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Abstract 

 Identification of arthropods is important in academic and medical applications such as 

species-species interaction studies and identification for medical diagnosis. Deep learning is a tool 

that can be used to solve these problems quickly and accurately. For this study, a deep learning model 

was developed that has the capability of identifying North American arthropods to the genus level and 

compared multiple methods to increase the performance of this model. These methods include 

changing the neural network architecture, class balancing, and changing the image input size. The full 

deep learning model using InceptionResNetV2 obtained top 1 accuracies of 80% and top 5 accuracies 

of 92%. Comparatively, it was found that changing the neural network to EfficientNetB7 in a subset 

of the full model achieved a top 1 accuracy of 90%. It was also found class balancing in certain 

circumstances increased recall and that increasing image input size had a logarithmic effect on 

performance.  
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Chapter 1: Introduction 

Correct species identification is integral to downstream biological applications such as 

species-species interactions (Åkesson et al., 2021) and phylogenetic problems which support research 

in conservation and sustainability. However, current identification methods often are time consuming 

and are susceptible to bias or inaccuracies. This is because most current approaches require an expert 

capable of identifying the specimen. For many taxonomic groups there are few or no experts capable 

of identification down to species level. For example, a paper on identification in medical laboratory 

settings discusses how arthropod identification is dependent on the expertise of the laboratory and can 

be challenging because of the variety of specimens and the variance in expertise of labs(Mathison & 

Pritt, 2014). If further identification is needed the specimen can be sent to entomologists, a local 

university, or museum. This shows how time-consuming identification can be and how many places a 

specimen can go before an identification is made. This also shows that there is need for arthropod 

identification in areas other than research and potentially lead to faster diagnosis and treatments for 

arthropod related illness.  

This problem may be solved through deep learning, a method which utilizes large amounts of 

data to train a network or machine learning model to solve complex problems like identification. 

Deep learning is a newly evolving frontier of computer science that leverages what we see in 

biological neural networks. Biological neural networks are the system neurons interlinked together. 

Neurons receiving a will reach a charge threshold which stimulates the neuron to “fire” a signal to 

other connected neurons. Similarly, an artificial neural network communicates by altering the signal 

from the input data which then leads to an output signal to linked neurons or nodes. By applying these 

biological processes to computer science, a machine can mimic learning and using an artificial neural 

network and enough relevant data can be used to train a model to solve complex problems. While 

deep learning has been looked at as a method for identification of arthropods most studies have only 

used deep learning for small number of taxa or singular families (Boer & Vos, 2018; Ding & Taylor, 

2016; Hansen et al., 2020). A notable exception to this is Seek by iNaturalist (Ueda, 2019; Van Horn 

et al., 2018). While iNaturalist’s model tries to identify much more than just arthropods this post does 

quantify the accuracy of insects at only 65% for species level which is the lowest accuracy of all the 

groups it trained. This shows there is a lot more work needed before there is accurate large-scale 

identification of arthropods. Therefore, the objective of this study is to determine if deep learning 

is a realistic method for identifying arthropods to the taxonomic level of genus, and to 

determine the most optimal machine learning methods that may be used for this specific goal. 

To determine the performance of the model a full model is first trained on all North American 
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arthropod images obtained. This full model is then subset into a smaller dataset where different 

optimization methods are performed and compared together. To measure performance, accuracy 

metrics for the full model are calculated and then for the subset models along with accuracy a 

confusion matrix, accuracy over time, loss over time, precision, recall, and f1-score are also obtained 

according to standard metrics to measure performance for multi-class classification deep learning 

models. While deep learning should not be the only way to identify arthropods, if we can verify that 

this method is robust and efficient and optimize it for this specific goal, we could significantly impact 

how arthropod identification is done in the future. 
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Chapter 2: Literature Review 

Machine learning is a subset of artificial intelligence that creates algorithms using data to 

learn to solve problems. There are two main types of machine learning paradigms: supervised and 

unsupervised. Supervised machine learning systems utilize curating labeled data into a homogenous 

dataset to train on and allow for more control on how and the machine “learns” from the dataset. 

Labeled data means that the data is connected to a label which usually denotes what the correct 

prediction is supposed to be. Unsupervised machine learning is a paradigm that allows the algorithm 

to try to learn from a dataset without labeling the data. This results in a model that may work out its 

own method to tackle the problem but gives up more control on how the model learns. Most 

unsupervised methods are used for clustering and feature reduction (Mahesh, 2019). While many of 

these machine learning models use deep learning to achieve these goals some machine learning 

techniques opt-out of using deep learning. An example of this is random-forest which uses decision 

trees instead of utilizing neural networks and therefore doesn’t fit into the category of deep learning 

(Mahesh, 2019). An advantage of this type of machine learning method is that non-deep learning 

methods tend to be less parameter rich and easier to implement. While deep learning usually is much 

more parameter-rich and tend to be more robust for more complicated problems and are more likely 

to be used for large-scale classification problems. 

 Deep learning utilizes deep networks of interconnected nodes (or neurons) to act as an 

artificial version of the human brain’s neural network and have been invaluable in solving some of 

our hardest problems. These deep learning networks are called artificial neural networks. The 

structure of a neural network is usually comprised of layers. Layers are groups of neurons which take 

in information from a previous layer or the input data directly and send this information to another 

layer or act as the final prediction. The input layer is the layer that gets its information from the data 

directly and the output layer consists of the final predictions for the model. All other layers between 

these two are known as hidden layers. These layers connect to other layers through the individual 

nodes. 

