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Abstract 

Weather dictates farm operations including irrigation scheduling, harvesting, and protection from 

crop damaging events such as frost, heat waves or disease outbreaks. In a changing climate, it is 

imperative that farmers are equipped with tools to efficiently and sustainably produce crops with 

limited resources. Farmers need real-time and site-specific weather data in order to better inform 

planning and resource allocation. Currently, regional weather networks provide near real-time data in 

most locations throughout the continental US, but these data may not represent local conditions for 

most locations. This thesis will focus on the development of low-cost weather stations using the 

Arduino-platform and describe their application to enhance management decisions in an Idaho 

vineyard. The low-cost weather stations showed robust results in calibration and were capable of 

testing rigorous hypotheses about site-specific weather phenomena. As a result, we show how site-

specific weather data can answer questions that are directly relevant to disease management. 

Vineyard canopies are also surveyed using a field spectroradiometer and infrared thermometer to 

show spatial and temporal patterns of plant physiological response to their environment. A synthesis 

of socio-economic concerns that may impede the use of weather-based decision support tools is 

provided, and challenges associated with integrating weather into farm operations are discussed.   
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Chapter 1:  Literature Review 

The world’s rapidly growing population and increased demand for resource intensive crops has put 

pressure on global food producers. The agricultural sector is a leading consumer of resources, as it 

accounts for approximately 80% of consumptive water use in the U.S., and is the primary contributor 

to deforestation and greenhouse gas emissions (Food and Agriculture Organization of the United 

Nations, 2017; Irrigation & Water Use, 2019). The changing climate is expected to exacerbate this 

with increasing temperatures, changes in precipitation patterns, increased droughts and floods and 

increased weather variability across local scales (Evans & King, 2012). Weather is intricately 

intertwined with the agricultural industry as it drives biophysical processes including plant growth, 

crop water demand, and pathogen development that affect farm operations and productivity. Although 

climate models predict these changes will be beneficial for some agricultural regions, many arid, 

Mediterranean and temperate climates are predicted to see changes in crop suitability, decreased 

yield, and increased water scarcity (IPCC, 2019). Under such climatic stress and uncertainty it is 

imperative that farmers make informed decisions on resource allocation for the future of sustainable 

agriculture. This thesis will focus on methods, applications and challenges of integrating site-specific 

weather and crop data into on-farm decision making. 

Information Technology in Agriculture 

Information technology and big data are becoming increasingly integral to agricultural production 

systems. The introduction of global positioning systems (GPS), cheap monitoring technology, and 

increased computational power have made it possible for farmers to integrate digital information into 

decision making (Tantalaki et al., 2019). In agriculture applications, the term big data is less 

associated with the size of the data and more related to the data velocity, variety and veracity (Coble 

et al., 2018). In other words, big data incorporates high frequency, refined data from multiple sources. 

Sources of data in agricultural systems have been described to fit into three groups; process mediated, 

machine generated, and human-sourced (Wolfert et al., 2017). Process mediated data include farm 

specific business records such as purchasing orders, irrigation records, historical yields, or market and 

consumer reports. Machine generated data refers to more structured data from sensors, tractors, 

climate models, or in-season satellite and drone imagery. Lastly, human sourced data incorporates the 

farmers past experiences and intuition. Big data from some or all of these sources can be employed 

with machine learning techniques and data analytics to find value from the otherwise disparate 

sources of information.  
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Big data can also be used to inform small scale, site-specific decisions, often referred to as Precision 

Agriculture or Smart Farming  Precision agriculture (PA) is defined as a management strategy that 

uses information technologies to bring data from multiple sources to inform decisions associated with 

crop production (Precision Agriculture in the 21st Century, 1997). Farmers have been making 

informed decisions on crop management for centuries based on observations, historical outcomes and 

weather patterns. However, PA is different in that the farm conditions are not assumed homogeneous, 

and decisions are made from induvial zones rather than the aggregate. In practice, farmers who 

employ PA techniques utilize site-specific information from sensors, surveys, or aerial imagery to 

optimize the volume, timing and location of farm inputs such as labor, water, nutrients, or pesticides.  

Examples of precision techniques to increase yield or decrease inputs include variable rate irrigation, 

targeted herbicide applications and pest management, multispectral remote sensing to detect crop 

nitrogen status, or satellite imagery to predict yield. These tools often promise a competitive 

advantage for farmers and promote environmental and resource conservation (Sadler et al., 2005). In 

the last 20 years the adoption of precision agricultural practices such as yield monitoring, variable 

rate application of inputs and site-specific soil sampling has increased substantially (Griffin et al., 

2017). Although there has been an increase in the adoption of some precision agriculture 

technologies, the use of real-time weather data to inform crop production is less than expected.  

Agricultural Weather Networks 

Weather data is available to farmers from private and public sources. Public weather data is provided 

by a variety of agricultural weather networks across the United States. In 2016, there were 28 weather 

networks containing more than 1600 automated weather stations. Although not all of these are 

dedicated specifically to agricultural applications, the suite of weather instruments typical at stations 

were primarily influenced by the need to monitor reference evapotranspiration in the 1980s 

(Mahmood et al., 2017). Because of this, a majority of automated weather stations provide 5 to 15-

minute data of air temperature, relative humidity, incoming solar radiation, precipitation, and wind 

speed, all of which are directly applicable to farm processes. In the Pacific Northwest Agrimet, 

AgWeatherNet and the California Irrigation Management Information System (CIMIS) are three 

agricultural weather networks developed specifically to provide decision support to farmers. These 

weather networks host automatic weather stations equipped with high quality instruments to provide 

data products including reference evapotranspiration, degree day models, drought monitoring, severe 

weather warnings and pest and pathogen development models. 

Common instruments found at these stations include air temperature and relative humidity sensors, 

radiometers to measure incoming solar radiation, anemometers to measure wind speed and direction, 
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precipitation gauges, soil moisture and temperature sensors, and infrared thermometers (IRT) to 

measure ground temperature. Each of these measurements are associated with their own set of 

procedures to maintain accuracy and repeatability, and sensors should be placed such they achieve the 

following objectives: maximize airflow for naturally temperature and humidity sensors, minimize 

nearby obstructions to ensure accurate radiation measurements, minimize wind flow around 

precipitation gauges, maximize distance from tall obstructions (generally a distance of 10 times the 

height of the nearest tall object), and ensure soils are representative of the surrounding regions 

(Mahmood et al., 2017). In addition to proper sensor installation, the weather station must also be set 

up to conform to underlying assumptions of the data products it provides. For example, the 

measurement of the Penman-Monteith (P-M) reference ET must be taken above a reference surface, 

which is either a well-watered grass surface maintained at 12cm or a well-watered alfalfa surface 

maintained at 50cm (“ASCE Manual 70 – Second Edition,” 2015). However, conditions at these 

regional weather stations rarely conform to these requirements.  

Though it depends on the individual sensor and data type, generally AgriMet and AgWeatherNet 

reports weather data every 15 minutes, and CIMIS reports hourly. Data is transmitted every hour from 

individual stations to a central server where it goes through automatic and manual quality control 

procedures before being disseminated to the public. The Agrimet QA procedures include checks on 

data transmission metrics, upper and lower measurement limits, rate of change and a manual 

graphical review. Additionally, lab calibration is performed on all sensors prior to deployment, and 

field calibrations are performed annually to ensure the data are reliable and accurate (Palmer & 

Hamel, 2009). However, agricultural weather stations often go unmaintained, and is important to 

investigate the quality of the station if utilizing its data.  

Weather Related Drivers of Crop Water Use 

Increased weather variability and changes in regional weather patterns will substantially impact the 

hydrological characteristics of basins including the rates of crop evapotranspiration (ET) and the 

timing and volume of streamflow (Evans & King, 2012). ET is the primary consumptive pathway of 

water in irrigation systems and is defined as the combined evaporation from bare soil and water vapor 

transpiration from plants. ET is also directly proportional to crop biomass in well-watered and non-

nutrient limited systems (Perry et al., 2009). As such, ET is an important metric for evaluating water 

use efficiency in agriculture.  

As with many agricultural drivers, the rate of evapotranspiration, or crop water use, is highly 

dependent on local weather. Penman’s combination equation derived the physics of evaporation from 

first principles, describing evaporation in the environment as a product of two factors; the energy 
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available to maintain evaporation, and the ability of the atmosphere to accept water vapor (Penman, 

1948).Using the governing equation of conservation of energy, Penman calculated an energy budget 

about a well-watered surface where the primary energy source is net radiation. Net radiation is the 

difference between incoming radiation and outgoing radiation that has either been reflected, emitted 

or absorbed at the Earth’s surface. The primary pathways of the energy left at the surface are in the 

form of sensible heat, or latent heat, the energy used to for the evaporation of water. The second term 

in Penman’s equation, the ability of the atmosphere to accept water, is based on Fick’s law of 

diffusion. The rate of water vapor flux via diffusive processes is proportional to the concentration 

gradient, or humidity gradient. In short, water vapor fluxes will move from high to low concentration, 

such that upward fluxes of water occur when the atmosphere is drier than the surface. Horizontal 

winds also effect the rate of evaporation such that increased advection will pull away saturated air and 

replace it with dry air, increasing the atmospheric demand for water. In summary, behind the veil of 

complex physics, the rate of evaporation depends on solar radiation, air temperature, humidity 

gradients, and wind speed, all of which can be measured using weather monitoring instruments. 

This surface energy budget principle is the basis of modern research and understanding of ET.  Later, 

the original Penman equation was modified by Monteith (1965) to include aerodynamic and surface 

resistance terms that made it suitable for use in crop canopies. This Penman-Monteith (P-M) 

reference evapotranspiration (ETo) equation can be calculated using standard weather data and is the 

most widely used method for estimating ET in agricultural applications. Reference ET is a measure of 

the weather-related crop water demand over a well-watered reference surface. Reference ET is not a 

measure of actual crop evapotranspiration and cannot account for site-specific effects such as non-

uniform irrigation, soil characteristics or crop varietal differences. The most common way for farmers 

to derive actual crop water demand is by adjusting reference ET with a calibrated crop coefficient. 

Agricultural weather networks provide tables of crop coefficients so that farmers can select the most 

appropriate for their operations. However, actual circumstances like new crop varieties, differences in 

timing or differences in plant development are not represented in the provided tables, making it 

difficult for farmers to choose the correct coefficients for their specific production system. In 

addition, estimates of crop ET are only as good as the calibrated crop coefficient and applying the 

wrong coefficient can be a costly mistake for farmers, outweighing the benefits of incorporating ET 

into irrigation decisions (Davis & Dukes, 2010). 

Other methods which measure the actual crop ET include eddy covariance and weighing lysimeters. 

Eddy covariance (EC) is a technique used to measure turbulent flux of trace gases by high frequency 

sampling of vertical velocities and scalar air constituent, including water vapor and carbon dioxide. 
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The covariance between the two measurements over an averaging period is used to derive vertical 

vapor fluxes from the land surface (Baldocchi, 2014). The primary benefit of using EC is that is in 

providing an actual measure of ET without disturbing the vegetation or soil. It also provides a 

spatially representative sample of ET fluxes over an area of hundreds of meters in length. However, 

because of this large measurement footprint over which EC methods integrate, it is not suitable for 

measuring individual plants or sub-field scales. The primary drawback to the EC method is the 

requirement of costly and skilled analysis. Both the instrumentation set up and data processing take 

skilled personnel, rendering eddy covariance methods costly, time consuming, and often not feasible 

to achieve in applied settings (Allen et al., 2011a). 

Lysimeters are also a direct measure of ET. Lysimeters measure the amount of water lost to ET by 

weighing the change in water held in an artificial plot of vegetation growing in natural conditions. 

However, it is challenging to get the conditions within the lysimeter to be representative of the natural 

conditions. For example, if the surrounding lands are tilled, mimicking that effect in the container can 

be challenging. Additionally, the crop growth stage, plant rooting depth, and soil profile in the 

lysimeter needs to match that of the surroundings. For these reasons, the ET obtained from lysimeters 

values cannot always be directly upscaled to field scales (H. J. Farahani et al., 2007).  

Weather Related Drivers of Pathogen Development 

An average increase in temperature of 2°C is expected in the next 50 years (IPCC, 2019). This 

warming is expected to push about 50% of grape growing regions over the climactic threshold of 

optimum growing conditions. Warmer temperatures have shown to advance development for many 

grape cultivars by as much as two-weeks (Kornei, 2020), forcing growers to change varieties or 

change crops entirely (Jones et al., 2005). Development of detrimental fungal diseases such as 

Powdery Mildew, Downey Mildew and Grey Mold are also highly dependent on weather. Regions 

with moderate temperatures, increased relative humidity and reduced exposure to UV radiation from 

the sun are ideal for fungal growth. As such, warming climates in France have already shown to 

increase disease severity of Downey Mildew in vineyards (Caubel et al., 2013). Second order effects 

such as wind speed, free moisture from rain, dew or irrigation, and crop evapotranspiration have also 

shown to impact disease development.  

Although grapes are not a water greedy crop, there is still need for irrigation to maintain yield and 

quality. With the increased likelihood of drought and higher temperatures driving evapotranspiration, 

it is important to consider all the impacts of increased irrigation. As such, irrigation practices in 

vineyards might have unforeseen consequences on disease development. Studies have shown that 

excess irrigation can increase the development of fungal diseases. Austin and Wilcox, (2011) found 
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that doubling the irrigation rate increased the severity of Powdery Mildew disease by two-fold in a 

2007 study and by seven-fold in a repeat study in 2008. This finding was attributed to the increased 

relative humidity in the leaf boundary layer zone as a result of increased transpiration rates under 

well-watered conditions. Similarly, a study on strawberry powdery mildew found that well-watered 

plots had increased disease severity compared to plots that were under deficit irrigation (Xu et al., 

2013). For these reasons, enhanced disease detection and warning systems are an important area of 

inquiry.  

Disease Detection Methods 

This review will highlight three kinds of disease detection practices, spore traps, weather models, and 

remote sensing methods, along with their associated advantages and setbacks. First, Thiessen et al. 

(2016) tested the ability of spore traps to be used as on-farm powdery mildew disease detection 

technique in vineyards. Spore traps are wrapped in a sticky paper and are distributed across fields. 

The traps are periodically collected, and the spore concentrations are measured using a procedure 

called Loop-mediated isothermal amplifications (LAMP). The LAMP method determines the airborne 

concentration of fungi spores in the environment by DNA analysis. They tested the ability for 

growers to conduct the LAMP tests on-farm compared to laboratory conducted tests and found that 

there were no significant differences. They also found that pesticide application was reduced when 

farmers used the spore concentration to inform disease management. One problem with spore traps is 

that measurements are not accurate during times of low spore concentrations or when there are high 

background particulates because of the detection limit of the sensor (Thiessen et al., 2016). Although 

this method is proven to be effective, the practicality of analyzing spore traps on-farm diminishes as 

the farmer increases the number of traps and the frequency of testing. This is a common trade off with 

these kinds of sampling procedures.  

On the contrary, weather-based models for disease detection provide continuous sampling to inform 

real-time management decisions. For powdery mildew disease in particular, the UC Davis Powdery 

Mildew Risk Assessment Index (PMRI) is the most widely accepted tool used to inform pesticide 

application in vineyards across the western united states (Choudhury et al., 2018).  It is used to 

identify the risk of infection based on a calibrated weather model. The PMRI is broken into two parts, 

the primary and secondary infection stages. The primary infection is triggered by a 2mm precipitation 

event followed by 10 hours of leaf wetness under ideal temperature conditions for mildew growth. 

Once the initial infection is established the secondary phase of the PMRI is used to assess pathogen 

risk severity throughout the season based solely on air temperature. The PMRI index ranges from 0 – 

100 and points are added or subtracted based on a temperature threshold and duration criteria (R. J. 
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Smith et al., 2019). A study done by Bendek et al. (2007) found that using a spray schedule informed 

by the UC Davis PMRI significantly reduced vineyard disease presence. The recommended spray 

regime using the PMRI also reduced the number of sprays per season to three compared to five when 

using the farmer’s original, ad-hoc program. Washington State University’s regional weather 

network, AgWeatherNet, provides the daily PMRI index for grape growers in Oregon, Washington 

and Idaho. The primary problem with this disease detection method is that regional weather data is 

rarely representative of on-farm weather conditions. 

Despite its wide acceptance, Choudhury et al., (2018) highlighted issues with the UC Davis model 

even when applied to site-specific weather data. First, the model does not account for disease 

adaptation to high temperatures and does not incorporate other environmental factors such as relative 

humidity, leaf irradiance, and free moisture that are known to impact the development of powdery 

mildew. The UC Davis model also does not account for the inherent uncertainty of sensor 

measurements. Choudhury et al. (2018) modified the UC Davis model using a fuzzy logic machine 

learning process to determine the uncertainty in temperature thresholds that affect powdery mildew 

development. The fuzzy logic model allowed them to blur the lines of the optimal temperature range 

and compute a modified PMRI. They found that the fuzzy PMRI model reduced fungicide 

applications while maintaining comparable disease incidence when compared to the original UC 

Davis PMRI model. The positive results of this study highlight the effectiveness of using machine 

learning to recognize patterns in site-specific environmental phenomena that is not fully captured by a 

single temperature sensor measurement.  

