A Thesis
Presented in Partial Fulfillment of the Requirements for the
Degree of Master of Science
with a
Major in Geography
in the
College of Graduate Studies
University of Idaho
By
JAMES HUNTER MCGEE
Major Professor: Grant L. Harley, Ph.D.
Committee Members: John T. Abatzoglou, Ph.D., Justin T. Maxwell, Ph.D.
Department Administrator: Leslie Baker, Ph.D.

August 2018

AUTHORIZATION TO SUBMIT THESIS

The thesis of James H. McGee, submitted for the degree of Master of Science with a major in Geography and titled, "TESTING THE EFFICACY OF BLUE INTENSITY AS A TEMPERATURE PROXY IN PICEA ENGELMANNII FROM ITS SOUTHERN RANGE LIMIT, NORTHERN NEW MEXICO, USA," has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: \qquad Date: \qquad
Grant L. Harley, Ph.D.
Committee Members:

John T. Abatzoglou, Ph.D.
Date: \qquad

Date: \qquad
Justin T. Maxwell, Ph.D.
Department
Administrator: \qquad Date: \qquad
Leslie Baker, Ph.D.

Abstract

Annually resolved temperature proxies are rare for the American Southwest. Recent studies involving the analysis of blue light intensity consistently show an inverse show in inverse relationship between maximum latewood density and blue intensity values. Blue intensity analysis records the amount of blue light absorbed by tracheid cells, thereby quantifying the amount of lignin present in the latewood of the annual rings. This study aims to fill the gap of historical temperature data for the southern range limit of the Sangre de Cristo Mountains of northern New Mexico using annual climate data and blue light intensity analysis of tree rings as a proxy for maximum latewood density analysis. This is done using 27 high-elevation Engelmann spruce (Picea engelmannii Parry ex Engelmann) samples collected from 16 trees located at Wheeler Peak, New Mexico. We also include a test of the efficacy of generating BI data with the CooRecorder density software package. Samples are also measured for minimum earlywood and latewood density, and change in blue intensity values (delta). Results of this study suggest that a statistically significant relationship exists between blue intensity values and maximum annual summer temperature. A warming trend is evident at the turn of the $21^{\text {st }}$ century when observing the delta blue intensity time series data, which is also present in PRISM instrumental temperature data used. Additional research utilizing the methods described in this study can be conducted at similar sites located at high latitudes and alpine environments. Furthermore, a study comparing trends in blue intensity parameters across multiple sites would be valuable. This study contributes to the increased understanding of how blue light intensity can be used as a new and innovative tool within the field of dendroclimatology.

ACKNOWLEDGEMENTS

I would first like to extend my gratitude to my parents, family, and friends for supporting me immensely throughout my academic career. I would also like to thank my advisor, Dr. Grant Harley for his guidance throughout my graduate education and this project, and for providing me with countless opportunities over the past few years. I thank my committee members Dr. Justin Maxwell and Dr. John Abatzgolu for their input and assistance in developing my research. I would like to thank the faculties of the University of Idaho Geography Department as well as the University of Southern Mississippi Geography Department for their support. The love, guidance, and encouragement of these individuals have aided in my success and developed me into the person I am today, and, for that, I am eternally grateful.

TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT THESIS ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
CHAPTER ONE 1
INTRODUCTION 1
1.1 Research Questions 4
CHAPTER TWO 5
LITERATURE REVIEW 5
2.1 Temperature Reconstructions Using Tree Rings 5
2.2 Development of Blue Intensity Analysis 6
2.3 Engelmann Spruce 8
CHAPTER THREE 11
TESTING THE EFFICACY OF BLUE INTENSITY AS A TEMPERATURE PROXY IN PICEA ENGELMANNII FROM ITS SOUTHERN RANGE LIMIT, NORTHERN NEW MEXICO, USA 11
3.1 Introduction 11
3.2 Study Site 13
3.3 Methodology 17
3.3.1 Field Sampling 17
3.3.2 Sample Preparation and Laboratory Analysis 18
3.3.3 Statistical Analysis. 23
3.4 Results 24
3.4.1 COFECHA 24
3.4.2 Blue Intensity and Climate Relationships 29
3.4.2.1 Statistical Analysis 29
3.4.2.2 Delta BI vs. PRISM Summer Temperature Data 35
3.4.2.3 Inverted Latewood BI vs. PRISM Summer Temperature Data 41
3.5 Discussion 47
REFERENCES 53
APPENDIX 1: Wheeler Peak, NM tree ring width COFECHA output 59
APPENDIX 2: Wheeler Peak, NM delta blue COFECHA output. 72
APPENDIX 3: Wheeler Peak, NM inverted latewood blue intensity COFECHA output 88

LIST OF FIGURES

Figure 3.1: Map of the N-TREND network of tree-ring reconstructions depicting lack of North American temperature reconstruction data used in Wilson et al (2016) 13

Figure 3.2: Map of the study site in the Carson National Forest of the Sangre de Cristo Mountains, New Mexico. Generated using ArcGIS

Figure 3.3: Map showing distribution Engelmann spruce across North America. Taken from USGS on 28 March 2018

Figure 3.4: Photograph taken from the field site at Wheeler Peak, NM by Trevis Matheus,
\qquad
Figure 3.5: Image taken at field site as example of increment core extraction technique18

Figure 3.6: Screenshot from CooRecorder showing blue color intensity calibration card with colorimetric data file19

Figure 3.7: Screenshot from CooRecorder displaying blue color patches and densitometer function used for calibration21

Figure 3.8: Screenshot from CooRecorder displaying the ring delineation process and BI measurements22

Figure 3.9: Screenshot showing the available data outputs for CooRecorder 22
Figure 3.10: Spaghetti plot displaying trends in TRW for the Wheeler Peak, NM samples ... 25
Figure 3.11: Spaghetti plots displaying trends in delta BI for the Wheeler Peak, NM samples

Figure 3.12: Scatterplots showing the strong positive relationship between inverted earlywood BI and inverted latewood BI (left) and the slightly weaker positive relationship between delta BI and TRW (right) .27

Figure 3.13: TRW and BI parameter time series 1661-2015 CE ... 28
Figure 3.14: PRISM temperature data showing positive trend over the past several decades.. 28
Figure 3.15: Graph showing statistically significant correlations (True) between delta BI parameter and monthly temperature data for current months (Mar-Dec) and the monthly data for the previous year (JAN-OCT). ... 30

Figure 3.16: Correlation coefficient values expressed as higher positive correlations as gradually darker blues and higher negative correlations as darker reds. Delta BI time series data ran against current year's monthly temperature data and previous year's monthly temperature data over 40 year intervals from 1896 to 2015

Figure 3.17: Graph showing statistically significant correlations (True) between inverted latewood BI parameter and monthly temperature data for current months (Mar-Dec) and the monthly data for the previous year (JAN-OCT)

Figure 3.18: Correlation coefficient values expressed as higher positive correlations as gradually darker blues and higher negative correlations as darker reds. Inverted latewood BI time series data ran against current year's monthly temperature data and previous year's monthly temperature data over 40 year intervals from 1896 to 2015

Figure 3.19: Graph showing statistically significant correlations (True) between TRW and monthly temperature data for current months (Mar-Dec) and the monthly data for the previous
\qquad

Figure 3.20: Correlation coefficient values expressed as higher positive correlations as gradually darker blues and higher negative correlations as darker reds. TRW time series data ran against current year's monthly temperature data and previous year's monthly temperature data over 40 year intervals from 1896 to 2015

Figure 3.21: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM TRW time series and maximum summer (JJAS) temperature

Figure 3.22: KNMI Climate Explorer output displaying correlation between Wheeler Peak,
NM TRW time series and averaged summer (JJAS) temperature
Figure 3.23: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM maximum August temperature

Figure 3.24: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM maximum September temperature

Figure 3.25: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged maximum August-September temperature .37

Figure 3.26: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged maximum summer (JJAS) temperature .38

Figure 3.27: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM mean August temperature

Figure 3.28: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM mean September temperature

Figure 3.29: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged mean August and September temperature

Figure 3.30: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged mean summer (JJAS) temperature.................. 41

Figure 3.31: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM maximum August temperature 42

Figure 3.32: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM maximum September temperature

Figure 3.33: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged maximum August-September temperature

Figure 3.34: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged maximum summer (JJAS) temperature

Figure 3.35: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM mean August temperature

Figure 3.36: KNMI Climate Explorer output displaying correlations between Wheeler Peak, NM inverted latewood BI time series and PRISM mean September temperature

Figure 3.37: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged mean August and September temperature .46

Figure 3.38: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged mean summer (JJAS) temperature

Figure 3.39: KNMI Climate Explorer outputs comparing correlations between delta BI and TRW parameters against averaged August and September maximum temperature .47

CHAPTER ONE

INTRODUCTION

Anthropogenically induced climate change has resulted in a consistent warming of Earth's climate. Over the past century, Earth's surface temperatures have experienced an increase of roughly $0.6^{\circ} \mathrm{C}$, with the highest rates of increase during 1910 to 1945 and from 1976 to present day (Walther et al., 2002). This trend of increasing global temperatures has scientists searching for innovative methods to determine whether natural climate variability, or pollution onset by human activities is the cause. Because consistently recorded meteorological data is limited to the past century, in order to reconstruct historic temperatures, scientists must identify and utilize temperature-sensitive climate proxies. The use of tree rings as a proxy to reconstruct historic temperature allows scientists to develop more accurate estimations of past climate change (Eschbach et al., 1995). Few temperature-sensitive proxies currently exist across the globe, though they are much more common at high latitudes as well as alpine environments (Wilson and Luckman, 2003; Wilson et al., 2012).

Dendrochronology uses statistical analysis of tree rings to provide useful datasets to various disciplines such as climate science. Dendrochronology aims to assign calendar years to each individual annual tree ring. Because tree rings are unique to the growing conditions during the period they were created, tree rings can produce valuable dendroclimatic data that extends far past instrumental climatic records. Trees can be crossdated using the anatomy of their growth rings because individual specimens that are located in a similar area have similar
growth responses to changing environmental factors, such as precipitation, temperature, and disturbances. The analysis of the annual growth rings of trees provides information for a variety of regional conditions.

Traditionally, dendrochronology consisted of analyzing the observable physical growth patterns of annual rings (Stokes and Smiley, 1968, 1996; Speer, 2010), limiting the proxies in which valuable data is provided. However, recent technological advances in classic dendrochronological methodologies have allowed for individual samples to be scanned at high resolution and analyzed for a number of new climate proxies. The use of specialized software has allowed for the expansion of dendrochronological studies to incorporate other tree ring parameters than tree ring width (TRW) and growth anomalies.

The use of tree ring proxies to reconstruct historical climate variability has been widely documented (Schweingruber and Briffa, 1996; D’Arrigo et al., 2006; Buckley et al., 2018). Though a variety of different proxies can be used to reconstruct climate variability, temperature reconstructions typically rely on expensive specialized equipment to determine the cell densities of individual tree ring samples. Until the turn of the $21^{\text {st }}$ century, dendroclimatological temperature reconstructions were conducted using X-ray densitometry to measure maximum latewood density (MXD) (Eschbach et al., 1995). One of the disadvantages to X-ray densitometry is high operating costs, as it requires specific machinery, software, and trained personnel to process samples. The extensive monetary resources required for this type of analysis is exclusive, as it restricts use to affluent labs; tree ring laboratories that are underfunded may be unable to perform temperature reconstructions using X-ray densitometry (Rydval et al., 2014).

Recent temperature reconstructions have been developed for much of Europe and parts
of the United States, though there are gaps in historical temperature data for much of the American Southwest (Wilson et al., 2016). Existing dendroclimatological studies spanning over the past few decades have suggested that high latitude alpine conifer chronologies of MXD have a much stronger relationship with summer temperatures than TRW-only chronologies (Wilson and Luckman, 2003; Rydval et al., 2014). As with any proxy or tree ring parameter, TRW is useful when reconstructing historic precipitation, though TRW varies based on a number of environmental variables, making it a much less reliable proxy for temperature than cell density. Recently, scientists have been performing an innovative and inexpensive method of calculating the density of tree rings. This new method of densitometry, known as blue intensity (BI) analysis, uses high-resolution scanned images of cores to quantify the blue wavelengths of light that are reflected off of lignified cell tissue.

BI analysis is conducted by measuring several values that quantify the blue wavelengths of light that are reflected and absorbed by lignified cells that make up tree growth rings. The BI parameters utilized in this study are inverted maximum latewood BI and the difference between earlywood BI and latewood BI, also known as delta-blue. Recent studies have suggested that the calculation of delta-blue in statistical testing results in a high positive correlation with the TRW series itself (Bjorklund et al., 2014; Buckley et al., 2018).

Unlike X-ray densitometry, BI analysis is much more affordable, therefore making it much more widely accessible. To process samples using BI analysis, woodworking equipment, a high-resolution scanner, and inexpensive tree ring density software are the only supplies that are needed. By producing similar results to studies utilizing X-ray densitometry, BI temperature reconstructions can be developed globally in small laboratories in far less time, with less effort, at a more reasonable cost. This technological advancement leading to
greater inclusion in tree ring research may increase more widespread interest future in dendroclimatological studies.

This study aims to determine the effectiveness of performing BI analysis at the southern range limit of Engelmann spruce (Picea engelmannii Parry ex Engelmann) and to contribute to the historical temperature data available for the American Southwest. The samples used for this study were collected from the southern extent of the Sangre de Cristo Mountains, a remote mountain range that extends from central Colorado to northern New Mexico. This mountain range comprises the southernmost sub range of the Rocky Mountains, which extends through much of western Canada and the United States. The Sangre de Cristo Mountains, in addition to being the southern range of the Rocky Mountains, are also the location of the southernmost growth limit of Engelmann spruce.

1.1 Research Questions

This study aims to answer the following questions:

- Can total ring width of Engelmann spruce be used as a predictor of historical temperature for its southern range limit in the Sangre de Cristo Mountains, NM?
- Does blue intensity analysis reveal significant correlations with instrumental temperature in Engelmann spruce growth rings at its southern range limit?

CHAPTER TWO

LITERATURE REVIEW

2.1 Temperature Reconstructions Using Tree Rings

Anthropogenic climate change has quickly become an influential topic of discussion for Earth scientists. Recent studies observing instrumental climate records have suggested that Northwestern North America has one of the highest increasing rates of recent temperatures globally (Hartmann and Welder, 2005). Instrumental climate data has a finite timescale, thus, there has been a growing interest in the use of proxy climate records to reconstruct historical fluctuations in climate. Early identification of the potential drivers of global climate change can allow for the development of policies to reduce human influence on climatic alterations.

Proxy records, such as tree rings, are interdisciplinary in nature, spanning across biological and geological sciences, and varying in spatial and temporal resolutions (Stokes and Smiley, 1968). TRW is used as a high-resolution palaeoclimate proxy for historical climate variation (Wilson et al., 2016). Due to its relatively short timescale in relation to other climate proxies such as pollen, TRW is not a useful low-resolution climate proxy. A vast majority of the temperature reconstructions for the Northern Hemisphere are developed from TRW data (D’Arrigo, et al., 2006; Frank, et al., 2007; Wilson, et al., 2016), though maximum latewood density has been shown to be a better recorder of annual summer temperatures (Wilson, et al., 2016).

Since the 1980s, notable dendroclimatologists such as Fritz Schweingruber, Keith Briffa, and Jan Esper have been developing a global network of tree ring density data (Briffa and Schweingruber, 1988, 1992; Schweingruber and Briffa, 1996; Esper et al., 2002). The
studies these scientists have conducted observe fluctuations in the MXD of growth rings of tree species that express variations in growth trends related to temperature. Specifically, studies observing MXD as a temperature proxy have found that a positive relationship exists between MXD and maximum annual summer temperature (Briffa et al., 2001, 2002). Additionally, they use specialized equipment and methodology that is both time-consuming and expensive, limiting it to laboratories with ample resources. A rise in the demand for a less costly method to measure tree ring density has surfaced in an attempt to construct a more complete record of historic temperature variability globally.