 Each connection between a node has a weight and each node has a bias. A weight is a value 

used to control the strength of a connection. This value determines how much one node’s signal will 

affect another one being signaled.  A bias is a value that is associated with each node. This will be 

added after the weight calculation is found and affects how far the activation function is shifted. The 

activation function is the weighted sum between a node or nodes within a single layer of the neural 

network that are derived from the calculations between the weights and biases.  
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There are many different types of artificial neural networks used in different applications and 

specific problems. Some of the main neural network architectures are multilayer perceptron, 

convolutional, and recurrent neural networks. The multilayer perceptron (MLP) is one of the smallest 

neural networks usually consisting of an input layer, hidden layer, and output layer. These networks 

are usually used for simple datasets like tabular data, classification prediction, and regression 

prediction problems. Convolutional neural networks (CNNs) are much larger than MLP networks and 

consist of tens to thousands of interconnected hidden layers. Along with this increase in layers, 

convolutional neural networks use a small filter containing a grid pattern which runs across the data 

to interpret and learn feature and spatial information. The grid-like pattern and feature rich quality of 

image data makes CNNs well suited for solving image related problems like classification. Recurrent 

neural networks are similar to CNNs with their large networks of interconnected neurons. However, 

RNNs excel at data where each part of the sample is related to each other. This is because RNNs take 

the output from a particular layer and uses this as input to the same layer which can store information 

in the hidden layers as a pseudo-memory. RNNs are one of the most widely used networks because of 

their ability to solve problems related to language recognition, text summarization, and music 

composition because these types of data are highly contextual based on previous output. While all 

these networks are used for different types of data and in different contexts building the model from 

these neural networks usually follows the same three steps: training, validation, and testing. The 

training step allows the network to access and “learn” on the data. This usually consists of 60−80% of 

the whole dataset while the validation and testing sets are usually split into 10−20% each. These are 

split to reduce overfitting. Overfitting is a common problem in deep learning that can be thought of as 

a lack of ability for the model to generalize. It comes from the model learning specific features from 

the datasets used in training that are not generalizable, and thus creating artificially high accuracies or 

low losses during training but poorer performance with data outside of the data used during training.  

During training, each sample is converted to values based on the input data, and these values are fed 

into the artificial neural network. The product of the weight and value calculated in the previously 

connected node is found for each connection and then the bias is applied at each node. This is 

repeated until the last layer which is representative of the final prediction. While a single pass through 

the initial neural network usually does not result in accurate predictions, after each iteration the neural 

network is allowed to change. Iterating back through the layers the weight value between the nodes 

and the biases at each node of the neural network are computed with respect to the gradient of the loss 

function by using the chain rule. Backpropagation is this change in the weights and biases as a 

response to the input data and prediction (Hecht-Nielsen, 1992). The validation step runs at the end of 

each training epoch, a single pass through the training dataset, and compares the prediction from the 
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model to the real prediction to determine loss and accuracy. The training loss and accuracy is not used 

to determine how well our model is performing because it is not a good indication of how the model 

will do with novel data and if training was used to determine if the model improved after each 

training epoch, then there would be a higher change the model would overfit. The last step is testing 

which is an estimator for real-world performance of the model. The testing step is run after model 

development is done and the dataset used for it contains data that is never seen during training. It is 

run the same way as validation where it calculates loss and accuracy to minimize the likelihood of 

overfitting going undetected by analyzing a group of samples that should be novel to the model. After 

this is done the model is trained and validated and can be used to make predictions on similar data.  

 There are many ways to measure the performance of a deep learning model. The most 

common methods are accuracy, loss, precision, and recall and ROC curves. Accuracy measures the 

total accurate predictions over the total number of predictions. While this metric can indicate the 

general performance of a model at a glance, it is relatively simplistic compared to other metrics. For 

example, loss measures how poor a prediction was for a single sample. There are many ways to 

calculate this with the common types being mean absolute error, mean squared error and categorical 

crossentropy. All of these estimate the predictions error in reference to the true prediction but mean 

absolute error and mean squared error are mostly used for regression problems while categorical 

crossentropy is used for multi-class classification problems.  

 In image classification there are many neural networks to choose from but the neural network 

with the best accuracy for many image recognition tasks was InceptionResNetV2 at the outset of this 

project (Szegedy et al., 2016). While this seemed to be the best option there have been many neural 

networks that focus on performance and reducing computational costs since then. This led to a group 

of neural network that tried to be as efficient as possible which were called EfficientNet with the most 

accurate network being EfficientNetB7 (Tan & Le, 2020). 
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Chapter 3: Materials and Methods 

Hardware Specification 

 A local Exxact Valence VWS-1542881-DPN-X299 workstation was used to store data and 

develop the model. The data is stored locally on an Arthropod Molecular Systematics Lab computer 

using a 4TB Western Digital HDD and all computation is run on an Intel Core i9-7900X CPU and 4 

NVIDIA RTX 2080 Ti 11GB GPUs. The operating system used is Ubuntu 16.04. 

The deep learning pipeline uses a TensorFlow 2.3-GPU on a Docker image with Jupyter support (for 

a full list of components see Appendix A). 

Introduction 

During this study we constructed two scripts that are used to obtain the images from two 

citizen science image web-based databases. The first is BugGuide.net, a website containing North 

American arthropod images uploaded and identified by citizen scientists (Anonymous, 2022). The 

second is iNaturalist.org which, like BugGuide, is a web-based database that crowdsources images 

and identifications but is not limited to arthropods, allowing users to upload photographs of any living 

organism (INaturalist, n.d.). The main difference between the two is that BugGuide collects a limited 

number of high-quality curated images for as many classes (species) as possible, while iNaturalist 

collects any identifiable images uploaded to the service. As a result, iNaturalist images often reflect 

organism abundance or sampling effort at the expense of image quality, while BugGuide contains a 

smaller number of high-quality images of many North American arthropod species.  

These images were stored in custom SQLite databases which allowed for quick querying of 

images during model development. Model construction took place in a Docker environment, which is 

a virtual environment that mimics a computer’s operating system allowing for version control of 

operating system environments (Merkel, n.d.). Genus, the first major taxonomic rank above species, 

was used as the goal of the class predictions. The reasoning for this is that very few images of most 

individual arthropod species are available which would mean insufficient data for training and 

identification of most arthropod species, many of which are similar. Secondly, reliable identification 

of genera would still constitute an important contribution as there are no experts capable of quickly 

and reliably identifying all of >10,000 North American arthropod genera (M. Borowiec pers. comm.). 