Hyperspectral Methods of Detecting Crop Diseases 

While local weather information can be used to identify periods of high risk for pathogen 

development, it cannot provide metrics on actual disease establishment and severity. Hyperspectral 

remote sensing is an area of research that has become increasingly relevant to agricultural disease 

detection (Stoll et al., 2018, Bélanger et al., 2008). Hyperspectral remote sensing measures the 

reflected radiation from a plant resolved into narrow wavebands. The spectral resolution, or band 

width, of hyperspectral measurements is usually between 1 and 10 nm (Thenkabail et al., 2012). Each 

band within a hyperspectral signature contains a lot of information on crop physiology; including 

plant water status, photosynthetic activity, phenological development or disease incidence. The use of 

vegetation indices (VIs) is a common approach used to reduce the high dimensionality of 

hyperspectral data, as each hyperspectral signature contains hundreds to thousands of data points. 

VI’s are derived from a combination of bands to identify certain physiological effects that are not 

obviously apparent.    
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For example, Šebela et al. (2014) inoculated three different grape cultivars with downy mildew and 

used a field spectroradiometer to measure hemispherical reflectance of the adaxial (top) side of the 

leaves. They used the Simple Index (SI), which is related to chlorophyll content, and the Carotenoid 

Ratio Index (CRI700) and found that a decrease in the SI and CRI700 vegetation indices correlated with 

increased disease progress. Rumpf et al. (2010) used support vector machines (SVM) to distinguish 

between powdery mildew infected sugar beet leaves and healthy leaves during different stages of 

pathogen growth. Nine vegetative indices derived from non-imaging hyperspectral measurements 

were used as inputs to the SVM. The accuracy of the supervised SVM model reached 80% at four 

days after inoculation and 100% after 8 days.  

Oerke et al. (2016) showed the CRE was able to detect significant differences between healthy grape 

leaves and leaves infected with Downey Mildew (P. Viticola) as early as 9 days after inoculation. 

Both chlorophyll and carotenoids are leaf pigments that are directly related to photosynthetic potential 

and can provide information about the physiological stress state of plants. Chlorophyll-a (Chl-a) and 

Chlorophyll-b (Chl -b) are essential pigments in plants for the conversion of light to energy, as such 

the plant chlorophyll content can be a direct indicator of photosynthetic activity. Changes in the 

concentration of photosynthetic pigments such as Chl-a and Chl-b are also known to change with 

plant-pathogen interactions (Chaerle et al., 2004).  For this reason, the use of the chlorophyll 

vegetation indices as indicators of plant disease have been used in several studies (Erich-Christian 

Oerke et al., 2016; Rumpf et al., 2010; Šebela et al., 2014). Gitelson et al. (2006) found that the best 

VI for predicting plant chlorophyll content across a range of species is the Chlorophyll Red Edge 

Index (CRE). The CRE relates the reflectance within the red edge (710nm) to reflectance in the near 

infra-red (780nm). 

𝐶𝑅𝐸 =  
𝜌780

𝜌710
− 1 

Hyperspectral Methods of Detecting Crop Water Stress 

Hyperspectral sensing has also been used to identify plant water status in grapevines. There are two 

primary methods used to identify plant water status. The first method detects changes in plant 

reflectance in the green wavelengths due to photochemical reactions. Plants absorb more energy from 

the sun than needed for photosynthesis, so protection mechanisms are used to dissipate excess energy 

that could be damaging to the plant. One pathway of energy during photosynthesis is via the 

Xanthophyll pigment cycle. Dissipation of energy from this mechanism within the chloroplast can be 

observed from reflectance at 531nm (Thenkabail et al., 2012). An increase in light intensity at 531nm 

corresponds to increased heat dissipation, which is affected by secondary factors such as drought. In 
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this case, this information can be used to assess plant water stress using the Photochemical 

Reflectance Index (PRI) (Gamon et al., 1992). The PRI compares reflectance at 531nm to a 

reflectance at a reference band (usually 571nm) that does not change with photosynthetic activity. 

More negative PRI values are correlated with increased plant water stress (Thenkabail et al., 2012).  

𝑃𝑅𝐼 =  
𝜌531 −  𝜌570

𝜌531 +  𝜌570
 

The second method of detecting plant water status is by measuring the water absorbance of light in 

the near-infrared region of the spectrum relative to an atmospherics absorption band. Light from the 

sun passes through the atmosphere as it travels down to vegetation. During this process, light energy 

at certain wavelengths are absorbed by atmospheric constituents such as water vapor, carbon dioxide, 

and methane. When light at the wavelength of a water absorption band is incident on vegetation 

(970nm), the reflected light from the plant will vary slightly depending on the water content of the 

plant (Peñuelas et al., 1993). The Water Index (WI) developed by Peñuelas et al. (1993) compares 

reflectance at 970nm to reflectance at a reference band that is not as attenuated by atmospheric water 

absorption, 900nm. This technique is best employed with ground based hyperspectral sensing because 

additional interaction of light with the atmosphere leads to further absorption and which attenuates 

the plant’s signal. 

𝑊𝐼 =  
𝜌970

𝜌900
 

Peñuelas et al. (1993) found the WI had a significant linear relationship with relative plant water 

content, leaf water potential, and leaf temperature depression such that an increase in WI indicated a 

decrease in plant water content. It was later confirmed by Pôças et al. (2017) that the WI is a good 

predictor for water stress in vines under water deficit conditions. The leaf temperature depression 

(LTD) can also be used to approximate plant water stress. The LTD is the difference between the air 

temperature and the apparent canopy temperature, measured using an infrared thermometer. When the 

plant is transpiring, the canopy temperature will be cooler than the ambient air because of evaporative 

cooling. Under stressed conditions of limited water and increased air temperatures, plants will 

regulate their stomata to prevent excessive water loss (Simon et al., 2018). This reduces transpiration, 

and consequently decreases the latent heat flux, resulting in increased leaf temperatures. 
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Chapter 2: Low-cost Weather Station Development 

Introduction 

Weather dictates farm operations including irrigation scheduling, harvesting, and protection from 

crop damaging events such as frost, heat waves or disease outbreaks. In a changing climate with 

increased weather variability and water scarcity, it is paramount that farmers are making informed 

decisions on crop and resource management based on their unique climate. Currently, some farmers 

have access to regional weather networks that provide near real-time data in most locations 

throughout the continental US. The problem is that this regional weather data is not representative of 

on-farm conditions in most locations and does not provide the granularity necessary to make targeted, 

real-time decisions. Alternatively, farmers may deploy commercial weather stations on their farms 

that can provide site-specific weather information, though commercial weather systems can be cost 

prohibitive for small scale farmers. The cost of sensors alone can be expensive, with good quality 

sensors costing hundreds of dollars. In most on-farm applications, a datalogger is required to query 

and store information from sensors, which imparts additional costs. As a result, small scale farmers 

might only be able to afford one or two stations which limits the spatial coverage of weather data and 

consequently targeted decisions.  

Commercial vendors provide a wide range of alternatives, although these vary in quality and in 

usefulness for on-farm monitoring.  Collecting useful environmental data is not trivial. The first step 

in communicating environmental data is deciding what kind of sensor is needed to capture the 

physical phenomena of interest. Sensors cannot directly measure precipitation, temperature, relative 

humidity, wind, etc, but instead measure a change in electrical signal. This signal is in the form of 

changing resistance, capacitance, current or voltage that occurs as a result of the physical 

event. Therefore, the sensors should be placed such that they capture the weather parameter of 

interest, and not some other effect. Even after installation, privately owned weather stations require 

maintenance to ensure continued accuracy of the measurements. For example, it is recommended that 

humidity sensors be calibrated every year due to sensor drift. Another issue related to on-farm 

weather stations is that the data outputs may not be relevant to the farmer’s specific needs or in a form 

that is actionable (Haigh et al., 2018). Dataloggers are often manufacturer specific and only integrate 

with a narrow selection of sensor types and communication protocols. This limits the flexibility for 

farmers to customize data outputs to their unique applications, an important factor in the success of 

on-farm decision support tools (Mase & Prokopy, 2014).  

Although there are many interrelated issues with on-farm weather stations, in this project we address 

the system cost and datalogger customizability. We worked closely with two different decision 
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makers to develop a customized and low-cost alternative to meteorological data collection that meets 

their specific needs using an Arduino-based platform. Gunawardena et al., (2018) developed a local 

energy-budget measurement stations (LEMS) and showed that an Arduino-based weather station 

could be designed for approximately $1000 USD for use in research applications. The low-cost 

sensors used for the LEMS had acceptable performance compared to high quality instruments and the 

LEMS were successfully used in a variety of research studies (Bailey et al., 2016; Gultepe et al., 

2016; Hang et al., 2016; Jensen et al., 2017). Others have published similar successes in the 

development of low-cost weather stations using programmable microcontrollers (Fisher & Gould, 

2012; Fisher & Kebede, 2010; Ibrahim Musa, 2018), but the application of low-cost Arduino-based 

weather stations for use as on-farm tools have not been thoroughly evaluated in the literature. The 

primary objectives of this project are as follows: 

1. Design and build low-cost Arduino-based dataloggers that integrate with a variety of sensor 

types. 

2. Test field robustness and by deploying the systems in two different field studies.  

3. Compare a variety of sensors ranging in price to their high-quality counterparts to evaluate 

the trade-off between sensor accuracy and cost 

Methods and Materials 

Weather Station Design 

The following sections describe the system components in detail. The same datalogger, power system 

and hardware were paired with different sensors suites for deployment in the two field studies.  

Datalogger and Power System 

An Arduino MEGA 2560 microcontroller was used as a datalogger. This component is an integral 

part to the platform due to its high customizability; it can integrate with a variety of sensor types and 

it is an affordable option to environmental data acquisition. The Arduino MEGA 2560 board is 

programmed using an open source Arduino software IDE. It hosts 54 digital input and output pins, 16 

analog pins, and a 10-bit analog to digital converter. The board was paired with an Adafruit data 

logging shield equipped with an SD card reader and Real Time Clock (RTC) to synchronize reading 

and writing data.  

The system was powered by a 10W solar panel with an inline charge controller that regulates a 12V 

battery. It is important that the logger draws as little current as possible to reduce power consumption 

and maximize battery life under variable sunlight conditions.  To reduce power consumption, a 

library was used to put the board in sleep mode when not taking a measurement.  A timer on the RTC 
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was used to trigger an Interrupt Service Routine (ISR) to wake up the board to take a measurement 

every 5 minutes. Another feature to reduce power consumption was the addition of an external 

switching voltage regulator to down regulate the 12V battery to supply 5V DC to the Arduino’s input 

voltage pin to by-pass the internal voltage regulator.  The Arduino’s internal linear voltage regulator 

is known to have low efficiency compared to switching regulators (Gjanci & Chowdhury, 2008). As a 

result of these power system modifications, the system draws 120 mA for one minute while taking a 

measurement (𝐼𝑚𝑒𝑎𝑠)  and has a current draw of 60 mA in idle (𝐼𝑖𝑑𝑙𝑒). The 12 V rechargeable battery 

has a capacity of 5000mAh, which results approximately 6 days of operation with no solar charging, 

see Equation 1. In full sunlight and partly cloudy conditions, this was ample power supply to run the 

loggers autonomously. 

Equation 1: Weather station power consumption 

𝐼𝑎𝑣𝑔 =  𝐼𝑖𝑑𝑙𝑒 ∗ (
𝑡𝑖𝑑𝑙𝑒

𝑡𝑡𝑜𝑡𝑎𝑙

) +  𝐼𝑚𝑒𝑎𝑠 ∗ (
𝑡𝑚𝑒𝑎𝑠

𝑡𝑡𝑜𝑡𝑎𝑙

) = 60𝑚𝐴 ∗ (
240𝑠

300𝑠
) +  110𝑚𝐴 ∗ (

60 𝑠

300 𝑠
) = 70 𝑚𝐴 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 =
𝐶𝑎𝑝𝑎𝑐𝑡𝑖𝑦

𝐼𝑎𝑣𝑔

=
5000 𝑚𝐴ℎ

70𝑚𝐴
= 71 ℎ𝑜𝑢𝑟𝑠   

The total cost of the components needed to build and power the datalogger is $138. Table 2.1 shows a 

price break down of each component.  

Table 2.1: Station datalogger and power system components 

Component description Model Price (USD) 

Microcontroller Arduino MEGA 2560 $ 40 
Datalogging shield Adafruit Data logging shield $ 16 
10 W Solar panel Eco-worthy $ 20 

12 V Battery Power sonic 12V lead acid (5AH) $ 17 

Solar charge controller MorningStar SunGuard  $ 35 
Protoboards, wires, electrical connectors Misc.  $ 10 

 Total cost of logger components: $ 138 

 

Sensors 

The datalogger integrates with sensors that use SDI-12 and inter-integrated circuit (I2C) 

communication protocols. The I2C communication protocol is common for lower cost digital sensors 

from hobbyist manufacturers such as Adafruit and SparkFun. These types of sensors come with pre-

programmed libraries that are easily compiled in the Arduino IDE. The SDI-12 bus allows for 

integration with higher quality, more expensive sensors from environmental sensor manufacturers 

including METER Group Inc., Apogee Instruments and Campbell Scientific. Adding the SDI-12 

functionality is not a trivial task, as it entails modifying the pin change interrupt (PCINT) assignments 
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in the Arduino’s internal software serial protocol and the SDI-12 library (Smith, 2014). Compatibility 

with both the I2C and SDI-12 protocols is an important design feature of this system, as it adds 

flexibility in the types of sensors that can be used to meet unique applications. A comprehensive list 

of the sensors that are compatible with this system’s circuitry and program can be found in Table 2.2. 

Table 2.2: Sensors that are compatible with the low-cost weather station design 

Sensor Model Measurement Communication protocol Price (USD) 

Sensiron SHT31 Air temperature and humidity I2C $16 

Melaxis MLX90614 Infrared thermometer (IRT) I2C $20 

Bosch BMP288/388 Air temperature, humidity and pressure I2C $16 

Apogee SPI-421 Solar radiation SDI-12 $285 

Decagon GS3 Soil moisture SDI-12 $225 

Decagon MPS2 Soil water potential SDI-12 $225 

Decagon DS2 Wind speed and direction SDI-12 $550 

METER ATMOS 41 All-in-one weather sensor SDI-12 $1600 

METER TEROS 21 Soil moisture SDI-12 $225 

METER TEROS 12 Water potential SDI-12 $225 

METER PHYTOS 1 Leaf wetness Analog $125 

METER SRS Spectral reflectance SDI-12 $325 

 

Enclosures and Hardware 

The datalogger, battery and charge controller are housed in a water-tight Pelican enclosure, see Figure 

2.1. Cables from the solar panel and sensors come through sealed terminals to connect to the logger. 

Conduit pipe and fittings were used to build an enclosure for the IRT, see Figure 2.3. A low-cost 

LaCrosse radiation shield was modified so that the SHT-31 temperature and humidity sensor could be 

mounted inside. T-slotted 80/20 aluminum struts were used to mount the solar panels and sensors to 

the enclosure. The hardware used to install the stations in field varied by location.  

 

Figure 2.1: Internal set up 
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Field Deployment Study Design 

The weather stations were deployed in two different field experiments. In the experimental designs, 

we considered things important to producers. The sensors used in the two studies were selected to 

optimize cost effectiveness and robustness while meeting the accuracy requirements for their unique 

applications.  

Ashton Study 

The first experiment was an irrigation study in collaboration with the Henry Fork Foundation (HFF) 

in Ashton, ID. The HFF was interested in quantifying the differences in evaporative demand between 

two center pivot irrigation systems: a conventional center pivot with sprinklers at an approximate 

height of 2 m and a pivot equipped with a Low Elevation Spray Application (LESA) system. LESA 

systems are intended to increase water efficiency by applying water closer to the canopy and reducing 

wind losses, but the impact on consumptive water use is unclear. The goal of this study was to assess 

the potential basin-wide water savings from converting to LESA irrigation in the Henry Fork 

watershed, a tributary to the Snake River. Only the results related to the station performance will be 

discussed in this chapter.  

The stations were distributed across the two fields such that they capture the upwind, downwind and 

center field conditions, see Figure 2.2. The sensors used in this study were selected to measure the 

parameters necessary to calculate the Penman-Monteith (P-M) reference evapotranspiration using an 

alfalfa reference (“ASCE Manual 70 ", 2015). All stations collected data on 5-minute intervals and 

measured air temperature, relative humidity and ground temperature.  