2.2 Development of Blue Intensity Analysis

Due to the high cost associated with performing X-ray densitometry to reconstruct past temperatures, scientists have been interested in developing a more practical method of determining the cell density of tree rings. The absorption of ultraviolet light by lignified cell tissue, known as ultraviolet microscopy, has long been utilized as a tree ring climate proxy (Lange 1954; Fukazawa 1992). More recently, it has been discovered that with the use of a basic optical scanner and specialized computer software, the reflectivity of certain wavelengths of the visible light spectrum can be quantified (McCarrol et al., 2002; Björklund et al., 2014). Lignified cells readily absorb wavelengths of light in the blue spectrum, thus quantifying the amount of blue light that is reflected off of tracheid cells can provide insight about the amount of lignin that is present in dense latewood bands of cell tissue. The cells of latewood band of tree rings are typically darker than its earlywood counterparts, meaning the latewood will absorb more blue light than it reflects.

Proxies that use cell density to observe past temperatures have been successfully utilized over the past several decades (Briffa et al., 1992, 2001; Schneider et al., 2015; Wilson
et al., 2016a). Maximum latewood density of annual growth rings has been recognized as a recorder of past temperature variability (Büntgen et al., 2006; Rydval et al., 2014). Several studies have utilized X-ray densitometry to measure MXD, which has been shown to have a positive relationship with maximum annual summer temperatures (McCarroll et al., 2002; Wilson and Luckman, 2003; Wilson et al., 2016a; Rydval et al., 2017). Many of these existing studies have been conducted across European and Asian countries, as well as Canada, though few have been performed in the United States. This has resulted in a lack of tree ring density data for much of North and South America, likely from the high operation costs associated with X-ray densitometry (Rydval et al., 2014).

With technological advancements in the field of dendroclimatology, the absorption of visible spectrums of light by lignified tracheid cell tissue can be quantified and compared to global temperature data. Wilson (2012) found that this value of absorption and reflectivity, known as blue intensity, has an inverse relationship with past maximum summer temperatures. By producing high-resolution scans of tree ring samples and generating the various BI parameters offered by dendro-specific software such as CooRecorder (Rydval et al., 2014) or WinDendro (Campbell et al., 2011), scientists can have a good understanding of the density associated with various sections of cells making up annual tree growth rings. Additionally, dendro-specific software allows the user to generate both BI data as well as TRW data simultaneously, making the production cost of BI time series data similar to the cost associated with the development of tree ring chronologies.

Though the BI method of generating density data is far more practical in cost and methodology that X-ray densitometry, there are some limiting factors. BI is still a new practice, with the first studies surfacing in the early 2000s (McCarroll et al., 2002; Wilson and

Luckman, 2003). The relatively young age of this type of research has resulted in a lack of BI information in several regions across the globe, most notably North America (Wilson et al., 2016a). Additionally, as with X-ray densitometry (Briffa et al., 1992), useful BI data can only be produced from temperature-sensitive conifers at mid to high latitudes and alpine environments (Wilson et al., 2017).

2.3 Engelmann Spruce

Engelmann spruce, named for physician and botanist George Engelmann, are members of the Pinaceae family, endemic to North America. Their habit is typically characterized as a larger tree, growing upwards of 60 meters tall, with a relatively dense crown dense that forms a narrow cone or spire-like shape. Engelmann spruce branches tend to exhibit horizontal spreading. The lower branches are generally persistent, as it is not a strongly self-pruning species. The bark is red to purplish-brown in color and thin and scaly. Needles are evergreen, borne singly from all sides of stout, yellow-brown twigs. Needle length ranges from $1.6-3.0 \mathrm{~cm}$ long. Needles are 4-angled, stiff, sharply pointed on the ends, and blue-green in color. Seed cones are violet to deep purple in color. Upon ripening, cones turn dull-brown, ellipsoid, and pendent, with lengths ranging from $3.0-6.0 \mathrm{~cm}$. The cone scales are relatively small, papery, and flexible, and generally remain intact after cones drop off the tree (Alexander and Shepperd 1990).

Engelmann spruce are endemically distributed from Alberta and British Columbia to the north, and southward through Nevada, Utah, and Colorado, into Arizona and New Mexico. The Sangre de Cristo Mountains are at the southernmost extent of its range. Populations further south such as populations in the Chiricahua Mountains and those down in northern Mexico are considered a subspecies (ssp. mexicana). Engelmann spruce occur in
montane and subalpine forests. Engelmann spruce and subalpine fir (Abies lasiocarpa) form one of the most common forest associations in the Rocky Mountains. With an elevation range anywhere from 1,000-3,000 meters, these trees can occur as stunted, twisted individuals at timberline, or even co-occur down into the fir-aspen belt on moist, north facing slopes and in canyons (Alexander and Shepperd 1990).

The strong shade tolerance of Engelmann spruce allows it to occur both as a persistent long-lived seral species and as a major climax species (Aplet et al. 1988; Alexander and Shepperd 1990). Engelmann spruce will grow steadily for 300 years, long after the growth of most associated tree species slows down (Aplet et al. 1988). Dominant spruces often range from 250-450 years old, and individuals 500-700 years old have been documented in The Old List (http://www.rmtrr.org/oldlist.htm). The oldest recorded specimen for this species was sampled by Brown et al. (1995) with an age of 911 years.

While open-growth trees may begin producing seed crops as early as 15 years, the best seed production for Engelmann spruce occurs between 150 and 250 years. Significant seed crops are generally born every $2-5$ years. Germination and establishment in typically occur on duff, litter, humus, decaying wood, and mounds of mineral soil upturned by wind thrown trees (Knapp and Smith 1982). Engelmann spruce seedlings do not readily establish in totally open conditions (Knapp and Smith 1982). At high elevations, 40 to 60 percent of full shade is most favorable for seedling establishment (Alexander and Shepperd 1990). Because of their slow initial root penetration and extreme sensitivity to heat in the succulent stage, spruce seedlings are often largely killed due to drought and heat girdling in their first year. Drought losses
continue to be significant for the first five years of growth for Engelmann spruce seedlings (Alexander and Shepperd 1990).

Because of having a shallow root system, Engelmann spruce is highly susceptible to windthrow. Downed wood from windthrow also makes a site vulnerable to attack from the spruce beetle, which has caused severe damage in recent years. The western spruce budworm is another potentially damaging insect that attacks both Engelmann spruce and subalpine fir. Complete removal of a spruce-fir stand by fire or logging results in such drastic environmental changes that spruce and fir are usually replaced by lodgepole pine, aspen, or shrub and grass communities (Alexander and Shepperd 1990).

CHAPTER THREE

TESTING THE EFFICACY OF BLUE INTENSITY AS A TEMPERATURE PROXY IN PICEA ENGELMANNII FROM ITS SOUTHERN RANGE LIMIT, NORTHERN NEW MEXICO, USA

3.1 Introduction

Increasing global temperatures are continually exacerbated by anthropogenic climate change. Environmental proxies that record fluctuations in historical temperature are crucial to reconstructing and understanding past climates. Currently, climate proxies that are sensitive to temperature, and therefore useful for historic temperature reconstructions, are rare in comparison to proxies used to reconstruct precipitation, drought, and other climate variables. Temperature-sensitive proxies that are currently utilized are more prevalent in mid to high latitudes and in high elevation environments (Campbell et al., 2011; Wilson et al., 2016a).

The study of tree rings to document and place some chronological context to, environmental conditions, ecological processes, and disturbances is known as dendrochronology. Dendrochronology has a number of subfields that have different foci, from dendropyrochronology, which observes historic fire occurrence, to dendroclimatology, which reconstructs historic weather and climate variables. Calendar years are assigned to individual tree growth rings, and the growth structure of each ring is analyzed to determine the environmental conditions present during the time of growth. Dendrochronological analysis can provide a detailed historical record climate that is much longer than the instrumental climate records that are available.

Dendrochronological studies provide detailed reconstructions of a number of regional historical climate variables. Studies using tree rings as a proxy for climate traditionally use visible growth trends such as total ring width (TRW) to reconstruct climate. Programs used to analyze tree ring data can observe a number of additional of additional variables. The datasets from these proxies are extracted from high-resolution scanned images of samples. Dendrospecific software such as Windendro and CooRecorder use these scanned images to delineate tree rings, crossdate samples, measure total ring width, analyze earlywood and latewood, and perform density analysis.

One of the most widely used annually-resolved proxies for climate reconstructions is dendrochronology (Esper et al., 2004). Proxies that reconstruct temperature are rare, though trees of certain species in specific environments can be used to perform these reconstructions. X-ray densitometry is a method of calculating maximum latewood density (MXD), a biological indicator of temperature (Polge 1966; Schweingruber 1988). The density of latewood bands of cells is shown to fluctuate with varying temperatures, though traditional methods of densitometry are rather expensive and required specialized equipment and training. Blue intensity (BI) analysis is a much more widely accessible and affordable method of reconstructing regional temperatures. BI records the amount of blue light that is absorbed by tracheid cells, which provides a numerical reflectivity value that expresses the lignin presence of the latewood of tree growth rings.

To date, there are still many data gaps for temperature reconstructions globally. Temperature reconstructions currently exist for many locations across Europe, as well as a few places in North America (Wilson et al., 2016; Figure 3.1). The American Southwest is one region where no temperature reconstructions have been conducted. Additionally, on a
global scale, no temperature reconstructions have been successfully completed as far south as northern New Mexico. This study aims to determine the efficacy of performing BI analysis at high-elevation mixed conifer forest ecosystems in the Sangre de Cristo Mountains of the American Southwest.

Figure 3.1: Map of the N-TREND network of tree-ring reconstructions depicting lack of North American temperature reconstruction data used in Wilson et al (2016).

3.2 Study Site

This study took place in the Sangre de Cristo Mountain range, which compose the southernmost region of the Rocky Mountains and extend from southern Colorado to northern New Mexico. The Carson National Forest, which lies within the boundaries of the Sangre de Cristo Mountains in north-central New Mexico, encompasses the field site, Wheeler Peak, located at $36^{\circ} 33^{\prime} 25^{\prime \prime} \mathrm{N} 105^{\circ} 25^{\prime} 01^{\prime \prime} \mathrm{W}$. Wheeler Peak National Wilderness is located just
outside of Taos, New Mexico in the Taos subrange of the Sangre de Cristo Mountains. Wheeler Peak National Wilderness encompasses an area of approximately 8,100 ha and ranges in elevation from 1828 m to 4011 m . The summit of Wheeler Peak sits at just over 4011 m in elevation, making it the highest point of the State of New Mexico.

In Taos County, NM, the monthly annual temperatures range from a low of $-11.8^{\circ} \mathrm{C}$ in January to a high of $30.4^{\circ} \mathrm{C}$ in July, with monthly annual precipitation ranging from 13.97 mm in February to 52.3 mm in August (NCDC 2018). The variable elevation, slope aspects, and soil types of Carson National Forest has resulted in a landscape with a mosaic of varying vegetation types. The Sangre de Cristos are a particularly structurally complex range, with igneous, metamorphic, and sedimentary rocks visibly exposed at high elevation sites (Baker 1973). The geology from the Wheeler Peak Wilderness Area primarily consists of Precambrian granite, gneiss, and migmatite (Clark and Read, 1972). Of the area composing the Carson National Forest, 87 percent fall into the classification of forested lands (Menlove 2004). This forested land is majorly composed of pinyon-juniper (Pinus edulis; Juniperus scopulorum), ponderosa pine (Pinus ponderosa), and other mixed conifer woodlands (Menlove 2004). Though only a small portion ($\sim 4 \%$) of the Carson National Forest is made up of Engelmann spruce trees, this region comprises the southern range limit of the species, making the specimens at this field site sensitive to environmental fluctuations.

Figure 3.1: Map of the study site (red circle) in the Carson National Forest of the Sangre de Cristo Mountains, New Mexico. Generated using ArcGIS.

Figure 3.2: Map showing distribution Engelmann spruce across North America. Taken from USGS on 28 March 2018.

Figure 3.3: Photograph taken from the field site at Wheeler Peak, NM by Trevis Matheus, August, 2016.

3.3 Methodology

3.3.1 Field Sampling

Increment cores were collected from a variety of ages and sizes of Engelmann spruce, further on referred to by the species code: PIEN, at the high elevation (3500 to 4000 m) mixed-conifer site. Cores were taken at breast height using a 5 mm diameter increment borer. A total of 27 increment cores were randomly sampled from 16 PIEN located at the tree line. A minimum of two cores were taken from each tree, parallel to the contour of the slope to reduce abnormalities in ring growth and to increase the likelihood of sampling as many rings between the bark and pith as possible (Tucker 1979; Speer 2010). Upon extraction, each core was labeled and placed into protective packaging for transport. Additionally, at each specimen GPS coordinates were recorded for each individual tree that was sampled.

Figure 3.4: Image taken as example of increment core extraction technique

3.3.2 Sample Preparation and Laboratory Analysis

Increment cores were prepared for analysis using the standard procedures described by Stokes and Smiley (1968; 1996). Samples were air-dried for a minimum of 24 hours. The cores were then positioned to orient the tracheid cells vertically and secured to 5.0 mm wooden mounts using Elmer's multi-purpose glue and fasteners. The mounted cores were then allowed to dry for additional 24 hours. Once the samples were dried and mounted, each sample was progressively sanded using a rotating belt sander (80 grit, 120 grit, 220 grit, 320 grit, 400 grit, 800 grit). If samples contained any noticeable scratches or blemishes from mechanical sanding, individual samples were sanded by hand during analysis using 1200-grit
sandpaper. The final hand polish removed any imperfections and provided a clearer scanned image.

Prepared increment cores were then scanned into dendro imaging software, CooRecorder. CooRecorder required initial scanner calibration to ensure accuracy of generated BI values. The color intensity values were calibrated using an IT8.7/2 calibration card developed by LaserSoft Imaging coupled with EPSON Scan 2 software and an EPSON XL 12000 scanner. The calibration card was first scanned using 1200 dpi (dots per inch) resolution and 48-bit color parameters. Using CooRecorder's calibration function and a colormetric data file calibrated specifically to the R170419 calibration card that was used, the initial image of the calibration card was visually examined to ensure that each frame was aligned with its appropriate color (Figure 3.5).

Figure 3.5: Screenshot from CooRecorder showing blue color intensity calibration card with colorimetric data file.

At this point, CooRecorder defined three corresponding color values for each frame, prompting the user to save the "calibration points" file. Coorecorder then generated a scatterplot from the calibration points file and plots them against a line of perfectly calibrated color values. If the image is calibrated correctly, most of the color intensity points will be positioned on or close to the calibrated line. If color intensity values vary from the calibration line, the image is not calibrated correctly, and depending on the value that is misplaced, lower values (darker colors) or higher values (lighter colors) may express discoloration. By generating a reasonably good calibration curve through these methods, additional calibration is not necessary, though more accurate calibration is available by using the 'Transform Current Image by Calibration' function under the 'CI-Measurements' tab. This function utilized a user-defined calibration curve to change the coloration of the image itself, therefore calibrating the image to the selected calibration curve.

Another method to ensure that each individual image is calibrated correctly is to generate 'color patches', which are printed strips of varying shades of blue used to determine the calibration of a scanned image. Blue color patches can be created a number of ways, though this study uses Adobe Illustrator to make two rectangles of shades of blue that are visibly lighter and darker from one another. These blue patches are then scanned into CooRecorder along with the IT8.7/2 calibration card. The densitometer function in CooRecorder allows the user to determine the BI value of a user-defined rectangular space. This function, when utilized with a calibrated image of the IT8.7/2 calibration card allows the user to determine the specific BI value of the color patches, which can then be scanned onto each image to ensure the BI values remain consistent for every image (Figure 3.6).

Figure 3.6: Screenshot from CooRecorder displaying blue color patches and densitometer function used for calibration.

Using an EPSON XL12000, cores were scanned with 1200 dpi (dots per inch) resolution and 48-bit color to produce high-definition imagery. The scanned images were individually loaded into CooRecorder 9.2 software for total ring width (TRW) measurement and blue intensity (BI) analysis. CooRecorder delineated growth rings to produce a visually crossdated image. Individual growth rings for each sample were measured to 0.001 mm accuracy. For increment cores from living trees, the incomplete outmost growth ring was created during the year that sampling took place. By assigning a date to the outermost ring, CooRecorder assigned a calendar year to each individual ring. BI data was calculated simultaneously to TRW by recording the reflectance value from a frame structure characterized by user-defined frame specifications. This study used a frame width of 100, a width-limiting factor of 3 , a frame position of 5, a maximum frame deepness of 500, and a relative margin (k) to next ring border. These frame specifications are based on the
specifications utilized by Rydval, et al. (2014).

