLEMENTATION OF BASIC FUZZY FRAMEWORK AND ARCHITECTURE

3.4.1: Introduction

Describing the behaviors of complex system presents many challenges for the

software architect and developer. Foremost among them is the ability to model behaviors that

are by their very nature imprecise [Zadeh 65] or dependent upon external factors not directly

related to a specific process state [McCarty 08a]. Another vexing challenge is how to develop

complex systems able to address a variety of differing environments, each with its own

special requirements and methods for addressing them.

Consider the duck. It is a fowl with an uncommon ability to move on land, in the air,

on top of the water and under the water. In each scenario, it is able to make use of its feet,

wings, tail and other body parts as appropriate for locomotion; yet in each case these body

parts may execute their functions quite differently. Moreover, the duck must also manage a

56

number of transition phases: 1) under/over water, 2) over water/air, 3) over water/land, 4)

land/air. Each of these phases has an inverse for a total of 8 possible transitions. In the

transition phase the duck must rapidly or gradually adjust the behavior of these body parts in

order to make the transition from one form of locomotion to another.

Complex software systems face some of the same challenges as the duck. Because

complex machines, such as robots, automated cars or even search engines often need to be

able to adapt to a changing environment on the fly, they need to be able to modify their

overall behavior by modifying the behavior of their underlying component systems. This

includes not only being able to handle major changes of state, but also the transition phases

between states where different component systems must exchange primary or secondary roles.

As with the duck, hybrid behaviors and contributions must be smoothly adjusted in order that

the transition move successfully from state to state. What is needed is an architecture that can

do this but which allows complex descriptions and hybridization techniques to be

encapsulated in a relatively easy human-understandable component.

Recall that Fuzzy logic is well suited for human systems interaction because they

provides a natural way of implementing linguistic terms from human experts. This section

introduces the basic fuzzy framework for building a Type-1 fuzzy controller. Fuzzy Logic

presents a number of advantages in dealing with complex systems already described. Perhaps

less appreciated is the way Fuzzy Logic encapsulates variables and rules as linguistic terms.

This allows for descriptions which are human-readable and easier to relate. This mechanism

works well in defining contexts, or problem spaces with particular characteristics and plays an

important role in the framework.

Later enhancements will add the necessary components for a full-fledged Type-C

implementation, but initially a traditional fuzzy framework was used to serve as the base and

starting point for further development. The benefits of this framework are: 1) Reduced

development time; 2) A standardized and portable codebase; 3) Support for Type-1 fuzzy sets

and rules.

Every framework needs an application. Complex systems, such as robots, frequently

incorporate a multitude of diverse inputs in order to perform a given task. Each input may or

may not influence a system’s behavior depending upon other inputs and/or system states. For

example, a robot that senses a wall nearby will behave differently depending upon its speed,

57

direction of motion, goals, other walls, etc. Due to the potential wide variety of possible

conditions and responses, fuzzy logic, in the form of a Fuzzy Inference System (FIS) provides

an excellent implementation option and use for this framework. The FIS provides the

foundation for Type-1 Fuzzy Logic Controllers (T1-FLCs) used to control a complex system

and is desirable for the following reasons:

1. Fuzzy logic describes both input and output behaviors in human understandable

terms.

2. Because real-world factors such as sensor noise, actuator variations and

environmental factors add elements of uncertainly to the interpretation, T1-FLCs

(and T2-FLCs) are often the most practical approaches available to describe and

deal with the uncertainty.

3. Fuzzy logic often provides a much simpler way to describe and approximate

complex behaviors than polynomial functions.

T1-FLCs operate on the principal that inputs and outputs can be “fuzzified”; that is,

defined not as a specific number or boundary, but instead as a range of values defining

varying degrees of membership between 0 and 1 [Cox 94]. Type-1 fuzzy logic does have its

limitations, such as managing input noise and outliers.

Clearly, practical applications of T1-FLCs are everywhere. Despite this, there has

been only limited progress in using FLCs for mainstream, commercial applications.

Programmers often have little to no appreciation for, or even understanding of, fuzzy

techniques and how they might be applied to solve common problems.

One way to address this problem is through the use of a software framework designed

to support creation and maintenance of an FIS - a fuzzy framework. Software engineering

methods rely on the use of frameworks to improve the quality of software while also reducing

complexity and development costs [Limbu 11], [Pressman 09], [Busc 09]. Software

frameworks, usually in the form of software class libraries, DLLs or other reusable software,

allow developers to focus on solving a specific problem rather than spending time writing

generic routines [Pressman 09].

Fuzzy frameworks do exist and are available as commercial offerings from sources

such as Matlab and LabView. These offerings provide very sophisticated functionality as

add-on toolkits to their core product line. Open source frameworks such as AForge.Net

58

[Kirillov 14], Sourceforge.net, [Octave 13] and CodeProject [Slavicek 13] provide another

option for developers interested in creating their own custom solutions. Despite the

availability of both commercial and non-commercial frameworks, limitations of both continue

to inhibit more widespread use and adoption of FLCs in general. Among these limitations is

the difficulty for novices in trying to understanding the various fuzzy objects and how they

relate and how to implementing a working FIS in code [Wyne 12]. Applications wizards can

help with this, along with a suitable modeling language for configuring FLCs dynamically

[Moreno 12]. If the Type-C Framework (TCF) is to prove useful, it should also provide some

tools to help developers understand how to implement it.

3.4.2: Need for a General Fuzzy Framework to Support Type-C

All the frameworks, including the starter TCF, described in section 3.4.1 above are

unsuitable, however, for a Type-C based implementation. They do not support

Fuzzymorphism of Fuzzy Contexts in any sense, nor provide the necessary software hooks for

dynamic algorithm implementation or hybridizations. A new approach to a fuzzy architecture

is needed. One that supports:

1. The ability to define and use Fuzzy Contexts

2. The ability to plug in algorithms on the fly as contexts merge and change

3. The ability to define and load algorithms via a definition language

4. The ability to add other enhancements such as optimization techniques

5. Integration with a relational database.

There are other issues as well to consider with existing frameworks. Commercial

products, such as Matlab, have significant cost and limited portability to other languages.

Their frameworks require purchase of the core product, often at an extra cost of thousands of

dollars, and may involve a steep learning curve for use. Furthermore, portability issues make

adding a Matlab Fuzzy Toolkit FIS to a generic web application based upon a language such

as Visual Basic.NET a significant undertaking. Open source solutions, on the other hand,

provide few, if any, useful tools for configuration and implementation which will need to be

addressed, but at least they provide a good place to start.

59

The TCF proposed in this dissertation began life as an open source, Type-1 library

from [Kirillov 14]. It is written in C#, a variant of C which has wide adoption in the computer

science and business community. C# is also among the most popular programming languages

for businesses using the Windows platform. The original framework was strictly designed as

a general purpose library to implement a Type-1 FLC. The author then proceeded to overhaul

and upgrade the software (and fix a few bugs) in order to support the many enhancements

required to implement a Type-C based controller as described in the next section.

3.4.3: Framework Architecture

Object-oriented techniques have long been recognized as a way to reduce the

complexity of software [Pressman 09], [McConnell 04]. As a starting point the framework

architecture consists of a number of objects in support of a typical Fuzzy Inference System

(FIS), most notably:

1. Membership Functions

2. Fuzzy Sets

3. Fuzzy Variables

4. Fuzzy Rules

5. A Rules Database

6. Defuzzifier

There are 8 steps necessary to implement the framework in order to create a

functioning FIS:

1. Define Membership Functions - Define each fuzzy function, or shape used to

generate the fuzzy sets

2. Define Fuzzy Sets – Define each fuzzy sets using a linguistic term along with the

corresponding membership function

3. Define Fuzzy Variables – Define each variable using a linguistic term, add the

corresponding fuzzy set definitions

4. Assign Variable Inputs and Outputs – Assign variables to their corresponding

input and output collections

60

5. Define Fuzzy Rules – Create the fuzzy rules by assigning fuzzy variables and

antecedent/consequent terms

6. Define Defuzzifier – Specify type and number of intervals used for defuzzification

7. Assign Rules To Rules Collection – Add rules to the rules collection

8. Define FIS – Create FIS using Rules Collection and Defuzzification object

Step 1 implementation requires specifying a convex shape for a membership function

µ. µ is a function over a domain D such that for each x in D, µ(x) is a number between 0 and

1.

µ(𝒙) → [𝟎, 𝟏], 𝒙 ∈ 𝑫 (3.22)

Zadeh’s rules for fuzzy sets require the functions take the form of a convex shape such

as a triangle, trapezoid, Gaussian or other convex curve. The resulting shape serves as the

membership function µ with the horizontal or x-axis supplying the range of values for which

membership is defined with the vertical or y-axis providing the membership value as

demonstrated in figure 27.

Medium

0 10 20 30 40 50

1.0

.75

.5

.25

Figure 27 – Triangle-shaped fuzzy membership function

 In the framework, each shape, fshape is defined with one or more boundary points Pbk

and one or more apex points Pak.

µ = fshape(Pb1..Pbn, Pa1..Pan) (3.23)

61

The boundary points specify where the membership function becomes a constant. All

points to the left of the left boundary have the same membership value as the left boundary

(normally 0 or 1, indicating no membership or full membership respectively), likewise all

points to the right of the right boundary have the same value as the right boundary. The Apex

point(s) specify the topmost point(s) of the shape along with the membership value (usually

1). For each point P in the shape, the X value specifies a specific value x in the domain while

the Y value specifies the corresponding membership value between 0 and 1 at that value, µ(x).

𝒇𝒔𝒉𝒂𝒑𝒆(𝑷𝒃𝟏, . . , 𝑷𝒃𝒏, 𝑷𝒂𝟏, . . 𝑷𝒂𝒏) = 𝝁(𝒙), 𝒙𝝐𝑫 (3.24)

In the framework, a fuzzy set fs is defined by a membership function and a linguistic

“term” which describes its purpose in a more easily understandable way. Giving the fuzzy set

a “linguistic term” allows use of more intuitive language when describing subsequent rules in

the FIS. For instance, a fuzzy set that determines tallness might be called “Tall”. Later fuzzy

rules will reference that particular fuzzy set with the term Tall. This actually adds a certain

level of precision to the fuzzy set that is very difficult to emulate using crisp sets or numbers

and is one of the major advantages to using fuzzy logic [Zadeh 65], [Cox 95]. The framework

will determine fuzzy set membership of any point using the membership function assigned to

the corresponding fuzzy set.

Hence, step 2 simply requires applying the function defined in step 1 to a linguistic

term to generate a fuzzy set fs.

fs = µ + linguistic term (3.25)

Step 3 involves creation of at least two fuzzy variables, a minimum of 1 each for input

and output variables. Each Fuzzy Variable is described by a “name”, another linguistic term

to appropriately describe the variable’s purpose or function, along with a range of applicable

inputs. Variable names should make sense within the FIS, describing in easily understood

terms what that variable represents. The boundary of the domain of a particular variable

should be large enough to encompass all of the fuzzy sets to be assigned. Once the domain is

defined and the variable “termed”, the variable then is associated with one or more of the

62

fuzzy sets defined in step 2. These associations are used to determine which fuzzy sets are

represented in the fuzzifcation/defuzzification process.

In step 4, the variable is assigned to its intended input or output collection. Input

variables can then be used to construct the antecedent while output variables are used for the

consequent. Antecedents and consequents are used to build fuzzy rules.

During the fuzzification process membership is within the variable depends upon the

membership values of the underlying fuzzy sets as described in step 2.

Step 5 specifies the fuzzy rules that constitute the FIS. Each fuzzy rule consists of an

antecedent which is a statement of the form:

IF <fuzzy variable> IS <fuzzy variable or fuzzy set> (3.26)

The antecedent specifies a testable condition similar to a crisp IF statement, except

instead of a true or false result, the fuzzy result consists of a value between 0 and 1 inclusive,

dependent upon the input value and the various membership or fuzzy functions underlying the

corresponding fuzzy sets shown as in Equation 3.25. Antecedents can be combined using

AND/OR and parenthetical operators. For example, to test the distance of a barrier to the

front of an obstacle the antecedent might take the form of:

IF FrontalDistance IS Far (3.27)

“FrontalDistance” can consist of multiple fuzzy sets, for example: “Near”, “Medium”

and “Far”. The antecedent “IF FrontalDistance IS Far” looks at the membership function of

the fuzzy set “Far” assigned to the fuzzy variable “FrontalDistance”. Note again the use of

linguistic terms that are easily understandable even to laypersons. A parser within the

framework turns the text into its corresponding fuzzy sets and fuzzy variables.

The fuzzy rule also requires a consequent, which is constructed similarly to the

antecedent but uses output variables and sets.

In step 6, the user defines the number of fuzzy intervals used for defuzzification. The

framework currently supports traditional Zadeh rules for fuzzification of fuzzy Type-1 where

63

membership of a fuzzy variable is equal to the minimum membership of the corresponding

fuzzy sets. This is also referred to as a fuzzy intersection of fuzzy sets.

∩ 𝛍𝐂𝐢 = 𝐦𝐢𝐧 (𝛍𝐂𝟏 , 𝛍𝐂𝟐 , .., 𝛍𝐂𝐧) (3.28)

Defuzzification is achieved by then taking a fuzzy union across all intervals in the

domain. This is accomplished by taking the maximum across the sets of intervals and their

corresponding memberships.

∪ 𝝁𝑪𝒊 = 𝒎𝒂𝒙(𝝁𝑪𝟏 , 𝝁𝑪𝟐 , .., 𝝁𝑪𝒏) (3.29)

A centroid, of center of gravity, is then calculated by determining a weighted mean

across the fuzzy region [Cox 94]. The fuzzy solution region ℜ is calculated by the following:

𝕽 =
∑ 𝒅𝒊𝝁𝑨(𝒅𝒊)
𝒏
𝒊=𝟎

∑ 𝝁𝑨(𝒅𝒊)
𝒏
𝒊=𝟎

 (3.30)

where d is the ith domain value and µ(d) is the membership value returned the corresponding

fuzzy function defined in step 1.

In step 7, the user creates a database of the fuzzy rules defined to use in the FLC.

Depending upon which rules are input and which are output, the FIS will attempt to evaluate

all relevant rules during the fuzzification/defuzzification process.

Step 8 is performed by the framework. The resulting FIS then consists of the database

repository of all the relevant fuzzy objects as well the domain space and fuzzy operators used.

The overall architecture is described by figure 28.

64

Figure 28 – Fuzzy Framework Architecture

3.4.4: Structural Changes to Support Type-C

The original framework had a number of shortcomings the needed to be initially

addressed:

1. Limited extensibility – resolved by adding additional interfaces and abstract

classes to provide generic functions, inputs and outputs. For example:

a. A generic Fuzzy Object class was added to provide the ability to accept

generic inputs of any type, an ID and Parent value to allow for the creation

of a bidirectional hierarchy of fuzzy objects and some basic database

functionality.

b. Fuzzy sets and membership functions along with various related objects

such as the fuzzified strength values and fuzzy operators were generalized.

c. All the affected higher level classes were rewritten to accommodate the

new generalizations.

Defuzzifier

Fuzzy Rule

Fuzzy Database

Fuzzy
Variables

Fuzzy Sets

Fuzzy Rule Fuzzy Rule ...

Fuzzy
Variables

...

Fuzzy Sets ...

Membership
Function

Membership
Function

65

2. Demo software – major upgrades were needed to expose the underlying fuzzy

values during operation along with a number of additions of various UI

configuration inputs.

3. Configuration changes – required to implement the new software as previously

implemented.

Other modifications, such as the introduction of a number of enumerated types, name

changes and other refactors were made to improve the readability of the code.

Why all this extra work? The next chapter will describe the Fuzzy Logic Type-C

(FLC) architecture. One of the advantages of FLC is its ability accept virtually any

configuration. This is achieved via a high-level abstraction of the fuzzy framework itself to

allow it to accept any “algorithm”. Recall that an algorithm according to [Cormen 09] is

defined as “any well-defined computational procedure that takes as input as value or set of

values and produces a value or set of values as output”. “Any” algorithm need only conform

to that definition and nothing else to qualify. To achieve this, however, requires abstracting

not only the algorithm, but also the input and output. Unlike typical reflection, which implies

certain case operations against a particular type and requires a certain knowledge of the

underlying object, the Context simply passes the input and collects the output.

More import to the Fuzzy Context is the applicability or membership of the current

state of the input within the contextual problem space. In this way, algorithm integrity is

preserved internally, but hybridization or Fuzzymorphism can still occur within the overall

context of the current problem. In this fashion Type-C functions similarly to something like

an Artificial Neural Network or Radial Basis Function Network but with added flexibility in

the definition and handling of the context against the problem. So the work was necessary in

order to support the much more comprehensive capabilities of the Type-C implementation.

66

3.5: GUIDELINES FOR CREATING FUZZY CONTEXTS

Creating a context depends upon the underlying nature of the problem, but in general a

problem is decomposable into contexts by following a few basic guidelines using the

following steps:

Step 1 – Determine whether a default context is needed for unknowns. If so, define.

Step 2 – Create known contexts.

a. Define Center

b. Define Inner Shape

c. Define Outer Shape

d. Determine the Fuzzy Membership Function

e. Label the Context

Step 1: Determine Default Context if Necessary

In step 1, the developer must determine whether or not to define a default context.

While it might desirable to predefine fuzzy contexts if all contexts are known, many problems

do not provide that luxury. In that case, it is advantageous to have a default context, which

covers some aspect of a problem space, ideally, the largest known context. From there one

can define other contexts in relation to the initial default context and other previously defined

contexts. Imagine a robot car on a smooth road. The default context “smooth road” applies to

the known road condition where it is just a plain road with no anomalies. This context is

special in that it is the only context that does not require the typical contextual components

such as the shape definition or membership function. The reason is that its shape and

membership are actually dependent upon the results from non-default contexts. If no other

contexts are defined then the underlying algorithm of the default context is simply the

problem solution.

Step 2a: Define Center

Step 2 involves the creation of other contexts. Now imagine the robot car suddenly

encounters a patch of icy road such as might occur in figure 29.

67

Figure 29 – A Patch of Ice on a Road

Because the driving behavior is so dramatically different on an icy road, a new context

definition is desired. Looking at the picture, it is tempting to want to create a context

topologically by simply overlaying it on top of the icy figure.

�̂�𝒊𝝆 ≡ 𝝆𝒊(𝒙), 𝒙 = [𝒙𝟏, . . , 𝒙𝒍] (3.31)

Where �̂�𝒊𝝆 is the new context and 𝝆𝒊(𝒙) is the function defining the boundaries of the inner

core over boundary points 𝑥1…𝑥𝑛.

Because it consists of exclusively icy points, the context would be of contextual

singleton form. The corresponding fuzzy membership function would then reduce to a crisp

function:

{
1 ∀ 𝑥 ∈ �̂�𝒊𝝆
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.32)

Because the above definition is of a contextual singleton, the center point is not really

necessary in this case, as the fuzzy membership function is a constant. While this is a

perfectly acceptable decomposition of this problem space, there may be other patches of ice

ahead which would require additional contexts. In order to deal with them all, it is more

advantageous to create a context compositionally, that is, reflecting the underlying

composition of ice and road. This has the advantage of simplifying the context into the basic

concentric spheres described earlier. In this case, the spheres are defined by a center, inner

radius and outer radius. It is also preferable, though not required, to create a membership

function that is smooth and continuous, but also reflective of the “real world” situation.

68

Hence, a more comprehensive solution requires a center. Recall the center is defined

as the point of greatest applicability for an algorithm. In the case of the icy road, the easy

answer is 100% icy AND 0% road. This is a good definition since the road can’t get any

more “icy” than 100%.

Step 2b: Define Inner Shape

Because the inner shape is a sphere, step 2b only needs to define the inner radius. Any

input within the inner radius always has membership of 1. Determine the inner radius by

considering all possible situations where input is best served exclusively by underlying

contextual algorithm. Experiential data might indicate that a road that is 50% or more “icy” is

effectively all “icy”, so, in this example, the inner radius is best defined as the distance from

100% to 50% or simply, radius is 50 units.

Step 2c: Define Outer Shape

In this case, the outer shape is also a sphere which means the only requirement is to

define the outer radius. Because a road with 0% ice is effectively “not icy” the outer radius is

100 units. Recall, however, that membership is calculated over the area of the outer radius

that is not covered by the inner sphere, so the area of interest lies from length 50+ to the edge

of the outer sphere.

Step 2d: Define Fuzzy Membership Function

Defining the fuzzy membership function becomes a matter of determining a smooth,

continuous function which allows for a gradual increase from 0 at the outer edge of the outer

sphere to 1 at the outer edge of the inner sphere. In this case something like the following

Gaussian creates a smooth gradient.

𝑓(𝑥) = 𝑎𝑒
(−

(𝑥−𝑏)2

2𝑐2
)
+ 𝑑 (3.33)

69

In the case of a fuzzy membership function, ranging from 0 to 1, the value of a = 1 so

we get a more generalized expression:

𝑓(𝑥) = 𝑒
(−

(𝑥−𝑏)2

2𝑐2
)
+ 𝑑 (3.34)

Which looks like figure 30:

Figure 30 – Simple Gaussian

For an icy road, however, the presence of ice requires a more extreme sensitivity to icy

behavior. In fuzzy parlance, the normal fuzzy Gaussian might require a hedge [Cox 95] such

as “VERY” applied to the underlying equation. Decreasing the value of the standard

deviation, c, applies the hedge and narrows the Gaussian to look more like the following

figure:

Figure 31 – Gaussian with Fuzzy Hedge

Or even more extreme:

70

Figure 32 – Gaussian with Extreme Fuzzy Hedge

So given x as the percent icy composition of the road, and a standard deviation of .1

the resulting fuzzy membership function 𝜇𝑖𝑐𝑦(𝑥) would be as follows:

𝑢𝑖𝑐𝑦(𝑥) = {
𝑒
(−

(𝑥−50)2

.02
)
, 50 < 𝑥 ≤ 100
1, 𝑥 ≤ 50
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.35)

Step 2e: Label the Context

Apply the term Icy Road for linguistic clarity and apply a fuzzy inference system

designed for icy roads as the underlying algorithm and the context is complete.

Using the Type-C approach allows the new Icy Road context to work seamlessly with

the default “Smooth Road” context because the robot car has a way to apply the two contexts

as appropriate. Let 𝑓𝑖𝑐𝑦 represent the output from “Icy Road”. The contribution context Icy

Road is a function of the output * membership function of the corresponding context. Thus,

Icy Road’s overall contribution could be defined as:

𝜇𝑖𝑐𝑦(𝑥)𝑓𝑖𝑐𝑦(𝑥) (3.36)

And because “Smooth Road” is a default context its contribution would be:

1 − 𝜇𝑖𝑐𝑦(𝑥)𝑓𝑖𝑐𝑦(𝑥) (3.37)

71

In cases where there are more than 2 fuzzy contexts with membership for a particular

input, contributions need to be normalized. Suitable methods for doing this are part of future

work.

72

CHAPTER 4: FUZZY CONTEXTS EXTENSIONS AND ENHANCEMENTS

4.1: ARCHITECTURAL ENHANCEMENTS

4.1.1: Enhancement #1 – Adding Fuzzy Type-2 Support

Since a Type-C framework (TCF) is designed to manage multiple algorithms or

algorithmic configuration, a natural first step in the implementation of a true TCF was

extending the original Type-1 architecture to support Fuzzy Logic Type-2. However, despite

outward similarities, Type-1 and Type-2 implementations are quite different. Whereas a

Type-1 fuzzy set is a 2-dimensional object, a Type-2 fuzzy set represents more of a 3-

dimensional surface. All of the various inputs and outputs for a Type-2 FIS are different as is

the defuzzifier.

At a minimum, implementation of a fuzzy controller requires building a Fuzzy

Inference System (FIS). The FIS consists of a number of software components:

1. Fuzzy Sets (with Membership Functions)

2. Linguistic terms to define those sets

3. Collections of rules defining the behavior of a fuzzy system.

4. A Defuzzifier

The framework introduced in [McCarty 13] implemented basic Type-1 and Type-2

FIS. Type-2 functionality was added by initially creating a whole new set of classes for Type-

2 to perform items 1-4. This was not a good long-term solution since the code was poorly

integrated.

The goal was to find commonality between the two types and refactor accordingly. At

a high level, drilling into an FIS looks somewhat like this:

FIS->Rules->Variables->Fuzzy Sets->Membership Functions

A Type-1/2 framework can find commonality from at least the Variables level on up.

Hence the new Type-2 extensions were created by inheriting Type-1 objects at the Fuzzy Set

level and below, and creating abstract classes to generalize the Fuzzy Set so that the Variables

and above would work as before. Compare the Type-1 framework architecture and note the

differences when implementing a combined framework.

73

Figure 33 – Original Fuzzy Framework Architecture with Type-2 Extensions

Not shown here are the additional changes to related objects, such as fuzzy operators,

fuzzified values for firing strength and the defuzzifier. The new architecture allows for either

fuzzy 1 or 2 implementations, but the high-level variables and rules, where “humans” interact,

remain consistent with the original Type-1 construct.

4.1.2: Enhancement #2 – Adding Fuzzy Type-C Support

Now that the groundwork was laid by adding various abstractions of inputs and

outputs, adding Type-C support was a matter of adding the ability to define a Type-C object,

assign an algorithm and membership function, and determine a way to add inputs and get

outputs.

To address these issues the TCF architecture underwent a number of modifications.

The primary goal of the architecture, also referred to as a software framework, is now to

facilitate the creation of real-time software systems able to define and transition between

states requiring significant changes in component behavior as well as describe behavior using

linguistic fuzzy terms.

The new architecture consists of a number of discrete components; in particular a class

library defining classes and interfaces for implementing a Type-C solution. Recall that

complex software systems are presented with some interesting challenges. Among them:

1. How best to integrate disparate processes often requiring substantially different

algorithmic approaches.

74

2. How best to describe a complex process both at the macro and operational level.

3. How to create a dynamic system where diverse algorithms can operate

interchangeably or in a hybrid fashion.

The TCF architecture attempts to accomplish the above by a novel use of object-

oriented techniques combined with fuzzy logic methods to create a “fuzzymorphic” inference

system using Fuzzy Contexts.

Pseudo-code for the Type-C implementation which combines all the contexts, taking

as input vector and returning a scalar value follows:

Pseudo-code 4 - Determine a Context Contribution

// Take vector input, apply all context contributions to

// generate scalar output

Algorithm: CombineContextContributions (x)

Input: a tuple x

Output: scalar result

Begin

1 FOR all 𝐶𝑖in C

2 set contribution = 𝜇𝑖𝛾(𝑥)
3 IF contribution > 0

4 set y += contribution * weighted result 𝑤𝑖𝜑𝑖(𝑥)
5 NEXT 𝐶𝑖

6 return y

End

Similar to Nonstationary Fuzzy Systems (NFS), this allows for an input-based,

dynamic operation, although fuzzy sets are not required as they are in NFS. The resulting

operation enables one or more algorithm to hybridize into a solution. As opposed to being

polymorphic, where algorithms operate on an either/or basis, the fuzzymorphic contextual

algorithm has a fluid, fuzzy-like transition phase, dependent upon the membership values of

the individual contexts.

The FLC was used to revisit and build a Type-C implementation of a robot vehicle able to

traverse a simple maze shown in figure 34.

75

Figure 34 – A Vehicle Ready to Navigate a Maze

The TCF consists of namespaces with several class libraries built in C#. A windows

forms application supplies the user interface and the classes provide support for Type-1 and

Type-2 FISs used for the test examples as the underlying algorithm in the context. Contexts

were also designed and implemented using the simple concentric spherical form for each of

the test examples. With a nod to the duck, the maze is later modified to support the addition

of a number of obstacles, embedded into a context with a corresponding algorithm for

navigation to allow the vehicle to engage in some duck-like behavior in response to

encountering certain terrain features.

The application itself initializes the corresponding contexts as specific (Type-1 FIS or

Type-2). Beyond the simple form contexts with various radii for the inner and outer shells,

the membership functions 𝜇𝑖𝛾 and �̅�𝑖𝛾 are a simple linear gradient from 0 to 1 based upon the

distance from the inner shell to the outer shell:

𝝁𝒊𝜸(𝒙) = {

𝟏, ‖𝒙 − 𝒙𝒄‖ < 𝒓𝒊𝒏𝒏𝒆𝒓

‖
𝒙−𝒙𝒄−𝒓𝒊𝒏𝒏𝒆𝒓

𝒓𝒐𝒖𝒕𝒆𝒓−𝒓𝒊𝒏𝒏𝒆𝒓
‖ , 𝒙 ∈ 𝒐𝒖𝒕𝒆𝒓 𝒔𝒉𝒆𝒍𝒍

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (4.1)

Conversely for �̅�𝑖𝛾(𝑥).

�̅�𝒊𝜸(𝒙) = {𝟏 −

𝟎, ‖𝒙 − 𝒙𝒄‖ < 𝒓𝒊𝒏𝒏𝒆𝒓

‖
𝒙−𝒙𝒄−𝒓𝒊𝒏𝒏𝒆𝒓

𝒓𝒐𝒖𝒕𝒆𝒓−𝒓𝒊𝒏𝒏𝒆𝒓
‖ , 𝒙 ∈ 𝒐𝒖𝒕𝒆𝒓 𝒔𝒉𝒆𝒍𝒍

𝟏, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (4.2)

76

4.1.3: Enhancement #3 – Adding Relational Database Support

From the days of the abacus until the middle of the 1950s “computers” primarily

served as computing aids [Augarten 84]. Little thought was given to the storage and

persistence of application data simply because the technology for data storage was impractical

[Zetta 14]. That began to change with the introduction of hard disks, tape drives and other

kinds of storage devices. Suddenly computers became more than computing machines; they

became data repositories. The traditional data-crunching mainframe/terminal client

eventually gave way to distributed client-server architectures and finally to the cloud.

Databases have gone from a specialized storage/retrieval option to a very common, almost

indispensable component of many applications.

This is due to the growing power and flexibility of relational database systems and

tools. Gone are the days when extensive knowledge of Standard Query Language (SQL)

commands was required to query some department-level, multi-million dollar system. Today,

low-end relational databases such as MySQL and SQL Server Express are available for free

and the tools have sophisticated visual components such as SQL Server Management Studio,

relieving developers of the tedium of command-line driven SQL [Davidson 12].

While not a necessary component of advanced processes such as a Fuzzy Inference

System or Genetic algorithm, a relational database can nevertheless, add substantial power

and capabilities to an existing application that might not normally use one. For instance, by

adding database extensions, an application can now store configuration information in a

database instead of a file. This has many advantages over using a file-based configuration

such as XML. One major advantage is being able to quickly search for configurations with

specific criteria. For instance, suppose we wanted to locate the XML configuration with

fuzzy set FS and membership function MF. We would have to write a function to iterate

through all of our XML files one at a time, looking at each fuzzy set element until we found

FS with MF. How long this takes depends upon how many files to parse through before

finding the one with the elements we want.

77

Not so with a database configuration. A simple SQL Statement will find the any and

all configurations almost immediately (i.e. milliseconds). Unlike a slow parser, the following

SQL might be all it takes:

SELECT * FROM Configuration

WHERE FuzzySet = ‘FS’ and MembershipFunction = ‘MF’ (4.3)

Whereas finding all of the configurations with these characteristics would require an

exhaustive search of all the XML configuration files, the database search will do this

automatically. The database also handles all the management of record location and

identification behind the scenes relieving the programmer of the burden to keep track of file

names and locations. Looking at it another way, it is yet another abstraction, this one in the

form of data storage that allows developers to focus on a more specific problem without

having to delve too deeply into storing and retrieving associated data.

More than ease of storage, search and retrieval, databases systems also provide huge

advantages in the actual manipulation of large datasets, such as that as might be generated by

a complex FIS like the one in chapter 3 and this chapter. While a typical application uses a

row-by-row sequential approach (in database parlance, it is called a cursor), a typical

commercial relational database is designed to store, retrieve and manipulate data in sets using

Standard Query Language (SQL). Relational databases are built for speed, using techniques

natively that would be very difficult and time-consuming for a typical application to

duplicate.

As an example, consider a simple application. All it does it scan through a list of

objects stored in memory. It runs on a 24 Gb RAM computer with an installation of SQL

Server 2012 Developer Edition. The following comparative analysis was performed on 4

different configurations:

1. SQL Server 2012 cursor-based operation

2. Application (running in debug mode) cursor-based operation

3. Application (running compiled) cursor-based operation

4. SQL Server 2012 set-based operation

Each configuration performed the following 4 operations:

78

1. Scan through the list and count each object to get a total count.

2. Scan through the list and count each object which has a specific value, or filter.

3. Scan through the list and update a particular value of each object to another value.

4. Scan through the list and update a particular value of each object to another value

if the object has a specific value, or filter.

The application was tested against an in-memory (pre-instantiated and initialized)

object with 3 fields with a total length of approximately 10 bytes, as might be generated from

a simple FIS. The database was tested against a table of records, each record being

approximately 10 bytes long and consisting of 3 columns.

Each of the 4 operations was performed on 10,000 rows/objects, 100,000 rows/objects,

1 million rows/objects, 10 million rows, objects and 100 million rows/objects.

Table 1 – Application vs. Database Comparative Analysis – 10,000 rows/objects

 DB Cursor App Debug App Compiled DB Set

Count .360s .156s .133s .003s

Count w/Filter .470s .156s .136s .003s

Update 8.63s .156s .134s .050s

Update w/Filter 8.64s .156s .130s .050s

Table 2 – Application vs. Database Comparative Analysis – 100,000 rows/objects

 DB Cursor App Debug App Compiled DB Set

Count 3.200s 1.481s 1.318s .010s

Count w/Filter 3.203s 1.513s 1.353s .010s

Update 1m 27.537s 1.500s 1.339s .353s

Update w/Filter 1m 26.840s 1.534s 1.334s .423s

79

Table 3 – Application vs. Database Comparative Analysis – 1,000,000 rows

 DB Cursor App Debug App Compiled DB Set

Count 31.440s 14.630s 13.176ss .010s

Count w/Filter 32.807s 14.999s 13.816s .010s

Update 14m 36.517s 14.906s 13.320s .353s

Update w/Filter 15m 8.160s 16.507s 13.952s .423s

Table 4 – Application vs. Database Comparative Analysis – 10,000,000 rows

 DB Cursor App Debug App Compiled DB Set

Count 5m 15.416s 2m 16.069s 2m 11.711s .153ss

Count w/Filter 5m 25.737s 2m 16.379s 2m 15.692s .793s

Update 1hr 15m 59s 2m 19.240s 2m 12.384s 15.760s

Update w/Filter 1hr 14m 31s 2m 36.427s 2m 11.230s 19.477s

Attempts to test 100 million rows/objects failed because the application itself was

unable to allocate enough memory to proceed, even with the SQL Server and all other

applications shut down on the computer. The database, on the other hand, had no issues with

100 million rows or 1 billion rows or even 10 billion rows. Figure 35 shows how the set

based counting operation has a very slight upward gradient compared with the other

approaches, despite rowsets that vary by 4 orders of magnitude. This same relative

performance was duplicated in the other 3 tests.

80

Figure 35 – DB Set Operations Contrasted with Application and Database Cursor

Operations

Even for fairly small numbers of rows the database engine clearly outperformed the

application. Moreover, the database engine was not nearly as constrained by available

memory as the application and is able to, without special modification, handle datasets greater

in size by at least 2 orders of magnitude. However, there is no “free lunch” which is

demonstrated by the abysmal performance of the database engine when performing the same

functions using a sequential or cursor-based approach. This is an important trade-off: if an

operation can be done as a set-based query, the database engine is likely to be far more adept,

otherwise it will much slower [Bolton 12].

By storing the data in an easily retrievable format on an RDBMS, an application can

defer to the database engine to perform set-based operations on the entire dataset at once

rather than record by record. It can also perform data mining and analysis, store results and

make calculations that would otherwise be done by the client application [Davidson 12].

Adding database extensions to the Fuzzy Framework simplifies what would otherwise

be a much more difficult operations, as will be demonstrated in later sections.

The SQL Server 2012 relational database engine used for the extension is based upon

database concepts developed by E.F. Codd at IBM [Date 11], [Powell 05] to address the

problem of custom data storage and retrieval. Codd developed a set of rules for relational

0

50

100

150

200

250

300

350

10K 100K 1000K 10000K

Comparative Analysis - Counting Objects/Rows

DB Cursor App Debug App Exe DB Set

81

databases that became the standard implementation for the majority of databases in

commercial use today [Oracle 10]. RDBMSs quickly became the preferred tool for backend

data storage due to their flexibility and power. As such they add a new dimension to the

power and intelligence of traditional applications.

For a more extensive treatment of relational databases see the Appendix F at the back

of this dissertation.

4.2: FUNCTIONAL ENHANCEMENTS

4.2.1: Enhancement #4 – Adding Memetic-Based Optimization

With the framework enhancements in place, it was time to look at a number of

functional enhancements. Optimized fuzzy processes are a particularly worthy, yet tricky

goal. Recall that local search routines such as hill-climb and simulated annealing are used for

finding optimal solutions when it is impractical to review every possible configuration. By

picking a random starting point and following a gradient to a nearby maximum or minimum, a

local search routine is very useful for fuzzy set optimization. Evolutionary algorithms, such

as the memetic algorithm take local search a step further by combining a gradient search with

natural selection [Eiben 07].

One drawback with earlier approaches is the limited use of relational databases for

fuzzy optimization [McCarty 13]. By allowing the relational database to handle many of the

processing tasks of the memetic algorithm, the FIS can dynamically create and test various

fuzzy implementations automatically. It can evolve and determine which combinations are

most optimal using batch operations instead of iterating measurement by measurement;

which, as demonstrated in a previous section, is often slower by orders of magnitude. Batch

operations are designed for simultaneous processing of large datasets and are generally more

efficient than traditional value by value calculations over large sets.

The database was built to handle four major tasks of the memetic algorithm

1. The Fitness Function

2. Gene Sampling and comparison

3. Crossover Mutation

82

4. Random Mutation

Looking back at the navigation problem (also see test examples 1-3), the reader might

notice a lot of back-and-forth motion as the controller tries to maintain a “safe” distance from

all of the barriers. Optimization for this FIS involves reducing the back and forth motion

correction in the navigation as demonstrated in figure 36.

Figure 36 – Sample Back and Forth Corrections Navigating Maze

This means reducing the variations in the output values. The Fitness Function then

must determine whether or not a particular decision is more optimal than another by

comparing each FIS’s decision and how far it deviates from an optimal path. Determining the

optimal path requires the following steps in pseudo-code:

Pseudo-code 5 - Determining the Optimal Path

Algorithm: DETERMINE_OPTIMAL_PATH (values)

Input: values, a set of inputs into FIS and final result

Output: a set of points along the optimal path

Begin

1 Record all changes as the FIS operates. In this case, as the “robot” tries to navigate the path.

2 Determine each “peak” and “valley” in the sequence.

3 Take the midpoint between each peak/valley pair.

4 return the set of midpoints

End

For Step 1, the program logs all inputs to the FIS and resulting outputs to the database.

From there the application needs to get an appreciation of the amount “deviation” undertaken.

This is most easily done by looking at the various highs and lows of the changes (1st

83

derivative). Now think of a map with standard terrain features: peak, valley, plateau and

depression. Step 2 defines a “peak” as any output value surrounded on both sides by lesser

values. In other words, a peak is a local maximum. One problem is the existence of plateaus,

where the same maximal value exists in a sequence indicating a “flat” surface. In that case,

take the median value and declare it the peak. Do likewise for valleys and depressions using

local minimums as shown in figure 37.

Peak

Unknown

Valley

Figure 37 - Determining Peaks and Valleys

Note that each peak must be surrounded by valleys and vice versa so whenever peaks

are adjacent to peaks such as the situation shown in figure 38 the greater peak will eliminate

the lessor. Likewise for valleys.

Figure 38 - Peaks with Plateaus

The final result is a set of alternating peaks and valleys like those shown in figure 39.

84

Peak

Valley

Peak Peak

Valley

Figure 39 - Ordered Peaks and Valleys after Processing

Step 3 takes the midpoint between each peak and valley and connects them using a

line. The path between the midpoints is the “optimal” path of the FIS shown in figure 40.

Actual δ2

Optimal δ2

Figure 40 - Creating an Optimal Gradient

Calculate the “error” by taking the difference between the value of the optimal line

returned from Step 4 at a given point and the actual value. This error is useful in the Fitness

Function to determine the efficacy of a given FIS configuration.

This is where a relational database brings with it some formidable advantages. A

typical algorithm might look at each point and then use neighboring points to determine

peaks, valleys, plateaus and depressions, going back and forth in order to eliminate false

peaks and valley as well as determine plateau and depression points. With some

modifications, however, using SQL, that process can run over the entire set of results as a

batch. The corresponding batch algorithm steps is as follows:

85

Pseudo-code 6 - Set-based algorithm to find peaks and valleys

Algorithm: DETERMINE_OPTIMAL_PATH (values)

Input: values, a set of inputs into FIS and final result

Output: a set of points along the optimal path

Begin (Note this is done in the database)

1 Record all changes as the FIS operates.

2 Take the UNION of all known terrain features, unknowns, and the second point.

3 Rank the resulting set by value, epoch and type

4 Clump adjacent peaks and valleys using rank and epoch

5 Dense rank each clump

6 Get max and min rows for each clump

7 Assign unknowns to their corresponding clump

8 Order clumps to get local maximum or minimum

9 Take the midpoint between each peak/valley pair.

10 return the set of midpoints

End

Step 1 is as before. Step 2 creates the UNION F of the following sets of points from FIS

results P:

𝑭 = 𝑲 ∪ 𝑽 ∪ 𝑿 ∪ 𝒑𝟐 (4.4)

K consists of true peaks, all left plateaus and right plateaus

𝑲 = ⋃

{𝒑𝒏|𝒑𝒏 > 𝒑𝒏−𝟏, 𝒑𝒏 > 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷}

{𝒑𝒏|𝒑𝒏 > 𝒑𝒏−𝟏, 𝒑𝒏 = 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷}

{𝒑𝒏|𝒑𝒏 = 𝒑𝒏−𝟏, 𝒑𝒏 > 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷}
 (4.5)

V consists of true valleys all left depressions and right depressions.

𝑽 = ⋃

{𝒑𝒏|𝒑𝒏 < 𝒑𝒏−𝟏, 𝒑𝒏 < 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷}

{𝒑𝒏|𝒑𝒏 < 𝒑𝒏−𝟏, 𝒑𝒏 = 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷}

{𝒑𝒏|𝒑𝒏 = 𝒑𝒏−𝟏, 𝒑𝒏 < 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷}
 (4.6)

Another set of points exists where the middle point is equal to both the right and left

adjacent points. There is no direct way to tell whether the point belongs to a plateau or

depression. Call the set these unknown points X.

86

𝑿 = {𝒑𝒏|𝒑𝒏 = 𝒑𝒏−𝟏, 𝒑𝒏 = 𝒑𝒏+𝟏∀𝒑 ∈ 𝑷} (4.7)

Perform one final operation. The first epoch, or iteration, value has no previous entry,

so it is excluded in the initial query. Label the second point by doing a compare with point 1

and assign peak or valley accordingly.

