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Abstract

Smooth Schubert varieties were first characterized in terms of pattern avoidance by

Lakshmibai and Sandhya. One way of classifying singularities in a variety is the Hilbert-

Samuel multiplicity. We characterize the Schubert varieties of flag manifolds which have

Hilbert-Samuel multiplicity two or less at all points using the Rothe diagram. Our condition

is relatively simple and visually easy to distinguish given the Rothe diagram of a Schubert

variety. We also show that Schubert varieties with multiplicity two or less at all points

cannot be characterized by pattern avoidance.
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CHAPTER 1

Introduction

Our goal is to characterize Schubert varieties in the flag variety of multiplicity two or

less.

Let G = GLn(C) and let B be the set of the upper triangular matrices. Then G/B forms

a projective variety known as the flag variety. If w is a permutation, then the Schubert

variety Xw is the closure of of the orbit BwB/B.

There are many ways of characterizing smooth Schubert varieties. The most well-known

is the result of Lakshmibai and Sandhya [21] and states that Xw is smooth if and only if w

avoids 3412 and 4231. The question of whether or not a Schubert variety is smooth can also

be answered using the Poincaré polynomial, the Bruhat graph for w, or the Rothe diagram,

to name a few possibilities.

Once we know that a Schubert variety is not smooth, we wish to understand its singular-

ities. Many local properties about Schubert varieties, particularly at their singularities, can

be ascertained from pattern avoidance. For instance, Woo and Yong [33] established that

the property of being Gorenstein can be described by pattern avoidance with an additional

condition called Bruhat restriction. Bosquet-Mélou and Butler [5] showed that a modified

version of pattern avoidance is sufficient to characterize Schubert varieties that are factorial

at every point (see Question 3.3.5 for more detail). A reasonably concise description of the

irreducible components of the singular locus of a Schubert variety exists due to Billey and

Warrington [4]. For other known results regarding singularities of Schubert varieties, see,

e.g. [1, 3].

One important measure of a singularity is its Hilbert-Samuel multiplicity. The (Hilbert-

Samuel) multiplicity of a point p on a scheme X, denoted multp(X), is the degree of the

projective tangent cone as a subvariety of the projective tangent space. This invariant is a

common measure of singularity, with multiplicity one being equivalent to smoothness. Thus,

the result of Lakshmibai and Sandhya tells us when a Schubert variety has multiplicity one
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at all points.

For Schubert varieties in the Grassmanian and cominiscule flag varieties in general, Lak-

shmibai and Weyman [22] gave a determinantal formula for the multiplicity of a Schubert

variety at an arbitrary point. Since then, many other formulae have been established; see,

e.g. [27, 19, 18, 13, 20]. However, there is no known combinatorial rule for determining

the multiplicity of a Schubert variety in the flag variety at an arbitrary point or even for

determining the largest multiplicity obtained at any point in a given Schubert variety.

The question of multiplicity of a Schubert variety at arbitrary points p ∈ Xw can be

reduced to the question of multiplicity at torus fixed points, which are called Schubert

points. For a Schubert variety Xw, the Schubert points correspond to permutations that

precede w in Bruhat order. For a permutation x ≤ w, denote the associated Schubert point

ex ∈ Xw. The largest multiplicity always occurs at the point associated to the identity

permutation, eid. We call multeid(Xw) the multiplicity of Xw. More generally, we have that

multex′ (Xw) ≤ multex(Xw) whenever x ≤ x′ ≤ w in Bruhat order. This property is called

upper semicontinuity.

Given permutations v, w ∈ Sn (or, more generally, any Weyl group), one can define the

Kazhdan-Lusztig polynomial Px,w(q). These were introduced by Kazhdan and Lusztig [16] to

study representations of Hecke algebras and are defined recursively. It is a long standing open

problem to find (hopefully non-recursive) positive combinatorial rules for Px,w(q). In a later

paper, Kazhdan and Lusztig [17] established that the Kazhdan-Lusztig polynomial Px,w(q)

can be interpreted as the Poincaré polynomial for the local intersection cohomology for the

torus fixed point ex of the Schubert variety Xw. Irving [15] proved that Kazhdan-Lusztig

polynomials are upper semicontinuous in the following sense. Let Px,w � Px′,w if, for each i,

the coefficient of each qi in Px,w is weakly smaller than the coefficient of qi in Px′,w whenever

x′ ≤ x ≤ w in Bruhat order. So the coefficients of the Kazhdan-Lusztig polynomials track

the worsening singularity of the Schubert points as one moves along the torus invariant P1s

toward eid. In particular, we have that Pid,w = 1 if and only if Xw is smooth everywhwere.
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Thus, Hilbert-Samuel multiplicity may provide insight into the coefficients of Px,w(q). For

more about Kazhdan-Lusztig polynomials and Schubert varieties, see, e.g. [23, 31].

The purpose of this paper is to provide a combinatorial criterion for determining when

a Schubert variety has multiplicity exactly two. Pattern avoidance proves to be insufficient

for this task, and an example will be produced to demonstrate this (see Proposition 3.3.1).

Given a permutation w ∈ Sn, one can produce a visual representation of the permutation

on an n× n grid called the Rothe diagram. This diagram has proven useful for calculations

involving Schubert varieties. For instance, one can determine whether or not Xw is singular

from the Rothe diagram for w.

For any Schubert variety Xw and a torus fixed point ex, the Kazhdan-Lusztig ideal Ix,w is

a polynomial ideal that encodes all information about a neighborhood of ex ∈ Xw (see [31]).

Given a set of generators for the Kazhdan-Lusztig ideal, the multiplicity of the Schubert

variety is bounded below by the product of the degrees of the smallest degree terms of the

generators. Given certain conditions on the lowest degree terms, the multiplicity is exactly

the product of these degrees. Úlfarsson and Woo [29] gave an algorithm to produce a minimal

set of generators for Iid,w when Xw is a local complete intersection using the Rothe diagram.

We will establish that every Schubert variety of multiplicity two or less is a local complete

intersection (Proposition 3.1.1), thus allowing us to use these generators to address the

question of when a Schubert variety has multiplicity two or less. Úlfarsson and Woo further

showed that the property of being a local complete intersection is equivalent to the Rothe

diagram meeting certain structural constraints. We produce additional constraints on the

Rothe diagram that hold if and only if the associated Schubert variety has multiplicity one,

constraints that hold if and only if the Schubert variety has multiplicity two, and constraints

that hold if and only if the Schubert variety has multiplicity at least three (Theorem 3.2.14).

Finally, we use this result to give an alternate proof of the Lakshmibai-Sandhya Theorem

(Theorem 3.3.2).
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CHAPTER 2

Preliminaries

2.1 A little commutative algebra

We assume the reader is familiar with the fundamentals of commutative algebra and algebraic

geometry. The requisite background and more can be found in [8, 9, 7].

2.1.1 Cohen-Macaulay rings and varieties

Let R be a Noetherian local ring with maximal ideal m. The depth of R is the maximum

length of a regular sequence in m. The depth is always at most the Krull dimension of R. If

the dimension is equal to the depth, then R is said to be Cohen-Macaulay.

If R has Krull dimension d, then a sequence of elements x1, . . . , xd ∈ m is called a system

of parameters if the radical of (x1, . . . , xd) is m. We have that, x1, . . . , xd ∈ R is a system

of parameters if and only if dim(R) = d and R/(x1, . . . xd) has finite length. Moreover

xi1 , . . . , xik ∈ R is part of a system of parameters if and only if codim(R/(xi1 , . . . , xik)) =

k. A Noetherian local ring R is Cohen-Macaulay if and only if some (equivalently, every)

system of parameters is a regular sequence.

An algebraic variety or scheme is said to be Cohen-Macaulay if the local ring at every

point is Cohen Macaulay.

2.1.2 Multiplicity

One important measure of a singularity of a variety is its (Hilbert-Samuel) multiplicity.

Given a scheme X and a point p, let OX,p be the local ring of X at p and let m be the

maximal ideal of OX,p. The (affine) tangent cone to X at p is defined to be

TCp(X) := Spec

(
∞⊕
α=0

mα/mα+1

)
.
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Note that grmR :=
⊕∞

α=0m
α/mα+1 is generated by m/m2, so it is a quotient of Sym∗(m/m2).

Since
⊕∞

α=0m
α/mα+1 is a graded ring, we can take Proj(

⊕∞
α=0m

α/mα+1) to form the

projective tangent cone as follows:

PTCp(X) := Proj

(
∞⊕
α=0

mα/mα+1

)

Given a graded commutative ring S over a field k which is finitely generated by elements

of positive degree, the Hilbert function of S is

H(S, ·) : N→ N

n 7→ dimkSn

where Sn is the nth degree graded component. There is a polynomial, called the Hilbert

polynomial and denoted P (S, n) such that P (S, n) = H(S, n) for n sufficiently large. For

a projective variety V , the Hilbert polynomial of V is the Hilbert polynomial of the homo-

geneous coordinate ring of V . If the leading term of P (V, n) is adn
d, then the degree of V

is defined to be d! · ad.

The multiplicity of X at p, denoted multp(X), is the degree of the projective tangent

cone PTCp(X) as a subvariety of the projective tangent space Proj(Sym∗(m/m2)). The

multiplicity of a local ring (R,m,k), denoted e(R), is the degree of the projective tangent

cone Proj(grmR) as a subvariety of the projective tangent space Proj(Sym∗(m/m2)). Note

that X is smooth at p if and only if multp(X) = 1.

Example 2.1.1. Consider the nodal plane curve y2 = x3 + x2, which is singular at the

origin. Then the local ring of X at the origin is given by

((
k[x, y]

〈x3 + x2 − y2〉

)
〈x,y〉

, 〈x, y〉,k

)
.
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The maximal ideal at the origin is m = (x, y), so

∞⊕
α=0

mα/mα+1 = k⊕ 〈x, y〉
〈x, y〉2

⊕ 〈x, y〉2

〈x2 − y2〉+ 〈x, y〉3
⊕ · · ·

and we have that
∞⊕
α=0

mα/mα+1 ' k[x, y]

〈x2 − y2〉
.