Six separate models were created in this study (Table 1) and tested against each other based 

on determining three different questions, does the neural network architecture affect performance, 
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what effects does implementing class balancing techniques affect recall, precision, and accuracy, and 

does input image size affect model performance and/or training times. 

Image Acquisition: 

The first script is for obtaining the images from BugGuide.net where the script first opens the 

webpage that contains the taxonomy for Arthropoda. The script then opens the top link in each page 

that has not been opened before and continues until it gets the last entry. This last entry is correlated 

with the lowest part of the taxonomic tree and its taxonomic rank is given by the first word of the last 

entry above the text “Nothing below this species” and the second word gives the scientific name for 

that group of organisms (e.g., Orthoporus ornatus). The script then selects the Images tab and loops 

through all the images until every image is downloaded and given a unique identifier. The script then 

moves to the second to last taxonomic entry link and the process repeats. This allows for all images 

on the website to be retrieved. The original images are saved to a folder structure where each folder is 

named based off the scientific name and taxonomic rank and mirrors the structure of the website. 

After this is completed, the folders are looped through again and input into the BugGuide database 

detailed under the Database Design section of this paper.  

The second script was used to obtain iNaturalist images through Global Biodiversity 

Information Facility (GBIF) which includes all the available image data from the iNaturalist website 

that falls into creative commons licenses for public use (Occdownload Gbif.Org, 2020). The format of 

this image data includes taxonomic information and the image’s associated hyperlink. There are 

limitations to the number of images which may be extracted from the website every day so not all 

images from iNaturalist have been retrieved. Like the BugGuide webscraper, all images are stored in 

an associated SQLite database. 

Database Design: 

An individualized SQLite database to store the image data from iNaturalist and BugGuide 

were constructed.  

The BugGuide database was constructed where each table in the database contained a 

taxonomic level up to phylum with the additional table containing the image data. This included all 

levels present on the BugGuide site which are subspecies, species, genus, subtribe, tribe, supertribe, 

subfamily, family, superfamily, suborder, order, superorder, subclass, class, subphylum, phylum, 

kingdom. The database then references these tables by starting with the image data table and then 

referencing the subspecies name and index in the subspecies table. The subspecies table then 
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references the species name that the subspecies is associated with taxonomically and its 

corresponding index position. This pattern continues throughout the database until it reaches the 

singular kingdom entry in the kingdom table. Although only tables up to phylum are needed, the 

kingdom table is available for future expansion of the model to account for different phyla. The 

exception to this structure is in the image data, subspecies, and species entries where everything 

above the entry is referenced until genus. This is because everything from genus and above have 

unique names while species and subspecies do not. This results in errors when searching for images 

based on subspecies or species and so this workaround was added. 

During the image acquisition process for iNaturalist images each image had associated taxonomic 

positions but, BugGuide had a much more specific taxonomic ranking scheme. Because of this the 

iNaturalist database only referenced the genus, species, and subspecies information for each entry 

reducing querying times and the size of the database. The extracted data from the iNaturalist database 

then could use the BugGuide database as a reference to determine the complete and more specific 

taxonomic hierarchy of each image.  

Docker as Virtual Environment: 

 Docker is an application that emulates working environments without affecting local 

computer program versions. This allows for reproducibility of applications by packaging them with 

everything that is needed for them to run without having issues with conflicting versions of programs 

among other common problems. We opted to use Docker because TensorFlow (the main application 

used for training and testing our models) has a Docker image with most of the applications we need to 

start training and has the required GPU applications for doing multiple GPU training. The Docker 

image we used is the tensorflow/tensorflow (https://hub.docker.com/r/tensorflow/tensorflow) which 

includes the latest GPU and Jupyter support. TensorFlow 2.3, Keras 2.4 and Python 3.5.2 were used 

for the model development.  Along with these core programs we also utilized many Python modules. 

These modules are pandas (pandas development team, 2020; McKinney, 2010), NumPy (Harris, et 

al., 2020), matplotlib (Hunter, 2007), Pillow (Clark, 2015), and scikit-learn (Pedregosa, et al., 2011). 

Training and Validation: 

Image Sanitization: 

The datasets used were not sanitized meaning that images were not manually 

removed if they were not optimal or accurate. This is because this process would be time 
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consuming, and BugGuide and iNaturalist have systems in place to maximize the quality of 

the images. 

 iNaturalist has a verification system which allows the image, or observation as 

described by iNaturalist, to be added to a category called research grade observation. This is 

achieved if 2/3 of identifiers agree on a taxon assignment, the taxon is species level or more 

specific (if the community doesn’t vote that this observation does not need more IDs), the 

community does not vote for the observation to need more IDs, and it will not be counted if 

the smallest place that contains this observation does not include at least 10 other 

observations or >80% of the observations in that area are marked as not wild/naturalized.  

BugGuide has a more simplistic method of determining accuracy of taxon using a 

category called ID requests where users can vote for an image to be added to a certain taxon. 

If image is subjectively judged to be low quality or cannot be identified, it is moved to 

category called frass and then deleted after 30 days. 

Model Development: 

 The script used to train the data was built with many modern machine learning 

techniques in mind. To keep everything consistent all random variables in building the model 

have been kept consistent with a seed value of 12345. This includes the use of Python’s built-

in random module and os module and when calling Keras’ ImageDataGenerators method. 

Images were then read from their SQLite Databases using the sqlite3 Python module and 

added to a pandas dataframe for easy data manipulation where each image was added with its 

associated taxonomic information and a unique image identifier name.  This pandas 

dataframe was split into three pandas dataframes which each contain the images and their 

corresponding taxon information according to the training dataset, validation dataset, and 

testing dataset as per machine learning standards. 