 

Figure 2.2: Ashton experimental set up 
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With affordability being the primary design constraint in this study, low cost sensors such as the 

Melaxis Infrared-thermometer (IRT) and the Adafruit Sensiron SHT-31 were used. These sensors 

have acceptable accuracy with minimal to no electrical housing which greatly decreases their cost. 

The upwind station (ASH1) was also equipped with an Apogee SI-421 Pyranometer to measure 

incoming solar radiation and two R.M. Young cup and vane anemometers were placed downwind 

from the two fields to measure wind speed and the dominant wind direction. The two stations in the 

center of the fields also measured soil moisture, soil temperature, and soil matric potential to 

characterize the soil response to the differing water application rates. Including the datalogger 

platform and power system, the total cost of a station for this study is between $174 and $473 

depending on the sensors used. Table 2.3 describes the sensors and Figure 2.3 shows a typical station 

set up in the field.  

 

Figure 2.3: Ashton station configuration 

Table 2.3: Ashton station sensor details 

Sensor Description Sensor Type Accuracy Price (USD) 

Air temperature and relative 

humidity sensor  

Sensiron SHT31 ± 2%, ± 0.3°C $16 

Infrared thermometer  Melaxis MLX90614 ± 0.5°C $20 

Incoming solar radiation Apogee SPI-421 ± 5% $285 

Soil moisture, soil temperature, soil 

electrical conductivity sensor 

Decagon GS3 ± 1°C, ± 0.7 m3/m3 

 

$225 

Soil water potential and soil 

temperature sensor 

Decagon MPS2 ± 1°C, ± 0.1 kPa $225 
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Vineyard Study 

The second field deployment was for a vineyard disease study.  A vineyard manager was concerned 

with Powdery Mildew risk at their vineyard and was interested in a more targeted spray regime to 

save on labor and chemical costs. Because the vineyard is located across a steep slope at the 

intersection of two rivers, microclimates are suspected to vary within blocks and across fields. The 

objective of this study was to determine if there is variable powdery mildew pressure associated with 

the unique microclimates so that the farmer can optimize the timing, location and intensity of 

pesticide application. This chapter focuses on the performance of the vineyard weather stations, and a 

detailed description of the methods and results of this study is provided in Chapter 3. 

 

Figure 2.4: Vineyard station set up 

Four weather stations were distributed throughout the vineyard to measure each microclimate. We 

received a grant from METER Group, Inc (Pullman, WA) that subsidized instrumentation for the 

vineyard disease study. These stations were equipped with a suite of METER sensors to fully capture 

the near canopy parameters associated with disease including air temperature, relative humidity, solar 

radiation, wind speed, soil moisture and leaf wetness, see Table 2.4. These sensors are considered the 

next level of meteorological sensing technology compared to those used in the irrigation study. 

Including the datalogger platform, the total cost of a station used in this study is $2557. Although 

these upgraded sensors increase the unit cost for the vineyard stations, it highlights the expandability 

of the Arduino datalogger to integrate with a variety of sensor options.  
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Table 2.4: Vineyard stations sensor details 

Sensor Description Sensor Type Accuracy Price (USD) 

Infrared thermometer Melexis MLX90614 ±0.5°C $20 

All in one weather station: air temperature, 

relative humidity, actual vapor pressure, 

solar radiation, wind speed, wind direction, 

precipitation, barometric pressure 

METER ATMOS 41 RH: ± 0.1% 

Tair: ± 0.6°C 

Wind Speed: ± 0.3m/s 

Wind Direction: ± 5° 

$1600 

Soil water potential and soil temperature 

sensor 

METER TEROS 21 ± 1°C, ± 0.1 kPa $225 

Soil moisture, soil temperature, soil 

electrical conductivity sensor 

METER TEROS 12 ± 1°C, ± 0.7 m3/m3 $225 

Leaf wetness sensor METER PHYTOS 

31 

± 12 mV $125 

Spectral reflectance sensor METER SRS ± 10% $325 

 

Analytical Methods 

Calibration Methods  

A post-season calibration was done for all stations by placing them adjacent to a high quality, 

permanent weather station at the University of Idaho’s Soil Stewards Farm in Moscow, ID. The five 

Ashton stations were calibrated for one week in September (9/17/19 – 9/24/19) and the four vineyard 

stations were calibrated for one week in October (10/02/19-10/09/19). Figure 2.5 shows the 

calibration set up for the Ashton stations.  

 

Figure 2.5: Calibration set for Ashton stations (Moscow, ID) 

Temperature and humidity measurements from the ATMOS 41, and SHT 31 were compared to their 

higher quality counterpart on the permanent weather station, an Elektronic EE180 temperature and 

humidity sensors. Linear regressions between the low-cost station sensors and their corresponding 

sensor on the permanent weather station were used to determine calibration equations.  
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Results 

Weather Station Performance in Field  

The Ashton weather stations were in the field for a total of 75 days between June 6th, 2019 and 

August 21st, 2019. Figure 2.6 shows the periods of data collection for each station. Shortly after the 

stations were deployed in June, all the data loggers shut off due to a communication error with the 

MLX90614 IRT. After this initial issue, ASH1, ASH2 and ASH3 ran relatively consistently. ASH 4 

and ASH5 continued to have problems with sensor communication errors through July which froze 

the program. It was later identified during a field visit in July that the SHT-31 sensor on ASH5 had 

died, and the IRT on ASH4 was flooded from the overhead irrigation.  

 

Figure 2.6: Periods of operation for Ashton stations. Solid lines indicate periods of data collection for each station. 

The vineyard stations S1, S2 and S3 ran for a total of 135 days from May 1st to September 13th. 

Station 4 was installed on May 8th and ran for a total of 127 days. These stations performed relatively 

well compared to the Ashton stations, Figure 2.7. There were some datalogger drop-outs shortly after 

deployment for S2 and S4. This issue was found to be due to a wiring fault in the RTC clock, such 

that the datalogger would not wakeup from sleep mode. All logger shields were remade and replaced, 

and the stations performed consistently thereinafter. The dropouts of S1, S2 and S3 in early July were 

due to depleted batteries from lack of solar charge as the vineyard canopy grew over the solar panels. 

Despite these hiccups, when the power system and timers operated correctly, the weather stations 

performed consistently.  
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Figure 2.7: Periods of operation for vineyard stations. Solid lines indicate periods of data collection for each station. 

Calibration Results 

The calibration results from the ATMOS 41 all-in-one weather station showed good agreement with 

the permanent weather station’s Campbell Scientific EE-180 Temperature and Humidity sensor, 

Figure 2.8. The air temperature measurements had an average r2 of 0.9985, which is nearly perfect 

agreement. See Table 2.5 for the linear regression results for each station.The range of temperatures 

observed during calibration (-3°C – 20°C) did not capture the full range of the sensor temperature 

specification ( -40°C – 50°C), nor the full range observed in the field experiment (-10°C – 45°C), so 

it is not certain that the sensor performs linearly across all temperatures.  

 

Figure 2.8: Post-season calibration results for temperature measurement from ATMOS-41 sensor on vineyard weather 

compared to EE-188 HMP temperature sensor on permanent weather station (PWS) at the University of Idaho’s Soil 

Stewards Farm (10/02/19-10/09/19) 
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Table 2.5: Regression equations between ATMOS-41 and PWS for air temperature measurement  

Station ID R-square Intercept Slope 

S1 0.9984 0.0404 0.9851 

S2 0.9989 0.0317 0.9843 

S3 0.9980 0.1771 0.9859 

S4 0.9985 0.0931 0.9830 

The relative humidity measurements from the ATMOS-41 were not in perfect agreement with the 

humidity measurement from the EE-180, Figure 2.9. The ATMOS-41 measurement tended to 

overestimate the relative humidity of values above 70% though an average r-square of 0.9715 still 

shows excellent agreement, Table 2.6. 

 

Figure 2.9: Post-season calibration results for humidity measurement from ATMOS-41 sensor on vineyard weather 

compared to EE-188 HMP humidity sensor on permanent weather station (PWS) at the University of Idaho’s Soil Stewards 

Farm (10/02/19-10/09/19) 

Table 2.6: Regression equations between ATMOS-41 and PWS for relative humidity measurement 

Station ID R-square Intercept Slope 

S1 0.9691 0.1127 0.9755 

S2 0.9696 0.0115 0.9936 

S3 0.9726 2.4916 0.9253 

S4 0.9747 1.7102 0.9526 

The lower cost SHT-31 temperature and humidity sensors used in the Ashton study were less accurate 

when compared to the high-quality sensors on the permanent weather station with an average r-square 

of 0.9583 and 0.9598, respectively. Table 2.7 and Table 2.8 give the linear regression results for the 

temperature and humidity measurements, respectively. The SHT-31 temperature sensors tended to 

overestimate the air temperature, and consequently the humidity sensor tended to underestimate the 

relative humidity, Figure 2.10 and Figure 2.11. There is also hysteresis observed in the SHT-31 

temperature and humidity measurement. Hysteresis occurs when there is a lag in the measurement 
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response to the changing temperature and is often due to the response time of the sensor, or the 

response time of the radiation shield. 

 

Figure 2.10: Post-season calibration results for air temperature measurement from low cost SHT-31D sensor on Ashton 

weather station compared to EE-188 HMP temperature sensor on permanent weather station (PWS) at the University of 

Idaho’s Soil Stewards Farm (9/17/19 – 9/24/19) 

Table 2.7: Regression equations between SHT-31 and PWS for air temperature measurement 

Station ID R-square Intercept Slope 

ASH1 0.9526 1.465 0.8219 

ASH2 0.9559 1.632 0.8237 

ASH3 0.9580 1.736 0.8180 

ASH4 0.9642 1.597 0.8234 

ASH5 0.9607 1.517 0.8239 

 

 

Figure 2.11: Post-season calibration results for relative humidity measurement from low cost SHT-31D sensor on Ashton 

weather station compared to EE-188 HMP humidity sensor on permanent weather station (PWS) at the University of Idaho’s 

Soil Stewards Farm (9/17/19 – 9/24/19) 
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Table 2.8: Regression equations between SHT-31 and PWS for relative humidity measurement 

Station ID R-square Intercept Slope 

ASH1 0.9521 7.526 0.8919 

ASH2 0.9589 6.821 0.8904 

ASH3 0.9604 7.095 0.8838 

ASH4 0.9667 6.666 0.8912 

ASH5 0.9610 8.439 0.8798 

Figure 2.12 shows how the temperature error changes over the course of the day, calculated as the 

difference between SHT-31 temperature measurement and the EE-180 temperature measurement on 

the permanent weather station (PWS): 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑇𝑆𝐻𝑇31 − 𝑇𝑃𝑊𝑆 

Figure 2.13 shows how solar radiation changes over the course of the day. Comparing these two plots 

shows that the sensor error is greatest during the day, particularly in the morning (7:00 – 12:00). Error 

is minimal, less than 0.5°C, when the sun is down, indicating that the sensor bias may be due to the 

lower quality radiation shield, and not the sensor itself.  

 

Figure 2.12: SHT-31 temperature error over the course of the day 

 

Figure 2.13: Solar radiation over the course of the day 
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Figure 2.14 shows a matrix of the air temperature agreement between the five SHT-31 sensors. These 

plots show that the individual sensors are in excellent agreement. This indicates that a single 

calibration equation could be used to correct all sensors. Assuming the EE-180 sensor represents the 

true temperature and relative humidity, a calibration equation can be derived from the average slope 

and offset observed under the field conditions, see Equation 2. The calibration set up was performed 

under natural conditions and was not conducted in an environmental chamber. Because of this, the 

sensors were not exposed to their entire measurement range, nor were they exposed to abrupt step 

changes in temperature and humidity. This correction equation is specific to the conditions observed 

during the calibration, and only applies in the temperature range of 5-30°C. 

Equation 2: SHT-31 temperature correction for the range of 5-30°C 

𝑇𝑐𝑜𝑟𝑟 =
𝑇𝑃𝑊𝑆 − 1.589

0.8222
 

 

Figure 2.14: Sensor to sensor agreement for SHT-31 temperature 
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Discussion 

Overall, the weather stations performed well in the two field experiments. The weather station power 

system and RTC communication were the two primary causes of problems in the field. For the 

vineyard stations, mid-season drop-outs were clearly related to canopy growth covering the solar 

panels. During a July field visit, the canopy was covering approximately 80% of S1, S2 and S3 solar 

panels. This blocked a significant amount of radiation so that the battery was not charging fast enough 

to keep up with the power consumption of the loggers. In this case it was an easy fix to cut back the 

canopy, but this highlights the sensitivity of solar powered system. Solar powered weather stations 

might not be an acceptable option in regions with frequent cloud cover, in locations that are 

experience a lot of shade, or during fall and winter seasons with minimal daylight hours. The 

communication errors with the I2C sensors (IRT, SHT-31 and RTC) in the both experiments 

highlight the complexity of logging sensor data. The issue with the RTC in the vineyard experiment 

was due to a simple circuit mistake. When a data line is not pulled up to a constant voltage via a 

resistor it is called a floating signal. Floating signals can cause intermittent, and unpredictable 

malfunctions in the system, making it difficult to troubleshoot. These are the types of issues that can 

arise with low-cost and DIY systems that inhibit people from using this as an option for on-farm 

weather data.  

The labor associated with building and maintaining these low-cost weather stations should also be 

factored into the overall cost. For example, the stations used in the vineyard study cost $2557 each, 

and each station took approximately 8 hours to build, and 1.5 hours to install. We estimate that the 

time spent maintaining the station totals to 30 minutes a month for each station, and an additional 45 

minutes per station was included for the uninstallation at the end of the season. All the labor was 

billed for a typical farm worker, except for the labor for building the weather stations, which was 

billed at the approximate rate of a research scientist. Table 2.9 shows an estimate of the labor and 

maintenance costs associated with installing an on-farm weather station.  

Table 2.9: Labor and maintenance cost breakdown for vineyard weather stations 

Cost Time (hours) Price (hourly) Units Frequency Cost 

Station maintenance labor 0.50 $ 10 1 6 $ 30 

Installation labor 1.5 $ 10 1 1 $ 15 

Building labor 8 $ 23 1 1 $ 184 

Uninstallation labor 0.75 $ 10 1 1 $ 7.5 

    Total/Station $ 236.50 
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To assess the value of these weather stations, we compare the weather station investment to potential 

economic losses from a severe powdery mildew infection. Table 2.10 shows a range of scenarios for 

vineyard revenue depending on the grape type (red or white), quality (price/ton) and yield (tons/acre). 

The table also shows the potential loss in revenue from a disease outbreak, where we assume that a 

powdery mildew outbreak will decrease the yield by 12% and decrease the fruit quality by 10% as 

supported by the literature (Calonnec et al., 2004). For a vineyard that has an average yield for the 

state of Idaho, 4 tons/acre, and produces grapes of average quality ($1050/ton for white grapes and 

$1400/ton for red grapes), we estimate that the average revenue loss from a disease outbreak could be 

$1835/acre. 

Table 2.10: Revenue for six vineyard production scenarios and the associated losses in the event of a disease outbreak. For 

these scenarios, a disease outbreak is assumed to reduce yield by 12% and reduce the price/ton by 10%.  

Grape Price/Ton Tons/Acre Revenue/Acre 

Revenue Loss from 

Disease/Acre 

Red $ 1,200 2 $ 2,400 $ -900 

Red $ 1,400 4 $ 5,600 $ -2,100 

Red $ 1,600 6 $ 9,600 $ -3,600 

White $ 900 2 $ 1,800 $ -700 

White $ 1,050 4 $ 4,200 $ -1,570 

White $ 1,200 6 $ 7,200 $ -2,700 

Table 2.11 shows the cost breakdown for disease management, including the cost associated with 

incorporating weather stations. For this assessment, we show the cost of installing four weather 

stations in 35 acres of vineyard. We assume that these weather stations have a service life of 5 years. 

