

A Case Study Using Deep Learning to Identify North American Arthropods in Photographs

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Bioinformatics and Computational Biology

in the

College of Graduate Studies

University of Idaho

by

Alexander J. Mckeeken

Approved by:

Major Professor: Marek Borowiec, Ph.D.

Committee Members: Audrey Fu, Ph.D.; Paul Frandsen, Ph.D.; Terrence Soule, Ph.D.

Department Administrator: Paul Hohenlohe, Ph.D.

May 2022

ii

Abstract

 Identification of arthropods is important in academic and medical applications such as

species-species interaction studies and identification for medical diagnosis. Deep learning is a tool

that can be used to solve these problems quickly and accurately. For this study, a deep learning model

was developed that has the capability of identifying North American arthropods to the genus level and

compared multiple methods to increase the performance of this model. These methods include

changing the neural network architecture, class balancing, and changing the image input size. The full

deep learning model using InceptionResNetV2 obtained top 1 accuracies of 80% and top 5 accuracies

of 92%. Comparatively, it was found that changing the neural network to EfficientNetB7 in a subset

of the full model achieved a top 1 accuracy of 90%. It was also found class balancing in certain

circumstances increased recall and that increasing image input size had a logarithmic effect on

performance.

iii

Acknowledgements

I would like to express my gratitude to my major professor, Marek Borowiec, who guided me

throughout this project and was always available for any questions I had. I would also like to thank

the Bioinformatics and Computational Biology students and faculty, friends and family who

supported me and offered deep insight into the study.

iv

Table of Contents

Abstract .. ii

Acknowledgements ... iii

List of Tables .. vi

List of Figures .. vii

Chapter 1: Introduction .. 1

Chapter 2: Literature Review ... 3

Chapter 3: Materials and Methods .. 6

Hardware Specification .. 6

Introduction .. 6

Image Acquisition: .. 7

Database Design: .. 7

Docker as Virtual Environment: .. 8

Training and Validation: ... 8

Image Sanitization: ... 8

Model Development: .. 9

Full Model: .. 9

Experimental Models: .. 10

Dataset Augmentation: .. 11

EfficientNetB7:.. 14

Class Balancing: .. 14

Image Sizing: ... 15

Testing: ... 15

CHAPTER 4: Results .. 17

Full Model: .. 17

Experimental Models: .. 17

Control Model using InceptionResNetV2: .. 17

EfficientNetB7:.. 21

Class Balancing: .. 24

Image Sizing: ... 30

CHAPTER 5: Discussion ... 35

v

Key Findings: ... 35

Limitations: ... 36

Significance: .. 37

Future Work: .. 37

Object Detection: ... 37

Chapter 6: Conclusion .. 38

References .. 39

Appendix A: Complete List of Components Used .. 41

vi

List of Tables

Table 1. Number of Classes and Images in Full Dataset .. 10

Table 2. Experimental Models Constructed ... 10

Table 3. Number of Classes and Images in the Experimental Models Datasets 11

Table 4. Image Augmentation with Description and Values Used in Training Generator 11

Table 5. Variables for Experimental Models.. 12

Table 6. Full Model Top 1, Top 3, and Top 5 Accuracy .. 17

Table 7. InceptionResNetV2 Precision, Recall, F1-score and Accuracy ... 20

Table 8. InceptionResNetV2 vs EfficientNetB7 .. 24

Table 9. InceptionResNetV2 vs Balanced InceptionResNetV2 ... 27

Table 10. EfficientNetB7 Vs Balanced EfficientNetB7 ... 30

Table 11. InceptionResNetV2 512x512 vs 256x256 vs 768x768 .. 34

vii

List of Figures

Figure 1. InceptionResNetV2 Confusion Matrix ... 18

Figure 2. InceptionResNetV2 Accuracy Over Epochs ... 19

Figure 3. InceptionResNetV2 Loss Over Epochs ... 20

Figure 4. EfficientNetB7 Confusion Matrix ... 22

Figure 5. EfficientNetB7 vs InceptionResNetV2 Accuracy Over Epochs ... 23

Figure 6. EfficientNetB7 vs InceptionResNetV2 Loss Over Epochs ... 23

Figure 7. Balanced InceptionResNetV2 Confusion Matrix .. 25

Figure 8. InceptionResNetV2 Balanced vs Unbalanced Accuracy Over Epochs................................. 26

Figure 9. InceptionResNetV2 Balanced vs Unbalanced Loss Over Epochs .. 26

Figure 10. Balanced EfficientNetB7 Confusion Matrix ... 28

Figure 11. EfficientNetB7 Balanced vs Unbalanced Accuracy Over Epochs 29

Figure 12. EfficientNetB7 Balanced vs Unbalanced Loss Over Epochs .. 29

Figure 13. InceptionResNetV2 768x768 Confusion Matrix .. 31

Figure 14. InceptionResNetV2 256x256 Confusion Matrix .. 32

Figure 15. InceptionResNetV2 512x512 vs 256x256 vs 768x768 Accuracy Over Epochs 33

Figure 16. InceptionResNetV2 512x512 vs 256x256 vs 768x768 Loss Over Epochs 33

1

Chapter 1: Introduction

Correct species identification is integral to downstream biological applications such as

species-species interactions (Åkesson et al., 2021) and phylogenetic problems which support research

in conservation and sustainability. However, current identification methods often are time consuming

and are susceptible to bias or inaccuracies. This is because most current approaches require an expert

capable of identifying the specimen. For many taxonomic groups there are few or no experts capable

of identification down to species level. For example, a paper on identification in medical laboratory

settings discusses how arthropod identification is dependent on the expertise of the laboratory and can

be challenging because of the variety of specimens and the variance in expertise of labs(Mathison &

Pritt, 2014). If further identification is needed the specimen can be sent to entomologists, a local

university, or museum. This shows how time-consuming identification can be and how many places a

specimen can go before an identification is made. This also shows that there is need for arthropod

identification in areas other than research and potentially lead to faster diagnosis and treatments for

arthropod related illness.

This problem may be solved through deep learning, a method which utilizes large amounts of

data to train a network or machine learning model to solve complex problems like identification.

Deep learning is a newly evolving frontier of computer science that leverages what we see in

biological neural networks. Biological neural networks are the system neurons interlinked together.

Neurons receiving a will reach a charge threshold which stimulates the neuron to “fire” a signal to

other connected neurons. Similarly, an artificial neural network communicates by altering the signal

from the input data which then leads to an output signal to linked neurons or nodes. By applying these

biological processes to computer science, a machine can mimic learning and using an artificial neural

network and enough relevant data can be used to train a model to solve complex problems. While

deep learning has been looked at as a method for identification of arthropods most studies have only

used deep learning for small number of taxa or singular families (Boer & Vos, 2018; Ding & Taylor,

2016; Hansen et al., 2020). A notable exception to this is Seek by iNaturalist (Ueda, 2019; Van Horn

et al., 2018). While iNaturalist’s model tries to identify much more than just arthropods this post does

quantify the accuracy of insects at only 65% for species level which is the lowest accuracy of all the

groups it trained. This shows there is a lot more work needed before there is accurate large-scale

identification of arthropods. Therefore, the objective of this study is to determine if deep learning

is a realistic method for identifying arthropods to the taxonomic level of genus, and to

determine the most optimal machine learning methods that may be used for this specific goal.