So the projective tangent cone is defined by the class of x2 − y2 in 〈x,y〉2
〈x,y〉3 . The degree n

graded component has dimension two for n ≥ 1. Thus, the Hilbert polynomial is P (z) = 2,

which has degree 0 and leading coefficient 2, so the projective tangent cone has has degree

2 · 0! = 2. So the multiplicity of this variety at the origin is two.

2.1.3 Local complete intersections

The embedding dimension of a Noetherian local ring S with maximal ideal m, denoted

embdim(S), is the dimension of m/m2 as an S/m vector space. Equivalently, it is the size of

a minimal set of generators for m. Such a ring S is called is regular if its Krull dimension

and embedding dimension are the same. The embedding codimension of a ring R measures

how far the ring is from being regular and is given by

embcodim(R) := embeddim(R)− dim(R).

A Noetherian local ring R is called a local complete intersection if it can be written

as R = S/I where S is a regular local ring and I is an ideal of S generated by a regular

sequence on S. If a local ring R is a local complete intersection, then it is Cohen-Macaulay.

The converse is not always true; a ring may be Cohen-Macaulay but not a local complete

intersection. For example,

R =
k[x, y]

〈x2, xy, y2〉
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is Cohen-Macaulay since it has Krull dimension zero. However, 〈x2, xy, y2〉 is a graded ideal

and its lowest degree part has degree three. So it cannot be be generated by two elements.

Hence, R is not a local complete intersection.

An algebraic variety or scheme X is called a local complete intersection if the local

ring OX,p is a local complete intersection at every point p. Moreover, if X arises from an

ideal I, then X is a local complete intersection if its ideal is generated by exactly codim(X)

elements. The following theorem from Abhyankar [2] relates the multiplicity of R to its Krull

dimension and embedding dimension for Cohen-Macaulay rings.

Theorem 2.1.2. If R is a Cohen-Macaulay local ring with maximal ideal m such that R/m

is infinite then

embeddim(R) ≤ dim(R) + e(R)− 1.

The following theorem [6] gives us a lower bound on the multiplicity of a local ring and

is particularly useful for computing multiplicity for a local complete intersection.

Theorem 2.1.3. Let R be a local ring with maximal ideal m and let s be a positive integer.

For 1 ≤ i ≤ s, let δi be a positive integer, xi ∈ mδi
R , and ξi the class of xi in mδi

R/m
δi+1

R .

Suppose (x1, . . . , xs) is part of a system of parameters for R. Let X be the ideal of R

generated by (x1, . . . , xs). Then

e(R/X) ≥ δ1 · · · δs · e(R).

Moreover, equality holds if (ξ1, . . . , ξs) is a regular sequence for the associated graded ring

gr(R).
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2.2 Schubert varieties

2.2.1 Basic definitions

Let G be a semisimple group and let B ⊆ G be a Borel subgroup. Then G/B is a projective

variety called the flag variety. Fix a maximal torus T that is contained in B. Then the

Weyl group is N(T )/T . The B-orbit in G/B associated to an element w of the Weyl group

is a Schubert cell and its closure, denoted Xw, is a Schubert variety.

For a concrete approach, let G = GLn and let B be the subgroup of upper-triangular

matrices. A complete flag in Cn is a nested chain of subspaces

F• = F1 ( F2 ( · · · ( Fn−1 ( Cn.

We can represent a flag by a matrix as follows. First, construct an ordered basis for Cn,

< f1, . . . , fn >, such that Fi = span < f1, . . . fi > for all 1 ≤ i ≤ n. The n× n matrix whose

ith column is fi can be used to represent F•. If we multiply any column by a scalar or add a

column to another column to the right of the first one, then the resulting matrix represents

the same flag. So there are many matrices that represent the same flag, but we can always

choose a canonical one, namely one in which the lowest non-zero entry of any column is a 1

and all entries to the right of such a 1 are 0.

Example 2.2.1. 

4 9 2 1 0

0 3 2 0 1

2 0 1 0 0

0 0 0 1 0

0 0 1 1 0


∼



2 3 2 −1 1

0 1 2 −2 0

1 0 1 −1 0

0 0 0 1 0

0 0 1 0 0


In this example, we replace the first column by 1

2
C1, the second column by 1

3
C2, the

fourth column by C4 − C3, and the fifth column by 1
3
(−1

3
C2 + C5).
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Two non-singular matrices represent the same flag if and only if one can be obtained

from the other via multiplication by an upper triangular matrix. In other words, we have

that the collection of all complete flags is

F ln(C) = GLn(C)/B.

Furthermore, F ln(C) forms a variety. The points can be viewed either as complete flags or

as cosets gB ∈ G/B.

The flag in Cn associated to the identity matrix is called the base flag and is denoted E•.

That is, Ek is the span of the first k standard basis vectors. If a flag is written in canonical

form, we can obtain a permutation matrix by keeping the 1’s that are the lowest non-zero

entry in each column and setting every other entry to 0. This matrix is called the position

of the flag with respect to the base flag. In example 2.2.1, this would be:



0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0


which is the permutation matrix for 32541 (written in one-line notation). Given a permuta-

tion w, we define the (southwest) rank function

rw(p, q) := #{k ≤ q |w(k) ≥ p}.

Similarly, define

sw(p, q) := #{k > q |w(k) < p}.
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The Schubert cell Cw(E•) is the set of all flags with position w. More explicitly, if we let

[a, b] := {a, a+ 1, . . . , b},

then we have

Cw(E•) = {F• ∈ F ln(C) | dim(Ep ∩ Fq) = q − rw(p+ 1, q) for all p, q ∈ [1, n]}.

Equivalently, if we write w in matrix form, we have

Cw(E•) = BwB/B ⊂ G/B.

Similarly, if we let B′ ⊂ G be the subgroup of lower triangular matrices, then we define the

opposite Schubert cell to be

Ω◦w := B′wB/B ⊂ G/B.

The Schubert variety, Xw(E•), is the closure of the Schubert cell. That is Xw = Cw

(since we will always be working with respect to the base flag, we will omit reference to it).

Explicitly, we have

Xw = {F• ∈ F ln(C) | dim(Ep ∩ Fq) ≥ q − rw(p+ 1, q) for all p, q ∈ [1, n]}.

Equivalently, a flag F• represents a point in Xw if the southwest (n + 1− p)× q submatrix

of any matrix that represents F• has rank at most rw(p, q) for all p, q ∈ [1, n].

Since Schubert cells are B-orbits, Schubert varieties are B-invariant; hence, each Schubert

variety may be expressed as a disjoint union of Schubert cells:

Xw =
∐
v≤w

Cv
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The partial order v ≤ w defined by the containment relation Xv ⊂ Xw is called Bruhat

order. Bruhat order may equivalently be defined as follows. For w ∈ Sn and 1 ≤ i < j ≤ n,

let w < wtij if w(i) < w(j) where tij is the transposition swapping i and j. Bruhat order is

the transitive closure of this relation.

Schubert varieties are Cohen-Macaulay, due to the following result of Ramanthan [24]:

Theorem 2.2.2. The coordinate ring of a Schubert variety is Cohen-Macaulay in any em-

bedding.

For a more thorough introduction to Schubert varieties, see [11].

2.2.2 The Rothe diagram and the essential set

The rank conditions that define a Schubert variety often contain a good deal of redundancy,

and a minimal set of conditions to define a Schubert variety was provided by Fulton [10].

To obtain this minimal set of conditions, we first need to define the Rothe diagram. Given

a permutation w ∈ Sn, we consider an n × n grid of boxes with each box labeled like the

entries of a matrix (i.e. (p, q) is the entry in the pth row from the top and the qth column

from the left). Then the Rothe diagram of the permutation is the set of boxes

D(w) = {(p, q) ∈ [1, n]× [1, n] |w(q) < p,w−1(p) > q}.

The minimal rank conditions are the ones given by a special subset of the diagram, called

the essential set. The essential set is defined to be

E(w) := {(p, q) ∈ D(w) | (p, q + 1 /∈ D(w), (p− 1, q) /∈ D(w)}.

Equivalently,

E(w) = {(p, q) |w(q) < p ≤ w(q + 1), w−1(p− 1) ≤ q < w−1(p)}.
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In practice, we can draw the Rothe diagram for a permutation, say w = 819372564, as

follows. Start with the permutation matrix for w.



0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0


In place of each 1, place a dot and draw the hook extending north and east of that dot.

The remaining boxes that are not in any hook are the boxes that comprise the Rothe

diagram. The boxes in the northeast corners of each connected component are the essential

set boxes, labeled with an “E” in the following figure.

Note that, visually, rw(p, q) is the number of dots in the diagram (or 1s in the permutation

matrix for w) southwest of (p, q) while sw(p, q) is the number of dots strictly northeast of
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E

E

E E

E

Figure 2.1: Diagram and essential set for w = 819372564.

(p, q) for (p, q) ∈ D(w).

2.2.3 Local equations and the Kazhdan-Lusztig variety

If T ⊆ G is the subgroup of diagonal matrices, then T acts on G/B by left multiplication.

Given w ∈ Sn, the fixed points of Xw under this action are of the form ex := xB/B for

x ∈ Sn with x ≤ w and are called Schubert points. Every point on a Schubert variety is in

the B-orbit of some Schubert point. Moreover, the B-action gives an isomorphism between

a local neighborhood of any point and a local neighborhood of a Schubert point. So to study

local properties of Schubert varieties, it suffices to focus on Schubert points.