Step 3 ranks the results (number the rows 1, 2…) by value, epoch id and type (peak,

valley or unknown). By adding the rank and original epoch ID, Step 4 is able to generate a

new ordering. This causes the adjacent peaks and valleys to “clump” together.

Step 5 creates a dense rank by type for each clump. This creates a unique identifier

for each clump and also forces unknowns between their corresponding peaks and valleys.

Step 6 calculates the endpoints for each clump by taking their corresponding

maximum and minimum epochs.

Step 7 assigns unknowns to their corresponding peaks or valleys. If an unknown lies

between the endpoints of a “peak clump” they are peaks, otherwise they are valleys. Take the

midpoint of each unknown and declare that the peak or valley. Now all points are classified

as peaks or valleys.

Step 8 regroups again by type (peaks or valleys) as shown in figure 41 Type line,

ordering the result by beginning endpoint of the peak or valley. This gives a sort of peaks and

valleys by epoch order for each starting end point as demonstrated in figure 41, Epoch line.

Identify clumps this time by ranking the types in reverse order – figure 41 Rank line. Because

they are sequential, each type row number plus ordering will amount to a unique number

allowing a batch process to identify each clump uniquely as shown in figure 41 New Id line.

At this point each clump is either a peak or valley with no like adjacent type, i.e. a local

maximum or minimum. The maximum or minimum point for each clump is the true local

maximum or minimum and the process can continue as before.

87

P1 V1 P2

...

Figure 41 - Set Operation to Isolate True Peaks and Valleys

Another benefit of using a relational database is that it can handle multiple requests

simultaneously from different FIS’s. This would allow disparate, lightweight fuzzy

controllers the ability to engage a high performance computer to handle much of the

computational and storage load necessary for sophisticated problem solving. Finally the

database is persistent storage which allows for an additional Tabu-like search option and data

mining.

4.2.2: Enhancement #5 – Adding Unsupervised Learning Algorithm to Discover New

Fuzzy Contexts

Consider the situation where the robot car encounters a barrier. Under the current

fuzzy controller, it simply turns around and proceeds back the way it came without trying to

explore for an opening as shown in figure 42.

Figure 42 – Robot Car Unable to Navigate a Barrier

88

Recall the Fitness Function described in above section. In addition to optimizing the

fuzzy controller, it can also serve to measure error rates at runtime. Let ε be the max error

measured by the fitness function. By using the same epoch-to-epoch metric, the rate of

change δ over time can be measured against ε. If δ > ε, that is the point at which a

“candidate” context is available. The epoch where this first occurs sets of the outer limit of

the outer radius of the context. The fuzzy controller will continue until one of two situations

occur:

1. The controller will make a (presumably correct) decision and the error will once

again drop below the ε threshold.

2. The controller will fail, i.e. the robot crash into the barrier.

The key to creating a new context is finding 3 key components relevant to the car’s recent

performance, assuming the concentric spheres representation:

a. The length of the outer radius

b. The length of the inner radius

c. The center point of the new context

For (a), the outermost limit of the outer radius can start at the point where the δ first

exceeds ε. Generalized, this means that any time during operation, whenever δ > ε is an

indication that a new context is recommended. Call the point at that epoch po. The next step

is to try to determine the location of the outermost limit of the inner radius. In the event of (1)

the outermost limit occurs at the point of greatest error. In this case the center point becomes

the straight line distance to the nearest point in the barrier. Call the point at that epoch pi and

the barrier point pc. For (2) it is the point where the controller fails, which also becomes the

center point. Hence the point of failure becomes pi = pc.

Taking the 3 points po, pi and pc, we can now calculate the context.

As a result, the context of (1) is the hollow-sphere shape, which (2) is a solid sphere.

An example of the process using (1) is demonstrated in figure 43.

89

Figure 43 – An Unsupervised Technique to create a new Context

4.3: STRUCTURAL ENHANCEMENTS

4.3.1: Enhancement #6 - Algorithm Definition Language

Recall the steps to implement a Fuzzy Inference System:

1. Define Membership Functions - Define each fuzzy function, or shape used to

generate the fuzzy sets.

2. Define Fuzzy Sets – Define each fuzzy sets using a linguistic term along with the

corresponding membership function.

3. Define Fuzzy Variables – Define each variable using a linguistic term, add the

corresponding fuzzy set definitions.

4. Assign Variable Inputs and Outputs – Assign variables to their corresponding

input and output collections.

5. Define Fuzzy Rules – Create the fuzzy rules by assigning fuzzy variables and

antecedent/consequent terms.

6. Define Defuzzifier – Specify type and number of intervals used for

defuzzification.

7. Assign Rules To Rules Collection – Add rules to the rules collection.

8. Define FIS – Create FIS using Rules Collection and Defuzzification object.

Implementing steps 1-8 can be done strictly in code as calls to the framework, but it is

not a trivial process. Human systems interactions benefit when the interaction is as simple as

90

possible. To help a user define a fuzzy inference system, with its corresponding fuzzy

objects, the framework implements a Fuzzy Modeling language. Previous work [Moreno 12]

demonstrates how useful an XML-based modeling language is in supporting dynamic

configuration of FISs and fuzzy objects in general.

Step 1 implementation requires specifying a convex shape for a membership function

µ. µ is a function over a domain D such that for each x in D, µ(x) is a number between 0 and

1.

µ(𝒙) → [𝟎, 𝟏], 𝒙 ∈ 𝑫 (4.8)

Zadeh’s rules for fuzzy sets require the functions take the form of a convex shape such

as a triangle, trapezoid, Gaussian or other convex curve. The resulting shape serves as the

membership function µ. In the framework, each shape, fshape is defined with one or more

boundary points Pbk and one or more apex points Pak.

µ = fshape(Pb1..Pbn, Pa1..Pan) (4.9)

For each P, the X value specifies a specific value x in the domain while the Y value

specifies the corresponding membership value between 0 and 1 at that value, µ(x).

𝒇𝒔𝒉𝒂𝒑𝒆(𝑷𝒃𝟏, . . , 𝑷𝒃𝒏, 𝑷𝒂𝟏, . . 𝑷𝒂𝒏) = 𝝁(𝒙), 𝒙𝝐𝑫 (4.10)

The modeling language, provides textual representations of the Fuzzy Function and all

other fuzzy objects. The resulting FSXML is shown in figure 44 for a Type-1 membership

function.

91

Figure 44 - A Fuzzy Function Definition in XML

In the TCF, a fuzzy set fs is defined by a membership function and a linguistic “term”

which describes its purpose in a more easily understandable way. Step 2 simply requires

applying the function defined in step 1 to a linguistic term to generate a fuzzy set fs.

fs = µ + linguistic term (4.11)

A sample XML entry for a fuzzy set is shown in fig 45.

Figure 45 - Combining a Term and Fuzzy Function to Create a Fuzzy Set

In step 3, users create one or more fuzzy variables. Each fuzzy variable must have a

“name”, a linguistic term to appropriately describe the variable’s purpose or function.

Variable names should make sense within the FIS, describing in easily understood terms what

that variable represents. Next, the user defines the boundary of the domain of a particular

variable. The domain should be large enough to encompass all of the fuzzy sets to be

assigned. Finally, the user designates whether the variable represents input (the antecedent)

or output (consequent) when used to build fuzzy rules.

In step 4, once the domain is defined and the variable “termed”, the variable then is

associated with one or more of the fuzzy sets defined in step 2. These associations are used to

determine which fuzzy sets are represented in the fuzzification/defuzzification process. The

corresponding XML is shown in figure 46.

92

During the fuzzification process, the fuzzy sets assigned to the fuzzy variable are

evaluated using the underlying fuzzy function assigned to the corresponding fuzzy set

Figure 46 - Defining a Fuzzy Variable in XML

Step 5 specifies the fuzzy rules that constitute the FIS. Each fuzzy rule consists of an

antecedent which is a statement of the form:

IF <fuzzy variable> IS <fuzzy variable or fuzzy set> (4.12)

The antecedent specifies a testable condition similar to a crisp IF statement, except

instead of a true or false result, the fuzzy result consists of a value between 0 and 1 inclusive,

dependent upon the input value and the various membership or fuzzy functions underlying the

corresponding fuzzy sets shown in equation 4.12. Antecedents can be combined using

AND/OR and parenthetical operators. For example, to test the distance of a barrier to the

front of an obstacle the antecedent might take the form of:

IF FrontalDistance IS Far (4.13)

“FrontalDistance” can consist of multiple fuzzy sets, for example: “Near”, “Medium”

and “Far”. The antecedent “IF FrontalDistance IS Far” looks at the membership function of

the fuzzy set “Far” assigned to the fuzzy variable “FrontalDistance”. Note again the use of

linguistic terms that are easily understandable even to laypersons. A parser within the

framework turns the text into its corresponding fuzzy sets and fuzzy variables.

The fuzzy rule also requires a consequent, which is constructed similarly to the

antecedent but uses output variables and sets. The Wizard application described in the next

93

section contains a simple text builder a user can employ to construct the both the antecedent

and consequent.

In step 6, the user defines the number of fuzzy intervals used for defuzzification. The

framework currently supports traditional Zadeh rules for fuzzification of fuzzy Type-1 where

membership of a fuzzy variable is equal to the minimum membership of the corresponding

fuzzy sets. Recall this is also referred to as a fuzzy intersection of fuzzy sets.

∩ 𝝁𝑪𝒊 = 𝐦𝐢𝐧 (𝝁𝑪𝟏 , 𝝁𝑪𝟐 , .., 𝝁𝑪𝒏) (4.14)

Defuzzification is achieved by then taking a fuzzy union across all intervals in the

domain. This is accomplished by taking the maximum across the sets of intervals and their

corresponding memberships.

∪ 𝛍𝐂𝐢 = 𝐦𝐚𝐱(𝛍𝐂𝟏 , 𝛍𝐂𝟐 , .., 𝛍𝐂𝐧) (4.15)

A centroid, of center of gravity is then calculated by determining a weighted mean

across the fuzzy region [Cox 95]. Recall the fuzzy solution region ℜ is calculated by the

following:

𝕽 =
∑ 𝒅𝒊𝝁𝑨(𝒅𝒊)
𝒏
𝒊=𝟎

∑ 𝝁𝑨(𝒅𝒊)
𝒏
𝒊=𝟎

 (4.16)

where d is the ith domain value and µ(d) is the membership value returned the corresponding

fuzzy function defined in step 1. Fuzzy Type-2 defuzzification uses the Karnik-Mendel

Interval Technique described in [Karnik 01] which is a variation on the centroid technique

involving a calculation of multiple centroids over the footprint of uncertainty.

In step 7, the user creates a database of the fuzzy rules defined to use in the FLC.

Depending upon which rules are input and which are output, the FIS will attempt to evaluate

all relevant rules during the fuzzification/defuzzification process.

Step 8 is performed by the framework. The resulting FIS then consists of the database

repository of all the relevant fuzzy objects as well the domain space and fuzzy operators used.

The XML defining the final FIS is listed in figure 47.

94

Figure 47 - Defining an FIS Using the Fuzzy Modeling Language

Pseudo-code for constructing the FIS from the model language is as follows:

95

Pseudo-code 7 – Construct a Fuzzy Inference System from Modeling Language

Algorithm: Init(XMLFile filename)

Input: the path/filename of an XML definition file

Output: a fuzzy inference system

Begin

1 set fis = GetInfModel(filename)

2 set fis properties as defined in XML

3 create empty fuzzy database

4 set fuzzy variables array to variables as defined in XML

5 FOR EACH fuzzy variable in fuzzy variables array

6 set fuzzy sets array to sets as defined in XML for variable

7 FOR EACH set in fuzzySets

8 set fuzzy function to function as defined in XML for fuzzy set

9 assign function to set

10 assign set to variable

10 NEXT set

12 assign variable to database

13 NEXT variable

14 add database to fuzzy inference system

15 set fuzzy rules array to rules as defined in XML

16 FOR EACH rule in rules

17 IF rule is used in this fuzzy inference system, as defined in XML THEN

18 add rule to fuzzy inference system

19 END IF

20 NEXT rule

21 return fuzzy inference system

End

Of great importance to a Type-C implementation is this ability to separate the

algorithm from the application. This allows for the process of Fuzzymorphism to occur

dynamically. Polymorphism allows objects to be used interchangeably based upon a common

interface. In particular, polymorphism allows an application to apply generic process call that

transforms into a specific process call dependent upon the existence of objects at runtime

[Pressman 09]. Contextual Fuzzymorphism takes Polymorphism a step further: it allows a

dynamic hybridization of disparate algorithms for states that satisfy multiple contexts as

demonstrated by the pseudo-code above.

96

Doing this is easier via an abstraction of the algorithm template such that it can be

maintained external to the program. Such a template, called an Algorithm Definition

Language (ADL) is based upon the FSXML described in [Moreno 12] but is generalized and

allows a template to be loaded at runtime and an algorithm constructed on the fly.

Pseudo-code for the process follows:

Pseudo-code 8 - Create an Algorithm from the ADL

Algorithm: CreateAlgorithm(name) returns Algorithm

Input: a name used to identify the algorithm

Output: an algorithm that takes input(s) and produces output(s)

Begin

1 lookup algorithm ADL based upon name

2 build algorithm based upon ADL

3 return algorithm

End

The BuildAlgorithm operation depends upon the particular algorithm selected. For a

Fuzzy Logic Type-1 Inference System (T1-FIS) the build steps take as input the ADL and

output the code for the T1-FIS. Recall the steps to generate the T1-FIS are as follows:

97

Pseudo-code 9 – Steps for Building a Type-1 Fuzzy Inference System

1. Define Membership Functions - Define each fuzzy function, or shape used to generate the

fuzzy sets

2. Define Fuzzy Sets – Define each fuzzy sets using a linguistic term along with the

corresponding membership function

3. Define Fuzzy Variables – Define each variable using a linguistic term, add the corresponding

fuzzy set definitions

4. Assign Variable Inputs and Outputs – Assign variables to their corresponding input and

output collections

5. Define Fuzzy Rules – Create the fuzzy rules by assigning fuzzy variables and

antecedent/consequent terms

6. Define Defuzzifier – Specify type and number of intervals used for defuzzification

7. Assign Rules To Rules Collection – Add rules to the rules collection

8. Define FIS – Create FIS using Rules Collection and Defuzzification object

4.3.2: Enhancement #7 - The Wizard Tool

Because implementing algorithms like the T1-FIS is not a trivial process, the TCF

implements a Fuzzy Modeling language as part of its ADL. However, XML is difficult to

create by hand so the framework also provides a Wizard tool to allow a user to generate and

maintain the underlying XML-based model for the T1-FIS. It is a step-by-step guide to

building and/or maintaining a fuzzy definition. The framework also introduces the capability

to create and maintain a General Type-2 Fuzzy Logic Inference System (GT2-FIS). T1 and

GT2 Fuzzy Systems are similar: they both employ similar fuzzy rule bases, and they operate

in a similar fashion. However, the underlying fuzzy sets, membership functions, operators

and defuzzification are quite different. A GT2 ADL incorporates these differences into a

definition which allows for the construction and operation of a functioning GT2-FIS

according to Karnik-Mendel [Karnik 01].

The framework has also added a database-based repository and database objects

capable of handling both T1-FIS and GT2-FIS implementations.

The Wizard tool presents a user interface that allows a user to “step” through each

necessary configuration element in the proper sequence. It is also a way to break down a

complex overall process into a series of simpler steps [Anderson 10]. As a result, the Wizard

application can serve both as a developer’s tool and a training tool for the novice learning to

use fuzzy logic. A step of the Wizard application, is shown in figure 48.

98

Figure 48 – Fuzzy Wizard Variables Page

The ADL produced by the Wizard provides textual representations of the fuzzy

objects such as the Fuzzy Membership Function and corresponding Fuzzy Sets. For example,

the Wizard application handles step 1 of the BuildAlgorithm process as a Membership

Functions page shown in figure 49. The resulting ADL is shown in figure 50 for a Type-1

membership function.

99

Figure 49 – Defining a Membership Function using the Wizard

Figure 50 - A Fuzzy Function Definition in XML

Pseudo-code for constructing the FIS from the model language is as follows:

100

Pseudo-code 10 – Build Fuzzy Inference System from ADL

Algorithm: BuildFISFromXML(algName)

Input: name of a fuzzy inference system

Output: fuzzy inference system

Begin

1 get ADL based upon input name

2 create new fuzzy inference system fis

3 set fis properties based upon ADL

4 create new fuzzy database

5 create array of fuzzy variables based upon ADL

6 FOR EACH variable in fuzzy variables array

7 create array of fuzzy sets based upon ADL

8 FOR EACH set in fuzzy sets array

9 create membership function based upon ADL

10 assign membership function to fuzzy set

11 add fuzzy set to fuzzy variable

12 NEXT set

13 add fuzzy variable to fuzzy database

14 NEXT variable

15 add fuzzy database to fuzzy inference system

16 create array of fuzzy rules based upon ADL

17 FOR EACH rule in fuzzy rules arrau

18 IF rule used in fis THEN

19 add rule to fis

20 END IF

21 NEXT rule

22 return fis

End

Being able to generate an FIS or other algorithm from the ADL presents several

advantages over static construction:

1. Changes in fuzzy sets, rules or other components do not require recompiling the

application. This allows a user to make changes to program behavior without

requiring access to source code.

2. Algorithms become dynamically “swappable”. This allows for greater flexibility

for SDPs and other problems which require behavior modifications on the fly.

101

3. Multiple versions of the same algorithm can be stored and used/tested as

appropriate.

4. The ADL can be “contextualized” or labeled in human-readable terms in order to

describe a particular ADL-defined behavior.

Similarly the FIS is constructible from an ADL residing in a SQL Server database.

Overall, the Wizard application walks the user through the configuration process via a

series of configuration steps as demonstrated in figure 51.

Figure 51 – Windows for building a Type-1 Fuzzy Inference System

102

4.3.3: Enhancement #8 - Hierarchical Technique for Diverse Contextual Dynamic

Programming and Optimization

Recall that an algorithm, by definition, is any well-defined computational procedure

that takes as input as value or set of values and produces a value or set of values as output

[Cormen 09]. Algorithms do many things, from sorting a list of names to guiding spacecraft

around the solar system. Many problems, such as sorting a list, are simple and very

straightforward, as are the algorithms used to solve them. Other problems, such as navigating

a spacecraft, are far more difficult, involving a series of independent and interdependent

processes, each of which might utilize multiple algorithms.

Just as biological organisms evolved from simple proteins to complex multi-system

creatures so are computing machines evolving. A typical must have gadget from the 1970’s

was a simple calculator or digital watch. Today, it is a smart phone or tablet PC. Whereas the

calculators of old could do little more than manipulate numbers, today’s smart phone serves

as a personal planner, communicator, child monitor, GPS, restaurant locator, camera, video

recorder, stock advisor and perhaps a hundred other functions. On occasion, it can even make

a phone call.

As computer hardware takes on an increasingly more important, comprehensive and

also more difficult role so must computer software. Competition forced biological organisms

to develop specialized, interdependent systems, like eyes, feet and skin. These biological

organisms developed motion, pattern-recognition techniques, defense against bacteria and

other traits, using these new specializations to better compete against other biological

organisms. Likewise economic competition is forcing computer components to evolve and

incorporate a myriad of ever more sophisticated capabilities [Camara 14]. The cell phone,

once little more than a large dialer with a radio transmitter, now might include a camera, blue-

tooth device, motion-detection sensor and high-res touch-screen. Like the subsystems of their

biological forebears, these new devices are more complex and interconnected than ever

before. This calls for better and more flexible algorithmic processes [Vidal 13] to enable each

new generation of cell-phone or other device to stay competitive.

Two particular problems arise from this conundrum: 1) algorithm selection and 2)

algorithm optimization. The first requires finding an algorithm appropriate to the task, like a

quicksort for a list of names. It appears straight-forward, but what about those situations

103

where multiple algorithms might be required? Suppose instead of a simple list, it was a list of

possible places to eat. New factors come into play, such as location, type of restaurant,

average price and customer ratings, maybe even time of day and who you are with. Often,

such as when a robot must navigate a flight of stairs, multiple very different algorithms come

into play in order to meet ever more complex goals.

The second issue also poses problems as the increasing complexity of the underlying

problem makes it more difficult to determine an optimal solution [Tang 11].

To address these issues this dissertation proposes a novel database-driven hierarchical

architecture for algorithm determination and optimization. The primary goal of this

architecture is to find suitable algorithms for problems, then combine those algorithms with

known optimization techniques to form an optimal solution.

The proposed architecture consists of a number of components:

1. A class library defining classes and interfaces for implementing a hierarchical

solution.

2. An algorithm definition language (ADL) used to define algorithms for testing,

implementation and optimization purposes.

3. A database backend for storage of algorithm definitions, inputs and outputs.

4. Utilities for creating and maintaining the ADL

5. A mechanism for combining the architecture into the Fuzzy Logic Type-C

framework.

4.3.3.1: Prior Contributions

Program optimization takes on a number of different forms, but for purposes of this

paper, consider “optimization” to be the process to determine the most efficient operation of a

technique specified by criteria such as speed, resource usage or accuracy. The optimal

algorithm is therefore able to achieve its goals better by some metric than the alternatives.

Getting to that optimal solution can be a significant challenge for complex systems,

however, because the optimal behavior may not be easily determined or understood. Similar

to a doctor trying to diagnose an ailing patient, the developer or architect will often have to

rely on an extensive and vague list of “symptoms”, many of which may not be relevant.

104

As an example, consider a traditional Fuzzy Inference System (FIS). The FIS fits the

definition of an algorithm, having a series of inputs and producing an output. Creating a FIS

requires a series of steps from defining the underlying fuzzy sets and membership functions

and rules to determining how the defuzzification process will work. Any misstep can

undermine the entire FIS without giving much indication exactly where the problem lies.

Typical optimization of a FIS usually involves finding and testing alternative

configurations and choosing which configuration most closely produces the desired result. In

many case, testing every alternative configuration is impractical due to the huge number of

potential configurations. One of the approaches to dealing with an impractical number of

possibilities is using a Local Search technique. Local search, or gradient search, techniques

take a random starting point and conduct a series of tests, following the gradient of a result in

order to find a local maximum (or minimum). Think of it as a blind man trying to climb a

mountain. While he may not be able to see the peak, he knows in which direction a peak lies

by following the gradient or slope of the ground. A problem occurs, however, when our blind

traveler finds himself on a maxima trap where every direction is down but he is not on the

true peak as shown in figure 52.

Local

MaximaTrap

Global Solution

Figure 52 - Local Peak Prevents Discovery of Global Solution

In order to address the maxima trap problem, many different Local Search techniques

were created with probabilistic heuristics to “shake” the climber from a maxima trap to a

more suitable peak; but they come at a greatly increased complexity cost. One such approach

105

is simulated annealing, modeled on the annealing process used to reduce metallurgic defects,

in which the climber is shaken out of a local maximum through the annealing process.

Evolutionary computation techniques provide another form of local search in which

configurations “evolve” in a fashion similar to natural processes. In one type of genetic

algorithm, a set of “genes” or configurations is built demonstrated by figure 53. A pair of

genes is selected at random and compared using a fitness function. Winners and losers in the

sample can then be crossed and/or mutated and compared with the winning configuration.

Through the evolutionary process, new genes come into existence which have the potential to

be superior to even the best gene in the original sample. A memetic algorithm takes the

evolutionary process a step further by incorporating a local search technique post-evolution.

This allows the gene to evolve and immediately search for a solution from the new starting

point without having to resample.

Figure 53. Genetic Mutation

Nature provides other techniques such as Swarm and Ant Colony Optimization and

computational constructs such as the Artificial Neural Network and many others [Eiben 07],

[Juang 08]. All of these are designed to allow the machine to “learn” how best to solve a

problem. Prior work has been done showing the effectiveness of these techniques when

applied to many optimization problems [Pasias 04], [Guimaraes 07].

106

All of these efforts are designed to allow machines, through heuristics and trial and

error, to automate the learning process. Prior work [Carrasco 03], [Mantawy 99] and others

show the great variability and applicability of these techniques, whether it is a memetic

algorithm trying to discover better configurations to navigate a maze [McCarty 14a] or an

inventory problem using simulated annealing to optimize its layout [McCarty 08b], or a

neural network discovers patterns in data [Kawady 14].

However, while this allows for optimization of an approach, it doesn’t necessarily

give any indication whether the approach itself is an optimal choice. The proliferation of

algorithms is due primarily to human developers recognizing the need for different

approaches to different kinds of problems [Skiena 10]. As problems grow more complex and

diverse and the capabilities of computer hardware grow more sophisticated it becomes

imperative to move the responsibility for determining how to solve a particular problem from

human to machine.

4.3.3.2: Foundations of FC-OAP

Recall that the Fuzzy Logic Type-C architectural framework is a three-pronged

approach to solving complex problems. The first is the context, which defines the problem

space [McCarty 14b]. The second is the algorithm definition language and tools [Moreno 12],

[McCarty 13] and the third is algorithm selection and optimization. Fuzzy Context

Optimization Abstractions for Processes (FC-OAP) is an approach to achieving this third

component. It requires a hierarchical architecture able to take a specific problem and apply

different algorithms in order to determine which algorithm is best suited for the desired

solution. The architecture accomplishes this in the following steps:

1. Determine which algorithms from a repository of definitions can solve the

problem.

2. Apply heuristics to determine which algorithms from among the applicable

algorithms is a good candidate for further optimization.

3. Optimize and determine best algorithm/configuration option.

107

Step 1 – Algorithm Determination

The first step in the determination process is to whittle down from a master list of

algorithms to a list of applicable algorithms. The algorithms are stored as definitions, either

as XML [Moreno 12] or in a database [McCarty 13]. Let ℜ be a repository of algorithms.

The goal is to determine each 𝑟𝑖𝜖ℜ that is applicable. This is done using a applicability

function α such that:

𝜶(𝒓𝒊) = {
𝒕𝒓𝒖𝒆 𝒊𝒇 𝒓𝒊𝒔𝒖𝒊𝒕𝒂𝒃𝒍𝒆
𝒇𝒂𝒍𝒔𝒆 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (4.17)

The Algorithm Definition Language (ADL) contains the necessary blueprint to build

an algorithm on the fly and allows for testing by the applicability function whether it will

accept input from the underlying problem process and return output in the form of a solution.

At this point the algorithm becomes a candidate and is added to the candidate array.

Pseudo-code for the algorithm determine process is as follows:

Pseudo-code 11 - Finding which algorithms solve a particular problem

Algorithm: DetermineAvailableAlgorithms(x)

Input: a problem definition x

Output: an algorithm definition array darr

Begin

 FOR EACH algorithm in algorithm repository

 Determine if algorithm can be applied to problem

 IF algorithm is applicable THEN add to array darr

 NEXT algorithm

 return darr

End

Step 2 – Choose the best candidate

The second step involves choosing from among the available algorithms the one best

suited for solving the problem. This is accomplished via a suitability function. The suitability

function contains heuristics which are used to rank each of the available algorithm candidates

according to how each best fits the suitability metrics. Suitability is dependent upon

108

heuristics, such as a simple greedy algorithm that picks the best performer based upon some

specified metric.

𝝈(ℂ) = 𝒄𝒊| 𝝈(𝒄𝒊) = 𝒎𝒂𝒙(𝝈(𝒄𝒊) ∀𝒄𝒊 ∈ ℂ (4.18)

Pseudo-code for the suitability function is as follows:

Pseudo-code 12 - Finding most suitable algorithm for a particular problem

Algorithm: DetermineBestSuitedAlgorithm(arr)

Input: an array of algorithm definitions arr

Output: most suited algorithm definition ai

Begin

 FOR all algorithm in arr

 Rank algorithm using SuitabilityRank function

 IF algorithm rank > best rank THEN

 Save algorithm as best algorithm, algorithm rank as best rank

 END IF

 NEXT algorithm

 return best algorithm

End

Step 3 – Algorithm Optimization

Applicable algorithms may undergo a final optimization step, if applicable, using

traditional optimization techniques such as those described in [Juang 08], [Martinez 10]. This

final step seeks to improve the algorithm’s performance according to a fitness function:

𝒇𝒓𝒊(𝒓𝒊(𝒐) = 𝒎𝒂𝒙(𝒓𝒊(𝒐)) , 𝒐 = 𝒐𝟏, . . , 𝒐𝒏 (4.19)

This completes the optimization hierarchy:

1. Determine all algorithms suitable to solve a given problem.

2. Determine the “best” solution.

3. Optimize the best solution.

109

4.3.3.3: The Relational Database

For the FC-OAP, the database provides the following functions:

1. Repository for the ADL.

2. Temporary or permanent storage of results for optimization.

3. Engine for large-scale database manipulation and optimization as described in

[McCarty 14a].

The relational database first serves as the data-store for the ADL. It can serve to store

both algorithm definitions as well as problem “properties” and heuristics for problem solving

and optimization. Advanced querying capabilities and speed enable the FC-OAP to perform

lookups and comparisons against large repositories of algorithms and data. Because of the

database’s almost unlimited storage capacity, it can function as a Tabu-search, storing results

so that searches can avoid repeating previous mistakes. The database is also able to support

multiple independent clients so multiple applications can “collaborate” on a problem.

Another potential advantage not addressed here is the ability to data mine. This mining can

take several forms:

1. Look for patterns in problem-algorithm solutions

2. Look for optimization parameters that are most effective in optimization

3. Attempt to predict algorithm/optimization testing, in effect providing a Tabu-like

capability that is forward-looking.

110

4.4: TEST EXAMPLES

4.4.1: Basic Framework Tests

Consider a robot car whose goal is trying to navigate a simple maze as illustrated in

figure 54.

Figure 54 - Robot in a Maze

The car must figure out how to move through the maze while also maintaining an

efficient path and avoiding walls and obstacles. Doing this requires continual adjustment of

its direction in order to avoid coming too close.

Ideally, the robot should try to position itself as far away from each barrier as possible

while maintaining forward motion. In order to do this, it must constantly reevaluate its

position as it moves around the maze and adjust its angle of motion in order to maintain

maximum distance from each wall. Thus, the following factors have to be accounted for:

1. Frontal Distance

2. Distance to the Right Wall

3. Distance to the Left Wall

4. Angle of forward movement

111

The first 3 factors constitute the inputs and the last one is the resulting output. Both

inputs and outputs are necessary for the fuzzy inference system (FIS) solutions used in the

subsequent test examples.

4.4.1.1: Test Example #1 – A Simple Navigation Problem – Type-1

The Type-C framework created a Fuzzy Controller based upon a Type-1 Fuzzy

Inference System. This is the simplest and most basic implementation of the framework. The

T1-FLC was used to help a software robot successfully navigate the maze without hitting any

of the walls or barriers. Pseudo code to describe the final process is as follows:

Pseudo-code 13 – Navigate Through a Maze

Algorithm: NavigateMaze

Begin

1 configure FIS

2 WHILE(true)

3 navigate()

4 END WHILE

End

Algorithm: Navigate

Begin

1 input distance to front

2 input distance to left

3 input distance to right

4 fuzzify inputs

5 defuzzify inputs to angle change

6 apply angle change to current angle

7 move robot

End

Its path was tracked and shown in figure 55.

112

Figure 55 - Robot Navigating Maze Using Framework-Based T1 FLC

4.4.1.2: Test Example #2 – A Simple Navigation Problem – Type-2

The Type-C framework created a Fuzzy Controller based upon a General Type-2

Fuzzy Inference System. The robot was able to successfully navigate the maze without

hitting any of the walls or barriers. Its path was tracked and shown in figure 56.

113

Figure 56 - Robot Navigating Maze Using Framework-Based T2 FLC

4.4.1.3: Test Example #3 – Simple one algorithm implementation and comparison.

In this test example a robot vehicle is tasked to move around a maze. There are no

obstacles or special terrain features. Implementations are a traditional T1-FIS, GT2-FIS.

The FLC uses a database-based ADL to construct both the T1-FIS and GT2-FIS, both with

the same 6 fuzzy rules, and successfully navigate the maze as shown in figures 57a and 57b.

114

(a)

(b)

Figure 57 (a) - T1-FIS and 57 (b) – GT2-FIS

The T1-FIS managed to navigate the maze in 554 iterations, with an average over 100

runs of 1.247 ms/iteration. The GT2-FIS managed to navigate the maze in 538 iteration with

an average over 100 runs of 11.113 ms/iteration.

Table 5 – Simple Comparison T1-FIS/GT2-FIS

Process # iterations Time (ms/iteration)

T1-FIS 554 1.247

GT2-FIS 538 11.113

4.4.1.4: Test Example #4– Dynamic swapping of algorithms.

A necessary feature of the TCF is the ability to cleanly separate the algorithm from the

application, important for dynamic hybridization of algorithms. In this example the TCF

versions of the T1-FIS and GT2-FIS are built from the ADL and swapped multiple times in

order to demonstrate the TCF’s ability to swap techniques created by the ADL on the fly. In

figure 58 the T1-FIS (thin blue line) and GT2-FIS (thick magenta line) are run over the same

115

surface one after the other for comparison. In figure 59 the two techniques are swapped back

and forth over the same run.

(58)

(59)

Figure 58 – T1-FIS overlaid with GT2-FIS

Figure 59 – T1-FIS interlaced with GT2-FIS

4.4.2: Context Tests

4.4.2.1: Test Example #5 – Comparative analysis Traditional T1, GT2 against TCF T1, GT2.

Under normal circumstances the TCF does not perform a membership test when only a

single context is defined, however, for purposes of comparison, the test was forced in order

determine how much overhead the context imposed upon a standalone algorithm. This forces

the running of the membership tests and other contextual overhead likely to be encountered in

a typical TCF implementation. The results are as follows (averaged over 100 tests):

116

Table 6 - Comparing Traditional and Contextual Performance

Process Time (ms/iteration) % C Overhead

T1-FIS 1.247 N/A

GT2-FIS 11.113 N/A

T1-FIS TCF 1.268 1.7%

GT2-FIS TCF 11.135 .02%

4.4.2.2: Test Example #6 – Traditional Algorithm vs. Contextual Extensions

In this case both the T1-FIS and GT2-FIS were extended with to support some

“contextual” information regarding the addition of a second surface (one with a barrier to

navigate around) and performance was compared against a pair of contexts representing the

same two surfaces, with the first being the original FIS and the second being a new context.

The results are as follows (averaged over 100 tests):

Table 7 - Extended Traditional vs Contextual Performance

Process Time (ms/iteration)

T1-FIS ext 1.313

2 Contexts – T1 1.102

GT2-FIS ext 11.562

2 Contexts – GT2 8.7

4.4.2.3: Test Example #7 – Dynamic Handling of Contexts with Fuzzymorphism

With a nod to the duck, the FLC was used to build an implementation of a robot

vehicle able to traverse the following four terrain features:

1. A ROAD running through a maze

2. A RIVER obstacle

3. A CANYON obstacle

4. A LAKE obstacle

117

Figure 60 - New maze with terrain features

In navigating the track the vehicle tests ahead for the type of terrain. When spotting a

different terrain feature, or context, it quickly morphs into the new vehicle, combining

behaviors as it nears before becoming fully adapted to the new behaviors when the context

has completely changed. Figure 61 a shows the vehicle navigating the maze, primarily as a

car (blue dot), transitioning to a canoe (3 circles) at a river, a helicopter (5 circles) at a canyon

and a submarine (3 circles and a periscope) at a lake. Each context uses a different T1-FIS,

but could just as easily apply a GT2-FIS or other algorithm from the ADL.

118

(a)

(b)

(c)

(d)

Figure 61 – Navigating Terrain Features (a) Transitioning to Canoe (b), Helicopter (c),

Submarine Vehicle (d)

This separation ultimately allows FLC implementation to maintain a separate

algorithmic identity and lookup for each subspace and serves to reduce the complexity

associated with extending an existing algorithm or implementing a hybrid solution.

Consider a subspace consisting of 2 contexts, one for a road and one for a river. The

automated vehicle attempting to navigate both must incorporate distinct behaviors: in one

case that of a car, in the other, a canoe, as well as two hybrid behaviors, the car-canoe when

entering a river and canoe-car when leaving.

119

A T1-FIS attempting to do this will consist of a set of rules which can be formulated

as:

Rule Rk: IF 𝒙𝟏 is 𝑨𝟏
𝒌 AND … AND xn is 𝑨𝒏

𝒌 THEN y is Bk (4.20)

The value of 𝑅𝑘 can be computed by applying a t-norm operator to the rule antecedents as

well as the rule consequents [Mendel 01]:

𝝁𝑹𝒌(�⃗⃗� , 𝒚) = 𝝁𝑨𝟏𝒌
(𝒙𝟏)∏…∏𝝁𝑨𝒏𝒌(𝒙𝒏)∏𝑩𝒌 (𝒚) (4.21)

which reduces to:

𝝁𝑹𝒌(�⃗⃗� , 𝒚) = [∏ 𝝁𝑨𝒊𝒌
(𝒙𝒊)

𝒏
𝒊=𝟏]∏𝑩𝒌(𝒚) (4.22)

So given equation 4.22, the overall computational complexity of the T1-FIS can be

said to be a function of the number of fuzzy rules. Combining the rules for two different T1-

FIS, however, means applying the environmental “context” in which those rules operate. For

example a simple rule for a car might be:

IF FrontalDistance IS Far THEN Angle IS Zero (4.23)

Whereas for the canoe it might be:

IF Current IS None THEN Angle IS Zero (4.24)

This would amount to evaluating two rules and four (FontalDistance, Far, Current,

None) underlying fuzzy sets.

A combined equivalent system however would look like this:

IF Surface IS Road AND FrontalDistance IS Far THEN Angle IS Zero

IF Surface IS River AND Current is None THEN Angle IS Zero (4.25)

120

Hence, the combination, which forces the introduction of the “surface”, has more

fuzzy sets to evaluate (8) as does the sum of the two individual approaches separately (4).

[Mendis 10] shows that complexity increases are disproportionately greater as more rules are

added. Type-C, in contrast, tests whether the input is “in context” before attempting to

evaluate the corresponding 𝜑. Only those contexts for which membership is nonzero need be

evaluated. Hence the algorithm separation means it is not necessary to embed contextual

information in the fuzzy rules as shown above, nor is it necessary to evaluate rules which are

“out of context”. Table 8 compares a simple, extended T1-FIS to a corresponding Type-C for

a quartet of possible scenarios for evaluating just the antecedent.

Table 8 - Comparing Standalone and Contextual T1-FIS

 Configuration # Rules # T1 Evals # T1-C Evals

Road 6 24 24

River 5 10 10

Canyon 5 10 10

Lake 5 10 10

Road/River 11 56 10-34 + 2µ

Rd/Riv/Can 16 76 10-44 + 3µ

R/Rv/C/Lk 21 96 10-54 + 4µ

Figure 62 – Comparison Growth T1-FIS vs Contexts

What about a hybrid algorithm? Or even a simple conditional? An argument can be

made that the extended T1-FIS shown earlier is a case of a hybrid algorithm. Other

algorithms might be more efficient that the T1-FIS, or even the TCF-FIS, but the hybrid

0

50

100

150

Comparisions T1 to T1-C (avg)

Rules # T1 Evals # T1-C Evals

121

approach doesn’t have a built-in mechanism to easily describe its intended purpose. Zadeh

[Zadeh 65], [Zadeh 08] showed that one benefit of fuzzy sets was their ability to define

themselves in simple, easily understandable terms such as TALL and SHORT. The Fuzzy

Context, in this case, describes a surface, such as ROAD and RIVER; hence the associated

contextual algorithm clearly describes its intended purpose – a navigating a ROAD in one

case and navigating a RIVER in another.

Another disadvantage of the hybrid approach is it lacks a generic capacity to easily

extend itself. In some cases, such as an Artificial Neural Network or Fuzzy Inference System,

there is the ability to extend the algorithm through the addition of native components, such as

neurons or fuzzy rules respectively, but the integration of a totally new technique, such as an

Ant Colony Optimization, becomes a lot trickier. Under the TCF, it is simply a matter of

generating an ADL and assigning it to a context.

As for the conditional approach, it is fairly straightforward to add a statement to a

process such as:

IF ROAD THEN

NavigateCar

ELSE

 NavigateCanoe (4.26)

But the conditional suffers both from the lack of clarity of description for the problem

above as well as a native ability to easily extend the algorithm with new approaches.

Moreover a series of conditionals can be difficult to maintain as the series gets large

[Pressman 09].

However, there is no free lunch either. The downside of the TCF compared to either

approach is the need to test for membership in systems where more than one context is

present. This adds some overhead but test results show this to be often less than the

corresponding improvement in the overall process.

122

4.4.2.4: Test Example #8 – Navigation around a barrier.

SD problems present challenges to the developer because behaviors can be quite

different while the contexts appear somewhat similar. Such is the case with a barrier in the

navigation example. In this test example, a pair of barriers is added to the maze. While the

robot car has an easy time navigating the simple maze in earlier test examples, it has an

difficult time when obstacles are introduced, such as those shown in figure 63. The SD

problem, in the form of the obstacles, causes the car to act as if walls exists and causes it to

reverse course rather than navigate around. As demonstrated, the car failed to navigate the

two small obstacles, effectively running in circles.

Figure 63 – Vehicle Unable to Navigate Barrier

Creating a context, BARRIER, and adding it to the navigation allows for the vehicle to

navigate around both of the obstacles as shown in figure 64.

123

Figure 64 – Using Contexts to Navigate Barriers in Maze

Once the second controller was added under the new Type-C construct it became

active and fuzzymorphically took over as the car neared the barrier, before it was forced into a

180 degree turn. Under Context OBSTACLE, the car instead explores along the edge of the

obstacle. Upon finding an opening, it executes a sharp turn and proceeds until the space

opens up again and it can fuzzymorphically revert back to the Context OTHER-SPACE and

resume normal operations.

4.4.2.5: Test Example #9 – Subsumption via Context Inversion

In this test example, an inverted context is applied to the navigation problem. The T1-

FIS and GT2-FIS weave back and forth, constantly correcting due to the narrowness of the

maze. By adding an inverted context, the weaving behavior is reduced in the straightaways

while being maintained in the curves. This is demonstrated by figures 65a-c and 66a-c.

124

(a)

(b)

(c)

Figure 65 – Comparing T1-FIS (left and top) and T1-FIS (right and bottom) with

Contextual Subsumption for (a) left leg of maze, (b) top leg of maze, (c) bottom leg of

maze

(d)

(e)

(f)

Figure 66 – Comparing GT2-FIS (left and top) and GT2-FIS (right and bottom) with

Contextual Subsumption for (a) left leg of maze, (b) top leg of maze, (c) bottom leg of

maze

Table 9 - Comparison of Traditional vs. Subsumptive (Inverted Context) Approaches

 T1-FIS GT2-FIS T1-FIS-S GT2-FIS-S

Iterations 551 536 522 524

ms/Iteration 1.316 13.122 1.302 13.06

Differences in performance varied by roughly 1% between the traditional and

subsumptive variations. The contextual/subsumptive version however showed a significant

improvement in the number of iterations required to complete the maze. The T1-FIS required

125

5.3% fewer iterations while the GT2-FIS required 2.2% fewer. This more than overcomes

any contextual overhead. Note the smoother paths in figures 65, and 66. This smoother path

resulted in a shorter distance required to navigate the entire maze.