Full Model: 

 The first model constructed is what is referred to here as the full model. This consists 

of all images and genera collected and is split where the training dataset contains 80% of the 

images and the validation and testing datasets both contain 10% of the remaining 20% of the 

images. A table showing the number of images in each set is shown below (Table 1).  
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Table 1. Number of Classes and Images in Full Dataset 

Datasets Number of classes Number of Images Percentage of Total 

Training 7,524 1,486,631 80% 

Validation 7,524 161,544 10% 

Testing 7,524 179,426 10% 

Total 7,524 1,648,175 100% 

 

 The top 1, top 3, and top 5 accuracies were obtained for the full dataset. The top 1 

accuracy represents the model’s prediction correctly guessing the true label, top 3 means that 

the model’s top 3 predictions contained the true label, and top 5 means the top 5 predictions 

contained the true label. 

 To allow for testing of the full model a website was made available to upload an 

image and obtain the top 10 predictions for our model. This was done through the University 

of Idaho’s Northwest Knowledge Network (IIDS NKN, n.d.) and this website called Bug ID 

(Bug ID - Using Machine Learning to Identify Arthropods, n.d.).  

Experimental Models: 

 For the training portion of this study, the full model was reduced to only include 

images from the taxonomic family Noctuidae (Lepidoptera; moths and butterflies) to 

minimize computation time for each model to train. Noctuidae contains many genera with a 

large variation in color, size, and morphology. The models constructed are shown below 

(Table 2). 

Table 2. Experimental Models Constructed 

Neural Network Architecture Input Image Size Separate Balanced Model? 

InceptionResNetV2 
512x512 (control) Yes 
256x256 No 
768x768 No 

EfficientNetB7 512x512 Yes 
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For performance evaluation confusion matrices, accuracy and loss graphs per epoch, 

final accuracy along with macro average precision, recall, and f1-scores were obtained for 

each model. 

  This was split into three datasets were split where the validation and testing set each 

held ~20% of the data and the training dataset held ~60% of the data. The final number of 

images in each dataset is given below (Table 3). 

Table 3. Number of Classes and Images in the Experimental Models Datasets 

Datasets Number of Classes Number of Images Percentage of Total 

Training 323 60,256 60% 

Validation 323 19,894 20% 

Testing 323 19,892 20% 

Total 323 100,042 100% 

 

Dataset Augmentation: 

Each of the training, validation, and testing datasets are then shuffled to decrease the 

likelihood of the model learning relationships between positional information. All images that 

are found in the three datasets are then added to a folder for use with Keras’ Image data 

generator method. This uses a pandas dataframe and a folder reference to create a Python 

generator that can be used to retrieve and train all the images to create a machine learning 

model. The Keras generator references the pandas dataframes created previously and uses 

categorical crossentropy as the label method, RGB color images, and shuffle all the images 

before storing them as a Python generator. The training generator also includes data 

augmentation which changes the images being added to the training generator by randomly 

augmenting an image in several different ways. The list of ways in which the images were 

augmented, description of what it does, and the value we used are listed below (Table 4).  

Table 4. Image Augmentation with Description and Values Used in Training Generator 

Augmentation Type Description Value 

Rotation Range (degrees) Image is rotated within range set 90 

Width Shift Range (%) Image is shifted along width axis .05 

Height Shift Range (%) Image is shifted along height axis .05 
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Shear Range (%) Slants the shape of the image .05 

Zoom Range (proportion) Zooms and magnifies the image .2 

Channel Shift Range Shifts the color value within range 20 

Horizontal Flip Flips the image across vertical axis True 

Fill Mode Fills in unknown pixels with 

known pixels in reverse order 

Reflect 

 

The augmentations listed above are all possible augmentations that can be applied to 

each image. It is important to note that this does not add all the possible augmentations as 

separate images and therefore the epoch size and time per epoch will not change but each 

image can have an augmentation when trained upon. The reason we use augmentations on 

images that are being trained on is to try to increase the chance of generalizing the image data 

and features to predict classes or in other words to reduce the likelihood of overfitting to the 

dataset. Variables constant across training variations are in Table 5. 

Table 5. Variables for Experimental Models 

Variables Value 

Batch Size 16 

Maximum Number of Epochs Normal Training: 60, Fine Tuning: 120 

Learning Rate 𝑒−4 

MirroredStrategy Reduction To One Device 

Number of workers 20 

Optimizer Adam 

 

The batch size is how many images are running at one time during training. Through 

testing I found that for our specific setup sixteen images resulted in the most optimized 

training where number of images running at a time is maximized and epoch completion time 

is minimized. I chose 60 and 120 as the maximum number of epochs that can be run for a 

single model for the normal training step and the fine-tuning step. These are not reached in 

regular model development runs, however, because of an early stopping rule implemented in 

our code: if validation accuracy does not increase after five epochs, the model will either 

move on to the fine-tuning step or, if already fine-tuning, stop training and save model. This 

is to both decrease training time and prevent overfitting. 
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Although how neural network architecture affects model performance is one of the 

variables that we test there are some features that are the same between all models that we 

ran. One of these identical features is that all the neural networks use the same set of ending 

layers or top layers. These top layers are added to the end of base neural network. They are 

composed of a Global Average Pooling 2D layer, Dropout layer, Dense Layer size 1024 with 

L2 regularization of .0001 and a rectified linear activation, another Dropout layer, and 

another Dense layer the same as before except is the size of the number of classes we are 

trying to classify and a softmax activation. We add these layers to further protect from 

overfitting and minimize the output to the number of classes that we have. Transfer learning 

is also used to reduce training times and increase accuracy. Transfer learning provides a 

framework to utilize features that pre-built models have learned to solve new but similar 

problems more quickly and effectively (Lu et al., 2015). Transfer learning copies pre-built 

models trained on a specific task and utilizes these models for model development in similar 

tasks. ImageNet is a frequently used dataset that many neural networks use for transfer 

learning in image classification because of its large variability in classes and large dataset 

size (Deng et al., 2009; Huh et al., 2016). For this study the initial weights and biases for 

InceptionResNetV2 and EfficientNet came from pre-training on ImageNet. For the first part 

of training the model can only alter the top layers and therefore none of the original ImageNet 

weights and biases are changed. This allows to use neural networks that can efficiently 

recognize images and general features of images which can be utilized to classify the images 

in this study and prevents training changing these layers which could alter what features were 

found to have predictive capabilities. After each epoch the model is saved to a folder for 

reference and TensorBoard is utilized as well to create visualizations of how the model 

performs over time. These visualizations are graphs of how accuracy and loss change over 

epochs and include both the base training step and the fine-tuning training step.  