In order to obtain the local equations for a Schubert variety at a Schubert point, we will

start by considering the space of n × n matrices over C. This is a variety with coordinate

ring C[z] where z := {zi,j : 1 ≤ i, j ≤ n}. The matrix with zi,j in the (i, j)th position is

a generic matrix, Z. For a permutation x ∈ Sn, we specialize Z by setting zk,x(k) = 1 for

1 ≤ k ≤ n, zx(k),a = 0 for a > k, and zb,k = 0 for b < x(k). Denote the resulting matrix Z(x)

and let z(x) ⊆ z consist of the remaining unspecialized variables. In other words, we replace

zi,j with 1 if the (i, j)th entry of the permutation matrix is 1. We replace zi,j with 0 if there

is a 1 strictly south or west of the (i, j)th entry of the permutation matrix. The remaining



14

variables are left alone. The set of such matrices corresponds to the opposite Schubert cell,

Ω◦x.

Example 2.2.3. If x = 13254, then we obtain the following:

Z =



z1,1 z1,2 z1,3 z1,4 z1,5

z2,1 z2,2 z2,3 z2,4 z2,5

z3,1 z3,2 z3,3 z3,4 z3,5

z4,1 z4,2 z4,3 z4,4 z4,5

z5,1 z5,2 z5,3 z5,4 z5,5



Z(x) =



1 0 0 0 0

z2,1 0 1 0 0

z3,1 1 0 0 0

z4,1 z4,2 z4,3 0 1

z5,1 z5,2 z5,3 1 0


Let Z

(x)
i,j denote the submatrix of Z(x) consisting of all entries weakly southwest of (i, j).

The Kazhdan-Lusztig ideal Ix,w is the ideal of C[z(x)] generated by the size 1 + rw(i, j)

minors of Z
(x)
i,j for 1 ≤ i, j ≤ n. Let

Nx,w := Spec(C[z(x)]/Ix,w).

Then we have the following proposition, due to Kazhdan and Lusztig [16] and refined by

Woo and Yong [31].

Proposition 2.2.4. Nx,w×Al(x) is isomorphic to an affine neighborhood of Xw at ex where

l(x) is the length of x.

This tells us that, for most local properties, including multiplicity, the property holds at
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ex on Xw if and only if the property holds at the origin 0 on Nx,w. Moreover, Fulton [10]

proved that many of these generators are redundant and that we need only consider minors

of the submatrices of the form Z
(x)
i,j where (i, j) is in the essential set.

Example 2.2.5. If x = 13254 as above, and w = 35142, then we have that E(w) =

{(2, 3), (4, 1), (4, 3)}. Moreover, rw(2, 3) = 2, rw(4, 1) = 0, and rw(4, 3) = 1. So

Ix,w =

〈
z5,1, z4,1,

∣∣∣∣∣∣∣∣∣∣
z3,1 1 0

z4,1 z4,2 z4,3

z5,1 z5,2 z5,3

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
z2,1 0 1

z4,1 z4,2 z4,3

z5,1 z5,2 z5,3

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
z2,1 0 1

z3,1 1 0

z5,1 z5,2 z5,3

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
z2,1 0 1

z3,1 1 0

z4,1 z4,2 z4,3

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣
z4,1 z4,2

z5,1 z5,2

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
z4,1 z4,3

z5,1 z5,3

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
z4,2 z4,3

z5,2 z5,3

∣∣∣∣∣∣∣
〉
.

Woo and Yong [31] show that the properties governed by the Kazhdan-Lusztig ideal can

be characterized by interval pattern avoidance. Given permutations u, v ∈ Sn with u ≤ v in

Bruhat order, define the Bruhat interval

[u, v] := {t ∈ Sn |u ≤ t ≤ v}.

Let [u, v] and [x,w] be Bruhat intervals on Sn and Sm respectively; then we say that [u, v]

interval pattern embeds in [x,w] if the following three conditions are met. First, there

must be a common embedding of u into x and v into w. That is, there exists I = (i1, . . . , in)

such that x(i1), . . . x(in) is in the same relative order as u(1), . . . u(n) and w(i1), . . . w(in)

is in the same relative order as v(1), . . . v(n). Second, x and w must agree outside of this

embedding. That is, x(a) = w(a) for a /∈ I. Finally, [u, v] and [x,w] must be isomorphic as

posets. Note that, once I, u, v, and w are established, x is determined, so it makes sense to

talk about the interval [u, v] being embedded in the permutation w.

A weaker, but simpler condition is (classical) pattern avoidance. A permutation x is said
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to (classically) embed in another permutation w if w, when written in one-line notation,

contains a subsequence in the same relative order as x. For instance, 4231 embeds in 563421.

If no such embedding exists, then we say that w (classically) avoids x.

2.2.4 Smooth Schubert varieties

One of the most celebrated results regarding Schubert varieties is the following theorem of

Lakshmibai and Sandhya [21]:

Theorem 2.2.6. The Schubert variety Xw is smooth if and only if w (classically) avoids

the permutations 3412 and 4231.

In other words, Xw has multiplicity one if and only if w avoids 3412 and 4231. So if w

contains one of these two permutations, it is singular.

Our goal is to investigate how singularXw is by looking at the Hilbert-Samuel multiplicity.

Given permutations w, u, v ∈ Sn with u < v < w in Bruhat order, we have that multeu(Xw) ≥

multev(Xw). This means that the highest multiplicity of a Schubert variety at any point

occurs at the Schubert point associated to the identity. We define this to be the overall

multiplicity of Xw and write mult(Xw) := multeid(Xw).

2.2.5 Schubert varieties that are local complete intersections

A permutation w is said to be defined by inclusions if, given any essential set box (p, q),

q − rw(p, q) = min{p− 1, q}. The following theorem [12, Thm 4.2] of Gasharov and Reiner

translates this to a condition that is immediately discernible from a visual depiction of the

diagram of w.

Theorem 2.2.7. The following are equivalent

1. w is defined by inclusions.

2. For any (p, q) ∈ E(w), one of the following conditions holds
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(A) There are no 1’s in the permutation matrix for w weakly SW of (p, q).

(B) There are no 1’s in the permutation matrix for w strictly NE of (p, q).

3. w avoids the permutations 4231, 35142, 42513, and 351624.

If an essential set box fulfills condition 2A, we call it an essential set box of type A.

Similarly, if it fulfills condition 2B, we call it an essential set box of type B. So a permutation

is defined by inclusions if and only if every essential set box is of type A or B. The terminology

may be justified by the following observation. If a permutation w is defined by inclusions,

then the intersection conditions given in section 2.1 that define the Schubert variety Xw are

of the form Ep−1 ⊂ Fq (for essential set boxes of type B) or Fq ⊂ Ep−1 (for essential set

boxes of type A). Let E ′(w) be the set of essential set boxes of type B and let D′(w) be the

set of diagram boxes that are in the same connected component as an essential set box of

type B. In other words,

D′(w) := {(x, y) ∈ D(w) | rw(x, y) 6= 0}

and

E ′(w) := {(x, y) ∈ E(w) | rw(x, y) 6= 0}.

The following lemma from Úlfarsson and Woo [29] specifies which positions may be

occupied by essential set boxes for permutations that are defined by inclusions.

Lemma 2.2.8. If w is defined by inclusions and (p, q) ∈ E ′(w), then p ≤ q and rw(p, q) =

q − p+ 1.

Visually, for an essential set box (p, q) of type B, (p, q) lies rw(p, q) + 1 places above the

main diagonal.

We can loosen the requirements that define “defined by inclusions” to allow more per-

mutations. Specifically, consider the following conditions on essential set boxes.
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(W) For all p′ < p, (p′, q) /∈ E(w). Moreover, one of the two following conditions holds.

(a) (p, q − 1) /∈ D(w)

(b) There is a p′ < p such that (p′, q − 1) ∈ E ′(w) and rw(p′, q − 1) = rw(p, q) (i.e.

(p′, q − 1) and (p, q) are in the same connected component of D(w)).

(X) There is a p′ < p such that the following conditions all hold

(a) (p′, q) ∈ E ′(w) and (p′′, q) /∈ E ′(w) for any p′′ 6= p′ with p′′ < p.

(b) rw(p′, q) = rw(p, q) + 1

(c) If q′ is the smallest integer such that (p′, b) ∈ D(w) for all q′ ≤ b ≤ q, then

(p, q′ − 1) ∈ D(w).

(Y) For all q′ > q, (p, q′) /∈ E(w). Moreover, one of the two following conditions holds.

(a) (p+ 1, q) /∈ D(w)

(b) There exists a q′ > q such that (p+ 1, q′) ∈ E ′(w) and rw(p+ 1, q′) = rw(p, q).

(Z) There is a q′ > q such that the following conditions all hold

(a) (p, q′) ∈ E ′(w) and (p, q′′) /∈ E ′(w) for any q′′ 6= q′ with q′′ > q.

(b) rw(p, q′) = rw(p, q) + 1

(c) If p′ is the greatest integer such that (a, q′) ∈ D(w) for all p ≤ a ≤ p′, then

(p+ 1, q) ∈ D(w).

Observe that conditions W and X are mutually exclusive, as are Y and Z. However, an

essential set box may satisfy any other pairing of these conditions, allowing us to consider

essential set boxes of type WY, WZ, XY, and XZ. A permutation is said to be almost

defined by inclusions if every essential set box is of type A, B, WY, WZ, XY, or XZ. If

w is almost defined by inclusions, let E ′(w) be the set of essential set boxes that are of type
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B and let E ′′ be the set of essential set boxes that are not of type A or type B (note that

this definition of E ′ coincides with the previous definition when w is defined by inclusions).

Úlfarsson and Woo [29] showed that Xw is a local complete intersection if and only if w

is almost defined by inclusions. Furthermore, they give an explicit method for constructing

a minimal generating set for computing Iw := Iid,w when w is almost defined by inclusions

(i.e. when Xw is a local complete intersection).