Figure 3.7: Screenshot from CooRecorder displaying the ring delineation process and BI measurements

Figure 3.8: Screenshot showing the available data outputs for CooRecorder
CooRecorder has several available data outputs for BI measurements. We used the data output methods of raw latewood BI, inverted latewood BI, inverted earlywood BI, and the difference between earlywood and latewood BI (delta BI). BI values were inverted before exporting so the data could be detrended similarly to detrending methods undergone with maximum latewood density data. All exported time series data was compiled into a collection in CDendro 9.1. CDendro then took the collection of time series data and converted it to Tuscon ring width format to be detrended in ARSTAN. TRW data was crossdated to existing regional chronologies using the software COFECHA to ensure the accuracy of tree ages. In addition to statistically calculating the interseries correlation of the chronology, COFECHA
also records parameters such as average mean sensitivity and flags potential errors in the ring delineation process.

3.3.3 Statistical Analysis

The TRW and BI measurements recorded by CooRecorder in this study are processed in the program ARSTAN to detrend the age-related growth trend (Cook and Holmes, 1986) Time series data was then validated using COFECHA, a computer program designed to statistically validate tree ring time series data with existing regional chronologies (Holmes 1983; Grissino-Mayer 2001).

This study utilized a program that performs correlation tests and generates figures to determine the statistical significance of the relationship between tree ring time series data and global climate data. The Royal Netherlands Meteorological Institute (KNMI) developed the web-based application, Climate Explorer, in 1999. To this day, KNMI Climate Explorer is a database of over 10 TB of global climate data and it widely utilized by a number or scientists who work with time series data.

KNMI Climate Explorer takes the time series data that the user inputs and calculates the Pearson Correlation Coefficient between the time series data and the user-selected climate data. KNMI Climate Explorer uses gridded raster data and performs this statistical test repeatedly for every grid cell across a user-defined space. Each Person correlation coefficient value is assigned a color, with positive correlation values being represented with yellows, reds, and oranges, and negative correlation values being represented with blues. These statistical analyses can be generated for every month of the year, or specific months to determine the relationship between time series data and seasonal climate fluctuations.

For this study, we performed our statistical tests using instrumental summer temperature records provided by the Parameter-elevation Relationships on Independent Slopes Model (PRISM) surface temperature dataset, which has a 0.25° resolution for the contiguous United States and extends from 1895 to 2015.

3.4 Results

3.4.1 COFECHA

This study contributed to the chronology of PIEN sites that have been sampled in the American Southwest. The locations used for sampling are located on steep gradients and midslope. The oldest PIEN sampled during this study dates back to 1661 , with several other samples dating to the late $17^{\text {th }}$ and early $18^{\text {th }}$ centuries (Figures 3.9 and 3.10). To validate the TRW and BI data used in this study, COFECHA was used to verify our chronology to existing regional chronologies.

The PIEN chronologies developed for this study all express exceptional interseries correlation values. An interseries correlation value of 0.328 is necessary for a 99% confidence interval (Speer 2010). The TRW time series data presented an interseries correlation of 0.569 . The interseries correlation values for the other two parameter were slightly less, though still significant, with delta BI having a correlation of 0.490 and inverted latewood BI having a correlation of 0.478 .

Based on the range of acceptable mean sensitivity values for climate reconstruction, 0.1-0.4 (Speer 2010), two out of three of the time series datasets used for this study express adequate mean sensitivity, with the exception of inverted latewood BI. TRW had the highest mean sensitivity value at 0.180 , followed by delta BI at 0.129 , and, finally, inverted latewood BI at 0.037.

Figure 3.9: Spaghetti plot displaying trends in TRW for the Wheeler Peak, NM samples

Figure 3.10: Spaghetti plot displaying trends in delta BI for the Wheeler Peak, NM samples

The BI time series data that was generated from CooRecorder were plotted against one another to observe any potential existing relationships between the parameters themselves. A strong positive relationship was observed when comparing inverted latewood BI data and inverted earlywood BI data (Figure 3.11-left). This relationship suggests that greater absorption of blue light in latewood bands of cells results in a greater absorption of blue in earlywood bands of cells. Additionally, a higher density of lignified cells results in a smaller BI value, suggesting the lignin content and cell density is greater with a smaller reflectivity value. A relationship is also present between TRW data and delta BI data (Figure 3.11-right), though it is much weaker than that of inverted latewood BI and inverted earlywood BI. This relationship suggests that BI values are somewhat dependent on annual tree growth. Some outliers are present in both of the scatterplots in Figure 3.11, which may be caused by exceptionally large rings having higher reflectivity and a relatively lower cell density.

The inverted BI parameters and delta BI express similar historical variability (Figure 3.12). Additionally, the start of a growth trend is observable for each of the BI parameters, other than raw values, when nearing the $21^{\text {st }}$ century. When viewing a graph of the PRISM temperature data (Figure 3.13) used in this study, it is evident that this increase in BI follows a global temperature increase. This supports the hypothesis that inverted BI time series data from PIEN at Wheeler Peak, NM is temperature sensitive and follows similar trends as historic temperature variability over the past century.

Figure 3.11: Scatterplots showing the strong positive relationship between inverted earlywood BI and inverted latewood BI (left) and the slightly weaker positive relationship between delta BI and TRW (right)

Figure 3.12: TRW and BI parameter time series 1661-2015 CE.

Figure 3.13: PRISM temperature data centered over the study area showing positive trend over the past several decades.

3.4.2 Blue Intensity and Climate Relationships

Our Wheeler Peak, NM tree ring data expressed a statistically significant relationship between the two BI time series used in this study, delta BI and inverted maximum latewood BI, and PRISM instrumental temperature records. To determine seasonal responses in BI parameters, our time series were run against maximum and mean temperature data for August and September separately, averaged maximum and mean temperature data for August through September, and average maximum and mean temperature data for June, July, August, and September (JJAS) temperature data. The figures generated by KNMI Climate Explorer use a blue and red color scheme to display the relationship between the uploaded time series and user-defined climate data, with white showing no correlation, gradually darker blues showing stronger negative correlations, and darker shades of yellows, oranges and reds, showing stronger positive correlations.

3.4.2.1 Statistical Analysis

The correlation between the utilized BI parameters and summer temperature data is significant, expressing the most notable positive correlation in the months of August and September. Delta BI and temperature data from the previous year's May, August and September months have a strong positive correlation, with August and September temperature data having a correlation coefficient of greater than 0.25 (Figure 3.32). Correlation coefficients were also generated for current October through January and the previous year's December through March, for forty-year intervals from 1896 to 2015 (Figure 3.33), which also showed that the strongest correlation values were present in the months of August and September for all 82 intervals that were tested. Similar results were found when generating the same figures using the inverted latewood BI parameter, with the previous year's August
and September data have the highest positive correlation with inverted latewood BI time series data (Figures 3.34 and 3.35). When generating these same figures using TRW time series data (Figures 3.36 and 3.37), the signal weakens substantially, with no significant positive relationship present between TRW and any month's temperature data. This supports the hypothesis that BI is a much better predictor of historic temperature variability, as TRW is likely too heavily influenced by other environmental variables that are site-specific, such as moisture availability.

Figure 3.14: Graph showing statistically significant correlations (True) between delta BI parameter and monthly temperature data for current months (Mar-Dec) and the monthly data for the previous year (JAN-OCT).

Figure 3.15: Correlation coefficient values expressed as higher positive correlations as gradually darker blues and higher negative correlations as darker reds. Delta BI time series data ran against current year's monthly temperature data and previous year's monthly temperature data over 40 year intervals from 1896 to 2015.

Figure 3.16: Graph showing statistically significant correlations (True) between inverted latewood BI parameter and monthly temperature data for current months (Mar-Dec) and the monthly data for the previous year (JAN-

OCT).

Figure 3.17: Correlation coefficient values expressed as higher positive correlations as gradually darker blues and higher negative correlations as darker reds. Inverted latewood BI time series data ran against current year's monthly temperature data and previous year's monthly temperature data over 40 year intervals from 1896 to 2015.

Figure 3.18: Graph showing statistically significant correlations (True) between TRW and monthly temperature data for current months (Mar-Dec) and the monthly data for the previous year (JAN-OCT).

Figure 3.19: Correlation coefficient values expressed as higher positive correlations as gradually darker blues and higher negative correlations as darker reds. TRW time series data ran against current year's monthly temperature data and previous year's monthly temperature data over 40 year intervals from 1896 to 2015.

3.4.2.1 TRW vs. PRISM Summer Temperature Data

In an effort to emphasize the importance of this temperature proxy at its southern range limit, correlation values between averaged JJAS maximum temperature and TRW (Figure 3.30) and mean temperature and TRW (Figure 3.31) calculated. There is virtually no relationship identified between PRISM mean and maximum JJAS temperature data and TRW, with the exception of some areas in the American Southwest depicting slight spurious negative correlations. Though TRW has been used in existing studies as a proxy for temperature (Esper, 2002), the relationship between the temperature and TRW at Wheeler Peak, NM is nonexistent. It is expected that the lack of temperature signal with TRW is a result of the southern extent of the site, as well as the non-climatic signals produced from disturbances and stand dynamics (Buckley 2018).

Figure 3.20: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM TRW time series and maximum summer (JJAS) temperature

Figure 3.21: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM TRW time series and averaged summer (JJAS) temperature

3.4.2.2 Delta BI vs. PRISM Summer Temperature Data

When comparing delta BI to maximum summer temperatures, there is a positive correlation between the two variables, with the strongest temperature response centralized across the American Southwest. When observing the relationship between delta BI and August maximum temperature (Figure 3.14) and delta BI and September maximum temperature (Figure 3.14), the value of the Pearson correlation coefficient is the greatest in areas adjacent to the field site for August, and just north of the field site for September. If a strong correlation value is observed at or near the field site, it signifies that our tree ring time series data is in fact responding to monthly and annual temperature variability. The
temperature signal generated between maximum September (Figure 3.15) temperature and delta BI is not as strong as the relationship with maximum August temperature.

By averaging the maximum annual temperatures for the months of August and September (Figure 3.16), the climate response becomes even stronger as distance from the field site decreases, with the Pearson correlation coefficient between 0.5-0.6 at the field site and extending greater than 0.6 in central and southern Colorado. Though the signal with averaged JJAS (Figure 3.17) maximum temperature is not as prominent, there is still a statistically significant relationship between delta BI and averaged summer maximum temperatures. The temperature response is also not as fixated over the field site, though correlation values of >0.3 are observed across much of the American Southwest.

Figure 3.22: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM maximum August temperature

Figure 3.23: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM maximum September temperature

Figure 3.24: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged maximum August-September temperature

Figure 3.25: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged maximum summer (JJAS) temperature

In addition to determining the relationship between maximum temperatures, we also generated results for each tree ring parameter with averaged monthly temperatures. The results from using averaged monthly temperatures were less significant than maximum temperatures, though a temperature response does exist. The output for mean August temperature (Figure 3.18) shows correlation values between 0.2 and 0.3 across New Mexico, southern Colorado, and central Texas, with a few patches of values in excess of 0.3 in northern New Mexico and southern Colorado. Mean September (Figure 3.19) temperatures show a stronger relationship with delta BI at the field site. Most of the areas expressing higher
correlations (0.3-0.4) are located at or near the field site, suggesting that the relationship between delta BI at Wheeler Peak, NM and annual average summer temperatures is positive.

As with delta BI and maximum temperature, when the mean temperatures for August and September (Figure 3.20) are averaged and processed by KNMI Climate Explorer, the temperature signal increases drastically. The signal over the field site and in central Colorado increases to between 0.3 and 0.4 , and the signal for northeastern New Mexico, southeastern Colorado, and Texas increases from between 0.2 and 0.3 to between 0.3 and 0.4. The area comprising correlation values between 0.2 and 0.3 stays relatively consistent, with the aforementioned regions experiencing an increased positive relationship. The mean temperature signal expresses a consistent decline when June, July, August and September (Figure 3.21) temperature data is added, similar to the weakened signal of maximum JJAS averaged temperature. The strong positive temperature signal seen in Figure 3.18 shifts to the East, expressing little to no correlation with the field site, though there is still a positive regional signal across much of the American Southwest.

Figure 3.26: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM mean August temperature

Figure 3.27: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM mean September temperature

Figure 3.28: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged mean August and September temperature

Figure 3.29: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM delta BI time series and PRISM averaged mean summer (JJAS) temperature

3.4.2.3 Inverted Latewood BI vs. PRISM Summer Temperature Data

A second BI proxy is utilized in this study to determine if other reflectance values express any significant relationships between temperature and BI. CooRecorder 9.2 offers a number of different data output options, including latewood, earlywood, or full-ring, and raw values, inverted values, and difference between earlywood and latewood BI, or delta BI. We used inverted latewood BI as a second parameter, as maximum latewood blue reflectance values have been shown to produce an annual temperature signal similar to maximum latewood density (Björklund 2014).

The relationship between inverted latewood BI and maximum August (Figure 3.22) temperature is strong, expressing correlation coefficients of 0.2 to 0.5 across many of the Southwestern states. The strongest recorded correlation was observed directly over Wheeler Peak, with a value of 0.4 to 0.5 . A majority of the area of New Mexico and Texas show a statistically significant correlation, and roughly half of Colorado expresses significant correlation.

By averaging August and September (Figure 3.24) temperature data, the positive correlation is shifted back to the west, with a strong correlation of 0.4 to 0.5 at the study site. When observing the relationship, the inverted latewood BI has with averaged maximum JJAS (Figure 3.25) temperature, it is evident that the signal is still present, though it is weaker than the signal for averaged August and September temperature alone.

Figure 3.30: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM maximum August temperature

Figure 3.31: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM maximum September temperature

Figure 3.32: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged maximum August-September temperature

Figure 3.33: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged maximum summer (JJAS) temperature

When observing the relationship between mean PRISM data and inverted latewood BI, it was evident that a signal between the two parameters exists. For August (Figure 3.26) temperature data, the signal is rather weak across the American Southwest, though patches of significant correlation values are still present. A small patch with a correlation value of 0.3 to 0.4 falls directly over the site as well as southern Colorado. The temperature signal for September (Figure 3.27) was much stronger and more widespread, with correlation coefficients of 0.3 to 0.4 directly over the study site as well as central Colorado and parts of Texas. When running inverted latewood BI against averaged August and September (Figure 3.28) mean summer temperature, the positive correlation is strengthened and more centralized
around the study site. At Wheeler Peak, the positive correlation is the highest that is visible, with a correlation coefficient of 0.4 to 0.5 .

Figure 3.34: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM mean August temperature

Figure 3.35: KNMI Climate Explorer output displaying correlations between Wheeler Peak, NM inverted latewood BI time series and PRISM mean September temperature

Figure 3.36: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged mean August and September temperature

Figure 3.37: KNMI Climate Explorer output displaying correlation between Wheeler Peak, NM inverted latewood BI time series and PRISM averaged mean summer (JJAS) temperature

By observing these parameters, we are able to determine which of the tree ring proxies that are used in this study provide the strongest signal for historic temperature. The signal between delta BI and averaged August and September maximum temperatures is much stronger than the temperature signal between TRW and averaged August and September maximum temperature (Figure 3.28). This strong correlation between temperature and delta BI at the field site suggests that BI parameters, specifically delta BI, would be a much more effective predictor of historical temperature variability than TRW.

Figure 3.38: KNMI Climate Explorer outputs comparing correlations between delta BI (left) and TRW (right) parameters against averaged August and September maximum temperature

3.5 Discussion

The use of Engelmann spruce for this study allows for the investigation of the variability in historical temperature at Wheeler Peak and the surrounding region. These trees provide exceptionally useful data given that they are located at high latitude and in an alpine environment. Other studies have used different temperature-sensitive tree species, such as Scots pine (Pinus sylvestris L.) (McCarroll et al., 2010; Campbell et al., 2011; Wilson et al.,
2012), Fujian Cypress (Fokienia hodginsii) (Buckley et al., 2018), and bristlecone pine (Pinus aristata) (Salzer et al., 2005), in their reconstructions of historical temperature variability. Previous studies have used networks of tree ring chronologies as well as several different temperature sensitive tree ring parameters including BI, MXD, and TRW (Trouet, et al., 2013; Wilson et al., 2014). These studies had comparable results, finding statistically significant correlations for all of the observed tree ring parameters, though Wilson (2014) found that MXD had a much stronger temperature signal than BI and TRW, which had similar correlations to CRUTS. 3 gridded climate data. However, these results deviate from the finding of our study, as we found that TRW expressed no statistically significant correlation at the field site, whereas BI had strong statistical significance. Additionally, studies using BI to reconstruct temperature in North America experience shortcomings resulting from the relatively short instrumental temperature record in comparison to locations in Europe that have much longer instrumental records.