InceptionResNetV2: 

The control neural network used for this study is InceptionResNetV2 (Szegedy et al., 

2016). InceptionResNetV2 is composed of both the Inception neural network and the 

Residual neural network. Residual networks build in “jumps” in its architecture that allows 

nodes to connect to other nodes in a non-linear way by skipping one or multiple layers. This 

is analogous to the biological construct known as pyramidal cells that have this same 

property. The inception network uses a method of creating a wider network instead of a 

deeper network where there are different sized filters that each share a single node allowing 
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for both broad and narrow pattern recognition. Both methods in a single network allows for 

some of the best prediction accuracy for image datasets such as ImageNet and is why this was 

implemented in our original design of our model.  

EfficientNetB7: 

For testing how to optimize identification we looked at a modern neural network 

called EfficientNetB7(Tan & Le, 2020). EfficientNet was made by using deep learning to 

construct its network using state of the art infrastructure techniques along with maximizing 

accuracy and minimizing the size of the network. This led to the development of 7 different 

models named EfficientNetB1, EfficientNetB2…EfficientNetB7. With each subsequent 

model the accuracy of the model increases while also attempting to minimize the size of the 

model to be as efficient as possible. Each of the models were constructed with a different 

image size input and so it is recommended to maximize performance from the model to train 

on images that are close to and the same or smaller size than the input size that the network 

was trained on. EfficientNetB7 was trained on images with the size 600x600. 

All the same features from the base model stay the same besides replacing 

InceptionResNetV2 with the EfficientNetB7 neural network. Also, instead of normalizing the 

pixel values during the Keras generator step we pass in the images without any normalization. 

This is because EfficientNet contains a normalization layer that does the same thing as the 

Keras normalization function. These are both run on our dataset and the data is saved to 

TensorBoard for comparison.  

Class Balancing: 

In this paper we also test whether using simplistic oversampling method can increase 

the recall on our dataset and compare the cost of that increase in recall compared to the 

precision. To do this we change the size of the adjustments to the weights of the neural 

network to normalize it to the number of images in each of the classes using a Keras class 

weight method. This modifies the loss function in a such a way that the smaller classes have 

more weight than the larger classes. While undersampling techniques remove data from the 

dataset which leads to loss of information and oversampling involves duplicating images 

which makes specific features contained in the duplicated images to be learned over the 

majority classes features and these features could only be found in the minority class. The 

oversampling method that is used in this study is an oversampling approach that may lead to 

minority class features more pronounced in the final model each image is still only seen once 
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and so identical features will not be present compared to duplication-based oversampling.  To 

do this in our model training we use the following equation (Equation 1). 

     
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 (𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑝.𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡(𝑦))
    ( 1) 

This equation divides the number of total images (nsamples ) by the number of 

classes (nclasses ) multiplied by the number of samples per that class (np. bincount(y)). This 

results in a value that when multiplied by the number of samples in that class is equal to the 

number of samples divided by the number of classes.  

Image Sizing: 

The last variable tested was image size. This involved evaluation of whether the 

relatively large 512x512 image size that we chose to normalize all our images to is efficient 

and results in better performance of the model. To do this we tested two other variations, 

256x256 and 768x768. The reason these dimensions were chosen specifically is because 

256x256 is a standard image size used by many machine learning models and 768x768 has 

square dimensions and is divisible by our smallest increment of 256. While 1024x1024 would 

follow the 2𝑛 rule that is usually applied to image sizes our current setup’s VRAM capacity is 

unable to work with images of that size. While the reasons why dimensions were chosen are 

based on square dimensions divisible by 256 BugGuide and iNaturalist have different limits 

on what size images they will take into their databases. Differences in the average image size 

could result in an impact in accuracy due to Keras’ bilinear interpolation of images adding 

information to the images that aren’t representative of the true features of the arthropod in the 

image if the images are resized from a lower resolution to a higher resolution. 

Testing: 

For the testing portion of this study, we use Keras’ evaluate method that works similarly to 

the model fit method except we only run only one epoch and use our testing dataset to evaluate how 

well our model worked. We run this for each model and just like the other runs output the results to 

TensorBoard. These TensorBoard statistics are then sent to matplotlib to create graphs to compare 

similar runs together.  

Along with the graphs, mathematical metrics are calculated using the classification report 

method of scikit-learn. These include macro average precision, macro average recall, macro average 

f1-score, and accuracy which are standard metrics to measure the performance of a model (Grandini 
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et al., 2020). Macro average is used because it more accurately demonstrates that the effect of the 

biggest classes have the same importance as small ones have while other averages can 

disproportionately favor the biggest classes in the measure of the metrics.  Precision is defined as the 

number of positive class predictions that belong to the positive class. Precision is usually maximized 

when the purpose of the model is to identify the highest number of instances of a class correctly. 

Recall is defined as the number of positive class predictions out of all positive examples in the 

dataset. Recall is usually maximized to minimize the likelihood of false negatives and maximize the 

accuracy of rarer classes. F1-score is a metric that evaluates the performance of a model by 

combining both precision and recall into a measurable score. Accuracy is a measure of correct 

predictions over all predictions. 
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CHAPTER 4: Results 

Full Model: 

The full model was used to determine if using deep learning for the creation of a large-scale 

model was an effective way to identify North American arthropods. The full model consists of all 

~1.4 million images. The top 1, top 3, and top 5 accuracy metrics were taken. The results of this are 

shown below (Table 6).  