We will first deal with the case where w is defined by inclusions. For every connected

component of D(w), partition the component into rectangular regions such that each region

has an essential set box in the northeast corner. Then each rectangular region contains

exactly one essential set box and we may associate to every box (x, y) in D(w) an essential

set box, namely the essential set box in the northeast corner of the rectangular region

containing (x, y).

For each box (x, y) ∈ D′(w), let (p, q) be the essential set box associated to (x, y) and

let r = rw(x, y) = rw(p, q). We assign to every (x, y) ∈ D(w) a polynomial fw(x,y) as follows.

If rw(x, y) = 0 then let A(x, y) = {x} and B(x, y) = {y}. Otherwise, (x, y) ∈ D′(w) and is

associated to some essential set box (p, q) ∈ E ′(w). In this case, let

A(x, y) = {p, p+ 1, . . . , p+ r − 1, x+ r}

B(x, y) = {y − r, q − r + 1, q − r + 2, . . . , q}.

Let fw(x,y) be the determinant of the submatrix of Z(id) indexed by A(x, y)×B(x, y). We now

have the following theorem, due to Úlfarsson and Woo [29]:

Theorem 2.2.9. If w is defined by inclusions, then the Kazhdan-Lusztig ideal Iw is generated

by the polynomials fw(x,y) for all (x, y) ∈ D(w). Moreover, this is a minimal set of generators

for Iw.

If w is almost defined by inclusions, then we associate to w a permutation v that is defined
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by inclusions as follows. First, recall that E ′′(w) is the set of essential set boxes that are not

of type A or of type B. The strategy is to define an algorithm to take us from the permutation

w to the desired defined by inclusions permutation v. Each step of the algorithm will remove

one box of from E ′′ but leave the set E ′ unchanged, leading us closer to a permutation that

is defined by inclusions. We may remove the elements of E ′′ in any order. Moreover, our

algorithm will guarantee that E(v) = E(w) \ E ′′(w). Note that if E ′′(w) is empty, then w

is already defined by inclusions and we are done. Let (p, q) ∈ E ′′(w). Our approach breaks

into cases depending on the type of (p, q).

If (p, q) is of type WY, then let w′ = wt where t is the transposition obtained from

interchanging q and w−1(p). If (p, q) is of type WZ, let w′ = wt where t is the transposition

obtained from interchanging q and q + 1. If (p, q) is of type XY, let q′ be the unique integer

less than q such that (p, q′) ∈ E(w) and let w′ = wt where t switches q′ + 1 and w−1(p). If

(p, q) is of type XZ, let q′ be as above and let w′ = wt where t interchanges q′− 1 and q+ 1.

Example 2.2.10. Let w = 819372564. We begin with the diagram for w.

E

E

E E

E

Consider (4, 4), which is of type WZ. Let w′ = wt where t is the transposition obtained from

interchanging q and q + 1. That is, w′ = 819732564.
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E

E

E

E

The only remaining essential set box not of type A or B is (6, 7), which is of type WY.

Let w′′ = w′t where t is the transposition obtained from interchanging q and w−1(p). So

w′′ = 819732654.

E

E

E

Now every essential set box is of type A or B, so the defined by inclusions permutation

associated to w is v = 819732654

Given a permutation w that is almost defined by inclusions, we can use the above steps

to eliminate all boxes that are not of type A or B one at a time to arrive at the associated

defined by inclusions permutation v. We can now use the method outlined for the defined by

inclusions case to find a set S of minimal generators for the ideal Iv. Úlfarsson and Woo [29]
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proved that a minimal set of generators for Iw is S ∪ {fw(p,q) : (p, q) ∈ E ′′(w)} where fw(p,q) is

generated as in the defined by inclusions case.
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CHAPTER 3

Schubert Varieties of Multiplicity Two

3.1 Narrowing our focus

We are interested in determining when a Schubert variety Xw has multiplicity two. The

question of multiplicity of Xw at an arbitrary point p can be reduced to the question of

multiplicity at a Schubert point ev. Amongst all of these points, the greatest multiplicity is

achieved at the Schubert point associated to the identity, eid. So the multiplicity of Xw is

multeid(Xw). Multiplicity, along with most local information about a neighborhood of eid in

Xw, is encoded by the ideal Iw. We can obtain a particularly nice set of generators for Iw

when Xw is a local complete intersection. Thus, the following proposition greatly simplifies

our calculations.

Proposition 3.1.1. If the Schubert variety Xw has multiplicity at most two, then it is a

local complete intersection.

Proof. By Theorem 2.2.2, Xw is Cohen-Macaulay. By Theorem 2.1.2,

embeddim(Nid,w) ≤ dim(Nid,w) + e(Nid,w)− 1.

So Xw has embedding codimension at most one. If Xw has embedding codimension

zero, then it is regular and hence a local complete intersection. So we may assume Xw has

embedding codimension one.

Since Xw has embedding codimension one, there exists a regular local ring R such that

OXw,eid ∼= R/I where I has height one. Moreover, since Schubert varieties are reduced and

irreducible, I is prime. Since I has height one, it is nonempty. Let p ∈ I. Then p can be

written as a product of irreducible elements of R. Since I is prime, one of those irreducible
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elements, say q, must be in I. Since R is a UFD, 〈q〉 is prime. Since I has height one and 〈q〉

is a nonzero prime ideal contained in I, I = 〈q〉. So I is generated by embed codim(Xw) = 1

elements, and Xw is a local complete intersection.

It is worth noting that we can use pattern avoidance to obtain the same result. Indeed,

Úlfarsson and Woo [29] produced the interval patterns that determine the property of being

a local complete intersection. That is, they produced an infinite set of intervals, S, such

that Xw is a local complete intersection if and only if w avoids all of the interval patterns

in S. Direct computation reveals that, for every interval [u, v] ∈ S, multeu(Xv) > 2. Since

multiplicity is also governed by interval pattern avoidance, if Xw is not a local complete

intersection, then it contains one of the intervals in S and so has multiplicity at least three.

Since every Schubert variety that is not a local complete intersection has multiplicity

at least three, we need only investigate those Schubert varieties that are local complete

intersections and determine which ones have multiplicity two. Whether or not the Schubert

variety Xw is a local complete intersection is discernible from the Rothe diagram for w. We

seek additional structural constraints on the Rothe diagram of w that will hold if and only

if a Schubert variety Xw that is a local complete intersection has multiplicity two.

3.2 Main results

3.2.1 Obtaining a better set of generators for Iw

We have a minimal generating set for the Kazhdan-Lusztig ideal Iw where w is almost

defined by inclusions. Since Xw is a local complete intersection, this generating set is part

of a system of parameters, so we may appeal to Theorem 2.1.3 to produce a lower bound on

the multiplicity of Xw. If w is defined by inclusions, then

mult(Xw) ≥
∏

(x,y)∈D(w)

ldeg(fw(x,y))
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where ldeg(f) is the degree of the lowest degree term in f . Moreover, we have equality if

the lowest degree forms constitute a regular sequence.

In the case where w is almost defined by inclusions, we want to describe the genera-

tors solely in terms of w without having to compute the associated defined by inclusions

permutation v.

Partition D(w) into rectangular regions such that the following properties hold.

• Every rectangular region contains exactly one essential set box and that essential set

box lies in the northeast corner of the rectangular region.

• The partition is constructed so as to minimize the boxes that share a region with an

essential set box from E ′′. That is, if it is possible to place a box in a region with an

essential set box of type A or B, then we do so.

Call such a partition AB preferring. Note that if w is defined by inclusions, then only the

first property is relevant. Given an AB preferring partition P , let RP (x, y) be the unique

essential set box in the rectangular region containing (x, y). Let

D′(w) := {(x, y) ∈ D(w) |RP (x, y) ∈ E ′(w)

for some (equivalently every) AB preferring partition P}.

Similarly, let

D′′(w) := {(x, y) ∈ D(w) |RP (x, y) ∈ E ′′(w)

for some (equivalently every) AB preferring partition P}.

Lemma 3.2.1. Let w be almost defined by inclusions. For every box (x, y) ∈ D(w) \ E ′′,

either
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(x, y) ∈ D(v) with rv(x, y) = rw(x, y)

or

(x− 1, y + 1) ∈ D(v) with rv(x− 1, y + 1) = rw(x, y) + 1.

Moreover, every box of D(v) arises in this manner. That is, we have a bijection

ϕ : D(w) \ E ′′(w)→ D(v).

Specifically, if (x, y) ∈ D′′(w), then ϕ(x, y) = (x − 1, y + 1) ∈ D(v). Otherwise ϕ(x, y) =

(x, y).

Proof. Every step in the algorithm that produces v from w will select one element of E ′′

and replace the rectangular region of boxes from D′′ associated to the selected essential set

box and replace it with a set of boxes that is one smaller. Specifically, this new set of boxes

will be in the connected component of D(v) containing the essential set box (p′, q) from

condition X or the connected component of D(v) containing the essential set box (p, q′) from

condition Z from the definition of an almost defined by inclusions permutation. So once such

a step is completed, the new diagram can be partitioned in such a way that the new boxes

introduced are all in a rectangular region containing an essential set box of type B.

Intuitively, one may think of this lemma as telling us how to “move” boxes in the diagram

of w to obtain the diagram for v. If a connected component of D(w) contains any essential

set boxes of type A or B, the boxes in that component that are weakly southwest of these

essential set boxes are left alone. For connected components that contain essential set boxes

from E ′′, the essential set box is eliminated and every non-essential set box that is not weakly

southwest of another essential set box of type A or B is shifted northeast by one unit. The

reader can confirm this lemma visually using e.g. example 2.2.10.
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Note that we can associate an essential set box (p′, q′) of E(w) \E ′′(w) to (x, y) ∈ D(w).