To determine the performance of the model a full model is first trained on all North American

2

arthropod images obtained. This full model is then subset into a smaller dataset where different

optimization methods are performed and compared together. To measure performance, accuracy

metrics for the full model are calculated and then for the subset models along with accuracy a

confusion matrix, accuracy over time, loss over time, precision, recall, and f1-score are also obtained

according to standard metrics to measure performance for multi-class classification deep learning

models. While deep learning should not be the only way to identify arthropods, if we can verify that

this method is robust and efficient and optimize it for this specific goal, we could significantly impact

how arthropod identification is done in the future.

3

Chapter 2: Literature Review

Machine learning is a subset of artificial intelligence that creates algorithms using data to

learn to solve problems. There are two main types of machine learning paradigms: supervised and

unsupervised. Supervised machine learning systems utilize curating labeled data into a homogenous

dataset to train on and allow for more control on how and the machine “learns” from the dataset.

Labeled data means that the data is connected to a label which usually denotes what the correct

prediction is supposed to be. Unsupervised machine learning is a paradigm that allows the algorithm

to try to learn from a dataset without labeling the data. This results in a model that may work out its

own method to tackle the problem but gives up more control on how the model learns. Most

unsupervised methods are used for clustering and feature reduction (Mahesh, 2019). While many of

these machine learning models use deep learning to achieve these goals some machine learning

techniques opt-out of using deep learning. An example of this is random-forest which uses decision

trees instead of utilizing neural networks and therefore doesn’t fit into the category of deep learning

(Mahesh, 2019). An advantage of this type of machine learning method is that non-deep learning

methods tend to be less parameter rich and easier to implement. While deep learning usually is much

more parameter-rich and tend to be more robust for more complicated problems and are more likely

to be used for large-scale classification problems.

 Deep learning utilizes deep networks of interconnected nodes (or neurons) to act as an

artificial version of the human brain’s neural network and have been invaluable in solving some of

our hardest problems. These deep learning networks are called artificial neural networks. The

structure of a neural network is usually comprised of layers. Layers are groups of neurons which take

in information from a previous layer or the input data directly and send this information to another

layer or act as the final prediction. The input layer is the layer that gets its information from the data

directly and the output layer consists of the final predictions for the model. All other layers between

these two are known as hidden layers. These layers connect to other layers through the individual

nodes.

 Each connection between a node has a weight and each node has a bias. A weight is a value

used to control the strength of a connection. This value determines how much one node’s signal will

affect another one being signaled. A bias is a value that is associated with each node. This will be

added after the weight calculation is found and affects how far the activation function is shifted. The

activation function is the weighted sum between a node or nodes within a single layer of the neural

network that are derived from the calculations between the weights and biases.

4

There are many different types of artificial neural networks used in different applications and

specific problems. Some of the main neural network architectures are multilayer perceptron,

convolutional, and recurrent neural networks. The multilayer perceptron (MLP) is one of the smallest

neural networks usually consisting of an input layer, hidden layer, and output layer. These networks

are usually used for simple datasets like tabular data, classification prediction, and regression

prediction problems. Convolutional neural networks (CNNs) are much larger than MLP networks and

consist of tens to thousands of interconnected hidden layers. Along with this increase in layers,

convolutional neural networks use a small filter containing a grid pattern which runs across the data

to interpret and learn feature and spatial information. The grid-like pattern and feature rich quality of

image data makes CNNs well suited for solving image related problems like classification. Recurrent

neural networks are similar to CNNs with their large networks of interconnected neurons. However,

RNNs excel at data where each part of the sample is related to each other. This is because RNNs take

the output from a particular layer and uses this as input to the same layer which can store information

in the hidden layers as a pseudo-memory. RNNs are one of the most widely used networks because of

their ability to solve problems related to language recognition, text summarization, and music

composition because these types of data are highly contextual based on previous output. While all

these networks are used for different types of data and in different contexts building the model from

these neural networks usually follows the same three steps: training, validation, and testing. The

training step allows the network to access and “learn” on the data. This usually consists of 60−80% of

the whole dataset while the validation and testing sets are usually split into 10−20% each. These are

split to reduce overfitting. Overfitting is a common problem in deep learning that can be thought of as

a lack of ability for the model to generalize. It comes from the model learning specific features from

the datasets used in training that are not generalizable, and thus creating artificially high accuracies or

low losses during training but poorer performance with data outside of the data used during training.

During training, each sample is converted to values based on the input data, and these values are fed

into the artificial neural network. The product of the weight and value calculated in the previously

connected node is found for each connection and then the bias is applied at each node. This is

repeated until the last layer which is representative of the final prediction. While a single pass through

the initial neural network usually does not result in accurate predictions, after each iteration the neural

network is allowed to change. Iterating back through the layers the weight value between the nodes

and the biases at each node of the neural network are computed with respect to the gradient of the loss

function by using the chain rule. Backpropagation is this change in the weights and biases as a

response to the input data and prediction (Hecht-Nielsen, 1992). The validation step runs at the end of

each training epoch, a single pass through the training dataset, and compares the prediction from the

5

model to the real prediction to determine loss and accuracy. The training loss and accuracy is not used

to determine how well our model is performing because it is not a good indication of how the model

will do with novel data and if training was used to determine if the model improved after each

training epoch, then there would be a higher change the model would overfit. The last step is testing

which is an estimator for real-world performance of the model. The testing step is run after model

development is done and the dataset used for it contains data that is never seen during training. It is

run the same way as validation where it calculates loss and accuracy to minimize the likelihood of

overfitting going undetected by analyzing a group of samples that should be novel to the model. After

this is done the model is trained and validated and can be used to make predictions on similar data.

 There are many ways to measure the performance of a deep learning model. The most

common methods are accuracy, loss, precision, and recall and ROC curves. Accuracy measures the

total accurate predictions over the total number of predictions. While this metric can indicate the

general performance of a model at a glance, it is relatively simplistic compared to other metrics. For

example, loss measures how poor a prediction was for a single sample. There are many ways to

calculate this with the common types being mean absolute error, mean squared error and categorical

crossentropy. All of these estimate the predictions error in reference to the true prediction but mean

absolute error and mean squared error are mostly used for regression problems while categorical

crossentropy is used for multi-class classification problems.

 In image classification there are many neural networks to choose from but the neural network

with the best accuracy for many image recognition tasks was InceptionResNetV2 at the outset of this

project (Szegedy et al., 2016). While this seemed to be the best option there have been many neural

networks that focus on performance and reducing computational costs since then. This led to a group

of neural network that tried to be as efficient as possible which were called EfficientNet with the most

accurate network being EfficientNetB7 (Tan & Le, 2020).