The methods utilized in this study are comparable to several temperature reconstructions developed over the past several decades. One of the most notable similarities between my results and published studies is the expression of a $20^{\text {th }}$ century warming trend in BI and MXD time series (Salzar et al., 2005; D’Arrigo et al., 2006; McCarroll et al., 2010; Trouet et al., 2013). D’Arrigo et al. (2006) identify the decades that express the warmest reconstructed temperatures, all of which are in the twentieth century in their study as well as four other studies that have been conducted between 1998 and 2005.

In addition to $20^{\text {th }}$ century warming, several existing studies also describe the strongest correlations between BI and MXD time series and gridded temperature data existing during the August and September months (Briffa et al., 2002; Campbell et al., 2011; Buckley et al.,
2018). As the PIEN we sampled express variation in their growth patterns resulting from temperature variability, it is likely that the strongest correlation between BI parameters and instrumental temperature data is during this time due to these months generally experiencing the highest annual temperatures. The studies mentioned previously also use temperaturesensitive tree species in their reconstructions, though PIEN is not the focus species for all of them.

Though Campbell et al. (2011) use slightly different methodologies such as using WinDendro rather than CooRecorder and use a process to remove resinous extractives, they still find that the comparisons between the results derived from MXD and BI data are numerous. The resin removal method utilized by Campbell et al. was experimental, allowing samples to soak in ethanol for different amounts of time before analysis. Samples that have been soaked in ethanol for 30 to 40 hours were found to produce BI results most similar to MXD results, suggesting that, had our samples been soaked in ethanol for this time, our results may have benefited from the samples undergoing the resin removal process. Though resin removal was not utilized in our study, significant correlations between temperature and BI data were still evident.

Wilson et al. $(2014,2016 a)$ suggest that BI studies have a minimum of fourteen series to construct a chronology with an acceptable sample depth. This requirement is much larger than the minimum series depth of eight required by studies using MXD-only chronologies, though the production cost and time required by BI studies are much less. Our study met this threshold and produced results that are comparable to the studies of Wilson et al. (2014, 2016a) Though this minimum requirement of fourteen series has been shown to produce ideal results when reconstructing temperature using BI, several other studies used samples from
twenty or more trees (Babst et al., 2009; Bjorklund et al., 2014; Buckley et al., 2018), suggesting that our study may have benefitted from having a larger sample depth.

Ultimately, we found that there is a clear shift in the growth response of Engelmann spruce at the study site when observing the delta BI dataset. For a majority of the duration of the instrumental temperature record (1895-2003), a positive correlation is present between the delta BI time series and the current year's August and September temperature data. At the turn of the $21^{\text {st }}$ century, this positive correlation with the current year's summer temperatures turns to a negative correlation with the previous year's April-July temperatures, suggesting that the trees at Wheeler Peak, NM are having a negative response to growth stresses occurring in the year prior to ring formation. Additionally, when observing trends both the instrumental temperature data and BI time series, there is a noticeable uptick that occurs near the start of the $21^{\text {st }}$ century, which denotes a warming trend in each dataset. This finding is similar to the growth response to atmospheric warming mentioned in Saladyga and Maxwell's (2015) study looking at climate responses of Eastern hemlock (Tsuga canadensis) in West Virginia, as well as Grissino-Mayer et al.'s (2005) study observing the climate response of ponderosa pine growth.

CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

Tree ring proxies have been used for the past century to reconstruct historic climatological conditions that extend past instrumental climate data. Tree ring chronologies developed globally have been valid for a number of species that are sensitive to changing climate. Alpine tree species that are common at high latitudes have been shown to express reliable climate signals based on a number of different growth parameters. The different time series data recorded from trees that were sampled for this study was successfully crossdated. This allowed us to validate the identity of the age and associated BI parameters of the Engelmann spruce trees located at Wheeler Peak, NM. The Wheeler Peak chronology extends back to 1661 , with a majority of the sample depth extending back to the 1800 s.

Statistical correlation outputs were derived from each of the BI parameters that were recorded from CooRecorder 9.2. The strongest recorded relationship between a BI parameter and temperature data at the site was with delta BI and averaged August and September maximum temperature. The time series data for each tree ring parameter, delta BI, latewood inverted BI, and TRW, were compared to PRISM temperature data. It was found that a statistically significant relationship exists between maximum and mean summer temperatures and the delta BI and inverted latewood BI parameters at Wheeler Peak, NM as well as regionally across the Midwestern and Southwestern United States.

A warming trend at the turn of the $21^{\text {st }}$ century was present in both the instrumental temperature data as well as the delta BI time series data. This trend was denoted by statistically significant positive correlations for a majority of the duration of the instrumental temperature data followed by the presence of a statistically significant negative correlation
around the year 2003. The trees at the study site were initially producing a positive growth response to the current year's summer temperature, but, due to growth stresses, started expressing a negative growth response to the previous year's summer temperature.

This study has contributed to the consistently growing database of tree ring data for the American Southwest, and has provided useful information on the methods of BI analysis. In the literature, there were potential sources of error that can alter the results of BI analysis, thus, this study can be broadened to test these methods. Rydval (2014) mentions the treatment of samples by soaking them in acetone for varying amount of time can alter the reflectance values by removing any extractives that may be contained in the sample.

To further this study in the future, it would be beneficial to sample from multiple sites in the same region. Two other potential high-elevation PIEN field sites that could strengthen the results of this study are San Leonardo Lakes, NM and Jicarita Peak, NM, both of which are located in the Pecos Wilderness of northern New Mexico. Also, sampling high-elevation sites further south to determine the range that BI studies produce effective results would be valuable. This research adds to the existing global network of BI data, while also targeting an area where no BI data is currently available. By expanding BI research to more locations in the American Southwest where BI data is scarce, there will be further validation of BI methods and the development of laboratories that are able to perform BI analysis.

REFERENCES

Alexander, R.R., W.D. Shepperd 1990. Picea engelmannii. Pp. 187-203, IN R.M. Burns and B.H. Honkala. Silvics of North America. Volume 1. Conifers. USDA Forest Service Agric. Handbook 654, Washington, D.C.

Anchukaitis, K. J., R. D. D'Arrigo, L. Andreu-Hayles, D. Frank, A. Verstege, A. Curtis, B. M. Buckley, G. C. Jacoby, and E. R. Cook. 2013. Tree-Ring-Reconstructed Summer Temperatures from Northwestern North America during the Last Nine Centuries*. Journal of Climate 26 (10):3001-3012.

Anchukaitis, K., R. Wilson, K. Briffa, U. Büntgen, E. Cook, R. D'Arrigo, N. Davi, J. Esper, D. Frank, B. Gunnarson, G. Hegerl, S. Helama, S. Klesse, P. Krusic, H. Linderholm, V. Myglan, T. Osborn, P. Zhang, M. Rydval, L. Schneider, A. Schurer, G. Wiles, and E. Zorita. 2017. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews 163:1-22.

Babst, F., Frank, D., Buntgen, U., Nievergelt, D., Esper, J., 2009. Effect of sample prepa- ration and scanning resolution on the Blue Reflectance of Picea abies. In: TRACE - Tree Rings in Archeology, Climatology and Ecology, Scientific Technical Report: 09, pp. 189-195.

Baker, W.L.1983. Alpine Vegetation of Wheeler Peak, New Mexico, U.S.A.: Gradient Analysis, Classification, and Biogeography, Arctic and Alpine Research 15 (2):223-240.

Björklund, J. A., B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm. 2014. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past 10 (2):877-885.

Briffa, K. R., and F. H. Schweingruber. 1988. Summer temperature patterns over Europe: a reconstruction from 1750 A.D. Based on maximum latewood density indices of conifers. San Diego, CA: Academic Press Inc Elseiver Science.

Briffa, K. R., P. D. Jones, and F. H. Schweingruber. 1992. Tree-Ring Density Reconstructions of Summer Temperature Patterns across Western North America since 1600. Journal of Climate 5 (7):735-754.

Briffa, K.R., Jones, P.D., Schweingruber, F.H. and Osborn, T.J., 1998. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years Nature 393 (6684):450.

Briffa, K. R., T. J. Osborn, F. H. Schweingruber, I. C. Harris, P. D. Jones, S. G. Shiyatov, and E. A. Vaganov. 2001. Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research: Atmospheres 106 (D3):2929-2941.

Briffa, K. R., T. J. Osborn, F. H. Schweingruber, P. D. Jones, S. G. Shiyatov, and E. A. Vaganov. 2002. Tree-ring width and density data around the Northern Hemisphere: Part 1, local and
regional climate signals. The Holocene 12 (6):737-757.
Brown, P. M., W. D. Shepperd, C. C. Brown, S. A. Mata, and D. L. Mcclain. 1995. Oldest known Engelmann spruce.

Buckley, B. M., K. G. Hansen, K. L. Griffin, S. Schmiege, R. Oelkers, R. D. D’Arrigo, D. K. Stahle, N. Davi, T. Q. T. Nguyen, C. N. Le, and R. J. Wilson. 2018. Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia 50:10-22.

Büntgen, U., D. C. Frank, D. Nievergelt, and J. Esper. 2006. Summer Temperature Variations in the European Alps,a.d.755-2004. Journal of Climate 19 (21):5606-5623.

Campbell, R., D. Mccarroll, N. J. Loader, H. Grudd, I. Robertson, and R. Jalkanen. 2007. Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. The Holocene 17 (6):821-828

Campbell, R., D. Mccarroll, I. Robertson, N. J. Loader, H. Grudd, and B. Gunnarson. 2011. Blue Intensity In Pinus sylvestris Tree Rings: A Manual for A New Palaeoclimate Proxy. TreeRing Research 67 (2):127-134.

Clark, K. F., Read, C. B., 1972. Geology and ore deposits of Eagle Nest area, New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin 94: 152.

Cook, E.R., Holmes, R.L., 1986. Users manual for program ARSTAN. In: Holmes, R.L., Adams, R.K., Fritts, H.C. (Eds.), Tree-Ring Chronologies of Western North America. University of Arizona, Tucson, pp. 50-65.

D'Arrigo, R., R. Wilson, and G. Jacoby. 2006. On the long-term context for late twentieth century warming. Journal of Geophysical Research 111 (D3).

Esper, J. 2002. Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability. Science 295 (5563):2250-2253.

Esper, J., F. H. Schweingruber, and M. Winiger. 2002. 1300 years of climatic history for Western Central Asia inferred from tree-rings. The Holocene 12 (3):267-277.

Eschbach, W., P. Nogler, E. Schär, and F. H. Schweingruber, 1995: Technical advances in the radiodensitometrical determination of wood density. Dendrochronologia, 13, 155-168.

Fukazawa, K., 1992. Ultraviolet microscopy. In: Lin, S.Y., Dence, C.W. (Eds.), Methods in Lignin Chemistry. Springer, Berlin, Heidelberg, pp. 110-121.

Grissino-Mayer, H. D. 2001. Evaluating crossdating accuracy: a manual for the program COFECHA. Tree-Ring Research 57, 205-219.

Grissino-Mayer, H. 2003. A manual and tutorial for the proper use of an increment borer. Tree Ring Research, 59 (2), 63-79.

Grissino-Mayer, H., A. Bhuta, M. Crist, J. Doerner, C. Gentry, S. Green, J. Hart, L. Herman, S. Kaplan, R. Keim, E. Larson, D. Mann, W. McCaughey, M. Reddish, S. Stanton, C. Welsh, and D. Wilkins. 2005. Response of Ponderosa Pine to Variable Temporal Scale Environmental Processes, French Creek Drainage, Idaho. 15th Annual North American Dendroecological Fieldweek (NADEF) Final Report.

Holmes, R. L. 1983. Computer assisted quality control in tree-ring dating and measurement. TreeRing Bulletin 43, 69-78.

Hughes, M.K. and Graumlich, L.J., 1996. Multimillennial dendroclimatic studies from the western United States. In Climatic Variations and Forcing Mechanisms of the Last 2000 Years, 109124. Springer, Berlin, Heidelberg.

Knapp, A. K., Smith, W. K. 1982. Factors influencing understory seedling establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southeast Wyoming. Canadian Journal of Botany 60 (12): 2753-2761.

LaMarche Jr, V.C. and Stockton, C.W., 1974. Chronologies from termperature-sensitive bristlecone pines at upper treeline in Western United States. Tree-Ring Bulletin.

Lange, P.W., 1954. The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods. Sven. Papperstidn. 57, 525-532.

Mccarroll, D., E. Pettigrew, A. Luckman, F. Guibal, and J.-L. Edouard. 2002. Blue Reflectance Provides a Surrogate for Latewood Density of High-Latitude Pine Tree Rings. Arctic, Antarctic, and Alpine Research 34 (4):450.

Mccarroll, D., M. Tuovinen, R. Campbell, M. Gagen, H. Grudd, R. Jalkanen, N. J. Loader, and I. Robertson. 2010. A critical evaluation of multi-proxy dendroclimatology in northern Finland. Journal of Quaternary Science 26 (1):7-14.

Menlove, Jim. 2004. Forest Resources of the Carson National Forest. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 16 p.

NCDC. 2018. NOAA Station ID \#USC00298668. Downloaded from National Climatic Data Center, National Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov/cog/). Last accessed: May 2018.

O'Brien, Renee A. 2003. New Mexico's Forest Resources, 2000. Resour. Bull. RMRS-RB-3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 117 p.

Rydval, M., L. Larsson, L. McGlynn, B.E. Gunnarson, N.J. Loader, G.H.F. Young, and R. Wilson.
2014. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32, 191-204.

Rydval, M., B. E. Gunnarson, N. J. Loader, E. R. Cook, D. L. Druckenbrod, and R. Wilson. 2016. Spatial reconstruction of Scottish summer temperatures from tree rings. International Journal of Climatology 37 (3):1540-1556.

Rydval, M., N. J. Loader, B. E. Gunnarson, D. L. Druckenbrod, H. W. Linderholm, S. G. Moreton, C. V. Wood, and R. Wilson. 2017. Reconstructing 800 years of summer temperatures in Scotland from tree rings. Climate Dynamics 49 (9-10):2951-2974.

Saladyga, T., and R. S. Maxwell. 2015. Temporal Variability in Climate Response of Eastern Hemlock in the Central Appalachian Region. Southeastern Geographer 55 (2):143-163.

Salzer, M.W. and Kipfmueller, K.F., 2005. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, USA. Climatic Change, 70(3):465-487.

Schneider, L., J. E. Smerdon, U. Büntgen, R. J. S. Wilson, V. S. Myglan, A. V. Kirdyanov, and J. Esper. 2015. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophysical Research Letters 42 (11):4556-4562.

Schweingruber, F. H., K. R. Briffa, and P. D. Jones. 1991. Yearly maps of summer temperatures in Western-Europe from AD 1750 to AD 1975 and Western-North America from 1600 to 1982results of a results of a radial densitometrical study on tree rings. Vegetatio 92 (1):5-71.

Schweingruber, F. H., and K. R. Briffa. 1996. Tree-Ring Density Networks for Climate Reconstruction. Climatic Variations and Forcing Mechanisms of the Last 2000 Years :43-66.

Sheppard, P.R., Comrie, A.C., Packin, G.D., Angersbach, K. and Hughes, M.K., 2002. The climate of the US Southwest. Climate Research 21 (3):219-238.

Speer, J., 2010. Fundamentals of tree-ring research. University of Arizona Press.
Stoffel, M., M. Khodri, C. Corona, S. Guillet, V. Poulain, S. Bekki, J. Guiot, B. H. Luckman, C. Oppenheimer, N. Lebas, M. Beniston, and V. Masson-Delmotte. 2015. Estimates of volcanicinduced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience 8 (10):784-788.