Let P be an AB preferring partition of D(w) and let Q be an AB preferring partition of D(v)

that agrees with P on D(w) \ D′′(w). Then let SQ(x, y) = RQ(ϕ(x, y)) ∈ E(w) \ E ′′(w) =

E(v).

To see that this lies in E(w) \ E ′′(w), let (x, y) ∈ D′′ and denote (p, q) = RP (x, y)

and (p′, q′) = SQ(x, y). Then (p, q) ∈ E ′′(w) satisfies condition X or condition Z from the

definition for an almost defined by inclusions permutation. As such, rw(p′, q′) = rw(x, y) + 1.

Moreover, (p′, q′) ∈ E(w) \E ′′(w). If (p, q) is the defined by inclusions set box associated to

(x, y) in D(w), then either (p′, q′) = (p, q+ k) or (p′, q′) = (p− k, q) for some positive integer

k. Thus, visually identifying RP (x, y) and SQ(x, y) from the diagram is straightforward.

For (x, y) ∈ D(w) \ E ′′(w), define

g(x,y) := f vϕ(x,y)

and for (x, y) ∈ E ′′(w), define

g(x,y) := fw(x,y).

Recall that, for v defined by inclusions, f v(x,y) is defined as follows. For each box (x, y) ∈

D′(v), let (p, q) = Rp(x, y) and let r = rv(x, y) = rv(p, q). If r = 0 then let A(x, y) = {x}

and B(x, y) = {y}. Otherwise, (x, y) ∈ D′(v) and (p, q) ∈ E ′(w). In this case, let

A(x, y) = {p, p+ 1, . . . , p+ r − 1, x+ r}

B(x, y) = {y − r, q − r + 1, q − r + 2, . . . , q}.

Then f v(x,y) is the determinant of the submatrix of Z(id) indexed by A(x, y)×B(x, y).

Recall also the definition of fw(p,q) for w almost defined by inclusions and (p, q) ∈ E ′′(w).
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Let

A(x, y) = {p, p+ 1, . . . , p+ r − 1, p+ r}

B(x, y) = {q − r, q − r + 1, q − r + 2, . . . , q}.

Then fw(p,q) is the determinant of the submatrix of Z(id) indexed by A(x, y)×B(x, y).

We know that if w is almost defined by inclusions and v is the associated defined by

inclusions permutation, then Iw is minimally generated by

{f v(x,y) : (x, y) ∈ D(w) \ E ′′(w)} ∪ {fw(p,q) : (p, q) ∈ E ′′(w)}

and there are codim(Xw) many such generators.

So for an almost defined by inclusions permutation w, we have that

{g(x,y) |(x, y) ∈ D(w)}

is a minimal generating set for Iw and also part of a system of parameters. Thus,

mult(Xw) ≥
∏

(x,y)∈D(w)

ldeg(g(x,y)) (3.1)

with equality if the lowest degree terms form a regular sequence. Thus, we have a minimal

set of generators for Iw with a one-to-one correspondence between these generators g(x,y)

and boxes (x, y) ∈ D(w). These generators are determinants of matrices whose entries come

from the generic matrix Z(id). Let M(x, y) denote the matrix whose determinant is g(x,y).

Note that for (x, y) /∈ E ′′, Lemma 3.2.1 guarantees that the southwest entry of M(x, y) is

the entry of Z(id) at position (x+ rw(x, y), y − rw(x, y)).

Note that the matrix Z(id) has 1s along the main diagonal, zeros above the main diagonal

and variables below the diagonal. If (x, y) ∈ D(w) with rw(x, y) = 0, then (x, y) lies below
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the main diagonal, so M(x, y) is the 1×1 matrix [zx,y]. If (x, y) ∈ D(w)\E ′′, the 1s from the

main diagonal of Z(id) appear one unit above the main diagonal of M(x, y). More precisely,

we have that M(x, y)i,j = 0 for j ≥ i + 2, M(x, y)i,j = 1 for j = i + 1, and M(x, y)i,j is

a variable zi′,j′ otherwise. Indeed, for any box (x, y) ∈ D(w) \ E ′′, let (x′, y′) be the box

in D(v) associated to (x, y) where v is the defined by inclusions permutation associated to

w. The (rw(x′, y′)) × (rw(x′, y′)) submatrix of M(x, y) that omits the southern row and

western column is the (rw(x′, y′))× (rw(x′, y′)) submatrix of Z(id) with (p, q) as its northeast

corner where (p, q) is the essential set box associated to (x′, y′) from the construction of the

polynomial associated to (x′, y′). Since v is defined by inclusions, (p, q) is of type A or B.

If (p, q) is of type A, then the statement is vacuously true. If (p, q) is of type B, then the

statement follows from Lemma 2.2.8. Since the multiplicity of Xw depends on the lowest

degree terms of the generators of Iw, we need to determine when g(x,y) has a term of degree

one and when it has a term of degree two. The following lemma will allow us to do so when

M(x, y) is of the specified form.

Lemma 3.2.2. Let M be an m × m matrix where Mi,j = 0 for j ≥ i + 2, Mi,j = 1 for

j = i+ 1, and Mi,j is the variable ti,j otherwise. Then the determinant of this matrix has a

single term of degree one, namely t1,n. The determinant also has precisely m − 1 terms of

degree two, namely ±ta,1tm,a+1 for 1 ≤ a ≤ m− 1.

Proof. Let D be the determinant of M . Every term of D is a product of m entries from M ,

one from each row and one from each column. Thus, a term of degree one must be a product

of all m− 1 1s and a variable (i.e. a non-zero entry). The only row that does not contain a

1 is the last row while the only column that does not contain a 1 is the first column, so that

variable must be in the position (m, 1). Thus, there is only one term of degree 1 and that

term consists of the variable in the southwest corner of M .

Again, every term of D is a product of m entries from M , one from each row and one

from each column. Thus, a term of degree two must be a product of m− 1 of these 1s and

two variables (i.e. non-zero entries). So we must omit precisely one 1. The omitted 1 must
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be in position (a, a + 1) for some a. Such a term must contain two more factors, which are

forced to be from positions (a, 1) and (m, a + 1). Moreover, for any pair (a, a + 1) with

1 ≤ a ≤ m − 1, we may obtain a term of D by taking the product of ta,1, tm,b, and all 1s

except the 1 at position (a, b).

Corollary 3.2.3. Let w be almost defined by inclusions. For (x, y) ∈ D(w) \ E ′′(w), g(x,y)

has exactly one term of degree one, namely zx+rw(x,y),y−rw(x,y). Moreover, let v be the defined

by inclusions permutation that is associated to w, let (x′, y′) = ϕ(x, y), and let (p′, q′) =

SQ(x, y) where Q is an AB preferring partition of D(v). Then g(x, y) has exactly rv(x
′, y′)

terms of degree 2. Specifically, the terms of degree two are precisely the terms of the form

zp′+a,y′−rv(x′,y′)zx′+rv(x′,y′),q′−b where a+ b = rv(x
′, y′)− 1.

These results imply that g(x,y) has exactly one term of degree one and, when rw(x, y) ≥ 1,

at least one term of degree two for (x, y) ∈ D(w) \E ′′. So ldeg(g(x,y)) = 1 for all such (x, y).

This, in conjunction with inequality 3.1 gives us a lower bound on the multiplicity of Xw.

Since we are working with a minimal generating set for Iw, we might expect this lower bound

to be reasonably informative. However, that lower bound is one whenever D(w) 6= E ′′(w)

(i.e. whenever D(w) has at least one essential set box of type A or type B), so it is not very

interesting. We wish to improve upon this bound. First, however, we require the following

lemma, which will ensure that any given variable zi,j appears as the degree one term in at

most one non-linear polynomial g(x,y) for (x, y) ∈ D(w).

Lemma 3.2.4. Let w be almost defined by inclusions. If there are two distinct boxes (x, y)

and (x′, y′) in D(w) \ E ′′ with

(x′ + rw(x′, y′), y′ − rw(x′, y′)) = (x+ rw(x, y), y − rw(x, y)),

then either (x, y) or (x′, y′) has rank zero.

Proof. Note that the statement is true in the almost defined by inclusions case if and only

if it is true in the defined by inclusions case by Lemma 3.2.1. So we may assume that w
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is defined by inclusions. If (x, y) and (x′, y′) are both in the same connected component of

D′(w), then rw(x, y) = rw(x′, y′), so

(x′ + rw(x′, y′), y′ − rw(x′, y′)) = x+ rw(x, y), y − rw(x, y)

if and only if (x, y) = (x′, y′).

Now suppose (x, y) and (x′, y′) are in different connected components of D′(w) and that

(x′ + rw(x′, y′), y′ − rw(x′, y′)) = (x+ rw(x, y), y − rw(x, y)).

Then one must lie directly northeast of the other. Say without loss of generality that (x′, y′)

is northeast of (x, y) so that x = x′ + k and y = y′ − k for some positive integer k. Then

there must be k 1s in the permutation matrix for w that lie southwest of (x′, y′) but not

southwest of (x, y). Note that there must be at least one essential set box that is weakly

northeast of (x, y) and in the same connected component as (x, y). Let (p, q) be such a box.

We will first show that x ≥ p > x′ and y ≤ q < y′. To see why this is the case, suppose

towards a contradiction that p ≤ x′. Then the k 1s that lie southwest of (x′, y′) but not

southwest of (x, y) must lie to the right of the q-th column since (j, q) must be in D(w) for

x′ ≤ j ≤ x. But none of these 1s may lie to the south of (x′, y′), meaning that none of them

may lie in the y′-th column. Since y ≤ q and y′− y = k, there are at most k− 1 columns for

these 1s to occupy. But each row and each column must contain exactly one 1. So we have

reached a contradiction and must have that p > x′. A similar argument yields that q < y′.