The capital investment of the weather stations, including the material costs and labor costs of 

building, is divided evenly across the five years. For simplicity, the time value of money was 

neglected in this analysis. The cost of disease management includes the material, labor and 

maintenance associated with fungicide application. A case study of a vineyard in the San Juaquin 

Valley, CA found that there is an initial cost of $46/acre, and an additional cost of $34/acre for each 

fungicide application to manage powdery mildew (Fidelibus et al., 2018).  For this analysis, we 

assume that the vineyard applies fungicide bi-weekly, for a total of 8 applications from April through 

July.  
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Table 2.11: The costs associated with disease management  

Disease Management Costs Price/Acre Frequency/Year Cost/Acre 

Pesticide Material & Labor Cost    

Pesticide Primer $ 46.00 1 $ 46.00 

Pesticide Application $ 34.00 8 $ 272.00 

  Total: $ 318.00 

Station Maintenance & Labor Cost    

Station Maintenance $ 0.29 12 $ 3.43 

Station Installation $ 1.71 1 $ 1.71 

Station Un-installation $ 0.86 1 $ 0.86 

  Total: $ 6.00 

Capital Investment    

Station Building Labor $ 21.03 1 $ 4.21 

Station Capital Cost $ 292.23 1 $ 58.45 

  Total:  $ 62.65 

 Total cost per year/Acre $ 386.65 

We found that the cost of disease management including weather information is approximately 

$387/acre per year. This is about a fifth of the cost of decreased yield and fruit quality as a result of a 

powdery mildew disease outbreak. Given that the weather data This simple comparison shows that 

the potential losses from disease far outweigh the cost of using weather data to help inform the timing 

and location of disease risk.  

A more qualitative metric of the stations’ performance is the ease of use for the operator. For the 

vineyard stations, a lab tech and myself were the only ones who downloaded data from the SD cards. 

This process is relatively straight forward when the stations are operating, simply remove the SD 

card, load it onto a computer and put it back into the logger. Though this operation was not as 

seamless for the stations in Ashton, ID, especially when they had malfunctioned. Our collaborator at 

HFF primarily operated the stations in Ashton, aside from our three field visits. He found that 

troubleshooting the systems was challenging and downloading the data directly from the SD card was 

inconvenient. This highlights two primary areas for improvement. The first is that the weather data 

needs to be transmitted over telemetry or Wi-Fi for these stations to be practical on-farm tools. For 

farms that do not have easy access to Wi-Fi or cellular service, this becomes an added cost. The 

second area of improvement is the user interface at the logger itself. Ideally, it would be possible to 

troubleshoot the systems in the field without a computer. This functionality would require an LCD 

display, some input buttons, and add a great deal of complexity to the program. Though these two 

features are available for some dataloggers on the market, they are not standard, and it is important to 

recognize the factors that inhibit farmers from collecting and using site specific weather data.  
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The sensor comparison to the high-quality meteorology instruments showed acceptable agreement. 

The more expensive ($1600) ATMOS-41 had a nearly identical response to the EE-188 HMP 

temperature measurement. Due to design constraints the ATMOS-41 temperature sensor is not 

contained in a radiation shield as typically required for air temperature measurements. The sensor is 

partially exposed to radiation resulting in measurement errors, but because the ATMOS-41 also 

measures solar radiation and wind speed, the instrument performs a correction using a simple energy 

balance (ATMOS 41—Correction of Air Temperature Measurements from a Radiation-Exposed 

Sensor, n.d.). The positive results of this calibration indicate that this correction is sufficient to regain 

a precise air temperature measurement.  

The SHT-31 temperature and humidity sensor did not perform as well in calibration. The sensors 

tended to overestimate the temperature and underestimate the relative humidity. Because the sensor to 

sensor agreement was so strong, this bias could be corrected in all sensors using a single linear 

regression equation. The hysteresis observed in the SHT-31 measurements could be attributed to the 

time response of the SHT-31 sensor, or the time response of the radiation shield. The time response of 

the temperature and humidity measurement are 2 seconds and 8 seconds, respectively. However, the 

lags were observed across five-minute sampling intervals, indicating that the hysteresis is not a 

product of the sensor’s time response. Instead, the lags could be due to the time response of the 

radiation shield. The time response of a radiation shield is related to ventilation. The greater the 

ventilation, the quicker the temperature sensors are exposed to the changing air temperature. Whereas 

limited ventilation allows air to stabilize near the sensor and warm. This could result in a biased 

measurement which is lagged behind the measurements from the permanent weather station which 

has a higher quality radiation shield. Similarly, for the relative humidity measurement, an increase in 

the thermal mass of the air due to poor ventilation would result in a decreased relative humidity 

measurement. 

Though the calibration results of lower cost ($16) SHT-31 sensors were not as accurate as the 

ATMOS-41, an average r-square of 0.95 and 0.96 for relative humidity and temperature 

measurements is still very accurate. Although it depends on the farmer’s specific needs, the 

accuracies of the low-cost sensors should be more than adequate to improve decision making. When 

considering the alternative of farmers using data from regional weather stations to track growing 

degree days or reference evapotranspiration, this on-farm measurement is a much more useful and 

representative despite its lower quality.  
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Chapter 3: Powdery Mildew Study 

Introduction 

One of the major threats to production in agriculture are plant diseases and pests. A 2017 FAO report 

estimated that as much as 20 - 40% of global food production is lost to plant diseases (Plant Health 

and Food Security, 2017). Grape powdery mildew (Erysiphe necator) is one of the most persistent 

disease problems facing wine grape producers in the western united states (Choudhury et al., 2018). 

In the case of an outbreak, powdery mildew can be detrimental to growers in the form of yield losses 

and decreased fruit quality. A study conducted in the Bordeaux region of France found that diseased 

berries of Cabernet Sauvignon had an average reduction in weight of  12% and 20% in 1997 and 1999 

studies, respectively (Calonnec et al., 2004). Severe infections may require entire vineyard blocks to 

be uprooted and replanted leading to years of regrowth before the vines can be productive again. Both 

Calonnec et al. (2004) and Gadoury et al., (2001) saw significant increases in sugar content and 

decreased brix values in infected fruit. These changes to fruit biochemistry can lead to noticeably 

decreased wine quality. Stummer et al. (2005) showed degradation of sensory and compositional 

characteristics of wine when made with less than 5% powdery mildew infected berries. In addition to 

decreased yield and quality, even a diffuse or mild powdery mildew colonization increases plant 

susceptibility to other damaging threats including bunch rot and insect infestation (Gadoury et al., 

2007).  

Producers use a variety of techniques to reduce losses to pests and plant pathogens including crop 

rotations, tillage and hoeing, adjustment of planting dates or biocontrol. The most common tool for 

pest and disease management in vineyards is use of chemical pesticides. An increase in the variety of 

pesticides available on the market today has expanded the range of control growers have for pathogen 

management, but it comes at a cost. Pesticide applications are expensive, labor intensive, and 

environmentally destructive. In the US alone, over $12 billion was spent on pesticides to manage crop 

disease in 2008. Grapes are reported as one of the top 21 crops contributing to pesticide usage, 

accounting for 1.5% of the total (Fernandez-Cornejo et al., 2014). This degree of pesticide use poses 

a significant threat to water quality. Runoff from vineyard catchments have been shown to contribute 

substantially to pesticide loads entering erosion rills, streams and even ground water, pushing some 

waters over the maximum allowable limits (Hildebrandt et al., 2008). Plant pathogens have also 

become more resistant to certain chemicals in pesticide formulas when used continuously and 

exclusively, which poses a threat to the effectiveness of pesticides and consequently agricultural 

yields in the future (E.-C. Oerke, 1994). Climate change is expected to exacerbate the problem 

because both pathogen development and pathogen resistance have been shown to develop more 
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rapidly with increased temperatures (Caubel et al., 2013; Chakraborty et al., 2000).  For these reason, 

informed disease management and methods to reduce pesticide applications are important areas of 

inquiry for the future of sustainable agriculture.  

A vineyard manager in Northern Idaho was interested in better understanding the timing and spread 

of Powdery Mildew outbreaks in their vineyard. Currently, the grower’s disease management is ad-

hoc; applying fungicide every two-weeks, or whenever operations permit. With a new atomized 

sprayer that greatly improves fungicide coverage within the canopy, the farmer is interested in a more 

targeted spray regime to save on labor, chemical costs, and limit the pesticide exposure for the 

environment and workers. The goal of this study is to better inform the timing and location of 

fungicide spray. In particular, I aim to investigate if powdery mildew disease pressure in an Idaho 

vineyard significantly varies in time and space using distributed weather stations and hyperspectral 

canopy sensing.  

Powdery mildew is fungal disease that is highly depended on weather. It survives the winter as 

dormant mycelia and ascospores are released in the spring with rainfall, irrigation or fog. Initial 

infection occurs once temperatures reach an optimum, between 18 – 30C, and production of fungal 

spores begins approximately a week after and continues throughout the season (Gubler et al., 1999). 

Air temperature has a first order effect on the rate of fungal germination throughout the season, ergo 

common disease management strategies are based on daily temperature, like the UC Davis Powdery 

Mildew Risk Assessment Index or pathogen growing degree days. However, other weather 

parameters are known to impact the development, germination and dispersal of powdery mildew. 

Bendek et al. (2007) conducted a study in Chile where they inoculated chardonnay in a greenhouse 

with powdery mildew to determine the effect of temperature, relative humidity (RH) and free 

moisture on spore development. They found that germination increased at RH greater than 33-35% 

when incubated at 20C and germination was highest when the conidia were subject to 24 hours of 

dry followed by 24 hours of wet leaf conditions. A study on Hop Downey Mildew showed that 

increased wind speeds in the near canopy boundary layer agitated fungal spores and facilitated 

transport to increase the spread of disease (Mahaffee & Stoll, 2016). Because there are a myriad of 

environmental conditions and combinations that can influence the development and spread of 

powdery mildew, it is important to identify differences in microclimates across the vineyard to inform 

potential management zones. Consequently, the primary research question addressed in this study: 

1. Are there detectable differences in temperature, relative humidity, and windspeed distributions 

across the vineyard that impact disease susceptibility? 
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Studies have also shown that near canopy moisture from plant transpiration can impact powdery 

mildew development. Austin and Wilcox, (2011) found that doubling the irrigation rate increased the 

severity of Powdery Mildew disease in a French vineyard by two-fold in a 2007 study and by seven-

fold in a 2008 study. This finding was attributed to the increased relative humidity in the leaf 

boundary layer zone as a result of increased transpiration rates under well-watered conditions. On the 

contrary, studies have also found that grapevines under increased water stress are more susceptible to 

disease (Stoll et al., 2008; van Niekerk et al., 2011). As such, it is important to characterize vineyard 

transpiration and water stress when investigating disease pressure, motivating the second research 

question addressed in this study: 

2. Are there detectable differences in plant water stress and transpiration rates across the 

vineyard? 

Lastly, remote sensing technologies are becoming increasingly integrated in pest management. There 

has been ample research on disease detection methods using multi and hyperspectral remote sensing 

techniques (Marshall et al., 2016; Erich-Christian Oerke et al., 2016; Rumpf et al., 2010; Stoll et al., 

2008). These studies have described features of plant hyperspectral signatures that can be used for 

early detection of disease presence in grape leaves under lab environments (Stoll et al., 2018, 

Bélanger et al., 2008), but limited research has incorporated field based, non-imaging hyperspectral 

sensing for powdery mildew disease detection. This is an important distinction when considering 

implementing technology into on-farm practices, and leads to the third research question: 

3. Are field-based methods of hyperspectral canopy sensing able to identify the presence of 

grape Powdery Mildew disease?  
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Methods and Materials 

Study design 

Site Description 

The study site is a vineyard in Juliaetta, Idaho, where managing the risk of powdery mildew is a 

concern of the grower. The nearly 30 acres of vineyards are located across a valley at the interception 

of the Potlatch River and the Clearwater River. The vineyards are steeply sloped and distributed 

across areas with different solar aspects indicating inherent heterogeneity of microclimates. All 

vineyard soils are primarily an ashy silt-loam with high water holding capacity (NRCS, 2017).   Two 

modes of data collection were employed to capture both the temporal and spatial characteristics 

impacting susceptibility to disease. The first was use of distributed weather stations to continuously 

monitor local differences in micro-climates over time, see Figure 3.1 for site map and station 

locations. The second mode of information was obtained by conducting bi-weekly canopy surveys to 

characterize the spatial variability of microclimates and plant stress across vineyard rows using 

measurements of near canopy climate and canopy hyperspectral radiance.   

 

Figure 3.1: Site map across ridge; North vineyards are located on a west facing slope, and the clearwater vineyard is located 

on a southeast facing slope (Julieatta, ID) 
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Distributed Weather Stations 

Four weather stations were distributed throughout the vineyard to measure environmental factors 

associated with the infection and spread of powdery mildew. Stations were mounted on existing T-

posts in the Chardonnay, Riesling, Grenache and Syrah varieties which are referred to as S1, S2, S3 

and S4, respectively. The station locations were chosen to monitor areas where disease had been 

present historically while capturing a range of microclimates, see Figure 3.2.   

 

Figure 3.2: Station locations across vineyard, S1 (Chardonnay), S2 (Grenache), S3 (Riesling), and S4 (Syrah)  

The vineyard manager indicated that the Chardonnay variety surrounding S1 has been the first area to 

become symptomatic of powdery mildew in the past. He noted that the infection would later show up 

in the Riesling plants surrounding S3. For this reason, it was important to monitor the weather in both 

locations within this vineyard block to assess potentially differences that could lead to the lagged 

initial infection. To determine the range of microclimates present across the vineyard, S2 was placed 

in the Grenache which is approximately 30 meters higher in elevation than S1 and S2 and located on 

a steeper slope. Lastly, the vineyard operations extend to a site on the Clearwater River, 

approximately 2 kilometers away on a Southeast facing slope. The vineyard manager has observed 

differences in plant growth here compared to the North vineyards, so S4 was placed in the Syrah to 

quantify the observed differences in climate.  
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Figure 3.3: Vineyard weather station field set up (S4, Syrah) 

Vineyard operations and accessibility had to be considered for the station placement within the 

blocks. For example, row spacing was narrower in the Syrah, so S4 had to be placed at a row end 

such that a tractor mounted with a boom could maneuver around the station. Data on near-canopy 

weather, canopy spectral reflectance, and soil moisture characteristics were collected on 5-minute 

intervals from May 1st to September 13th, 2019 for a total of 135 days of data. The Arduino based data 

loggers described in Chapter 1 were used for data collection. Parameters measured at each station and 

their associated configuration are described in Table 3.1, and the station set up is shown in Figure 3.3 

above.  

Table 3.1: Station details and sensor configuration 

Station ID Variety Parameter (sensor height) 

S1 Chardonnay ATMOS 41(2.24 m) 

Soil moisture (-0.075 m) 

Soil matric potential (-0.075 m) 

Leaf wetness (2.12 m) 

Canopy temperature (2.17 m) 

Canopy spectral reflectance (2.14 m) 

S2 Grenache ATMOS 41 (2.19 m) 

Soil moisture (-0.075 m) 

Soil matric potential (-0.075 m) 

Leaf wetness (1.73 m) 

Canopy temperature (2.03 m) 

Canopy spectral reflectance (2.12 m) 

S3 Riesling ATMOS 41 (2.05 m) 

Soil moisture (-0.075 m) 

Soil matric potential (-0.075 m) 

Leaf wetness (1.60 m) 

Canopy temperature (1.70 m) 

Canopy spectral reflectance (1.80 m) 

S4 Syrah ATMOS 41 (2.18 m) 

Soil moisture (-0.075 m) 

Soil matric potential (-0.075 m) 

Leaf wetness (1.98 m) 

Canopy temperature (2.11 m) 
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Vineyard Canopy Surveys 

Surveys were conducted every two to three 

weeks, for a total of 9 surveys in the 2019 

growing season (5/12, 5/29, 6/13, 6/25, 7/19, 

8/05, 8/23 and 9/13). Because there was very 

little canopy and leaf area during May surveys, 

these surveys were omitted from analysis 

because data was not representative of near 

canopy conditions. Three rows surrounding 

each weather station were surveyed to measure 

near canopy air temperature, relative humidity, 

canopy temperature, and plant hyperspectral 

radiance, see Figure 3.4. Between 15 and 25 

plants were measured in each row, for a total of 

about 240 plants sampled in each survey, see 

Table 3.2 for exact number of plant samples. In addition to the nine surveys at Colter’s Creek (CCV), 

an additional survey was conducted at a nearby vineyard that had an active Powdery Mildew 

infection, this site is denoted VIN. A total of six rows were surveyed at VIN, two rows of Riesling 

impacted by PM, and four rows of Chardonnay severely impacted by PM. Upon request, no geo-

rectified maps of VIN will be shown for their privacy of the vineyard owners.  