4.4.3: Other Enhancement Tests

Combining the framework and tools allows for test examples which involve applying

the FC-OAP to a diverse set of simple problems:

1. The traditional 8-Queens problem, trying to arrange a random set of queens on a

chessboard so that none can attack any others.

2. A navigation problem: trying to navigate a software robot around a simple maze

3. A sorting problem: trying to alphabetically sort a list of names.

The algorithm repository contains a total of 16 ADLs representing a number of

different approaches to problem solving:

1. 10 different local search techniques (LST)

2. Fuzzy Type-1 and Type-2 Inference System

3. 4 sorting algorithms (Quicksort, Bubblesort, Mergesort, Heapsort)

The local search techniques are based upon work done in [McCarty 08b], [Martinjak

07], and [Russell 09]. The Fuzzy Inference Systems are based upon work done in [McCarty

13]. The Quicksort and Bubblesort come from [Cormen 09].

Testing an algorithm requires the following steps:

1. Generate a list of available ADLs.

2. For each ADL look up and generate the corresponding algorithm

3. Test the algorithm for suitability

4. If suitable, add inputs and execute

5. Examine results and determine rank using greedy algorithm based upon ranking

criteria

126

Pseudo-code for the test process is as follows:

Pseudo-code 14 – Testing Algorithms against a problem

Algorithm: TestAlgorithms(x)

Input: a problem definition x

Output: an array of results rarr

Begin

 Determine Available Algorithms

 FOR EACH algorithm

 Add Inputs

 Execute algorithm

 Rank results

 Add ranking to rarr

 NEXT algorithm

 return rarr

End

4.4.3.1: Test Example #10 - The 8-Queens problem

The 8-Queens problem is a classical problem in computer science in which an

algorithm starts with 8 queens arranged randomly on a chess board. The algorithm must then

determine how to arrange the queens in such a way so that no one queen can attack another as

shown in figure 67.

127

Figure 67 – A solution for the 8-Queens problem

To see how the framework responds to different suitability functions, each algorithm

was evaluated using three different suitability criteria: 1) Speed for successful resolution, 2)

Accuracy of tries and 3) Speed and Accuracy.

The program determined the FISs and sorting algorithms were unsuitable for this

problem, but that each of the 10 LSTs could be used. It ran each LST through 100,000

iterations of the problem, taking note of how long each iteration took, and how many of the

initial configurations were actually solved. Results are presented in table 10.

128

Table 10 - Comparing Algorithms for the 8-Queens Problem

Algorithm Successes Failures Time

Hill Climb 3343 21196 56.659

Stochastic Hill Climb 2596 16429 56.191

DD-Stochastic Hill Climb 3343 21115 58.94

Random Restart Hill Climb 1265 162 21.962

Simulated Annealing 85 70 20.165

Genetic Mutation 45 154 53.318

Minimum Conflicts 3202 334 25.893

Tabu Search 3408 1506 2.642

DD-Simulated Annealing 228 1 18.93

Memetic Mutation 86 51 3.398

The framework then generated and presented the LST rankings per the specified

criteria. Ties were broken by giving slightly more weight to speed of resolution. The results

are shown in table 11.

129

Table 11 - Ranking Solutions to the 8-Queens Problem

Algorithm Speed Accuracy Speed + Accuracy

Hill Climb 3 10 6

Stochastic Hill Climb 6 9 8

DD-Stochastic Hill Climb 5 8 7

Random Restart Hill Climb 4 3 3

Simulated Annealing 9 6 9

Genetic Mutation 10 7 10

Minimum Conflicts 2 2 1

Tabu Search 1 4 2

DD-Simulated Annealing 8 1 4

Memetic Mutation 7 5 5

130

4.4.3.2 Test Example #11 - Navigation problem

Back to the navigation problem. Consider a robot car whose goal is trying to navigate

a simple maze as illustrated in figure 68.

Figure 68 - A Robot Car Navigating a Maze

The car must figure out how to move through the maze while also maintaining an

efficient path and avoiding walls and obstacles. Doing this requires continual adjustment of

its direction in order to avoid coming too close.

Among the algorithms, the framework chose the Type-1 and Type-2 FIS and applied

them to the navigation problem. Suitability was determined as a function of speed and

accuracy defined as minimal number of iterations to run a complete circuit of the maze.

Results of the initial suitability determination are shown in table 12.

Table 12 - Comparative Analysis T1-FIS vs. T2-FIS

Time # Iterations

T1-FIS 1.313 551

T2-FIS 11.562 522

131

In this case, as before, the tiebreaker is speed. Hence the ranking as shown in table

13:

Table 13 - Ranking T1-FIS vs. T2-FIS

Algorithm Speed Accuracy Spd + Acc

T1-FIS 1 2 1

T2-FIS 2 1 2

Taking this example a step further, the algorithms in this case are also coded as

optimizable in the ADL. As a result the framework added an optimization step using the

memetic algorithm as described in [McCarty 14a]. Fuzzy sets were randomized to generate a

population sample of 30 T1-FIS which were tested and genetically altered. The resulting

optimization reduced the number of iterations required to complete the maze from 551 to 524,

allowing the optimized T1-FIS to outperform the original T2-FIS in this instance.

4.4.3.3: Test Example #12 - Sorting problem

Next the framework was tasked with sorting a simple list. A list of 20,000 last names

was queried from a customer database in first name order to prevent any accidental ordering

of last names. The framework searched the algorithm repository and determined the 4 sorting

algorithms were suitable and ran each using a suitability metric of speed only since accuracy

of 100% is assumed. Table 14 shows the results:

132

Table 14 - Comparative Analysis and Ranking of Sorting Algorithms

Algorithm Speed Rank

Quick Sort 0.516 3

Bubble Sort 56.45 4

Merge Sort 0.509 2

Heap Sort 0.149 1

4.4.3.4: Test Example #13 Memetic Optimization of working configuration

In this example, a working FIS is run through the optimizer. 500 iterations was

chosen as the number of steps to evaluate. Results were saved to a SQL Server 2012

database. Deviation from the “optimal” path by the original FIS was 2011 pixels.

The memetic algorithm is a combination of stored procedures and uses a sample of 30

randomly generated variations of a given fuzzy set within an FIS. It adjusts the endpoints of

losers via crossover mutation with the best in the sample. Finally it performs a random

mutation before reevaluating the results with the sample and seeing how the closely the new

path tracked the optimal one. The best sample deviated by 1824 pixels from optimal. The

resulting track showed sharper turns and fewer back and forth adjustments as shown in fig 69

and 70.

133

Figure 69 - A Robot Car Navigating a Maze, Typical FIS – Type 1 FLC

Figure 70 - A Robot Car Navigating a Maze, Optimized T1-FIS

134

4.4.3.5: Test Example #14 Memetic Optimization of a non-working configuration

A fuzzy set is adjusted to force the car to crash. Then the FIS was run through the

optimizer which was able to find and adjust the bad fuzzy set, creating a working FIS as

demonstrated in figures 71 and 72.

Figure 71 - Bad FIS cause robot car to hit barrier

The FIS is run through the optimizer for 30 iterations. After completion, it choose

from among the population sample a working configuration.

Figure 72 - Bad FIS repaired

135

4.4.3.6: Test Example #15 Unsupervised learning of simple context

To test a simple example of the unsupervised learning technique, take another look at

the robot car and the maze:

Figure 73 - Robot in a Maze

Note that there are straight areas and places to turn. Suppose the robot car only knew

about a straight road. In this case, any turn would be significantly different and require a new

context. Could it learn how to pick the next context? For this test, the framework was

modified to add a training component used to generate the fitness function. By restricting

training to the straight portions, the robot car now has to learn about the curves. While the

initial FIS is capable of navigating the curves, the difference between the curve and straight

portion is enough to flag each curve as a new context. Figure 74 shows that the algorithm

“discovered” potential contexts, marking them with blue dots.

136

Figure 74 – Algorithm Learning Contexts

4.4.3.7: Test Example #16 – Building Workable XML Using Wizard Tool

Recall the Fuzzy Configuration Wizard Tool, a sample page of which is shown in

figure 75:

137

Figure 75 – The Fuzzy Wizard Tool

The resulting XML was used by the framework to build a working FIS that was able

to successfully navigate the maze. The XML generated is listed below:

<?xml version="1.0" encoding="UTF-8"?>

<FuzzyWizardConfig>

<FuzzyInferenceSystem Name="MySystem" OutputToDB="true">

<FuzzyDB Name="FuzzyDB"/>

<Defuzzifier Name="Defuzzifier" Intervals="1000"/>

<Rules>

<FuzzyRule Name="Rule 1"/>

<FuzzyRule Name="Rule 2"/>

<FuzzyRule Name="Rule 3"/>

<FuzzyRule Name="Rule 4"/>

<FuzzyRule Name="Rule 5"/>

<FuzzyRule Name="Rule 6"/>

<FuzzyRule Name="Rule 7"/>

</Rules>

<SQLCn Name="Server = KMCCARTY-L01;Database = FuzzyTests;

Trusted_ConnectionTrue;"/>

file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml

138

</FuzzyInferenceSystem>

<MembershipFunctions>

<MembershipFunction Name="VeryNegativeF" FuzzySetType="Right Trapezoid">

<Points>

<Point Id="1" X="-40" Y="1"/>

<Point Id="2" X="-35" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="NegativeF" FuzzySetType="Full Trapezoid">

<Points>

<Point Id="1" X="-40" Y="0"/>

<Point Id="2" X="-35" Y="1"/>

<Point Id="3" X="-25" Y="1"/>

<Point Id="4" X="-20" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="LittleNegativeF" FuzzySetType="Full Trapezoid">

<Points>

<Point Id="1" X="-25" Y="0"/>

<Point Id="2" X="-20" Y="1"/>

<Point Id="3" X="-10" Y="1"/>

<Point Id="4" X="-5" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="ZeroF" FuzzySetType="Full Trapezoid">

<Points>

<Point Id="1" X="-10" Y="0"/>

<Point Id="2" X="-5" Y="1"/>

<Point Id="3" X="5" Y="1"/>

<Point Id="4" X="10" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="LittlePositiveF" FuzzySetType="Full Trapezoid">

<Points>

<Point Id="1" X="5" Y="0"/>

<Point Id="2" X="10" Y="1"/>

<Point Id="3" X="20" Y="1"/>

<Point Id="4" X="25" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="PositiveF" FuzzySetType="Full Trapezoid">

<Points>

<Point Id="1" X="20" Y="0"/>

<Point Id="2" X="25" Y="1"/>

<Point Id="3" X="35" Y="1"/>

<Point Id="4" X="40" Y="0"/>

file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml

139

</Points>

</MembershipFunction>

<MembershipFunction Name="VeryPositiveF" FuzzySetType="Left Trapezoid">

<Points>

<Point Id="1" X="35" Y="0"/>

<Point Id="2" X="40" Y="1"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="NearF" FuzzySetType="Right Trapezoid">

<Points>

<Point Id="1" X="15" Y="1"/>

<Point Id="2" X="50" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="MediumF" FuzzySetType="Full Trapezoid">

<Points>

<Point Id="1" X="15" Y="0"/>

<Point Id="2" X="50" Y="1"/>

<Point Id="3" X="60" Y="1"/>

<Point Id="4" X="100" Y="0"/>

</Points>

</MembershipFunction>

<MembershipFunction Name="FarF" FuzzySetType="Left Trapezoid">

<Points>

<Point Id="1" X="60" Y="0"/>

<Point Id="2" X="100"Y="1"/>

</Points>

</MembershipFunction>

</MembershipFunctions>

<FuzzySets>

<FuzzySet Name="VeryNegative" MembershipFunction="VeryNegativeF"/>

<FuzzySet Name="Negative" MembershipFunction="NegativeF"/>

<FuzzySet Name="LittleNegative" MembershipFunction="LittleNegativeF"/>

<FuzzySet Name="Zero" MembershipFunction="ZeroF"/>

<FuzzySet Name="LittlePositive" MembershipFunction="LittlePositiveF"/>

<FuzzySet Name="Positive" MembershipFunction="PositiveF"/>

<FuzzySet Name="VeryPositive" MembershipFunction="VeryPositiveF"/>

<FuzzySet Name="Near" MembershipFunction="NearF"/>

<FuzzySet Name="Medium" MembershipFunction="MediumF"/>

<FuzzySet Name="Far" MembershipFunction="FarF"/>

</FuzzySets>

<FuzzyVariables>

<FuzzyVariable Name="Angle" UpperBound="50" LowerBound="-50" Type="Output">

<FuzzySet Name="VeryNegative"/>

<FuzzySet Name="Negative"/>

<FuzzySet Name="LittleNegative"/>

file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml

140

<FuzzySet Name="Zero"/>

<FuzzySet Name="LittlePositive"/>

<FuzzySet Name="Positive"/>

<FuzzySet Name="VeryPositive"/>

</FuzzyVariable>

<FuzzyVariable Name="RightDistance" UpperBound="120" LowerBound="0"

Type="Input">

<FuzzySet Name="Near"/>

<FuzzySet Name="Medium"/>

<FuzzySet Name="Far"/>

</FuzzyVariable>

<FuzzyVariable Name="LeftDistance" UpperBound="120" LowerBound="0"

Type="Input">

<FuzzySet Name="Near"/>

<FuzzySet Name="Medium"/>

<FuzzySet Name="Far"/>

</FuzzyVariable>

<FuzzyVariable Name="FrontalDistance" UpperBound="120" LowerBound="0"

Type="Input">

<FuzzySet Name="Near"/>

<FuzzySet Name="Medium"/>

<FuzzySet Name="Far"/>

</FuzzyVariable>

</FuzzyVariables>

<FuzzyRules>

<FuzzyRule Name="Rule 1" Text="IF FrontalDistance IS Far THEN Angle IS Zero"/>

<FuzzyRule Name="Rule 2" Text="IF FrontalDistance IS Far AND RightDistance IS Far

AND LeftDistance IS Far THEN Angle IS Zero"/>

<FuzzyRule Name="Rule 3" Text="IF RightDistance IS Near AND LeftDistance IS Not

Near THEN Angle IS LittleNegative"/>

<FuzzyRule Name="Rule 4" Text="IF RightDistance IS Not Near AND LeftDistance IS

Near THEN Angle IS LittlePositive"/>

<FuzzyRule Name="Rule 5" Text="IF RightDistance IS Far AND FrontalDistance IS

Near THEN Angle IS Positive"/>

<FuzzyRule Name="Rule 6" Text="IF LeftDistance IS Far AND FrontalDistance IS Near

THEN Angle IS Negative"/>

<FuzzyRule Name="Rule 7" Text="IF RightDistance IS Far AND LeftDistance IS Far

AND FrontalDistance IS Near THEN Angle IS Positive"/>

</FuzzyRules>

</FuzzyWizardConfig>

Figure 76 – XML for a Type-1 FIS

file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml
file:///C:/Development/University/UIIFLib/Samples/Fuzzy/FuzzyWizard/bin/Debug/FuzzyConfig.xml

141

4.4.3.8 Test Example #17 – Building Workable Database Configuration Using Wizard Tool

The test example used the Wizard Tool to construct a General Type-2 FIS

configuration stored in a SQL Server 2012 database. A sample page is shown in figure 77:

Figure 77 – General Type-2 FIS in Wizard

The resulting database records were used by the framework to build a working FIS

that was able to successfully navigate the maze. The database schema is shown below:

142

Figure 78 – Database Schema for a Fuzzy Configuration

143

4.5: CHAPTER SUMMARY AND COMPARATIVE ANALYSIS

This chapter demonstrates some of the specific advantages of the Type-C Framework

(TCF) using test examples. In general, the concepts and software presented in this

dissertation compare favorably to other approaches in these areas:

1. Compared to other fuzzy frameworks.

2. Compared to traditional Fuzzy Type-1 and Type-2 and hybrid approaches for

solving SDPs.

4.5.1: TCF vs. Other Frameworks

 Compared to the frameworks offered from [Karnik 14], [Kirillov 14], [Octave 13],

[Slavicek] and [Zamani 08], only the TCF provides an integrated Type-1/Type-2 capability

for a generalized FIS (at this time it is the only known framework to do so). Hence, only the

TCF can provide a truly objective and polymorphic FIS supporting both Type-1 and Type-2

characteristics. [Zamani 08] also provides a wizard tool for constructing an IT2-FIS;

however, it only generates Matlab m-files. These files, unlike XML or a database record, are

not portable to other languages, hence their usage is limited only to Matlab without some

form of intermediary interpretation.

4.5.2: TCF vs. Traditional Fuzzy Type-1, Type-2 and other approaches

Consider a very simple FIS with two disparate dimensions d1, d2. Each dimension has

an input fuzzy set fi, and a fuzzy rule fr. Let there also be a pair of output fuzzy sets fo1, fo2

shared by the dimensions. The rule base for the two dimensions is as follows:

fr1 ≡ IF d1 IS fi1 THEN fo1 is fo2 (4.27)

fr2 ≡ IF d2 IS fi2 THEN fo1 is fo2

Four input fuzzy set evaluations are required for each input in order to fuzzify the two

rules. However, because the two dimensions are disparate, as is the case in an SDP,

combining them in a traditional FIS requires introducing additional input fuzzy sets to link

144

them together. A minimum of one fuzzy set is required to generalize the dimensions d1, d2,

call it fd, in addition to two more fuzzy sets to test for the membership of d1, d2, call them fd1,

fd2. So the new combined FIS would require modifications to the two original rules:

fr1 ≡ IF fd IS fd1 AND d1 IS fi1 THEN fo1 is fo2 (4.28)

fr2 ≡ IF fd IS fd2 AND d2 IS fi2 THEN fo1 is fo2

Now eight fuzzy set evaluations are required to fuzzify the two rules. Consider that

same system using Fuzzy Contexts. Each context is evaluated separately, hence there is no

need to add the additional fuzzy sets of the extra dimensions. The equivalent Type-C rule

would look like this:

fr1 ≡ IF d1 IS fi1 THEN fo1 is fo2 x Contextual Membership (4.29)

fr2 ≡ IF d2 IS fi2 THEN fo1 is fo2 x Contextual Membership

Which only requires evaluation and fuzzification of the original four sets.

Computational complexity for a fuzzy inference system is based upon the number of

rules and the underlying number of fuzzy set evaluations [Mendis 10]. Assuming for

simplicity’s sake that the dimensions share the output fuzzy sets, this leads to the relative

number of fuzzy set evaluations dependent upon the following:

1. Input Fuzzy Sets, fi

2. Test Dimension Fuzzy Sets (for multiple dimensions), ft

3. Generalization fuzzy sets (to bridge or generalize multiple dimensions), fg

Hence the relative processing requirement, Pr is a product of the three items listed

above:

𝑃𝑟 = ∑𝑓𝑖 ∑𝑓𝑡 ∑𝑓𝑔 (4.30)

Using Fuzzy Contexts, however, replaces ft and fg with a contextual contribution

applied to fi. Now Pr is a product of just the original fi applied to Cj where Cj is the

corresponding context contribution.

145

𝑃𝑟 = ∑𝐶𝑗𝑓𝑖 (4.31)

For simple problems ft and fg can reduce down to 1 at best. Hence the number of

fuzzy set evaluations using a contextual FIS will always be equal or less than the equivalent

combined FIS. Contextual calculations will add some overhead but test results show cases

where that is less than the overhead due to the extra fuzzification.

What about a hybrid or generalized algorithm? Or even a simple conditional? An

argument can be made that the complex FIS is simply a case of a hybrid algorithm and the

same rules apply. In addition, Zadeh [Zadeh 65], [Zadeh 08] showed that one benefit fuzzy

sets was their ability to define themselves in simple, easily understandable terms such as

TALL and SHORT which is not a traditional characteristic of a hybrid or generalized

approach.

[Linda 11b] describes an implementation to determine the relative performance

differences between a Type-1 FIS and IT2-FIS. In it the author remarks how there are

situations where a T1-FIS is preferred over the IT2-FIS and vice versa. Using the TCF over

the implementation described has two distinct advantages:

1. A combined T1/T2 FIS under the TCF requires only one set of shared

fuzzy rules instead of two separate sets of rules.

2. The relative advantages of each system can be contextualized, allowing

for a single unified system taking advantage of the relative strengths of each approach.

4.5.3: How TCF reduces the problem of over-fitting in ANNs

Finally, although not directly addressed via test examples, Fuzzy Contexts also have

the ability to reduce the problem of over-fitting that affects some traditional Artificial Neural

Networks (ANNs). [Zurada 92] and [Haykin 09] speak to this common problem which is

primarily the result of the following two issues:

1. The inclusion of outliers in the data

2. Too many data points leading to an over-generalization of the classifier

- and correspondingly overly large classifier construction.

146

[Haykin 09] contends that a good generalization for an ANN requires the size of the

training sample N to satisfy the condition:

𝑁 = 𝑂 (
𝑊

𝜀
) (4.32)

where W is the total number of parameters (i.e. weights and biases) in the network and ε

represents the fraction of classification errors permitted on the test data and O(.) denotes the

order of quantity enclosed. Now suppose the data comprises two distinct states SA and SB with

different behaviors for each but consistent within each subset.

Now apply a contextual classification for each distinct state, 𝐶𝐴, 𝐶𝐵 and let P be

original (untrained) sample. Hence 𝐶𝐴, 𝐶𝐵are disjoint sets that combine to equal P.

 𝑃 = 𝐶𝐴 ∪ 𝐶𝐵. (4.33)

Let the size of the training sample be N as defined for sample P

By definition 𝐶𝐴, 𝐶𝐵 are internally consistent, being classified contextually. We know

that worst case, by simply combining 𝐶𝐴, 𝐶𝐵 to get P the original generalization rule still

applies, hence

𝑁 = 𝑇𝐶𝐴∪𝐶𝐵 (4.33)

Because 𝐶𝐴, 𝐶𝐵 are disjoint, it follows that their training samples are disjoint as well,

hence:

𝑇𝐴 + 𝑇𝐵 ⊆ 𝑁 (4.34)

Where TA is the training sample for CA and TB is the training sample for CB. This

implies the size of the training sample for 𝐶𝐴, 𝐶𝐵, will be at most as large as N.

𝑆𝑖𝑧𝑒𝑇𝐴 + 𝑆𝑖𝑧𝑒𝑇𝐵 ≤ 𝑆𝑖𝑧𝑒𝑁 (4.35)

147

However, as 𝐶𝐴, 𝐶𝐵, are internally consistent, by definition, it also follows that they are

not consistent with each other. The original training sample, in order to account for the

inconsistency between the two subsets must therefore, in order to maintain the original ε, have

at least one additional sample to account for the inconsistency and distinguish between the

two contexts. This implies that the contextualized ANNs will actually require fewer samples

to maintain the same ε.

[Han 11] and [Cox 05] also discuss over-fitting involving fuzzy sets, rules and other

classifiers with the same general issues as affect the ANN. As such, similar benefits from a

Type-C approach applied to other classification techniques are expected.

148

CHAPTER 5: WORK IN PROGRESS

Future work is ongoing in order to broaden both the functionality and applicability of

the framework. Among the planned extensions are a Wizard for configuring other algorithms,

additional unary and binary fuzzy operators, discrete fuzzy sets and fuzzy numbers, and

complex rules as well as improvements to the Wizard interface in general and the demo

software. Also in progress are the addition of more sophisticated genetic, memetic and local

search algorithms and data mining techniques into the framework. The intent is to enhance

the creation of a framework that is “trainable” and self-optimizing.

Future work needs to be done to generalize and demonstrate how Fuzzy Contexts and

weights can be generated using unsupervised classification methods as well as differing shape

definitions using complex functions such as Radial Basis Functions and point-wise definitions

for more radical contexts. Many of the individual components are still not tightly integrated

or particularly robust so the framework and demo software still require a lot of tweaking to

highlight individual functionality. Because the overall software suite is fairly extensive it

could use an equally sophisticated suite of support tools for testing and debugging.

Future work is underway to further expand the scope of the framework by adding

additional algorithms and optimization techniques. Additional heuristics are planned to both

more quickly and more accurately determine which algorithms from among the algorithm

repository make the best candidates for determination testing along with properties which

better link an algorithm to the underlying problem. Tighter integration with existing Type-C

class libraries is also needed to provide superior capabilities for application development and

testing. In addition, more work needs to be done to improve the Wizard application to build

and manage algorithm definitions, along with the related class libraries. Further abstractions

are required to integrate generalized fitness functions and their corresponding specifications.

Lastly, conversion to another language such as C++ or Java needs to be undertaken to allow

for a larger audience of potential users.

This dissertation has as one of its goals the extension of work done by the University

of Idaho Modern Heuristics Research Group along with Mendel (University of Southern

California, John (University of Nottingham) and others to educate and explain the advantages

of fuzzy solutions, particularly Fuzzy Logic Type-2 (for Mendel’s efforts see

149

http://sipi.usc.edu/~mendel/software/). The fuzzy contextual framework is a necessary first

step in the creation of an easy-to-use, flexible, standalone utility able to create usable,

sophisticated T1-FLCs, T2-FLCs and TC-FLCs. The Wizard application provides a useful

assist both in the creation of Fuzzy definitions and as a teaching tool. For implementation, a

simple software robot, relying upon the framework, provides a nice visual to cleanly and

correctly navigate a maze under both a Type-1 and Type-2 controller embedded into a Type-C

object.

150

CHAPTER 6: CONCLUSION

SUMMARY OF CONTRIBUTIONS

This dissertation began with a series of specific goals. Each goal was addressed and

resulted in one of more contributions. A summary of the goals and contributions of this

dissertation is as follows:

1. What Fuzzy Logic Type-C is and how it can be used.

a. Chapter 3, sections 1-5 presented an overview of Fuzzy Logic Type-C as an n-

dimensional, extensible, hierarchical abstraction that uses fuzzy membership

within “contexts” and linguistic terms to associate a specific algorithm to a

context within a problem space. Fuzzy Logic Type-C combines Fuzzy

Contexts and their corresponding problem spaces into a fuzzymorphic

algorithmic approach. Chapter 3 presents pseudo-code and definitions on how

to build and use Fuzzy Contexts within an application.

2. How Fuzzy Logic Type-C fits within general algorithm techniques and advantages

for Type-C implementations as compared to various alternatives.

a. Chapter 3 and 4 establish a software framework for Type-C development along

with a number of tools and enhancements for defining and optimizing the

algorithm. Chapter 4 presents a number of examples of Type-C applications

and advantages they have over other approaches.

3. How Fuzzy Logic Type-C is distinguished from Fuzzy Logic Type 1 or Type 2, or

other traditional hybrid and non-hybrid algorithms.

a. Chapter 3 describes how the Type-C framework is distinguished from other

approaches. Chapters 3 and 4 demonstrate how a Type-C implementation uses

Fuzzymorphism to both emulate and supersede a variety of other algorithmic

approaches.

b. Chapter 4 describes how contexts can be “learned” in an unsupervised process.

4. How Fuzzy Logic Type-C can be used as a software framework for

implementations.

151

a. Chapter 4 describes the various components of the Type-C framework in detail

and provides many examples of implementation.

5. What Fuzzymorphism is and how Fuzzy Contexts achieve Fuzzymorphism.

a. Chapter 3 describes Fuzzymorphism and Chapter 4 shows how

Fuzzymorphism in an implementation can improve the performance and

simplicity of an underlying technique.

6. The usefulness of relational databases to a Type-C framework

a. Chapter 4 does a comparative analysis of the relative speed advantages of

using a relational database and provides examples of how a database can assist

in a Type-C or non-Type-C implementation.

b. Chapter 4 describes an optimization technique using a memetic algorithm

against a relational database.

7. How to implement dynamic algorithms and algorithm definitions in support of a

Type-C application.

a. Chapter 3 describes a Fuzzy Definition Language as the basis for a more

generalized Algorithm Definition Language.

b. Chapter 4 introduces a novel extension to the Fuzzy Definition Language to

incorporate Fuzzy Type-2 definitions and expands the original Fuzzy

Definition Language to the more general Algorithm Definition Language.

c. Chapter 3 and 4 describe the Wizard tool, used as a visual representation of

Fuzzy Type-1 and Type-2 definitions.

d. Chapter 4 presents numerous test examples of algorithm switching achieved

using the Algorithm Definition Language and algorithmic polymorphism

achieved using Fuzzymorphism.

8. Applications of Fuzzy Contexts in solving a diverse spectrum of problems.

a. Chapter 4 presents a number of variations on navigation problems, an 8-

Queens solver and sorting algorithm within contexts.

9. Additional contributions: Minor Contributions #1 and #2 demonstrate how Fuzzy

Contexts can be applied to improve advanced data mining techniques. Minor

Contribution #1 describes a top-down technique called CoFuH-DT which is a

mechanism for contextually pruning fuzzy decision trees. Minor Contribution #2

152

describes a bottom-up technique called the CoT-DT algorithm. The technique

combines a fuzzy-neural approach to contextually group related or interesting

decision tree nodes, providing contextual definitions for the CoFuH-DT algorithm.

Minor Contribution #3 compares a number of local search techniques and shows a

novel modification of the traditional techniques. The modification, applied to

Simulated Annealing, Genetic Mutation and the Stochastic Hill Climb

improvements of 12-99% over the original algorithms when used to solve the 8-

Queens problem.

Test examples demonstrate all of these techniques and show some of the speed,

flexibility and simplicity advantages of a contextual implementation via comparative analysis

with alternative methods. Comparative analysis with traditional Fuzzy Type-1 and Type-2

methods show Type-C can reduce the number of fuzzy sets evaluations for a complex

problem as well as reduce the problem over-fitting in Artificial Neural Networks and other

classification techniques. Ultimately, the author asserts that the concepts and examples

presented in this dissertation show that Fuzzy Contexts or Fuzzy Logic Type-C is a viable and

useful technique for solving complex problem spaces.

FINAL NOTE

The author wishes to again recognize the time and efforts of the committee members,

and additional UI staff: Cheri Cole, Kirsty Pinchuk and Melinda Deyasi whose advice and

patience were instrumental during this process. The author is very grateful for their assistance

to insure the totality and quality of this dissertation.

153

REFERENCES

[Adomavicius 01] Adomavicius, G., & Tuzhilin, A. (2001). Using Data Mining Methods

to Build Customer Profiles. Computer, 74-82.

[Anderson 10] Anderson, J., McRee, J., & Wilson, R. (2010). Effective UI: The Art of

Building Great User Experience in Software. Sebastopol, California,

United States of America: O'Reilly.

[Augarten 84] Augarten, S. (1984). Bit by Bit: An Illustrated History of Computers.

New York, New York, United States of America: Houghton Mifflin.

[Ben-Gan 06] Ben-Gan, I., Sarka, D., & Wolter, R. (2006). Inside Microsoft SQL

Server: T-SQL Programming. Microsoft Press.

[Bolton 12] Bolton, C., Langford, J., Berry, G., Payne, G., Banerjee, R., & Farley,

R. (2012). Professional SQL Server 2012 Internals and

Troubleshooting. Hoboken, New Jersey, United States of America:

Wrox Press.

[Busc 09] Buschmann, F. (2009). Introducing the Pragmatic Architect. Software,

IEEE, 26(5), 10-11.

[CaGov 14] California Department of Fish and Wildlife. (2014, January 06).

California Grunion Facts and Runs. Retrieved from CA.Gov:

http://www.dfg.ca.gov/marine/grunionschedule.asp

[Camara 14] Camara, J., de Lemos, R., Laranjeiro, N., Ventura, R., & Vieira, M.

(2014). Testing the robustness of controllers for self-adaptive systems.

Journal of the Brazilian Computer Society, 20(1), 1-14.

[Carrasco 03] Carrasco, R. A. (2003). Queen Bee Genetic Optimization of an

Heuristic Based Fuzzy Control Scheme for a Mobile Robot. First

IEEE Latin American Conference on Robotics and Automation (pp.

61-66). Santiago: IEEE.

[Castillo 08] Castillo, O., & Melin, P. (2008). Type-2 Fuzzy Logic: Theory and

Applications. Berlin, Germany: Springer.

[Chase 06] Chase, R. B., Jacobs, F. R., & Aquilano, N. J. (2006). Operations

Management for Competitive Advantage. Irwin: McGraw-Hill.

[Cheng 10] Cheng, S., Dong, R., & Pedrycz, W. (2010). A Framework of Fuzzy

Hybrid Systems for Modeling and Control. International Journal of

General Systems, 165-176.

[CLT 03] Classification of Living Things. (2003, May 27). Retrieved from Study

of Northern Virginia Ecology:

http://www.fcps.edu/islandcreekes/ecology/classification.htm

[Cormen 09] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3 ed.). Cambridge, Massachusetts, United

States of America: MIT Press.

[Cox 94] Cox, E. (1994). The Fuzzy Systems Handbook. Boston, Massachusetts,

United States of America: Academic Press.

[Cox 95] Cox, E. D. (1995). Fuzzy Logic for Business and Industry. Rockland,

Massachusetts, United States of America: Charles River Media, Inc.

154

[Cox 05] Cox, E. (2005). Fuzzy Modeling and Genetic Algorithms for Data

Mining and Exploration. Boston, Massachusetts, United States of

America: Morgan Kaufmann.

[Dai 07] Dai, M., & Huang, Y.-L. (2007). Data Mining Used in Rule Design

for Active Database Systems. International Conference on Fuzzy

Systems and Knowledge Discovery (pp. 588-592). IEEE.

[Date 11] Date, C. J. (2011). SQL and Relational Theory (2nd ed.). Sebastopol,

California, United States of America: O'Reilly Media.

[Davidson 12] Davidson, L., & Moss, J. M. (2012). Pro SQL Server 2012 Relational

Database Design and Implementation. New York City, New York,

United States of America: Apress.

[Dawkins 06] Dawkins, R. (2006). The Selfish Gene. New York, New York, United

States of America: Oxford University Press.

[de Berg 10] de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2010).

Computational Geometry Algorithms and Applications (3 ed.). Berlin,

Germany: Springer Verlag.

[Du 10] Du, X., Ying, H., & Lin, F. (2010). Fuzzy Hybrid Systems Modeling.

North American Fuzzy Information Processing Society (pp. 1,6,12-

14). IEEE.

[Eiben 07] Eiben, A. E., & Smith, J. E. (2007). Introduction to Evoluntionary

Computing. Berlin, Heidelberg, Germany: Springer-Verlag.

[EQP 14] Eight queens puzzle. (2014, March 30). Retrieved April 28, 2014,

from Wikipedia: http://en.wikipedia.org/wiki/Eight_queens_puzzle

[Fa-Chao 03] Fa-Chao, L., Su, J., & Xi-Zhao, W. (2003). Analysis on the Fuzzy

Filter in Fuzzy Decision Trees. International Conference on Machine

Learning and Cybernetics (pp. 1457-1462). IEEE.

[Gao 07] Gao, M., & Tian, J. (2007). Path Planning for Mobile Robot Based on

Improved Simulated Annealing Artificial Neural Network. Third

International Conference on Natural Computation (pp. 8, 12, 24-27).

IEEE.

[Garcia 08] Garcia, M. E., Valero, S., Argente, E., Giret, A., & Julian, V. (2008).

A FAST Method to Achive Flexible Production Programming

Systems. IEEE Transactions on Systems, Man, and Cybernetics, 242-

252.

[Garibaldi 08] Garibaldi, J. M., Jaroszewski, M., & Musikasuwan, S. (2008, August).

Nonstationary Fuzzy Sets. IEEE Transactions on Fuzzy Systems,

1072-1086.

[Gauge 11] Gauge, C. (2011, March 9). Computer Vision Applications with C# -

Fuzzy C-means Clustering. Retrieved from Code Project:

http://www.codeproject.com/Articles/91675/Computer-Vision-

Applications-with-C-Fuzzy-C-means

[Gomathi 10] Gomathi, V., Ramar, K., & Santhiyaku Jeevakumar, A. (2010). A

Neuro Fuzzy approach for Facial Expression Recognition using LBP

Histograms. International Journal of Computer Theory and

Engineering, 245-49.

155

[Guimaraes 07] Guimaraes, F. G., Campelo, F., & Igarashi, H. (2007). Optimization of

Cost Functions Using Evolutionary Algorithms With Local Learning

and Local Search. IEEE Transactions on Magnetics, 1641-1644.

[Haberkorn 13] Haberkorn, J., & Cheney, K. (2013, May 30). $474M for 4 failed

Obamacare exchanges. Retrieved from Politico:

http://www.politico.com/story/2014/05/obamacare-cost-failed-

exchanges-106535.html

[Hagras 04] Hagras, H. A. (2004, August). A Hierarchical Type-2 Fuzzy Logic

Control Architecture for Autonomous Mobile Robots. IEEE

Transactions on Fuzzy Systems, 524-539.

[Hagras 12] Hagras, H., & Wagner, C. (2012, August). Towards the Widespread

Use of Type-2 Fuzzy Logic Systems in Real World Applications.

IEEE Computational Intelligence Magazine, 14-24.

[Han 11] Han, J., & Kamber, M. (2011). Data Mining Concepts and Techniques

(3 ed.). Boston, Massachusetts, United States of America: Morgan

Kaufmann.

[Hanss 05] Hanss, M. (2005). Applied Fuzzy Arithmetic. Berlin, Germany:

Springer-Verlag.

[Haruechaiyasak 05] Haruechaiyasak, C., Tipnoe, C., Kongyoung, S., Damrongrat, C., &

Angkawattanawit, N. (2005). A Dynamic Framework for Maintaining

Customer Profiles in E-Commerce Recommender Systems.

International Conference on e-Technology, e-Commerce and e-

Service (pp. 768-771). IEEE.

[Haykin 09] Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.).

Upper Saddle River, New Jersey, United States of America: Pearson

Education.

[Hidalgo 10] Hidalgo, D., Melin, P., Castillo, O., & Licea, G. (2010). Comparative

Study of Type-2 Fuzzy Inference System Optimization Based on the

Uncertainty of Membership Functions. In P. Melin, J. Kacprzyk, & W.

Pedrycz, Soft Computing for Recognition Based on Biometrics (pp.

103-120). Berlin Heidelberg: Springer.

[Hung 11] Hung, C.-C., Kulkarni, S., & Kuo, B.-C. (2011, June). A New

Weighted Fuzzy C-Means Clustering Algorithm for Remotely Sensed

Image Classification. IEEE Journal of Selected Topics in Signal

Processing, 543-553.

[Ishibuchi 99] Ishibuchi, H., & Murata, T. (1999). Local Search Procedures in a

Multi-Objective Genetic Local Search Algorithm for Scheduling

Problems. International Conference on Systems, Man, and

Cybernetics (pp. 665-670). IEEE.

[Tang 11] J.F. Tang, L. M. (2011). Optimization of software components

selection for component-based software system development.

European Journal of Operational Research, 301-311.

[Johnson 13] Johnson, K., & Wolf, R. (2013, December 16). Federal judge rules

against NSA spying. Retrieved April 28, 2014, from USA Today:

http://www.usatoday.com/story/news/nation/2013/12/16/judge-nsa-

156

surveillance-fourth-amendment/4041995/

[Juang 08] Juang, C.-F., & Lo, C. (2008). Zero-order TSK-type fuzzy system

learning using a two-phase swarm intelligence algorithm. Fuzzy Sets

and Systems, 159, 2910-2926.

[Karnik 01] Karnik, N. N., & Mendel, J. M. (2001). Centroid of a Type-2 Fuzzy

Set. Information Sciences, 195-220.

[Karnik 14] Karnik, N. N., Liang, Q., Liu, F., Wu, D., Joo, J., & Mendel, J. M.

(n.d.). Type-2 Fuzzy Logic Software. (University of Southern

California) Retrieved May 2, 2014, from

http://sipi.usc.edu/~mendel/software/

[Kawady 14] Kawady, T. A., Elkalashy, N. I., Ibrahim, A. E., & Taalab, A.-M. I.

(2014). Arcing fault identification using combined Gabor Transform-

neural network for transmission lines. International Journal of

Electrical Power & Energy Systems, 61, 248-258.

[Ke-jun 07] Ke-jun, F., & Dian-ming, G. (2007). Using the Data Mining Approach

to Determine the Product Preferences of Target Customers.

International Conference on Service Systems and Service

Management (pp. 1-5). IEEE.

[Kirillov 14] Kirillov, A. (2014, Jan 23). AForge.Net Framework. Retrieved from

AForge.NET:

http://www.aforgenet.com/news/2013.07.17.releasing_framework_2.2

.5.html

[Kitayama 02] Kitayama, M., Matsubara, R., & Izui, Y. (2002). Application of Data

Mining to Customer Profile Analysis in the Power Electric Industry.

Power Engineering Society Winter Meeting (pp. 632-634). IEEE.

[Kliewer 00] Kliewer, G., & Tschoke, S. (2000). A General Parallel Simulated

Annealing Library and Its Application in Airline Industry.

International Parallel and Distributed Processing Symposium, (pp.

55-61). 2000.

[Kurbel 98] Kurbel, K., Schneider, B., & Singh, K. (1998). Solving optimization

problems by parallel recombinative simulated annealing on a parallel

computer-an application to standard cell placement in VLSI design.

IEEE Transactions on Systems, Man, and Cybernetics, 454-61.

[Kwan 02] Kwan, I. (2002). A Mental Cognitive Model of Web Semantic for E-

Customer Profile. International Workshop on Database and Expert

Systems Applications (pp. 116-120). IEEE.

[Lee 03] Lee, J., Sun, J., & Yang, L.-Z. (2003). A Fuzzy Matching Method of

Fuzzy Decision Trees. International Conference on Maching Learning

and Cybernetics (pp. 1569-1573). IEEE.

[Li 13] Li, M., Huang, X., Liu, H., Liu, B., & Wu, Y. (2013). Prediction of

the gas solubility in polymers by a radial basis function neural

network based on chaotic self-adaptive particle swarm optimization

and a clustering method. Journal of Applied Polymer Science, 3825-

3832.

[Li 06] Li, S., Li, Y., & Liu, Y. (2006). Effects of Process Planning Upon

157

Production Scheduling Under Concurrent Environment. Sixth World

Congress on Intelligent Control and Automation (pp. 7282-7286).

IEEE.

[Limbu 11] Limbu, D. K., Yeow-Kee, T., Ridong, J., & Tran, A. (2011). A

Software Architecture Framework for Service Robots. Robotics and

Biomimetics (pp. 1736-41). IEEE.

[Linda 11a] Linda, O., & Manic, M. (2011, August). Fuzzy Force-Feedback

Augmentation for Manual Control of Multi-Robot System. IEEE

Transaction on Industrial Electronics, 3213-3220.

[Linda 11b] Linda, O., & Manic, M. (2011, November). Uncertainty-Robust

Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel

Robot. IEEE Transaction on Industrial Information, 661-671.

[Liu 07] Liu, D.-R., Lai, C.-H., & Lee, W.-J. (2007). A Hybrid of Sequential

Rules and Collaborative Filtering for Product Recommendation.

Internation Conference on Enterprise Computing, E-Commerce, and

E-Services (pp. 211-220). IEEE.

[Liu 03] Liu, H., & Iba, H. (2003). Multi-agent learning by Evolutionary

Subsumption. Congress on Evolutionary Computation (pp. 1115-

1122). IEEE.

[Lopez 11] Lopez, C. O., & Beasley, J. E. (2011). A heuristic for the circle

packing problem with a variety of containers. European Journal of

Operational Research, 512-525.