6

Chapter 3: Materials and Methods

Hardware Specification

 A local Exxact Valence VWS-1542881-DPN-X299 workstation was used to store data and

develop the model. The data is stored locally on an Arthropod Molecular Systematics Lab computer

using a 4TB Western Digital HDD and all computation is run on an Intel Core i9-7900X CPU and 4

NVIDIA RTX 2080 Ti 11GB GPUs. The operating system used is Ubuntu 16.04.

The deep learning pipeline uses a TensorFlow 2.3-GPU on a Docker image with Jupyter support (for

a full list of components see Appendix A).

Introduction

During this study we constructed two scripts that are used to obtain the images from two

citizen science image web-based databases. The first is BugGuide.net, a website containing North

American arthropod images uploaded and identified by citizen scientists (Anonymous, 2022). The

second is iNaturalist.org which, like BugGuide, is a web-based database that crowdsources images

and identifications but is not limited to arthropods, allowing users to upload photographs of any living

organism (INaturalist, n.d.). The main difference between the two is that BugGuide collects a limited

number of high-quality curated images for as many classes (species) as possible, while iNaturalist

collects any identifiable images uploaded to the service. As a result, iNaturalist images often reflect

organism abundance or sampling effort at the expense of image quality, while BugGuide contains a

smaller number of high-quality images of many North American arthropod species.

These images were stored in custom SQLite databases which allowed for quick querying of

images during model development. Model construction took place in a Docker environment, which is

a virtual environment that mimics a computer’s operating system allowing for version control of

operating system environments (Merkel, n.d.). Genus, the first major taxonomic rank above species,

was used as the goal of the class predictions. The reasoning for this is that very few images of most

individual arthropod species are available which would mean insufficient data for training and

identification of most arthropod species, many of which are similar. Secondly, reliable identification

of genera would still constitute an important contribution as there are no experts capable of quickly

and reliably identifying all of >10,000 North American arthropod genera (M. Borowiec pers. comm.).

Six separate models were created in this study (Table 1) and tested against each other based

on determining three different questions, does the neural network architecture affect performance,

7

what effects does implementing class balancing techniques affect recall, precision, and accuracy, and

does input image size affect model performance and/or training times.

Image Acquisition:

The first script is for obtaining the images from BugGuide.net where the script first opens the

webpage that contains the taxonomy for Arthropoda. The script then opens the top link in each page

that has not been opened before and continues until it gets the last entry. This last entry is correlated

with the lowest part of the taxonomic tree and its taxonomic rank is given by the first word of the last

entry above the text “Nothing below this species” and the second word gives the scientific name for

that group of organisms (e.g., Orthoporus ornatus). The script then selects the Images tab and loops

through all the images until every image is downloaded and given a unique identifier. The script then

moves to the second to last taxonomic entry link and the process repeats. This allows for all images

on the website to be retrieved. The original images are saved to a folder structure where each folder is

named based off the scientific name and taxonomic rank and mirrors the structure of the website.

After this is completed, the folders are looped through again and input into the BugGuide database

detailed under the Database Design section of this paper.

The second script was used to obtain iNaturalist images through Global Biodiversity

Information Facility (GBIF) which includes all the available image data from the iNaturalist website

that falls into creative commons licenses for public use (Occdownload Gbif.Org, 2020). The format of

this image data includes taxonomic information and the image’s associated hyperlink. There are

limitations to the number of images which may be extracted from the website every day so not all

images from iNaturalist have been retrieved. Like the BugGuide webscraper, all images are stored in

an associated SQLite database.

Database Design:

An individualized SQLite database to store the image data from iNaturalist and BugGuide

were constructed.

The BugGuide database was constructed where each table in the database contained a

taxonomic level up to phylum with the additional table containing the image data. This included all

levels present on the BugGuide site which are subspecies, species, genus, subtribe, tribe, supertribe,

subfamily, family, superfamily, suborder, order, superorder, subclass, class, subphylum, phylum,

kingdom. The database then references these tables by starting with the image data table and then

referencing the subspecies name and index in the subspecies table. The subspecies table then

8

references the species name that the subspecies is associated with taxonomically and its

corresponding index position. This pattern continues throughout the database until it reaches the

singular kingdom entry in the kingdom table. Although only tables up to phylum are needed, the

kingdom table is available for future expansion of the model to account for different phyla. The

exception to this structure is in the image data, subspecies, and species entries where everything

above the entry is referenced until genus. This is because everything from genus and above have

unique names while species and subspecies do not. This results in errors when searching for images

based on subspecies or species and so this workaround was added.

During the image acquisition process for iNaturalist images each image had associated taxonomic

positions but, BugGuide had a much more specific taxonomic ranking scheme. Because of this the

iNaturalist database only referenced the genus, species, and subspecies information for each entry

reducing querying times and the size of the database. The extracted data from the iNaturalist database

then could use the BugGuide database as a reference to determine the complete and more specific

taxonomic hierarchy of each image.

Docker as Virtual Environment:

 Docker is an application that emulates working environments without affecting local

computer program versions. This allows for reproducibility of applications by packaging them with

everything that is needed for them to run without having issues with conflicting versions of programs

among other common problems. We opted to use Docker because TensorFlow (the main application

used for training and testing our models) has a Docker image with most of the applications we need to

start training and has the required GPU applications for doing multiple GPU training. The Docker

image we used is the tensorflow/tensorflow (https://hub.docker.com/r/tensorflow/tensorflow) which

includes the latest GPU and Jupyter support. TensorFlow 2.3, Keras 2.4 and Python 3.5.2 were used

for the model development. Along with these core programs we also utilized many Python modules.

These modules are pandas (pandas development team, 2020; McKinney, 2010), NumPy (Harris, et

al., 2020), matplotlib (Hunter, 2007), Pillow (Clark, 2015), and scikit-learn (Pedregosa, et al., 2011).

Training and Validation:

Image Sanitization:

The datasets used were not sanitized meaning that images were not manually

removed if they were not optimal or accurate. This is because this process would be time

9

consuming, and BugGuide and iNaturalist have systems in place to maximize the quality of

the images.

 iNaturalist has a verification system which allows the image, or observation as

described by iNaturalist, to be added to a category called research grade observation. This is

achieved if 2/3 of identifiers agree on a taxon assignment, the taxon is species level or more

specific (if the community doesn’t vote that this observation does not need more IDs), the

community does not vote for the observation to need more IDs, and it will not be counted if

the smallest place that contains this observation does not include at least 10 other

observations or >80% of the observations in that area are marked as not wild/naturalized.

BugGuide has a more simplistic method of determining accuracy of taxon using a

category called ID requests where users can vote for an image to be added to a certain taxon.

If image is subjectively judged to be low quality or cannot be identified, it is moved to

category called frass and then deleted after 30 days.

Model Development:

 The script used to train the data was built with many modern machine learning

techniques in mind. To keep everything consistent all random variables in building the model

have been kept consistent with a seed value of 12345. This includes the use of Python’s built-

in random module and os module and when calling Keras’ ImageDataGenerators method.

Images were then read from their SQLite Databases using the sqlite3 Python module and

added to a pandas dataframe for easy data manipulation where each image was added with its

associated taxonomic information and a unique image identifier name. This pandas

dataframe was split into three pandas dataframes which each contain the images and their

corresponding taxon information according to the training dataset, validation dataset, and

testing dataset as per machine learning standards.