Table 6. Full Model Top 1, Top 3, and Top 5 Accuracy 

Model Top 1 Accuracy Top 3 Accuracy Top 5 Accuracy 

Full Model .80 .89 .92 

 

For the full model 80% of the time the model correctly identified the arthropod from the 

image. On top of this 89% of the time the true label was in the top 3 predictions and 92% of the time 

the model was able to predict the true label in the top 5 results. 

Experimental Models: 

Control Model using InceptionResNetV2: 

All experimental models were constructed using a subset of the full model which 

only included the taxonomic family Noctuidae (Lepidoptera; moths and butterflies). This 

control model uses the trained InceptionResNetV2, no weight balancing, and 512x512 

images. The testing dataset was used to determine the statistics relevant to each part of the 
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results. Analysis was done using Keras’ evaluate function. The confusion matrix below 

shows the results of this evaluation (Figure 1).  

 

Figure 1. InceptionResNetV2 Confusion Matrix 

  



19 
 

The confusion matrix shows the true classes numbered on the y-axis and the 

predicted classes on the x-axis. The color legend shows the percentage a scale from 0 to 1 

where 1 (white) means that all images are predicted to be that class and 0 (black) means that 

no images are predicted to be that class. Correctly predicted images are on the diagonal. Here 

we can see that most images and classes are accurately predicted but there are a few classes 

that are incorrectly identified and out of these some of them are consistently confused with 

one other class (light cells not on the diagonal).  

The TensorBoard graphs below show the training and validation accuracies and loss over 

time with the x-axis representing the number of epochs and the y-axis representing the accuracy 

(Figure 2) (Figure 3). 

 

Figure 2. InceptionResNetV2 Accuracy Over Epochs 
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Figure 3. InceptionResNetV2 Loss Over Epochs 

Both graphs show that over time the performance of the model improves. In both a 

large increase in performance is visible at the point when the model switched from initial 

training to fine-tuning. There is little divergence towards end of the training, indicating little 

overfitting. 

The macro average precision, recall and f1-score were found along with accuracy. 

The results of this are shown below (Table 7).  

Table 7. InceptionResNetV2 Precision, Recall, F1-score and Accuracy 

Precision Recall F1-score Accuracy 

.83 .75 .77 .87 

 

Macro average was used for these values because it gives the mean score for each 

class and thus accounts for differences in number of images in each class which. As seen in 
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the table, accuracy is high but the f1-score is much lower indicating that there is a lower 

average precision and recall that isn’t included in the accuracy.   

EfficientNetB7: 

This section of the study tests whether the type of neural network architecture used 

has an impact on performance. EfficientNetB7, no weight balancing, and 512x512 model was 

used to test the performance change from changing the neural network architecture. The 

EfficientNetB7 confusion matrix is shown below (Figure 4). 
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Figure 4. EfficientNetB7 Confusion Matrix 

  

Similarly, to the InceptionResNetV2 model, most classes are accurately predicted but 

there are some classes that are consistently confused with one other class. With this said, 

there is more confidence in the predictions along the diagonal line and some of the images 

that were misidentified in the InceptionResNetV2 model are not misidentified here. 
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The TensorBoard graphs below show the training and validation accuracies and loss 

over time with the x-axis representing the number of epochs and the y-axis representing the 

accuracy for both InceptionResNetV2 and EfficientNetB7(Figure 5) (Figure 6). 

 

Figure 5. EfficientNetB7 vs InceptionResNetV2 Accuracy Over Epochs 
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Both graphs show that over time the performance of the model improves. 

EfficientNetB7 finishes training in a shorter number of epochs and at the end of training 

diverges less than InceptionResNetV2. 

The macro average precision, recall and f1-score were found along with accuracy for 

both the models. The results of this are shown below (Table 8).  

Table 8. InceptionResNetV2 vs EfficientNetB7 

Model Precision Recall F1-score Accuracy 

InceptionResNetV2 .83 .75 .77 .87 

EfficientNetB7 .89 .80 .84 .90 

 

The results show that EfficientNetB7 achieves higher precision, recall, f1-score and 

accuracy compared to InceptionResNetV2. 

Class Balancing: 

This section of the study tests whether class balancing can have an impact on 

performance. The models used are the trained InceptionResNetV2, with and without weight 

balancing, and 512x512 model and the EfficientNetB7, with and without weight balancing, 

and 512x512 model. The Balanced InceptionResNetV2 confusion matrix is shown below 

(Figure 7). 
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Figure 7. Balanced InceptionResNetV2 Confusion Matrix 

This confidence in the predictions of this confusion matrix seems to be lower than 

that of the unbalanced InceptionResNetV2 model with fewer instances of classes being 

confused with another other class. 

The TensorBoard graphs below show the training and validation accuracies and loss 

over time with the x-axis representing the number of epochs and the y-axis representing the 
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accuracy for both the Balanced InceptionResNetV2 and Unbalanced InceptionResNetV2 

(Figure 8) (Figure 9). 

 

 

Figure 8. InceptionResNetV2 Balanced vs Unbalanced Accuracy Over Epochs 
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Both graphs show that over time the performance of the model improves. With this 

said the unbalanced model ends training much quicker than the unbalanced model at the cost 

of lower accuracy and higher loss.  

The macro average precision, recall and f1-score were found along with accuracy for 

both the models. The results of this are shown below (Table 9).  

Table 9. InceptionResNetV2 vs Balanced InceptionResNetV2 

Model Precision Recall F1-score Accuracy 

Unbalanced 

InceptionResNetV2 

.83 .75 .77 .87 

Balanced InceptionResNetV2 .72 .75 .70 .69 

 

The unbalanced model performs better in precision, f1-score and accuracy compared 

to the balanced model. Also, the unbalanced model achieves the same recall as the balanced 

model. 