Stokes, M.A., and T.L. Smiley. 1968. An introduction to tree-ring dating. Chicago, IL: University of Chicago Press.

Stokes, M. A., and T. L. Smiley. 1996. An introduction to tree-ring dating. Tucson, AZ: University of Arizona Press.

Trouet, V., H. F. Diaz, E. R. Wahl, A. E. Viau, R. Graham, N. Graham, and E. R. Cook. 2013. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environmental Research Letters 8 (2):024008.

Tucker, J. J. 1979. Estimation of Tree Age Using the Increment Borer. Arboricultural Journal 3 (7):527-531.

Wahl, E.R., Anderson, D.M., Bauer, B.A., Buckner, R., Gille, E.P., Gross, W.S., Hartman, M. and Shah, A., 2010. An archive of high-resolution temperature reconstructions over the past $2+$ millennia. Geochemistry, Geophysics, Geosystems, 11(1).

Wahl, E.R., Diaz, H.F. and Ohlwein, C., 2012. A pollen-based reconstruction of summer temperature in central North America and implications for circulation patterns during medieval times. Global and Planetary Change, 84, pp.66-74.

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416 (6879):389-395.

Wilson, R. J. S., and B. H. Luckman. 2003. Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada. The Holocene 13 (6):851-861.

Wilson, R., D’Arrigo, R, Buckley, B. 2007. A matter of divergence - Tracking recent warming at hemispheric scales using tree-ring data. Journal of Geophysical Research: Atmospheres 112: D17103.

Wilson, R., N. Loader, M. Rydval, H. Patton, A. Frith, C. Mills, A. Crone, C. Edwards, L. Larsson, and B. Gunnarson. 2012. Reconstructing Holocene climate from tree rings: The potential for a long chronology from the Scottish Highlands. The Holocene 22 (1):3-11.

Wilson, R., R. Rao, M. Rydval, C. Wood, L.-Å. Larsson, and B. H. Luckman. 2014. Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. The Holocene 24 (11):1428-1438.

Wilson, R., K. Anchukaitis, K. R. Briffa, U. Büntgen, E. Cook, R. Darrigo, N. Davi, J. Esper, D. Frank, B. Gunnarson, G. Hegerl, S. Helama, S. Klesse, P. J. Krusic, H. W. Linderholm, V. Myglan, T. J. Osborn, M. Rydval, L. Schneider, A. Schurer, G. Wiles, P. Zhang, and E. Zorita. 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews 134:1-18.

Wilson, R., D. Wilson, M. Rydval, A. Crone, U. Büntgen, S. Clark, J. Ehmer, E. Forbes, M. Fuentes, B. E. Gunnarson, H. W. Linderholm, K. Nicolussi, C. Wood, and C. Mills. 2016. Facilitating tree-ring dating of historic conifer timbers using Blue Intensity. Journal of Archaeological Science 78:99-111.

Yanosky, T. M., and C. J. Robinove. 1986. Digital image measurement of the area and anatomical structure of tree rings. Canadian Journal of Botany 64 (12):2896-2902.

Yanosky, T.M., Robinove, C.J., Clark, R.G., 1987. Progress in the image analysis of tree rings. In:

Jacoby, G.C., Hornbeck, J.W. (Eds.), Proceedings, International Symposium on Ecological aspects of Tree-Ring Analysis. National Technical Information Service, Springfield, Virginia, pp. 658-665.

APPENDIX 1: Wheeler Peak, NM tree ring width COFECHA output

Dendrochronology Program Library Pun ZZ Program COF 17:54 Mon 28 May 2018 Page 1

[^0]QUALITY CONTROL AND DATING CHECK OF TREE-RING MEASUREMENTS
File of DATED series: wle_trw.rwl

CONTENTS:
Part 1: Title page, options selected, summary, absent rings by series Part 2: Histogram of time spans
Part 3: Master series with sample depth and absent rings by year Part 4: Bar plot of Master Dating Series
Part 5: Correlation by segment of each series with Master
Part 6: Potential problems: low correlation, divergent year-to-year changes, absent rings, outliers Part 7: Descriptive statistics

RUN CONTROL OPTIONS SELECTED
VALUE
1 Cubic smoothing spline 50% wavelength cutoff for filtering 32 years
2 Segments examined are
50 years lagged successively by 25 years
3 Autoregressive model applied
A R
Seri Autoregressive model applied
A Residuals are used in master dating series and testing
4 Series transformed to logarithms
5 CORRELATION is Pearson (parametric, quantitative)
Critical correlation, 99\% confidence level. 3281
6 Master dating series saved
N
7 Ring measurements listed
N
8 Parts printed
1234567
9 Absent rings are omitted from master series and segment correlations (Y)
$\begin{array}{llllll}\text { Time span of Master dating series is } & 1661 \text { to } & 2016 & 356 & \text { years } \\ \text { Continuous time span is } & 1661 \text { to } & 2016 & 356 \text { years }\end{array}$
Portion with two or more series is $\quad 1692$ to $2016 \quad 325$ years
>> WLE10A_I 2005 absent in 1 of 23 series, but is not usually narrow: master index is -.258

C* Number of dated series $23{ }^{*} \mathrm{C}^{*}$
O Master series 16612016356 yrs *O*
F Total rings in all series 4992 *F*
E Total dated rings checked 4961 *E*
C Series intercorrelation . 569 *C*
H Average mean sensitivity . 180 * H^{*}

			1707	-. 929	3	1757	. 527	6	1807	2.442	11	1857	-. 525	18	1907	. 567	22
			1708	-1.041	3	1758	1.134	6	1808	-. 335	11	1858	. 330	18	1908	-. 531	22
			1709	. 888	3	1759	. 475	6	1809	. 609	11	1859	. 348	18	1909	. 180	22
			1710	. 386	3	1760	. 147	6	1810	-. 132	11	1860	-. 459	18	1910	-. 830	22
1661	. 096	1	1711	1.191	3	1761	-. 495	6	1811	-. 206	11	1861	. 154	18	1911	. 073	22
1662	-. 358	1	1712	1.688	3	1762	2.577	6	1812	-. 375	11	1862	1.344	18	1912	1.039	22
1663	1.709	1	1713	1.448	3	1763	. 057	6	1813	. 299	11	1863	. 552	18	1913	. 779	22
1664	-1.245	1	1714	-1.260	3	1764	. 466	6	1814	. 478	11	1864	. 146	18	1914	. 079	22
1665	2.756	1	1715	-2.643	3	1765	-. 697	6	1815	1.027	12	1865	-. 350	18	1915	. 015	22
1666	. 674	1	1716	-1.307	3	1766	-. 548	6	1816	. 270	12	1866	. 248	18	1916	. 825	22
1667	-2.196	1	1717	. 835	3	1767	. 589	6	1817	. 338	12	1867	1.746	18	1917	1.739	22
1668	-. 574	1	1718	. 479	3	1768	2.066	6	1818	-1.375	12	1868	. 295	19	1918	. 526	22
1669	-1.289	1	1719	-. 947	3	1769	. 990	6	1819	-. 197	12	1869	. 742	19	1919	-. 368	22
1670	-2.497	1	1720	-. 922	3	1770	. 575	6	1820	. 208	12	1870	-. 432	20	1920	-1.867	22
1671	-. 279	1	1721	-1.662	3	1771	-. 270	6	1821	1.563	14	1871	-. 054	20	1921	-1.217	22
1672	-. 510	1	1722	-1.164	4	1772	-. 042	6	1822	-. 903	15	1872	-. 676	20	1922	-. 291	22
1673	. 708	1	1723	. 421	4	1773	-1.259	6	1823	-1.397	15	1873	-. 760	20	1923	-. 751	22
1674	. 356	1	1724	. 998	4	1774	. 045	6	1824	-. 453	15	1874	1.256	20	1924	1.106	22
1675	. 175	1	1725	-. 534	6	1775	. 409	6	1825	-. 413	15	1875	. 521	20	1925	. 439	22
1676	-. 225	1	1726	. 318	6	1776	-1.255	6	1826	-. 025	15	1876	1.062	20	1926	. 375	22
1677	-. 099	1	1727	. 124	6	1777	-1.851	6	1827	. 138	15	1877	. 014	20	1927	. 438	22
1678	1.593	1	1728	-1.013	6	1778	-1.680	6	1828	-. 254	15	1878	-. 231	20	1928	-. 614	22
1679	1.474	1	1729	-. 254	6	1779	-. 633	6	1829	. 474	16	1879	-1.703	20	1929	. 231	22
1680	. 585	1	1730	. 896	6	1780	-. 372	6	1830	-. 681	16	1880	-1.147	20	1930	. 017	22
1681	2.098	1	1731	. 744	6	1781	-1.960	6	1831	-. 137	16	1881	. 477	20	1931	-. 138	22
1682	1.170	1	1732	1.028	6	1782	-. 971	6	1832	. 109	16	1882	-1.559	20	1932	. 668	22
1683	-. 241	1	1733	-. 411	6	1783	-. 647	6	1833	1.060	16	1883	-1.034	20	1933	-. 201	22
1684	-4.013	1	1734	-. 945	6	1784	-. 104	6	1834	. 313	17	1884	-1.180	20	1934	-1.068	23
1685	-4.122	1	1735	-. 741	6	1785	-. 213	7	1835	. 249	17	1885	. 560	21	1935	-. 125	23
1686	. 114	1	1736	. 574	6	1786	. 372	7	1836	. 385	17	1886	1.228	22	1936	. 264	23
1687	-. 321	1	1737	-1.248	6	1787	. 561	9	1837	1.291	18	1887	. 370	22	1937	-. 575	23
1688	1.373	1	1738	. 104	6	1788	. 891	9	1838	. 437	18	1888	1.042	22	1938	-. 002	23
1689	. 863	1	1739	. 248	6	1789	1.313	9	1839	. 472	18	1889	. 952	22	1939	-. 343	23
1690	. 850	1	1740	. 401	6	1790	. 347	9	1840	. 582	18	1890	. 443	22	1940	-. 494	23
1691	2.261	1	1741	. 841	6	1791	. 551	9	1841	-. 630	18	1891	. 560	22	1941	. 329	23
1692	. 315	2	1742	. 450	6	1792	1.006	9	1842	-. 812	18	1892	. 703	22	1942	. 502	23
1693	. 234	2	1743	-. 134	6	1793	. 014	9	1843	. 030	18	1893	-1.764	22	1943	. 913	23
1694	-1.281	2	1744	. 860	6	1794	. 573	9	1844	-. 279	18	1894	-. 238	22	1944	1.093	23
1695	. 020	2	1745	1.944	6	1795	-1.089	9	1845	-1.555	18	1895	. 884	22	1945	1.357	23
1696	-1.560	2	1746	. 118	6	1796	-. 342	10	1846	-1.737	18	1896	-1.144	22	1946	-. 435	23
1697	. 395	2	1747	1.437	6	1797	. 008	10	1847	-1.011	18	1897	-. 119	22	1947	1.318	23
1698	2.316	2	1748	-2.945	6	1798	-. 224	11	1848	-. 343	18	1898	. 755	22	1948	. 666	23
1699	-. 212	3	1749	-. 342	6	1799	-. 222	11	1849	-. 385	18	1899	-1.333	22	1949	. 183	23

PART 3: Master Dating Series:
17:54 Mon 28 May 2018 Page

Year	Value	No Ab		Year	Value	No	Ab
1950	-. 627	23		2000	. 387		3
1951	1.443	23		2001	. 329		3
1952	-2.582	23		2002	-. 121		3
1953	. 294	23		2003	-2.763		3
1954	4.072	23		2004	-1.810		
1955	-. 376	23		2005	-. 258	23	1<<
1956	-1.397	23		2006 -	-1.084	23	1
1957	-2.239	23		2007	-. 965		3
1958	- . 890	23		2008	. 729		3
1959	- -.834	23		2009	1.353		3
1960	- . 088	23		2010	. 720		3
1961	-. 098	23		2011	. 785		3
1962	. 295	23		2012	. 686		
1963	-. 363	23		2013	1.245		3
1964	$4-.960$	- 23		2014	-. 184		
1965	5.094	23		2015	5.199		
1966	1.323	23		2016	-1.170		
		1967	-. 086	8623			
		1968		5723			
		1969	2.419	1923			
		1970	1.437	3723			
		1971	-. 335	335			
		1972	-. 104	0423			
		1973	. 005	0523			
		1974		5923			
		1975		5123			
		1976		0223			
		1977	-. 427	2723			
		1978	-. 574	7423			
		1979		334			
		1980		8723			
		1981	-1.736	3623			
		1982	-. 554	5423			
		1983	-. 607	0723			
		1984	-. 204	2423			
		1985	-. 245	4523			
		1986	-. 492	923			
		1987	-. 993	9323			
		1988	-1.677	67723			
		1989	-. 180	8023			
		1990	. 716	1623			
		1991		50 23			
		1992	. 234	3423			
		1993	1.521	2123			

Correlations of 50 -year dated segments, lagged 25 years
Flags: $A=$ correlation under .3281 but highest as dated; $B=$ correlation higher at other than dated position

PART 6: POTENTIAL PROBLEMS:
17:54 Mon 28 May 2018 Page 6

For each series with potential problems the following diagnostics may appear:
[A] Correlations with master dating series of flagged 50 -year segments of series filtered with $32-y e a r$ spline,
at every point from ten years earlier (-10) to ten years later (+10) than dated
[B] Effect of those data values which most lower or raise correlation with master series Symbol following year indicates value in series is greater (>) or lesser (<) than master series value
[C] Year-to-year changes very different from the mean change in other series
[D] Absent rings (zero values)
[E] Values which are statistical outliers from mean for the year

			Entire se		rrelation (7)						
Lower	1851> -. 022	1891<-. 020	1889<-. 019	$\begin{aligned} & 1927<-.019 \\ & 1821 \text { to } 1870 \end{aligned}$	$\begin{aligned} & 1837<-.017 \\ & \text { segment: } \end{aligned}$	1893>	-. 012	Higher	1952	. 038	2003	. 034
Lower	1837<-. 079	1851> -. 072	1866<-. 034	$\begin{aligned} & 1858<-.033 \\ & 1825 \text { to } 1874 \end{aligned}$	$\begin{aligned} & \text { 1823> }-.027 \\ & \text { segment: } \end{aligned}$	1821<	-. 020	Higher	1822	. 072	1850	. 037
Lower	1851> -. 087	1837<-. 086	1866<-. 036	$\begin{aligned} & 1858<-.035 \\ & 1900 \text { to } 1949 \end{aligned}$	$\begin{aligned} & 1839<-.013 \\ & \text { segment : } \end{aligned}$	1859<	-. 012	Higher	1874	. 043	1850	. 035
Lower	1927<-. 083	1934>-. 042	1903<-. 037	1945<-. 035	1904>-.026	$1943<$	-. 026	Higher	1902	. 068	1946	. 032

[E] Outliers 23.0 SD above or -4.5 SD below mean for year
$1851+3.7$ SD; $\quad 1934+3.2$ SD

WLE09B 1829 to $2016 \quad 188$ years \quad Series 12

Lower			Entire series, effect on correlation (.528) is:									
	1884<-. 022	1910> -. 015	1945<-. 014	1879> -. 011	$1840<-.009$	1837 <	-. 008	Higher	1952	. 049	1893	. 015
				1829 to 1878	segment:							
Lower	1840<-. 037	1837<-. 032	1835<-. 025	1842> -. 024	1852> -. 018	1858<	-. 014	Higher	1874	. 029	1853	. 024