Full Model:

 The first model constructed is what is referred to here as the full model. This consists

of all images and genera collected and is split where the training dataset contains 80% of the

images and the validation and testing datasets both contain 10% of the remaining 20% of the

images. A table showing the number of images in each set is shown below (Table 1).

10

Table 1. Number of Classes and Images in Full Dataset

Datasets Number of classes Number of Images Percentage of Total

Training 7,524 1,486,631 80%

Validation 7,524 161,544 10%

Testing 7,524 179,426 10%

Total 7,524 1,648,175 100%

 The top 1, top 3, and top 5 accuracies were obtained for the full dataset. The top 1

accuracy represents the model’s prediction correctly guessing the true label, top 3 means that

the model’s top 3 predictions contained the true label, and top 5 means the top 5 predictions

contained the true label.

 To allow for testing of the full model a website was made available to upload an

image and obtain the top 10 predictions for our model. This was done through the University

of Idaho’s Northwest Knowledge Network (IIDS NKN, n.d.) and this website called Bug ID

(Bug ID - Using Machine Learning to Identify Arthropods, n.d.).

Experimental Models:

 For the training portion of this study, the full model was reduced to only include

images from the taxonomic family Noctuidae (Lepidoptera; moths and butterflies) to

minimize computation time for each model to train. Noctuidae contains many genera with a

large variation in color, size, and morphology. The models constructed are shown below

(Table 2).

Table 2. Experimental Models Constructed

Neural Network Architecture Input Image Size Separate Balanced Model?

InceptionResNetV2
512x512 (control) Yes
256x256 No
768x768 No

EfficientNetB7 512x512 Yes

11

For performance evaluation confusion matrices, accuracy and loss graphs per epoch,

final accuracy along with macro average precision, recall, and f1-scores were obtained for

each model.

 This was split into three datasets were split where the validation and testing set each

held ~20% of the data and the training dataset held ~60% of the data. The final number of

images in each dataset is given below (Table 3).

Table 3. Number of Classes and Images in the Experimental Models Datasets

Datasets Number of Classes Number of Images Percentage of Total

Training 323 60,256 60%

Validation 323 19,894 20%

Testing 323 19,892 20%

Total 323 100,042 100%

Dataset Augmentation:

Each of the training, validation, and testing datasets are then shuffled to decrease the

likelihood of the model learning relationships between positional information. All images that

are found in the three datasets are then added to a folder for use with Keras’ Image data

generator method. This uses a pandas dataframe and a folder reference to create a Python

generator that can be used to retrieve and train all the images to create a machine learning

model. The Keras generator references the pandas dataframes created previously and uses

categorical crossentropy as the label method, RGB color images, and shuffle all the images

before storing them as a Python generator. The training generator also includes data

augmentation which changes the images being added to the training generator by randomly

augmenting an image in several different ways. The list of ways in which the images were

augmented, description of what it does, and the value we used are listed below (Table 4).

Table 4. Image Augmentation with Description and Values Used in Training Generator

Augmentation Type Description Value

Rotation Range (degrees) Image is rotated within range set 90

Width Shift Range (%) Image is shifted along width axis .05

Height Shift Range (%) Image is shifted along height axis .05

12

Shear Range (%) Slants the shape of the image .05

Zoom Range (proportion) Zooms and magnifies the image .2

Channel Shift Range Shifts the color value within range 20

Horizontal Flip Flips the image across vertical axis True

Fill Mode Fills in unknown pixels with

known pixels in reverse order

Reflect

The augmentations listed above are all possible augmentations that can be applied to

each image. It is important to note that this does not add all the possible augmentations as

separate images and therefore the epoch size and time per epoch will not change but each

image can have an augmentation when trained upon. The reason we use augmentations on

images that are being trained on is to try to increase the chance of generalizing the image data

and features to predict classes or in other words to reduce the likelihood of overfitting to the

dataset. Variables constant across training variations are in Table 5.

Table 5. Variables for Experimental Models

Variables Value

Batch Size 16

Maximum Number of Epochs Normal Training: 60, Fine Tuning: 120

Learning Rate 𝑒−4

MirroredStrategy Reduction To One Device

Number of workers 20

Optimizer Adam

The batch size is how many images are running at one time during training. Through

testing I found that for our specific setup sixteen images resulted in the most optimized

training where number of images running at a time is maximized and epoch completion time

is minimized. I chose 60 and 120 as the maximum number of epochs that can be run for a

single model for the normal training step and the fine-tuning step. These are not reached in

regular model development runs, however, because of an early stopping rule implemented in

our code: if validation accuracy does not increase after five epochs, the model will either

move on to the fine-tuning step or, if already fine-tuning, stop training and save model. This

is to both decrease training time and prevent overfitting.

13

Although how neural network architecture affects model performance is one of the

variables that we test there are some features that are the same between all models that we

ran. One of these identical features is that all the neural networks use the same set of ending

layers or top layers. These top layers are added to the end of base neural network. They are

composed of a Global Average Pooling 2D layer, Dropout layer, Dense Layer size 1024 with

L2 regularization of .0001 and a rectified linear activation, another Dropout layer, and

another Dense layer the same as before except is the size of the number of classes we are

trying to classify and a softmax activation. We add these layers to further protect from

overfitting and minimize the output to the number of classes that we have. Transfer learning

is also used to reduce training times and increase accuracy. Transfer learning provides a

framework to utilize features that pre-built models have learned to solve new but similar

problems more quickly and effectively (Lu et al., 2015). Transfer learning copies pre-built

models trained on a specific task and utilizes these models for model development in similar

tasks. ImageNet is a frequently used dataset that many neural networks use for transfer

learning in image classification because of its large variability in classes and large dataset

size (Deng et al., 2009; Huh et al., 2016). For this study the initial weights and biases for

InceptionResNetV2 and EfficientNet came from pre-training on ImageNet. For the first part

of training the model can only alter the top layers and therefore none of the original ImageNet

weights and biases are changed. This allows to use neural networks that can efficiently

recognize images and general features of images which can be utilized to classify the images

in this study and prevents training changing these layers which could alter what features were

found to have predictive capabilities. After each epoch the model is saved to a folder for

reference and TensorBoard is utilized as well to create visualizations of how the model

performs over time. These visualizations are graphs of how accuracy and loss change over

epochs and include both the base training step and the fine-tuning training step.

InceptionResNetV2:

The control neural network used for this study is InceptionResNetV2 (Szegedy et al.,

2016). InceptionResNetV2 is composed of both the Inception neural network and the

Residual neural network. Residual networks build in “jumps” in its architecture that allows

nodes to connect to other nodes in a non-linear way by skipping one or multiple layers. This

is analogous to the biological construct known as pyramidal cells that have this same

property. The inception network uses a method of creating a wider network instead of a

deeper network where there are different sized filters that each share a single node allowing

14

for both broad and narrow pattern recognition. Both methods in a single network allows for

some of the best prediction accuracy for image datasets such as ImageNet and is why this was

implemented in our original design of our model.