The Balanced EfficientNetB7 confusion matrix is shown below (Figure 10). 
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Figure 10. Balanced EfficientNetB7 Confusion Matrix 

 Similarly, to the unbalanced EfficientNetB7 model most classes are accurately 

predicted but there are some classes that are incorrectly identified and out of this 

misidentified prediction some of them are consistently misidentified with one other class, but 

the amount of these misidentified predictions seems to be much lower. 

The Tensorboard graphs below show the training and validation accuracies and loss 

over time with the x-axis representing the number of epochs and the y-axis representing the 

accuracy for both the Balanced EfficientNetB7 and Unbalanced EfficientNetB7(Figure 11)  

(Figure 12). 
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Figure 11. EfficientNetB7 Balanced vs Unbalanced Accuracy Over Epochs 

 

Figure 12. EfficientNetB7 Balanced vs Unbalanced Loss Over Epochs 

Both graphs show that over time the performance of the model improves. They also 
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The macro average precision, recall and f1-score were found along with accuracy for 

both the models. The results of this are shown below (Table 10).  

Table 10. EfficientNetB7 Vs Balanced EfficientNetB7 

Model Precision Recall F1-score Accuracy 

Unbalanced EfficientNetB7 .89 .80 .84 .90 

Balanced EfficientNetB7 .86 .82 .83 .87 

 

The balanced EfficientNetB7 model obtained better recall at the cost of lower 

precision, f1-score, and accuracy. 

Image Sizing: 

This section of the study tests whether input image size can have an impact on 

performance. All the models tested here use InceptionResNetV2 with no weight balancing 

however, there are 3 different input image sizes. These are 768x768, 512x512, and 256x256. 

The 768x768 confusion matrix is shown below (Figure 13). 
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Figure 13. InceptionResNetV2 768x768 Confusion Matrix 

Most classes are accurately predicted but there are some classes that are incorrectly 

identified and out of this misidentified prediction some of them are consistently misidentified 

with one other class. 
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The 256x256 confusion matrix is shown below (Figure 14). 

 

Figure 14. InceptionResNetV2 256x256 Confusion Matrix 

Most classes are accurately predicted but there are some classes that are incorrectly 

identified and out of this misidentified prediction some of them are consistently misidentified 

with one other class and at a higher rate than that of the 512x512 model. 

The Tensorboard graphs below show the training and validation accuracies and loss 

over time with the x-axis representing the number of epochs and the y-axis representing the 

accuracy for the 512x512, 768x768, and 256x256 models (Figure 15) (Figure 16). 
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Figure 15. InceptionResNetV2 512x512 vs 256x256 vs 768x768 Accuracy Over Epochs 

 

Figure 16. InceptionResNetV2 512x512 vs 256x256 vs 768x768 Loss Over Epochs 
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Both graphs show that over time the performance of the model improves. The 

256x256 model takes the shortest amount of time with the lowest performance while the 

512x512 takes the longest time and both the 512x512 and 768x768 achieve similar 

performance. All of the models diverging at the end of the training seem to be of a similar 

size.  

The macro average precision, recall and f1-score were found along with accuracy for 

both the models. The results of this are shown below (Table 11).  

Table 11. InceptionResNetV2 512x512 vs 256x256 vs 768x768  

Model 

(InceptionResNetV2) 

Precision Recall F1-score Accuracy 

512x512 .83 .75 .77 .87 

256x256 .70 .51 .56 .75 

768x768 .83 .70 .74 .87 

 

The 256x256 model has the lowest precision, recall, f1-score and accuracy out of all 

the models. Precision and accuracy are the same for the 512x512 and 768x768 models. The 

512x512 model achieves the highest recall and f1-score of all the models. 
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CHAPTER 5: Discussion 

Key Findings: 

The objective of this study is to determine if deep learning is a realistic method for 

identifying arthropods to the taxonomic level of genus, and to determine the most optimal machine 

learning methods that may be used for this specific goal. 

Based on the full model’s results 80% of predictions were correctly classified and 92% of 

predictions contained the true label in the top 5 results. This shows that the model created can be a 

realistic method for identifying arthropod genera across North America.  

While these results are promising this study also wanted to determine if a more optimal 

model could be created. To do this, 6 models were tested and compared to determine 3 different 

methods for increasing model performance. These are changing the neural network architecture, 

performing class balancing, and changing input image size.  

To test whether changing the neural network architecture played a role in model performance 

the control architecture, InceptionResNetV2, was tested against EfficientNetB7. The results of this 

showed that for precision, recall, f1-score, and accuracy EfficientNetB7 performed better than 

InceptionResNetV2. It also achieved this performance in less time than the InceptionResNetV2 

model. Therefore, this indicates that changing the underlying neural network of a model can increase 

performance.  

Class balancing was performed on both InceptionResNetV2 and EfficientNetB7. For 

InceptionResNetV2 it was found that there was no increase in performance for the balanced model 

and the only metric that did not decrease was recall which stayed the same. Therefore, for 

InceptionResNetV2 it is detrimental to use the class balancing algorithm used. This lack of increase 

in recall for InceptionResNetV2 could be due to the balancing of the rare classes not overcoming the 

weight of the common classes. This idea may be supported with the large decrease in accuracy 

between the balanced and unbalanced datasets which could happen because while the balancing is 

enough to move a prediction from the common class but not enough to move the prediction to the true 

prediction. Class balancing was also used on EfficientNetB7 where the balanced model performed 

better on recall but lower on the other metrics. This is an expected result where class balancing 

usually increases recall at the cost of other metrics like precision. Therefore, if recall is to be 

maximized for EfficientNetB7, using class balancing would be an effective method. 
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Input image size comparisons were performed on InceptionResNetV2 using 512x512, 

768x768, and 256x256 images. It was found that 256x256 performed worse than the other two 

models on all metrics. This indicates that as you decrease image size there may be a loss in features 

available for learning and thus performance can degrade. Comparing the 512x512 and 768x768 

models the 512x512 model achieved better recall and f1-score whereas the other metrics were equal 

between the two models. This indicates that there is an optimal size of images and that performance 

does not increase indefinitely with increasing image size most likely due to that features on the image 

being learned on are present in both models. This could be cause because both databases, BugGuide 

and iNaturalist, have varying image sizes and if most input images are smaller than 768x768 then 

upscaling the image would not provide more useful features for the model to learn on.  