[E] Outliers 1 3.0 SD above or -4.5 SD below mean for year
$1910+4.2$ SD

PART 7: DESCRIPTIVE STATISTICS: $\quad 17: 54$ Mon 28 May 2018 Page

Seq	Series	Inte	val	Years	Segmt	Flags	Master	msmt	msmt	dev	corr	sens	value	dev	corr	()
1	WLE01B_I	1798	2016	219	9	1	. 482	1.05	2.22	. 425	. 847	. 178	2.60	. 406	. 011	2
2	WLE02A_I	1834	2016	183	7	0	. 576	1.52	3.18	. 651	. 911	. 143	2.50	. 327	-. 012	2
3	WLE03A	1886	2016	131	5	0	. 677	1.28	2.58	. 525	. 869	. 177	2.53	. 342	. 012	1
4	WLE04A	1821	2016	196	8	0	. 668	1.69	6.52	1.025	. 932	. 146	2.62	. 386	. 012	1
5	WLE04B_I	1815	2016	202	8	3	. 548	1.55	3.66	. 801	. 926	. 150	2.52	. 390	-. 032	1
6	WLE05A_I	1787	2016	230	9	0	. 584	1.06	3.27	. 573	. 901	. 197	2.60	. 370	. 009	1
7	WLE05B	1787	2016	230	9	0	. 615	1.04	3.70	. 613	. 925	. 186	2.63	. 400	-. 015	2
8	WLE07A	1821	2016	196	8	3	. 527	1.86	4.32	. 917	. 892	. 159	2.74	. 467	-. 044	1
9	WLE07B	1934	2016	83	3	0	. 528	1.80	4.32	. 722	. 801	. 204	2.69	. 549	. 001	2
10	WLE08A	1822	2016	195	8	1	. 497	1.59	3.22	. 488	. 691	. 177	2.68	. 423	-. 027	1
11	WLE08B	1885	2016	132	5	0	. 646	1.50	3.53	. 502	. 772	. 155	2.73	. 424	-. 024	1
12	WLE09B	1829	2016	188	7	1	. 528	1.96	6.96	1.124	. 903	. 156	2.53	. 355	-. 069	1
13	WLE10A_I	1785	2016	232	9	1	. 457	1.08	2.62	. 585	. 912	. 207	2.61	. 428	. 022	2
14	WLE10B	1870	2016	147	6	1	. 542	1.68	5.04	. 772	. 841	. 199	2.65	. 333	-. 015	1
15	WLE10C	1837	2016	180	7	0	. 535	1.27	6.84	. 973	. 919	. 201	2.53	. 303	-. 013	1
16	WLE12A	1868	2016	149	6	2	. 248	. 58	1.45	. 257	. 827	. 222	2.73	. 479	. 036	1
17	WLE12B	1796	2016	221	9	0	. 644	1.02	2.38	. 429	. 913	. 141	2.47	. 263	-. 007	2
18	WLE13A	1725	2016	292	11	0	. 488	. 63	1.40	. 248	. 845	. 179	2.68	. 482	-. 066	1
19	WLE13B	1722	2016	295	12	0	. 584	. 73	1.51	. 270	. 869	. 153	2.66	. 422	-. 041	1
20	WLE15A	1692	2016	325	13	0	. 606	. 77	1.75	. 345	. 861	. 187	2.64	. 288	-. 015	1
21	WLE15B	1725	2016	292	11	0	. 571	. 56	1.40	. 245	. 811	. 192	2.87	. 453	-. 014	1
22	WLE16A	1699	2016	318	13	0	. 709	. 75	1.82	. 391	. 888	. 204	2.50	. 321	-. 036	1
23	WLE16B	1661	2016	356	13	0	. 650	. 58	1.79	. 350	. 874	. 203	2.53	. 312	-. 045	1
Total or mean:				499	196		3.569	1.10	6.96	. 53	. 870	. 180	2.87	. 381	-. 019	

[^1]
APPENDIX 2: Wheeler Peak, NM delta blue COFECHA output

PROGRAM COFECHA

QUALITY CONTROL AND DATING CHECK OF TREE-RING MEASUREMENTS
File of DATED series: wle_delta_new.rwl
CONTENTS:
Part 1: Title page, options selected, summary, absent rings by series
Part 2: Histogram of time spans
Part 3: Master series with sample depth and absent rings by year
Part 4: Bar plot of Master Dating Series
Part 5: Correlation by segment of each series with Master
Part 6: Potential problems: low correlation, divergent year-to-year changes, absent rings, outliers
Part 7: Descriptive statistics
CONTROL OPTIONS SELECTED

1 Cubic smoothing spline 50% wavelength cutoff for filtering
2 Segments examined are
32 years
Autoregressive model applied
50 years lagged successively by 25 years
4 Series transformed to logarithms
A Residuals are used in master dating series and testing
5 CORRELATION is Pearson (parametric, quantitative) Critical correlation, 99\% confidence level . 3281
6 Master dating series saved
N
7 Ring measurements listed
N
8 Parts printed 1234567
9 Absent rings are omitted from master series and segment correlations (Y)
Time span of Master dating series is 1661 to 2015355 years
Continuous time span is 1661 to $2015 \quad 355$ years
Portion with two or more series is 1692 to 2015324 years

${ }^{*} C^{*}$ Number of dated series $24{ }^{*}$ C*
O Master series 16612015355 yrs *O*
F Total rings in all series 5138 *F*
E Total dated rings checked 5107 *E*
C Series intercorrelation . 490 *C*
H Average mean sensitivity . 129 * H^{*}
A Segments, possible problems 53 *A
*** Mean length of series 214.1 ***

ABSENT RINGS listed by SERIES:
(See Master Dating Series for absent rings listed by year)
No ring measurements of zero value

			1709	1.265	3	1759	1.613	6	1809	. 490	10	1859	. 145	19	1909	-. 695	23
			1710	-. 670	3	1760	-1.197	6	1810	-. 363	10	1860	. 752	19	1910	. 809	23
1661	-. 274	1	1711	1.521	3	1761	-1.883	6	1811	-. 493	10	1861	. 947	19	1911	-. 009	23
1662	-. 463	1	1712	. 746	3	1762	. 637	6	1812	-. 256	10	1862	-. 766	19	1912	-. 147	23
1663	-. 813	1	1713	1.215	3	1763	. 856	6	1813	1.106	10	1863	. 209	19	1913	. 817	23
1664	-. 537	1	1714	-1.812	3	1764	-. 191	6	1814	1.625	10	1864	. 044	19	1914	-. 069	23
1665	-1.573	1	1715	-2.772	3	1765	. 630	6	1815	. 563	11	1865	. 212	19	1915	-. 306	23
1666	3.016	1	1716	-. 499	3	1766	-. 131	6	1816	-. 077	11	1866	-1.608	19	1916	-. 694	23
1667	3.203	1	1717	1.376	3	1767	1.506	6	1817	-. 170	11	1867	. 329	19	1917	. 443	23
1668	. 166	1	1718	. 938	3	1768	. 650	6	1818	-. 780	11	1868	-1.418	20	1918	. 005	23
1669	-. 696	1	1719	-. 439	3	1769	. 928	6	1819	. 182	11	1869	. 654	20	1919	. 977	23
1670	-1.345	1	1720	-2.429	3	1770	1.115	6	1820	. 253	12	1870	-. 446	22	1920	-2.693	23
1671	-. 530	1	1721	-. 531	3	1771	-1.318	6	1821	. 499	13	1871	. 577	22	1921	. 163	23
1672	-1.007	1	1722	-1.545	4	1772	-. 791	6	1822	. 215	14	1872	-. 807	22	1922	. 767	23
1673	. 397	1	1723	1.174	4	1773	-. 770	6	1823	-. 680	15	1873	-. 004	22	1923	-2.017	23
1674	. 467	1	1724	. 919	4	1774	1.177	6	1824	. 124	15	1874	. 550	22	1924	1.379	23
1675	-. 824	1	1725	. 320	6	1775	1.156	6	1825	. 385	16	1875	1.049	22	1925	. 383	23
1676	-. 221	1	1726	-. 320	6	1776	-1.288	6	1826	. 070	16	1876	. 909	22	1926	1.090	23
1677	-. 185	1	1727	. 614	6	1777	-1.456	6	1827	-. 478	16	1877	1.157	22	1927	. 424	23
1678	1.045	1	1728	-. 381	6	1778	-1.437	6	1828	-1.326	16	1878	1.095	22	1928	-. 383	23
1679	-. 100	1	1729	1.395	6	1779	-. 548	6	1829	-. 185	16	1879	-. 041	22	1929	-1.091	23
1680	1.460	1	1730	. 191	6	1780	. 210	6	1830	. 902	17	1880	-. 901	22	1930	. 272	23
1681	. 634	1	1731	. 311	6	1781	-. 774	6	1831	-1.661	17	1881	. 299	22	1931	. 357	23
1682	. 677	1	1732	-. 654	6	1782	-. 368	6	1832	-. 482	17	1882	-1.219	22	1932	. 072	23
1683	-. 273	1	1733	-. 532	6	1783	. 307	6	1833	. 781	17	1883	-. 169	22	1933	. 512	23
1684	-6.727	1	1734	-. 737	6	1784	. 095	6	1834	. 946	18	1884	-2.237	22	1934	. 395	24
1685	-3.697	1	1735	. 319	6	1785	. 190	6	1835	. 114	18	1885	-1.086	23	1935	-1.721	24
1686	1.392	1	1736	. 180	6	1786	-1.041	6	1836	-. 072	18	1886	-. 605	23	1936	. 832	24
1687	1.108	1	1737	-. 327	6	1787	. 817	8	1837	. 553	19	1887	. 236	23	1937	. 430	24
1688	1.465	1	1738	. 443	6	1788	. 348	8	1838	-. 508	19	1888	-. 058	23	1938	-. 889	24
1689	. 086	1	1739	. 148	6	1789	-. 365	8	1839	-. 314	19	1889	1.211	23	1939	. 303	24
1690	1.931	1	1740	-1.141	6	1790	. 787	8	1840	. 669	19	1890	. 518	23	1940	-. 780	24
1691	. 943	1	1741	1.464	6	1791	. 752	8	1841	. 200	19	1891	. 041	23	1941	-1.864	24
1692	-. 281	2	1742	. 354	6	1792	. 061	8	1842	-. 727	19	1892	-. 014	23	1942	. 427	24
1693	1.085	2	1743	-. 715	6	1793	. 950	8	1843	-. 039	19	1893	-. 537	23	1943	1.101	24
1694	-. 907	2	1744	1.803	6	1794	-. 225	8	1844	. 477	19	1894	-1.155	23	1944	. 391	24
1695	1.128	2	1745	-. 116	6	1795	-. 858	8	1845	. 138	19	1895	. 427	23	1945	. 705	24
1696	-1.532	2	1746	-. 402	6	1796	-. 766	9	1846	-. 117	19	1896	. 487	23	1946	. 072	24
1697	. 692	2	1747	. 747	6	1797	. 387	9	1847	-. 428	19	1897	. 861	23	1947	. 598	24
1698	. 334	2	1748	-1.325	6	1798	. 371	10	1848	-. 454	19	1898	. 670	23	1948	. 608	24
1699	-. 339	3	1749	-. 814	6	1799	. 267	10	1849	-1.252	19	1899	. 684	23	1949	. 345	24

PART 3: Master Dating Series:
18:37 Mon 28 May 2018 Page

1950	-. 625	24	2000	. 991	24
1951	. 301	24	2001	. 548	24
1952	-. 308	24	2002	. 639	24
1953	1.066	24	2003	-2.136	24
1954	. 793	24	2004	-1.135	24
1955	-. 206	24	2005	-. 125	24
1956	-. 975	24	2006	-1.218	24
1957	-2.130	24	2007	-. 184	24
1958	. 711	24	2008	-1.911	24
1959	. 090	24	2009	. 412	24
1960	. 880	24	2010	. 356	24
1961	-. 769	24	2011	. 789	24
1962	. 824	24	2012	. 941	24
1963	. 945	24	2013	1.153	24
1964	. 409	24	2014	-. 294	24
1965	-1.825	24	2015	-. 071	24
1966	. 312	24			
1967	-1.694	24			
1968	-1.491	24			
1969	1.202	24			
1970	. 993	24			
1971	-. 416	24			
1972	. 878	24			
1973	-. 076	24			
1974	. 306	24			
1975	-. 791	24			
1976	. 229	24			
1977	. 873	24			
1978	. 020	24			
1979	-. 086	24			
1980	. 769	24			
1981	. 236	24			
1982	-. 749	24			
1983	. 369	24			
1984	-. 356	24			
1985	. 762	24			
1986	. 001	24			
1987	-. 087	24			
1988	-1.062	24			
1989	. 455	24			
1990	-. 315	24			
1991	-. 647	24			
1992	-. 026	24			
1993	-. 994	24			
1994	1.056	24			
1995	-1.023	24			

1996	1.484	24
1997	.128	24
1998	1.191	24
1999	.306	24

1692---a	1742------A	1792-----@	1842--c	1892----@	1942-------B	1992----@	
1693---------D	1743--c	1793---------D	1843----@	1893--b	1943---------D	1993-d	
1694-d	1744----------G	1794----a	1844-------B	1894-e	1944------B	1994---------D	
1695---------E	1745----@	1795-c	1845-----A	1895-------B	1945--------C	1995-d	
1696 f	1746---b	1796--c	1846----@	1896-------B	1946-----@	1996----------F	
1697--------C	1747--------C	1797------B	1847---b	1897--------C	1947-------B	1997-----A	
1698------A	1748-e	1798------A	1848---b	1898--------C	1948-------B	1998---------E	
1699---a	1749--c	1799------A	1849-e	1899--------C	1949------A	1999------A	

PARI 5: CORRELATION OF SERIES BY SEGMENTS:
Correlations of 50 -year dated segments, lagged 25 years
Flags: $A=$ correlation under .3281 but highest as dated; $B=$ correlation higher at other than dated position

Seq	Series Time_span	$\begin{aligned} & 1675 \\ & 1724 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1749 \end{aligned}$	$\begin{aligned} & 1725 \\ & 1774 \end{aligned}$	$\begin{aligned} & 1750 \\ & 1799 \end{aligned}$	$\begin{aligned} & 1775 \\ & 1824 \end{aligned}$	1800	$\begin{aligned} & 1825 \\ & 1874 \end{aligned}$	$\begin{aligned} & 1850 \\ & 1899 \end{aligned}$	$\begin{aligned} & 1875 \\ & 1924 \end{aligned}$	$\begin{aligned} & 1900 \\ & 1949 \end{aligned}$	$\begin{aligned} & 1925 \\ & 1974 \end{aligned}$	$\begin{aligned} & 1950 \\ & 1999 \end{aligned}$	$\begin{aligned} & 1975 \\ & 2024 \end{aligned}$
1	WLE01B_I 17982015					. 70	. 72	. 51	. 63	. 78	. 61	. 25 B	. 14 B	. 16 B
2	WLE02A_I 18342015							. 10 B	B. 37	. 85	. 81	. 74	. 75	. 75
3	WLE04A_I 18232015						. 22 B	. 22B	B . 34	. 54	. 72	. 67	. 70	. 74
4	WLE04B_I 18152015						. 32 A	. 40	. 29 A	. 40	. 50	. 26 A	. 32 A	. 54
5	WLE05A_I 17872015					. 55	. 64	. 61	. 69	. 60	. 41	. 55	. 57	. 63
6	WLE05B_I 17872015					. 44	. 60	. 57	. 63	. 42	. 25 B	. 54	. 72	. 62
7	WLE07A_N 18212015						. 22 A	. 33 A	. 22B	. 45 B	. 61	. 50	. 59	. 72
8	WLE07B_N 19342015											. 27 B	. 23 B	. 34
9	WLE08A_N 18222015						. 18 B	. 22 B	B . 34	. 68	. 71	. 62	. 55	. 53
10	WLE08B_N 18852015									. 61	. 68	. 59	. 60	. 53
11	WLE09B_N 18302015							. 56	. 61	. 62	. 53	. 45 B	. 54	. 53
12	WLE10B_N 18702015								. 38	. 62	. 69	. 62	. 66	. 54
13	WLE10C_N 18372015							. 13 B	. 23 B	. 60	. 69	. 62	. 62	. 59
14	WLE11A_I 18252015							. 03B	B. 48	. 79	. 77	. 68	. 71	. 76
15	WLE11B_N 18202015						. 45	. 45	. 64	. 76	. 76	. 76	. 74	. 75
16	WLE11C_N 18702015								. 26 B	. 40	. 29 A	. 27 A	. 47	. 41
17	WLE12A_N 18682015								-.21B	-.05B	. 22A	. 54	. 35	. 22 A
18	WLE12B_N 17962015					. 62	. 60	. 44	. 63	. 86	. 85	. 72	. 50	. 50
19	WLE13A_N 17252015			.01B	.06B	. 17 B	. 28 A	. 30 A	. 23 B	. 15B	. 19 B	. 54	. 32 A	. 23 A
20	WLE13B_N 17222015		. 20 B	. 19 B	. 28 B	. 67	. 74	. 68	. 68	. 39	. 30 A	. 49	. 33 A	. 38
21	WLE15A_N 16922015	. 60	. 58	. 48	. 44	. 57	. 75	. 62	. 61	. 59	. 56	. 61	. 49	. 64
22	WLE15B_N 17252015			. 44	. 63	. 27 B	. 34 B	. 56	. 65	. 49	. 33	. 60	. 71	. 77
23	WLE16A_N 16992015	. 56	. 53	. 46	. 65	. 24 B	. 07 B	. 22 B	B. 58	. 66	. 69	. 77	. 67	. 64
24	WLE16B_N 16612015	. 51	. 48	. 36	. 40	. 13 B	. 07 B	. 28 B	B. 68	. 76	. 80	. 68	. 61	. 68
Av	segment correlation	. 56	. 45	. 33	. 41	. 44	. 41	. 38	. 45	. 56	. 56	. 55	. 54	. 55