EfficientNetB7:

For testing how to optimize identification we looked at a modern neural network

called EfficientNetB7(Tan & Le, 2020). EfficientNet was made by using deep learning to

construct its network using state of the art infrastructure techniques along with maximizing

accuracy and minimizing the size of the network. This led to the development of 7 different

models named EfficientNetB1, EfficientNetB2…EfficientNetB7. With each subsequent

model the accuracy of the model increases while also attempting to minimize the size of the

model to be as efficient as possible. Each of the models were constructed with a different

image size input and so it is recommended to maximize performance from the model to train

on images that are close to and the same or smaller size than the input size that the network

was trained on. EfficientNetB7 was trained on images with the size 600x600.

All the same features from the base model stay the same besides replacing

InceptionResNetV2 with the EfficientNetB7 neural network. Also, instead of normalizing the

pixel values during the Keras generator step we pass in the images without any normalization.

This is because EfficientNet contains a normalization layer that does the same thing as the

Keras normalization function. These are both run on our dataset and the data is saved to

TensorBoard for comparison.

Class Balancing:

In this paper we also test whether using simplistic oversampling method can increase

the recall on our dataset and compare the cost of that increase in recall compared to the

precision. To do this we change the size of the adjustments to the weights of the neural

network to normalize it to the number of images in each of the classes using a Keras class

weight method. This modifies the loss function in a such a way that the smaller classes have

more weight than the larger classes. While undersampling techniques remove data from the

dataset which leads to loss of information and oversampling involves duplicating images

which makes specific features contained in the duplicated images to be learned over the

majority classes features and these features could only be found in the minority class. The

oversampling method that is used in this study is an oversampling approach that may lead to

minority class features more pronounced in the final model each image is still only seen once

15

and so identical features will not be present compared to duplication-based oversampling. To

do this in our model training we use the following equation (Equation 1).

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 (𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑝.𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡(𝑦))
 (1)

This equation divides the number of total images (nsamples) by the number of

classes (nclasses) multiplied by the number of samples per that class (np. bincount(y)). This

results in a value that when multiplied by the number of samples in that class is equal to the

number of samples divided by the number of classes.

Image Sizing:

The last variable tested was image size. This involved evaluation of whether the

relatively large 512x512 image size that we chose to normalize all our images to is efficient

and results in better performance of the model. To do this we tested two other variations,

256x256 and 768x768. The reason these dimensions were chosen specifically is because

256x256 is a standard image size used by many machine learning models and 768x768 has

square dimensions and is divisible by our smallest increment of 256. While 1024x1024 would

follow the 2𝑛 rule that is usually applied to image sizes our current setup’s VRAM capacity is

unable to work with images of that size. While the reasons why dimensions were chosen are

based on square dimensions divisible by 256 BugGuide and iNaturalist have different limits

on what size images they will take into their databases. Differences in the average image size

could result in an impact in accuracy due to Keras’ bilinear interpolation of images adding

information to the images that aren’t representative of the true features of the arthropod in the

image if the images are resized from a lower resolution to a higher resolution.

Testing:

For the testing portion of this study, we use Keras’ evaluate method that works similarly to

the model fit method except we only run only one epoch and use our testing dataset to evaluate how

well our model worked. We run this for each model and just like the other runs output the results to

TensorBoard. These TensorBoard statistics are then sent to matplotlib to create graphs to compare

similar runs together.

Along with the graphs, mathematical metrics are calculated using the classification report

method of scikit-learn. These include macro average precision, macro average recall, macro average

f1-score, and accuracy which are standard metrics to measure the performance of a model (Grandini

16

et al., 2020). Macro average is used because it more accurately demonstrates that the effect of the

biggest classes have the same importance as small ones have while other averages can

disproportionately favor the biggest classes in the measure of the metrics. Precision is defined as the

number of positive class predictions that belong to the positive class. Precision is usually maximized

when the purpose of the model is to identify the highest number of instances of a class correctly.

Recall is defined as the number of positive class predictions out of all positive examples in the

dataset. Recall is usually maximized to minimize the likelihood of false negatives and maximize the

accuracy of rarer classes. F1-score is a metric that evaluates the performance of a model by

combining both precision and recall into a measurable score. Accuracy is a measure of correct

predictions over all predictions.

17

CHAPTER 4: Results

Full Model:

The full model was used to determine if using deep learning for the creation of a large-scale

model was an effective way to identify North American arthropods. The full model consists of all

~1.4 million images. The top 1, top 3, and top 5 accuracy metrics were taken. The results of this are

shown below (Table 6).

Table 6. Full Model Top 1, Top 3, and Top 5 Accuracy

Model Top 1 Accuracy Top 3 Accuracy Top 5 Accuracy

Full Model .80 .89 .92

For the full model 80% of the time the model correctly identified the arthropod from the

image. On top of this 89% of the time the true label was in the top 3 predictions and 92% of the time

the model was able to predict the true label in the top 5 results.

Experimental Models:

Control Model using InceptionResNetV2:

All experimental models were constructed using a subset of the full model which

only included the taxonomic family Noctuidae (Lepidoptera; moths and butterflies). This

control model uses the trained InceptionResNetV2, no weight balancing, and 512x512

images. The testing dataset was used to determine the statistics relevant to each part of the

18

results. Analysis was done using Keras’ evaluate function. The confusion matrix below

shows the results of this evaluation (Figure 1).

Figure 1. InceptionResNetV2 Confusion Matrix

19

The confusion matrix shows the true classes numbered on the y-axis and the

predicted classes on the x-axis. The color legend shows the percentage a scale from 0 to 1

where 1 (white) means that all images are predicted to be that class and 0 (black) means that

no images are predicted to be that class. Correctly predicted images are on the diagonal. Here

we can see that most images and classes are accurately predicted but there are a few classes

that are incorrectly identified and out of these some of them are consistently confused with

one other class (light cells not on the diagonal).

The TensorBoard graphs below show the training and validation accuracies and loss over

time with the x-axis representing the number of epochs and the y-axis representing the accuracy

(Figure 2) (Figure 3).

Figure 2. InceptionResNetV2 Accuracy Over Epochs

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

%
 A

cc
u

ra
cy

Epoch

InceptionResNetV2 Accuracy

Train Validation

20

Figure 3. InceptionResNetV2 Loss Over Epochs

Both graphs show that over time the performance of the model improves. In both a

large increase in performance is visible at the point when the model switched from initial

training to fine-tuning. There is little divergence towards end of the training, indicating little

overfitting.

The macro average precision, recall and f1-score were found along with accuracy.

The results of this are shown below (Table 7).

Table 7. InceptionResNetV2 Precision, Recall, F1-score and Accuracy

Precision Recall F1-score Accuracy

.83 .75 .77 .87

Macro average was used for these values because it gives the mean score for each

class and thus accounts for differences in number of images in each class which. As seen in

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110

Lo
ss

Epoch

InceptionResNetV2 Loss

Train Validation

21

the table, accuracy is high but the f1-score is much lower indicating that there is a lower

average precision and recall that isn’t included in the accuracy.