[MacLennan 08] MacLennan, J., Tang, Z., & Crivat, B. (2008). Data Mining with

Microsoft SQL Server 2008. Hoboken, New Jersey, United States of

America: Wiley.

[Mamdani 75] Mamdani, E. H. (1975). Advances in the linguistic systhesis of fuzzy

controllers. International Journal of Man-Machine Studies, 7, 1-13.

[Mantawy 99] Mantawy, A. H., Abdel-Magid, Y. L., & Selim, S. Z. (1999).

Integrating Genetic Algorithms, Tabu Search, and Simulated

Annealing for the Unit Commitment Problem. IEEE Transactions on

Power Systems, 829-836.

[Marshall 11] Marshall, A. D. (2011). Heuristic Search. Retrieved from Cardiff

University, School of Computer Science and Informatics:

http://www.cs.cf.ac.uk/Dave/AI2/node23.html

[Martinez 10] Martinez-Soto, R., Castillo, O., Aguilar, L. T., & Melin, P. (2010).

Fuzzy Logic Controllers Optimization Using Genetic Algorithms and

Particle Swarm Optimization. In Advances in Soft Computing (pp.

475-486). Pachuca, Mexico: Springer.

[Martinjak 07] Martinjak, I., & Golub, M. (2007). Comparison of Heuristic

Algorithms for the N-Queens Problem. (pp. 759-764). IEEE.

[Matteucci 12] Matteucci, M. (2012, October 24). A Tutorial on Clustering

Algorithms Fuzzy C-Means Clustering. Retrieved April 21, 2014,

from Politecnico Di Milano:

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/cmeans.h

tml

158

[McCarthy 95] McCarthy, J. (1995). Dynamics of Software Development. Redmond:

Microsoft Press.

[McCarty 08a] McCarty, K., & Manic, M. (2008). Contextual Fuzzy Type-2

Hierarchies for Decision Trees (CoFuH-DT) - An Accelerated Data

Mining Technique. Conference on Human System Interactions, (pp.

699-704). Krakow, Poland.

[McCarty 08b] McCarty, K., & Manic, M. (2008). Descending Deviation

Optimization Techniques for Scheduling Problems. IEEE

International Conference on Emerging Technologies and Factory

Automation, (pp. 257-260).

[McCarty 08c] McCarty, K., & Manic, M. (2008). Line-of-sight tracking based upon

modern heuristics approach. 3rd IEEE Conference on Industrial

Electronics and Applications, (pp. 40-45).

[McCarty 09a] McCarty, K., & Manic, M. (2009). Adaptive Behavioral Control of

Collaborative Robots in Hazardous Environments. 2nd Conference on

Human Systems Interactions, (pp. 10-15).

[McCarty 12] McCarty, K., & Manic, M. (2012). A Proposed Data Fusion

Architecture for Micro-Zone Analysis and Data Mining. 5th

International Symposium on Resilient Control Systems, (pp. 72-76).

[McCarty 14a] McCarty, K., & Manic, M. (2014). A Database Driven Memetic

Algorithm for Fuzzy Set Optimization. 7th International Conference

on Human System Interaction. Lisbon, Portugal: IEEE.

[McCarty 14b] McCarty, K., & Manic, M. (2014). Fuzzy Contexts (Type C) and

Fuzzymorphism to Solve Situational Discontinuity Problems.

International World Congress on Computational Intelligence. Beijing,

China: IEEE.

[McCarty 13] McCarty, K., Manic, M., & Gagnon, A. (2013). A Fuzzy Framework

with Modeling Language for Type 1 and Type 2 Application

Development. The 6th International Conference on Human Systems

Interaction (pp. 334-341). Gdansk, Poland: IEEE.

[McCarty 09b] McCarty, K., Manic, M., & Stan, D. (2009). Contextual Data Rule

Generation for Autonomous Vehical Control. In T. Sobh, & T. Sobh

(Ed.), Innovations and Advances in Computer Sciences and

Engineering (Vol. 1, pp. 123-128). Bridgeport, Connecticut, USA:

Springer-Verlag.

[McCarty 10] McCarty, K., Manic, M., Cherry, S., & McQueen, M. (2010). A

Temporal-Spatial Data Fusion Architecture for Monitoring Complex

Systems. 3rd Conference on Human Systems Interactions, (pp. 101-

106).

[McCarty 09c] McCarty, K., Manic, M., Goodwin, P., & Piasecki, M. (2009).

Submission and Querying Tools for a Hydrologic Information

Systems Database. 8th International Conference on Hydroinformatics.

Concepcion, Chile.

[McConnell 96] McConnell, S. (1996). Rapid Development. Redmond: Microsoft

Press.

159

[McConnell 04] McConnell, S. (2004). Code Complete. Redmond: Microsoft Press.

[Mendel 01] Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic Systems:

Introduction and New Directions. Upper Saddle River, NJ, United

States of America: Prentice-Hall.

[Mendel 02] Mendel, J. M., & John, R. I. (2002, April). Type-2 Fuzzy Sets Made

Simple. IEEE Transactions on Fuzzy Systems, 117-127.

[Mendel 06] Mendel, J. M., & John, R. I. (2006, December). Interval Type-2 Fuzzy

Logic Systems Made Simple. IEEE Transactions on Fuzzy Systems,

808-821.

[Mendel 10] Mendel, J. M., & Wu, D. (2010). Perceptual Computing: Aiding

People in Making Subjective Judgements. Hoboken, New Jersey,

United States of American: John Wiley & Sons, Inc.

[Mendis 08] Mendis, B. (2008, March 1). Fuzzy Signatures: Hierarchical Fuzzy

Systems and Applications. Fuzzy Signatures: Hierarchical Fuzzy

Systems and Applications. Acton, Acton, Australia: Australian

National University.

[Mendis 10] Mendis, B. S., & Gedeon, T. D. (2010). Polymorphic Fuzzy

Signatures. IEEE International Conference on Fuzzy Systems (pp. 18-

23). Barcelona, Spain: IEEE.

[Mendonca 97] Mendonca, P., & Caloba, L. (1997). New Simulated Annealing

Algorithms. International Symposium on Circuits and Systems. Hong

Kong: IEEE.

[Ming-Chuan 01] Ming-Chuan, H., & Don-Lin, Y. (2001). An Efficient Fuzzy C-Means

Clustering Algorithm. IEEE International Conference on Data Mining

(pp. 225-232). San Jose, CA USA: IEEE.

[Mizumoto 76] Mizumoto, M., & Tanaka, K. (1976). Some Properties of Fuzzy Sets

of Type 2. Science Direct, Information and Control, 312-340.

[Moler 04] Moler, C. (2004). The Origins of Matlab. Retrieved from MathWorks:

http://www.mathworks.com/company/newsletters/articles/the-origins-

of-matlab.html

[Moreno 12] Moreno-Velo, F. J., Barriga, A., Sanchez-Solano, S., & Baturone, I.

(2012). XFSML: An XML-based Modeling Language for Fuzzy

Systems. International Conference on Fuzzy Systems (pp. 1-8). IEEE.

[Niu 02] Niu, L., Yan, X.-W., Zhang, C.-Q., & Zhang, S.-C. (2002). Product

Hierarchy-Based Customer Profiles for Electronic Commerce

Recommendation. International Conference on Machine Learning

and Cybernetics (pp. 1075-1080). IEEE.

[Octave 13] Octave Fuzzy Logic Toolkit. (2013, Jan 12). Retrieved from

SourceForge.NET: http://sourceforge.net/projects/octave-

fuzzy/?source=directory

[Omizegba 09] Omizegba, E. E., & Adebayo, G. E. (2009). Optimizing Fuzzy

Membership Functions Using Particle Swarm Algorithm.

International Conference on Systems, Man and Cybernetics (pp. 3866-

3870). IEEE.

[Oracle 10] Oracle. (2010). Codd's Rules. Retrieved from Oracle:

160

http://www.oracle-dba-online.com/sql/Codd_rules.htm

[Palm 98] Palm, R., & Driankov, D. (1998). Fuzzy Switched Hybrid Systems-

Modeling and Identification. IEEE International Symposium on

Computational Intelligence in Robotics and Automation (pp. 130-

135). Gaithersburg, MD: IEEE.

[Pasias 04] Pasias, V., Karras, D. A., & Papademetriou, R. C. (2004). Traffic

Engineering in Multi-Service Networks Comparing Genetic and

Simulated Annealing Optimization Techniques. International Joint

Conference on Neural Networks (pp. 2325-2330). IEEE.

[Powell 05] Powell, G. (2005). Beginning Databse Design. Hoboken, New Jersey,

United States of America: Wrox.

[Pressman 09] Pressman, R. S. (2009). Software Engineering A Practitioner's

Approach (7 ed.). New York, New York, United States of America:

McGraw-Hill.

[Purdum 12] Purdum, J. (2012). Beginning Object-oriented Programming with C#.

Hoboken, New Jersey, United States of America: John Wiley & Sons.

[Qiming 99] Qiming, C., Dayal, U., & Hsu, M. (1999). A Distributed OLAP

Infrastructure for E-Commerce. International Conference on

Cooperative Information Systems (pp. 209-220). IEEE.

[Random 13] Random House. (2013, January 06). Context. (Random House)

Retrieved January 06, 2014, from Dictionary.com:

http://dictionary.reference.com/browse/context

[Rodrigues 08] Rodrigues Neto, A. C., Lima De Campos, G. A., De Souza, J. T.,

Riosenberg, M., & Marques, V. X. (2008). Autonomous Agents and

Subsumption as Models for Simulations of Population Dynamics.

Seventh International Conference on Machine Learning and

Cybernetics (pp. 2440-45). Kunming: IEEE.

[Roychowdhury 98] Roychowdhury, S. (1998). Fuzzy Curve Fitting Using Least Square

Principles. International Conference on Systems, Man, and

Cybernetics (pp. 4022-4027). IEEE.

[Russell 09] Russell, S., & Norvig, P. (2009). Artificial Intelligence A Modern

Approach (3 ed.). Upper Saddle River, New Jersey, United States of

America: Prentice Hall.

[Schalkoff 97] Schalkoff, R. J. (1997). Artificial Neural Networks. (E. M. Munson,

Ed.) New York, New York, United States of America: McGraw-Hill.

[Sipser 12] Sipser, M. (2012). Introduction to the Theory of Computation (3 ed.).

Boston, Massachusetts, United States of America: Thompson Course

Technology.

[Skiena 10] Skiena, S. S. (2010). The Algorithm Design Manual. London:

Springer.

[Slavicek 13] Slavicek, V. (2013, January 12). Fuzzy Framework. Retrieved from

Code Project: http://www.codeproject.com/Articles/151161/Fuzzy-

Framework

[Sun 05] Sun, J., & Wang, X.-Z. (2005). An Initial Comparison on Noise

Resisting Between Crisp and Fuzzy Decision Trees. International

161

Conference on Machine Learning and Cybernetics (pp. 2545-2550).

IEEE.

[Surprise 13] Suprise 96, Fuzzy Logic and Its Uses. (2013, December 29). Retrieved

from Imperial College London:

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/jp6/article2.htm

l

[Taheri 06] Taheri, J., & Zomaya, A. Y. (2006). Fuzzy Logic. In A. Y. Zomaya,

Handbook of Nature-Inspired and Innovative Computing (pp. 221-

252). New York: Springer.

[Taxonomy 14] Taxonomy. (2014, March 27). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Taxonomy

[Tsai 11] Tsai, D.-M., & Lin, C.-C. (2011, August). Fuzzy C-means Based

Clustering for Linearly and Nonlinearly Separable Data. Elsevier

Pattern Recognition Journal, 1750-1760.

[van de Vlag 07] van de Vlag, D., & Stein, A. (2007). Incorporating Uncertainty via

Hierarchical Classification Using Fuzzy Decision Trees. IEEE

Transactions on Geosciences and Remote Sensing, 237-245.

[Vidal 13] Vidal, T., Crainic, T., Gendreau, M., & Prins, C. (2013). A unified

solution framework for multi-attribute vehicle routing problems.

European Journal of Operational Research, 231(1), 658-673.

[Wang 01] Wang, X., Yeung, D., & Tsang, E. (2001). A Comparative Study on

Heuristic Algorithms for Generating Fuzzy Decision Trees. IEEE

Transactions on Systems, Man, and Cybernetics, 215-226.

[Wang 06] Wang, Z. P., Ge, S. S., Lee, T. H., & Lai, X. C. (2006). Adaptive

Smart Neural Network Tracking Control of Wheeled Mobile Robots.

Control, Automation, Robotics and Vision (pp. 1-6). IEEE.

[Wiki 14] Wikipedia. (2014, March 31). History of Computing Hardware.

Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/History_of_computing_hardware

[Witten 11] Witten, I. H., & Frank, E. (2011). Data Mining Practical Machine

Learning Tools and Techniques (3 ed.). Boston, Massachusetts,

United States of America: Morgan Kaufmann.

[Wyne 12] Wyne, M. F. (2012). SOOD: A Simulation Tool for OODB. Global

Engineering Education Conference (pp. 1-9). IEEE.

[XE 12] XE Currency Converter. (2012, 03 26). Retrieved from XE:

http://www.xe.com/currencyconverter/convert/?Amount=1&From=Z

WD&To=USD

[Yongjie 06] Yongjie, Y., Qidan, Z., & Chengtao, C. (2006). Hybrid Control

Architecture of Mobile Robot Based on Subsumption Architecture.

International Conference on Mechatronics and Automation, (pp.

2168-2172). Luoyang.

[Yu 06] Yu, L., Wang, S., & Lai, K. (2006). An Integrated Data Preparation

Scheme for Neural Network Data Analysis. IEEE Transactions on

Knowledge and Data Engineering, 217-230.

[Zadeh 65] Zadeh, L. A. (1965). Fuzzy Sets. Information Control, 338-353.

162

[Zadeh 08] Zadeh, L. A. (2008). Is there a need for Fuzzy Logic? International

Journal of Information Sciences, 178(13), 2751-2779.

[Zamani 08] M. Zamani, H. Nejati, A. T. Johromi, A. R. Partovi, S. H. Nobari and

G. N. Shirazi, "Toolbox for Interval Type-2 Fuzzy Logic Systems," in

11th Joint International Conference on Information Sciences,

Shenzen, China, 2008

[Zal 13] Zal, F., Chen, T.-S., Chi, S.-W., & Kuo, C.-H. (2013). Fuzzy

Controller Based Subsumption Behavior Architecture for Autonomous

Robotic Wheelchair. Internation Conference on Advanced Robotics

and Intelligent Systems (pp. 158-163). Tainan: IEEE.

[Zetta 14] Zetta.net. (2014, April 12). The History of Computer Storage.

Retrieved from Zetta.net Corporate Web Site:

http://www.zetta.net/history-of-computer-storage/

[Zhao 06] Zhao, J., & Chang, Z. (2006). Neuro-Fuzzy Decision Tree by Fuzzy

ID3 Algorithm and Its Application to Anti-Dumping Early-Warning

System. International Conference on Information Acquisition (pp.

1300-1304). IEEE.

[Zheng 06] Zheng, S., Shu, W., & Gao, L. (2006). Task Scheduling using Parallel

Genetic Simulated Annealing Algorithm. Service Operations and

Logistics, and Informatics (pp. 46-50). IEEE.

[Zurada 92] Zurada, J. M. (1992). Artificial Neural Systems. St. Paul, Minnesota,

United States of America: West Publishing Company.

163

APPENDICES

APPENDIX A: MINOR CONTRIBUTIONS

Minor Contribution #1: Contextual Fuzzy Hierarchies for Decision Trees (CoFuH-DT) –

An Accelerated Data Mining Technique

M1.1: Introduction

This section presents a technique for modifying a Decision Tree using Fuzzy Type 1

& Type-C operations. The resulting contextual tree is substantially smaller and semantically

more meaningful.

Consider a robot vehicle attempting to cross difficult terrain. It has goals and

instructions to deal with a complex environment. It may have a Decision Tree providing rules

on how to react to certain obstacles, what distance to maintain, or how quickly to accelerate.

These rules may need to deal with all kinds of factors such as weather, terrain, and other

vehicles, all of which contribute to the overall decision process.

What if, on the other hand, there was an environment feature that overwhelmed the

decision-making process so that most or all other factors had little to no relevance. Suppose,

for instance, the vehicle was on a steep slope. Turns to the right or left might result in a

rollover so any instruction or rule set involving right or left turns suddenly loses all meaning.

Having to search and prune a Decision Tree with millions of nodes or to create a special

branch specifically for this possibility requires significant resources. This chapter presents a

solution to that and other problems faced by Decision Trees, particularly when used for data

mining.

Organizations make extensive use of data mining techniques in order to define

meaningful and predictable relationships between objects [Liu 07]. Retailers use these

techniques to create recommender systems that seek to bring products and customers together

[Qiming 99], [Kitayama 02], [Ke-jun 07]. Game designers employ them in order to create

worthwhile and realistic adversaries. Zoologists use them to create environments in which

animals can thrive. One of the most widely employed methods for data mining is the

Decision Tree. The Decision Tree is created using algorithms, such as ID3, that take a set of

data points and build a tree based upon the content therein [Zhao 06], [Fa-Chao 03], [Niu 02].

164

Typically a Decision Tree is viewed as a set of conditions and probabilities that, when

combined, represent a node. Examining the tree usually means traversing it in a depth-first or

breadth-first search, looking for nodes to prune in order to optimize the search. Instead,

consider the Decision Tree as a set of elements and filters, or conditions. Each node

represents a subset of its parent, created by applying one or more conditions to the parent set.

The sequence of conditions represents the “path” to a given node.

N0

N3

N4

N2

N1

C
1

C2

C4

C
3

N5

C5

Figure 79 - A basic, horizontal Decision Tree

Hence, in Figure. 79, the Decision Tree node, N1, represents a sample of data for

which the condition C1 is applied to N0: N1 = C1(N0). N3 then becomes the condition C3

applied to its parent node, N1: N3 = C3(N1) = C3(C1(N0).

Generically, any given node, Nj, is the resulting set derived when applying its “path”

condition CNj to its parent:

Nj = Ck(NjParent) j=1,..,jmax, k=1,..,kmax (M1.1)

where jmax is the number of nodes and kmax is the number of conditions. For any given node,

one can determine the conditions, or “path” which lead to it and derive rules to apply this

node “knowledge”. This knowledge takes the form of probabilistic events specified within

the node, such as a purchase or appearance of a threat. Rules can then associate an event with

some set of conditions and dictate an appropriate action [Adomavicius 01], [Kwan 02], [Dai

07].

165

DEFINE RULE rule_name

ON event

IF condition

DO action (M1.2)

The conditions describe the relationships between node elements whether obvious,

such as customers in a store, or more obscure, such as peanut butter and a bottle of cleaner;

attempting to draw a meaningful relationship between them. For example:

IF Customer BUYS Computer THEN

 Customer BUYS Printer 25% (M1.3)

The above condition tells a store manager that a customer who buys a computer will

also buy a printer 25% of the time. This indicates that there is a high likelihood that any

given customer who buys a computer will also be interested in purchasing a printer. The

manager may choose to act upon this information by bundling printers and computers together

in a special to encourage more printer purchases. Using a Decision Tree, the manager now

knows the probabilities for any given set of conditions and sales. With that information, he or

she can create rules that stand a better chance of improving sales.

The CoFuH algorithm extends traditional Fuzzy Type 1 sets through the use of Fuzzy

Type-C hierarchies called “contexts”. In doing so, it both simplifies the underlying data set as

well as makes it more semantically precise under the higher-level, polymorphic implication of

its context. This is accomplished using fast, fuzzy-set based operators and rules that remove

uninteresting data points that are “out of context” while enhancing what remains. The end

result is a smaller, yet more precise and meaningful data set. This chapter demonstrates the

application of this technique to the Decision Tree, taking a large tree, fuzzifying it and

applying contexts so that the resulting tree is smaller by orders of magnitude, yet meaningful.

The Contextual Fuzzy Hierarchies algorithm for the Decision Tree (CoFuH-DT) is then used

to quickly prune some sample Decision Trees and create a meaningful relationship between

two very different objects, such as in the example case of a jar of peanut butter and a bottle of

window cleaner.

166

M1.2: Problem Statement

For data with many characteristics or non-intuitive ones, it can be difficult to build a

manageable and meaningful tree because of the following:

1. Difficulty of analysis.

For the manager of an online store, as an example, understanding the relationships

between and among thousands of customers, each with their own tastes and

preferences and products, means having to analyze a Decision Tree with potentially

millions of nodes. Simply creating and managing rules for such a large number of

nodes requires substantial computer resources. OnLine Analytical Processing (OLAP)

systems [Qiming 99] help to manage huge datasets but do little to address other issues.

2. Semantic differences.

Experts often disagree in rule definition [Mendel 02], [Hanss 05]. For example, what

differentiates a “good” customer from any other? Is a “bargain shopper” someone

who always buys items that are on sale or someone who only buys items that are on

sale?

3. Relationships may be dynamic.

Some relationships between products change within a given context, e.g. turkey and

cranberry sauce are closely associated in the United States during the Thanksgiving

holiday but may not be closely related otherwise.

4. Relationships can vary over time.

In the summer, for example, a sleeping bag might be associated with a swimsuit, bug

spray and a fishing pole; while in the winter that same sleeping bag may be more

closely associated with a parka, snow shoes and gloves.

5. Decision Trees can be difficult to interpret.

Many paths are of no use at all; for instance a node that says ALL BABIES ARE

BORN TO PREGNANT WOMEN does not provide much useful information. Other

paths may be too obscure to define readily. An example of this is that of a woman

buying certain food items and cleaning supplies. In her mind, these items are closely

related in the context of “monthly shopping”. The Decision Tree may reflect this;

167

however, to a retailer such an association may not be so obvious, thus looking more

like an outlier.

In a real world situation involving many products and customers with differing tastes,

the number of nodes in a Decision Tree with n dimensions is determined by the cross product

of the number of elements e of each dimension di used to branch:

Total number of nodes in Decision Tree =

n

i

di

1
 (M1.4)

The store manager is probably going to be faced with very large Decision Tree.

Now suppose there is a node on the tree containing the woman’s purchase of food and

cleaning supplies. The system produces a rule to address the case of the peanut butter to

window cleaner relationship:

DEFINE RULE PB_Cleaner

ON Customer PURCHASE

IF PURCHASE is PeanutButter

DO Recommend Window Cleaner (M1.5)

This rule does little to describe to the manager the overall context of the purchase and

how best to take advantage of this information because there is no natural or obvious

relationship between the objects to assess. Simply adding these rules to an already existing

rule set means having to manage a substantially larger number of rules. More rules lead to

ever more complex relationships as well as greater difficulty deriving meaningful information

from them.

Fuzzy Type 1 Decision Trees were created in an attempt to address some of these

issues [Lee 03], [Wang 01] but run into difficulty dealing in areas where even the semantics

themselves are called into question [Mendel 02]. In Fuzzy Type 1 form, Decision Trees

simplify sets of nodes but do little to address the overall complexity of the tree itself.

168

Hybrid approaches [Liu 07], behavioral abstractions [Kitayama 02], [Haruechaiyasak

05], Online Analytical Mining (OLAM) [Qiming 99], [Adomavicius 01], [Kwan 02] and

multi-level association rules [Niu 02], [van de Vlag 07] have also been devised to deal with

these issues. While successful, these approaches consume significant computing resources

and can end up creating numerous, multi-layer and often difficult to understand conditions. A

modification of rule PB_Cleaner (M1.5) to add a multi-level association and a monthly

shopping hierarchy might end up looking like the following:

DEFINE RULE PB_Cleaner_Multi

ON Customer PURCHASE

IF PURCHASE is Peanut Butter

AND SHOPPING_TYPE IS MONTHLY

AND DAY IS First Saturday of Month THEN

DO Recommend Window Cleaner

OR

IF PURCHASE is Window Cleaner

AND SHOPPING_TYPE IS MONTHLY

AND DAY IS First Saturday of Month THEN

DO Recommend Peanut Butter (M1.6)

An interpretation of this very simple rule is that peanut butter and window cleaner are

somehow related, but the type of relationship is not easily discernible.

Unfortunately, typical real world situations are usually more complex. Relationships

trying to account for many dimensions, dimension elements and corresponding Decision Tree

nodes become more difficult to describe. As a result, rules themselves become more difficult

to generate and understand. Data growth leads to significant growth in the corresponding

Decision Tree but without the corresponding growth in usefulness.

Suppose the virtual store manager wishes to give his customers the best shopping

experience possible. He has lots of statistics about past purchases and uses Decision Trees to

breakdown the types of purchases his customers made. There are lots of things he must take

into account, such as how often they shop, what sort of things they buy when they come in,

169

what sorts of other products they might be interested in and so on. His initial Decision Tree

might consist of the following, Customer Type (CT), Product Type (PT), Relative Product

Price (RPP), Day of Week (DW), Time of Year (TY), Customer Age (CA), Geographic

Location (GL) as shown in Table 15.

Table 15 - Dimensions for a virtual store manager

Dimension Sample Values

CT normal, bargain, premium, bulk, impulsive

PT food, cleaning, household…

RPP bargain, normal, sale, premium

DW Sunday, Monday, … Saturday

TY Jan 1, Jan 2…Dec 31

CA 1, 2, 3, …100

GL address, city, postal code

Even with a small average number of elements, e.g. 10 per dimension, the total

number of nodes generated from this configuration could run into the millions. In addition, a

large percentage of these nodes, such as those focusing on time of year, contain very little

useful information most of the time; but at other times become very important. Removing

those uninteresting nodes may still leave a very large tree with a correspondingly large

number of rules to manage. By fuzzifying the tree and overlaying strategic contexts

according to the algorithm presented, the manager can reduce and transform the complexity of

the generated rules to a more easily understood and manageable state.

170

M1.3: CoFuH-DT – Contextual Fuzzy Hierarchies For Decision Trees Algorithm

The CoFuH-DT algorithm presented in this section consists of the following two

phases: deconstruction of a Decision Tree into datasets and filters, then fuzzification of both

datasets and filters resulting in a series of fuzzy sets. Fuzzy Type-C membership functions,

representing one or more newly introduced “contexts” are applied to the sets; separating via

fuzzy arithmetic those elements that are in context from those out of context. From the

remaining fuzzy sets a smaller, in context Decision Tree is constructed as demonstrated by

Figure 80.

Fuzzy -1

Fuzzy-2

Fuzzy-2

Fuzzy-2
Nodes

Path/Filters

Contexts

Fuzzy-2

Fuzzy-2

Contexts

De-

Fuzzification

Figure 80 - CoFuH-DT reduction of Decision Tree

The steps of the CoFuH-DT algorithm is as follows:

Step 1. Condition creation

Let N1..Nn be the set of nodes generated through data mining techniques such as ID3

[Haruechaiyasak 05], creating a Decision Tree for the original data set D.

N= {N1, N2, …, Nn} (M1.7)

Now let R1..Rn be the set of rules generated by applying individual paths to each node

to its data as demonstrated by Figure 81.

171

N0

N3

N4

N2

N1

C1

C2

C4

C3

N5

C5
Data

R2

R3

Rn

...
Nn...

..
.

ID3

Figure 81 - Rule Creation using Decision Tree

Step 2. Condition Normalization

Create a function f to normalize a set of conditions and corresponding rules CR by

mapping each Ci to the range [0, 1], then translating those values to a normalized set Cnorm:

Cnorm = {f(Ci), Ci ∈ CR, f(Ci) ∈ [0, 1]} (M1.8)

N0

N3 N4

N2N1

C
1

C
2

C
4C

3

0% Decision

100%

Decision

C/R1 C/R2 C/R3 C/R4

Cnorm1

Cnorm2

Cnorm3

Cnorm4

Figure 82 - Normalization of a Decision Tree

Step 3. Condition fuzzification

Fuzzification of the normalized values occurs by extending those values using Fuzzy

Type 1 membership functions and fuzzy hedges in order to ensure appropriate representation,

if necessary, across the entire set and thereby generate the Fuzzy Type 1 set μCnorm.

172

Discrete points e.g. a decision whether to recommend purchases of certain foods such

as bread, ham, etc. now become a series of fuzzy triangles as demonstrated in figure 83 with

the original crisp conditions represented as a series of ranges at the base of each triangle.

Bread

Ham

Mayo

Lettuce

Bread Ham Mayo
Lettuce

False

True

0% Decision

100%

Decisioin

PB

PB

C/R1 C/R2 C/R3 C/R4 C/R5

C/R1

C/R2

C/R3

C/R4

C/

R5

Figure 83 - Fuzzifying customer’s Decision Tree

In cases where there are multiple Boolean conditions for a node we can apply Zadeh’s

operators AND and OR for fuzzy unions and intersections for conditions C1 … Cn

∩ 𝛍𝐂𝐢 = 𝐦𝐚𝐱 (𝛍𝐂𝟏 , 𝛍𝐂𝟐 , … , 𝛍𝐂𝐧)

∪ 𝛍𝐂𝐢 = 𝐦𝐢𝐧 (𝛍𝐂𝟏 , 𝛍𝐂𝟐 , … , 𝛍𝐂𝐧) (M1.9)

Further, more extreme examples can make use of mean and weighted mean or other

general algebraic operators [Cox 05].

Step 4. Context creation

Create fuzzy sets using a method such as that demonstrated in Chapters 3 and 4

describing “contexts” which group items that may or may not have a natural association but

do relate within a given broader context. Contexts also can bring together elements of

different clusters while at the same time preserving cluster identity as shown in Figure 84.

For the Decision Tree, this has the effect of “pruning” all those nodes which fall out of

context as demonstrated in Figure 85.

173

Context

Cluster 3

Cluster 2Cluster 1

Figure 84 - Context unifying 3 clusters

Figure 85 - Nodes pruned by context

Using fuzzy, new dimensions of uncertainty are added, allowing new specifications to

exist and altering existing ones. In the example of the woman doing her monthly shopping,

the context and new dimension of uncertainty “monthly shopping” alters the notion of both

“food” and “cleaning supplies” by increasing membership in “food” for those items which are

bought only occasionally while reducing it for others. At the same time, the context draws a

link between food and cleaning supplies imposing a hierarchy of “monthly shopping” on top

of both. Hence the resulting Fuzzy Context, “monthly shopping” produces a new set

consisting of “monthly food” and “monthly cleaning supplies” whose original primary sets

locally are still regarded as “food” and “cleaning supplies”. The membership of any item in

any base set, e.g. food, now assumes a more polymorphic representation dependent upon one

or more contexts in which it happens to find itself.

174

False

True

Decreasing

Frequency

(Visits per

month)

Daily Weekly Monthly

Figure 86 - Context of shopping type.

Here the Fuzzy Context contains the values “daily”, “weekly” and “monthly”.

Adding additional dimensions is a matter of creating and applying other contexts. For

example, suppose the manager wanted to take into account various holiday periods. Now new

contexts such as “Thanksgiving” or “St. Patrick’s Day” are overlaid onto the Decision Tree to

create a potentially different representation for the nodes underneath.

False

True

Decreasing
Frequency
(Visits per

month)

Daily Weekly Monthly

Figure 87 - Fuzzy deformation under a context.

Step 5. Fuzzy Type-C application of contexts to fuzzified conditions

Fuzzy Type-C contexts extend the newly created Fuzzy Type 1 set by adding an

additional dimension similar to a Nonstationary Fuzzy System (NFS). The context creates an

NFS set Ĉ [Garibaldi 08], whose members are the combination of the context functions over

175

the original Fuzzy Type 1 membership functions over the original conditions shown in

Equation (M1.9). Applying the Zadeh product operator across the domain of Ĉ eliminates

those sets and the underlying conditions which are “out of context”. Setting appropriate

minimum memberships thresholds can serve to further reduce the final result space RC:

RC = ∩ Ĉ (M1.10)

This has the desired effect of pruning those nodes completely out of context as well as

marginalizing those elements which are only of minimal interest.

For the retailer with the customer doing monthly shopping, de-fuzzification of the

remaining conditions yields a much smaller Decision Tree. In addition, by using the context

applied over the remaining conditions, the conditions take on new meaning within that

context. The rule developed previously in equation M1.6 can now be generalized to:

DEFINE RULE ShoppingType

ON Customer PURCHASE

IF PURCHASE IS MonthlyContextItem THEN

DO Recommend Other MonthlyContextItems (M1.11)

This new rule is both simpler to implement as well as more descriptive and intuitive.

It also takes into account the contextual components of the shopping trip, that of a regular

monthly shopping day. In the case of the peanut butter and window cleaner, while distinct

and very different types initially, they are united under the context of “monthly shopping”.

176

M1.4: Test Examples

The following test examples were used to demonstrate the effectiveness of the

algorithm when applied to real world situations. Developing appropriate contexts and then

applying them to the underlying dimension elements results in a significant decrease in the

number of “in context” elements as well as the resulting Decision Tree.

Example 1. Trivial Case

In the trivial case where the context has no effect on the underlying fuzzy conditions,

for example “monthly shopping” on a list of only monthly shopping items, no deformation

occurs and any set operations and the set of rules reduces to that described in equation M1.10.

Example 2. Woman in store

Suppose a woman customer comes into the virtual store to buy some groceries. The

Decision Tree for this woman is based upon Table 15. A traditional Decision Tree would

consist of 1.4 million potential nodes, depending upon the available data. Pruning the tree

using standard methods requires traversing a large number of nodes, investigating each node

for applicability. However, creating a context of “Monthly Shopping” (MS) and applying the

fuzzification processes a number of things occur:

1. The “impulsive” customer type (CT) falls out of context as MS is considered

planned, thus reducing the size of CT from 5 to 4.

2. Many of the product types (PT) that are considered impulse buys (e.g books,

candy) or quickly perishable items (e.g. bread, lettuce) or irregular purchases (e.g

nails), daily purchases, weekly purchases and holiday items fall out of context

reducing the size of the PT from 10 to 4.

3. Relative Product Price is unaffected by MS.

4. Since MS occurs on the weekend, Day of Week (DW) values Monday through

Friday fall out of context reducing the DW dimension from 7 to 2.

5. Time of Year (TY) is unaffected

177

6. Customer Age (CA), the context MS usually involves heads of household which

eliminates certain age categories such as “Under 10”, “Young Adult 10-20”, bringing

the CA category from 10 to 8.

7. Geographic Location (GL) is unaffected.

Even more dramatic would be a context such as “Holiday - St. Patrick’s Day”. The

types of products shoppers celebrating St. Patrick’s Day require comprise a very small group

and the type of individual celebrating the holiday is likewise limited. The resulting Decision

Tree is reduced considerably. The final node totals of customer Decision Trees for “Monthly

Shopping” and “Holiday – St. Patrick’s Day” are shown in Table 16 and figure 88.

Table 16 - Example 2: Node Reduction Under Contexts

Traditional DT Ctx - Mnthly Shopping Ctx - St. Patrick’s Day

Dimensions

In Context

7 7 7

Elements

In Context

51 42 24

Potential

Nodes

1.4x106 9.6x104 1024

Figure 88 - Node growth under normal conditions and contexts.

178

Example 3. Plant manager

The manager of a plant uses a Decision Tree to decide how to set up the production

line, taking into account inventory, backlog, capacity and other dimensions. For sake of

simplicity, limit to 10 elements per dimension. Creating holiday contexts allows the manager

to tailor production to meet the changing demands as holidays come and go. Other contexts

such as “Preferred Customer” and “Holiday Schedule”, quickly reduce the number of

possibilities to a small number of “in-context” production options. An example is the

“Preferred Customer” context, whose implementation eliminates all low priority, non-

customer components, while the context “Holiday Schedule” eliminates those components not

purchased or shipped during the holiday.

Table 17 - Node Reduction Under Contexts

Traditional DT Ctx Pref. Customer Ctx Holiday Sched.

Dimensions

In Context

7 7 7

Elements

In Context

70 27 33

Potential Nodes 1x107 4400 3.6x104

M1.5: Conclusion

As shown in Examples 2 and 3, the use of contexts significantly reduces the number of

“in context” dimension elements. In Example 2, the original number dropped from 51 to 42

to 24 for “St. Patrick’s Day”. The reductions were even more dramatic when applied to the

number of potential nodes of the Decision Tree, dropping from 1.4x106 down to 1024,

resulting in a reduction of approximately 3 orders of magnitude.

Whether an e-commerce retailer, behavioral scientist, intelligent controller, or

manager of a production plant; each relies upon Decision Trees to formulate rules for actions.

However, outliers and large combinations of conditions can create difficult and confusing sets

179

of rules that have limited applicability. Current solutions attempt to alleviate this problem

through clever techniques or sheer brute force to derive meaning but have difficulty if

relationships are numerous or non-intuitive.

As described in [Han 11], decision trees are constructed using a technique whereby

“information gain” and “entropy” determines how nodes are split and what attributes are

passed onto descendent nodes (C4.5 being extensions of original ID3). The total possible

number of nodes in a decision tree with n dimensions is calculated by taking the cross product

of the number of elements e of each dimension 𝑑𝑖 used to branch.

Potential nodes in Decision Tree = ∏ 𝑑𝑖
𝑛
𝑖=1 (M1.12)

Pruning a decision tree requires recursively drilling down and evaluating each node

for “inappropriateness” until one is found, at which point it and its children are eliminated. It

is an iterative process with a worst case of having to evaluate each node. CoFuH-DT uses

fuzzy evaluation to generate smaller, more directed decision trees under fuzzy contexts where

𝑐𝑖 is the number of dimensions in context.

Potential nodes in Contextual Decision Tree = ∏ 𝑐𝑖
𝑛
𝑖=1 (M1.13)

As a result a “contextual” tree, DTc will be at worst no larger than the original tree, DT

and smaller if any dimensions are “out of context”.

𝐷𝑇𝑐 ≤ 𝐷𝑇 (M1.14)

The fuzzy methods demonstrated in this chapter improve upon these techniques by

introducing new dimensions of uncertainty serving to both reduce the number and complexity

of rules as well as tie non-intuitive relationships together within a larger meaningful context.

The examples demonstrated many orders of magnitude improvement of subsequent Decision

Tree construction over traditional methods.

180

Minor Contribution #2: Contextual Derivation From Decision Trees (CoT-DT) Based on

Advanced Data Mining Techniques and Intelligent Control

M2.1: Introduction

Effective data mining requires the ability to quickly sift through mountains of data and

extract meaningful kernels of knowledge [Han 11]. This new knowledge manifests in new

rules for intelligent systems from e-commerce to intelligent controllers. There are a number

of Advanced Data Mining Techniques such as Bayesian networks, Artificial Neural Network

(ANN) classifiers, distance and fuzzy clustering techniques and others which are applied to

the data in order to derive meaningful associations [Witten 11], [Adomavicius 01]. One of the

more popular techniques is the Decision Tree.

Figure 89 - A typical Decision Tree used for data mining

Decision Trees are built using techniques such as ID3 and C4.5 [Han 11], [Zhao 06].

These Decision Tree induction algorithms recursively “grow” the tree, starting from a single

parent node containing a set of data, by selecting an attribute from among a set of candidate

attributes. By using this attribute and distributing the data into smaller segments, new child

nodes are generated, as demonstrated in Figure 90. ID3 uses a simpler notion of “information

181

content” while C4.5 attempts to overcome the bias of uneven sampling by normalizing across

attributes.

Node n

Attribute #1Attribute #2

Attribute #3

Attribute #4

Node

n + 1

Attribute #1

Male

Attribute #2

Attribute #3

Attribute #4

Node

n + 2

Attribute #2

Attribute #3

Attribute #4

Attribute #1

Female

Figure 90 - A Decision Tree node generation node with attributes

The tree is grown in the following steps:

1. Determine appropriate information “threshold”, designed to yield optimal

“information content”.

2. Choose attribute from among set of attributes with maximum “information gain”

3. If information gain from attribute exceeds threshold, create child nodes by splitting

attribute accordingly [Sun 05].

ID3/C4.5 determines the maximum gain by choosing the attribute which will yield the

most “information content” or clear differentiation of the data with a minimum amount of

noise or randomness. If the gain is above a predetermined threshold, i.e. there is sufficient

differentiation that new knowledge is likely, then the node will produce one or more leaf

offspring, with each leaf containing a subset of the parent node data partitioned along the

attribute.

182

As a simple example of this technique, consider the node n in Figure 90 as

representing a data sample with 100 college students, 50 male and 50 female. Now consider

the Attribute #1 as Gender. Gender achieves maximum gain because it affects every data

point and partitions the data into subsets of equal size. In contrast, a sample of 99 female

students and 1 male student generates little gain.

As figure 90 shows, by applying the Decision Tree algorithm to node n, 2 new nodes

are generated in the tree along the Gender attribute, one for male and one for female.

This process continues recursively for each child node until no new nodes can be

produced.

Decision Trees are a very effective tool for data mining [Han 11] but suffer from some

drawbacks:

1. Noise

Non-systemic errors in either the data or attributes can cause the induction method to

generate spurious nodes, generating unnecessary complexity or creating a tree where

meaningful paths are obscured [Yu 06], [Sun 05], [Zhao 06].

2. Large trees

Large numbers of attributes or overly granular attributes can quickly grow trees to an

unmanageable size. Initial pruning of trees by brute-force threshold limits creates a

likelihood that meaningful but small relationships and non-intuitive relationships will

be overlooked or skipped altogether [McCarty 08a].

3. Applicability

The uncertain nature of both attributes and data often generate trees that have little

applicability to real-world decision making [Zhao 06].

4. Slow to search

Large tree searches for rule generation, using methods such as depth-first or breadth-

first, are very expensive and time-consuming [Russell 09],[Cormen 09].

A number of approaches have been proposed to address these issues, such as using

Fuzzy Trees [Zhao 06], introducing Support Vector Machines [Wang 06], or using the

Contextual Fuzzy Type-C Hierarchies for Decision Trees (CoFuH-DT) method. The CoFuH-

DT is fuzzification of the Decision Tree followed by application a Fuzzy Type-C context.

183

Under CoFuH-DT, Decision Trees can be pruned quickly via fuzzy set operators and

understood in the context of polymorphic sets of rules.

However, in order for CoFuH-DT to be effective, contextual information must exist

that can be applied to the Decision Tree. Simply running ID3 or C4.5 over the data is

unlikely to produce anything but a more or less detailed tree; so a different, hybrid technique

is required. Advanced Data Mining Techniques (ADMT) such as Artificial Neural Networks

(ANN) are an effective means of generating classifications and learning about patterns that

may contain sparse or noisy data [Han 11]. As such ADMTs are an effective tool for

generating a range of candidates for a Fuzzy Type-C context.

Figure 91 - Context spanning several nodes

This contribution demonstrates application of several ADMTs to a Decision Tree

generated from a sample data set. It shows how the resulting contexts are available for use by

CoFuH-DT.

184

M2.2: Problem statement

Consider a bank wanting to decide which customers represent the best credit risk.

There are many types of customers with different income and backgrounds that present

widely varying degrees of risk. Some will pay off their loans on time, others will be early,

others late and still others will default. The loan officer decides to generate a profile of his

customers using a Decision Tree. The attributes of the data used could end up looking like

that of Table 18.