 

Figure 3.4: Map of surveyed rows (Julieata, ID) 

 

Row ID Variety (Site) # plants 

27 Riesling (CCV) 18 

28 Riesling (CCV) 17 

29 Riesling (CCV) 18 

9 Chardonnay (CCV) 15 

10 Chardonnay (CCV) 16 

11 Chardonnay (CCV) 16 

47 Grenache (CCV) 25 

48 Grenache (CCV) 25 

49 Grenache (CCV) 25 

39 Syrah (CCV) 20 

40 Syrah (CCV) 20 

41 Syrah (CCV) 20 

1 Riesling (VIN) 26 

2 Riesling (VIN) 27 

3 Chardonnay (VIN) 36 

4 Chardonnay (VIN) 36 

5 Chardonnay (VIN) 36 

6 Chardonnay (VIN) 36 

Table 3.2: Description of samples for surveyed rows 
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The survey rod set up is shown in Figure 3.5. To measure the near canopy microclimate, a Sensiron 

SHT-31 temperature and humidity sensor was mounted inside a custom radiation shield. An Apogee 

SIF-411 Infrared thermometer measured canopy apparent temperature, and an Apogee SP-421 

Silicon-cell pyranometer measured incoming solar radiation. The Apogee SS-120 field 

spectroradiometer was used to measure the energy flux density of the canopy radiation in thw 

wavelength range of 635nm to 1100nm. The spectroradiometer was mounted at an approximate 

height of 1.5 meters, pointed downward at a 45° angle from the vertical toward the canopy. The 

spectral measurement was triggered manually using Apogee software, and an Arduino datalogger 

queried the other sensors every 10 seconds. A Ubox GPS was also attached to the rod and sampled 

every second to obtain a geolocation for each plant surveyed.  

 

Figure 3.5: Survey rod sensor configuration 

Analytical Methods 

Gap Filling 

As the case with environmental studies, there were some periods of missing data. A combined linear 

regressing equation was used to fill the gaps in the data. Linear regression was used to develop 

regression equations between each station for every weather parameter. When one station was not 

operating, a combined regression equation from the other running stations was applied to estimate the 

missing data, Equation 3. The R-square value for each regression equation was used to weight the 

contribution of the weather data. For example, if S1 was not operating, and 𝑚𝑖 is the slope, 𝑏𝑖 is the 
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intercept and 𝑅𝑖 is the R-square value form the regression equation between S1 and the other 

operating stations (𝑖 = S2, S3, S4) in the form of: 

𝑌 = 𝑚𝑋 + 𝑏 

𝑇𝑖 = 𝑚𝑖 ∗ 𝑇𝑆1 + 𝑏𝑖 

Solving for the unknown independent variable: 

𝑇𝑠1 =
𝑇𝑖 − 𝑏𝑖

𝑚𝑖
 

Then the applied regression equation to fill the missing air temperature data for S1 (𝑇𝑆1) from S2, S3 

and S4 data is as follows: 

Equation 3: Weather data gap filling 

𝑇𝑆1 = (
1

𝑅𝑆2 + 𝑅𝑆3 +  𝑅𝑆4
) ∗ [(𝑅𝑆2 ∗

𝑇𝑆2 −   𝑏𝑆2

𝑚𝑆2
) +  (𝑅𝑆3 ∗

𝑇𝑆3 −  𝑏𝑆3

𝑚𝑆3
) + (𝑅𝑆4 ∗

𝑇𝑆4 −   𝑏𝑆4

𝑚𝑆4
)]  

Hereinafter, any data product that uses a cumulative function, including the daily PMRI value, 

cumulative growing degree days, and cumulative reference ET are calculated with the gap filled data. 

Comparisons between weather distributions only use the raw data with the gaps left unfilled. 

Powdery Mildew Risk Index Calculation 

The station air temperature data were used to calculate the UC Davis IPM Powdery Mildew Risk 

Index (PMRI). The UC Davis Powdery Mildew Risk Assessment Index (PMRI) is the most widely 

accepted tool to inform pesticide application in vineyards in California. The PMRI is a weather based 

index used to estimate the growth rate of powdery mildew and provide an indicator of disease 

pressure (Gubler et al., 1999). It identifies the risk of primary infection from spores based on leaf 

wetness duration and ideal temperature conditions. Once the initial infection is established, the 

secondary phase of the PMRI is used to assess pathogen risk severity throughout the season based 

solely on air temperature. The PMRI ranges from 0 – 100 and points are added and subtracted based 

on a temperature threshold (Gubler et al., 1999). When the temperature is between 70 – 85°F, 

conditions are favorable for powdery mildew growth, and temperatures above 95 are harmful to the 

fungus. The daily value of the index provides growers with a severity level for disease pressure (high, 

moderate, or low) that is associated with a recommended fungicide spray interval. 

The PMRI was calculated by smoothing the 5-minute data into a 6-hour running average using 

convolution. The primary infection began when three consecutive days had at least one 6-hour period 
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of favorable temperatures, and the daily index was set to 60 points. Hereinafter, twenty points were 

added to the daily index if there was at least one 6-hour period that always within the favorable 

temperature range. If a day did not contain a 6-hour period within the favorable temperature range, or 

if temperatures exceeded 95°F for at least fifteen minutes, ten points were subtracted from the index. 

Figure 3.6 shows a description of the conditional statements and associated PMRI adjustments.  

 

Figure 3.6: Conditional statements associated with adjustment to daily PMRI value 

Growing Degree Days Calculation 

Growing degree days (GDD) are a measure of heat accumulation above a minimum temperature, or a 

base temperature, that can inform development stages of crops, disease or insects. GDDs were 

calculated for each station to show relative differences in growth conditions across the vineyard. The 

cumulative GDD across a season are often used to inform planting and harvesting dates, or disease 

life cycles. Standard GDD calculators begin on April 1st. This study collected data from May 1st to 

September 13th, and so the GDD values only show relative differences between stations, and not 

absolute cumulative values. The AgriMet GDD equation was used, where the minimum and 

maximum daily temperatures are used to obtain a daily mean temperature, and 10°C is used as the 

base temperature.  

Equation 4: AgriMet Growing Degree Day 

𝐺𝐷𝐷 =  
(𝑇𝑚𝑖𝑛 +  𝑇𝑚𝑎𝑥)

𝟐
−  10°𝐶 

 



49 

 

Reference ET calculation 

The Penman-Monteith method was used to calculate daily reference evapotranspiration using an 

alfalfa reference for each station (“ASCE Manual 70 – Second Edition,” 2015). Potential ET is a 

measure of the weather-related crop water use over a well-watered alfalfa crop. It is not a measure of 

actual crop evapotranspiration, and so it does not characterize the crop water demand related to soil 

moisture content, varietal differences, or crop development. To obtain a more accurate estimate of 

crop ET, a calibrated crop coefficient for grape vines would need to be applied to the reference ET. 

Further, for direct measurement of actual ET, a more sophisticated method would need to be 

employed such as use of sap flow sensors or eddy covariance. The equation used to calculate the 

standardized reference ET for alfalfa reference (𝐸𝑇𝑟𝑠) is as follows: 

Equation 5: P-M Reference Evapotranspiration  

𝜆𝐸𝑇𝑟𝑠 =  
0.408∆(𝑅𝑛 − 𝐺) +  𝛾 ∗ (

𝐶𝑛

𝑇 + 273
) ∗ 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ +  𝛾(1 + 𝐶𝑑𝑢2)
 

Where ∆ is the slope of the saturation vapor pressure curve, 𝛾 is the psychometric constant, 𝑒𝑠 is the 

saturation vapor pressure, 𝑒𝑎 is the actual vapor pressure, 𝑅𝑛 is the net radiation,  𝐺 is the ground flux 

density, 𝑢2 is the horizontal wind speed measured at 2 meters, and 𝑇 is the air temperature in degrees 

Celsius. For the alfalfa reference on a daily time step 𝐶𝑛 = 1600 and 𝐶𝑑 = 0.38. The calculations for 

all terms can be found in Appendix A.  

Survey Data Processing 

The environmental data collected during the vineyard surveys were combined with the GPS data by 

interpolating the timestamps. The survey data collected 10 second intervals were interpolated to 

match the GPS data timestamps, which were collected on 1s intervals. Because the environmental 

data was collected continuously, the IRT captured more than just canopy conditions. For example, the 

IRT often captured the sky or soil temperature while the survey rod was being maneuvered. 

Additionally, the time response of the IRT created a lag in the data when the sensor was moving. To 

mitigate these two falsities in the data, the first derivative of temperature with respect to time was 

used as a filter. If the temperature derivative exceeded 0.10°C/sec, the sample was considered a 

transition period and removed. This ensured that only the data collected when the rod was not in 

motion, i.e. facing a plant, was considered.  
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Stress Index Calculation 

To assess the spatial distribution of plant stress, climate data collected from the canopy survey have 

been transformed into a weather-related stress index. The index combines the near canopy vapor 

pressure deficit and leaf temperature depression to show the plant’s response to the atmospheric 

demand for evaporation. The vapor pressure deficit (VPD) is the difference between the saturation 

vapor pressure(𝑒𝑠) of the air and the actual vapor pressure (𝑒𝑎) of the air: 

𝑉𝑃𝐷 = 𝑒𝑠 − 𝑒𝑎 

The saturation vapor pressure varies with temperature and describes the maximum pressure of water 

vapor in a saturated parcel of air. The higher the air temperature, the more vapor the air can hold, and 

consequently the higher the saturation vapor pressure.  

𝑒𝑠 = 0.6018 exp (
17.27𝑇

𝑇+ 237.3
)  

The actual vapor pressure is a measurement of the water vapor concentration in the air, and can be 

calculated from a measurement of relative humidity: 

𝑒𝑎 =
%𝑅𝐻

𝑒𝑠

∗ 100 

VPD is a major driver of potential evapotranspiration and describes the drying power of air. A large 

VPD will result in an increased demand for water from the land and vegetation to the atmosphere. 

Conversely, a low VPD results in lower potential evapotranspiration because the atmosphere has less 

ability to accept water vapor, and stifles evaporative fluxes. 

Actual crop evapotranspiration is difficult to measure directly, and so the leaf temperature depression 

(LTD) can be used to approximate plant transpiration. The LTD is the difference between the air 

temperature and the apparent canopy temperature, measured using an infrared thermometer.  

𝐿𝑇𝐷 = 𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑎𝑖𝑟  

When the plant is transpiring, the canopy temperature will be cooler than the ambient air because of 

evaporative cooling, and the LTD will be more negative. Conversely, when there is less transpiration, 

the leaf temperature will be closer to the air temperature, and the LTD will be smaller, or less 

negative. Although the LTD and VPD are interrelated, as they are both function of air temperature, 

they provide unique information. The VPD provides information on the atmospheric demand driving 

ET and the LTD provides information on the plant’s response to its environment, including 

atmospheric, soil-water, and physiological conditions. An index was developed to combine LTD and 
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VPD information into a single unitless value. This index is used to characterize how plant 

transpiration responds to the environment and show patterns of plant stress in time and space. 

Physically, it is assumed that a plant exhibiting limited transpiration under conditions of large VPD is 

experiencing weather related stress.  

The leaf temperature depression data from the entire season were normalized using Equation 6, 

denoted LTDNorm. The data were normalized over the entire dataset because we want to compare 

relative differences across the entire season, and not just differences in a given survey. The bounds of 

the normalized data are between 0 and 1, where the lower values represent a small LTD (leaves closer 

to air temperature) and larger values represent a large LTD (cooler leaves). The vapor pressure deficit 

data from the entire season were normalized using Equation 7, denoted VPDNorm. Here, small values 

represent more saturated air and high values represent more capacity for water to evaporate.   

Equation 6: Leaf temperature depression normalization 

𝐿𝑇𝐷𝑁𝑜𝑟𝑚,𝑖
=

max(𝐿𝑇𝐷) − 𝐿𝑇𝐷𝑖

max(𝐿𝑇𝐷) − min(𝐿𝑇𝐷)
 ;  0 ≤  𝐿𝑇𝐷𝑁𝑜𝑟𝑚,𝑖

< 1  

Equation 7: Vapor pressure deficit normalization 

𝑉𝑃𝐷𝑁𝑜𝑟𝑚,𝑖
=

𝑉𝑃𝐷𝑖

max(𝑉𝑃𝐷)
;    0 <  𝑉𝑃𝐷𝑁𝑜𝑟𝑚,𝑖

<  1 

These two normalized values were combined into an index which informs how plant transpiration 

responds given the local atmospheric demand, Equation 8. Low values of the stress index indicate a 

plant that is showing signs of stress given the atmospheric demand, and large values indicate a plant 

that is freely transpiring given the atmospheric demand. For example, if the plant is showing signs of 

low transpiration (small LTDNorm), but the atmospheric demand for water is low (low VPDNorm), we 

would identify this plant as less stressed (greater DDIndex). Conversely, if a plant was showing signs of 

low transpiration, but the atmospheric demand for water was high, then we would identify this plant 

as exhibiting stress (lower DDIndex).  

Equation 8: DD Stress index 

𝐷𝐷𝑖 =
𝐿𝑇𝐷𝑁𝑜𝑟𝑚,𝑖

𝑉𝑃𝐷𝑁𝑜𝑟𝑚,𝑖

;    0 ≤  𝐷𝐷𝑖 <  ∞ 

Statistical Procedure to Identify Outliers 

A statistical test was created to identify plants that do not conform to the expected DD index value, or 

expected level of stress, for a given variety and time of year. To do this, the DD index was calculated 

for both the continuous station data and the data from the six canopy surveys. The vertical purple 
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lines in Figure 3.7 show the range of values measured during a given hour for the month of June. The 

average DD index for a given time of day in each month was calculated for the four stations, shown 

as the blue line in Figure 3.7. For example, this provides the average DD index observed at Station 1 

at 10:00 AM in June and quantifies the typical response of the plant during this time of day and 

during this time of the season. The data from the plant surveys were then compared to this typical 

value, based on the time of day and the month the survey was conducted, shown as the red data points 

in Figure 3.7. If the DD index from the survey data deviated from the typical response by more than 

two standard deviations, it was deemed significant.   

 

Figure 3.7: Visualization of procedure used to identify individual plants exhibiting stressed behavior 

Hyperspectral Data Processing 

The Apogee SS-120 field spectroradiometer SS-120 reports the energy flux density of the canopy in 

units of counts. A white reference was not used to measure the spectrum of incoming radiation from 

the sun. Because of this, the hyperspectral signatures are not reported in terms of reflectance of 

incoming light, but rather as plant photon density. A white reference is used to control for variables 

which affect spectral irradiance at the Earth’s surface including solar aspect and elevation, 

atmospheric absorption, air water vapor concentration, and aerosol loading. To control for some of 

these variables, the measurements were taken at approximately the same time of day for each survey, 

and surveys were only conducted on days with limited cloud cover. To account for the inherent sensor 

noise, the dark noise value (3 counts) was subtracted from the raw counts at each wavelength.  

The spectroradiometer reports measurements at a 1 nm resolution, though the spectral resolution of 

the sensor given it’s full-width half max specification is 3nm. To ensure that the hyperspectral 

measurements represent the sensitivity of the sensor, convolution was used to calculate a running 
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average of the radiance values over a 3nm centered window.  The data were then normalized by the 

maximum count value of each signature. This was done to control for the variability in the 

measurement intensity due to changes in incident radiation. Vegetation indices that related to plant 

disease incidence, plant water status and plant development were found from literature. Table 3.3 

describes the calculated indices used in this assessment. Most of the VIs used were specified for use 

with grapevines (V. vinifera), though some are generalized to a variety of plant species including the 

chlorophyll red edge and water index. 

Table 3.3: Vegetation indices descriptions 

Vegetation index Description Equation Citation 

Water index Describes the plant water content, 

where a small value represents 

less water content. 

𝑊𝐼 =  
𝜌970

𝜌900
 

(Peñuelas et al., 1993) 

Chlorophyll red edge Describe the chlorophyll content, 

is also an indicator or disease 

development 

𝐶𝑅𝐸 =  
𝜌780

𝜌710
− 1 (Gitelson et al., 2006) 

Hyperspectral normalized 

difference vegetation index  

Describes plant green-ness and is 

correlated with LAI and plant 

development.  

ℎ𝑁𝐷𝑉𝐼 =  
𝜌814 − 𝜌672

𝜌814 + 𝜌672
  (Gamon et al., 1992; 

Oppelt & Mauser, 2004) 

Veraison band ratio Describes the photosynthetic 

activity by comparing the red 

edge to near infrared reflectance.  

𝑣𝑒𝑟𝐵𝑅 =  
𝜌648

𝜌715
 (Ozelkan et al., 2015) 

 

Statistical Analysis 

Air temperature, relative humidity, and wind speed are parameters that are known to influence the 

development and spread of powdery mildew. To assess the variability in weather across the vineyard, 

the two sample Kolmogorov-Smirnov (K-S) test was used to check for significant difference between 

the distributions of these weather parameters observed at each station. The K-S test is a common 

statistical procedure used in climate and meteorological sciences (Hennemuth et al., 2013).  The two 

sample K-S test compares one empirical distribution to another empirical distribution to determine if 

the two distributions are significantly different. A distribution with a cumulative density function 

𝐹(𝑥), is compared to a second distribution with a cumulative density function 𝐺(𝑥) using the 

following hypothesis test: 

𝐻0: 𝐹(𝑥) = 𝐺(𝑥);  𝐻1: 𝐹(𝑥) ≠ 𝐺(𝑥) 

The K-S test was used in this study because it makes no underlying assumption of the distribution of 

the data, unlike other common statistical tests such as Chi Squared or Student’s T-test which assume 

normally distributed data. This is an important distinction when working with weather data is often 

skewed and does not conform to the definition of a Gaussian distribution(Quevedo & Gonzalez, 



54 

 

2017).  For example, the mean and standard deviation between two nearby air temperature 

measurements are likely to be the same, but the distributions might differ significantly at specific 

temperatures ranges. These differences are not captured in the student’s t-test but are the basis for the 

K-S test statistic. The test statistic, D, is given by the maximum absolute difference between the two 

distributions to determine if they are significantly different. See Equation 9 and Equation 10 for the 

test statistic and associated significance criteria, where 𝑛 and 𝑚 are the number of samples in F and 

G, respectively.  