EfficientNetB7:

This section of the study tests whether the type of neural network architecture used

has an impact on performance. EfficientNetB7, no weight balancing, and 512x512 model was

used to test the performance change from changing the neural network architecture. The

EfficientNetB7 confusion matrix is shown below (Figure 4).

22

Figure 4. EfficientNetB7 Confusion Matrix

Similarly, to the InceptionResNetV2 model, most classes are accurately predicted but

there are some classes that are consistently confused with one other class. With this said,

there is more confidence in the predictions along the diagonal line and some of the images

that were misidentified in the InceptionResNetV2 model are not misidentified here.

23

The TensorBoard graphs below show the training and validation accuracies and loss

over time with the x-axis representing the number of epochs and the y-axis representing the

accuracy for both InceptionResNetV2 and EfficientNetB7(Figure 5) (Figure 6).

Figure 5. EfficientNetB7 vs InceptionResNetV2 Accuracy Over Epochs

Figure 6. EfficientNetB7 vs InceptionResNetV2 Loss Over Epochs

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

%
 A

cc
u

ra
cy

Epoch

EfficientNetB7 vs InceptionResNetV2 Accuracy

InceptionResNetV2 Train InceptionResNetV2 Validation

EfficientNetB7 Train EfficientNetB7 Validation

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110

Lo
ss

Epoch

InceptionResNetV2 vs EfficientNetB7 Loss

InceptionResNetV2 Train InceptionResNetV2 Validation

EfficientNetB7 Train EfficientNetB7 Validation

24

Both graphs show that over time the performance of the model improves.

EfficientNetB7 finishes training in a shorter number of epochs and at the end of training

diverges less than InceptionResNetV2.

The macro average precision, recall and f1-score were found along with accuracy for

both the models. The results of this are shown below (Table 8).

Table 8. InceptionResNetV2 vs EfficientNetB7

Model Precision Recall F1-score Accuracy

InceptionResNetV2 .83 .75 .77 .87

EfficientNetB7 .89 .80 .84 .90

The results show that EfficientNetB7 achieves higher precision, recall, f1-score and

accuracy compared to InceptionResNetV2.

Class Balancing:

This section of the study tests whether class balancing can have an impact on

performance. The models used are the trained InceptionResNetV2, with and without weight

balancing, and 512x512 model and the EfficientNetB7, with and without weight balancing,

and 512x512 model. The Balanced InceptionResNetV2 confusion matrix is shown below

(Figure 7).

25

Figure 7. Balanced InceptionResNetV2 Confusion Matrix

This confidence in the predictions of this confusion matrix seems to be lower than

that of the unbalanced InceptionResNetV2 model with fewer instances of classes being

confused with another other class.

The TensorBoard graphs below show the training and validation accuracies and loss

over time with the x-axis representing the number of epochs and the y-axis representing the

26

accuracy for both the Balanced InceptionResNetV2 and Unbalanced InceptionResNetV2

(Figure 8) (Figure 9).

Figure 8. InceptionResNetV2 Balanced vs Unbalanced Accuracy Over Epochs

Figure 9. InceptionResNetV2 Balanced vs Unbalanced Loss Over Epochs

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110

%
 A

cc
u

ra
cy

Epoch

InceptionResNetV2 Accuracy

Unbalanced vs Balanced

InceptionResNetV2 Train InceptionResNetV2 Validation

InceptionResNetV2 Balanced Train InceptionResNetV2 Balanced Validation

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110

Lo
ss

Epoch

InceptionResNetV2 Loss

Balanced vs Unbalanced

InceptionResNetV2 Train InceptionResNetV2 Validation

InceptionResNetV2 Balanced Train InceptionResNetV2 Balanced Validation

27

Both graphs show that over time the performance of the model improves. With this

said the unbalanced model ends training much quicker than the unbalanced model at the cost

of lower accuracy and higher loss.

The macro average precision, recall and f1-score were found along with accuracy for

both the models. The results of this are shown below (Table 9).

Table 9. InceptionResNetV2 vs Balanced InceptionResNetV2

Model Precision Recall F1-score Accuracy

Unbalanced

InceptionResNetV2

.83 .75 .77 .87

Balanced InceptionResNetV2 .72 .75 .70 .69

The unbalanced model performs better in precision, f1-score and accuracy compared

to the balanced model. Also, the unbalanced model achieves the same recall as the balanced

model.

The Balanced EfficientNetB7 confusion matrix is shown below (Figure 10).

28

Figure 10. Balanced EfficientNetB7 Confusion Matrix

 Similarly, to the unbalanced EfficientNetB7 model most classes are accurately

predicted but there are some classes that are incorrectly identified and out of this

misidentified prediction some of them are consistently misidentified with one other class, but

the amount of these misidentified predictions seems to be much lower.

The Tensorboard graphs below show the training and validation accuracies and loss

over time with the x-axis representing the number of epochs and the y-axis representing the

accuracy for both the Balanced EfficientNetB7 and Unbalanced EfficientNetB7(Figure 11)

(Figure 12).

29

Figure 11. EfficientNetB7 Balanced vs Unbalanced Accuracy Over Epochs

Figure 12. EfficientNetB7 Balanced vs Unbalanced Loss Over Epochs

Both graphs show that over time the performance of the model improves. They also

both end training near the same number of batches and have similar diverging.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

%
 A

cc
u

ra
cy

Epoch

EfficientNetB7 Accuracy Unbalanced vs Balanced

EfficientNetB7 Train EfficientNetB7 Validation

EfficientNetB7 Balanced Train EfficientNetB7 Balanced Validation

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110

Lo
ss

Epoch

EfficientNetB7 Loss Balanced vs Unbalanced

EfficientNetB7 Train EfficientNetB7 Validation

EfficientNetB7 Balanced Train EfficientNetB7 Balanced Validation

30

The macro average precision, recall and f1-score were found along with accuracy for

both the models. The results of this are shown below (Table 10).

Table 10. EfficientNetB7 Vs Balanced EfficientNetB7

Model Precision Recall F1-score Accuracy

Unbalanced EfficientNetB7 .89 .80 .84 .90

Balanced EfficientNetB7 .86 .82 .83 .87

The balanced EfficientNetB7 model obtained better recall at the cost of lower

precision, f1-score, and accuracy.

Image Sizing:

This section of the study tests whether input image size can have an impact on

performance. All the models tested here use InceptionResNetV2 with no weight balancing

however, there are 3 different input image sizes. These are 768x768, 512x512, and 256x256.

The 768x768 confusion matrix is shown below (Figure 13).

31

Figure 13. InceptionResNetV2 768x768 Confusion Matrix

Most classes are accurately predicted but there are some classes that are incorrectly

identified and out of this misidentified prediction some of them are consistently misidentified

with one other class.

32

The 256x256 confusion matrix is shown below (Figure 14).

Figure 14. InceptionResNetV2 256x256 Confusion Matrix

Most classes are accurately predicted but there are some classes that are incorrectly

identified and out of this misidentified prediction some of them are consistently misidentified

with one other class and at a higher rate than that of the 512x512 model.