Limitations: 

While our results are promising there are other strategies that could increase the accuracy and 

efficacy of our model.  

When web scraping our data from the citizen science databases, we did not do any data 

sanitization. While earlier in the paper we described the overall effect on our dataset as negligent to 

the learning this lack of data sanitization could lead to errors in the accuracy of identification in 

specific classes. For example, if images that were incorrectly identified, include artifacts, are of low 

image quality, or are of generally low quality for deep learning tasks were not common and evenly 

distributed this would not have a large impact to the accuracy of the model; however, if these were 

common for a particular class this could lead to a large impact in accurately identifying that class.  

There are more robust methods to balance classes and the method we used to compare class 

balancing between our models was relatively rudimentary. For example, a method like SMOTE, 

while harder to implement, has shown promising results in dealing with the imbalanced class 

problem. A future study finding the benefits of one balancing method over another for our data could 

be helpful in determining if the error found between these methods is significant. Ecological 

identification methods have suffered from not being able to have adequate solutions for imbalanced 

datasets, scarce data and open-world applications (Villon et al., 2022). While some of these were 

tested for like looking at how our data is balanced and using large amounts of data looking at how we 

could tackle these differently and focusing on how to approach the new classes in open-world 

applications is something that needs to be addressed.  
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Significance: 

The results of this study show that machine learning is a viable method to identify arthropods 

from images and methods for increasing performance can be used in these types of applications. This 

is important because the use of machine learning techniques could be the next frontier in biology that 

could lead to more robust identifications of arthropods that lack bias and expediate tedious and time-

consuming identification that are part of many studies of arthropods. This solution is robust enough to 

compete with experts and has enough variability in classes to compete in many different fields of 

study.  

Future Work: 

In the future this study will try to move towards optimization of the classification model 

using recent advancements seen in deep learning to create a more accurate model with more features. 

Combining the model created in this study with object detection to identify and pinpoint areas of 

interest in video data would allow for the ability of the model to differentiate images with multiple 

specimens in one image and create individualized specimen counts for each genera.  

Object Detection: 

Object detection is the process of finding the areas of interest in an image and 

highlighting that area, usually through a bounding box. This can be done by attaching the 

YOLO network to our neural network before training. YOLO works by partitioning the 

image into rectangles and finding the accuracy of each partition and then partitioning the 

most accurate section over and over until you find the partition with the highest accuracy. 

This allows the model to determine what part of the image is most likely to contain the object 

that is trying to be predicted. You can do this for multiple classes and allows multiple classes 

to be in a single image as well to count the number of instances of a specific class. After 

object detection is completed other issues can be addressed such as those posed with open-

world applications (Villon et al., 2022). One of these issues that can be addressed with an 

object detection model is including an “unknown” class. 
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Chapter 6: Conclusion 

Deep learning techniques can revolutionize how we approach many areas of science. While 

many areas of ecology and biology have been improved through deep learning, few attempts at 

training models capable of recognizing thousands of organisms on a continental scale have been 

made. While there have been attempts at arthropod identification in entomology, most of the 

applications have been focused on models identifying crop pests and specific groups of arthropods. 

The work shown here shows that leveraging citizen science data we can identify arthropods with high 

confidence and accuracy. We found that deep learning is a viable tool for large-scale identification of 

arthropods with our result of 80% top-1accuracy on 7,524 classes/genera. This work compared 

various training strategies and showed that advancements in deep learning techniques including 

neural network architectures, image processing and detection will further increase the accuracy and 

efficiency of automated species identification. This could lead to increased accuracy in research and 

greater variability in what can be identified and compared in studies. The increased speed of 

identification could also lead to faster research or even speed up diagnosis of arthropod related 

conditions. It was shown that changing the neural network architecture led to higher performance of 

the model, that class balancing can lead to increased recall, and that increasing input sizes of images 

can correlated with better performance, but this increase also is logarithmic in some cases. While this 

model achieved the goals of this study future research into optimizing our model such as through the 

use of object detection could expand the use cases of the model. 
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Appendix A: Complete List of Components Used 

COMPONENTS QUANTITY 

VWS-1542881-DPN-BLACK STEEL / PLASTIC MINI-ITX, MICRO-ATX, 

E-ATX CUBE HIGH AIRFLOW CUBE CASE 

1 

X299 BASED MOTHERBOARD, SUPPORTS 1X LGA2066 CPU, 2X M.2 

PCIE MODE2X M.2 PCIE MODE, 8X DDR4 SLOTS, 2X GBE NIC, 7X 

PCIE X16 SLOTS (QUAD X16 WITH 44 LANE CPU) 

1 

INTEL CORE I9-7900X 10 CORE PROCESSOR 13.75M CACHE BASE 

3.30GHZ BOOST UP TO 4.30 GHZ 140W LGA2066 

1 

LIQMAX III HF CPU LIQUID COOLER 1 

16GB DDR4 2666MHZ DESKTOP MEMORY MODEL 6 

4TB WESTERN DIGITAL HDD DRIVE 1 

NVIDIA RTX 2080 TI 11GB GPU 4 

2000W MODULAR ATX PS2 POWER SUPPLY 80PLUS PLATINUM 

COMPLIANT 

1 

UBUNTU 16.04 1 

DOCKER W/ NVIDIA-DOCKER WRAPPER, DOCKER IMAGE 

INSTALLATION/TESTING WITH AVAILABLE OPENSOURCE DOCKER 

IMAGES, 

NVIDIA/:EXXACT_DIGITS_PAGE:,:TENSORFLOW/TENSORFLOW, 

NVIDIA/CAFFE, ETC. 

1 

 

 

 

 