Equation 9: Kolmogorov-Smirnov test statistic 

𝐷 = max (|𝐹(𝑥) − 𝐺(𝑥)|) 

Equation 10: Kolmogorov-Smirnov significance criteria 

𝐷 > 𝐾𝛼√
𝑛 + 𝑚

𝑛 ∗ 𝑚
;   𝐾𝛼=0.05 = 1.36  

A one-way analysis of variance was used to test for significance between the differences in 

hyperspectral vegetation indices. First, ANOVA was used to test for significant differences in 

vegetation indices over time for varieties at Colter’s creek vineyard. This is to test if field-based 

methods of hyperspectral remote sensing can be used to distinguish developmental differences in the 

plants. Secondly, ANOVA was used to test for significant differences between diseased and healthy 

plants. Because measurements of the diseased group were taken at a different time, and at a different 

vineyard than measurements of the healthy plants, it is necessary to control for variation in the groups 

related to development stage. The one-way ANOVA tests the null hypothesis (𝐻0) that the  calculated 

vegetation indices from samples taken on different dates are drawn from populations with the same 

means (𝑉𝐼̅̅ ̅
𝑑𝑎𝑡𝑒) against the alternative hypothesis (𝐻1) that the samples are drawn from populations 

with unequal means.  

𝐻0: 𝑉𝐼̅̅ ̅
6/12  = 𝑉𝐼̅̅ ̅

6/25 = 𝑉𝐼̅̅ ̅
7/19 = 𝑉𝐼̅̅ ̅

8/05 = 𝑉𝐼̅̅ ̅
8/23 = 𝑉𝐼̅̅ ̅

9/13 

𝐻1: 𝑉𝐼̅̅ ̅
6/12  ≠ 𝑉𝐼̅̅ ̅

6/25 ≠ 𝑉𝐼̅̅ ̅
7/19 ≠ 𝑉𝐼̅8/05 ≠ 𝑉𝐼̅̅ ̅

8/23 ≠ 𝑉𝐼̅̅ ̅
9/13 

Similarly, for testing for significant differences in vegetation indices for diseased and healthy leaves, 

the hypotheses test are as follows: 

𝐻0: 𝑉𝐼̅̅ ̅
ℎ𝑒𝑎𝑙𝑡ℎ𝑦,8/05 = 𝑉𝐼̅̅ ̅

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑,   8/08 

𝐻1: 𝑉𝐼̅̅ ̅
ℎ𝑒𝑎𝑙𝑡ℎ𝑦,8/05 ≠ 𝑉𝐼̅̅ ̅

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑,   8/08 
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Results 

Observed Differences in Microclimates  

This section will compare the microclimates observed at each weather station. The results from the 

two sample K-S test show that there are significant differences in the four weather parameters that are 

influential to powdery mildew growth: temperature, relative humidity, and wind speed. In general, 

differences between the stations were greatest in the early part of the season, from May 1st – June 30th. 

After July, the four stations become similar in their temperature, relative humidity, and wind speed 

distributions. 

Air Temperature 

First, the daytime temperature distribution varied significantly between all stations in the early 

season. Most notably were differences observed between S4 in the Syrah and S2 in the Grenache. S4 

had significantly warmer daytime temperatures than the other three stations, see Figure 3.8A. The 

range of S4 in the early part of the season shows that the minimum temperature experienced in the 

Syrah was more than 5°C greater than the other three stations. S2 was generally cooler than S1 and 

S3. These trends did not persist into the later part of the season (July – September), as seen in Figure 

3.8B. After July, all stations appeared to have very similar temperature distributions.  

 

Figure 3.8: Daytime air temperature distributions for early season (May 1 – June 30th ) and late season (July 1st – Sep. 13th ) 

Table 3.4 shows the p-values from the K-S significance test between each station for four subsets of 

the data; early season daytime, early season nighttime, late season daytime and late season nighttime. 

Significant differences are shown in bold text. All combinations were found to have significant 

different c.d.f.s, except for the nighttime temperatures between S1 and S2 in the later part of the 

season.  
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Table 3.4: P-values from two-sample KS test for air temperature c.d.f.s (95% confidence) 

 S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

Temp day 

(Early Season) 2.2E-42 8.86E-23 2.93E-56 4.92E-9 2.2E-139 2.2 E-125 

Temp night 

(Early Season) 2.7E-13 1.4E-18 4.07E-23 0.032 2.3E-48 4.1 E-63 

Temp day 

(Late Season) 0.0018 0.0048 8.7E-4 0.043 2.8E-7 1.2 E-6 

Temp night 

(Late Season) 0.22 0.0081 1.7E-11 0.018 2.5E-09 5.6 E-7 

 

Relative Humidity 

Second, the differences in relative humidity distributions experienced at each station were greatest in 

the early part of the season (May – June), Figure 3.9A.  Most significant were differences between S4 

and the other three stations, where S4 rarely exceeded 83% relative humidity. S1 also differed slightly 

from the S3 and S2, with fewer samples above 90% RH. This is surprising given the proximity 

between S1 and S3. Like air temperature, the distributions become very similar after July, Figure 

3.9B. All combinations were found to have significantly different c.d.f.s except for daytime relative 

humidity between S2 and S3 in the late season, and nighttime relative humidity between S1 and S2 in 

the late season, see Table 3.5.  

 

Figure 3.9: Daytime RH distributions for early season (May 1 – June 30th ) and late season (July 1st – Sep. 13th ) 

Table 3.5: P-values from two-sample KS test for relative humidity c.d.f.s (95% confidence) 

 S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

RH day  

(Early Season) 3.4E-18 4.4E-07 0.00049 1.9E-5 1.2E-26 7.8E-13 

RH night 

(Early Season) 6.9E-7 1.9 E-12 4.0 E-61 0.0032 2.9E-37 5.1E-38 

RH day  

(Late Season) 0.0038 0.015 1.2 E-15 0.4s 2.2E-6 8.1E-7 

RH night 

(Late Season) 0.15 3.2E-08 2.6E-16 9.5E-5 1.8 E-21 1.5E-36 
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Wind Speed 

Figure 3.10 shows the differences in daytime wind speed distributions for the early season and late 

season. The boxplots were constrained to only show wind speeds below 5m/s because there were 

some large outliers that skewed the y-axis scale. The general trends show that wind speeds were much 

greater during the early part of the season (May – June) than the later season. Station to station 

comparison show that S2 generally saw higher wind speeds than the other three stations, and S4 at the 

Clearwater vineyard consistently had lower wind speeds than the north vineyards, see Figure 3.10A. 

Differences prevailed throughout the later part of the season, though they were not as significant, 

Figure 3.10B. Table 3.6 show results from the two-sample K-S test. All the combinations were 

deemed significant. 

 

Figure 3.10: Daytime wind speed distribution for early season (May 1 – June 30th ) and late season (July 1st – Sep. 13th ) 

Table 3.6: P-values from two-sample KS test for wind speed c.d.f.s (95% confidence) 

 S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

Wind speed day 

(Early season) 3.1E-21 0.0031 1.08E-180 1.5E-22 1.9E-264 3E-168 

Wind speed night 

(Early season) 7.8E-98 0.011 0 8.8E-104 0 0 

Wind speed day 

(Late season) 4.4E-133 1.5E-42 1.2E-107 1.9E-26 4.5E-77 3.8E-10 

Wind speed night 

(Late season) 0 0 3.2E-168 2.45E-135 0 0 
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Calculated Meteorological Metrics 

General trends show that there are statistical differences in the distributions of air temperature, 

relative humidity, and wind speed across the four locations. However, plants are not concerned with 

statistician differences, and p-values do not inform on-farm management decisions. More 

sophisticated data products are needed to infer differences in plant physiologic responses. This 

section will show comparison of the calculated variables between stations including the Powdery 

Mildew Risk Index (PMRI), Growing Degree Days, and Penman Monteith reference 

Evapotranspiration.  

Powdery Mildew Risk Index 

The daily PMRI values for each station are shown in Figure 3.11. Red, black and green horizontal 

lines indicate thresholds for the recommended spray regime. For example, for sulfur fungicides, a 

weekly spray application is recommended for PMRI values above 60, a bi-weekly application is 

recommended for values between 40 and 60, and a 21-day application is recommended for values 

below 30.  Results show the PMRI changed substantially over the course of the growing season and 

across the different locations. In general, the highest disease pressure occurred in early May and again 

in June through July. All stations fell below the high disease pressure threshold through-out August. 

When looking at difference between stations, most notable was S4, which generally had a lower 

disease pressure than the other three stations for the entire growing season. S3 and S2 generally had 

the highest disease pressure across the entire season. Surprisingly, S1 deviated substantially from S3 

in June, despite their proximity.  

Figure 3.11: Daily PMRI values over the growing season for each station. Green, black and red horizontal lines represent the 

disease pressure severity levels and are associated with different recommended spray regimes 
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Growing Degree Days 

The cumulative GDD for the season is shown in Figure 3.12. This plot shows that there are 

minimal differences in the GDD accumulation between the four stations during the study period.  The 

greatest difference is seen at S4, which was about 75-100 units higher than the other three stations. 

This is consistent with the farmer’s observations that the Clearwater site is often a week or two ahead 

of the other stations and is consequently harvested earlier.  

  

Figure 3.12: Cumulative GDD (May 1st – September 13th, 2019) 

 
Figure 3.13: Comparison of cumulative GDD value at the end of season 
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Reference ET 

The daily reference ET in millimeters for each station are shown in Figure 3.14. This does not show 

variation in actual ET between varieties, but rather the weather-related crop water demand. In general, 

the daily values are very similar from May through June. This shows that the weather-related crop 

water use does not vary substantially across the vineyards in the early part of the season. Beginning in 

late-July, the daily reference ET starts to vary more substantially between stations, as much as a 

millimeter or two on some days. This is the opposite trend observed when just looking at the raw 

weather date distributions in the previous section.  

 

Figure 3.14: Daily reference ET (May 1st – September 13th , 2019) 

These small daily differences are magnified when looking at cumulative reference ET, representing 

the total crop water demand driven by local weather over the entire season in units of millimeters.  

Figure 3.15 shows the differences in cumulative reference ET between the stations, and Figure 3.16 

more clearly shows the values at the end of the season. This shows that the total water demand at S2 

in the Grenache is approximately 75mm, roughly 3 inches, more than the water demand at S4 in the 

Syrah.  

 

Figure 3.15: Cumulative reference ET (May 1st – Septmeber 13th, 2019) 
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Figure 3.16: Comparison of cumulative reference ET values at the end of season 

Spatial variability of canopy characteristics 

The previous section compares time varying processes between the four distributed stations. The 

stations capture weather conditions in the general proximity and describe variability across a field-

scale. This section describes the results of the canopy surveys and aims to resolve differences in the 

near canopy climate to the plant-scale.  

Stress Index Maps 

The maps below show the spatial variability in the stress index (DD index), such that higher values of 

the index represent plants freely transpiring given their atmospheric demand, and low values indicate 

plants with limited transpiration given the atmospheric demand and are exhibiting more stress. 

Individual samples that were found to be significantly different from the typical values observed at 

the nearby weather station for that time of day are denoted with a black ‘x’, refer to Figure 3.7 for this 

procedure.  Figure 3.17 show maps of the stress index in the rows adjacent to the stations for the six 

surveys through time. The survey on 8/23 is missing Riesling data due to a GPS error, and the survey 

on 9/13 is missing Chardonnay and Syrah data due to failure of the temperature and humidity sensor.  
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Figure 3.17: Maps of DD Index over time, x denotes values that are significantly different than the nearby station 

North Vineyards Clearwater vineyard tim
e 
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First, there appears to be a temporal trend, where values across all locations tend to become more 

stressed as the season goes on, which is to be expected. Also, the earlier surveys on 6/12 and 6/25 had 

more homogeneity within the varietal groupings, but starting on the 7/19 survey, there was more 

variability between individual plants within the rows. There were also some clear spatial patterns 

observed that were persistent throughout all surveys. The Chardonnay (S1) plants were generally 

more stressed than the Riesling (S3) and Grenache (S2). The Grenache appear to have the least stress 

near the top of the rows.  There do not appear to be any consistent patterns within the Riesling and 

Chardonnay. The Syrah (S4) at the Clearwater vineyard consistently exhibits the most stress out of all 

locations. This is consistent with results from the air temperature comparisons, where S4 was 

significantly hotter and had more GDD accumulation than the rest of the stations. There is also a 

distinct spatial pattern within the Syrah rows that shows more stress near the end of the rows, closest 

to the gravel road, though this was not observed on 6/25. 

Hyperspectral Indices 

The previous sections focus on characterizing the environmental heterogeneity that could lead to 

difference in disease pressure across the vineyard in space and time. Actual detection of disease is 

more cumbersome. This section will investigate the ability of field-based methods to detect actual 

disease presence using a non-imaging spectroradiometer.   

Vine Development Stage 

First, the ability of hyperspectral vegetation indices (Vis) to distinguish seasonal differences in the 

varieties is tested. Different groups are represented by the six survey dates, conducted approximately 

every two weeks. Figure 3.18 shows the two VIs that are associated with plant development, a 

hyperspectral NDVI index (hNDVI) and a veraison Band Ratio index (verBR) for all varieties. 

Visually, the verBR was able to better at distinguishing between survey dates compared to the 

hNDVI. This is validated by the one-way ANOVA results in Table 3.7, which show much smaller p-

values for verBR compared to hNDVI in all varieties. 
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Figure 3.18: Distributions of developmental vegetation indices (hNDVI and verBR) for each survey 

Table 3.7: One-way ANOVA p-values comparing the survey means for hNDVI and verBR 

 Chardonnay Riesling Grenache Syrah 

hNDVI 9.0 x 10-15* 1.8 x 10-4* 1.05 x 10-05* 2.1 x 10-35* 

verBR 2.9 x 10-29* 8.8 x 10-11* 1.2 x 10-24* 1.7 x 10-46* 

*statistically significant (95% confidence) 

 

Secondly, the change in VIs associated with plant disease and water content are compared over time 

for all varieties. The Chlorophyll Red Edge index (CRE) has been shown to have a negative 

correlation with disease development, and the Penuelas Water Index (WIPen) is positively correlated 

with plant water content. Visually, Figure 3.19 shows that there are clear differences in both VIs 

between survey dates. For the water index, WIPen, there is a consistent trend in all varieties.  Starting 

on 6/12 the index increases until it peaks on 7/19, then gradually decreases until 9/13. The trend is 

especially clear in the red varieties, Grenache and Syrah. There does not appear to be a consistent 

trend observed for the CRE overtime, but there are stark differences in the range between the different 

surveys and between varieties. In particular, the variability in the CRE index for Syrah is very large 

for the 6/25, 7/19, 8/05 and 8/23 surveys. 
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Figure 3.19: Distributions of stress related vegetation indices (WIPen and CRE) for each survey 

Table 3.8: One-way ANOVA p-values comparing the survey means for WIpen and CRE 

 Chardonnay Riesling Grenache Syrah 

WIPEN 1.6 x 10-33* 1.7 x 10-48* 7.6 x 10-44* 5.8 x 10-91* 

CRE 2.6 x 10-11* 7.6 x 10--8* 1.02 x 10-15* 6.4 x 10-33* 

*statistically significant (95% confidence) 

Vine Disease Detection 

Next, the ability of these VIs to distinguish between plants at the two locations is tested. The two 

locations are represented by the Colter’s Creek Vineyard (CCV) survey conducted on 8/05/2019, and 

the survey at a different vineyard operation (VIN) conducted on 8/08/2019 which had many plants 

infected with powdery mildew disease. Figure 3.20 shows a comparison between the two VIs 

associated with plant development, hNDVI and verBR for Chardonnay and Riesling varieties. A one-

way analysis of variance (ANOVA) comparing the group means showed that there was not a 

significant difference between the group means of plants at CCV and plants at VIN for Riesling 

varieties, indicating that the plants were at similar stage of development. There was a significant 

difference for Chardonnay varieties, indicating there might be some variation in the development 

stage of Chardonnay between the two locations.  
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Figure 3.20: Comparison of developmental VIs (hNDVI and verBR) for plants at CCV and VIN locations of Chardonnay 

and Riesling variety. 