The Tensorboard graphs below show the training and validation accuracies and loss

over time with the x-axis representing the number of epochs and the y-axis representing the

accuracy for the 512x512, 768x768, and 256x256 models (Figure 15) (Figure 16).

33

Figure 15. InceptionResNetV2 512x512 vs 256x256 vs 768x768 Accuracy Over Epochs

Figure 16. InceptionResNetV2 512x512 vs 256x256 vs 768x768 Loss Over Epochs

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

%
 A

cc
u

ra
cy

Epoch

InceptionResNetV2 Accuracy

512x512 Train 512x512 Validation

768x768 Train 768x768 Validation

256x256 Train 256x256 validation

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110

Lo
ss

Epoch

InceptionResNetV2 Loss

512x512 Train 512x512 Validation

256x256 Train 256x256 Validation

768x768 Train 768x768 Validation

34

Both graphs show that over time the performance of the model improves. The

256x256 model takes the shortest amount of time with the lowest performance while the

512x512 takes the longest time and both the 512x512 and 768x768 achieve similar

performance. All of the models diverging at the end of the training seem to be of a similar

size.

The macro average precision, recall and f1-score were found along with accuracy for

both the models. The results of this are shown below (Table 11).

Table 11. InceptionResNetV2 512x512 vs 256x256 vs 768x768

Model

(InceptionResNetV2)

Precision Recall F1-score Accuracy

512x512 .83 .75 .77 .87

256x256 .70 .51 .56 .75

768x768 .83 .70 .74 .87

The 256x256 model has the lowest precision, recall, f1-score and accuracy out of all

the models. Precision and accuracy are the same for the 512x512 and 768x768 models. The

512x512 model achieves the highest recall and f1-score of all the models.

35

CHAPTER 5: Discussion

Key Findings:

The objective of this study is to determine if deep learning is a realistic method for

identifying arthropods to the taxonomic level of genus, and to determine the most optimal machine

learning methods that may be used for this specific goal.

Based on the full model’s results 80% of predictions were correctly classified and 92% of

predictions contained the true label in the top 5 results. This shows that the model created can be a

realistic method for identifying arthropod genera across North America.

While these results are promising this study also wanted to determine if a more optimal

model could be created. To do this, 6 models were tested and compared to determine 3 different

methods for increasing model performance. These are changing the neural network architecture,

performing class balancing, and changing input image size.

To test whether changing the neural network architecture played a role in model performance

the control architecture, InceptionResNetV2, was tested against EfficientNetB7. The results of this

showed that for precision, recall, f1-score, and accuracy EfficientNetB7 performed better than

InceptionResNetV2. It also achieved this performance in less time than the InceptionResNetV2

model. Therefore, this indicates that changing the underlying neural network of a model can increase

performance.

Class balancing was performed on both InceptionResNetV2 and EfficientNetB7. For

InceptionResNetV2 it was found that there was no increase in performance for the balanced model

and the only metric that did not decrease was recall which stayed the same. Therefore, for

InceptionResNetV2 it is detrimental to use the class balancing algorithm used. This lack of increase

in recall for InceptionResNetV2 could be due to the balancing of the rare classes not overcoming the

weight of the common classes. This idea may be supported with the large decrease in accuracy

between the balanced and unbalanced datasets which could happen because while the balancing is

enough to move a prediction from the common class but not enough to move the prediction to the true

prediction. Class balancing was also used on EfficientNetB7 where the balanced model performed

better on recall but lower on the other metrics. This is an expected result where class balancing

usually increases recall at the cost of other metrics like precision. Therefore, if recall is to be

maximized for EfficientNetB7, using class balancing would be an effective method.

36

Input image size comparisons were performed on InceptionResNetV2 using 512x512,

768x768, and 256x256 images. It was found that 256x256 performed worse than the other two

models on all metrics. This indicates that as you decrease image size there may be a loss in features

available for learning and thus performance can degrade. Comparing the 512x512 and 768x768

models the 512x512 model achieved better recall and f1-score whereas the other metrics were equal

between the two models. This indicates that there is an optimal size of images and that performance

does not increase indefinitely with increasing image size most likely due to that features on the image

being learned on are present in both models. This could be cause because both databases, BugGuide

and iNaturalist, have varying image sizes and if most input images are smaller than 768x768 then

upscaling the image would not provide more useful features for the model to learn on.

Limitations:

While our results are promising there are other strategies that could increase the accuracy and

efficacy of our model.

When web scraping our data from the citizen science databases, we did not do any data

sanitization. While earlier in the paper we described the overall effect on our dataset as negligent to

the learning this lack of data sanitization could lead to errors in the accuracy of identification in

specific classes. For example, if images that were incorrectly identified, include artifacts, are of low

image quality, or are of generally low quality for deep learning tasks were not common and evenly

distributed this would not have a large impact to the accuracy of the model; however, if these were

common for a particular class this could lead to a large impact in accurately identifying that class.

There are more robust methods to balance classes and the method we used to compare class

balancing between our models was relatively rudimentary. For example, a method like SMOTE,

while harder to implement, has shown promising results in dealing with the imbalanced class

problem. A future study finding the benefits of one balancing method over another for our data could

be helpful in determining if the error found between these methods is significant. Ecological

identification methods have suffered from not being able to have adequate solutions for imbalanced

datasets, scarce data and open-world applications (Villon et al., 2022). While some of these were

tested for like looking at how our data is balanced and using large amounts of data looking at how we

could tackle these differently and focusing on how to approach the new classes in open-world

applications is something that needs to be addressed.

37

Significance:

The results of this study show that machine learning is a viable method to identify arthropods

from images and methods for increasing performance can be used in these types of applications. This

is important because the use of machine learning techniques could be the next frontier in biology that

could lead to more robust identifications of arthropods that lack bias and expediate tedious and time-

consuming identification that are part of many studies of arthropods. This solution is robust enough to

compete with experts and has enough variability in classes to compete in many different fields of

study.

Future Work:

In the future this study will try to move towards optimization of the classification model

using recent advancements seen in deep learning to create a more accurate model with more features.

Combining the model created in this study with object detection to identify and pinpoint areas of

interest in video data would allow for the ability of the model to differentiate images with multiple

specimens in one image and create individualized specimen counts for each genera.

Object Detection:

Object detection is the process of finding the areas of interest in an image and

highlighting that area, usually through a bounding box. This can be done by attaching the

YOLO network to our neural network before training. YOLO works by partitioning the

image into rectangles and finding the accuracy of each partition and then partitioning the

most accurate section over and over until you find the partition with the highest accuracy.

This allows the model to determine what part of the image is most likely to contain the object

that is trying to be predicted. You can do this for multiple classes and allows multiple classes

to be in a single image as well to count the number of instances of a specific class. After

object detection is completed other issues can be addressed such as those posed with open-

world applications (Villon et al., 2022). One of these issues that can be addressed with an

object detection model is including an “unknown” class.