So there is an essential set box (p, q) with x ≥ p > x′ and y ≤ q < y′. But there must be

a 1 in the permutation matrix for w directly north of (x′, y′). This 1 is strictly northeast of

(p, q). So (p, q) is not an essential set box of type B. Since w is defined by inclusions, this

implies that (p, q) is of type A. Hence,

rw(x, y) = rw(p, q) = 0.
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To improve our lower bound for the multiplicity ofXw, let (x, y) ∈ D(w); we wish to define

a set of new polynomials h(x,y) that generate Iw. We will generate this set algorithmically.

First, order the boxes (x, y) ∈ D(w) so that the following properties hold:

• If rw(a, b) = 0 and rw(c, d) ≥ 1, then (a, b) < (c, d).

• If rw(a, b) ≥ 1, rw(c, d) ≥ 1, and (a, b) is weakly northeast of (c, d), then (a, b) < (c, d)

Label the boxes (x1, y1), . . . , (xk, yk) according to the order above. For each (xi, yi) ∈ D(w),

let g1(xi,yi) = g(xi,yi). Given a polynomial gα(xi,yi) for 1 ≤ α ≤ k, construct gα+1
(xi,yi)

as follows. If

gα(xα,yα) has no degree 1 term, then

gα+1
(xi,yi)

:= gα(xi,yi).

If gα(xα,yα) has a degree 1 term, then label that term as zα. For i 6= α Write gα(xi,yi) as

zαAα,i +Bα,i where Aα,i and Bα,i are polynomials that do not contain zα. Define

gα+1
(xi,yi)

: = (zα − gα(xα,yα))Aα,i +Bα,i

= (zα − gα(xα,yα))Aα,i + gα(xi,yi) − (zαAα,i)

= gα(xi,yi) − g
α
(xα,yα)Aα,i

for i 6= α and let

gα+1
(xα,yα)

:= gα(xα,yα).

Lemma 3.2.4 implies that, if i ≤ α, then zα /∈ g(xi,yi) for i < α. So

gα+1
(xi,yi)

= gα(xi,yi).

Let h(x,y) = gk+1
(xi,yi)

. Since each gα+1
(xi,yi)

can be written as a linear combination of the
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gα(xi,yi)s, we have that

〈h(x1,y1), . . . , h(xk,yk)〉 ⊆ 〈g(x1,y1), . . . , g(xk,yk)〉.

Now note that for i < α, by the above construction,

gα−1(xi,yi)
= gα(xi,yi).

For i ≥ α, we have

gα(xi,yi) = gα−1(xi,yi)
− gα−1(xα−1,yα−1)

Aα−1,i,

so

gα−1(xi,yi)
= gα(xi,yi) + gα−1(xα−1,yα−1)

Aα−1,i.

But gα−1(xi,yi)
= gα(xi,yi) for i ≤ α− 1, so we have that

gα−1(xi,yi)
= gα(xi,yi) + gα(xα−1,yα−1)

Aα−1,i

for 1 6= α and, again,

gα−1(xi,yi)
= gα(xi,yi).

Thus, each gα−1(xi,yi)
can be written as a linear combination of the gα(xi,yi)s, meaning that

〈g(x1,y1), . . . , g(xk,yk)〉 ⊆ 〈h(x1,y1), . . . , h(xk,yk)〉.

Thus,

Iw = 〈{h(x,y) | (x, y) ∈ D(w)}〉.

Moreover,

mult(Xw) ≥
∏

(x,y)∈D(w)

ldeg(h(x,y)). (3.2)
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3.2.2 Characterizing Schubert varieties of multiplicity two or less

We now need a means to investigate the lowest degree terms of h(x,y), which is the aim of

the following construction.

Definition 3.2.5. Let w be almost defined by inclusions. For a box (x, y) ∈ D(w), define

the shifted diagram for w to be the set of boxes

SD(w) := {(a+ rw(a, b), b− rw(a, b) : (a, b) ∈ D(w) \ E ′′}.

Visually, we can view the shifted diagram as being created by shifting every box (a, b) ∈

D(w) with (a, b) /∈ E ′′ diagonally southwest by rw(a, b).

Proposition 3.2.6. Let w be almost defined by inclusions. Then (a, b) ∈ SD(w) if and

only if za,b is a term in g(x,y) for some (x, y) ∈ D(w) \ E ′′(w).

Proof. This follows immediately from Corollary 3.2.3 and the definition of the shifted

diagram.

Recall the definition of the Rothe diagram. Formally, given w ∈ Sn and i ∈ [1, n], we

consider the set

L(i) ={(x, y) ∈ [1, n]× [1, n] |x = w(i) and y ≥ i}

∪ {(x, y) ∈ [1, n]× [1, n] |x ≤ w(i) and y = i}.

Then D(w) is the set of boxes in [1, n] × [1, n] that are not in L(i) for any i ∈ [1, n]. (The

sets of the form L(i) were called “hooks” in chapter 2, but this term will be defined used in

Definition 3.2.11 to mean something different and we wish to avoid confusion.)

Lemma 3.2.7. Suppose w is almost defined by inclusions. Let (a, b) ∈ SD(w) with w ∈ Sn.

If a < n then

(a+ 1, b) ∈ SD(w).
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If b > 1, then

(a, b− 1) ∈ SD(w).

Proof. First note that the statement is true for all almost defined by inclusions permutations

if and only if it is true for all defined by inclusions permutations. Suppose w ∈ Sn is defined

by inclusions. Let (g′, h′) ∈ SD(w) with g′ ≤ n − 1. Then there exists (g, h) ∈ D(w) such

that (g + rw(g, h), h− rw(g, h)) = (g′, h′).

We claim that there must be a box in D(w) at or directly northeast of (g′ + 1, h′). In

other words, (g′ + 1 − k, h′ + k) ∈ D(w) for some positive integer k. To see why this

must be the case, assume the opposite. Then for each k ∈ [0, rw(g, h)], there must be

an i ∈ [1, n] such that (g′ + 1 − k, h′ + k) ∈ L(i). But for each k ∈ [0, rw(g, h) − 1],

(g′ + 1− k + 1, h′ + k + 1) is northeast of (g′ + 1− k, h′ + k). So for each k, there is at least

one i such that (g′ + 1− k, h′ + k) ∈ L(i). Moreover, no L(i) may cover two of these boxes.

Since #[0, rw(g, h)] = rw(g, h) + 1, there must be at least rw(g, h) + 1 such i’s. But each

of these i’s corresponds to a 1 in the permutation matrix for w that is southwest of (g, h),

which would imply that rw(g, h) ≥ rw(g, h) + 1, a contradiction. So there must be a box at

or directly northeast of (g′ + 1, h′). Note that this box must lie at or directly southwest of

(g + 1, h).

So there is at least one box of the form (g′ + 1− k, h′ + k) ∈ D(w) with k ∈ [0, rw(g, h)].

Note that we can also write any such box as (g+1+j, h−j) for some j ∈ [0, rw(g, h)]. Let j be

the smallest postive integer such that (g+1+j, h−j) ∈ D(w). If (g+1+j, h−j) is in the same

connected component of D(w) as (g, h), then (g + 1, h) ∈ D(w) with rw(g + 1, h) = rw(g, h)

so that

(g′ + 1, h′) = (g + 1 + rw(g + 1, h), h− rw(g + 1, h)) ∈ SD(w),

as needed. So we may assume that (g+1+j, h−j) is not in the same connected component of

D(w) as (g, h). Then there is at least one essential set box that is northeast of (g+1+j, h−j)

and in the same connected component of D(w) as (g + 1 + j, h − j). Let (p, q) be such a
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box. By assumption, (p, q) and (g, h) do not lie in the same connected component of D(w).

If g < p ≤ g + 1 + j and h > q ≥ h − j, then (p, q) must be an essential set box of type

A. Indeed, there must be a 1 in the permutation diagram directly north of (g, h), and this

1 would be northeast of (p, q), so it cannot be of type B. Since w is defined by inclusions,

(p, q) must be of type A, which means that rw(g+ 1 + j, h− j) = 0. So every box southwest

of (g + 1 + j, h− j) is in D(w), including (g′ + 1, h′).

So we may assume (p, q) is of type B, which means that p ≤ g or q ≥ h. Assuming p ≤ g

leads to a contradiction. Indeed, note that we must now have that q = h− j, as otherwise j

would not be the smallest integer such that (g + 1 + j, h− j) ∈ D(w). So (s, h− j) ∈ D(w)

for g ≤ s ≤ g + 1 + j. Moreover, there are exactly j boxes of the form (g + 1 + α, h − α)

with 0 ≤ α < j. None of these boxes are in D(w). So each one must be in L(i) for some

i ∈ [h− j + 1, h− 1] (these correspond to 1s in the permutation matrix for w that lie in the

columns h− j+1, . . . , h−1). There are exactly j−1 1s in these columns of the permutation

matrix for w. But no two boxes of the form (g + 1 + α, h− α) can be covered by the same

L(i). So there must be at least j 1s in these columns, which is a contradiction.

Thus, we are left with the case where q ≥ h. In this case, every box of the form (g+j+1, s)

with h− j ≤ s ≤ h is in D(w). So all j boxes of the form (g + 1 + α, h− α) with 0 ≤ α < j

must be covered by some L(i) with i ∈ [g+1, g+j] (these correspond to 1s in the permutation

matrix for w that lie in rows g+1, . . . , g+j). Since no two boxes of the form (g+1+α, h−α)

can be covered by two of the L(i)s, there must be exactly j 1s southwest of (g, h) but not

southwest of (g + 1 + j, h− j). So rw(g, h) = rw(g + 1 + j, h− j) + j, meaning that

(g + 1 + j + rw(g + 1 + j, h− j), h− j − rw(g + 1 + j, h− j))

= (g + 1 + j + (rw(g, h)− j), h− j − (rw(g, h)− j))

= (a+ rw(g, h) + 1, h− rw(g, h))

= (g′ + 1, h′).
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Thus, (g′ + 1, h′) ∈ SD(w), as needed. An identical argument shows that, if (g′, h′) ∈

SD(w) with h′ ≥ 2, then (g′, h′ − 1) ∈ SD(w).