PART 6: POTENTIAL PROBLEMS:

For each series with potential problems the following diagnostics may appear:
[A] Correlations with master dating series of flagged 50 -year segments of series filtered with $32-y e a r ~ s p l i n e$, at every point from ten years earlier (-10) to ten years later (+10) than dated
[B] Effect of those data values which most lower or raise correlation with master series Symbol following year indicates value in series is greater (>) or lesser (<) than master series value
[C] Year-to-year changes very different from the mean change in other series
[D] Absent rings (zero values)
[E] Values which are statistical outliers from mean for the year

WLEO2A_I 1834 to $2015 \quad 182$ years 2

[A]	Segment	High	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10
	18341883	10	. 25	. 05	. 00	. 05	. 03	04	. 06	. 05	11	09	. 10	. 12	07	17	. 00	21	07	25	. 25	. 00	.26*

[B] Entire series, effect on correlation (.521) is:

Lower	1884> -. 048	1836<-. 016	1828> -. 011	1838> -. 010	1854<-.008	1835<-.008	Higher	1920	. 017	1923	017
1823 to 1872 segment:											
Lower	1828> -. 041	1836<-. 040	1838> -. 033	1854<-. 028	1858> -. 025	1835<-. 022	Higher	1866	. 155	1868	. 035
1825 to 1874 segment:											
Lower	1828> -. 040	1836<-. 039	1838> -. 033	1854<-. 027	1858>-. 025	1835<-. 022	Higher	1866	. 159	1868	. 037

[C] Year-to-year changes diverging by over 4.0 std deviations: 18841885 -4.5 SD
[E] Outliers 23.0 SD above or -4.5 SD below mean for year $1838+3.1 \mathrm{SD} ; \quad 1884+4.8 \mathrm{SD}$

WLE04B_I 1815 to $2015 \quad 201$ years
Series

[C] Year-to-year changes diverging by over 4.0 std deviations: $18841885-4.3$ SD
[E] Outliers 2 3.0 SD above or -4.5 SD below mean for year $1884+5.4$ SD; $\quad 1967+4.2$ SD
WLE05A_I 1787 to $2015 \quad 229$ years
[B] Entire series, effect on correlation (.572) is: $\begin{array}{llllllllll}\text { Lower } 1920>-.018 & 1990<-.016 & 1834<-.009 & 1931<-.009 & 1938>-.008 \quad 1935>-.007 \text { Higher } 1884 \quad .022 \quad 1805 \quad .020\end{array}$

WLE05B_I 1787 to $2015 \quad 229$ years

[B] Entire series, effect on correlation (.474) is:

Lower	1791<-. 030	1795> -. 010	1856<-. 010	1915<-. 009	1847> -. 009	1834<-. 009	Higher	1805	. 051	1967	. 011
900 to	49 segment:										

[E] Outliers 43.0 SD above or -4.5 SD below mean for year
$1791-4.6 \mathrm{SD} ; \quad 1847+3.7 \mathrm{SD} ; \quad 1934+3.0 \mathrm{SD} ; \quad 2011+3.8 \mathrm{SD}$

WLE07A_N 1821 to $2015 \quad 195$ years 7

[C] Year-to-year changes diverging by over 4.0 std deviations:
18841885 -4.2 SD
[E] Outliers 1 3.0 SD above or -4.5 SD below mean for year
$1835+3.2$ SD

WLE07B_N 1934 to $2015 \quad 82$ years 8

[B] Entire series, effect on correlation (.298) is:

18701919	-2	-. 22	-. 08	. 11	-. 02	. 11	. 01	. 36	. 06	. 37	*-. 07	. 26	. 05	-. 13	-. 18	. 01	-. 04	-. 08	-. 17	. 09	. 07	-. 13
- - -			- - -		- -	- -	- -	- -	- - -		- - -		-		- -	- -	- -	- -	- - -	- -	- -	
19001949	0	-. 03	-. 02	. 20	-. 13	-. 03	. 05	-. 14	. 25	. 14	-. 24	. 29 *	-. 10	-. 21	. 09	-. 14	-. 08	-. 04	-. 03	. 04	. 25	-. 18
19251974	0	-. 01	-. 05	. 21	-. 06	. 08	-. 06	-. 12	. 08	. 15	. 04	. $27 *$	-. 26	-. 04	-. 03	-. 17	-. 16	. 06	-. 03	. 01	. 09	. 09

[B] Entire series, effect on correlation (.362) is:

Lower	1943<-. 089	2003> -. 023	1967> -. 015	1882>	-. 014	1885>	-. 011	1909>	-. 009	Higher	2008	. 027	1920	. 025
1870 to	1919 segment:													
Lower	1882> -. 050	1885> -. 040	1909>-. 031	1903>	-. 017	1886<	-. 015	1912<	-. 015	Higher	1906	. 031	1877	. 025
1900 to	1949 segment:													
Lower	1943<-. 262	1909>-. 024	1940>-. 015	1903>	-. 014	1912<	-. 012	1929>	-. 011	Higher	1920	. 079	1923	. 036
1925 to	1974 segment:													
Lower	1943<-. 270	1967> -. 039	1940>-. 015	1952>	-. 012	1969<	-. 010	1929>	-. 010	Higher	1957	. 081	1965	. 035

[E] Outliers 1 3.0 SD above or -4.5 SD below mean for year
1943 -5.6 SD

WLE12B_N 1796 to $2015 \quad 220$ years
Series 18
[B] Entire series, effect on correlation (.626) is:
Lower $1818<-.024 \quad 1866>-.011 \quad 1801>-.010 \quad 1989<-.009 \quad 1851<-.009 \quad 1862>-.008 \quad$ Higher $\quad 1805 \quad .036 \quad 1884 \quad .021$

WLE13B_N 1722 to $2015 \quad 294$ years

[E] Outliers 2 3.0 SD above or -4.5 SD below mean for year
$1727+4.2$ SD; $\quad 1748+3.1$ SD
[B] Entire series, effect on correlation (.568) is: Lower $1910<-.012 \quad 1701>-.008 \quad 1749>-.007 \quad 1982<-.007 \quad 1771>-.006 \quad 1785<-.006$ Higher $\quad 1805 \quad .018 \quad 1884 \quad .013$
[E] Outliers 2 3.0 SD above or -4.5 SD below mean for year $1695+3.1$ SD; $1783+3.1$ SD

WLE15B_N 1725 to $2015 \quad 291$ years

Series 22

[B] Entire series, effect on correlation (.501) is:

Lower	1805> -. 025	1748> -. 025	1742<-. 014	1818> -. 007	1934<-.007	1920>	-. 007	Higher	1884	. 020	2003	. 011
1775 to 1824 segment:												
Lower	$1805>-.120$	1818> -. 040	1782<-. 024	1785<-. 022	1799<-. 022	1778>	-. 016	Higher	1808	. 039	1814	. 034
1800 to	1849 segment:											

[E] Outliers 43.0 SD above or -4.5 SD below mean for year

APPENDIX 3: Wheeler Peak, NM inverted latewood blue intensity COFECHA output

PROGRAM COFECHA

QUALITY CONTROL AND DATING CHECK OF TREE-RING MEASUREMENTS
File of DATED series: wle_lwinv_new.rwl
CONTENTS:
Part 1: Title page, options selected, summary, absent rings by series
Part 2: Histogram of time spans
Part 3: Master series with sample depth and absent rings by year
Part 4: Bar plot of Master Dating Series
Part 5: Correlation by segment of each series with Master
Part 6: Potential problems: low correlation, divergent year-to-year changes, absent rings, outliers
Part 7: Descriptive statistics
CONTROL OPTIONS SELECTED

1 Cubic smoothing spline 50% wavelength cutoff for filtering
2 Segments examined are
32 years
3 Autoregressive model applied
50 years lagged successively by 25 years
4 Series transformed to logarithms
A Residuals are used in master dating series and testing
4 Series transformed to logarithms Critical correlation, 99\% confidence level .3281
6 Master dating series saved
N
7 Ring measurements listed
N
8 Parts printed 1234567
9 Absent rings are omitted from master series and segment correlations (Y)
Time span of Master dating series is 1661 to $2015 \quad 355$ years
Continuous time span is 1661 to $2015 \quad 355$ years
Portion with two or more series is 1692 to 2015324 years

C Number of dated series 24 * *
O Master series 16612015355 yrs *O*
F Total rings in all series 5138 *F*
E Total dated rings checked 5107 *E*
C Series intercorrelation . 478 * ${ }^{*}$ *
H Average mean sensitivity . 037 * H^{*}
A Segments, possible problems 50 *A*
*** Mean length of series 214.1 ***

ABSENT RINGS listed by SERIES:
(See Master Dating Series for absent rings listed by year)
No ring measurements of zero value

			1709	. 677	3	1759	. 101	6	1809	. 294	10	1859	-. 092	19	1909	-1.587	23
			1710	-. 024	3	1760	. 148	6	1810	-. 970	10	1860	. 449	19	1910	. 961	23
1661	-1.028	1	1711	2.068	3	1761	-1.628	6	1811	-. 973	10	1861	. 309	19	1911	-. 057	23
1662	. 601	1	1712	1.173	3	1762	. 031	6	1812	-. 451	10	1862	-. 495	19	1912	. 191	23
1663	-1.284	1	1713	. 059	3	1763	. 335	6	1813	1.061	10	1863	. 717	19	1913	. 309	23
1664	-. 871	1	1714	-1.619	3	1764	-1.358	6	1814	1.584	10	1864	-. 050	19	1914	-. 079	23
1665	. 954	1	1715	-2.126	3	1765	. 114	6	1815	-. 071	11	1865	. 582	19	1915	-. 227	23
1666	3.176	1	1716	-1.440	3	1766	-. 893	6	1816	-1.288	11	1866	-1.885	19	1916	-. 522	23
1667	3.386	1	1717	. 930	3	1767	. 474	6	1817	-. 585	11	1867	. 170	19	1917	. 219	23
1668	-1.048	1	1718	. 922	3	1768	. 933	6	1818	-. 522	11	1868	-1.567	20	1918	-. 581	23
1669	-1.492	1	1719	. 299	3	1769	1.556	6	1819	. 281	11	1869	. 654	20	1919	. 910	23
1670	-1.164	1	1720	-. 285	3	1770	1.473	6	1820	. 202	12	1870	-. 159	22	1920	-2.765	23
1671	-1.134	1	1721	-. 300	3	1771	-1.720	6	1821	. 462	13	1871	1.444	22	1921	-. 197	23
1672	-1.353	1	1722	-1.671	4	1772	-1.784	6	1822	. 230	14	1872	-. 327	22	1922	. 977	23
1673	-. 562	1	1723	. 800	4	1773	-1.124	6	1823	. 026	15	1873	. 082	22	1923	-1.080	23
1674	-. 360	1	1724	-. 509	4	1774	. 225	6	1824	1.055	15	1874	. 205	22	1924	1.674	23
1675	-. 592	1	1725	-. 238	6	1775	1.087	6	1825	1.440	16	1875	. 330	22	1925	. 564	23
1676	1.070	1	1726	-. 507	6	1776	-. 578	6	1826	. 186	16	1876	. 192	22	1926	1.489	23
1677	. 731	1	1727	1.235	6	1777	. 069	6	1827	-. 708	16	1877	. 088	22	1927	. 398	23
1678	-. 994	1	1728	. 929	6	1778	-. 358	6	1828	-1.182	16	1878	. 808	22	1928	-. 542	23
1679	-. 161	1	1729	1.731	6	1779	-. 082	6	1829	-. 134	16	1879	1.240	22	1929	-1.523	23
1680	3.307	1	1730	-1.147	6	1780	1.750	6	1830	. 471	17	1880	-. 437	22	1930	. 254	23
1681	1.726	1	1731	-. 766	6	1781	-. 277	6	1831	-2.318	17	1881	. 650	22	1931	. 013	23
1682	1.010	1	1732	-. 548	6	1782	-1.049	6	1832	-. 470	17	1882	-1.335	22	1932	. 366	23
1683	-1.058	1	1733	-. 146	6	1783	. 608	6	1833	-. 136	17	1883	. 793	22	1933	. 220	23
1684	-2.396	1	1734	. 460	6	1784	-. 133	6	1834	1.363	18	1884	-1.957	22	1934	. 794	24
1685	-4.266	1	1735	. 873	6	1785	. 369	6	1835	. 472	18	1885	-1.385	23	1935	-1.541	24
1686	-. 204	1	1736	1.196	6	1786	-. 712	6	1836	-. 039	18	1886	-. 922	23	1936	. 262	24
1687	. 085	1	1737	-. 020	6	1787	1.496	8	1837	. 590	19	1887	. 096	23	1937	. 138	24
1688	. 069	1	1738	-. 313	6	1788	. 237	8	1838	-. 820	19	1888	-. 458	23	1938	-. 776	24
1689	-1.952	1	1739	-. 489	6	1789	-. 568	8	1839	-. 399	19	1889	. 644	23	1939	1.236	24
1690	1.920	1	1740	-1.625	6	1790	. 256	8	1840	. 019	19	1890	. 835	23	1940	-. 650	24
1691	. 605	1	1741	. 399	6	1791	-. 292	8	1841	. 738	19	1891	. 033	23	1941	-2.065	24
1692	-. 315	2	1742	. 257	6	1792	-. 132	8	1842	-. 285	19	1892	-. 659	23	1942	. 352	24
1693	1.867	2	1743	-. 988	6	1793	-. 063	8	1843	. 069	19	1893	-. 387	23	1943	. 534	24
1694	-. 037	2	1744	. 593	6	1794	. 832	8	1844	-. 142	19	1894	-. 253	23	1944	. 037	24
1695	1.836	2	1745	-. 559	6	1795	-. 762	8	1845	-. 350	19	1895	. 037	23	1945	. 532	24
1696	-. 987	2	1746	-1.517	6	1796	-. 365	9	1846	. 310	19	1896	. 125	23	1946	-. 444	24
1697	. 816	2	1747	. 725	6	1797	. 334	9	1847	-. 489	19	1897	. 878	23	1947	. 458	24
1698	-. 051	2	1748	. 293	6	1798	1.303	10	1848	. 563	19	1898	-. 311	23	1948	. 335	24
1699	-. 404	3	1749	2.089	6	1799	. 204	10	1849	. 245	19	1899	. 868	23	1949	-. 075	24

PART 3: Master Dating Series:
18:54 Mon 28 May 2018 Page

1950	-. 825	24	2000	1.467	24
1951	. 736	24	2001	1.141	24
1952	. 232	24	2002	. 919	24
1953	1.190	24	2003	-1.671	24
1954	1.418	24	2004	-. 696	24
1955	-. 808	24	2005	-. 413	24
1956	-. 623	24	2006	-1.820	24
1957	-2.420	24	2007	-. 442	24
1958	1.304	24	2008	-2.730	24
1959	. 159	24	2009	-. 031	24
1960	1.372	24	2010	. 195	24
1961	-. 509	24	2011	. 638	24
1962	. 798	24	2012	1.007	24
1963	. 944	24	2013	1.313	24
1964	-. 020	24	2014	-. 221	24
1965	-2.276	24	2015	. 802	24
1966	. 087	24			
1967	-1.964	24			
1968	-1.320	24			
1969	1.141	24			
1970	1.034	24			
1971	-. 658	24			
1972	1.399	24			
1973	-. 180	24			
1974	. 089	24			
1975	-. 776	24			
1976	. 092	24			
1977	. 608	24			
1978	. 096	24			
1979	. 138	24			
1980	1.018	24			
1981	. 266	24			
1982	-. 605	24			
1983	. 368	24			
1984	-. 260	24			
1985	. 667	24			
1986	. 101	24			
1987	. 147	24			
1988	-1.129	24			
1989	1.276	24			
1990	-1.192	24			
1991	-1.213	24			
1992	-. 006	24			
1993	-1.042	24			
1994	1.464	24			
1995	-. 703	24			