Table 3.9: One-way ANOVA p-values comparing the CCV and VIN means for hNDVI and verBR 

 Chardonnay Riesling 

hNDVI 0.038* 0.654 

verBR 0.013* 0.418 

*statistically significant (95% confidence) 

Next, the Chlorophyll Red Edge index (CRE) and Penuelas water index (WIpen) vegetation indices 

were compared for the two locations, CCV and VIN, for Chardonnay and Riesling varieties, Figure 

3.21. Here, we found that two locations vary significantly in both Riesling and Chardonnay varieties. 

The CRE was significantly lower at VIN location than CCV. The WIpen was also significantly lower 

at VIN indicating that Chardonnay and Riesling plants have less plant water content on average at this 

location.  

    

Figure 3.21: Comparison of stress VIs (WIPen and CRE) for plants at CCV and VIN locations of Chardonnay and Riesling 

variety 

Table 3.10: One-way ANOVA p-values comparing the CCV and VIN means for WIpen and CRE 

 Chardonnay Riesling 

WIPEN 4.8 x 10-21* 3.1 x 10-7* 

CRE 0.001* 0.009* 

*statistically significant (95% confidence) 
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Discussion 

Powdery mildew disease outbreaks in vineyards can be detrimental to production and fruit quality. 

Farmers need tools to help better inform the timing and location of pesticide applications to mitigate 

disease and optimize resources management. Unfortunately for our research, but fortuitous for the 

farmer, powdery mildew disease was not observed in the vineyard this season. Because of this, the 

weather patterns we observed, and the calculated PMRI cannot be correlated to actual disease 

establishment. However, results from this study do show variability in the environmental factors that 

influence disease development, and consequently indicate spatial and temporal variability in disease 

susceptibility.  

The results from this study show that there are at least three distinct microclimates across the 

vineyard that might have different susceptibility to powdery mildew disease. The distributed weather 

stations were able to detect significant differences in the distribution of temperature, relative 

humidity, and wind speed across spatial scales that are pertinent to management decision, i.e. across 

vineyard blocks. These weather parameters are known to influence the development and dispersal of 

powdery mildew disease.  These observations can be put into action by use of the UC Davis Powdery 

Mildew Risk Index (PMRI). The daily PMRI values calculated at each station vary substantially on a 

daily basis, as well as over the growing season. This index prescribes a recommended spray regime 

based on cumulative temperature. As an example, Figure 3.22 compares the recomended spray 

interval for the Grenache and Syrah vineyard blocks. Data from S4 indicate that a bi-weekly 

fungicide applciaton is recomended in June, and weekly in July for the Syrah block, but starting in 

August a three week schedule would suffice. In comparison, a weekly fungicide application schedule 

is recommended for the S2 block starting as early as June.  

 

Figure 3.22: Comparison of recommended spray regime for S2 and S4 
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Although S1 and S3 PMRI values do vary, particularly in June, it might not be feasible to separate 

this vineyard block into two distinct zones from an operational perspective. In this case, spray 

regimes for the two blocks shown in Figure 3.23 appear quite similar. However, the difference 

between four recommended applications and two applications in August could represent savings in 

labor costs, chemical costs, and environmental damages.  

 

Figure 3.23: Comparison of recommended spray regime for S2 and S1 

The spatial patterns of the DD Index observed in the maps (Figure 3.17) indicate that there are 

detectable differences in plant stress across the vineyard. Most notable were differences between 

varieties, where Chardonnay and Syrah appeared to be the most stressed, and Grenache showed the 

least stress symptoms. It was shown that S2 in the Grenache had the greatest reference 

evapotranspiration, 30 – 75mm more than the other three locations. Despite this, the Grenache plants 

showed limited stress symptoms in the surveys indicating that the Grenache is a more drought tolerant 

variety. For this specific vineyard, planting the Grenache in the region with greatest reference 

evapotranspiration, or weather-related demand for water, was a wise decision. Further, under a water 

scarce future, Grenache would be a good substitute variety to withstand the hotter and drier 

conditions anticipated from climate change scenarios.  

The clearest spatial trend within rows was observed in the Syrah. Here, it was shown that plants near 

the end of the rows showed more stress than plants in the middle of the vineyard. This is likely 

attributed to the increased evaporative demand near the gravel road. From a management perspective, 

this information could inform irrigation zones such that the row edges are watered more frequently. 

Results from the stress maps can also be used to investing the spatial variability in disease 

susceptibility. It has been shown that both over watering and under-watering can contribute to disease 



69 

 

development (Austin & Wilcox, 2011; Stoll et al., 2008; van Niekerk et al., 2011). The Syrah 

exhibited the greatest stress response throughout the season, possibly exacerbating it’s susceptibility 

to disease, as shown by Stoll et al. (2008) and van Niekerk et al. (2011). Conversely, the PMRI values 

indicated that Syrah generally had the lowest disease pressure based on hourly air temperature. This 

highlights the importance of considering multiple environmental factors when designing a pest 

management plan.  

Crop disease detection is a common application of remote sensing technology in agriculture. Many 

studies have shown robust results for identifying disease in laboratory settings, under ideal light 

conditions, or with imaging spectroradiometers. This study aimed to assess the ability of non-imaging 

hyperspectral sensing to detect disease presence on-farm. Because of this, the methods used in this 

study to collect the hyperspectral data do not conform to typical procedures for spectroradiometer 

measurements. A white reference was not used to measure the spectrum of incoming solar radiation, 

and therefore the measurements do not represent a percent reflectance but rather the photon flux 

density of the canopy. As a result, variables such as solar elevation, solar aspect, and atmospheric 

absorbance were not controlled for. However, the data collected with relatively simple methods 

shows that using spectroradiometers on-farm can still be used to monitor plant physiology. Using two 

vegetation indices correlated with plant development informed by literature, we first showed that the 

mean values were not equal across all six surveys taken at Colter’s Creek over the course of the 

growing season. Since the surveys were taken approximately two-weeks apart, this indicates that the 

spectroradiometer was able detect differences in plant development. Similarly, we found that the 

WIPen and CRE varied in time.  

When comparing the vegetation indices from plants at Colter’s Creek to plants at the other vineyard 

operation, VIN, we found that there was not a significant difference in the developmental indices for 

Riesling. This indicates that the two plant groups were at similar developmental stages, allowing us to 

control for this. There was a significant difference for Chardonnay plants, suggesting that the plants 

might have been at different stages in their development. When comparing the CRE index between 

the two locations, we found that plants at VIN had significantly lower values of CRE than CCV. 

Because there was an active powdery mildew outbreak at the VIN location, results of this test indicate 

that we were able to detect differences between diseased plants and healthy plants. Though because 

the WIPen also varied significantly, we cannot rule out that the variance observed in the CRE index is 

not an artifact of plant water status, and as a result might not be a feature of disease. Though the 

converse could also be true, in that the diseased plants are at a lower water status because of the 

disease incidence. For Chardonnay varieties, we cannot rule out the variation observed in the CRE 
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index is not an artifact of differences in developmental stage between plants at CCV and plants at 

VIN, and therefore not associated with disease.  

In conclusion, this study was able to show temporal and spatial variability of environmental factors 

that are associated with the development and spread of powdery mildew disease using a relatively 

low-cost weather stations and field-based hyperspectral sensing. The results of the hyperspectral 

analysis have laid the groundwork for another vineyard disease detection study planned for the 

summer of 2020, focusing on Phylloxera. Phylloxera is another devastating disease which is 

commonly found in Californian vineyards, though it was recently found to be present in a majority of 

Eastern Washington and Idaho vineyards. This occurrence of Phylloxera is novel in this region, and 

these preliminary results will provide a baseline for future analyses of disease detection in vineyards. 

The usefulness of distributed weather stations goes beyond monitoring variability in disease pressure. 

The stations also showed differences in reference evapotranspiration and growing degree days. These 

data products could inform other management decisions including irrigation timing, harvesting dates, 

or frost protection. In conclusion, this study confirmed our hypothesis that there were distinct, 

significantly different microclimates across the vineyard. As such, the data products provided by 

these relatively low-cost, on-farm weather stations would benefit farmers. In fact, this information 

proved useful enough to the vineyard manager that he has expressed interest in hosting another 

weather station to output real-time Growing Degree Days and PMRI for the 2020 growing season.  
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Chapter 4: Socio-economic Considerations for the Success of on-farm 

Decision Support Tools 

Introduction 

Weather is the most important factor driving farm production, as it drives plant productivity, planting 

and harvesting dates, and crop damaging events such as frost, heat waves, and pest and pathogen 

development. The relatively low-cost weather stations described in Chapter 2 were capable of testing 

rigorous hypotheses about site-specific weather phenomena. As a result, the stations were able to 

show weather variability across small spatial scales in an Idaho vineyard, and answer questions about 

powdery mildew disease pressure that are directly relevant to farm management. Weather variability 

is also one of the greatest sources of uncertainty in agricultural production systems. For these reasons, 

farmers should be especially keen on integrating real-time weather data into on-farm operations. 

Despite enhanced forecasting, warning systems and meteorological technology, adoption of weather-

based decision support tools have been slow across many sectors (Blum & Miller, 2019; Uccellini & 

Ten Hoeve, 2019). Haigh et al. (2018) conducted a survey in the southeastern United States and 

found that nearly half of farmers surveyed did not incorporate weather information into their 

operations. I argue that the primary factors inhibiting integration of weather information into farm 

operations are pragmatic concerns associated with the technology itself, the salience of the 

information, and the perceived value of information to the user’s specific application.  This synthesis 

will trace the flow of environmental information from the physical phenomena, to the sensing 

technologies, through data processing and metrics, and ultimately into the hands of the end decision 

maker, as shown in Figure 4.1. The uncertainty and challenges associated with each step will be 

discussed, informed by both my anectodical evidence from working with farmers directly to conduct 

on-farm research and current literature on the primary socio-economic factors impeding use of 

weather and climate data. 

Data Collection 

The first step in collecting meaningful environmental data is in the interaction between sensors and 

the physical phenomenon of interest. The environment is inherently variable; temperature, wind, 

humidity, radiation, soil moisture, etc., all vary in time and space. When employed thoughtfully and 

correctly, sensors can capture the physical events that drive environmental processes. This includes 

correct sensor placement, selection of appropriate sensing technology, and appropriate data 

processing to answer questions pertinent to farm management.  
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Figure 4.1: Pathways of environmental information 

Sensor-Environment Interaction 

Sensors should be placed such that they capture the physical event that affect the environmental 

process of interest, and not some other consequence of the environment. Each sensor performs best 

under different exposures, and Mahmood et al. (2017) outlined the primary objectives that should be 

met when placing meteorological instruments. Anemometers should be placed such that they measure 

the wind profile of interest, and not the air flow diverted from a nearby building or obstruction. 

Precipitation gauges are placed within a wind shield so that the measurement represents precipitation 

incident on that unit area, not precipitation blown in from the sides. Soil moisture sensors should be 

packed tightly in representative soil so that the measurement represents the dielectric permittivity of 

water within the soil pores, not the air gaps between probes from poor installation. Though these 

procedures are relatively intuitive, they do add to the practical challenges of hosting environmental 

monitoring on-farm. For example, placing sensors in field where they are most representative might 

interfere with other operations and equipment. In the case of the vineyard study, one stations had to 

be placed at the edge of the field as to not interfere with the tractors’ boom. Failure to follow correct 

installation and setup procedures of the sensors will also lead to erroneous, and unrepresentative data, 

which in turn decreases the accuracy of data, further contributing to their reluctance towards decision 

support tools and models.  
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Sensor Technology 

Selecting the appropriate sensor technology is also an important factor in the success of decision 

support tools. The type of sensor depends on the application, the budget, and the desired level of 

accuracy. For example, for wind measurements there are two types of anemometers, sonic and cup 

and vane.  Cup and vane anemometers use mechanical components to determine the speed and 

direction of wind. The major drawback to mechanical anemometers is their limited ability to measure 

low wind speeds and gust, and maintenance associated with damage to mechanical parts. Sonic 

anemometer measurements are relatively instantaneous, approximately at the speed of sound, which 

allow them to capture very low wind speeds, gusts and abrupt changes in direction much more 

accurately than cup and vane. Sonic anemometers have no moving parts, making them more durable 

for field applications, thought it comes at a cost. The lowest quality sonic anemometer can be much 

more expensive than a high-quality cup and vane anemometer.  

The site-specific conditions should also be considered when choosing sensor technology. For 

example, one type of humidity sensing technology is a capacitance hygrometer, which is comprised 

of a porous polymer between two metallic plates. When the polymer absorbs moisture, the charge 

between the two plates changes, changing the capacitance of the sensor and hence, the humidity 

measurement. In this kind of sensing system, anything that impacts the sorption of water into the 

polymer will affect the accuracy, such as dust or other atmospheric constituents like SO2. Placing this 

kind of sensor in a dusty or polluted environment will require frequent maintenance and recalibration 

to maintain the sensors accuracy. On the contrary, another method of humidity measurement is 

the psychrometer. Psychrometers use two temperature probes, one placed in dry air (dry bulb), and 

one wrapped in a wet wick (wet bulb) to measure the temperature under evaporative cooling. The 

relative humidity can be calculated from these two values using thermodynamic 

psychrometric equations. The advantage of a psychrometer is that it can withstand dirty environments 

and water state changes, but psychrometers are often less accurate because the 

temperature values highly depend on ventilation, wire dimensions, wet wick length, and probe 

proximity. These two examples highlight the trade-offs that must be considered between upfront cost, 

maintenance cost, and sensor accuracies when employing on-farm instrumentation. 

Information Transmission 

After the sensor measurement, the information is transmitted to the user. With the advent of the 

Internet of Things (IOT), this is commonly done over WIFI or telemetry to a hosted server. For lower 

cost dataloggers, or areas without WIFI or cell service, data is stored on the device and must be 

downloaded periodically by the user. The type of data transmission used inherently impacts the 
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timeliness of the data, and consequently the timing of data-driven decisions. Using the vineyard study 

as an example, there was no cell service nor WIFI accessibility at the station locations. As a result, 

data was only downloaded every two weeks. This not only impacted the ability for us to provide real 

time metrics for the farmer, but also impacted our ability to check on station performance. For 

example, all the vineyard weather stations lost power in mid-July due to the canopy growing over the 

solar panel, resulting in a week of lost data. From anecdotal observations, retrieving data manually 

was one of the biggest complaints about the weather stations deployed in the Ashton study. Similarly, 

when the low-cost weather stations described in Chapter 1 were presented at an irrigation workshop 

to regional farmers, the telemetry was one of the greatest concerns. On the contrary, WIFI enabled 

systems can transmit data almost instantaneously. This real-time information is helpful for a few 

operations, such as following guidelines for wind speeds when applying pesticides. But in general, 

farmers are not making decisions on 5-minute time scales. In addition, it is not guaranteed that farms 

have the infrastructure or capacity to host web-integrated sensors.  A recent USDA report showed that 

in 2019, only 49% of farms used a computer to conduct farm business, and 52% used a smart phone 

or tablet (Farm Computer Usage and Ownership, 2019). That leaves approximately half of the 

population lacking the essential bandwidth to implement most of these technologies.  

Once the raw environmental data has been transmitted, either to a server, an email, or to a personal 

computer, it should be pre-processed and go through a QA/QC procedure. This can be the most 

cumbersome part of environmental data collection. Environmental data can be messy, containing 

missing data, sensor error codes, or incorrect clock times. Real data requires QA/QC procedures to be 

useful. For cumulative metrics like growing degree days and the PMRI, a few missing data points can 

render a counter incorrect for the remainder of the season if not filled correctly. Methods for 

statistically filling missing data can be applied, either by linear interpolation, or regression equations. 

This introduces another layer of uncertainty in the data and adds complexity that is time consuming 

and may be impractical for farmers. Ergo, these issues related to sensor technology, telemetry and 

data processing are one of the first hurdles to integrating on farm data. 

Information Use 

For environmental data to be successfully interpreted and used by decision makers, it must be salient, 

packaged in an actionable way, and convey the uncertainty and limitations associated with tool, 

model or prediction (Kirchhoff, 2013; Prokopy et al., 2017).  

Salience 

The salience of data refers to its specificity and relevance to a decision maker’s unique needs. 

Currently, regional weather networks provide near real-time data in most locations throughout the 
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continental US, but these data may not represent local conditions for most locations. Haigh et al. 