Intuitively, this lemma tells us that SD(w) is the Young diagram of a partition in French

notation sitting in the lower left corner.

Lemma 3.2.8. Let w ∈ Sn be almost defined by inclusions and let (p, q) ∈ E(w). Recall

that sw(p, q) = #{k > q |w(k) < p}, which is the number of 1s in the permutation matrix

for w that are strictly northeast of (p, q). Then rw(p, q) = q − p− 1 + sw(p, q).

Proof. Since there must be a 1 in every row and every column of the permutation matrix

for w (in particular, for every row south of p and every column west of q),

(n− p) + (q − 1) = a+ rw(p, q) + b+ rw(p, q)

where a is the number of 1s strictly southeast of (p, q) and b is the number of 1s strictly

northwest of (p, q). There is also one 1 in row p, one 1 in column q, and there are sw(p, q) 1s

strictly northeast of (p, q). This accounts for all 1s in the permutation matrix, so we have

n = a+ b+ rw(p, q) + sw(p, q) + 2.

Substituting for n in the first equation, we get

(a+ b+ rw(p, q) + sw(p, q) + 2− p) + (q − 1) = a+ rw(p, q) + b+ rw(p, q).

So

rw(p, q) = q − p− 1 + s.

Note that Lemma 2.2.8 is a special case of this lemma. Visually, the essential set box lies

rw(p, q) + 1− s units above the main diagonal.



38

Definition 3.2.9. Let w be almost defined by inclusions and let (x, y) ∈ D(w) with (x, y) a

non-essential set box or an essential set box of type B. Then (x, y) is called a double box if

(x+ rw(x, y), y − rw(x, y)) ∈ D(w).

Additionally, every element of E ′′ is a double box.

Lemma 3.2.10. Let w be almost defined by inclusions and let (x, y) ∈ D(w). Then

ldeg(h(x,y)) ≥ 2 if and only if (x, y) is a double box.

Proof. By Lemma 2.2.8, if (x, y) ∈ E ′′, then M(x, y)(i,j) = 1 for j = i + sw(x, y) + 1,

M(x, y)(i,j) = 0 for j > i + sw(x, y) + 1 and M(x, y)(i,j) is some variable zi′,j′ for j <

i + sw(x, y) + 1. Visually, M(x, y) has 1s sw(x, y) units above the diagonal, 0s above, and

variables below. Since (x, y) ∈ E ′′, sw(x, y) ≥ 1. Since M(x, y) is an (rw(x, y) + 1) ×

(rw(x, y) + 1) matrix, there are at most rw(x, y) − 1 1s total and every term of g(x,y) is a

product of rw(x, y)− 1 entries from M(x, y). So g(x,y) must have degree at least two. Since

ldeg(h(x,y)) ≥ ldeg(g(x,y)), we have that ldeg(h(x,y)) ≥ 2.

If (x, y) /∈ E ′′, then the statement follows directly from Corollary 3.2.3 and Lemma

3.2.4.

Definition 3.2.11. For (x, y) ∈ D(w) with w almost defined by inclusions, define the hook

H(x, y) as follows

H(x, y) :={(a, y − rw(x, y)) ∈ SD(w) | a ≤ x+ rw(x, y)}∪

{(x+ rw(x, y), b) ∈ SD(w) | b ≥ y − rw(x, y)}.

Note that Lemma 3.2.7 implies that the hook H(x, y) is connected. So we may define

the endpoints of a nonempty hook as follows. The top endpoint of the hook H(x, y) is the

unique box (a, y − rw(x, y)) such that (a, y − rw(x, y)) ∈ H(x, y) but (a− 1, y − rw(x, y)) /∈

H(x, y). Similarly, the right endpoint of the hook H(x, y) is the unique box (x+ rw(x, y), b)
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such that (x + rw(x, y), b) ∈ H(x, y) but (x + rw(x, y), b + 1) /∈ H(x, y). The length of a

hook is the number of boxes it contains.

Definition 3.2.12. Let w be almost defined by inclusions, and suppose (x, y) ∈ D(w) is a

double box. Denote the endpoints of H(x, y) by (a, y− rw(x, y)) and (x+ rw(x, y), b). Then

(x, y) is a triple box if it meets one of the following criteria:

1. If (x, y) /∈ E ′′ then a− b ≤ 1.

2. If (x, y) ∈ E ′′, then sw(x, y) ≥ 2 or (x + rw(x, y), y − rw(x, y) + 1) ∈ SD(w) or

(x+ rw(x, y)− 1, y − rw(x, y)) ∈ SD(w).

Lemma 3.2.13. Let w be almost defined by inclusions and let (x, y) ∈ D(w). Then

ldeg(h(x,y)) ≥ 3 if and only if (x, y) is a triple box.

Proof. Let w be almost defined by inclusions, let v be the associated defined by inclusions

permutation, and let P be an AB preferring partition of D(v). First, assume (x, y) ∈ D(w)

is a double box that is not in E ′′(w). Since (x, y) is a double box, the lowest possible degree

of any term in h(x,y) is two. We must determine whether or not h(x,y) has any terms of degree

exactly two.

By Lemma 3.2.3, every degree two term of g(x, y) is of the form

zp+a,y′−rv(x′,y′)zx′+rv(x′,y′),q−b where (x′, y′) = ϕ(x, y) and a + b = rv(x
′, y′) − 1. We

have that ldeg(h(x,y)) ≥ 3 if and only if at least one variable from each of these degree two

terms of g(x,y) is itself a term in g(x′′,y′′) for some (x′′, y′′) ∈ D(w). That is, if each degree

two term of g(x,y) contains at least one variable that is in SD(w) (note that we conflate the

variable zi,j with the box (i, j) for notational convenience).

By Lemma 3.2.1, x′+rv(x
′, y′) = x+rw(x, y) and y′−rv(x′, y′) = y−rw(x, y). Let v be the

defined by inclusions permutation associated to w and let P be an AB preferring partition of

v. By Corollary 3.2.3 the degree two terms of g(x,y) are of the form zp+c,y−rw(x,y)zx+rw(x,y),q−d

where (p, q) = SP (x, y). So we must determine when at least one of these variables is in
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H(x, y) for every such term. If the endpoints of the hook H(x, y) are at (a, y−rw(x, y)), (x+

rw(x, y), b) with (a− p) + (q− b) ≤ rv(p, q) = rv(x
′, y′), then at least one variable from every

degree two term is in the hook H(x, y), which is contained in the shifted diagram SD(w)

and ldeg(h(x,y)) ≥ 2. Otherwise there is at least one degree two term whose variables are

not contained in the shifted diagram, which implies that this degree two term of g(x,y) is

also a term of h(x,y). But rw(p, q) = q − p + 1 by Lemma 2.2.8, so the condition that

(a− p) + (q− b) ≤ rv(p, q) = rv(x
′, y′) is equivalent to (a− p) + (q− b) ≤ rv(p, q) = rv(x

′, y′)

If (x, y) ∈ E ′′ then by Lemma 2.2.8, M(x, y)(i,j) = 1 for j = i+ sw(x, y), M(x, y)(i,j) = 0

for j > i+sw(x, y) and M(x, y)(i,j) is some variable zi′,j′ for j < i+sw(x, y). Visually, M(x, y)

has 1s sw(x, y) units above the diagonal, 0s above, and variables below. Since (x, y) ∈ E ′′,

sw(x, y) ≥ 1. If sw(x, y) ≥ 2, then there are at most rw(x, y)− 2 1s total, but M(x, y) is an

(rw(x, y)+1)×(rw(x, y)+1) matrix, so every term of g(x,y) must have degree at least three. If

sw(x, y) = 1, then there are exactly rw(x, y)− 1 1s total, so a term of degree two would have

to be a product of all of these ones and two variables. Since any term of the determinant of

M(x, y) is a product with one factor from each row and one factor from each column, a term

of degree two would have to be either of the form zx+r−1,y−rzx+r,y−r+1 or zx+r,y−rzx+r−1,y−r+1.

So h(x,y) will have minimum degree at least three if and only if one factor in each of these

two terms is in SD(w). By Lemma 3.2.7, if either (x + r − 1, y − r) or (x + r, y − r + 1) is

in SD(w), then so is (x + r, y − r), meaning that one variable from each of the degree two

terms of g(x,y) is in SD(w). So h(x,y) minimum degree at least three. If, on the other hand,

neither (x+r−1, y−r) or (x+r, y−r+1) is in SD(w), then zx+r−1,y−rzx+r,y−r+1 is a degree

two term of h(x,y).

Theorem 3.2.14. The Schubert variety Xw is smooth if and only if w is almost defined

by inclusions and contains no double boxes. Moreover, Xw has multiplicity exactly two if

and only if w is almost defined by inclusions and the Rothe diagram for w contains exactly

one double box and no triple boxes. If w is not almost defined by inclusions or if the Rothe

diagram contains at least two double boxes or at least one triple box, then Xw has multiplicity
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strictly greater than two.

Proof. If D(w) contains a triple box or at least two double boxes, then the theorem follows

from Lemma 3.2.13 and inequality (3.2). By Lemmas 3.2.10, 3.2.13 the remainder of the

theorem will follow if equality holds for (3.2) when D(w) contains at most one double box and

no triple boxes. Equality in (3.2) is guaranteed when the lowest degree terms form a regular

sequence. Since we are restricting our attention to the case where D(w) contains at most one

double box and no triple boxes, we have that the lowest degree term for each h(x,y) is at most

two, and all but at most one of these has lowest degree one. But then the construction of the

generators h(x,y) ensures that no variable is shared between the lowest degree terms of any

two generators, guaranteeing that we have a regular sequence. Indeed, recall the notation

and ordering of boxes in D(w) from the construction of the h’s. If (xi, yi), (xj, yj) ∈ D(w)

and (xi, yi) is not a double box, then the lowest degree term of g(xi,yi) (and hence h(xi,yi)) is

ti and ti does not appear as a variable in gα(xk,yk) for k 6= i and α ≥ i + 1. Thus, ti does not

appear as a variable in the lowest degree term of h(xj ,yj).