Table 18 - Attributes of a typical customer

Attribute Potential Values

Income Many

Collateral 6

Age 7

Education 6

Occupation Many

Children 5

Gender 2

Region Many

Marital Status 4

Cars 4

Owns Home 2

% Down Payment 5

Credit Score Many

By limiting the number of distinct ranges of values of Income, Occupation, Region

and Credit Score to just 10, a Decision Tree could still have over 4 billion potential nodes.

Making things even more difficult is that some values, like Income and Credit Score, have

varying weights in lieu of other factors, such as the down payment and payment history.

Other values, such as Children appear to have little relevance at all but may actually be very

important in accurately assessing risk.

185

The loan officer wanting to create rules using the resulting Decision Tree is faced with

a dilemma. He must choose between analyzing a huge tree in the hope of gaining the

necessary insight, or setting the information gain threshold high enough to reduce the tree to a

manageable number of nodes. In the first case, resources and time required in order to

process and analyze a huge base of nodes can be substantial. In the second case, by

increasing the threshold for the Decision Tree algorithm, the resulting tree may be smaller and

more manageable, but a lot of information could be lost in the process, potentially leaving the

loan officer with no reliable way to measure a significant segment of the market.

CoFuH-DT presents an alternative by combining the efficiency of the Decision Tree

with the power of Fuzzy Type-C contexts. Generating the contexts can be a difficult task, but

is made easier through the use of ADMTs such as an Artificial Neural Network (ANN). This

is accomplished by applying the ANN to the resulting datasets representing the nodes of the

Decision Tree and thus generating a series of classifications, or contexts. These contexts can

then be applied to the fuzzified Decision Tree using CoFuH-DT. The resulting Decision Tree

is smaller, more semantically concise and appropriate to the situation but without the loss of

information associated with traditional methods.

M2.3: CoT-DT Algorithm

Contextual Derivation from Decision Trees (CoT-DT) works as follows: Consider the

dataset S; applying ID3 or C4.5 or other algorithm to generate a Decision Tree produces a DT

with number of nodes M with N leaf nodes. Each leaf node ni of the set of all leaf nodes N

contains a subset si of the dataset S.

∀𝒏𝒊 ∈ 𝑵, 𝒇(𝒏𝒊) = {𝒔𝒊 ⊂ 𝑺}, ∪ 𝒔𝒊 = 𝑺, 𝒊 = 𝟏, . . , 𝑵 (M2.1)

where f(ni) is a filter applying all the attributes of ni against S. Then let the distance fd(ni, ni+1)

between any two nodes ni, ni+1 be the number of intermediate nodes that must be traversed

when traveling from ni to ni+1 as demonstrated in Figure 92.

186

n1

n2 n5

n3 n4 n6

fd (n
4 ,n

6) =
 3

f d(
n 3

,n
4
) =

 1

Figure 92 - Calculating distance between nodes

Unlike traditional classification using ANNs or other ADMT, which seeks to create

clusters of data based upon some measure of “closeness”, context generation seeks to discover

relationships that exist between sets of data within a given set of nodes. This is accomplished

by examining the intersection of a particular classification across a set of nodes.

“Interestingness” is a function of the node and data characteristics for that classification.

Whenever the ADMT discovers a cluster that spans more than one node, a context is

possible. The algorithm’s steps are as follows:

1. Decision Tree generation

2. Node selection

3. ANN classification

4. Context Evaluation and Creation

Step1. Decision Tree generation.

Use ID3, C4.5 or other algorithm as described in equation (M2.1) to determine the

information threshold and generate the Decision Tree from the dataset S shown in Figure 93.

187

Information

Gain

Threshold
Dataset

S

Figure 93 - CoT-DT Step 1 - Creation of Decision Tree

Node generation will depend upon how high or low the information threshold is set.

The Decision Tree will contain M nodes and N leaf nodes.

Step 2. Node Selection.

Look at the Decision Tree from the point of view of a set-based operator. Each leaf ni of the

tree encompasses a subset 𝑠𝑖 ∈ 𝑆 demonstrated in Figure 94.

ni

Att #1

Att #2

Att #3

Att #4

S

Si

Att1 + Att2 + Att3 + Att4

Figure 94 - Nodes of Decision Tree produce subset si of original set S.

Figure 94 shows how the collection of attributes A of the leaf combine to create a filter

that when applied to S, produces the data set si of the leaf.

∀𝒏𝒊𝝐𝑵, 𝑨𝒏𝒊(𝑺) = 𝒔𝒊, 𝒊 = 𝟏, . . , 𝑵 (M2.2)

188

Node selection then combines si into subsets of S for analysis in Step 3.

Step 3. ADMT classification.

From the si created in Step 2, use, in this case, a multilayer, feed-forward, Error-Back

Propagation Artificial Neural Network (EBP-ANN) to create a set of data clusters C as shown

in figure 95.

ni ni+1 ni+2 ni+3 ni+k…..

c1
c2

cp

Ck
Set of Clusters

{si} {si+1} {si+2} {si+3} {si+k}…..

Individual

Clusters

Leaf Nodes

Node

Sets

ANN

Figure 95 - ANN classifier applied to leaf node sets produces clusters.

Each resulting cluster cp in the set of generated clusters Ck represents a degree of

“closeness” between a series of data points 𝑠�́�. 𝑠�́�represents the combination of leaf node si

created in Step 2 and is a subset of S.

𝒔�́� ⊂ 𝑺, 𝒈(𝒔�́�) = {𝒄𝒑| ∪ 𝒄𝒑 = 𝑪𝒌 𝒑 = 𝟏, . . , 𝒌} (M2.3)

where 𝑔(𝑠�́�) is an ADMT such as an ANN that when applied to 𝑠�́� produces the set of

clusters Ck.

𝑠�́�

189

Figure 96 demonstrates how cluster creation using an ANN combines subsets of a

node set into one or more unique clusters.

Cluster 1Cluster 2 Cluster 3

Decision

Tree

S

Figure 96 - ANN cluster generation

Step 4. Context Evaluation and Creation.

Compare each cluster cp ϵ Ck to each node ni. Denote the non-empty intersection of cp

with each si in ni as the element ej.

𝒆𝒋 = 𝒔𝒊 ∩ 𝒄𝒑 , 𝒆𝒋 ≠ ∅ (M2.4)

The union of the node elements ej over all or some subset of the leaf nodes N is called

a cluster-span as shown in Figure 97.

190

Figure 97 - Cluster span over several nodes

Each single node element ej of the cluster span consists of a “coverage”. Let fdp(ej)

represent the number of data points in ej, and let fdp(si) represent the total number of data

points in the node’s corresponding data set si. The coverage fcvg(ej) is the ratio of the number

of data points in ej to the number of data points in si.

𝒇𝒄𝒗𝒈(𝒆𝒋) =
𝒇𝒅𝒑(𝒆𝒋)

𝒇𝒅𝒑(𝒔𝒊)
 (M2.5)

Let fd(ei,ej) be the distance between the corresponding nodes for ei and ej as illustrated

in Figure 97. Let fdm(ej) represent the greatest distance between the node containing the

element ej and any other node in the cluster-span.

𝒇𝒅𝒎(𝒆𝒊) = 𝒎𝒂𝒙 (𝒇𝒅(𝒆𝒊, 𝒆𝒋), ∀𝒆𝒋 ⊂ 𝒄𝒑, 𝒊 = 𝟏, . . , 𝒏, 𝒋 = 𝟏, . . , 𝒏, 𝒑 = 𝟏, . . , 𝒌 (M2.6)

Further, let “interestingness” of an element fint(ej) be a function of its coverage

multiplied by its distance function.

𝒇𝒊𝒏𝒕(𝒆𝒋) = 𝒇𝒄𝒗𝒈(𝒆𝒋) ∗ 𝒇𝒅𝒎(𝒆𝒋) (M2.7)

In addition any cluster-span containing some non-empty set of elements e1..ej also

creates a “context”, CTi. The context is available to be fuzzified and used in CoFuH-DT.

∪ 𝑒𝑗 = 𝑐𝑝

191

𝑪𝑻𝒊 = ∪ 𝒆𝒋 (M2.8)

Note that if a given context CTi has only one element, the distance function for that

element equals 0 as does the measure of interestingness for the context. The context may be

particularly interesting but belonging to a single node it adds no new information to the

Decision Tree. Hence for any given context CTi to be “interesting” its corresponding cluster-

span must have at least 2 elements. Interestingness of an entire context, Fint is the weighted

sum of the interestingness of its corresponding elements.

𝑭𝒊𝒏𝒕(𝑪𝑻𝒊) = ∑ 𝒘𝒋𝒇𝒊𝒏𝒕(𝒆𝒋),𝒋 𝒆𝒋 ⊂ 𝒄𝒑 ∈ 𝑪𝒌, 𝒋 = 𝟏, . . , 𝒑, i=1,..,k (M2.9)

where wj represents a given weight assigned to the corresponding ej. Weights are a means to

take into account the relative size or relevance of a node or to reduce the impact of noisy data.

As an example consider the following basic Decision Tree with four leaf nodes as

shown in Figure 98. Each leaf node contains exactly 100 elements.

1 2 43

Figure 98 - Sample Decision Tree with cluster-span

192

Now consider a cluster-span which contains 50 elements from nodes 1 and 2 and

another 25 elements from node 4. Assuming all nodes are weighted equally, by equation

M2.9, its corresponding context “interestingness” is calculated as follows:

fint(e1)= 3 x .5 = 1.5,

fint(e2) = 3 x .5 = 1.5,

fint(e3) = 3 x.25 = .75

𝑭𝒊𝒏𝒕(𝑪𝑻𝒊) = 𝟏. 𝟓 + 𝟏. 𝟓+ . 𝟕𝟓 = 𝟑. 𝟕𝟓 (M2.10)

Contexts with sufficient interestingness may now be employed with CoFuH-DT to perform

fuzzy-set operations, classification and context pruning.

M2.4: Test Examples

A sample database provided for users of Microsoft’s SQL Server 2005 Analysis

Services contains approximately 60,000 purchase records. The dataset contains 12 relevant

attributes, each with 2 to 70 possible values. The total potential size of the Decision Tree is

2x1010 nodes. The Microsoft Decision Tree induction algorithm is described as a proprietary

hybrid algorithm based on a C4.5 algorithm combined with elements of CART (Classification

And Regression Trees). Using the Microsoft Decision Tree induction algorithm to construct

the Decision Tree resulted in 187 actual nodes.

Applying a standard back-propagation neural network to the dataset resulted in a

number of potential contexts. Some of the more interesting contexts were based upon the

customer’s age and income. Creating fuzzy regions for both by breaking the span of ages into

the fuzzy sets, YOUNG, MIDDLE-AGED, and OLD, and the span of income into the fuzzy

sets POOR, LOWER-CLASS, MIDDLE-CLASS, UPPER-CLASS, and RICH generates a

series of classifications.

From these classifications, two contexts, in particular, emerged with a high degree of

“interestingness”: RICH_AND_YOUNG and RICH_AND_OLD. Although they were sparse

so coverage was low, they covered a number of distant nodes and thus were still quite

interesting.

193

Each context showed a very high correlation between membership in the

corresponding fuzzy region and high volume and high dollar purchases. Other cases, for

example RICH_AND_MIDDLE-AGED, had a much lower correlation.

Two other ADMTs were also applied, a K-Means clustering algorithm and a Bayesian

network. These also generated contexts. From the Bayesian network, there was a focus on

marital status and no children while the K-Means added the dimension of home ownership.

These contexts would be described as MARRIED_NO_CHILDREN (M-NC) and

MARRIED_HOMEOWNER_NO_CHILDREN (M-HNC). Customers who were members of

the contexts described all showed significantly higher predispositions to make more and/or

higher value purchases than those who were not members.

Applying any of these contexts reduced the number of potential nodes on the original

Decision Tree. These reductions were very dramatic due to the specificity of the context,

making irrelevant or “out of context” many other attributes. Even though these contexts

proved very significant, they were lost in the original Decision Tree generated with the

commercial CART algorithm. Because the data was relatively sparse it fell below the

threshold for information gain and was hence ignored in favor of more dense data.

A reasonable interpretation of the aforementioned contexts might be that younger

buyers are more impulsive while older buyers are more secure in their finances than members

in the middle group. Hence members of the two outside groups are more likely to take on

greater and more premium discretionary purchases. Whatever the reason, a sales manager

now has a collection of CoFuH-DT-based, semantically simple, yet powerful contexts with

which to frame and generate rules for particular customers.

Finally, rule generation was made much simpler. In traditional rule generation, rules

define an action for the set of conditions represented by a node [Wang 06], [McCarty 08a].

194

DEFINE RULE rule_name

ON event

IF condition1

AND condition2

…

AND condition

DO action (M2.11)

Any situation described by the rule above may involve a great number of conditionals

to accurately represent the large number of affected attributes and sub-conditions. However,

as a result of CoT-DT combined with CoFuH-DT, generating a context-base rule is much

simpler because the many disparate products and customers now belong to a single contextual

category. For example a contextual rule based upon the context RICH_AND_YOUNG might

look like this:

DEFINE RULE RECOMMEND_PURCHASE

ON CustomerPurchase

IF Customer IS RICH_AND_YOUNG

 DO Recommend purchase PREMIUM_PRODUCT (M2.12)

Use of CoT-DT, CoFuH-DT and Decision Trees is not limited to e-commerce

applications. Intelligent controllers use a variety of methods to determine how to respond to

their environment [McCarty 08c]. Among them is the use of rules derived from Decision

Trees.

Consider a robotic land rover as it attempts to navigate a landscape with a myriad of

environmental and physical obstacles and hazards [McCarty 09a]. The faster it moves, the

more quickly it must process all the various attributes and come to a good decision. However,

there are times when certain factors become so overwhelming that a good decision only needs

to take those most relevant factors into account while ignoring the others. Take the case

where the land rover has to navigate a steep slope. Turning to the right or left greatly

195

increases the possibility of a roll-over so virtually any decision which would involve such a

turn is not a good one. It makes no sense to contemplate turning decisions or pursue decision

branches which might be considered irrelevant when making a turn. At other times, outliers

in behavior or actions which would in most cases be considered abnormal, suddenly become

“normal” or preferred within a given context. For example suppose under low battery

conditions the rover has an overriding need to seek a power source and may have to engage in

any number of aberrant moves and behaviors to meet that goal.

CoFuH-DT/CoT-DT allows the rover to frame potential actions, such as might be

required in a low battery condition, into a meaningful context as well as more quickly prune

its Decision Tree, resulting in a more understandable set of rules.

Comparisons of Decision Trees using the aforementioned derived contexts are shown

in Table 19. While the original Decision Tree (Org DT) had many potential nodes, the

Microsoft CART algorithm produced a tree with only 187 nodes. CoFuH-DT trees using the

contexts RICH_AND_YOUNG/MIDDLE_AGED/OLD (EBP Cond 1) and

RICH_AND_OLD (EBP Cond 2) resulted in much smaller trees but more significant in

identifying buyers more likely to purchase. The same applies to a lesser extent for CoFuH-

DT trees generated using Bayes and K-Means algorithms.

Table 19 - Node comparisons using various contexts

 Nodes Avg. # Purch Avg. $ Purch

Org DT 2x1010 3.27 1588

MS SQL HDT 187 3.27 1588

EBP Cond 1 17 4.07 3343

EBP Cond 2 13 4.0 1537

Bayes 43 3.46 1839

K-Means 24 3.51 2000

196

M2.5: Conclusion

This chapter demonstrates two benefits of the Contextual Derivation from Decision

Trees (CoT-DT) algorithm using Advanced Data Mining Techniques (ADMT):

The first benefit is that ADMT under CoT-DT can derive new contextual information

from a fully-formed Decision Tree for use by Contextual Fuzzy Type-2 Hierarchies for

Decision Trees (CoFuH-DT) rule generation. The second benefit of the CoT-DT approach is

that it can be used to measure and validate the overall effectiveness of a Decision Tree

induction algorithm. The more accurate or complete an algorithm, the fewer and less

interesting contexts that are likely derivable. By the same token, CoT-DT can compensate for

an ineffective algorithm by providing useful contexts for appropriate rule generation.

As demonstrated by experimental results of this chapter, the CoT-DT approach

produced new and meaningful contexts. Viewing a Decision Tree within the narrow frame of

a context reduced the in-context Decision Tree by many orders of magnitude over what was

theoretically possible. After applying a commercial algorithm, CoT-DT was able to achieve

an additional contextual reduction of over 90%.

Minor Contribution #3: Applications of Heuristics to Local Search Algorithms

M3.1: Introduction

This section presents heuristics used to modify traditional local search algorithms.

Test results show significant increases in effectiveness were obtained. Some results were

presented at ETFA08 Conference, September 2008 and this dissertation expands upon that

original work and work in chapter 4.

Local Search Algorithms (LSAs) are designed to find solutions where comprehensive

searches are impractical. Some of these techniques, however, suffer from limitations of their

own; in particular, high failure rates. This chapter looks at ways heuristics can be used to

address some of these limitations through the use of a heuristic to modify certain local search

techniques called Descending Deviation Optimizations.

197

The 8-Queens problem is a classical problem in computer science whereby 8 queens

are placed on a chessboard and an algorithm must determine how to arrange the queens in

order that no queen can attack another. For an 8x8 standard chessboard there are

4,426,165,368 possible arrangements of 8 queens but only 92 solutions. A random process

would need to try roughly 48 million combinations before finding one. Unfortunately,

combinations of variables and constraints in similar problems can quickly result in the

factorial growth of the possible permutations. This puts a comprehensive search beyond the

practical ability of modern computer systems to perform. Problems like the 8-Queens

problem belong to a generic class of problems called Constraint Satisfaction Problems

(CSPs). CSPs often encompass a potential set of states for which the entire state space is

beyond a system’s ability to search comprehensively. CSPs belong to a class of combinatorial

problems called NP for “Non-Deterministic Polynomial” for which a given solution can be

found by a polynomial-time algorithm [Martinjak 07], [Sipser 12].

Local Search Algorithms (LSAs) have proven very useful for finding solutions to

CSPs [Guimaraes 07] when comprehensive techniques are impractical. LSAs compensate for

a lack of universal awareness by starting at some beginning state then exploring neighboring

states and testing for goal states along the way [Russell 09]. This allows for a smaller

requirement of resources as only neighboring states need to be stored or searched. If there are

multiple goal states in the overall state space, then there is a significant probability that an

LSA will discover one quickly. In cases like the 8-Queens problem, where the solutions are

fairly evenly distributed, any one random starting point is usually not too far from a solution.

This makes LSAs the preferred method for solving CSPs [Liu 07]. However, there are many

different LSA techniques and all have various issues; particularly dealing with locally optimal

but globally sub-optimal states called local maxima. Descending Deviation Optimizations

addresses some of these issues by allowing LSAs to move away from local maxima in a more

controlled fashion so as to have a higher likelihood of finding global maxima.

198

M3.2: Descending Deviation Optimization Technique For the 8-Queens Problem

The 8-Queens problem, introduced in 1848 by Max Bezzel, is a good representative

CSP because it contains a great many local maxima in addition to a small number of global

solutions. In testing the various LSAs a random state generator was used to create 1000

random starting states to see how well the 8-Queens problem could be resolved to a goal state.

Heuristics determine where in the local neighborhood LSAs are to search as well as

places to avoid. Many LSAs work to explore nearby maxima through a process of moving to

successively more optimal states, hoping to encounter a global solution along the way

[Martinjak 07], [Russell 09], [Mantawy 99]; the so-called “greedy” approach. The problem is

that problems populated with localized maxima can lure an unsuspecting algorithm into

following a local gradient to a localized top, “trapping” an algorithm into thinking it has

reached the peak, when in fact it has only reached a local peak. Such a “trap” is demonstrated

by figure 99.

Local

MaximaTrap

Global Solution

Figure 99 - Comparison of Local/Global Maxima.

Some LSAs attempt to escape out of these local maxima through some sort of random

“bounce” [Kurbel 98], [Pasias 04], [Kliewer 00], [Mendonca 97] which moves an algorithm

199

to a less optimal state but potentially into a location more capable of providing a solution as

shown in Figure 100.

Local Maxima

Global Solution

Random Bounce
Start

End
Bou

nc
e

Figure 100 - Bounce out of a Local Maxima Trap.

These random “bounces” are often not successful however; leading an algorithm

away, rather than towards, a solution and expending time and computing resources in a

fruitless search. Descending Deviation Optimization (DDO) tries to improve upon an LSAs

ability to escape local maxima and find a goal state by restricting it movements somewhat in

order to prevent it from moving too far away in any random direction from a potential goal

state. The assumption is that for many CSPs the local maxima is not too far from a global

solution so it might be advantageous to restrict the bounce in some way. This process works

well for the 8-Queens problem, and potentially similar CSPs, because the state space contains

a number of goal states spread uniformly throughout.

Local Search algorithms tried as described in [Martinjak 07] and [Russell 09]:

1. Hill Climbing

2. Stochastic Hill Climbing

3. Random Restart Hill Climbing

4. Simulated Annealing

5. Genetic Mutation

200

6. Minimum Conflicts Search

7. Tabu Search

The results are listed in Table 20.

Table 20 - Initial Results of LSA Testing

Algorithm Tries Success Failure % Success

Hill Climbing 1000 141 859 14.1

Stochastic Hill climbing 1000 146 854 14.6

Random Restart Hill Climbing1 1000 866 134 86.6

Simulated Annealing 2 1000 271 729 27.1

Genetic Mutation3 1000 229 771 22.9

Min Conflicts4 1000 919 81 91.9

Tabu Search5 1000 680 320 68.0

1. Random Restart declares failure after 100 restarts and no goal state

2. Simulated Annealing alpha set at .99, number iterations max set to 1000, temp

set to 1000

3. Genetic Mutation population of 30 boards, sample of 2, number iterations max

set to 1000

4. Min Conflicts max iterations set to 100

5. Tabu Search max iterations set to 100

All of the techniques had some success in finding goal states, but the most successful

required additional memory resources (Minimum Conflicts Search, Tabu Search) or a “lucky”

combination of start states (Random Restart Hill Climbing) in order to succeed. With limited

resources, it would be more advantageous to implement a different strategy using one of the

other techniques and the Descending Deviations Optimization.

201

M3.3 The Descending Deviation Optimization Technique

Steps in the Descending Deviation Optimization (DDO) Implementation are as

follows:

Table 21 – Steps for Descending Deviation Optimization Technique

Step 1. DDO-LSA generates a potential random choice. If the choice leads to a goal state

then declare success.

Step 2. DDO-LSA choice is compared to the DDO threshold. If the choice moves the

algorithm beyond that threshold, then choice is rejected and algorithm selects another random

choice and tests again until a choice if found or all choices are tested. If the choice involves

adding a configuration that is below an acceptable threshold, the choice is skipped.

Step 3. If choice is accepted, the optimal threshold reduced by a predetermined amount and

the algorithm moves to Step 1.

As an example of the DDO technique consider a common local search technique:

Simulated Annealing.

Simulated Annealing (SA), named after a process in metallurgy whereby metals are

successively heated and cooled, implements a succession of random “bounces” that slowly

diminish over time [Kliewer 00], [Mendonca 97]. SA’s pseudo-random selection method

measures a random pick against a slowly descending de-optimization threshold.

Consider the following:

Let j be state of a CSP.

Let S be a set consisting of all the states of a CSP. 𝑆 = ∑ 𝑗 𝑠𝑡𝑎𝑡𝑒𝑠

Let there be a cost function C(j) for S.

Let another set �̂� be the set of global maxima (or minima) of all C(j).

Hence �̂� is a proper subset of S: �̂� ⊂ 𝑆.

Let S(k) be the neighbors of S(j) (not including S itself) for some j.

Also, for every k neighbor, there exists a collection of positive coefficients, qjk, 𝑗 ∈

𝑆(𝑘) such that ∑ 𝑞𝑗𝑘𝑗∈𝑆(𝑘) = 1.

202

Finally, let S(0) be the initial state

For Simulated Annealing, we also need a cooling schedule which is a non-increasing

function

𝑇:𝑁 → (0,∞)

Where N is the set of positive integers and T(t)is the “temperature” at time t.

The SA algorithm is a discrete-time inhomogeneous Markov chain x(t) such that:

For x(t) = j choose a k neighbor at random using the probability qik. Choose each

subsequent t + 1 state (assuming you haven’t reached the goal state) using the following

equation:

𝑃[𝑥(𝑡 + 1) = 𝑘|𝑥(𝑡) = 𝑗] = 𝑞𝑗𝑘𝑒
−

1

𝑇(𝑡)
𝑚𝑎𝑥 {0,𝐽(𝑗)−𝐽(𝑘)

, 𝑗 ≠ 𝑘, 𝑗 ∈ 𝑆(𝑘) (M3.1)

The algorithm allows a large range (nearly random) set of choices early on, getting

progressively more restrictive as t increases in favor of better choices with each iteration.

Since the range of options is greater in the beginning, it will have a tendency to explore more

maxima and is correspondingly more likely to find one that is a global solution. SA is able to

explore a relatively wide range of possibilities when compared to other algorithms and does a

comparatively good job of finding global maxima compared with other “straight-up” local

search techniques. However SA is comparatively computationally expensive. In addition, the

algorithm can have a tendency to be led hopelessly astray by a succession of less than optimal

choices as demonstrated in Figure 101.

203

0

2

4

6

8

10

12

Typical Failed SA PatternConflicts

Goal

State

Figure 101 - Pattern in which SA fails to find a solution

The DDO approach to SA takes the original SA implementation and adds the

following optimizations:

1. An artificial, decreasing ceiling is imposed on the allowable number of conflicts.

The DDO threshold is a function of the square root of the temperature variable.

This prevents the solution from going from a lower state to a much higher state

late in the process via a series of small, negative changes demonstrated in Figure

102. With each iteration the DDO threshold forces the SA to explore a smaller

and smaller range of randomizations, hopefully to move it more quickly to the goal

state.

2. Some versions of SA pick a value and may or may not use it depending upon

whether or not it exceeds some “fitness” value. In this case, all the local potential

moves are tested. Any move which would cause a no-operation to occur is thrown

out of the sample of choices so that each iteration produces only those values that

meet the fitness criteria.

3. During the screening process, if a particular choice is found that reaches the goal

state, use that choice automatically so the process ends in success.

204

Goal

State

Conflicts

0

2

4

6

8

10

12

14

16
SA Pattern with Descending Deviations DD Threashold

Figure 102 - Simulated Annealing with Descending Deviations

M3.4: Test Examples

In order see how effective DDOs are, three LSAs using a random component were

chosen for implementation; Simulated Annealing (SA), Genetic Mutation and Stochastic Hill

Climbing (SHC).

Stochastic Hill Climbing (SHC) is a variant of the traditional Hill Climbing in which

not the steepest ascent is picked but any ascent is eligible, dictated by a probability assigned

to each option [Russell 09]. The probability is dependent to some degree upon the steepness

of the ascent.

DDO-SHC works exactly like the traditional SHC until it gets “stuck”, at which point

it “bounces” the solution to a nearby, less optimal state and again applies the original strategy.

The “bounces” are gradually lessened in height or until they disappear at which time if a

global solution is not reached, the strategy fails.

The DDO version of the Genetic Mutation algorithm works by discarding mutations

which exceed the descending threshold, in essence, only allowing genes with a minimal

fitness level to “reproduce” and “killing” off the others.

The DDO-SHC, DDO-GM and DDO-SA were added to the suite of LSAs and tested

against the scheduling problem. The results of the modified LSAS are listed in Table 22.

205

Table 22 - Results of Modified Local Search Algorithm Testing

Algorithm Tries Success Failure % Success

DDO-Stochastic Hill Climbing1 1000 253 747 25.3

DDO-Genetic Mutation2 1000 360 640 36.0

DDO-Simulated Annealing3 1000 993 7 99.3

1. DDO-Hill rescued 121 failures, deviations set at 5

2. DDO-Genetic Mutation number iterations max set to 1000, deviations set to 30

3. DDO-Simulated Annealing alpha set at .99, number iterations max set to 1000,

temp set to 1000

M3.5: Conclusion

The Descending Derivation Optimization (DDO) heuristic was applied to a Stochastic

Hill Climb Algorithm and Simulated Annealing Algorithm as described in [Russell 09] and a

Genetic Mutation algorithm described in [Eiben 07]. Failure reduction for 8-Queens problem

was as follows:

Stochastic Hill Climb – failures reduced from 854 to 747 or 12.5%

Genetic Mutation – failures reduced from 771 to 640 or 17%

Simulated Annealing – failures reduced from 729 to 7 or 99%

In all cases DDO modifications to the original LSAs resulted in significant

improvements in the LSAs ability to avoid local maxima and find a global solution. The

DDO-SHC success rate nearly doubled (14.6% to 25.3%) while the DDO-SA achieved an

almost fourfold (27.1% to 99.3%) rate increase to the point it was nearly perfect and better

than any of the traditional LSAs tried.

There were 2 additional benefits as well for the DDO-SA algorithm. Despite the

additional overhead imposed by the DDO, the increased success rate resulted in 20% fewer

206

iterations overall for the given 1000-test cycle. In addition, the algorithm also displayed a

lesser tendency to “wander around” or be lead astray by a series of bad choices. This resulted

in both more successes and lead to a net time reduction of over 35% to complete 1000

iterations, also resulting in a large net decrease in computational resources required.

207

APPENDIX B: FUZZY LOGIC PRIMER

This Appendix contains background material on Fuzzy Logic and its accepted

variants: Type-1 and Type-2 along with extensions Nonstationary Fuzzy Logic, Polymorphic

Signatures and Fuzzy Clustering. It also discusses techniques for building Hybrid Fuzzy

Systems, or systems with a fuzzy and non-fuzzy algorithmic component. Each of these topics

is used, referenced and/or built upon in the dissertation to develop the concept of Fuzzy

Contexts and Fuzzymorphism in discussions, test examples and software.

B.1: Fuzzy Logic Type 1

This Section contains background material on Type-1 Fuzzy Logic. The concept of

Type-1 Fuzzy Sets is explained together with the elementary set-based operations.

Traditional systems are designed to make decisions based upon the truth or falsehood

of a specific condition or value:

If X=A then

DoSomething

Else

DoSomethingElse (B.1)

While this approach is fine for many applications, there are situations where having

hard, or, in fuzzy terms, “crisp” decision boundaries can lead to difficulties [Hanss 05], [Cox

05], [Taheri 06]. Consider, for example, the cruise control on a car. Suppose the driver

wishes to cruise at 60 miles per hour and sets the cruise control to 60. Now suppose the

internal cruise mechanism has three settings: ACCELERATE, which applies gas to speed the

car up, BRAKE which applies the brakes to slow it down and NEUTRAL which equates to a

no-operation. The control logic might then be as follows:

208

If SPEED < 60 mph then

 ACCELERATE

Elseif SPEED = 60 then

 NEUTRAL

ElseIf SPEED > 60 then

 BRAKE (B.2)

When the car travels at less than 60 mph, it speeds up and greater than 60 mph it slows

down. Problems can occur, however, at or around the 60 mph speed marker. If the car is still

accelerating at 59.99 mph, residual acceleration will result in the car exceeding 60 mph, in

which case it will begin to apply the brake, perhaps bringing the car under the 60 mph

threshold again, which will result in another round of acceleration and braking, making for a

very inefficient system. A smart designer might decide to improve the system by creating

degrees of acceleration and braking such as HARD_ACCELERATION,

MEDIUM_ACCELERATION, SOFT_ACCELERATION and HARD_BRAKE,

MEDIUM_BRAKE and SOFT_BRAKE attempting to mitigate problems at the 60 mph speed

marker. The designer decides to create 5 mph zones on each side so the control logic might

look like this:

209

If SPEED <= 60 - 10 mph then

 HARD_ACCELERATE

ElseIf SPEED <= 60 - 5 mph AND SPEED > 60 - 10 mph then

 MEDIUM_ACCELERATE

ElseIf SPEED < 60 mph AND SPEED > 60 - 5 mph then

 SOFT_ACCELERATE

ElseIf SPEED = 60 then

 NEUTRAL

ElseIf SPEED > 60 AND SPEED <= 60 + 5 then

 SOFT_BRAKE

ElseIf SPEED > 60 + 5 AND SPEED <= 60 + 10 then

 MEDIUM_BRAKE

ElseIf SPEED > 60 + 10 then

 HARD_BRAKE (B.3)

This approach would serve to smooth out performance but there would still be

problems at the various boundaries, such as when transitioning from HARD_BRAKE to

MEDIUM_BRAKE or SOFT_ACCELERATE to NEUTRAL to SOFT_BRAKE. The ride

would be rough and uneven. Adding even more degrees of acceleration and braking would

help, but would also introduce a great deal more complexity into the system.

Another approach might be to come up with a smooth, continuous function, such as a

linear or Cosine function; but often such simple representations do not come close to

approximating complex, real-world systems such as a cruise control. More complex

polynomial functions are possible, but require significant computer resources and are often

difficult to derive for more than a small number of dimensions.

There are other problems as well. Describing a HARD_BRAKE as a single value, say

deceleration of exactly -10 ft/s2 provides no description for neighboring values such as

deceleration of -9.9 ft/s2. Speedometers often give imprecise readings so any given speed

reading is likely to be high or low to some degree. To make a useful, reliable and consistent

controller noise, ambiguity and uncertainty must be taken into consideration; but to do that

requires a level of complexity that may be unattainable. This has to do with the fact that

210

much of the real-world phenomena an individual, or machine, is likely to encounter are

imprecise [Cox 95]. Dealing with imprecise phenomena using precise means can be

computationally expensive, if not impossible [Hanss 05]. What is needed is a way to describe

imprecise, or “uncertain” characteristics such that complexity is kept to a minimum.

Fuzzy Logic, introduced by Lofti Zadeh in 1965 [Zadeh 65], attempts to deal with

these complexities by introducing a level of imprecision or “uncertainty” in place of crisp

values [Cox 94]. This uncertainty takes the form of a “fuzzy set”, 𝐹1̃ which consists of the set

of all μ(x) where µ is Fuzzy Type 1 membership function that determines a degree of

membership, or truth, from 0 to 1, for a given element x in some range of values X.

𝑭�̃� = {𝒙, 𝝁(𝒙)| ∀𝒙 ∈ 𝑿, 𝝁(𝒙) ⊆ [𝟎, 𝟏]} (B.4)

The fuzzy set, 𝐹1̃, as well as the membership function, µ, depend upon the knowledge

of one or more domain “experts” who define boundaries and rules to create a suitable

approximation of the desired result [Cox 95]. In Boolean logic, the truth, or membership,

value only consists of the values 0, indicating false, or 1, indicating true, while a fuzzy logic

value can consist of the values 0, indicating no membership, 1, indicating full membership, or

any value in between. As a result, fuzzy members can have membership in not just one, but

potentially many fuzzy sets, with the degree determined by µ, hence their inherent

“fuzziness”.

For example, a person providing a description of a real-world object such as:

THE MAN IS TALL

might consider the description TALL to mean someone who is more than 6 feet in height.

The traditional Boolean description would look like this:

6 feet IS TALL (Tall = True)

6 feet IS NOT SHORT (Short = False) (B.5)

211

However the same person would likely not consider it entirely accurate to classify

someone who is 5 feet 11.5 inches as SHORT, nor someone who is 5 feet 11.9999 inches.

While it may seem counterintuitive, because language and real-world phenomena are often

imprecise, describing objects in imprecise/fuzzy terms often leads to a corresponding increase

in precision as well as a reduction in both ambiguity and complexity of systems.

Take, for example, a gentleman who is 5 feet 11.5 inches in height. While he may not

be TALL, he is clearly not SHORT either. Instead, he might be considered by most to be

TALL to a degree, but not completely, and also SHORT to a degree, though only marginally.

In fuzzy terms, 5 feet 11.5 inches might look like this:

µTall(5’11.5”) = 0.95

µShort(5’11.5”) = 0.05 (B.6)

The fuzzy description is both precise and much more consistent with traditional

perception. The expert designing a fuzzy description of a person’s height would create a pair

of overlapping fuzzy sets to describe a person’s height [Cox 94]. The resulting description

might say that a person under 4 feet in height is SHORT, while a person over 6 feet is TALL,

but between 4 and 6 feet, a person has gradations of both as shown in Figure 103.

False

True
SHORT TALL

4 ft 5 ft 6 ft

Figure 103 - A basic, fuzzy description of a person’s height

212

The shapes in Figure 103 are trapezoidal, but fuzzy sets can consist of many kinds of

“shapes”, such as a triangle and Bell Curve, among others.

The only restriction to fuzzy logic membership lies at the end points; fuzzy logic is an

extension of traditional Boolean logic so at the endpoints 0, 1, any fuzzy µ must produce

exactly the same value as its Boolean counterpart. In the case described above, 6 feet =

TALL:

µTall(6’) = 1 => 6 feet IS TALL

µShort(6’) = 0 => 6 feet IS NOT SHORT (B.7)

which satisfies the restriction and holds to equation (B.5).

To further extend Boolean logic, Zadeh introduced fuzzy set operators [Cox 94],

taking the traditional operators intersection, union and complement operators and creating

fuzzy equivalents. For example the fuzzy version of the intersection operator is the t-norm

function 𝜇𝑡 such that:

𝝁𝒕(𝒙, 𝒚) = 𝒎𝒊𝒏 (𝝁(𝒙), 𝝁(𝒚) (B.8)

These fuzzy operators reduce to Boolean equivalents at the endpoints 0 and 1, as

demonstrated by the following truth table comparing the Boolean intersection (AND) with the

fuzzy operator 𝜇𝑡.

Table 23 - Fuzzy and Boolean AND Truth Table

Value A Value B A AND B 𝜇𝑡(A, B)

1 1 1 min(1, 1) = 1

1 0 0 min(1, 0) = 0

0 1 0 min(0, 1) = 0

0 0 0 min(0, 0) = 0

213

Fuzzy sets also have modifiers, called “hedges” which serve to strengthen or relax a

given fuzzy set. The net effect is to either increase or decrease the gradient of a fuzzy set

[Cox 94]. Generally these modifiers employ commonly used linguistic terms such as VERY

(increase gradient) or SOMEWHAT (decrease gradient) and have an effect similar to that

shown in figure 104 and figure 105.

False

True

SHORT

4 ft 5 ft 6 ft

SOMEWHAT

SHORT

Figure 104 - Fuzzy description of a person’s height using hedge SOMEWHAT.

False

True
TALL

4 ft 5 ft 6 ft

VERY

TALL

Figure 105 - A basic, fuzzy description of a person’s height using hedge VERY.

As would be expected, a person who is to some degree SHORT is to a greater degree

SOMEWHAT SHORT, while a person who is to some degree TALL is to a lesser degree;

VERY TALL.

214

Taking another look at the example of the cruise control, the crisp implementation of

acceleration described would look like a stair-step pattern of choices.

6045 50 55 65 70 75

HARD_ACCELERATE

MEDIUM_ACCELERATE

SOFT_ACCELERATE

SOFT_BRAKE

MEDIUM_BRAKE

HARD_BRAKE

NEUTRAL

Figure 106 A stair-step, crisp implementation.

While a fuzzy-based implementation instead would create a series of overlapping

fuzzy sets.

False

True
HARD_ACCL MEDIUM_ACCL SOFT_ACCL

45 7065605550

SOFT_BRAKE MEDIUM_BRAKE

HARD_BRAKE

75

NEUTRAL

Figure 107 - Constructing fuzzy sets from speed ranges.

215

Any acceleration/braking would be a fuzzy function taking into account membership

in one of the fuzzy sets described below:

μAction(SPEED) = μHard_Accl(SPEED) + μMedium_Accl(SPEED) + μSoft_Accl(SPEED) +

μNeutral(SPEED) + μSoft_Brake(SPEED) + μMedium_Brake(SPEED) + μHard_Brake(SPEED) (B.9)

The resulting implementation, instead of a fragmented stair-step, would look more like

a smoother sigmoid, or S-Curve as shown in Figure 108.

6045 50 55 65 70 75

HARD_ACCELERATE

MEDIUM_ACCELERATE

SOFT_ACCELERATE

SOFT_BRAKE

MEDIUM_BRAKE

HARD_BRAKE

NEUTRAL

Figure 108 - A smooth fuzzy implementation

In many cases Fuzzy logic provides a number of advantages over traditional, crisp

implementation [Hanss 05], [Cox 94], [Zadeh 08]:

1. The ability to model complex systems

Fuzzy logic can be used to represent very complex systems with many diverse

elements.

2. Semantic precision

Fuzzy logic can describe states and actions in a way that is both more precise and

easily understood.

3. Cooperative modeling

Fuzzy logic can incorporate the opinions of multiple experts into a single unified

model

4. Reduced complexity

216

Fuzzy logic can be used to approximate complex equations as well as a myriad of

diverse interactions.

5. Improved handling of uncertain values and noise

Precision can be difficult to obtain if data is noisy or sensors are inaccurate. By being

able to relax a specific value into a range of values, Fuzzy Logic can allow for

variances without having to compromise accuracy. As such, it can do a better job of

handling and using less-than-reliable values, such as an inaccurate speedometer, as

well as other types of noise that can affect a model.

6. Improved handling of possibilities

A policeman trying to determine if a person is driving recklessly would asses such

factors as speed, weaving and road conditions. Fuzzy Logic treats each of these as

fuzzy sets, e.g. SPEED (HIGH, NORMAL, LOW), WEAVE (HIGH, NORMAL,

LOW), ROAD (GOOD, NORMAL, POOR) with a fuzzy function μReckless that

describes membership in the RECKLESS category. The relationship between SPEED,

WEAVE, ROAD and the possibility of recklessness, as indicated by membership in

RECKLESS, is direct and easy to understand. A crisp expert system would otherwise

have to employ a sophisticated array of conditionals which may provide an adequate

answer, but does little to tell us about the intrinsic relationship between the individual

components.

B.1.1: Operations on Type-1 Fuzzy Sets

Recall that in classical Boolean logic, a crisp set A in a domain X can be described

using various methods, such as listing all of its members, providing a conditional description,

or filter, of all members of A, or by specifying a binary function 𝜇𝐴 ∈ {0, 1} where elements

of A have a value of 1 (or true) and elements of the complement of A have a value of 0 (or

false). Hence an element x either completely belongs to set A or it does not. As a result the

crisp set A can be described as

𝝁𝑨(𝒙) = {
𝟏, 𝒊𝒇 𝒙 ∈ 𝑨
𝟎 𝒊𝒇 𝒙 ∉ 𝑨

, ∀𝒙 ∈ 𝑿 (B.10)

217

Fuzzy set theory, as opposed to the conventional Boolean logic, determines the

“degree of belonging” of a particular element to a desired set. Hence, fuzzy set theory is a

generalization of crisp set theory, since the degree of belonging of element x to set A is

determined by the membership grade 𝜇𝐴(𝑥) taking on value from the unit interval [0, 1].

Recall that, at the boundaries, the fuzzy set reduces to the crisp equivalent.

More formally, the fuzzy set A in the domain of X is be defined as a set of ordered

pairs of element x and its degree of membership 𝜇𝐴(𝑥):

𝑨 = {(𝒙, 𝝁𝑨(𝒙))|𝒙 ∈ 𝑿} (B.11)

In the special case when the domain X is a continuous space of real numbers the

membership function 𝜇𝐴 maps each number to values between 0 and 1, ℜ → [0…1]. Hence,

the fuzzy set A can be described as:

𝑨 = ∫ 𝝁𝑨(𝒙)/𝒙𝒙∈𝑿
 (B.12)

Note that in this particular case, the integral symbol does not denote integration, rather

it symbolizes a collection of all the points in domain X. This is a common notation to use to

describe the behaviors of fuzzy functions.