38

Chapter 6: Conclusion

Deep learning techniques can revolutionize how we approach many areas of science. While

many areas of ecology and biology have been improved through deep learning, few attempts at

training models capable of recognizing thousands of organisms on a continental scale have been

made. While there have been attempts at arthropod identification in entomology, most of the

applications have been focused on models identifying crop pests and specific groups of arthropods.

The work shown here shows that leveraging citizen science data we can identify arthropods with high

confidence and accuracy. We found that deep learning is a viable tool for large-scale identification of

arthropods with our result of 80% top-1accuracy on 7,524 classes/genera. This work compared

various training strategies and showed that advancements in deep learning techniques including

neural network architectures, image processing and detection will further increase the accuracy and

efficiency of automated species identification. This could lead to increased accuracy in research and

greater variability in what can be identified and compared in studies. The increased speed of

identification could also lead to faster research or even speed up diagnosis of arthropod related

conditions. It was shown that changing the neural network architecture led to higher performance of

the model, that class balancing can lead to increased recall, and that increasing input sizes of images

can correlated with better performance, but this increase also is logarithmic in some cases. While this

model achieved the goals of this study future research into optimizing our model such as through the

use of object detection could expand the use cases of the model.

39

References

Åkesson, A., Curtsdotter, A., Eklöf, A., Ebenman, B., Norberg, J., & Barabás, G. (2021). The

importance of species interactions in eco-evolutionary community dynamics under climate change.

Nature Communications, 12(1), 4759. https://doi.org/10.1038/s41467-021-24977-x

Anonymous. (2022). Welcome to BugGuide.Net! BugGuide. https://bugguide.net/node/view/15740

Boer, M. J. A., & Vos, R. A. (2018). Taxonomic Classification of Ants (Formicidae) from Images

using Deep Learning [Preprint]. Bioinformatics. https://doi.org/10.1101/407452

Bug ID - Using Machine Learning to Identify Arthropods. (n.d.). Retrieved March 27, 2022, from

https://bugid.nkn.uidaho.edu/

Clark, A. (2015). Pillow (PIL Fork) Documentation. readthedocs.

https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale

hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition,

248–255. https://doi.org/10.1109/CVPR.2009.5206848

Ding, W., & Taylor, G. (2016). Automatic moth detection from trap images for pest management.

Computers and Electronics in Agriculture, 123, 17–28. https://doi.org/10.1016/j.compag.2016.02.003

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for Multi-Class Classification: An Overview.

ArXiv:2008.05756 [Cs, Stat]. http://arxiv.org/abs/2008.05756

Hansen, O. L. P., Svenning, J.-C., Olsen, K., Dupont, S., Garner, B. H., Iosifidis, A., Price, B. W., &

Høye, T. T. (2020). Species‐level image classification with convolutional neural network enables

insect identification from habitus images. Ecology and Evolution, 10(2), 737–747.

http://dx.doi.org/10.1002/ece3.5921

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser,

E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk, M. H. van, Brett, M.,

Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming

with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Hecht-Nielsen, R. (1992). Theory of the Backpropagation Neural Network. Neural Networks for

Perception, 2, 65–93.

Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer learning?

ArXiv:1608.08614 [Cs]. http://arxiv.org/abs/1608.08614

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering,

9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

IIDS NKN. (n.d.). Retrieved March 27, 2022, from https://www.iids.uidaho.edu/nkn.php

INaturalist. (n.d.). INaturalist. Retrieved March 25, 2022, from https://www.inaturalist.org/

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal

of Big Data, 6(1), 27. https://doi.org/10.1186/s40537-019-0192-5

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., & Zhang, G. (2015). Transfer learning using

computational intelligence: A survey. Knowledge-Based Systems, 80, 14–23.

https://doi.org/10.1016/j.knosys.2015.01.010

40

Mahesh, B. (2019). Machine Learning Algorithms -A Review. https://doi.org/10.21275/ART20203995

Mathison, B. A., & Pritt, B. S. (2014). Laboratory Identification of Arthropod Ectoparasites. Clinical

Microbiology Reviews, 27(1), 48–67. https://doi.org/10.1128/CMR.00008-13

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In S. van der Walt & J.

Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 56–61).

https://doi.org/10.25080/Majora-92bf1922-00a

Merkel, D. (n.d.). Docker: Lightweight Linux Containers for Consistent Development and

Deployment. 5.

Occdownload Gbif.Org. (2020). Occurrence Download. The Global Biodiversity Information

Facility. https://doi.org/10.15468/DL.TQ384K

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research, 12, 2825–2830.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, Inception-ResNet and the

Impact of Residual Connections on Learning. ArXiv:1602.07261 [Cs].

http://arxiv.org/abs/1602.07261

Tan, M., & Le, Q. V. (2020). EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks. ArXiv:1905.11946 [Cs, Stat]. http://arxiv.org/abs/1905.11946

team, T. pandas development. (2020). pandas-dev/pandas: Pandas (latest) [Computer software].

Zenodo. https://doi.org/10.5281/zenodo.3509134

Ueda, K. (2019, October 25). Identification Quality On iNaturalist—General. INaturalist Community

Forum. https://forum.inaturalist.org/t/identification-quality-on-inaturalist/7507

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., &

Belongie, S. (2018). The iNaturalist Species Classification and Detection Dataset. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 8769–8778.

https://doi.org/10.1109/CVPR.2018.00914

Villon, S., Iovan, C., Mangeas, M., & Vigliola, L. (2022). Confronting Deep-Learning and

Biodiversity Challenges for Automatic Video-Monitoring of Marine Ecosystems. Sensors, 22(2), 497.

http://dx.doi.org/10.3390/s22020497

41

Appendix A: Complete List of Components Used

COMPONENTS QUANTITY

VWS-1542881-DPN-BLACK STEEL / PLASTIC MINI-ITX, MICRO-ATX,

E-ATX CUBE HIGH AIRFLOW CUBE CASE

1

X299 BASED MOTHERBOARD, SUPPORTS 1X LGA2066 CPU, 2X M.2

PCIE MODE2X M.2 PCIE MODE, 8X DDR4 SLOTS, 2X GBE NIC, 7X

PCIE X16 SLOTS (QUAD X16 WITH 44 LANE CPU)

1

INTEL CORE I9-7900X 10 CORE PROCESSOR 13.75M CACHE BASE

3.30GHZ BOOST UP TO 4.30 GHZ 140W LGA2066

1

LIQMAX III HF CPU LIQUID COOLER 1

16GB DDR4 2666MHZ DESKTOP MEMORY MODEL 6

4TB WESTERN DIGITAL HDD DRIVE 1

NVIDIA RTX 2080 TI 11GB GPU 4

2000W MODULAR ATX PS2 POWER SUPPLY 80PLUS PLATINUM

COMPLIANT

1

UBUNTU 16.04 1

DOCKER W/ NVIDIA-DOCKER WRAPPER, DOCKER IMAGE

INSTALLATION/TESTING WITH AVAILABLE OPENSOURCE DOCKER

IMAGES,

NVIDIA/:EXXACT_DIGITS_PAGE:,:TENSORFLOW/TENSORFLOW,

NVIDIA/CAFFE, ETC.

1