We can improve upon this theorem by reducing the number of boxes we need to check.

Lemma 3.2.15. Let w be almost defined by inclusions. If (x, y) ∈ D(w) is a double (resp.

triple) box, then (x + i, y − j) is also a double (resp. triple) box for any i, j > 0 such that

(x+ i, y − j) is in the same connected component of the diagram of w as (x, y).

Proof. This follows immediately from Lemma 3.2.7.

So a Schubert variety Xw has multiplicity two if and only if it is a local complete inter-

section (i.e. if w is almost defined by inclusions) and the Rothe diagram for w contains no

triple boxes and at most one double box. Since we already know which Schubert varieties

are smooth, we now have a characterization of all Schubert varieties in the flag variety with

Hilbert-Samuel multiplicity two. Moreover, Lemma 3.2.15 tells us that, for each connected

component of D(w), we need only check the southwest corner, the boxes immediately above

and to the right of the southwest corner, and any essential set box not of type A or B.
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Example 3.2.16. Let w = 819372564. Then D(w) is

E

E

E E

E

.

Note that (7, 4) is a double box since

(7 + rw(7, 4), 4− rw(7, 4)) = (7 + 2, 4− 2) = (9, 2) ∈ D(w).

Moreover, (6, 7) and (4, 4) are double boxes since they are both in E ′′(w). There are no other

double boxes. Since there are at least two double boxes, mult(Xw) ≥ 3. In fact, since the

product of the degrees of the lowest degree terms of the h’s must be at least eight, we have

that mult(Xw) ≥ 8. If D(w) has any triple boxes, we can improve upon this lower bound.

The shifted diagram SD(w) is

.
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Again, our double boxes are (7, 4), (6, 7), and (4, 4). Since (7, 4) /∈ E ′′(w), we must look at

the hook H(7, 4), which consists of the boxes north and east of (9, 2) and has endpoints at

(7, 2) and (9, 3). Since 7−3 � 1, (7, 4) is not a triple box. On the other hand, (6, 7) ∈ E ′′(w).

We have that

(6 + rw(6, 7), 7− rw(6, 7)) = (6 + 3, 7− 3) = (9, 4).

It is not the case that either the box directly north or the box directly east of (9, 4) (namely

(8, 4) and (9, 5)) is in SD(w). So (6, 7) is not a triple box. Likewise, we have

(4 + rw(4, 4), 4− rw(4, 4)) = (4 + 2, 4− 2) = (6, 2).

Again, neither the box directly north nor the box directly east of (6, 2) (namely (5, 2) and

(6, 3)) is in SD(w) and D(w) contains no triple boxes.

3.3 Consequences and further questions

As further examples, we may look atX354612 andX4657312. The Rothe diagram for w = 354612

is

E

E

E

.

We can see that 354612 is defined by inclusions, so E ′′(w) = ∅. Moreover, the shifted

diagram contains no boxes that are not already in the Rothe diagram (i.e. SD(w) ⊆ D(w)),

since (2 + rw(2, 5), 5 − rw(2, 5)) = (6, 1) ∈ D(w). This also tells us that (2, 5) is a double

box. Since (2, 5) is the only box with rw(x, y) > 1, it is the only double box in D(w). We
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have that H(2, 5) has endpoints at (4, 1) and (6, 3). Note that 4− 3 ≤ 1, so (2, 5) is a triple

box and X354612 has multiplicity at least three (in fact, it has multiplicity exactly three).

The Rothe diagram for w = 4657312 is

E

E

E

.

Again, 4657312 is defined by inclusions. The only box with rank greater than one is

(2, 6). Since (2 + rw(2, 6), 6 − rw(2, 6)) = (7, 1) ∈ D(w), the shifted diagram contains no

boxes that are not already in Rothe diagram (SD(w) ⊆ D(w)) and (2, 6) is a double box.

We have that H(2, 6) has endpoints at (5, 1) and (7, 3). But 5 − 3 � 1, so (2, 6) is not a

triple box. It is, however, a double box. So D(w) contains exactly one double box and no

triple boxes, which implies X4657312 has multiplicity two.

Proposition 3.3.1. Multiplicity two cannot be characterized by classical pattern avoidance.

Proof. The permutation 354612 embeds in 4657312, yet X354612 has multiplicity three while

X4657312 has multiplicity two. If multiplicity two could be characterized by pattern avoidance,

then there would be some set S of permutations such that Xw has multiplicity at most two if

and only if w avoids all permutations in S. Since X354612 has multiplicity three, any such set

S would have to contain 354612 or some other permutation that embeds in 354612. Since

pattern embedding is transitive (i.e. if x embeds in w and w embeds in v, then x embeds in

v), 4657312 would also have to contain some permutation in S and X4657312 would necessarily

have multiplicity at least 3, which is untrue.

Theorem 3.2.14 yields a new proof for the Lakshmibai-Sandhya Theorem.
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Theorem 3.3.2. Xw is smooth if and only if w avoids 3412 and 4231.

Proof. Let w be a permutation that avoids 3412 and 4231. Note that the permutations

35142, 42513, and 351624 all contain the permutation 3412. So by Theorem 2.2.7, w is

defined by inclusions. Suppose towards a contradiction that Xw had multiplicity two or

more. Then by Theorem 3.2.14, D(w) would contain a double box. So there are distinct

boxes (x, y) and (x′, y′) such that (x′, y′) is rw(x, y) units southwest of (x′, y′). Since these

boxes are distinct, rw(x, y) = r 6= 0 and rw(x′, y′) = 0. Note that one of the dots strictly

southwest of (x, y) must lie directly north of (x′, y′) and one must lie directly east of (x′, y′).

To confirm this, observe that either there is a pair of dots, one of which fulfills each condition,

or no dots fulfill either condition; else (x, y) would not be directly northeast of (x′, y′). If

no dot fulfills either condition, then (x, y) is r + 1 units northeast of (x′, y′), which is a

contradiction. Visually, the Rothe diagram must contain a section of the form

· · ·

...

· · ·
...

.

Moreover, since there must be a dot in every row and column, there must be a dot directly

north of and a dot directly east of (x, y), meaning that D(w) must contain a section of the

form
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· · ·

...

· · ·
...

· · ·

...

.

But then w contains 3412, a contradiction. So if w avoids 4231 and 3412, then it must

be smooth.

Next, suppose Xw is smooth. Then by Theorem 2.1.2, Xw is a local complete intersection

and w is almost defined by inclusions. So w does not contain a double box.

If w contains 4231, then it is not defined by inclusions by Theorem 2.2.7. So E ′′ is non-

empty. Any box in E ′′ is a double box, so by Theorem 3.2.14, Xw has multiplicity two, a

contradiction. So w must avoid 4231.

If w contains 3412, then D(w) must contain a subsection of the form

· · ·

...

· · ·
...

· · ·

...

.

Again, since Xw is smooth, it cannot contain a double box and so E ′′ must be empty.

That is, w must be defined by inclusions. Note that it is not necessarily the case that

(x, y) is directly northeast of (x′, y′). If every dot southwest of (x, y) is strictly northwest

of (x′, y′), then (x, y) is directly northeast of (x′, y′). In fact, if this is the case and there
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are n dots northwest of (x′, y′), then (x, y) lies n + 2 units directly northeast of (x′, y′).

Otherwise, there are i dots strictly northwest of (x′, y′) and southwest of (x, y) and j dots

southeast of (x′, y′) and southwest of (x, y) with at least one of i and j being nonzero. Then

(x+ rw(x, y), y− rw(x, y) = (x′+ j, y′− i). But rw(x′, y′) = 0 since w is defined by inclusions

and there is a dot northeast of (x′, y′). So every box weakly southwest of (x′, y′) is in D(w),

including (x′ + j, y′ − i). So (x, y) is a double box, which is a contradiction. Hence, if Xw is

smooth, it also avoids 3412.

Question 3.3.3. Is there a similar characterization for Schubert varieties in the flag variety

of multiplicity n where n is any integer greater than 2?

As an ultimate goal, we want a combinatorial rule for determining the multiplicity of

any Schubert variety in the flag variety, analogous to the situation with Schubert varieties

in the Grassmanian. One significant barrier to extending the results in this thesis to higher

multiplicities is that Schubert varieties of multiplicity three (or any multiplicity greater than

two) are not necessarily local complete intersections, meaning that we do not have easy

access to a minimal set of generators.

Question 3.3.4. The Ryan-Wolper Theorem [28, 30] states that Xw is smooth if and only

if it is an iterated fibre bundle of Grassmanians of type A. Richmond and Slofstra [26, 25]

extended this result first to type Ã and then to arbitrary finite type. Is there an analogous

decomposition for Schubert varieties of multiplicity two into an iterated fibre bundle of

Grassmanians and some “atomic” multiplicity two piece?

Question 3.3.5. We have shown that the property of having multiplicity two is not governed

by pattern avoidance. In principle, we know that this property is governed by interval

pattern avoidance. Moreover, there are examples of local properties that are characterized

by modified forms of pattern avoidance other than interval pattern avoidance. For example,

Bousquet-Mélou and Butler [5] established that a Schubert variety Xw is factorial if and

only if w avoids 4231 and 3412, where the underlined 41 indicates that the 4 and 1 must be
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adjacent in the one-line notation for w. What is the list of interval patterns that characterizes

Schubert varieties with multiplicity at most two? Can multiplicity two be characterized by

some other modified form of pattern avoidance? Can the condition expressed in Theorem

3.2.14 be translated to some such description?
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