As an example, consider a membership function 𝜇𝑠(𝑥) defining a crisp set S of

numbers from the interval [2…6]. The function might look something like that shown in

figure 109.

218

Figure 109 – A crisp membership function

Extending the above function to a fuzzy equivalent requires redefining the

membership function. One possibility would be to introduce the notion of numbers CLOSE

to number 4 as any number of distance 2 or less. Moreover, the closer a number is to 4, the

greater its close-ness. This results in a membership function 𝜇𝐴, which defines the fuzzy set

A. Membership function 𝜇𝐴(𝑥) is shown in figure 110. The mathematically vague linguistic

concept of CLOSE numbers cannot be accurately described by Boolean logic due to the

inherent limitations of bivalent logic. Fuzzy set theory, in contrast, not only allows for such,

but it also provides an intuitive way for describing such concepts through the use of terms

which have their basis in the use of natural human language.

Figure 110 – A Fuzzy Membership Function

219

Fuzzy set A is defined by its membership function 𝜇𝐴(x) for all x in ℜ. Typically,

membership functions are expressed as parameterized mathematical functions. The equation

for the 𝜇𝐴(𝑥) shown above is a triangle and represented by the following:

𝝁𝑨(𝒙) =

{

𝟎, 𝒊𝒇 𝒙 < 𝟐

𝒙−𝟐

𝟐
, 𝒊𝒇 𝒙 ∈ [𝟐, 𝟒]

𝟔−𝒙

𝟐
, 𝒊𝒇 𝒙 ∈ [𝟒, 𝟔]

𝟎, 𝒊𝒇 𝒙 > 𝟔

 (B.13)

A generalized version of the above is:

𝝁𝑨(𝒙) =

{

𝟎, 𝒊𝒇 𝒙 < 𝒂

𝒙−𝒂

𝒄−𝒂
, 𝒊𝒇 𝒙 ∈ [𝒂, 𝒄]

𝒃−𝒙

𝒃−𝒄
, 𝒊𝒇 𝒙 ∈ [𝒄, 𝒃]

𝟎, 𝒊𝒇 𝒙 > 𝒃

 (B.14)

The functions do not have to be continuous but they have to be convex. The triangle

shape is among the most commonly used fuzzy set. It is easy to calculate and does a good job

of representing a fuzzy concept. Other commonly used membership functions are the

trapezoid, and Gaussian (bell-shaped) membership functions, shown in figure 111.

Figure 111 – Trapezoid and Gaussian shaped membership functions

The trapezoid has certain advantages over other shapes in that is allows a range of

values to have membership 1, through the use of a “plateau”. Trapezoids can also be either

220

“right” or left”, where the corresponding left or right leg is removed and the plateau is

allowed to extend into infinity. An example of a left trapezoid is shown in figure 112.

Figure 112 – A left trapezoid

A generalized mathematical representation of the trapezoid membership function is:

𝝁𝑨(𝒙) =

{

𝟎, 𝒊𝒇 𝒙 < 𝒂
𝒙−𝒂

𝒎−𝒂
, 𝒊𝒇 𝒙 ∈ [𝒂,𝒎]

𝟏, 𝒊𝒇 𝒙 ∈ [𝒎, 𝒏]
𝒃−𝒙

𝒃−𝒏
, 𝒊𝒇 𝒙 ∈ [𝒏, 𝒃]

𝟎, 𝒊𝒇 𝒙 > 𝒃

 (B.15)

The Gaussian provides a smooth non-linear transformation. A generalized

mathematical representation of the Gaussian membership function is as follows:

𝝁𝑨(𝒙) = 𝒆𝒙𝒑(− (
𝒙−𝒘𝑨

𝝈𝑨
)
𝟐

) (B.16)

Fuzzy set theoretic operations extend classical set arithmetic to fuzzy sets, which is

then utilized by a fuzzy inference system to both fuzzify and defuzzify results [Cox 94].

Recall the basic fuzzy set operations of union, intersection and complement. Consider two

Type-1 fuzzy sets A and B described by their membership functions 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥). The

operation of fuzzy intersection is defined as follows:

221

𝑨 ∩ 𝑩 = 𝝁𝑨∩𝑩(𝒙) = 𝝁𝑨(𝒙)∏𝝁𝑩(𝒙) (B.17)

In this case, the symbol denotes a fuzzy t-norm operation. The fuzzy t-norm

operation is a binary operation on a unit interval that satisfies the following four axioms for

all 𝑎, 𝑏, 𝑐 ∈ [0,1] [Hanss 05]:

Axiom 1 (Boundary condition): 𝑎∏1 = 𝑎 (B.18)

Axiom 2 (Monotonicity): 𝑏 ≤ 𝑐 ⇒ (𝑎∏𝑏) ≤ (𝑎∏𝑐) (B.19)

Axiom 3 (Commutativity): 𝑎∏𝑏 = 𝑏∏𝑎 (B.20)

Axiom 4 (Associativity): 𝑎∏(𝑏∏𝑐) = (𝑎∏𝑏)∏𝑐 (B.21)

222

As an example, consider a pair of fuzzy sets 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥), shown in figures 113

and 114.

Figure 113 - µA(x)

Figure 114 - µB(x)

Recall the 𝜇𝑚𝑖𝑛operator introduced earlier in this section. Suitable t-norm operations

are the minimum and the product operations. Using the minimum t-norm the fuzzy

intersection can be written as:

𝑨 ∩ 𝑩 = 𝝁𝑨∩𝑩(𝒙) = 𝒎𝒊𝒏 (𝝁𝑨(𝒙), 𝝁𝑩(𝒙) (B.22)

223

The result of the intersection operation on two example Type-1 fuzzy sets using the

minimum t-norm is demonstrated in figure 115.

∩

=

Figure 115 – Operations on T1 Fuzzy Sets Using Minimum T-Norm Operator

Similarly, for the 𝜇𝑚𝑎𝑥 operation, there is the fuzzy union. The operation of fuzzy

union is defined as:

𝑨 ∪ 𝑩 = 𝝁𝑨∪𝑩(𝒙) = 𝝁𝑨(𝒙)∐𝝁𝑩(𝒙) (B.23)

In this case, the symbol denotes a fuzzy t-conorm operation. A fuzzy t-conorm

operation is a binary operation on fuzzy sets that satisfies the following four axioms for all

𝑎, 𝑏, 𝑐 ∈ [0,1] [Hanss 05]:

Axiom 1 (Boundary condition): 𝑎∐0 = 𝑎 (B.24)

Axiom 2 (Monotonicity): 𝑏 ≤ 𝑐 ⇒ (𝑎∐𝑏) ≤ (𝑎∐𝑐) (B.25)

Axiom 3 (Commutativity): 𝑎∐𝑏 = 𝑏∐𝑎 (B.26)

Axiom 4 (Associativity): 𝑎∐(𝑏∐𝑐) = (𝑎∐𝑏)∐𝑐 (B.27)

The maximum operation now becomes a t-conorm operation. Using the maximum t-

conorm, the fuzzy union can be written as:

𝑨 ∪ 𝑩 = 𝝁𝑨∪𝑩(𝒙) = 𝒎𝒂𝒙 (𝝁𝑨(𝒙), 𝝁𝑩(𝒙) (B.28)

224

Applying the union operation on the two sample Type-1 fuzzy sets using the

maximum t-conorm is shown in figure 116.

ᴜ

=

Figure 116 – Operations on T1 Fuzzy Sets Using the Maximum T-Conorm Operator

The minimum t-norm and maximum t-conorm operations are widely used in fuzzy

inference systems due to their ease of implementation and computational simplicity.

Analogous to the classical Boolean AND and OR logic operations, they serve to bridge the

gap between crisp input and output and the internal fuzzy implementation.

Lastly, the fuzzy complement �̅� of fuzzy set A has the following representation:

�̅� = 𝝁�̅�(𝒙) = 𝟏 − 𝝁�̅�(𝒙) (B.29)

B.1.2: Type-1 Fuzzy Inference Systems

Since the introduction of fuzzy logic in 1965 by Lofti Zadeh, fuzzy logic has been

applied in various forms in a wide range of applications [Zadeh 65], [Cox 94], [Hanss 05].

One of the most common and arguably successful implementations of fuzzy logic is its

combination with rule-based systems, generally referred to as a Fuzzy Inference System

(FIS).

FISs can be seen as a nonlinear mapping of an input data vector into a scalar output

[Cox 95]. The core of the FIS is composed of a fuzzy inference engine that processes

linguistic fuzzy terms and rules. The simplicity and easily-termed fuzzy rules allows for

225

relatively easy programmatic implementation; although conceptually fuzzy logic has made

only small inroads into mainstream business applications. A proliferation of fuzzy tools from

companies such as Matlab, or cheap visual wizards, like the one described in chapter 4 of this

dissertation should help bring FISs into more widespread use.

The advantage of the FIS is that human knowledge can be easily encoded into and

extracted from a set of given fuzzy rules. Despite their relatively simple structure, FISs can

approximate sophisticated non-linear controls in complex systems.

The most commonly used FIS is composed of four major components:

1. An input fuzzification mechanism to convert a crisp input vector into a fuzzy

number.

2. A fuzzy rule base storing a series of fuzzy rules and terms in the form of

IF..THEN statements.

3. A fuzzy inference engine to determine the contributions of each rule to the total

output.

4. An output defuzzification operation to convert the fuzzy output to a crisp, scalar

result.

This structure of the typical FIS is depicted in figure 117.

Figure 117 – Typical Fuzzy Inference System

The FIS operates in the following manner:

Step 1: The FIS accepts as input a real valued input vector.

Step 2: From the rule base, fuzzy rules are tested with against the input to determining

the contribution of each rule.

226

The fuzzy rule base contains a set of linguistic rules written in an implicative form

combining fuzzy terms. Consider an FIS with n inputs 𝑥1 ∈ 𝑋1, … , 𝑥𝑛 ∈ 𝑋𝑛 and a single

output y. The kth linguistic fuzzy rule can be formulated as:

Rule Rk: IF 𝑥1 is 𝐴1
𝑘 AND … AND xn is 𝐴𝑛

𝑘 THEN y is Bk (B.30)

Where 𝐴𝑖
𝑘 denotes the input fuzzy set in the ith input dimension and Bk is the output

fuzzy set for the kth rule. This type of FIS using fuzzy rules in the form of (eq above) was

originally defined in by Mamdani [Mamdani 75]. The FIS uses the Mamdani type implication

to compute the output of rule Rk. The membership function of rule Rk can be denoted as

𝜇𝑅𝑘(𝑠 , 𝑦), where 𝑥 = (𝑥1, … , 𝑥𝑛). Its value can be computed by applying a t-norm operator to

the rule antecedents as well as the rule consequents:

𝜇𝑅𝑘(𝑥 , 𝑦) = 𝜇𝐴1𝑘(𝑥1)
∏…∏𝜇𝐴𝑛𝑘(𝑥𝑛)∏𝐵𝑘 (𝑦) (B.31)

Which reduces to:

𝜇𝑅𝑘(𝑥 , 𝑦) = [∏ 𝜇
𝐴𝑖
𝑘(𝑥𝑖)

𝑛
𝑖=1]∏𝐵𝑘(𝑦) (B.32)

Step 3: For each rule, the input is tested against each of the rule’s fuzzy terms, then a

t-norm operation, such as the one described in equation B.22, is applied to all the terms (and

their representative fuzzy sets) to determine the strength, or contribution, of the rule.

Step 4: A t-conorm operator, such as the one described in equation B.28, combines all

the rules to determine the overall fuzzy result.

Suppose that there are K rules in the fuzzy rule base, the result of applying the

Mamdani implication to all rules will be a set of K output fuzzy sets defined by their

respective membership function 𝜇𝑅𝑖(𝑥 , 𝑦), 𝑖 = 1,… , 𝐾 which denotes the contribution, or

strength, of each corresponding fuzzy set. The final output fuzzy set, B(y) for the input vector

𝑥 is computed by aggregating the membership functions of all rules via the t-conorm operator:

𝐵(𝑦) = ∐ 𝜇𝑅𝑖(𝑥
𝐾
𝑖=1 , 𝑦) (B.33)

227

Step 5: A defuzzification process, such as the one described in equation B.33,

converts the fuzzy result into a crisp, scalar value which is passed back to the caller.

The purpose of the output defuzzification stage is to compute a scalar output based on

the output fuzzy sets. Many methods for output defuzzification are available in the literature,

e.g. centroid defuzzifier, center-of-sums defuzzifier, height defuzzifier or center-of-sets

defuzzifier [Mendel 01]. In this case, consider the centroid defuzzifier. The centroid

defuzzifier calculates the centroid of the output fuzzy set, B(y), which is described by using its

membership function 𝜇𝐵(𝑦). The final output value 𝑦(𝑥) produced by the FIS is then

computed by the following equation:

𝒚(�⃗⃗�) =
∑ 𝒚𝒊𝝁𝑩(𝒚𝒊)
𝑵
𝒊=𝟏

∑ 𝝁𝑩(𝒚𝒊)
𝑵
𝒊=𝟏

 (B.34)

In this case, N denotes the number of discretized samples in the output domain of

variable y and yi is the discretized sample.

To illustrate the workings of the fuzzy inference mechanism, consider an application

to an alarm system such as the one shown in figure 118. The amplitude of the alarm signal

depends upon the combined measures of temperature and pressure. The input values are

encoded into human-readable linguistic terms, such as LOW, MEDIUM, and HIGH. Using

the fuzzy inference system, the consequents of each rule is fired according to the fuzzified

input vector. The resulting aggregated output fuzzy sets is defuzzified into a crisp, scalar

output value.

228

Figure 118 – Fuzzification/Defuzzification Process

229

B.2: Fuzzy Logic Type 2

Fuzzy Type 1 logic has been proven to be very useful for implementation in a wide

array of difficult problems. However, there are plenty of issues that Fuzzy Type 1 logic has

difficulty handling [Mendel 02], [Castillo 08]:

1. Experts can disagree on meaning of linguistics terms.

“Cold”, “Warn” and “Hot” can have different meanings to experts living in different regions

of the world. Creating a thermostat that tries to maintain a “Warm” temperature in each

region turns into a complex problem as midpoints, endpoints and ranges of fuzzy sets can

vary dramatically.

2. Fuzzy sets work best on continuous data.

Histograms containing non-continuous data can pose a problem for a Fuzzy Type 1

implementation.

3. Data can contain noise beyond the ability of Fuzzy Type 1 to handle easily.

Trying to ascertain a number “near” a fuzzy boundary becomes even more difficult when the

number itself is uncertain. All of these “uncertainties” can influence the ability of a Type-1

membership function to come up with an appropriate solution.

Fuzzy Type-2 extends Fuzzy Type-1 by adding another dimension of “uncertainty” to

the existing Fuzzy Type-1 construction [Mendel 10]. Recall in the previous section the Fuzzy

Type -1 set 𝐹1̃, described as a union of a range of values X and a fuzzy membership function

μ:

𝑭�̃� = {𝒙, 𝝁(𝒙)| ∀𝒙 ∈ 𝑿, 𝝁(𝒙) ⊆ [𝟎, 𝟏]} (B.35)

Fuzzy Type-2 creates a new fuzzy set 𝐹2̃ which is the union of a new membership

function μ2 applied to members of 𝐹1̃:

𝑭�̃� = {((𝒙, 𝝁(𝒙)), 𝝁𝟐(𝒙, 𝝁(𝒙))|∀𝒙 ∈ 𝑿, ∀𝝁(𝒙) ⊆ [𝟎, 𝟏]} (B.36)

This new fuzzy dimension “relaxes” the original Fuzzy Type 1 set, generating a

transformation into a new Fuzzy Type 1 set for more generic problem solving. As such it is

230

able to compensate for many the shortcomings of Fuzzy Type 1. Consider the problem of the

definition of “Warm”. Experts may disagree on the precise mid-point or range of “Warm” but

they are likely to have a consensus on “Warm” being at or around some statistical measure;

for example, the daily mean. While it is not possible to construct a Fuzzy Type 1 set to a

suitable “Warm” range for all climates, using Fuzzy Type 2, “Warm” can now come to mean

the average temperature plus and minus one standard deviation. Now the Fuzzy Type 1 set

for “Warm”, under Fuzzy Type 2 becomes location-dependent and can adjust its members, as

well as its corresponding membership values, as necessary to fit the appropriate “expert”

definition.

Mendal states, “When we cannot determine the membership of an element in a set as 0

or 1, we use fuzzy sets of type-1. Similarly, when the circumstances are so fuzzy that we have

trouble determining the membership grade even as a crisp number in [0, 1], we use fuzzy sets

of type-2.” [Mendel 02]

Put another way, a Type-2 Fuzzy System �̃� can be expressed using a Type-2 fuzzy

membership function 𝜇�̃�(𝑥, 𝑢), where 𝑥𝜖𝑋 and 𝑢 ∈ 𝐽𝑥.

�̃� = ∫ ∫ 𝝁�̃�(𝒙, 𝒖)/(𝒙, 𝒖),𝒖∈𝑱𝒙𝒙𝝐𝑿
 𝑱𝒙 ⊆ [𝟎, 𝟏] (B.37)

The operator symbolizes a union over all possible values of x and u, and the

membership result 𝜇�̃�, 0 ≤ 𝜇�̃� ≤ 1. Variables x and u represent the primary and the

secondary variables and Jx denotes the primary membership of x. Two different

representations of Type-2 fuzzy sets are commonly used. The first is the vertical-slice

representation and the second is the wavy-slice representations.

Recall that the Footprint of Uncertainty (FOU) is a bounded region that consists of the

uncertainty of primary memberships. The vertical-slice representation is where each of the

primary memberships consists of a vertical slice, the union of which is:

𝑭𝑶𝑼(�̃�) = ⋃ 𝑱𝒙𝒙∈𝑿 (B.38)

231

In determining a specific value for 𝑥 = �́� a vertical slice 𝜇�̃�(𝑥, 𝑢)́ of the Type-2 fuzzy

membership function 𝜇�̃�(𝑥, 𝑢) is obtainable. This vertical slice defines a secondary

membership function:

𝝁�̃�(𝒙 = �́�, 𝒖) for �́� ∈ 𝑿and ∀𝒖 ∈ 𝑱�́� ⊆ [𝟎. 𝟏] (B.39)

Such that

𝝁�̃�(𝒙 = �́�, 𝒖) ≡ 𝝁�̃�(�́�) = ∫
𝒇�́�(𝒖)

𝒖
 𝑱�́� ⊆ [𝟎, 𝟏]𝒖∈𝑱�́�

 (B.40)

In this case 𝑓�́�(𝑢) represents the secondary grade or the amplitude of the secondary

membership function, hence 𝑓�́�(𝑢) ∈ [0,1]. The primary membership Jx can be also

understood as the support of the secondary membership function. It is this particular nature of

the secondary membership function that defines the type of the underlying Type-2 fuzzy set.

If, for example, all the secondary membership functions are intervals, the Type-2 fuzzy set is

called an Interval Type-2 (IT2) fuzzy set. In case of an arbitrary secondary membership

functions such as a Gaussian, the Type-2 fuzzy set is considered a General Type-2 (GT2)

fuzzy set. As an example, assume that the primary domain X is discretized using N samples.

The corresponding GT2 fuzzy set A
~
 can be represented as a composition of all its vertical

slices:

�̃� = ∑ [∫ 𝑓𝑥𝑖(𝑢) 𝑢⁄𝑢∈𝐽𝑥𝑖
] 𝑥𝑖⁄𝑁

𝑖=1 (B.41)

Similar to the vertical-slice, the wavy-slice representation of a GT2 fuzzy set �̃� can be

also constructed as a composition of all of its embedded fuzzy sets: �̃�𝑒. Consider the case of

a continuous universe of discourse X and U, an embedded GT2 fuzzy set �̃�𝑒 can be

represented using the following equation:

�̃�𝒆 = ∫
[
𝒇𝒙(𝜽)

𝜽
]

𝒙
,

𝒙∈𝑿
𝜽 ∈ 𝑱𝒙 ⊆ 𝑼 ∈ [𝟎, 𝟏] (B.42)

232

Hence at each value of the primary variable x the embedded fuzzy set has the single

value of the primary membership θ together with its corresponding secondary value 𝑓𝑥(𝜃). In

the case of a discrete universe of discourse with N elements, the embedded fuzzy set �̃�𝑒

becomes the following:

�̃�𝒆 = ∑ [𝒇𝒙𝒊(𝜽𝒊)/𝜽𝒊] 𝒙𝒊⁄𝑵
𝒊=𝟏 𝜽𝒊 ∈ 𝑱𝒙 ⊆ 𝑼 ∈ [𝟎, 𝟏] (B.43)

However there is a problem. In the case of a continuous universe of discourse the

number of existing embedded fuzzy sets turns out to be uncountable. For the discrete

universe of discourse the number of possible embedded fuzzy sets is:

𝑛 = ∏ 𝑀𝑖
𝑁
𝑖=1 (B.44)

where iM is the number of discretized samples in the primary membership
ixJ . Because of

this large number of existing embedded fuzzy sets, the wavy-slice representation is generally

considered unsuitable for practical applications. Regardless, it has proven to be a useful

technique for deriving some of the fundamental ideas of GT2 fuzzy sets and translating from

T1 fuzzy sets to GT2 fuzzy sets [Hidalgo 10].

Per the Mendel and John representation theorem, the GT2 fuzzy set �̃� can be

described as a union of all of its n embedded fuzzy sets [Mendel 06]:

�̃� = ⋃ �̃�𝒆
𝒋𝒏

𝒋=𝟏 (B.45)

In order to properly assess the amount of uncertainty modeled by the GT2 fuzzy sets

we return again to the concept of the Footprint of Uncertainty (FOU). The FOU of a GT2

fuzzy set �̃� can be defined as the bounded region created by taking the union of all the

primary memberships:

𝑭𝑶𝑼(�̃�) = ⋃ 𝑱𝒙𝒙∈𝑿 (B.46)

233

In general, the larger the FOU of a GT2 fuzzy set, the more corresponding uncertainty

there is about the respective membership grades. Fortunately, the bounded FOU region can

be also conveniently described using the upper fuzzy membership function: �̅��̃�(𝑥), and the

lower membership function: 𝜇�̃�(𝑥) which happen to be Type-1 FISs:

 �̅��̃�(𝒙) = 𝑭𝑶𝑼(�̃�)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (B.47)

𝝁�̃�(𝒙) = 𝑭𝑶𝑼(�̃�) (B.48)

B.2.1: Operations on General Type-2 Fuzzy Sets

Zadeh [Zadeh 65] showed how Type-1 Fuzzy Sets supported classical Boolean set

operations. Similarly, the elementary set theoretic operations of union, intersection and

complement can also be applied to General Type-2 Fuzzy Sets. Recall that Type-1 fuzzy set

operations produced Type-1 fuzzy sets. Similarly, the product of applying the union

intersection and complement operations to General Type-2 fuzzy sets is another GT2 fuzzy

set. Consider two GT2 fuzzy sets. Let the first set �̃� be defined as follows:

�̃� = ∫
𝝁�̃�(𝒙)

𝒙
= ∫

(∫
𝒇𝒙(𝒖)

𝒖𝑱𝒙
𝒖)

𝒙
 𝑱𝒙

𝒖 ⊆ [𝟎. 𝟏]
𝑿𝒙∈𝑿

 (B.49)

234

Figure 119 - GT2 Fuzzy Set �̃�

Let the second GT2 set B
~
 be defined as follows:

�̃� = ∫
𝝁�̃�(𝒙)

𝒙
= ∫

(∫
𝒈𝒙(𝒘)

𝒘𝑱𝒙
𝒘)

𝒙
 𝑱𝒙

𝒘 ⊆ [𝟎, 𝟏]
𝑿𝒙∈𝑿

 (B.50)

Figure 120 – GT2 Fuzzy Set �̃�

235

Functions 𝑓𝑥(𝑢) and 𝑔𝑥(𝑤) serve as the secondary membership functions of GT2

fuzzy sets �̃� and �̃�, respectively. Hence, the union of the two GT2 fuzzy sets can be defined

by the extension principle represented by the equation [Mendel 02]:

�̃� ∪ �̃� = 𝝁�̃�∪�̃�(𝒙) = ∫ ∫
𝒇𝒙(𝒖)∏𝒈𝒙(𝒙)

(𝒖∐𝒘)𝒘∈𝑱𝒙
𝒘𝝁∈𝑱𝒙

𝒖 𝒙 ∈ 𝑿 (B.51)

The above expression calculates the union of two GT2 fuzzy sets by computing the t-

conorm operations between every possible pair of primary membership values u and w and by

calculating the t-norm operation between their respective membership function results 𝑓𝑥(𝑢)

and 𝑔𝑥(𝑤). This process is repeated across the domain X. The t-norm and t-conorm

operations are the same operations as discussed in Section B.1. The resulting union operation

applied to the two GT2 fuzzy sets �̃� and �̃� are shown in figure 121.

Figure 121 – The resulting Union operation of GT2 Fuzzy Sets �̃� and �̃�

The intersection operation, on the other hand, applied to the above GT2 fuzzy sets is

represented as:

�̃� ∩ �̃� = 𝝁�̃�∩�̃�(𝒙) = ∫ ∫
𝒇𝒙(𝒖)∏𝒈𝒙(𝒙)

(𝒖∏𝒘)𝒘∈𝑱𝒙
𝒘𝒖∈𝑱𝒙

𝒖 𝒙 ∈ 𝑿 (B.52)

236

Contrast this with the union operation shown in equation B.51. The operations are

very similar except in the case of the intersection, the application of the t-norm operation is

applied to every possible pair of the primary membership values u and w.

The resulting intersection is demonstrated by figure 122.

Figure 122 – The resulting Intersection operation of GT2 Fuzzy Sets �̃� and �̃�

The complement of a GT2 FS can be computed by calculating the negation of the

secondary membership function. Hence, the complement of the GT2 fuzzy set �̃�, �̅̃� can be

expressed as:

�̅̃� = 𝝁
�̅̃�
(𝒙) = ∫

𝒇𝒙(𝒖)

𝟏−𝒖
 𝒙 ∈ 𝑿

𝒖∈𝑱𝒙
𝒖 (B.53)

B.2.2: Type-2 Fuzzy Inference System

A Type-2 Fuzzy Inference System follows much the same high-level construct as

Type-1. It receives an input vector 𝑥 , and returns a scalar, crisp value 𝑦(𝑥). Type-2 sets are

combined into linguistic terms and the terms into fuzzy rules. At a lower level, Type-2

operations extend their Type-1 equivalents in order to accommodate the Type-2 constructs.

First is the need to calculate the centroid of a Type-2 consequent in order to obtain a crisp

237

value from a Type-2 FIS. The first step in this process is to type-reduce the Type-2 results

into a Type-1 equivalent [Karnik 01] after which the new centroid is defuzzified using a

standard defuzzification method for Type-1.

Recall that the centroid 𝐶𝐴of Type-1 fuzzy set A with the domain X discretized into N

samples can be computed as the weighted average of the sampled domain values, where the

particular membership strength is used as a weighting factor:

𝑪𝑨 =
∑ 𝒙𝒊𝝁𝑨(𝒙𝒊)
𝑵
𝒊=𝟏

∑ 𝝁𝑨(𝒙𝒊)
𝑵
𝒊=𝟏

 (B.54)

The Type-2 equivalent centroid 𝐶�̃� has as it fuzzy set �̃�, represented by the equation:

�̃� = ∑ [∫ 𝒇𝒙𝒊(𝒖)/𝒖𝒖∈𝑱𝒙
] 𝒙𝒊⁄𝑵

𝒊=𝟏 (B.55)

As before assume the domain X is discretized into N samples and can be defined based

on the Extension Principle represented by the equation [Mendel 01]:

𝑪�̃� = ∫ …∫ [𝒇𝒙𝟏(𝜽𝟏) ∧ …∧ 𝒇𝒙𝑵(𝜽𝑵)]𝜽𝑵∈𝑱𝒙𝑵𝜽𝟏∈𝑱𝒙𝒊

∑ 𝒙𝒊𝜽𝒊
𝑵
𝒊=𝟏

∑ 𝜽𝒊
𝑵
𝒊=𝟏

⁄ (B.56)

In this case, every possible combination of variables 𝜃1, … , 𝜃𝑁 comprise an embedded

fuzzy set, which has a secondary contribution of 𝑓𝑥1(𝜃1) ∧ …∧ 𝑓𝑥𝑁(𝜃𝑁). The wedge operator

∧ is the specific t-norm used - in this case, the minimum operator. The elements of the

centroid can be computed by defuzzifying the embedded fuzzy set.

This process is possible through type reduction of the Type-2 set. There are a number

of proposed methods of type reduction. Two discussed here are 1) Exhaustive type reduction

and 2) Center of sets type reduction.

238

B.2.2.1: Exhaustive type-reduction

Recall the definition of the type-2 centroid:

∫ …∫ [𝒇𝒙𝟏(𝜽𝟏) ∧ …∧ 𝒇𝒙𝑵(𝜽𝑵)]𝜽𝑵∈𝑱𝒙𝑵𝜽𝟏∈𝑱𝒙𝒊

∑ 𝒙𝒊𝜽𝒊
𝑵
𝒊=𝟏

∑ 𝜽𝒊
𝑵
𝒊=𝟏

⁄ (B.57)

Under this definition all the possible combination of variables
N ,...,1

 must be

computed in order to produce a result. This requires the exhaustive enumeration of all

possible embedded fuzzy sets as defined in equations B.55 and B.56. This process is the

initial proposed method for type-reduction of General Type-2 fuzzy sets [Karnik 01].

In the case of a domain X that has been discretized into N samples the number of

possible embedded fuzzy sets is equal to 𝑛 = ∏ 𝑀𝑖
𝑁
𝑖=1 , where 𝑀𝑖 is the number of discretized

samples in the primary membership 𝐽𝑥𝑖. Clearly, even for a small number of discretized

samples, the number of embedded fuzzy sets grows prohibitively large. For a continuous

domain it uncountable. As a result, this method is generally not practical, nevertheless, this

exhaustive type-reduction method does prove to be useful theoretically in that it enables the

deriving of other theoretical concepts of GT2 fuzzy sets and fuzzy inference systems. The

exhaustive type-reduction algorithm has the following steps:

Step 1: Discretize the domain X into N points.

Step 2: Discretize each primary membership 𝐽𝑥𝑖into iM points.

Step 3: Enumerate over all possible embedded fuzzy sets. There are a total of n of them

where 𝑛 = ∏ 𝑀𝑖
𝑁
𝑖=1 .

Step 4: For each embedded fuzzy set find the primary contribution value of the centroid of

the embedded fuzzy set 𝑎(𝜃1, … , 𝜃𝑁) as:

𝒂(𝜽𝟏, … , 𝜽𝑵) =
∑ 𝒙𝒊𝜽𝒊
𝑵
𝒊=𝟏

∑ 𝜽𝒊
𝑵
𝒊=𝟏

 (B.58)

239

Step 5: For each embedded FS calculate the minimum secondary contribution 𝑏(𝜃1, … , 𝜃𝑁)

as:

𝒃(𝜽𝟏, … , 𝜽𝑵) = 𝒇𝒙𝟏(𝜽𝟏) ∧ …∧ 𝒇𝒙𝑵(𝜽𝑵) (B.59)

Step 6: Pair the computed domain value from Step 4 with the secondary contribution

computed in Step 5.

Step 7: For each unique domain value, select the maximum between primary and secondary

contribution.

B.2.2.2: Center of Sets Type-Reduction

As mentioned previously, the exhaustive type-reduction is not really practical due to

the prohibitively large number of embedded fuzzy sets that needs to be evaluated. In order to

avoid this issue, this dissertation uses the center of sets type reduction outlined in [Hagras 04]

as a way to approximate the exhaustive type-reduction method while also being able to

provide for real-time operation. Here, only a subset of embedded bounded interval fuzzy sets

with specified cardinality is chosen from the set of all possible embedded fuzzy sets. The

resulting centroid is then computed by averaging the leftmost and rightmost centroids for each

fuzzy set.

Let 𝑌𝑐𝑜𝑠(𝑥)𝑘 be the kth interval set in domain X bounded on its left by 𝑦𝑙𝑘and on its

right by 𝑦𝑟𝑘 and let M be the number of rules. Discretize each fuzzy set in Z points, 𝑦1, … , 𝑦𝑛

where z = (1…Z). Let 𝐽𝑦𝑧 ≡ [𝐿𝑧 , 𝑅𝑧], the combined left and right membership values. Let 𝑦𝑘
𝑖

correspond to the centroid of the Type-2 interval consequent set �̃�𝑘
𝑖 of the ith rule for the kth

output. Furthermore, 𝑦𝑘
𝑖 is a Type-1 interval fuzzy set, bounded by its leftmost point 𝑦𝑙𝑘

𝑖 and

rightmost point 𝑦𝑟𝑘
𝑖 which is calculated as follows:

𝒚𝒌
𝒕 = [𝒚𝒍𝒌

𝒕 , 𝒚𝒓𝒌
𝒕] = ∫ …∫ 𝟏

∑ 𝒚𝒛𝜽𝒛
𝒁
𝒛=𝟏

∑ 𝜽𝒛
𝒁
𝒛=𝟏

⁄
𝜽𝒁∈𝑱𝒚𝒁𝜽𝟏∈𝑱𝒚𝟏

 (B.60)

240

Left 𝑓𝑖be the contribution, or firing strength of the ith rule which is consists of its

leftmost firing strength 𝑓𝑖 and rightmost firing strength 𝑓̅𝑖.

The center of sets type reduction, 𝑌𝑐𝑜𝑠 is now expressed by the following iterative

equation:

𝒀𝒄𝒐𝒔(𝒙)𝒌 = [𝒚𝒍𝒌, 𝒚𝒓𝒌] = ∫ …∫ ∫ …∫ 𝟏
∑ 𝒇𝒊𝒚𝒌

𝒊𝑴
𝒊=𝟏

∑ 𝒇𝒊𝑴
𝒊=𝟏

⁄
𝒇𝑴∈[𝒇𝑴,𝒇

𝑴
𝒇𝟏∈[𝒇𝟏,𝒇

𝟏
]𝒚𝒌

𝑴∈[𝒚𝒍𝒌
𝑴 ,𝒚𝒓𝒌

𝑴]𝒚𝒌
𝟏∈[𝒚𝒍𝒌

𝟏 ,𝒚𝒓𝒌
𝟏]

 (B.61)

Defuzzification occurs by taking the average of the right and left centroid.

𝒚𝒍𝒌+𝒚𝒓𝒌

𝟐
 (B.62)

B.3: Nonstationary Fuzzy Sets

Nonstationary Fuzzy Sets (Fuzzy NFS) introduces the notion of variability of fuzzy

sets over some dimension such as time, location, or even noise [Garibaldi 08]. Take for

example an airplane taking passengers from to various points in the United States. It has a

fuzzy thermostat. However, the airline wants everybody to be most comfortable, or “Warm”

depending upon the location they fly to. In Barrow, Alaska, where temperatures tend to

remain below freezing for long periods, making heavy clothing the norm, an expected fuzzy

representation of “Hot”, “Warm”, and “Cold” might look like Figure 123.

False

True

Temperature

Cold Warm Hot

0 20 40 60 80 100

Figure 123 - Fuzzy sets for a thermostat in Barrow, Alaska

241

However, an expert who happens to live in Phoenix, Arizona, where temperatures tend

to remain above freezing for long periods, making shorts, tank-tops and flip-flops preferred

attire, might decide that a fuzzy temperature gage should use a representation like Figure 124.

False

True

Temperature

Cold Warm Hot

0 20 40 60 80 100

Figure 124 - Fuzzy sets for a thermostat in Phoenix

So how does the airline accommodate the differing definitions of the fuzzy terms to

make everybody comfortable? Notice that a move from Barrow to Phoenix requires a

corresponding shift in the fuzzy sets designated for “Cold”, “Warm” and “Hot” in order to

accommodate the differing Fuzzy Type 1 definitions for each location. Since the airplane will

be in the air a long time flying smoothly between destinations, there should be an equally

smooth transformation of fuzzy sets. Nonstationary Fuzzy Sets (Fuzzy NFS) allows the

resulting Fuzzy Type 1 definitions the flexibility to change according to requirements, but

remain internally consistent at a higher level within the overall Fuzzy Inference System (FIS).

In other words, the fuzzy sets change depending upon the value of the external dimension, but

the fuzzy variables and rules remain unaffected. The goal then, is to figure out an appropriate

transformation function along the dimension; an example of which is shown in figure 125.

242

False

True

Temperature

Cold Warm Hot

0 20 40 60 80 100

False

True

Temperature

Cold Warm Hot

0 20 40 60 80 100

Fuzzy NFS

Figure 125 - A Fuzzy NFS transition of Fuzzy Type 1 sets

Example external dimensions are space (location) and time. Figure 126 demonstrates

how such a dimension, the location between cities Barrow, Alaska and Phoenix, Arizona with

a quick stopover in Hilo, Hawaii (all in the name of science of course), would look. The

transitions provided by the Fuzzy NFS would take effect as the plane moved along its course,

transforming the fuzzy sets over time. The transformations would appear something like

those demonstrated in figure 126.

False

True

Temperature

Cold Warm Hot

Barrow, AK

Hilo, HI

Phoenix, AZ

Figure 126 - Fuzzy NFS dimension of uncertainty added to Fuzzy 1

The Fuzzy NFS �̂� is described as

�̂� = ∫ ∫ 𝝁�̂�(𝒕, 𝒙)/𝒙/𝒕𝒙∈𝑿𝒕∈𝑻
 (B.63)

243

where t is some value along a dimension of the problem domain D and x is a tuple or point

within the set of possible inputs X. In order to maintain a consistent relationship between

tradition and nonstationary fuzzy sets, an additional constraint is required for 𝜇�̂�. First

consider that 𝜇�̂�(𝑥) is expressible as

𝝁�̂�(𝒙) = 𝝁𝑨(𝒙, 𝒑𝟏(𝒕),… , 𝒑𝒎(𝒕)) (B.64)

where 𝑝𝑖(𝑡) = 𝑝𝑖 + 𝑘𝑖𝑓𝑖(𝑡) and i = 1,…,m. This ensures that each parameter is varied along

the dimension by a perturbation function. Hence, for a given traditional fuzzy set A and a set

of dimension points T, the nonstationary fuzzy set �̂� is really a set of duplicates of A varied

over the dimension (e.g. time).

Nonstationary Fuzzy Sets provides the dynamic fuzzy membership function transform,

or perturbation function (and resulting sets) able to accommodate significant changes to the

problem space over that dimension. The perturbation function is simply responsible for

adjusting the underlying membership functions as needs change. The Fuzzy NFS is then able

to generate a variable FIS to handle changes in the problem space which otherwise might

cause difficulties to a static Type-1 or Type-2 FIS.

In some sense, Fuzzy NFS and Type-2 look fairly similar. Both generate three-

dimensional fuzzy surfaces over the domain but whereas at any point, Fuzzy NFS reduces to a

traditional Type-1 FIS, Type-2 implementations still maintain the extra fuzziness within the

footprint of uncertainty.

244

B.4: Polymorphic Fuzzy Signatures

Polymorphic Fuzzy Signatures (PFS) describe a multidimensional fuzzy tree of fuzzy

sets where each leaf contains a specific fuzzy membership function. Fuzzification occurs by

traversing the branches whose meta-fuzzy signature indicates membership and combining the

applicable membership functions at the leaves using traditional fuzzy functions such as max

and min. The polymorphic fuzzy signature is described as:

𝝁𝒔𝒊𝒈: 𝑿 → [𝒄𝒊]𝒊=𝟏
𝒌 (≡ ∏ 𝒄𝒊

𝒌
𝒊=𝟏) (B.65)

where ci = {
[𝑐𝑖𝑗]𝑗=1

𝑘
; 𝑖𝑓 𝑏𝑟𝑎𝑛𝑐ℎ (𝑘𝑖 > 1)

[0,1] ; 𝑖𝑓 𝑙𝑒𝑎𝑓
 (B.66)

Polymorphic fuzzy signatures allow one to break down an SDP into smaller, easier to

describe, components. Each component is then associated with a particular FIS and signature.

Each FIS output is fuzzified, with the resulting defuzzification using a traditional methods.

Figure 127 - Polymorphic Fuzzy Signature Tree

245

B.5: Hybrid Fuzzy Systems

Hybrid Algorithms, discussed in chapter 2 are algorithms such that “there is a choice

at a high-level between at least two distinct algorithms, each of which could solve the same

problem” (Dat Cung, et al., 2006). Algorithms can be oblivious or independent of inputs or

state properties, or they can be responsive to them either by self-tuning or engineered

according to the parameters of the systems.

An example of a hybrid algorithm is the Memetic Mutation algorithm discussed in

chapter 4, combining a Genetic Mutation algorithm with a Hill Climb. Another is the DDO-

Simulated Annealing introduced in Minor Contribution #3, which combines a modified

Simulated Annealing with a brute-force specialized search.

Hybrid Systems are “a class of complex dynamic systems composed of continuous

variables and discrete events that mix and interact with each other” [Cheng 10] Many

automated systems fall into this category and are well-served by hybrid algorithms. Because

of the complexity of such systems, Fuzzy Logic has proven useful as a technique to

incorporate all the various inputs and deliver a stable and predictable output without having to

resort to a complex polynomial equation.

Hybrid fuzzy systems often combine fuzzy logic with non-fuzzy processes, such as

neural networks [Gomathi 10] or optimization techniques like the genetic algorithm described

in [Cox 05] or the memetic algorithm demonstrated in chapter 4 of this dissertation. Hybrid

fuzzy systems can also combine disparate fuzzy inference systems [Mendis 10] into a

weighted composite to address Situational Discontinuity problems whose sub-components

overlap.

246

B.6: Fuzzy Clustering

Clustering is a data mining classification technique used to group sets of objects which

are similar [Han 11]. The goal for a clustering algorithm is to define attributes to describe a

grouping or “cluster”. It does this by first analyzing a set of points and then separating them

into specific groups. Each group of points is related by the similarities among their respective

attributes. For instance, suppose you had a group of points that represented sales records.

Each record had certain demographic information:

1. Buyer’s location (city, state)

2. Age

3. Product

In this simple example, a point is simply the tuple (location, age, product). Some

possible attributes might be:

 Age in range of 20-30 years

 Location within city of Seattle, WA

 Product is box of Cheerios

A cluster with these three attributes will have a certain number of points. Giving the

cluster a name such as Young adult Cheerio lovers in Seattle distinguishes it from other

clusters. Any point with these three attributes will belong to Young adult Cheerio lovers in

Seattle while any points with one or more attributes that differ will belong to another cluster.

There are a number of clustering techniques and among them is Fuzzy Clustering, also

known as Fuzzy C-means or Fuzzy K-means. The advantage of Fuzzy Clustering is the

ability to assign to a given point membership in multiple clusters. For example, suppose one

of the sale records above had the following attributes:

Location: Bellevue (just east of Seattle)

Age: 19 years

Product: Cheerios

In a traditional K-means algorithms, such a point would not be classified as belonging

to Young adult Cheerio lovers in Seattle despite the relative closeness of the three attributes.