1996	1.367	24
1997	.038	24
1998	.948	24
1999	-.037	24

1691--------B	1741------ ${ }^{\text {B }}$	1791---a	1841--------C	1891-----@
1692---a	1742------A	1792----a	1842---a	1892--c
1693----------G	1743-d	1793----@	1843-----@	1893---b
1694----@	1744--------B	1794--------C	1844----a	1894----a
1695----------G	1745--b	1795--c	1845---a	1895-----@
1696-d	1746 f	1796---a	1846------A	1896-----@
1697--------C	1747--------C	1797-------A	1847---b	1897--------D
1698----@	1748------A	1798----------E	1848-------B	1898---a
1699---b	1749----------H	1799------A	1849------A	1899--------C

PART 5: CORRELATION OF SERIES BY SEGMENTS:
Correlations of 50 -year dated segments, lagged 25 years
Flags: $A=$ correlation under .3281 but highest as dated; $B=$ correlation higher at other than dated position
$\begin{array}{lllllllllllllllllll}\text { Seq Series } & \text { Time_span } & 1675 & 1700 & 1725 & 1750 & 1775 & 1800 & 1825 & 1850 & 1875 & 1900 & 1925 & 1950 & 1975 \\ & & 1724 & 1749 & 1774 & 1799 & 1824 & 1849 & 1874 & 1899 & 1924 & 1949 & 1974 & 1999 & 2024\end{array}$

WTE01B I 17982015
2 WIEO2A I 18342015
2 WLE02A_I 18342015
WLE04A_I 18232015
4 WLE04B_I 18152015
6 WLE05B_I 17872015
7 WLE07A_N 18212015
8 WLE07B_N 19342015
9 WLE08A_N 18222015
10 WLE08B_N 18852015
11 WLE09B_N 18302015 12 WLE10B N 18702015 13 WLE10C_N 18372015 14 WLE11A_I 18252015 15 WLE11B_N 18202015 16 WLE11C_N 18702015 17 WLE12A N 18682015 18 WLE12B_N 17962015 19 WLE13A N 17252015 20 WLE13B N 17222015 $\begin{array}{llll}20 & \text { WLE13B_N } 1722 & 2015 \\ 21 \text { WLE15A_N } 1692 & 2015\end{array}$ 22 WLE15B_N 17252015 23 WLE16A_N 16992015 24 WLE16B_N 16612015 Av segment correlation

				. 51	. 54	. 60	. 66	. 76	. 57	. 33A	. 32 A	. 27A
						. 44	. 58	. 87	. 67	. 56	. 69	. 69
					. 42	. 46	. 45	. 46	. 67	. 69	. 72	. 69
					. 37	. 40	. 27 A	. 38	. 49	. 42	. 50	. 64
				. 64	. 63	. 65	. 63	. 56	. 43	. 59	. 66	. 63
				. 53	. 58	. 61	. 76	. 54	. 27A	. 59	. 70	. 58
					. 33	. 44	. 40	. 52	. 64	. 67	. 73	. 74
										. 31B	. 35	. 46
					. 21B	. 21B	. 22B	. 57	. 67	. 66	. 54	. 57
								. 60	. 66	. 62	. 61	. 57
						. 56	. 38	. 39	. 49	. 42 B	. 55	. 61
							-.05B	. 20B	. 60	. 56	. 58	. 61
						-. 05B	-.01B	. 33	. 53	. 56	. 65	. 70
						-.16B	. 29B	. 59	. 60	. 62	. 71	. 77
					. 02B	. 03B	. 45	. 75	. 72	. 72	. 75	. 79
							. 24 B	. 39	. 28 A	. 34	. 49	. 44
							.01B	. 22B	. 50	. 51	. 32 A	. 20 A
				. 53	. 54	. 50	. 48	. 71	. 76	. 65	. 37	. 41
		. 23 B	. 20B	. 04 B	. 39	. 43	. 21B	. 02B	. 10B	. 57	. 37	. 33 A
	. 39	. 42	. 41	. 36	. 63	. 59	. 63	. 37	. 20B	. 60	. 50	. 50
. 20B	. 24 B	. 26 B	. 22A	. 42	. 64	. 57	. 63	. 62	. 46	. 63	. 62	. 59
		. 44	. 23B	. 22A	. 45	. 48	. 67	. 53	. 31 A	. 60	. 60	. 57
. 29A	. 33	. 50	. 56	. 23B	.17B	. 30 A	. 47	. 35	. 44	. 74	. 81	. 81
. 16 B	. 19B	. 33 A	. 29 B	. 18B	. 08B	. 32 B	. 72	. 77	. 70	. 69	. 70	. 77
. 22	. 29	. 36	. 32	. 37	. 40	. 39	. 41	. 50	. 51	. 57	. 58	. 58

For each series with potential problems the following diagnostics may appear:
[A] Correlations with master dating series of flagged 50 -year segments of series filtered with $32-y e a r$ spline, at every point from ten years earlier (-10) to ten years later (+10) than dated
[B] Effect of those data values which most lower or raise correlation with master series Symbol following year indicates value in series is greater (>) or lesser (<) than master series value
[C] Year-to-year changes very different from the mean change in other series
[D] Absent rings (zero values)
[E] Values which are statistical outliers from mean for the year

[E] Outliers $1 \quad 3.0 \mathrm{SD}$ above or -4.5 SD below mean for year $1884+4.5$ SD

WLE05B_I 1787 to $2015 \quad 229$ years 6

[A]	Segment	High	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10	
	19001949	0	. 14	. 05	. 24	. 11	-. 14	-. 03	-. 25	-. 23	. 18	. 06	.27*	. 06	-. 08	-. 02	-. 09	. 18	. 01	-. 04	. $00-$	-. 16	-. 06	
[B]	Entire series, effect Lower 1792> -. 013			on correlation$1847>-.012$			(.523) is:			1930<	-. 01		1828<	-. 010		1920>	-. 009	Hig		1884	. 024		1831	. 014
	1900 to Lower	949 se	nent:		$3>$	032		5> -	032	1915<	-. 02		1938>	-. 021		1943<	-. 012	Hig	er	1929	. 034		1939	. 025

[E] Outliers $3 \quad 3.0 \mathrm{SD}$ above or -4.5 SD below mean for year $1792+3.0$ SD; $\quad 1847+4.0$ SD; $\quad 2011+4.0$ SD

[E] Outliers 1 3.0 SD above or -4.5 SD below mean for year
$1835+3.1$ SD

WLE11A_I 1825 to $2015 \quad 191$ years \quad Series 14

[B] Entire series, effect on correlation (.486) is:

WLE11B_N 1820 to $2015 \quad 196$ years

Series 15

[B] Entire series, effect on correlation (.579) is:

Lower	1828> -. 028	1850> -. 012	1866> -. 010	1837<-.009	1855<-. 009	2013<-. 007	Higher	1884	. 024	1920	. 023
1820 to	1869 segment:										
Lower	1828> -. 094	1850> -. 037	1837<-.028	1855<-. 023	1861<-. 019	1822<-. 018	Higher	1831	. 060	1868	. 050
1825 to	1874 segment:										
Lower	1828> -. 093	1850>-. 036	1837<-. 028	1855<-. 023	1861<-. 020	1862>-. 015	Higher	1831	. 056	1868	. 047

[E] Outliers $3 \quad 3.0 \mathrm{SD}$ above or -4.5 SD below mean for year
$1828+3.7 \mathrm{SD} ; \quad 1849+3.0 \mathrm{SD} ; \quad 1850+3.5 \mathrm{SD}$
===1
WLE11C_N 1870 to $2015 \quad 146$ years

[B] Entire series, effect on correlation (.386) is:

Lower	1943<-. 085	2003> -. 017	1882> -. 015	1967>	-. 013	1885>	-. 009	1990>	-. 009	Higher	2008	. 058	1957	. 034
1870 to 1919 segment:														
Lower	1882> -. 057	1885> -. 035	1918> -. 032	1903>	-. 023	1912<	-. 014	1902<	-. 013	Higher	1910	. 029	1909	. 026
1900 to	1949 segment:													
Lower	1943<-. 247	1918> -. 019	1940> -. 015	1903>	-. 015	1927<	-. 009	1912<	-. 008	Higher	1920	. 057	1929	. 040

[E] Outliers 23.0 SD above or -4.5 SD below mean for year
1918 +3.0 SD; 1943 -5.1 SD

WLE12A_N 1868 to $2015 \quad 148$ years
Series 17

WLE13A_N 1725 to 2015 years 291 Series 19

	Segment	High	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10
	17251774	-3	. 21	-. 05	-. 04	-. 16	. 24	. 09	-. 18	. $30 *$	-. 11	-. 08	. 23	. 07	. 07	-. 15	-. 18	. 00	-. 19	. 12	. 19	-. 20	-. 08
	17501799	7	. 20	-. 12	-. 15	. 03	. 03	. 07	-. 05	. 14	-. 13	-. 10	. 20	. 06	. 06	-. 16	-. 15	-. 01	-. 15	. 26 *	. 11	-. 09	. 23
	17751824	10	. 21	-. 13	-. 21	. 11	-. 04	. 07	. 13	. 01	-. 22	. 06	. 04	-. 13	-. 08	-. 17	-. 13	. 16	. 15	. 25	-. 04	-. 02	. $36 *$
	- - - - -																						
	18501899	2	. 03	-. 14	-. 09	-. 11	. 00	-. 25	-. 03	-. 31	. 27	-. 25	. 21	-. 11	. 28 *	-. 02	. 25	. 12	. 26	. 11	. 19	. 11	. 07
	18751924	3	. 00	-. 21	-. 03	-. 24	-. 08	-. 23	-. 02	-. 46	. 13	. 00	. 02	. 06	. 17	. 21 *	. 17	-. 03	. 10	. 05	-. 01	. 10	. 05
	19001949	-8	. 05	-. 20	. $18 *$. 15	. 04	. 16	-. 28	-. 31	. 10	. 07	. 10	. 09	-. 02	. 14	. 07	-. 14	. 12	-. 05	-. 21	. 05	-. 10
		- - -	- -	- -	- -	- -	- -	- -	-	-	-	- -	- -	- -	- -	- - -	- -	- -	- -	- -	- -	- -	- -
		0	. 07	-. 05	-. 16	-. 29	. 16	-. 10	-. 07	. 09	. 10	-. 14	. $33 *$	-	-	-	-	-	-	-	-	-	

[B] Entire series, effect on correlation (.260) is:

Lower 1923> -. 020	1990>-. 010	1901<-. 009	1860<-. 009	1798<-. 009	1737> -. 007	Higher	1828	. 015	1957	. 014
1725 to 1774 segment:										
Lower 1737> -. 040	1730> -. 034	1742<-.031	1773> -. 027	1748> -. 018	1760<-. 017	Higher	1771	. 053	1740	. 031
1750 to 1799 segment:										
Lower 1798<-.041	1773>-.028	1783<-. 024	1779>-. 016	1760<-. 015	1769<-.013	Higher	1771	. 055	1764	. 039

1798<-.041
1775 to 1824 segment:

Lower	1798<-. 052	1809<-. 036	1817> -. 033	1783<-. 032	1779>	-. 016	1800>	-. 015	Higher	1807	. 041	1795	. 040
1850 to	1899 segment:												
Lower	$1860<-.077$	1879<-. 041	1881<-. 035	1885> -. 032	1850>	-. 029	1875<	-. 016	Higher	1884	. 067	1866	. 059
1875 to	1924 segment:												
Lower	1923> -. 104	1901<-. 047	1885> -. 027	1879<-. 023	1905<	-. 021	1881<	-. 021	Higher	1884	. 069	1920	. 061
1900 to	1949 segment:												
Lower	1923>-. 117	1901<-. 048	1905<-. 022	1929>-. 015	1917<	-. 014	1943<	-. 013	Higher	1935	. 067	1920	. 045
1966 to	2015 segment:												
Lower	1990> -. 067	1968> -. 046	1975> -. 033	1996<-. 026	1993>	-. 022	1985<	-. 021	Higher	1967	. 078	2006	. 063

[C] Year-to-year changes diverging by over 4.0 std deviations:
19221923 4.4 SD 19231924 -5.1 SD
[E] Outliers $4 \quad 3.0 \mathrm{SD}$ above or -4.5 SD below mean for year
$1752+3.2 \mathrm{SD} ; \quad 1817+3.9 \mathrm{SD} ; \quad 1923+6.6 \mathrm{SD} ; \quad 1990+3.2 \mathrm{SD}$

WLE13B_N 1722 to 2015 years 294

[B] Entire series, effect on correlation (.454) is:
Lower $1902<-.0321965>-.011 \quad 1748>-.011 \quad 1737>-.010 \quad 1993>-.008 \quad 1903>-.006$ Higher $\quad 1884 \quad .027 \quad 1831 \quad .019$

| 1900 to 1949 segment: | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lower $1902<-.181$ | $1903>-.030 \quad 1901<-.026 \quad 1922<-.024 \quad 1929>-.019 \quad 1911<-.013$ Higher $1920 \quad .083 \quad 1924 \quad .038$ |

[C] Year-to-year changes diverging by over 4.0 std deviations:
19021903 5.0 SD
[E] Outliers 3 3.0 SD above or -4.5 SD below mean for year
$1748+3.8 \mathrm{SD} ; \quad 1902-4.8 \mathrm{SD} ; \quad 1993+3.3 \mathrm{SD}$

WLE15A_N 1692 to 2015324 years

 $\begin{array}{rllrrrrrrrrrrrrrrrrrrrrrrrrrrr}1725 & 1774 & 6 & -.07 & -.29 & .06 & .30 & -.03 & -.04 & -.12 & -.31 & -.13 & -.04 & .26 & .02 & -.11 & .27 & -.20 & -.03 & .34 *-.15 & .10 & .01 & .03 \\ 1750 & 1799 & 0 & .07 & -.25 & .09 & .14 & .02 & .19 & -.12 & -.19 & -.13 & .10 & .22 *-.11 & -.12 & .08 & -.04 & .04 & .18 & -.16 & -.14 & -.21 & .08\end{array}$
[B] Entire series, effect on correlation (.457) is:

Lower 1737< -. 020	1716> -. 011	1929> -. 009	1771> -. 008	1764> -. 008	1698>	-. 008	Higher	1884	. 025	1957	. 017
1692 to 1741 segment:											
Lower 1737<-. 082	1716> -. 039	1698>-. 037	1694<-.033	1713<-. 032	1721<	-. 020	Higher	1730	. 034	1722	. 028
1700 to 1749 segment:											
Lower 1737<-.109	1713<-. 039	1716> -. 038	1743> -. 034	1721<-. 026	1700<	-. 018	Higher	1749	. 033	1730	. 032

1725 to 1774 segment:
Lower $1737<-.1091743>-.0391764>-.038$ 1771>-.038 1750<-.025 1752<-.017 Higher $1761 \quad .043 \quad 1749.035$
1750 to 1799 segment:
Lower 1792> - 0
$1764>-.0431771>-.041 \quad 1794<-.039 \quad 1750<-.031 \quad 1752<-.021$ Higher $1761 \quad .061 \quad 1758$. 045

[E] Outliers 1 3.0 SD above or -4.5 SD below mean for year $1805+3.2$ SD
[*] Early part of series cannot be checked from 1661 to 1691 -- not matched by another series

[C] Year-to-year changes diverging by over 4.0 std deviations:
16941695 -4.5 SD
[E] Outliers 3 . 3.0 SD above or -4.5 SD below mean for year
$1694+3.0$ SD; $\quad 1759+3.0$ SD; $\quad 1831+3.7$ SD

[^0]: PROGRAM COFECHA

[^1]: - = [COFECHA ZZ COF] = -