(2018) conducted a survey of farmers in the southeastern United States about their use of private and 

public weather data. They found that out of the of the farmers who used free, publicly available 

weather data, only 14% found that the data was very influential to their farming practices Out of the 

farmers who used both public and private weather data, a majority thought that private weather data 

was more relevant than public weather data. A comparison of the Powdery Mildew Risk Index 

calculated using regional weather data compared to on-farm weather data highlights this disparity, 

Figure 4.2: Comparison of PMRI for on-farm (CCV) vs regional weather stations (DENI)Figure 4.2 

 

Figure 4.2: Comparison of PMRI for on-farm (CCV) vs regional weather stations (DENI) 

The nearest automated weather station to Colter’s Creek vineyard is more than 20 miles away at the 

Dworshak reservoir in Idaho. The first difference to note is the day of initial infection. For the site-

specific stations, initial infection began on May 5th for S1, S2 and S3, and May 6th for S4. Initial 

infection at the Dworshak station was not until May 13th, representing more a week of disease risk 

information the farmer would be missing.  The DENI data follow similar trends, but daily values of 

PMRI vary substantially from the vineyard stations, particularly from S3 and S2.   

Actionable Data Packaging 

One way to improve the packaging of environmental data is by reducing the dimensionality of raw 

environmental data by compiling it into a single data metric. As shown in the vineyard study, air 
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temperature data collected on a 5-minute interval can be transformed into three different data 

products which inform unique crop processes: growing degree days, reference ET, and the powdery 

mildew risk index. Cumulative data products like these provide a single value, often on a daily time-

step, that can be compared to established thresholds which inform action. For example, the P-M 

reference ET equation integrates a relatively large number of observations on air temperature, wind 

speed, humidity and solar radiation conditions over the course of day into a single value that informs 

weather related crop water demand. The PMRI provides information on the risk of powdery mildew 

infection for a single day based on temperature trends from the many days prior. By presenting this 

data in graphical form and adding thresholds which inform fungicide application, a decision maker 

can both learn their present disease risk and act on it from one glance. Further, reporting the PMRI at 

multiple locations incorporators spatial variability into the metric, allowing for management strategies 

to be resolved to field or sub-field scales.  

Many people are best able to utilize information visually, as a result maps are another useful way of 

data communication. Prokopy et al. (2017) conducted a study on farmers needs in relation to 

agricultural decision support tools. One of the major takeaways from focus groups was that 

visualization of data in maps was the most useful for farmers to interpret. Similarly, from my 

experience working with the vineyard manager, his interest peaked when he was presented with maps 

of field variability. Maps are also another way of dimensionality reduction. A single point on a map 

can contain spatial, temporal, and variable information. For example, the stress index maps created in 

the vineyard project combines information on instantaneous air temperature, relative humidity, 

canopy temperature, location, time as well as seasonal averages from the near-by weather stations 

time-series. A single point conveys six-dimensional data to a farmer in a digestible way. These kinds 

of data products are useable, efficient, and actionable. Though creation of these data products is not 

trivial, this is the responsibility of researchers and extension to find ways of effectively 

communicating complex processes to farmers. 

Conveying Uncertainty  

The end users of the data products need to be equipped with all the tools necessary to make the most 

informed judgement. This includes communicating the uncertainty and limits associated with the 

data, prediction, or model, as well as the uncertainty related to their specific decision context 

(Kirchhoff, 2013). Again, this is most digestible to farmers when presented visually, such as use of 

error bars and uncertainty bounds around the data. Many studies have also found that interaction 

between the producers of information and the users of information can help mitigate perceptions of 

uncertainty, or inaccuracies of the data (Kirchhoff, 2013; Kirchhoff et al., 2013; Prokopy et al., 2017; 
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Uccellini & Ten Hoeve, 2019). These discussions should be facilitated through extension services and 

workshops where the data production process is thoroughly explained, including sources of 

uncertainty. Similarly, when reporting environmental data from regional weather networks or when 

reporting to farm managers, enough information should be given about the monitoring set up and 

environmental conditions so that users can judge the credibility and relevancy of environmental data 

(Allen et al., 2011b). Appropriately communicating uncertainty in scientific models and will help 

increase decision makers confidence in their application of these tools.  

Value of Information 

The previous sections highlight key challenges and areas of improvement related to the collection and 

reporting of environmental data products and decision support tools. However, when it comes to the 

adoption of such tools, we must also consider the perceived value of information to the farmers, and 

the associated risks farmers face that might impede their willingness to incorporate environmental 

data into their operation.  

Perceived Risks 

Perceived risk plays a role in the willingness of decision makers to use weather and climate data. 

Attitudes towards risk also vary substantially across individuals, over time, and with experience 

(Kirchhoff et al., 2013). In general, when the perceived risk of weather-related damage is high, 

decision makers are more likely to find utility in weather information. For example, the most 

important factor in adaptive behavior for farmer’s in the corn belt was found to be individual 

perception of on-farm risks such as drought, flooding, and crop disease (Prokopy et al., 2017). They 

also found that the farmer’s underlying beliefs about the climate change also had a significant impact 

on how they manage their farms. The more the farmer believes climate change is caused by human 

activity, the more likely they are to use of information technology compared to those who did not 

believe climate change is caused by human activity. Similarly, Kirchhoff et al. (2013) found that 

water managers who expect to face problems from the climate in the next decade were much more 

likely to use climate forecasts to inform decision-making. In summary, farmers that are more climate 

aware, and anticipate weather related damages to their crops are more willing to manage risk with 

weather and climate information. However, perceived risk of weather-related damages and its 

influence on adoption of weather-driven practices differs from the actual risk of employing sensor-

driven management. 

Potential economic benefits of decision support tools and precision farming ultimately stem from 

reducing the cost of inputs, such as irrigation water, fertilizers, or pesticides. Though use of these 

tools comes with increased risk (Sadler et al., 2005). Haigh et al. (2018) found that farmers were 
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particularly doubtful that weather information from any source, private or public, would reduce their 

financial risks. Depending on the application of the decision support tool, the risk associated with 

incorrect crop management can curtail use of sensor data. For example, sensor-based irrigation 

scheduling has some risk associated with it, but it is asymmetrically distrusted throughout the season 

(Food and Agriculture Organization of the United Nations, 2002). In the early season, there is greater 

risk associated with under or over-watering crops, particularly for annual crops. Underwatering can 

lead to yield reduction, unwanted crop stress, and severely impact the crop quality. This is 

particularly critical for high value crops like fruits and nuts, where the market price of high-quality 

fruit much outweighs the marginal cost of applying water (Knox et al., 2012). Overwatering can be 

costly in the form of pumping costs, facilitate disease development, and be environmentally 

unsustainable. For crops like grapes, which are intentionally stressed at the end of the season to 

improve fruit composition (Herrera et al., 2017), the risk of underwatering diminishes later in the 

season. 

When evaluating the farmer’s perception of risk related to irrigation, it is also important to consider 

how the farmer defines irrigation efficiency. In agriculture, the term efficiency can have different 

meanings. A survey in England found that 63% of farmers surveyed considered water use efficiency 

to mean “applying the right amount of water at the right time in the right place”. Conversely, water 

regulators view water use efficiency from a social-ecological  perspective where their goal is to 

manage abstractions to sustain the entire water environment and local business (Knox et al., 2012). 

From a water manager’s perspective, the non-consumed “losses” at a field scale such as runoff and 

deep percolation lead to return flows to the environment which can be reused basin wide. However, 

from a farmer’s perspective increased irrigation efficiency often means reducing runoff and deep 

percolation. Rather than reducing the water abstracted, water savings at one field can be applied to 

another, or the irrigated area can be expanded to increase productions. Hence, water saved at a farm 

scale does not mean water saved at a watershed scale.  

As another example, the risk associated with disease management is consistent throughout the early 

and middle parts of growing season. As shown in Chapter 3, powdery mildew disease risk tends to 

diminish at the end of the season. If a farmer does not sufficiently apply pesticides during high risk 

periods, they run the risk of losing their entire year’s crop to disease, or in the case of perineal crops, 

be forced to eradicate entire blocks of vineyards or orchards which will affect them for years to come. 

The marginal cost of pesticide application is also much greater than the marginal cost of water, which 

increases the financial risk associated with over-spraying. Hence, trusting technology for these kinds 

of high stakes applications is risky.  
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Value Perceptions 

In some cases, farmers might perceive the value of information from on-farm sensors to out-weigh 

the potential risks. The value of information technology is difficult to quantify, as it requires 

observing a counterfactual. The difference in the farmer’s outcome with and without use of decision 

support tools cannot be measured, but it can be theoretically modeled. Galioto et al. (2017) derived an 

economic model to determine the value of information for precision irrigation practices. The value of 

information was modeled as the difference between maximum profit from the sensor informed 

outcome and the maximum profit from the outcome without the sensor information.  Two main 

relationships were found; the value of information to a farmer increases with increased field 

heterogeneity and the informed action provides more profitable outcomes when the probability of the 

sensors to correctly predict the phenomena is greater than the probability of the farmer to correctly 

react. These relationships are shown in Figure 4.3.  

 

Figure 4.3: Compares the value of information (a) and impact on irrigation water use (b) between fields with high and low 

heterogeneity as a function of information quality from Galioto et al., (2020) 

If the number of distinct management zones is one of the primary factors adding to the value of 

sensor information, then identification of such zones is of utmost importance. This is another practical 

obstacle to adoption of decision support tools. Accurate identification of management zones is 

laborious and expensive. It involves large field campaigns to adequately sample across spatial scales, 

and long periods of monitoring to detect significant differences in temporal patterns. Compounding 

this, each variable input is likely to have different management zones (Sadler et al., 2005). For 

example, irrigation zones are likely to be different than pesticide zones, which will be different than 

nutrient zones. Though this effort is rarely employed in reality, it goes to show the degree of 

information necessary to accurately use and benefit from decision support tools. It highlights cracks 

in the system that might lead to models performing unsatisfactory in field compared to research 

experiments, and further dissuade farmers from trusting decision support tools.  
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The number management zones that can be monitored is limited by the number of sensors a farmer 

can afford to deploy. Consequently, cheaper sensors usually have lower accuracy. As Galioto et al., 

(2017) pointed out, the value of information from decision support tools is a function of the accuracy 

of the sensor, or the probability of the sensor to correctly predict the natural state. The model 

accuracy is the culmination of sensor accuracy, appropriate data processing, and the accuracy of 

fundamental physics and assumptions used to interpret the physical phenomena. When multiple 

sensors are coupled to provide more sophisticated metrics like potential evapotranspiration, this 

uncertainty in the system compounds. One way to way to reduce the risk of misinformed management 

from decision support tools, and increase their potential value, is by correct sensor set up, as 

described in the first section of this chapter. Sensor placement, sensor accuracy, and 

representativeness all contribute to overall ability of the data to provide meaningful metrics. There are 

real trade-offs between the number of management zones, quality of sensors, and ultimate economic 

savings from adoption of precision agriculture technology and decision support tools.  

The cost analysis presented in Chapter 2 shows that the cost associated with using weather 

information to support disease management is about $380/acre per year. This estimate includes the 

cost of placing four weather stations across a 35-acre vineyard. Given the vineyard is producing the 

average yield and fruit quality for the state of Idaho, the potential losses from a disease outbreak is on 

the order of $1,800/acre. However, the results in Chapter 3 show that weather does not vary 

substantially between Station 1 and Station 3, indicating that only one weather station is necessary to 

capture the weather conditions in that vineyard block. Given that there were also two vineyard blocks 

that did not have a weather station, I would suggest that five weather stations be placed in the 35-acre 

vineyard to provide the best coverage. Additionally, results from the Powdery Mildew Risk Index 

indicate that the farmer should spray weekly from May to July, pushing the number of spray 

applications from 8 to 16. If a farmer was solely using the weather data to inform fungicide 

application, these adjustments would increase the cost of disease management over the course of a 

growing season to $675/acre. 

Taking the difference between the cost of management and the potential cost of disease, this shows 

that value of weather information could be as much as $1125/acre, given the PMRI model is accurate 

enough to eliminate the risk of disease. As observed in the vineyard study, the farmer’s current 

disease management strategy is effective, and there was not a powdery mildew outbreak in 2019. 

However, climate change scenarios predict that regional weather patterns will become more variable. 

As such. the ability for a farmer to correctly predict weather driven processes such as irrigation 
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demand and disease will become more challenging. This simple economic estimate provides a first 

cut approximation on the cost of information to help mitigate risk.  

Conclusion 

There is a paradox between the spatial representation of information, the accuracy of information, and 

the price of information. Different approaches of environmental monitoring have different relative 

values. Chapter 2 showed that the lower cost ($16) SHT-31 sensors are not as accuracy as the higher 

quality ATMOS-41 sensors. Calibration results shown an average r-square of 0.95 and 0.96 for 

relative humidity and temperature measurements, respectively. However, the value of each of these 

sensors depends on the farmer’s specific needs. In the case, of the vineyard study, we placed four 

sensor stations that used low-cost data loggers with relatively high-quality sensors. Data provided by 

these stations showed that weather variability varied across small scales, and as a result we can 

differentiate three potential disease management zones. Had we placed many lower cost sensors, such 

as the SHT-31 temperature and humidity sensors, we might have observed more disparate 

microclimates. Though, the spatial scales over which unique disease management regimes can be 

applied are limited by operational constraints. As discussed in the chapter, when the application is 

high risk, as is the case with disease management, accuracy of the model becomes a priority. For 

these reasons, a fewer number of high-quality sensors is likely the best choice for weather-based 

disease models.  

The study at Colter’s Creek also showed variable growing degree days across the four locations. 

Growing degree days trackers are cumulative models that are not very sensitive to measurement 

accuracy.  For example, GDDs calculated from a temperature sensor with an accuracy of ±0.5°C 

compared to a sensor with ±0.1°C will track accumulation of heat relatively equally. Management 

decisions based of GDDs, such as harvesting dates, can be applied across small spatial scales, 

especially in vineyards where grapes are harvested by hand. For this application, I would recommend 

many distributed low-cost temperature sensors compared to a few high-quality sensors. The 

accuracies of the low-cost sensors should be more than adequate to improve decision making for this 

application. When considering the alternative of farmers using data from regional weather stations to 

track growing degree days, disease risk indices, or reference evapotranspiration, any on-farm 

measurement, independent of quality, will be much more useful and representative.  

Clearly, there is a long way to go before every farmer is making real-time, precise decisions on crop 

management from site-specific weather data. Currently, the major socio-economic factors inhibiting 

the adoption of on farm weather data are information credibility, on-farm practicality, and the risk of 

using data to inform critical, high stakes management decisions. Trade-offs between temporal and 
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spatial resolution, information costs, and information quality should all be considered when 

evaluating the value of information technology to decision makers. However, I believe sub-optimal 

data is better than no data. Continuous and spatially distributed data adds to the wealth of information 

a farmer can use to learn about their field. Whether they choose to use these insights to precisely 

target management will depend on their individual perceptions of risk and expected economic utility. 

These socio-economic considerations for the success of decision support tools extend beyond 

agricultural applications. Issues related to the practicality, salience, and value of collecting, analyzing 

and employing environmental data are relevant across many sectors. Forest management, water 

resource management, and environmental protection agencies can all benefit from climate and 

weather-based decision support tools.  
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Appendix A: P-M Reference ET Calculation 

The equation used to calculate the standardized reference ET for alfalfa reference (𝐸𝑇𝑟𝑠) is as 

follows: 

𝐸𝑇𝑟𝑠 =  
0.408∆(𝑅𝑛 − 𝐺) +  𝛾 ∗ (

𝐶𝑛
𝑇 + 273

) ∗ 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ +  𝛾(1 + 𝐶𝑑𝑢2)
 

where ∆ is the slope of the saturation vapor pressure curve, 

∆ =
2503 ∗ exp (

17.27𝑇
𝑇 + 237.3

)

(𝑇 + 237. 𝑠)2
 

and 𝛾 is the psychometric constant, 

𝛾 = 0.000665 ∗ 𝑃𝑎𝑡𝑚  

The saturation vapor pressure, 𝑒𝑠 is a function of air temperature, 

𝑒𝑠(T)  = 0.6108 ∗ exp (
17.27𝑇

𝑇 + 237.3
) 

and the actual vapor pressure, 𝑒𝑎,  is calculated from the percent relative humidity measurement, 

𝑒𝑎 =
%𝑅𝐻

𝑒𝑠
∗ 100 

𝑅𝑛 is the net radiation which is equal to the net longwave radiation subtracted by the net shortwave 

radiation: 

𝑅𝑛 = (𝑅𝑠𝑤 + 𝑅𝑙𝑤)𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 −  (𝑅𝑠𝑤 + 𝑅𝑙𝑤)𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔  

Ground flux density, 𝐺 is the radiation flux into the soil and can be assumed negligible on daily time 

steps, 𝑢2 is the horizontal wind speed measured at 2 meters, and 𝑇 is the air temperature in degrees 

Celsius. For the alfalfa reference on a daily time step 𝐶𝑛 = 1600 and 𝐶𝑑 = 0.38. 