247

In order to make the association, the cluster would have to be “expanded” to include the

external point, possibly diluting the original definition. This is not necessarily desirable either

since Young adult Cheerio lovers in Seattle doesn’t for instance, intend to include the nearby

city of Bellevue.

So what to do? It would be useful to be able to relax the cluster boundaries in order

to, in some fashion, include nearby points while still retaining the integrity of the cluster. By

the same token, it would be useful for a point that doesn’t quite fit within a particular cluster

to be able to associate to some degree with nearby clusters. Fuzzy clustering allows this by

creating fuzzy cluster boundaries.

In general, clustering techniques seek to create clusters with attributes such that they

can assign every object or point to an individual cluster. In some clustering techniques, such

as K-means, clusters have a centroid and a radius and points that belong to the cluster. These

points lie within the radius “distance” of the centroid. Similar to crisp logic, any individual

point is either a member or NOT a member of any particular cluster. Fuzzy C-means

clustering, however, using fuzzy boundaries, is able to relax the crisp rules of K-means to

allow points to belong to multiple clusters [Hung 11]. The difference between the two

approaches is illustrated by figure 128.

Crisp

Fuzzy

Figure 128 – Contrasting K-means and Fuzzy C-means clusters

Note the 2 points in orange (or light grey) between the two other clusters of points, 1

on the right and one on the left. The orange points themselves seem to some have

248

characteristics of both clusters without really belonging to either. They could be new data or

possibly noisy data. A K-means classifier could extend the cluster circles to encapsulate the

orange points but that would mean altering the original integrity of the classification for data

which might simply be noise. Another alternative could be to create a whole new cluster in

order to maintain the original classification but that might be equally undesirable since

processing would have to include the new clusters with dubious characteristics.

Fuzzy C-means takes a different approach. While it is similar to K-means in that they

both create clusters with centroids and a radius and the sum or their memberships adds up to

1; points in fuzzy C-means have membership in the range of 0 to 1 rather than just 0 or 1

[Gauge 11]. This gives a points in fuzzy C-means more flexibility in their associations as

well as better handling of outliers and noise [Tsai 11].

In the case of figure 128, each of the orange points has a certain association with both

clusters to the right and left, but not so much that the original clusters need change. We can

still distinguish between the points, however, in that the right orange point has more in

common with the cluster on the right, similarly for the orange point on the left. In the case of

the Bellevue purchase, while it is not completely within Young adult Cheerio lovers in

Seattle, it is “close” enough that it might be wise to include it in certain situations (such as a

Cheerios discount mailer to the Seattle “area”).

Fuzzy C-means techniques have been used in hybrid algorithms to handle the

switching and contributions of the appropriate processes dynamically [Palm 98]. This is

because fuzzy metrics provide a useful way to determine how “relevant” an algorithm is at a

particular point. This idea is also the basis for Fuzzy Contexts, particularly when problem

spaces overlap.

Key to creating fuzzy c-means clusters is the “fuzziness” factor, a constant, greater

than 1 (1 being the hard K-means number), which determines the fuzziness of the clusters.

The higher the number, the greater the number of clusters any individual point may belong.

Fuzzy C-means seeks to create clusters similar to K-means by minimizing an objective

function:

𝑱𝒎 = ∑ ∑ 𝒖𝒊𝒋
𝒎‖𝒙𝒊 − 𝒄𝒋‖

𝟐
, 𝟏 ≤ 𝒎 < ∞𝑪

𝒋=𝟏
𝑵
𝒊=𝟏 (B.67)

249

where m is any real number greater than 1. This is called the fuzziness factor and determines

how “relaxed” the cluster boundaries become. In other words, the greater the m, the more

clusters to which any individual point can belong. When m = 1, fuzziness disappears and the

algorithm matches K-means. The membership function 𝑢𝑖𝑗
𝑚 is an element from a membership

table and indicates the degree of membership of a particular point xi in given cluster j with a

centroid cj.

One element of the objective function is the distance equation ‖𝑥𝑖 − 𝑐𝑗‖
2
which is the

Euclidean distance between the point xi and the centroid cj defined by the equation

‖𝒙𝒊 − 𝒄𝒋‖
𝟐
= √∑ (𝒙𝒊 − 𝒄𝒋)𝟐

𝒏
𝒊=𝟏 (B.68)

The centroid cj of the jth cluster itself is calculated by the equation

𝒄𝒋 =
∑ 𝝁𝒊𝒋

𝒎𝒙𝒊
𝒏
𝒊=𝟏

∑ 𝝁𝒊𝒌
𝒎𝒏

𝒊=𝟏
 (B.69)

Finally the fuzzy membership table is calculated by applying the following equation

𝝁𝒊𝒋 =
𝟏

∑ (
|𝒙𝒊−𝒄𝒋|

|𝒙𝒊−𝒄𝒍|
)
𝟐

𝒎−𝟏𝒏
𝒌=𝟏

 (B.70)

Pseudo-code for the Fuzzy C-means follows

250

Pseudo-code 15 – Fuzzy C-means algorithm

Algorithm: Calculate Fuzzy C-means(points[] p, clusters[] c, numClusters c, maxIterations)

Input: p an array of points to cluster

c an array of clusters

numClusters how many clusters to create

maxIterations maximum number of iterations before quitting

Output:

Begin

1 IF NOT Initialized

2 set c = an array of random clusters

3 FOR EACH cluster in c

4 set a random centroid for cluster

5 NEXT cluster

6 END IF

7 DO

8 Calculate objectiveValue to get the initial value

9 move centroid centers if necessary

10 calculate membership matrix, new centers using CalcMatrixandNewCenters

11 IF Abs(objectiveValue – previousObjectiveValue) <= min error) THEN exit LOOP

12 ELSE

13 set previousObjectValue = objectiveValue

14 END IF

15 increment iterations

16 WHILE iterations <= maxIterations

End

Algorithm: CalcMatrixandNewCenters (points[] p, clusters[] c)

Inputs: p an array of points

c an array of clusters

Outputs: a new membership matrix and array of clusters

Begin

1 FOR i = 0 to count of c

2 FOR j = 0 to count of p

3 MembershipMatrix[i, j] = CalculateDistanceToAllClusters(p[j])

4 NEXT j

5 NEXT i

6 normalize cluster membership values to ensure total membership for any point is equal to

1

End

251

APPENDIX C: LOCAL SEARCH TECHNIQUES

Consider a simple 8x8 chessboard with 8 queens placed randomly on the board. A

program is tasked to arrange the queens on the board so that no queen is able to attack any

other queen. This is the classical N-Queens Problem. For a very small chessboard, a program

could easily test all possible configurations until it found one where there were no conflicts.

Figure 129 – Queens Arranged on Chessboard with no Conflicts

However, even for a moderate-sized board like the one in figure 129, the total number

of possibilities is quite large: 𝐶8
64, or about 4.4 billion possible arrangements but only 92

solutions [EQP 14]. The N-Queens problem is considered to be a nondeterministic

polynomial (NP) class problem [Martinjak 07]. This means the problem has a computational

complexity sufficiently high (such as O(2n) or O(n!)) such that brute force or deterministic

methods are not really practical. These kinds of problems can be solved using heuristic

methods instead [Russell 09]. A heuristic method is a procedure is guaranteed to find a good

solution (if one exists) in a reasonable amount of time, although there is no guarantee it will

be the best solution [Marshall 11]. What the approach gains in efficiency, it sacrifices in

252

completeness, however; with NP-class problems they are often the most practical approach to

finding a solution.

The heuristic approach assumes little to no knowledge of the problem space beyond its

current state and how to compare that to other possible states. Hence, virtually the entire

problem space is unknown. When investigating an unknown state space, a software agent

must engage in some form of search.

Brute-force or other comprehensive search simply looks at all of the possible

permutations and selects the best one. For a heuristic search, an algorithm chooses (usually) a

random point and simply begins “looking around”. Consider an ant searching for food; its

tiny brain doesn’t have any concept of refrigerators, bread baskets, kitchens, dirty dishes,

trash cans or any other place food might exist, it simply wanders around hoping to find food,

any food. Likewise a heuristic search “wanders” around in search of a solution, any solution.

In such cases a solution may still be found using only a “tiny brain”, i.e. limited computing

resources or time. There are a class of heuristic search techniques where the search is limited

to the local neighborhood around the process. These search techniques called Local Search

[Russell 09].

So instead of trying to examine all possible states, a local search algorithm limits its

search to neighboring states. Examination of the “neighborhood” by a local search algorithm

will often yield a gradient which can be followed to other neighboring states with the prospect

that this may eventually lead to a goal state or local maximum. This type of search can

greatly reduce the cost of computer resources and search time but may also fail in its mission

to reach a goal state. Success or failure depends upon the state space and the type of local

search algorithm used [Martinjak 07].

253

Goal State

Local

Maxima

Figure 130 - Typical space with a global (goal state) and local maxima.

Some greedy local search algorithms, such as Hill Climbing, simply follow the

gradient to its end. Others, such as Simulated Annealing, introduce some random movement

to better their chances of finding a goal state without becoming trapped in a local maximum.

Still others, such as Tabu search combine a random search with a memory to map areas

searched and avoid them if they previously proved unfruitful [Zheng 06], [Marshall 11].

Following

Gradient

Bounce out of local

maximum

Figure 131 - Local Search following gradient and “bounce” out of local maximum.

Local search algorithms can be combined with additional heuristics to improve their

effectiveness for a given search problem. Specific local search algorithms are discussed more

fully with pseudo code examples in appendix H.

254

APPENDIX D: NEURAL NETWORKS

Neural networks arose from a study of biological neural systems, although only

superficial similarities exist [Schalkoff 97]. The concept of a neural network centers on a

single unit that receives input from one of more sources. The unit is called a neuron and a

collection of neurons action in concert is called a neural network. In the biological version, a

series of fine structures called dendrites collect signals and transmit them to the neuron’s cell

body. Each neuron has an inhibitor which serves as a threshold for the incoming signal. If

the incoming signal is sufficiently strong to overcome the inhibitor, the cell “fires” or initiates

a chemical process, creating a signal that gets passed through an axon to other dendrites of

other cells [Zurada 92]. In the artificial version, dendrites serve as inputs which are summed

and passed to an algorithm called an Activation Function that serves as the threshold as

demonstrated in figure 132.

Figure 132 - A biological neuron and its computer-based equivalent.

The input consists of a value along with “weights” and in the artificial neuron is

combined with all other inputs and a bias. The total is then processed by the activation

function, which outputs one of two values along the Axon, or output. This new model is

shown in figure 133.

255

Output

Input #1

Input #2

Bias

+1

-1

+2

Weights

Activation

Function

Figure 133 - A simple artificial neuron

The output values allow a neuron to “classify” inputs into one of two categories. The

classification allows a single neuron to distinguish characteristics between points in n-

dimension space. By adjusting the weights on the individual inputs and bias, the neuron can

“learn” to behave in a given fashion, that is, change the way it classifies a given point.

Figure 134 - Single neuron separates two square patterns.

Much like their biological counterparts, artificial neurons can learn by example, but

can also “explore” a space in a process called unsupervised learning [Wang 06], [Zurada 92].

Whereas a single neuron can distinguish or separate points into one of two categories,

multiple neurons working together can be trained to recognize very sophisticated patterns

[Ben-Gan 06]. These neurons working collectively make up the neural network as

demonstrated in Figure 135.

256

Figure 135 - Neurons working together separate squares from circles.

Neural networks come in a variety of configurations such as feed-forward, feedback,

single-layer and multi-layer and display a variety of behaviors. Some, such as the Kohonen

Networks are highly effective at relating clusters of data points. Others such as Error Back

Propagation are useful at discovering non-linear classifications. Still others, such as Hopfield

and Counter Propagation Networks are very effective at learning and associating images and

like patterns [Zurada 92].

Neural networks are often very successful at identifying patterns that are often too

complex for human inspection or other artificial techniques [Ben-Gan 06]. Once identified,

the neural network acts as the “expert” for that particular pattern and is able to discern that

pattern from among other sources of data.

Typical uses for a neural network are classification, regression and prediction [Han

11]. Classification is achieved by “training”, either supervised or unsupervised, a network’s

weights so that the resulting output value is able to identify patterns which meet classification

criteria. Regression is achieved by having a neural network modify itself in order to describe

a sequence of known values. Prediction is achieved by taking a known pattern and

extrapolating its behavior forward in time.

Neural networks are used in many commercial applications from image, character and

voice recognition to medical diagnosis, stock market prediction and data mining [Yu 06],

[Han 11].

257

APPENDIX E: EVOLUTIONARY COMPUTATION

E.1: Introduction

Evolution is defined as “the gradual development of something”. For example

Cosmologists generally believe the universe “evolved”, first from an ultra-dense singularity to

an expanding ultra-hot ball of energy to a giant cloud of hydrogen and finally to galaxies,

stars, planets and the stuff that makes up our current universe. In the biological realm,

evolution also means gradual development, but in an adaptive sense whereby less-competitive

forms gradually evolve into more competitive forms within their environment.

At stake is survival itself. Each species must contend for limited resources in order to

produce offspring and have those offspring survive long enough to reproduce and so on.

Those that are successful, by and large, are the ones that are able to adapt in order to better

meet a goal such as finding dinner or avoiding becoming dinner. However, because of the

huge diversity of environments, both currently on the earth and over time as conditions

change, there is a correspondingly huge diversity of living things. One such view of evolution

is depicted below:

Figure 136 – A View of Evolution

The reason for this great biodiversity is the goals of different species affect how they

evolve. When life first arose, it is believed the atmosphere had little oxygen but the seas were

full of nutrients so life depended upon making best use of those nutrients. That was all well

and good but the earth was also being bathed in sunlight so a new form of bacteria arose

which was able to convert sunlight into food. This proved a huge competitive advantage for

258

that species and had the side effect of pumping huge amounts of oxygen into the atmosphere.

New life forms arose to use this oxygen. Oxygen converted to ozone in the upper atmosphere

which reduced harmful ultraviolet rays from the sun. Land was now available for use and so

life evolved to use it. And so it goes. Opportunity arises in the form of a new resource

(sunlight, oxygen, land, etc.) and species adapt to use it their advantage.

This is also the flipside to this. Hazards in the form of volcanic activity, gamma ray

bursts, asteroids, ice ages and other catastrophes have come along and wiped out most species

in a series of mass extinctions. In each case it was one or more constraints that arose

requiring adaptation. Those species able to adapt eventually thrived while those species

unable to adapt quickly enough passed away with the fossil record the only evidence of their

existence.

Now consider a difficult computational problem with a goal and potentially many

ways to achieve this goal. The problem can take the form of an opportunity, like a new type

of sensor on a robot, or a constraint, such as operating on the surface of Mars, where

communication is delayed. An algorithm, such as a Fuzzy Inference System (FIS), tailored to

perform well in a slightly different set of opportunities/constraints now under-performs or

fails when faced with this new challenge. Can the FIS be adapted in some way?

The answer, of course, is yes, but how? Brute-force methods only work when the

number of possible permutations is small and heuristics may not adequately account for the

changes that come along - so how is it possible to successfully adapt when the known

information is so small and the possibilities so large? Biological organisms faced, and

overcame, these same challenges countless times over the eons. Evolutionary Computation is

a branch of computer science that tries to consider these kinds of problems in a similar way as

did biological creatures in the past and understand how biological success came about. By

emulating the adaptive methods of biology, Evolutionary Computation also hopes to emulate

their success. Many tests of these adaptive methods over the years have shown this indeed to

be the case.

 So how do biological creatures adapt? There are three primary ways: 1) Natural

Selection, 2) Recombination and 3) Mutation.

259

E.2: Natural Selection

Natural Selection occurs in a competition for resources. In Darwin’s “Survival of the

Fittest” theory, the species best able to compete for resources are those “most fit” in that

competition. Most fit can be defined in many ways from the largest and strongest to the

smartest or most nimble. Even the ability to simply prefer “what’s out there” often qualifies

as most fit as predators who prefer the most available food are most likely to succeed as

illustrated by figure 137.

Figure 137 – Predators adapt to a preponderance of green beetles

On the other hand, the prospective prey may adapt as well as shown in figure 138. In

each case, predator and prey strive to survive and adapt without actually consciously knowing

what the goal is or how to get there.

260

Figure 138 – Beetles adapt to Predators Preferences by changing color
Courtesy of University of California Museum of Paleontology's Understanding Evolution

(http://evolution.berkeley.edu).

For an algorithm, determining “most fit” requires a fitness function to test it against

competing algorithms in order to determine which algorithm “survives”. Chapter 4 describes

fitness functions in some detail.

E.3: Recombination

Recombination, also called Cross-Breeding or Crossover Mutation, is the process

whereby parents get together and produce offspring. In the progeny, traits from both parents

are recombined in different ways to produce a new set of traits reflecting both parents yet

distinct on its own.

261

Figure 139 – Recombination of Genotypes

Courtesy of the University of Sydney

Among the purposes it serves is as a self-correcting mechanism in that it helps to

prevents defective genes from being passed down as would be the case if a child were

“cloned” from the parent. These “defects” are often recessive and get masked by the traits of

the (presumably) dominant parent with the good gene. Also, this new set of traits helps to

promote species diversity, allowing for competition and natural selection to be an ongoing

process from generation to generation.

In Evolutionary Computation, recombination occurs by taking the configurations of

two algorithms (the parent genotypes) and randomly or pseudo-randomly picking from both

parents which configuration components to combine. This dissertation discusses the 8-

Queens problem whereby chessboard configurations represent the genotypes. Recombination

occurs by taking elements of two configurations (a winner and loser) and combining them to

produce a new configuration that potentially can achieve a goal. Appendix A, Minor

Contribution #3 describes the process in some detail and Appendix H provides the pseudo-

code.

262

E.4: Mutation

Mutation is the final leg of the evolutionary stool. The history of biological evolution

is replete with examples new traits introduced which are not possible through natural selection

or recombination, such as eyes, vertebrae and sweat glands. Such a drastic change requires a

more drastic technique.

While the cause of a biological mutation involves broken DNA, the mutation of an

algorithm involves randomizing one of more of its traits as demonstrated in figure 140.

Figure 140 – Genetic Mutation

Mutation allows for dramatically different looks at an algorithm. While most

mutations fail, the variability they introduce allows for exploration that is not possible via

natural selection or recombination.

This dissertation uses Evolutionary Computation in the form of a genetic algorithm,

memetic algorithm and a variation of the genetic algorithm in chapter 4 and Appendix A,

Minor Contribution #3.

263

APPENDIX F: RELATIONAL DATABASE CONCEPTS

F.1: Introduction

Databases have become an indispensable component in almost all computerized

systems. This has resulted in the development of ever more sophisticated tools that deliver a

reliable and flexible tool set. While there has been some recent press talking about the

negative impact of some databases, this is the result of unethical use of these tools, not the

tools themselves [Johnson 13]. Databases and database software remains a valuable tool in

the software development process.

As the use of databases has become ubiquitous there have been many theories as to

what constitutes a database [Powell 05]. Consider the case of a company that, among other

things, makes products, sells products, sends bills, etc. In the early day of computer

automation each functionality would have been automated by different programmers. Each

programmer would have defined their data requirements. Once those requirements were in

place the data would be compiled in a flat file that was set up to meet the programmer’s needs

in the specific application. In extreme cases, each programmer would have assigned different

identifiers to similar data (e.g. there would not have been one consistent product number or

customer number) because they may not have known about other data sources, might not have

had access to the other data sources or simply decided to do it that way.

In this type of environment, simply maintaining the data was a full time job. When

there was a need for change to the data structure, a major effort was required. Consider what

it might take to add one data element to the above environment:

 Data files would need to have the field added to their structure

 Programs would have to be written, tested and run to modify the file structure and

then the data

 The question would remain “did we get it all”?

There was a clear need for a simpler, more manageable, cost efficient and secure way

to manage data. A modern database is a resource to the entire enterprise. At a high level you

can think of it like a central phone system:

264

 It is available to many different users

 It facilitates different users and applications

 It is centrally managed and maintained

 Access is safe and secure

 The user community has access only to appropriate functions

 A user expects that it will always be available and operate reliably

Hence in a functioning database:

 The data will be managed by the database team and used by the programmers

 Each customer, product, etc. would have only one identifier

 The programmers will have access to common data

 If a field needs to be added, the database team can do it very quickly. Once added

the programmers can easily update the data

The database is a collection of data. In order to utilize the data a database

management system (DBMS) is needed. Early DBMSs were very crude and difficult to use.

They typically required a high degree of programming skill. These have evolved to modern

systems (like SQL Server) that have visual tools and provide the database team with a rich

and diverse tool set that allows for fast and easy access to the database to ensure optimal

performance.

Most of the current DBMS product offerings go far beyond just managing the

database. Tools exist for producing reports, analyzing data and even presenting different

ways of viewing and analyzing the data.

In the beginning it wasn’t that way. Early hierarchical databases addressed the issue

of centralizing data, but they were difficult to work with as the programmer was forced to

literally go through the hierarchy one record at a time.

265

A Typical Hierarchical Database

General Motors

Chevrolet Oldsmobile Saturn

Model A

Model B

Model C

Part 1

Part 2

Part 3

Employee 1

Employee 2

Employee 3

Employee 1

Employee 2

Employee 3

Employee 1

Employee 2

Employee 3

Model A

Model B

Model C

Part 1

Part 2

Part 3

Model A

Model B

Model C

Part 1

Part 2

Part 3

Figure 141 – A Hierarchical Database Design

Consider the question where do we use a one inch screw, part number 12345? A

programmer would need to write a program:

 Start at General Motors

 Move to the next level (Chevrolet)

 Within Chevrolet go through each model

 Within each model go through each part

 When the program finds part 12345 “note” which model of which brand

This is clearly a tedious process. Further, there is no guarantee that part 12345 will be

the same across all branches of the hierarchy.

Another database came along called the Network Database. Networked databases are

a type of database system, not to be confused with the relatively recent ability of some

DBMSs to work across a network. A networked database contains a network of embedded

pointers that allow for very rapid access to related data. While the network of pointers makes

retrieving data very efficient, it comes with a very high cost in terms of maintaining that

266

network. For this reason networked databases are best used in scenarios where there are high

demands for fast response times but limited update and maintenance requirements.

The relational model was proposed by E.F. Codd of IBM [Date 11]. Under this model

the amount of data being stored is minimized to enable processing efficiency and maximize

data storage resources.

The heart of a relational database is the Structured Query Language or SQL. SQL is a

fourth generation language which means that commands tell what is to be done, not how to do

it. One of SQL’s major strengths is its ability to pull together (join) data from several tables.

This capability allows us to store only foreign keys and include more details only when

needed.

Referring back to the example from General Motors, we can instead create tables for

cars and parts. The new structure doesn’t need to be more than one level deep and much

easier to read. Foreign keys in the various tables allow us to reliably refer to data in other

tables. We can ask SQL to retrieve all data for part number 12345 instead of doing it

ourselves. Because we know the model ID we can ask SQL to join in data about the Model.

If needed, data about the brand can also be included. A competent SQL programmer can

build a query to get the necessary data in minutes as compared to a much more extensive

retrieval process against the hierarchical model in the earlier example.

Almost all computer systems that employ saved data now use a database system to

manage that data. In many of those situations the database model used is the relational one.

267

F.2: The Relational Model

The relational database model is an efficient mechanism for general purpose

databases. Under this model, data are stored in tables. Tables are defined in terms of

columns which represent the specific data elements within the table. Examples of columns

might include name, product number or grade. Within the table data are stored in rows. Each

row has data in some or all of the columns.

There is a well-defined methodology for building a relational database. The

methodology is called Normalization. Similar to other data compression techniques, the idea

behind Normalization is to find redundancies in the data and replace them with small,

reusable “codes”. These codes take the form of “keys”. Normalization presents another

advantage for Online Transaction Processing (OLTP) systems in that the use of codes means

that the source data for the code only has to be written once for the entire system to be

updated. For instance, suppose a very successful salesperson attaches her name to her

invoices. Each invoice in the system has an entry with her name, “Mary Smith”. If Mary gets

married to Joe Stacevokokious and wants to change her name to Mary Smith- Stacevokokious

she or some poor data entry clerk will have their hands full changing each of Mary’s sales

records, correctly, so she can get her commission. Better would be to simply have a code for

Mary Smith, say 25 and a single entry that says essentially: Mary Smith = 25. Each of her

invoices would contain a code of 25 for the sales person. Then the clerk would simply have

to change a single entry to: Mary Smith- Stacevokokious = 25 and Mary’s invoices will all

change and she can rest easy about her commission.

In order to manage the data efficiently, a key needs to be defined within each table.

The key is made up of one or more columns which uniquely identify that row. The key

structure makes relational databases very efficient at data storage and retrieval because the

database can work with the smaller keys instead of the larger data the key represents. As a

result, it is not unusual to store data about a similar object in several tables. For instance, in

an automotive database, information about cars might supply one table. Each of those cars

have individual parts, which reside in another table. The cars table, contains keys, or part

numbers linking part information and usage to the parts table. There are two types of keys, a

primary key which is a unique value identifying an object, and a foreign key, which serves as

268

a reference to the object. Primary keys are stored in domain tables, designed to provide data

about objects of a specific kind or type, such as cars, colors, addresses, etc. Foreign keys are

used by fact tables which contain transaction data about objects such as customer purchases

(of cars) or an inventory.

The foreign key enables the system to relate data in one (fact) table to data in another

(domain) table. Using the foreign key also means redundancies are compressed into specific

codes so the overall footprint of the data is smaller. This is because fact data tends to contain

many rows, whereas domain data contains fewer rows. Think about a store selling cans of

soup. There may be only a few dozen types (domain) of soup but many thousands of

purchases (fact) of soup.

When data is required from two or more tables it is retrieved using a “join”. As the

name implies, the join combines data from the specified tables by matching up data elements

between them in a “relationship”. The easiest data elements to pair are key fields. Joins are

an important component of the SQL SELECT query and part of the larger family SQL

functions.

Cardinality is a term used to describe the relationships between tables and lies at the

heart of performing joins. Cardinality helps a user or process to better understand the

relationships between tables in order to create queries that will use them efficiently. There are

three basic types of cardinality in relationships:

 One to One – for any record in the primary key table, there is one and only one

record in the foreign key table. Think driver’s licenses. Each person (primary

key) is only allowed to obtain one driver’s license (foreign key).

 One to Many – for any record in the primary key table, there can be one or more

records in the foreign key table. Think credit cards. One person can have multiple

credit cards, but each credit card belongs to one person only.

 Many to Many – any record in the primary key table can be associated to multiple

records in the foreign key table and vice versa. Think bank accounts. Any one

person can open up multiple accounts at a bank and each bank account can have

multiple signers.

269

Relational databases require design and construction. Fortunately most commercial

RDBMS’s come with tools to aid this task. SQL Server Management Studio, which comes

bundled with SQL Server 2012 is once such tool.

Figure 142 – SQL Server Management Studio

F.3: Codd’s Rules for Relational Databases

All commercial relational databases must conform to a large extent, if not completely,

to E.F. Codd’s rules for relational databases [Oracle 10], [Date 11], [Powell 05].

Rule 1: The Information Rule: All information in a relational database including table

names and column names are represented by values in tables.

When Codd did his initial work on relational databases, most databases were built

using hierarchical tools [Powell 05]. Each database had its own language and own way to

storing metadata. The goal here was to have a uniform way to lookup information about

270

tables and column in order to know how to structure output. The database tool in this

dissertation, SQL Server conforms to this rule by creating system tables in each database.

These system tables are designed to hold metadata about all the objects in the database. By

querying the system tables, processes can get information about tables, columns, constraints,

data types, dependencies and more. SQL Server provides internal processes and code to

maintain system tables so users need not concern themselves unless they need specific

metadata, in which case they can query them directly or indirectly via views or system stored

procedures as demonstrated in figure 143.

Figure 143 – SQL Server 2012 System Tables

Rule 2: The Guaranteed Access Rule: Every piece of data in a relational database can be

accessed by using a combination of a table name, and a primary key value that identifies the

row and column name which identifies a cell.

Critical in any database is the ability to find any specific piece of information stored.

Since data is contained in tables, each table must provide the ability to label each row with a

unique identifier. Normally referred to as the primary key, this identifier can be a single value

(like an ID) or a composite value (such as and Customer/Purchase Date) but it must be unique

in order to identify each row. SQL Server 2012 uses the primary key as an index pointer to a

table row on a specific disk page.

271

Once a row is located, then SQL Server lays out the columns sequentially on disk in

much the same way objects are laid out in memory. By calculating the amount of space used,

based upon the column data type, the database engine knows how far to offset from the

pointer to get to the beginning of the particular column value. In this way, all data elements

are uniquely identified by the unique combination of database name, table name and column

name. Column names are unique within the table and table names are unique within the

database. Best practices require a unique primary key on tables which further reinforces this

rule. SQL Server, like many other databases takes this a step further by the use of identifiers.

Identifiers come in five parts:

1. Server name (implied as the current server if not specified)

2. Database name (implied as the current database if not specified)

3. Schema name (implied as current user if not specified, if not that, then dbo,

otherwise query will fail)

4. Table name

5. Column name

272

Figure 144 shows a table whose primary key column has the 5-part designation

VMWAREBOX.FuzzyContexts.dbo.Algorithm.AlgorithmId

Figure 144 – 5 part identifier

VMWAREBOX.FuzzyContexts.dbo.Algorithm.AlgorithmId

Rule 3: Systematic Treatment of Nulls Rule: The RDBMS handles records that have

unknown or inapplicable values in a pre-defined fashion.

The NULL is almost a rite of passage for SQL developers because it adds a frustrating

twist to what is normally a fairly intuitive process. Because NULL is undefined, standard

ANSI treatment of null values in SQL Server and other relational databases goes something

like this:

 NULL is not equal to any regular value

 NULL is not equal to another NULL value

 NULL is not NOT equal to another NULL value

The first rule seems pretty straight-forward but the next two rules have caused errors in many

a query. SQL Server provides a pair of functions: COALESCE and ISNULL to temporarily

convert NULLs to values which can be compared, which also provide a specific test for

NULL. Relational databases should allow for the possibility of null values and be able to

273

include/exclude these values in queries in some sort of manageable fashion as SQL Server

does.

Rule 4: Active Online Catalog Based on the Relational Model: The description of a

database and its contents are in database tables and therefore must be able to be queried via

the standard data manipulation language.

This rule is saying that there must be an ability to find out things like

 What tables are in a database?

 What columns are in the various tables?

 What are the data types of the columns?

 Other related metadata such as dependencies, constraints, etc.

The database must make this information available via SQL. As mentioned earlier, SQL

Server implements this rule by keeping all of this information in a set of system tables which

can be queried in the same manner as user tables.

Rule 5: Comprehensive Data Sublanguage Rule: A RDBMS may support multiple

languages, but at least one of them should allow the user to do all of the following: define

tables and views, query and update the data, set integrity constraints, set authorizations and

define transactions.

The database must have at least one language that enables creation of data definitions

or objects (known as DDL), data manipulation (DML), data integrity, and transaction control.

SQL or Standard Query Language has been the primary vehicle for implementing rule 5 in

most traditional relational databases. SQL Server 2012 uses a SQL variant called Transact-

SQL [Ben-Gan 06], Oracle databases use PL-SQL and other databases use other SQL variants

which have been optimized for the particular platform, but generally conform to ANSI

specifications [Davidson 12].

274

Rule 6: View Updating Rule: Any view that is theoretically updateable can be updated using

the RDBMS.

This rule simply says the database should allow the same level of data manipulation to

views that are available via direct access. “Views” are logical abstractions to the underlying

physical tables. Views are useful because they can change the appearance and behavior of

their underlying table or tables. As a result this can be a very difficult rule to implement.

Imagine a view that has four or five inputs (tables or views) and several of the views are

based on other views. The rule maintains we must be able to update the underlying tables

correctly. SQL Server does not fully support this rule directly but in the case where the

database engine is unable to determine the correct updates, developers can override the

default behavior using triggers. Triggers are a special form of custom operation designed to

fire when certain operations occur (like an update) against a table or view. When applied

against a view, these triggers can then apply more advanced logic to put the appropriate

changes to the underlying tables.

Rule 7: High Level Insert, Update and Delete: The RDBMS supports insertions, updates

and deletion at the table level.

As in chapter 4, one of the great benefits of using a relational is the ability to perform

set-based operations which allow working with multiple rows in a single operation. Rule 7

makes it possible. We normally retrieve data in sets which are made up of multiple rows.

This rule states that we should be able to add/change/delete data based on sets and not just a

single row of data. SQL Server 2012 gives users the ability to cross load data from one set to

another as well as the ability to do add/change/delete operations based on an internal table,

external table or even an input file. For SQL programmers, it is important to develop a skill

for thinking in terms of set-based operations (or batches) in order to maximize the

performance of database operations.

275

Rule 8: Physical Data Independence: The execution of ad-hoc requests and application

programs queries is not affected by changes in the physical data access and storage methods.

There must be a layer of separation between the user and the physical devices and architecture

that actually store the data so that users of the database need not be aware of the underlying

physical architecture beyond such necessities as the network server name and/or IP address.

Hence, for users working from a database, the experience should be the same (network

bandwidth permitting) whether the actual physical server is sitting downstairs or on the other

side of the Pacific Ocean. Furthermore, if the database server were to move from Cleveland

to Manila, all else being equal, the users should not be able to detect a difference.

Rule 9: Logical Data Independence: Logical changes in tables and views such as

adding/deleting columns or changing field lengths or types need not necessitate modifications

in the programs or in the format of ad-hoc requests.

The rule states simply that the database should provide a mechanism so that a user’s

view of a piece of data remains static in the event the underlying table structure changes. This

rule looks harder than it is in reality because SQL Server and other RDBMS provide views

which can usually handle this task.

Rule 10: Integrity Independence: Like the table/view definition, integrity constraints are

stored in the online catalog and can therefore be changed without necessitating changes in

the application programs.

Constraints are a topic deserving of a separate chapter, but, in short, consider them as

“checks” to make sure the data entered makes physical (the right type) and logical (the right

value or values) sense. Like other object metadata, constraint information is stored in tables

and can be changed using standard SQL. SQL Server provides a number of tables to store

and retrieve information such as the one shown in figure 145.

276

Figure 145 – Schema view listing primary key constraints

Rule 11: Distribution Independence: Application programs and ad-hoc request are not

affected by changes in the distribution of the physical data.

Similar to rule 8, but applies to the data on the server as opposed to the server itself.

This allows data to reside on different disk drives, SAN (storage area network) or other

devices without impacting the user interface. The database engine handles all the necessary

low-level storage and retrieval operations under the covers in typical “black box” fashion.

Rule 12: No Subversion Rule: If the RDBMS has a language that accesses the information

of a record, this language should not be able to bypass the integrity constraints.

Surprisingly this last rule might be the most important of them all. In order for users

(say customers at a bank) to trust the database, they must trust that the database engine has the

necessary safeguards for their data. If the database engine allowed for a mechanism to bypass

integrity constraints then the data would be suspect and potentially useless. One the primary

reasons for the ascendency of relational databases has been the uncompromising way in which

they prevent data from violating existing constraints. Any sort of data “sabotage” can only

occur via deliberate means (such as removing a constraint and THEN adding bad data) and

not through an accidental process.

277

Relational databases went from nearly non-existent to the preferred way to store data

in just a couple of decades due to their ease of implementation, flexibility and power. As such

they are growing more indispensable for generic applications and as demonstrated in chapter

4, add a new dimension to the power and intelligence of traditional (i.e. formerly non-

database) applications approaches such as a Genetic algorithm or Fuzzy Inference System.

278

APPENDIX G: ADVANCED DATA MINING TECHNIQUES

With each passing day, the amount of data collected continues to increase. As data

sources grow, it becomes more and more difficult to derive meaningful information via

traditional human query and search mechanisms. Traditional reporting often gets

overwhelmed in minutiae while key relationships remain hidden [Kitayama 02], [Ke-jun 07].

Database technology has evolved to meet these challenges with an ever greater and

more advanced array of storage mechanism and query tools. Relational databases dominate

the business landscape surrounded by data warehouses, high-speed connections and high-

density hard-drives [Han 11]. Anyone looking for a specific answer to a specific question,

such as who made the most purchases of a widget last month, only has to submit the

appropriate query to retrieve it.

Problems often arise, however, in trying to determine what questions are appropriate.

Datasets can become so large that even finding out where to begin presents significant

challenges. Basic questions that answer “who” or “how many” do not easily lead to the more

pressing and useful question of “why”. Common queries often fail to define important

relationships or criteria, such as how to distinguish a “good” customer from a “poor” one or at

what times are customers more receptive to certain promotions. Nor can traditional queries

easily draw associations, such as products that tend to be sold together, either in one purchase

or subsequent purchases [Han 11], [Ben-Gan 06], [Witten 11].

In addition, important information for certain questions may not be easily formulated.

With databases containing thousands of dimensions, it can be a daunting challenge to

determine which, if any, hold useful information. Manually researching these large datasets is

very costly, given the vast quantities of information, and human comprehension is often too

limited to recognize many of the more fruitful patterns that exist from among thousands of

possible attributes.

Advanced Data Mining Techniques are a class of algorithms designed to search large

databases and provide answers to vague and difficult questions by identifying relationships

and patterns in the underlying data [Han 11], [Ben-Gan 06], [Cox 05]. They generally operate

as a semi-directed or completely automated process, analyzing large datasets looking for

useful information. The results can take the form of data clusters, Decision Trees, histograms,

279

graphs, lift charts and other presentations that distill complex relationships into a readable

form. The purpose of data mining is to take a large series of data points and derive

information from which relevant, important, and heretofore unknown knowledge can be

gained. This new knowledge can then be used for competitive advantage through the creation

of rules, or simply as a way to understand and predict the behavior of a complex system

[Haruechaiyasak 05], [Adomavicius 01].

Figure 146 - Data Mining Process.

Data mining starts with data, usually in the form of a large relational database [Han

11]. This database may then be transformed into a data warehouse or data cube through a

process called ETL (Extraction, Transformation, Loading) which attempts to create “clean”

data free from errors and missing values and formatted in a way to make it easier to mine

[Ben-Gan 06]. Because of the tight relationship between databases and data mining, large

vendors of database systems, such as Microsoft, SAP, Oracle, and IBM all offer data mining

tools to go with their database products. Once the data is put into a more friendly form, data

mining tools begin the process of creating mining models and extracting useful information.

Data Mining Techniques fall into a number of categories:

1. Classification, where data points are related by classification criteria.

Among the many classification techniques are Decision Trees, Neural

Networks, Baysian Networks, Rule-based systems, Support Vector Machines, K-

Means and Fuzzy C-Means.

280

Figure 147 - Classification of relations among multiple elements.

2. Association, where relationships are drawn between objects.

Some association techniques include Association Rules, Decision Trees,

Baysian Networks, and K-Nearest Neighbor.

Figure 148 - Amazon.com association links other book titles to a book purchase.

281

3. Prediction, where past behavior is extrapolated to anticipated future actions.

Classification techniques can also serve as predictors.

Figure 149 - Predictions (far right dotted lines) from existing data patterns

4. Regression, where “common” characteristics are established to explain past

behavior.

Among regression techniques are Neural Networks, Linear and Non-Linear regression

techniques and Fuzzy-Set based approaches.

282

Figure 150 - Linear Regression attempts over a series of data points.

5. Time Series, where activity is grouped and trends established along similar

periods of time in a given time sequence.

Time series techniques involve a the creation of periodic “time slices” which

often factor into account seasonal or other significant time-related events, such as

weekends or a holiday period like the Christmas Season. This is in order to create

trend-based views that compare similar time periods or time spans or contrast with

other data values. Figure 151 shows a Time Series Analysis of the relationship

between U.S. Nominal GDP and the yield of the 5-Year U.S. Treasury Note. A close

inspection of the year-over-year Treasury rate and of the rate of change of Nominal

GDP changes shows a lagging correlation between the two with Nominal GDP as the

lead. Time Series makes this otherwise vague relationship much more clear.

283

Figure 151 - Time series analysis of US Nominal GDP vs. 5-year Treasury Note.

The list above is by no means complete. Each implementation attempts to “mine” the

data in a particular way in order to discover the knowledge hidden there. Success often

depends upon the characteristics of the data and the types of information to be mined. For

that reason, successful data miners often employ multiple techniques to both confirm previous

findings as well as obtain a more comprehensive “picture” of the underlying data.

284

APPENDIX H: LOCAL SEARCH ALGORITHMS PSEUDO-CODE

H.1: Introduction

A number of local search algorithms (LSAs) were studied and programmed for

simulation in the C# programming language. In the simulations explored, the algorithms

attempt to find a solution to the 8-Queens problem. Eleven different local search techniques

were developed, tried and compared:

1. Hill Climb

2. Stochastic Hill Climb

3. Stochastic Hill Climb using the Descending Deviations Technique

4. Random Restart Hill Climb

5. Simulated Annealing

6. Genetic Mutation

7. Minimum Conflicts

8. Tabu Search

9. Simulated Annealing using the Descending Deviations Technique

10. Memetic Mutation

11. Genetic Mutation using the Descending Deviations Technique

What follows is pseudo-code for the individual algorithms along with a general

discussion of the merits and disadvantages of each. Appendix A, Minor Contribution #3

presents a comparative analysis of the various techniques.

H.2: LSA #1- Hill Climbing

The Hill Climbing algorithm is a greedy algorithm which tries to move from a state to

the lowest possible conflict state. The pseudo-code outline of this approach is as follows:

285

Pseudo-code 16 – Hill Climbing Algorithm

Algorithm: HillClimb(board)

Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 DO

2 determine number of conflicts on board for each tile

3 IF board state = SUCCESS OR conflicts = 0, there are no conflicts, goal is reached

4 return board

5 ELSE IF board state = FAILURE, local maximum reached, unable to proceed further

6 return NULL

7 ELSE

8 set board to GetNextHillClimbBoard

9 END IF

10 LOOP

End

Algorithm: GetNextHillClimbBoard(board)
Input: board a chessboard to solve

Output: a new, more optimal chessboard if one can be found, otherwise, set state to

FAILURE

Begin

1 FOR EACH column of tiles on board

2 get the queen for that column

3 get the lowest_tile for the column’s row

4 IF queen is already on lowest_tile continue to next column

5 ELSE

6 add lowest_tile to array of candidate tiles

7 NEXT column

8 IF array of candidate tiles is empty set state of board to FAILURE and return board

9 pick best_tile from array of candidate tiles, if more than one tile is best, pick randomly

10 get column from best_tile

11 get queen from column

12 move queen from current position to best_tile

13 return board

End

It is a simple algorithm that examines the neighborhood of solutions and picks the best

one (randomly if more than one option). Strength of this approach is simple implementation

and minimal resources required. Weakness is that it has a great tendency to be attracted to

and trapped in a local maximum.

286

H.3: LSA #2 - Stochastic Hill Climbing

Stochastic Hill Climbing is a variant of the hill climb in which not just the steepest

ascent is picked but any ascent is eligible, dictated by a probability assigned to each option.

The probability is dependent to some degree upon the steepness of the ascent. The pseudo-

code outline of this approach is as follows:

287

Pseudo-code 17 – Stochastic Hill Climb Algorithm

Algorithm: StochasticHillClimb(board)
Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 DO

2 determine number of conflicts on board for each tile

3 IF board state = SUCCESS OR conflicts = 0, there are no conflicts, goal is reached

4 return board

5 ELSE IF board state = FAILURE, local maximum reached, unable to proceed further

6 return NULL

7 ELSE

8 set board to GetNextSHillClimbBoard

9 END IF

10 LOOP

End

Algorithm: GetNextSHillClimbBoard(board)
Input: board a chessboard to solve

Output: a new, more optimal chessboard if one can be found, otherwise, set state to

FAILURE

Begin

1 set lowest_count = current number of board conflicts

2 FOR EACH column of tiles on board

3 FOR EACH row in column

4 get the tile for the column/row

5 IF tile conflicts < lowest_count

6 add tile to candidate tiles the number of times amount below lowest_count

7 END IF

5 NEXT row

6 NEXT column

9 IF array of candidate tiles is empty set state of board to FAILURE and return board

10 pick random tile from array of candidate tiles

11 get column from tile

12 get queen from column

13 move queen from current position to tile

14 return board

End

Strength of this approach is that it does provide some opportunity to allow an

algorithm to escape a local maximum although weighting still favors the “best” options.

288

Weakness is that it still has a great tendency to be attracted to and trapped in a local

maximum, only slightly less so than a purely greedy approach. The key significance of this

approach is that it doesn’t automatically throw out suboptimal candidates. This allows for

greater latitude of picks while still maintaining a bias for those candidates which appear more

qualified. It is also, relatively speaking, a resource light process.

H.4: LSA #3 - Stochastic Hill Climb using Descending Deviation Optimizations

DDO-Stochastic Hill Climb works like the standard stochastic hill climb until it gets

“stuck”; at which point it “bounces” the solution to a nearby, less optimal state and again

applies the standard stochastic hill climb. The “bounces” are gradually lessened in height

until they disappear; at which time if a global solution is not reached, the strategy fails.

Pseudo-code implementation is as follows:

289

Pseudo-code 18 – Improved Stochastic Hill Climb Using DD Technique

Algorithm: DD-StochasticHillClimb(board)
Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 DO

2 determine number of conflicts on chessboard for each tile

3 IF board state = SUCCESS OR conflicts = 0, there are no conflicts, goal is reached

4 return board

5 ELSE IF board state = FAILURE, local maximum reached, unable to proceed further

6 return NULL

7 ELSE

8 set board to GetNextDDSHillClimbBoard

9 END IF

10 LOOP

End

Algorithm: GetNextDDSHillClimbBoard(board, bounce)
Input: board a chessboard to solve

bounce the ceiling size of the allowable bounce

Output: a new, more optimal chessboard if one can be found, otherwise, set state to

FAILURE

Begin

1 set lowest_count = current number of board conflicts

2 FOR EACH column of tiles on board

3 FOR EACH row in column

4 get the tile for the column/row

5 IF tile conflicts < lowest_count

6 add tile to candidate tiles the number of times conflicts below lowest_count

7 END IF

8 NEXT row

9 NEXT column

10 IF array of candidate tiles is empty

11 IF bounce = 0 set state of board to FAILURE and return board

12 ELSE set board = BounceBoard, reduce value of bounce

13 END IF

14 ELSE

15 pick random tile from array of candidate tiles

16 get column from tile

17 get queen from column

18 move queen from current position to tile

19 return board

End

290

Algorithm: BounceBoard(board, bounce)
Input: board a chessboard to solve

bounce the ceiling size of the allowable bounce

Output: a new, bounced chessboard

Begin

1 set lowest_count = current number of board conflicts

2 FOR EACH column of tiles on board

3 FOR EACH row in column

4 get the tile for the column/row

5 IF tile conflicts < lowest_count

6 add tile to candidate tiles the number of times conflicts below lowest_count + bounce

7 END IF

8 NEXT row

9 NEXT column

10 pick random tile from array of candidate tiles

11 get column from tile

12 get queen from column

13 move queen from current position to tile

14 return board

End

Strengths of this approach is that it is roughly equivalent to the standard stochastic hill

climb, but has the ability to escape local maxima, via the “bounce”. The bounce allows

suboptimal choices to be considered to whatever degree is indicated by the bounce. Because

it is a Descending Derivation technique, the bounce is gradually decreased to zero and the

algorithm behaves more like the traditional stochastic. The weakness of this approach is

when a global maximum is not nearby, the algorithm may not be able to “bounce” far enough

to find it and hence will still fail, albeit with more effort.

H.5: LSA #4 - Random Restart Hill Climbing

The Random Restart is another variant on the Hill Climb, except in this case, once a

local maximum is discovered, the process does a random scramble and tries again. The

assumption is that a Random Restart will eventually produce an initial configuration that will

allow it to reach a goal state. IF a solution exists, the probably of success is essentially one,

meaning that if given enough retries the Random Restart will eventually randomize its way to

291

a solution, but depends upon just how many retries one wants to do before giving up. Pseudo-

code implementation is as follows:

Pseudo-code 19 – Random Restart Hill Climbing Algorithm

Algorithm: RandomRestartHillClimb(Board, retries)

Input: board a random configuration of queens on a chessboard, 1 per column

retries the number of times to restart algorithm

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 DO

2 determine number of conflicts on board for each tile

3 IF board state = SUCCESS OR conflicts = 0, there are no conflicts, goal is reached

4 return board

5 ELSE IF board state = FAILURE, AND retries = 0 local maximum reached, unable to

proceed further

6 return NULL

7 ELSE IF board state = failure AND retries > 0

8 set board to random configuration of queens, 1 per column and reduce retries

9 ELSE

10 set board to GetNextHillClimbBoard

11 END IF

12 LOOP

End

Algorithm: GetNextHillClimbBoard(board)
Input: board a chessboard to solve

Output: a new, more optimal chessboard if one can be found, otherwise, set state to

FAILURE

Begin

1 FOR EACH column of tiles on board

2 get the queen for that column

3 get the lowest_tile for the column’s row

4 IF queen is already on lowest_tile continue to next column

5 ELSE

6 add lowest_tile to array of candidate tiles

7 NEXT column

8 IF array of candidate tiles is empty set state of board to FAILURE and return board

9 pick best_tile from array of candidate tiles, if more than one tile is best, pick randomly

10 get column from best_tile

11 get queen from column

12 move queen from current position to best_tile

13 return board

End

292

Strengths of this approach is that the algorithm should theoretically be able to find any

solution, if it exists and given enough time or retries. The underlying Hill Climb technique is

very fast and uses minimal resources. The weakness is that if global maxima are sparse and

local maxima are dense, the algorithm is likely to repeat many failed attempts on the way to

meeting its goal.

H.6: LSA #5 - Simulated Annealing (SA)

Simulated Annealing introduces a pseudo-random selection method in that the best

choice is not necessarily used but it is not random either. The algorithm allows a large range,

or nearly random, set of choices early on, getting progressively more restrictive in favor of

better choices as the algorithm iterates. Eventually, the algorithm will work in much the same

fashion as the Hill Climb, but since the range of options is greater in the beginning, it will

have theoretically explored more maxima and is correspondingly more likely to find a global

one. Pseudo-code implementation is as follows:

293

Pseudo-code 20 – Simulated Annealing

Algorithm: Simulated Annealing(board)
Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 set temperature to a specific value

2 DO

3 determine number of conflicts on board for each tile

4 IF board state = SUCCESS, there are no conflicts, goal is reached

5 return board

6 ELSE IF board state = FAILURE, AND temperature = 0 local maximum reached,

unable to proceed further

7 return NULL

9 ELSE

10 AnnealBoard(board, temperature)

11 decrement temperature

12 END IF

LOOP

End

Algorithm: AnnealBoard(board, temperature)

Input: board a chessboard to solve

temperature, an annealing value used to calculate probability threshold

Output: an annealed chessboard if one is found, otherwise NULL

Begin

1 pick a random tile from the board

2 IF tile does not have queen

3 IF tile reduces conflicts

4 move queen from tile column to tile

5 ELSE

6 calculate annealing_error for temperature

7 generate random_error between 0 and 1

8 IF annealing_error < random_error

9 move queen from tile column to tile

10 END IF

11 END IF

12 END IF

13 return board

End

The strengths of this approach is that it explores a pretty wide range of possibilities

and does a better job of finding global maxima than the other Hill-Climb variants (except for

294

the Random Restart). The weakness is that this process requires much more processing power

and time.

H.7: LSA #6 - Genetic Mutation (GM)

Genetic Mutation attempts to emulate the characteristics of random selection. The

first step is to create a “population” of candidates and select a small sample from that

population; in the implementation from Chapter 4, the sample size was two. The “fittest” of

the sample survives, while the remaining members “mutate” based upon a probability and

“cross-breed” with the best member, exchanging some of their attributes with those of the best

member. Then the sample is returned to the population and a new sample is drawn. Pseudo-

code implementation is as follows:

Pseudo-code 21 – Genetic Mutation Algorithm

Algorithm: GeneticMutation (chessboard, retries)

Input: board a random configuration of queens on a chessboard, 1 per column

retries number of times to perform mutation before giving up

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 create random sample board collection

2 DO

3 determine number of conflicts on board for each tile

4 IF board state = SUCCESS, there are no conflicts, goal is reached

5 return board

6 ELSE IF board state = FAILURE, AND retries = 0 local maximum reached, unable to

proceed further

7 return NULL

9 ELSE

10 pick random sample_board from board collection

11 pick winner as best board between board and sample_board

12 set loser as remaining board

13 crossover breed winner and loser to make new loser

14 mutate loser

15 add loser back into collection

16 set board to winner

17 decrement retries

18 END IF

19 LOOP

End

295

The strengths of this approach is that it explores many different states and doesn’t

generally focus on any given local maxima. The weakness is that it performs a lot of useless

mutations, often moving around local maxima for a number of iterations instead of spending

fewer cycles on a more direct approach. In many cases, the mutation also put potential

schedules in a worse state. A DD version limits the range of mutations so that they produce

only better schedules or, at least, no worse or marginally worse. This might serve to avoid a

lot of effort that would otherwise be devoted to useless comparisons later on.

H.8: LSA #7 - Min Conflicts

The Min Conflicts approach takes apart the space option by option seeking the

minimum for each. This allows for a multi-pronged approach to greedy search that appears to

be very effective in this case. In this implementation, the directional sweep of rows alternated

from left-to-right and right-to-left, so as to not bias the heuristic to any given direction.

Pseudo-code implementation is as follows:

296

Pseudo-code 22 – Min Conflicts Algorithm

Algorithm: MinConflicts(board)
Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 DO

2 determine number of conflicts on board for each tile

3 IF board state = SUCCESS, there are no conflicts, goal is reached

4 return board

5 ELSE IF board state = FAILURE local maximum reached, unable to proceed further

6 return NULL

7 ELSE

8 FOR EACH column in board

9 IF tile = GetBestTile(column) != NULL

10 move queen to tile

11 END IF

12 END IF

End

Algorithm: GetBestTile(column)

Input: column one column of tiles on a chessboard

Output: the best tile without a queen if one can be found, otherwise NULL

Begin

1 set qTile to tile with queen

2 calculate the lowest conflict_count for column

3 IF qTile conflicts = conflict_count THEN return NULL

4 ELSE

5 FOR EACH tile in column

6 IF tile != qTile AND tile conflicts = conflict_count

7 Add tile to candidate_list

8 END IF

9 NEXT tile

10 IF candidate_list is empty return NULL

11 ELSE IF candidate_list = 1 return tile in candidate_list

12 ELSE return random tile from candidate_list

End

The strengths of this approach are that is generally finds a solution in only a few

iterations and is fairly easy to implement. The weakness is that may be susceptible to looping

conditions as changes propagate and undo/redo various configurations that are interdependent.

For variety, the column passes were randomized right-to-left and left-to-right.

297

H.9: LSA #8 - Tabu Search

Tabu Search combines elements of the Hill Climb with a local “memory” of previous

configurations. Instead of necessarily picking the best solution, it simply picks from among

as good or better solutions. The memory prevents the algorithm retrying paths that have

already proven fruitless. This optimizes the search process at a cost of memory required to

store previous attempts.

The strengths of this approach is that it explores many potential paths. The weakness

is that it requires significant memory for large search problems (potential configuration size X

bits to represent configuration X possible configurations) so may not be practical. One

alternative is to limit the number of prior representations stored in memory but this adds the

additional complication that looping conditions can still be encountered if the loop exceeds

the size of the tabu array.

Pseudo-code implementation is as follows:

298

Pseudo-code 23 – Tabu Search Algorithm

Algorithm: TabuSearch (board)
Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 DO

2 determine number of conflicts on board for each tile

3 IF board state = SUCCESS, there are no conflicts, goal is reached

4 return board

5 ELSE IF board state = FAILURE local maximum reached, unable to proceed further

6 return NULL

7 ELSE

8 set board to GetNextHillClimbBoardTabu

9 END IF

10 LOOP

End

Algorithm: GetNextHillClimbBoardTabu(board)
Input: board a chessboard to solve

Output: a new, more optimal chessboard if one can be found, otherwise, set state to

FAILURE

Begin

1 FOR EACH column of tiles on board

2 get the queen for that column

3 get the lowest_tile for the column’s row

4 IF queen is already on lowest_tile continue to next column

5 ELSE IF board configuration with lowest_tile not tried

6 add lowest_tile to array of candidate tiles

7 NEXT column

8 IF array of candidate tiles is empty set state of board to FAILURE and return board

9 pick best_tile from array of candidate tiles, if more than one tile is best, pick randomly

10 get column from best_tile

11 get queen from column

12 move queen from current position to best_tile

13 save board configuration with best_tile to configurations tried

13 return board

End

299

H.10: LSA #9 - Simulated Annealing Using Descending Deviation Optimizations

DDO-Simulated Annealing is based upon traditional Simulated Annealing (SA) but

attempts to correct some of the inherent problems associated with traditional SA. First,

traditional SA can, through a series of bad randomizations, move to a progressively worse

state or “wander” too far away off a gradient path to recover. DDO prevents this by imposing

an artificial limit on the algorithm’s ability to wander. A second problem with traditional SA

is that it may pick a direction that is so bad that it fails the threshold test, resulting in a “no

operation” (no-op). DDO-SA forces a selection from only those actions that are valid so a no-

op doesn’t occur. The third problem is that traditional SA can randomize to the goal state but

not select it due to the number of possible states, of which the goal state is only a member.

DDO-SA does a scan of all possible states looking specifically for the goal state. If the goal

state is found the algorithm chooses that and completes successfully. A case can be made that

this operation no longer classifies as a “local search” since the entire board is scanned.

However, as opposed to scanning all states, as a comprehensive search does, this operation

looks at the current state only. In the event the state space is very large and such a total scan

becomes impractical, benefits might still be had be scanning only a “neighborhood” of the

current position, in which case the algorithm fits the traditional definition of a local search.

This approach carries with it all the positives of traditional SA, with a couple of

exceptions. In limiting the algorithm’s ability to wander, finding a goal state in a state space

that is sparsely populated may prove more difficult. One other limitation of this approach is

that each iteration requires a complete scan of all possible current configurations. This could

be somewhat expensive, SA + O(n), where n is # of possibilities. However, when compared

to the original approach it might also be faster as fewer, relatively more expensive, SA

iterations are needed to reach a solution. The scan could be optimized further by adding

elements to Tabu Search to prevent rescanning.

Pseudo-code implementation is as follows:

300

Pseudo-code 24 – Improved Simulated Annealing Algorithm Using DD Technique

Algorithm: DDSimulatedAnnealing (chessboard)

Input: board a random configuration of queens on a chessboard, 1 per column

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 set temperature to a specific value, dd_ceiling to a specific value or function of

temperature

2 DO

3 determine number of conflicts on board for each tile

4 IF board state = SUCCESS, there are no conflicts, goal is reached

5 return board

6 ELSE IF board state = FAILURE, AND temperature = 0 local maximum reached,

unable to proceed further

7 return NULL

9 ELSE

10 AnnealBoardDD(board, temperature, dd_ceiling)

11 decrement temperature

12 END IF

LOOP

End

301

Algorithm: AnnealBoardDD(board, temperature, dd_ceiling)

Input: board a chessboard to solve

temperature an annealing value used to calculate probability threshold

dd_ceiling a ceiling value (or a function of temperature)

Output: an annealed chessboard if one is found, otherwise NULL

Begin

1 scan board looking for goal_state_tile

2 IF goal_state_tile != NULL

3 move queen from goal_state_tile column to goal_state_tile

4 return board

5 ELSE

6 DO

7 pick a random tile from the board

8 IF tile does not have queen

9 IF tile reduces conflicts

10 move queen from tile column to tile

11 ELSE

12 calculate annealing_error for temperature

13 generate random_error between 0 and 1

14 IF annealing_error < random_error AND tile conflicts < ceiling

15 move queen from tile column to tile

16 END IF

17 END IF

18 END IF

19 LOOP UNTIL tile != NULL

20 return board

End

302

H.11: LSA #10 – Memetic Mutation

As discussed in Chapter 2, 4 and Appendix E, the Memetic Mutation algorithm is a

derivative of the Genetic Mutation algorithm. As such it has a similar design and operation

but has been shown to more effective than a traditional Genetic Mutation, although with a

correspondingly higher cost per iteration [Eiben 07]. In the case of the 8-Queens problem

described in Appendix A, the Memetic Mutation algorithm is a combination of the Genetic

Mutation and a simple Hill Climb algorithm.

Pseudo-code implementation is as follows:

Pseudo-code 25 – Memetic Mutation Algorithm

Algorithm: MemeticMutation (board, retries)

Input: board a random configuration of queens on a chessboard, 1 per column

retries number of times to perform mutation before giving up

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 create random sample board collection

2 DO

3 determine number of conflicts on board for each tile

4 IF board state = SUCCESS, there are no conflicts, goal is reached

5 return board

6 ELSE IF board state = FAILURE, AND retries = 0 local maximum reached, unable to

proceed further

7 return NULL

9 ELSE

10 FOR EACH sample_board in board collection

11 Apply Hill Climb to sample_board

12 IF board state = SUCCESS, there are no conflicts, goal is reached

13 return sample_board

14 NEXT sample_board

15 pick random sample_board from board collection

16 pick winner as best board between board and sample_board

17 set loser as remaining board

18 crossover breed winner and loser to make new loser

19 mutate loser

20 add loser back into collection

21 set board to winner

22 decrement retries

23 END IF

24 LOOP

End

303

This algorithm could be improved by a Tabu-like mechanism to skip any boards which

haven’t changed, but in spite this it is a relatively easy way to get a significant improvement

over the underlying genetic version.

H.12: LSA #11 – Genetic Mutation Using Descending Deviation Optimizations

Genetic Mutation traditionally doesn’t discriminate between genes except when

performing a fitness comparison. As a result it performs a lot of useless, even counter-

productive mutations, often moving around local maxima for a number of iterations instead of

spending fewer cycles on a more direct approach. Applying the Descending Deviation

heuristic to Genetic Mutation means preventing mutations which have fitness values below a

certain threshold. The reasoning for this is that as genes move further down the “fitness”

scale, they become inherently more unviable and statistically less likely to produce viable

offspring either through breeding, crossover mutation or random mutation. By limiting the

numbers of these “unfit” genes, the overall sample is more likely to produce a solution within

a given number of iterations. This was demonstrated in Appendix A, Minor Contribution #3.

Pseudo-code implementation is as follows:

304

Pseudo-code 26 – Improved Genetic Mutation Algorithm Using DD Technique

Algorithm: DDGeneticMutation (chessboard, retries)

Input: board a random configuration of queens on a chessboard, 1 per column

retries number of times to perform mutation before giving up

Output: an chessboard solution if one can be found, otherwise NULL

Begin

1 create random sample board collection

2 create fitness_threshold as value or function based upon retries

2 DO

3 determine number of conflicts on board for each tile

4 IF board state = SUCCESS, there are no conflicts, goal is reached

5 return board

6 ELSE IF board state = FAILURE, AND retries = 0 local maximum reached, unable to

proceed further

7 return NULL

9 ELSE

10 pick random sample_board from board collection

11 pick winner as best board between board and sample_board

12 set loser as remaining board

13 crossover breed winner and loser to make new loser

14 mutate loser

15 IF loser fitness >= fitness_threshold

16 add loser back into collection

17 END IF

18 set board to winner

19 decrement retries

20 END IF

21 LOOP

End

305

APPENDIX I: DATABASE, DATA WAREHOUSE AND DATA MINING TEST SOFTWARE

Microsoft’s SQL Server 2012 Developer Edition provided the platform for the

relational database along with the data mining test software used in this dissertation. The test

database was the Adventure Works sample database also provided by Microsoft. The

database consists of sales records from a fictitious bicycle shop called AdventureWorks and

contains data pertaining to customers, products and product sales, employees, vendors and

other related information. Sales take place both in-store and on the web and are tracked

separately. The schema is too big to show in its entirety but a partial schema is shown in

Figure 152.

306

SalesOrderDetail

PK,FK1 SalesOrderID

PK SalesOrderDetailID

 CarrierTrackingNumber

 OrderQty

FK2 ProductID

FK2 SpecialOfferID

 UnitPrice

 UnitPriceDiscount

 LineTotal

 rowguid

 ModifiedDate

ProductCategory

PK ProductCategoryID

 Name

 rowguid

 ModifiedDate

ProductModel

PK ProductModelID

 Name

 CatalogDescription

 Instructions

 rowguid

 ModifiedDate

Product

PK ProductID

 Name

 ProductNumber

 MakeFlag

 FinishedGoodsFlag

 Color

 SafetyStockLevel

 ReorderPoint

 StandardCost

 ListPrice

 Size

FK3 SizeUnitMeasureCode

FK4 WeightUnitMeasureCode

 Weight

 DaysToManufacture

 ProductLine

 Class

 Style

FK2 ProductSubcategoryID

FK1 ProductModelID

 SellStartDate

 SellEndDate

 DiscontinuedDate

 rowguid

 ModifiedDate

ProductSubcategory

PK ProductSubcategoryID

FK1 ProductCategoryID

 Name

 rowguid

 ModifiedDate

SalesOrderHeader

PK SalesOrderID

 RevisionNumber

 OrderDate

 DueDate

 ShipDate

 Status

 OnlineOrderFlag

 SalesOrderNumber

 PurchaseOrderNumber

 AccountNumber

FK7 CustomerID

FK3 ContactID

FK8 SalesPersonID

FK9 TerritoryID

FK1 BillToAddressID

FK2 ShipToAddressID

FK4 ShipMethodID

FK5 CreditCardID

 CreditCardApprovalCode

FK6 CurrencyRateID

 SubTotal

 TaxAmt

 Freight

 TotalDue

 Comment

 rowguid

 ModifiedDate

Customer

PK CustomerID

FK1 TerritoryID

 AccountNumber

 CustomerType

 rowguid

 ModifiedDate

SalesTerritory

PK TerritoryID

 Name

 CountryRegionCode

 Group

 SalesYTD

 SalesLastYear

 CostYTD

 CostLastYear

 rowguid

 ModifiedDate

Address

PK AddressID

 AddressLine1

 AddressLine2

 City

FK1 StateProvinceID

 PostalCode

 rowguid

 ModifiedDate

CountryRegion

PK CountryRegionCode

 Name

 ModifiedDate

CustomerAddress

PK,FK3 CustomerID

PK,FK1 AddressID

FK2 AddressTypeID

 rowguid

 ModifiedDate

StateProvince

PK StateProvinceID

 StateProvinceCode

FK1 CountryRegionCode

 IsOnlyStateProvinceFlag

 Name

FK2 TerritoryID

 rowguid

 ModifiedDate

PurchaseOrderDetail

PK,FK2 PurchaseOrderID

PK PurchaseOrderDetailID

 DueDate

 OrderQty

FK1 ProductID

 UnitPrice

 LineTotal

 ReceivedQty

 RejectedQty

 StockedQty

 ModifiedDate

Figure 152 - Partial Schema of AdventureWorks sample database

Using SQL Server 2012 Analysis Services, the relational database was processed

into a data cube to speed up certain queries and also for use as the staging area for data

mining. Data mining consisted of applying provided Bayes, Decision Trees, Clustering

and Neural Network algorithms to the data cube. The Decision Tree was generated using

307

a proprietary process combing CART techniques with C4.5. The Artificial Neural

Network used is a Back Propagation Network with one hidden layer. Mining models

were then generated for each algorithm. The resulting Decision Tree (totaling 184 nodes)

mining model implementation is shown in Figure 153 and the Bayes mining model

implementation is shown in Figure 154. The Neural Network mining model does not

have a graphical representation. Instead it lists a set of variables with favorability

ratings. These ratings determine how closely (or loosely) a given condition is associated

with a result, demonstrated in Figure 155.

308

Figure 153 – A Decision Tree in SQL Server Analysis Services

309

Figure 154 - The Bayes mining model

Figure 155 - The Neural Network mining model

310

PUBLICATIONS

JOURNAL PUBLICATIONS

1. McCarty, K., & Manic (2014), An Adaptive Framework for Contextual Algorithms,

IEEE Transactions on Industrial Informatics (in review)

Abstract: Modern industrial systems are becoming increasingly more complex and tasked to

perform an ever widening array of functions. State of the art implementations of hybrid

functions or increasingly sophisticated algorithmic seek broader application in response, but

often with correspondingly greater complexity and resource overhead. To alleviate this

problem this paper proposes a robust and flexible software architecture designed to store,

maintain and properly utilize contextual information and apply it to the problem at hand. This

contextual architecture, called Fuzzy Logic Type-C (FLC) is composed of a number of

integrated components: 1) a hierarchy of classes and interfaces supporting context creation

and use, 2) implementations of swappable algorithms such Fuzzy Logic Type-1 and Type-2,

3) an extensible algorithm definition language to store, create and dynamically load

algorithms and tools for maintaining algorithm configurations. Test results show that FLC

applications 1) improved the performance of underlying Type-1 and Type-2 equivalents by

over 20%, 2) reduced the number of fuzzy set evaluations 30%-40% 3) provided linguistic,

human-readable descriptions of problem and solution behavior, 4) adapt readily to radically

different behaviors and environments.

311

2. McCarty, K., & Manic (2014), A Hierarchical Technique for Diverse Contextual

Solution Determination and Optimization, Applied Soft Computing (in review)

Abstract: Complex problems often require equally complex solutions. These solutions may

require different algorithms depending upon the particular internal or operational state that

exists. Fuzzy logic, Artificial Neural Networks, Radial Basis Functions and other techniques

provide differing strengths and weaknesses for problem-solving. Traditional optimization

techniques provide for ways to optimize an algorithm by determining optimal configurations,

but do not naturally provide a mechanism to determine if the underlying technique itself is an

optimal choice. This paper proposes a novel hierarchical technique for optimization under

Fuzzy Contexts that allows for interchangeability and testing of algorithms as well internal

optimization. This hierarchical technique is called Fuzzy Context Optimization Abstraction

for Processes or FC-OAP and utilizes an algorithm definition language combined with

random selection in order to determine optimal algorithmic techniques. Test results in

problems as diverse as a robot navigation problem, simple sort and 8-Queens problem, the

OAP implementation successfully picked the best algorithm, based upon a defined fitness

function, from among a database of possible solutions.

312

PEER-REVIEWED CONFERENCE PUBLICATIONS

3. McCarty, K., & Manic, M. (2008). Line-of-sight tracking based upon modern heuristics

approach. 3rd IEEE Conference on Industrial Electronics and Applications, (pp. 40-45).

Abstract: Any autonomous vehicle must be able to successfully navigate a wide variety of

situations and terrain conditions. As a result, proposed solutions usually involve a

sophisticated and expensive implementation of both hardware and software. In many

situations, however, truly autonomous operation may not be necessary or practical. Instead,

equipping and training a vehicle to automatically follow a human-controlled lead vehicle is a

viable alternative. While still autonomous, the vehicle relies upon its leader to handle the

complex decisions with regards to course and speed. This paper presents a simple and elegant

configuration, called FLoST for Fuzzy Line of Sight Tracking, based on inexpensive line-of-

sight devices controlled by a heuristic to determine direction and speed of a follower. Unlike

the alternative approach where the follower needs to undergo a complex training process, the

follower using the approach presented in this paper primarily relies upon a human leader to

provide direction, allowing for a much simpler and less expensive vehicle implementation

while still being able to match or exceed the effectiveness of the autonomous design under

similar conditions. Finally, three boundary cases of lead vehicle maneuvers (circle, spiral and

weave) are presented to show the efficacy of this approach.

313

4. McCarty, K., & Manic, M. (2008). Contextual Fuzzy Type-2 Hierarchies for Decision

Trees (CoFuH-DT) - An Accelerated Data Mining Technique. Conference on Human

System Interactions, (pp. 699-704). Krakow, Poland.

Abstract: Advanced data mining techniques (ADMT) are very powerful tools for

classification, understanding and prediction of object behaviors, providing descriptive

relationships between objects such as a customer and a product they intend to buy. ADMT

typically consists of classifiers and association techniques, among them, Decision Trees (DT).

However, some important relationships are not readily apparent in a traditional decision tree.

In addition, decision trees can grow quite large as the number of dimensions and their

corresponding elements increase, requiring significant resources for processing. In either

case, rules governing these relationships can be difficult to construct. This paper presents

CoFuH-DT, a new algorithm for capturing intrinsic relationships among the nodes of DT,

based upon a proposed concept of type-2 fuzzy “contexts”. This algorithm modifies a

decision tree, first by generating type-1 fuzzy extensions of the underlying DT criteria or

“conditions”; combining further those extensions into new abstractions overlaid with type-2

contexts. The resulting fuzzy type-2 classification is then able to capture intrinsic

relationships that are otherwise non-intuitive. In addition, performing fuzzy set-based

operations simplifies the decision tree much faster than traditional search techniques in order

to aid in rule construction. Testing presented on a virtual store example demonstrates savings

of multiple orders of magnitude in terms of nodes and applicable conditions resulting in 1)

reduced complexity of decision tree, 2) ability to data mine difficult to detect

interrelationships, 3) substantial acceleration of decision tree search, making it applicable for

4) real-time data mining of new knowledge.

314

5. McCarty, K., & Manic, M. (2008). Descending Deviation Optimization Techniques for

Scheduling Problems. IEEE International Conference on Emerging Technologies and

Factory Automation, (pp. 257-260).

Abstract: In factory automation, production line scheduling entails a number of competing

issues. Finding optimal configurations often requires use of local search techniques. Local

search looks for a goal state employing heuristics and random local “probes” in order to move

from state to state. All local search techniques, however, suffer from problems with local

maxima, i.e. have the potential of getting “stuck” in a suboptimal state. While careful

introduction of randomizations is certainly a recognized technique, it can also lead the

algorithm even more astray. This paper describes a heuristic technique called Descending

Deviation Optimizations (DDO) in which a gradually lowering-- randomization ceiling allows

a local search technique to “bounce” randomly without going too far astray. An example

applying the DDO to a local search technique and achieving significant improvement is

shown.

6. McCarty, K., & Manic, M. (2009). Adaptive Behavioral Control of Collaborative Robots

in Hazardous Environments. 2nd Conference on Human Systems Interactions, (pp. 10-15).

Abstract: Terrain exploration carries with it significant hazards. Robots attempting to map a

piece of unknown terrain must be able to make decisions and react appropriately to dynamic

and potentially hostile conditions. However, because of constraints on size and cost, robots

may have limited ability to store and process necessary information. In addition, knowledge

discovered by others may be difficult to share. This paper proposes a system using a powerful

master controller, operating from a safe environment, directing the movements of numerous

robots exploring a piece of terrain. The master controller processes the information from the

robots, updates the decision process and distributes these updates back to the robots. This

process allows for a cooperative, effective search environment while also maintaining a small

processing footprint. It also allows the robot to employ adaptive, subsumptive behavioral

modification as new information is made available. A test simulation of a hazardous

environment demonstrates that even robots with little intrinsic intelligence can learn complex

behaviors in order to reach their goal.

315

7. McCarty, K., Manic, M., Goodwin, P., & Piasecki, M. (2009). Submission and Querying

Tools for a Hydrologic Information Systems Database. 8th International Conference on

Hydroinformatics. Concepcion, Chile.

Abstract: The recent establishment of the WATERs information network in the US, has

prompted a number of entities to joint this network beyond the initial selected set of test bed

nodes. The state of Idaho is supporting the creation of a IdahoWaters node through its

EPSCoR program with them aim of not only providing a single access point for Idaho water

information but also to make these data holdings accessible nationwide through participation

in the network. Given the many individuals institutions that will participate in this effort,

means of data submission are an extremely important aspect when developing an information

node of this type. This paper demonstrates an architecture for the submission as well as

querying and presentation of large datasets of hydrologic data via the internet. Discussed are

the necessary hardware and software configurations used to create databases for staging,

permanent storage, online analytical processing and distribution. In addition software and

tools for decision support as well as automation for data extraction, transformation and

loading are presented. Finally application of this architecture is shown for a wide-scale,

distributed, hydrologic-based, collaborative information network.

316

8. McCarty, K., Manic, M., Cherry, S., & McQueen, M. (2010). A Temporal-Spatial Data

Fusion Architecture for Monitoring Complex Systems. 3rd Conference on Human

Systems Interactions, (pp. 101-106).

Abstract: Non-homogenous systems arise from the need to incorporate a variety of disparate

systems into a cohesive functioning whole and may comprise many crucial elements of an

industrialized, modern society. As a result they must be constantly monitored to ensure

efficient functioning and avoid expensive breakdowns. In particular, inter-connected

computer-based systems must increasingly be aware of cyber and physical threats that are

dynamic and evolutionary in nature. However, difficulties arise in trying to ascertain threats

and problems among the diverse sources of information generated by these systems. Finally,

there is the question of how best to present this data to a human operator. Human systems

require not just analysis, but presentation which encourages timely, proactive or corrective

decisions. This paper presents a software architecture to solve these problems based upon

data fusion using temporal-spatial relationships. As phase one of a three phase project, a

prototype implementation of this architecture demonstrates application of this technique for a

cohesive system. Test results showed the system capable of real-time fusion of physical,

cyber and process data elements as well as analysis, display and interpretation of threats.

317

9. T.R. McJunkin, R.L. Boring, M.A. McQueen, L.P. Shunn, J.L. Wright, D.I. Gertman, O.

Linda, K. McCarty, M. Manic, (2011) "Concept of operations for data fusion

visualization," in Proc. of European Safety and Reliability Conference

(ESREL2011),Troyes, France, Sept. 19-22, 2011

Abstract: Data fusion for process control involves the presentation of synthesized sensor data

in a manner that highlights the most important system states to an operator. The design of a

data fusion interface must strike a balance between providing a process overview to the

operator while still helping the operator pinpoint anomalies as needed. With the inclusion of a

predictor system in the process control interface, additional design requirements must be

considered, including the need to convey uncertainty regarding the prediction and to minimize

nuisance alarms. This paper reviews these issues and establishes a design process for data

fusion interfaces centered on creating a concept of operations as the basis for a design style

guide.

10. McCarty, K., & Manic, M. (2012). A Proposed Data Fusion Architecture for Micro-Zone

Analysis and Data Mining. 5th International Symposium on Resilient Control Systems,

(pp. 72-76).

Abstract: Micro-zone analysis involves use of data fusion and data mining techniques in

order to understand the relative impact of many different variables. Data Fusion requires the

ability to combine or “fuse” date from multiple data sources. Data mining involves the

application of sophisticated algorithms, such as Time Series, to describe micro-zone behavior

and predict future values based upon past values. One of the difficulties encountered in

developing generic time series or other data mining techniques for micro-zone analysis is the

wide variability of the data sets available for analysis. This presents challenges all the way

from the data gathering stage to results presentation. This paper presents an architecture

designed and used to facilitate the collection of disparate data sets well suited for data fusion

and data mining. Results show this architecture provides a flexible, dynamic framework for

the capture and storage of a myriad of dissimilar data sets and can serve as a foundation from

which to build a complete data fusion architecture.

318

11. McCarty, K., Manic, M., & Gagnon, A. (2013). A Fuzzy Framework with Modeling

Language for Fuzzy Logic Type 1 and Type 2 Application Development. The 6th

International Conference on Human Systems Interaction (pp. 334-341). Gdansk, Poland:

IEEE.

Abstract: Fuzzy logic, Type-1 and Type-2, are well suited for human systems interactions

because they provides a natural way of implementing linguistic terms from human experts.

Existing fuzzy frameworks, however, provide limited support for Type-2. They also tend to

be fairly complicated and/or have limited portability. This paper introduces a fuzzy

framework for building a Type-1 or Type-2 fuzzy controller. A “wizard” application and

modeling language are supported to provide an easy-to-use interface for creating a fuzzy

inference system. The benefits of this framework are: 1) Increased understanding of fuzzy

systems implementation via easy-to-use visual tools; 2) Reduced development time; 3) A

standardized and portable codebase; 4) Easy configuration via XML; 5) Support for both

Type-1 and Type-2 fuzzy sets and rules. The framework is tested and solves a maze problem

using both Type-1 and Type-2 implementations.

319

12. McCarty, K., & Manic, M. (2014). Fuzzy Contexts (Type C) and Fuzzymorphism to

Solve Situational Discontinuity Problems. International World Congress on

Computational Intelligence. Beijing, China: IEEE.

Abstract: Generalized solutions to complex problems often suffer from being overly

complicated. The main contribution of this paper is to describe an architecture that allows for

greater problem generalization without the traditional corresponding increase in complexity.

The architecture extends traditional fuzzy logic and is called Fuzzy Contexts or Fuzzy Logic

Type-C. Fuzzy logic permits partial membership and values can belong to multiple fuzzy

sets. By breaking down a problem space into smaller contexts and allowing algorithms

themselves to have relaxed memberships in those contexts, a Type-C solution can support

multiple solutions to complex problems. This paper describes how problem spaces may be

decomposed into smaller, more easily solvable components and fuzzified together under a

Type-C hierarchy. Test results with a simulated robotic navigation system demonstrates how

a Type-C implementation is able to improve upon a generalized fuzzy controller.

320

13. McCarty, K., & Manic, M. (2014). A Database Driven Memetic Algorithm for Fuzzy Set

Optimization. 7th International Conference on Human System Interaction. Lisbon,

Portugal: IEEE.

Abstract: Fuzzy logic provides a natural and precise way for humans to define and interact

with systems. Optimizing a fuzzy inference system, however, presents some special

challenges for the developer because of the imprecision that is inherent to fuzzy sets. This

paper expands upon an earlier development of a fuzzy framework, adding components for

dynamic self-optimization. What makes this approach unique is the use of relational database

as a computational engine for the memetic algorithm and fitness function. The new

architecture combines the power of fuzzy logic with the special properties of a relational

database to create an efficient, flexible and self-optimizing combination. Database objects

provide the fitness function, population sampling, gene crossover and mutation components

allowing for superior batch processing and data mining potential. Results show the

framework is able to improve the performance of a working configuration as well as fix a

non-working configuration.

321

BOOK CHAPTERS

14. McCarty, K., Manic, M., & Stan, D. (2009). Contextual Data Rule Generation for

Autonomous Vehicle Control. In T. Sobh, & T. Sobh (Ed.), Innovations and Advances in

Computer Sciences and Engineering (Vol. 1, pp. 123-128). Bridgeport, Connecticut, USA:

Springer-Verlag.

Abstract: Traditional techniques for the construction of Decision Trees often create trees

which are overly large, ambiguous or both. This paper builds upon prior research by the

authors of an algorithm for using fuzzified trees and fuzzy type-2 contexts to improve

searching and usability [1]. These type-2 contexts are derivable using a variety of advanced

data mining techniques such as a back-propagation neural network, K-means and Bayesian

algorithms. Applying these hierarchical classifiers can draw new and meaningful contextual

information from an existing tree. This paper presents an algorithm and metrics for applying

these techniques to the output of a decision tree, creating new and meaningful contexts for the

underlying tree. A test example demonstrates acquisition of new knowledge and over 90%

contextual reduction of a decision tree from a commercial algorithm.

322

MASTER’S THESIS

15. McCarty, K (2008). Applications of Modern Heuristics and Advanced Data Mining

Techniques, University of Idaho

Abstract: Applications of advanced data mining techniques have proven useful in addressing

a wide range of research topics and problems. Data mining results, however, can be difficult

to interpret and often mask important relationships with trivial ones. In particular, the

Decision Tree, used for classification, prediction and association has a tendency to mask

sparse data as it may not reach the information gain threshold required to generate a new

node. Rule generation based upon Decision Trees also can be difficult to interpret without a

proper contextual framework to base those rules upon. Fuzzy logic, effective in creating

semantic precision by using partial contributions from multiple sets, applied to Decision Trees

can make them both more precise linguistically and easier to understand. Fuzzy Type-2

extends fuzzy logic even further by providing a contextual framework within which a

Decision Tree rule can be polymorphically derived. Use of these new contexts also allows for

faster, set-based pruning of the tree, as opposed to traditional node searches.

Applications of data mining include intelligent controllers for autonomous vehicles.

By maintaining a database of prior behavior, an autonomous vehicle can learn to follow and

better anticipate moves by a lead vehicle. At times, however, when a given space is either too

large or simply unknown, a vehicle might have to rely upon local search techniques in order

to determine the most appropriate action for a given situation.

By combining traditional techniques with modern heuristics in combination with non-

traditional constructs, even more powerful, effective or practical implementations are

possible. This thesis presents applications of modern heuristics and algorithms used to

improve upon a traditional Data Mining Technique: the Decision Tree. Because Data Mining

is often complemented with Local Search Techniques, this thesis looks at the effectiveness of

a number of Local Search Techniques and explores improvements to Stochastic Hill

Climbing, and Simulated Annealing in a Factory Scheduling Problem. Finally, applications,

such as intelligent controllers often incorporate elements of Data Mining as well as local

search. This thesis presents a practical method for the control of an autonomous vehicle.

Applications of these techniques are demonstrated in examples showing significant reduction

323

and simplification of .the Decision Tree, significant reduction in Local Search failure rates

and an effective tracking algorithm.

324

GLOSSARY OF TERMS

ADL Algorithm Definition Language, XML or data record used to describe and

configure a working algorithm

ADMT Advanced Data Mining Technique

DBMS Database Management System

DT Decision Tree

FC Fuzzy Context

FC-OAP Fuzzy Context Optimization Abstractions for Processes

FLC Fuzzy Logic Controller – an decision process built on a Fuzzy Inference System

FIS Fuzzy Inference System

GA Genetic Algorithm

LSA Local Search Algorithm

LST Local Search Technique

MA Memetic Algorithm

NFS Non-stationary Fuzzy Sets

PFS Polymorphic Fuzzy Signatures

RDBMS Relational Database Management System/Software

SD Situational Discontinuity – a transition from one state to another, very different

state

SDP Situational Discontinuity Problem – a problem with one of more Situation

Discontinuities

T1-FIS Type-1 Fuzzy Inference System

T2-FIS Type-2 Fuzzy Inference System

T1-FLC Type-1 Fuzzy Logic Controller

T2-FLC Type-2 Fuzzy Logic Controller

T1-C Type-1 Contextual Implementation

T2-C Type-2 Contextual Implementation

TCF Type-C Framework

