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ABSTRACT 

Understanding fluid and structure interactions in biological airways is essential for 

explaining the physics of gas exchange that governs air flow in human and animal lungs. 

However, a limited number of studies are available due to the challenges of modeling and 

lack of experimental data. This study bridges the knowledge gap through Fluid-Structure 

Interaction (FSI) simulations combined with mechanical tissue testing. FSI is a coupling 

between two classic simulation methods: Computational Fluid Dynamics (CFD) and Finite 

Element Analysis (FEA). FSI is especially popular among researchers performing biomedical 

and biomechanical studies, due to the complex, dynamic geometries. In the case of human 

lungs, the geometry of respiratory tract is extremely complex. To accurately model the 

behavior of the lower respiratory tract, smaller portions of the respiratory system: the trachea 

and two generations of connecting bronchi (part of the upper airway) were specially chosen 

for this research. Couple case studies have been used to prove the validity of the human lung 

FSI simulation results. The case studies included a quasi-2D “square balloon” FSI simulation 

and a 3D balloon FSI simulation. In addition, tensile tests were conducted to obtain material 

properties of porcine tissue for the lung FSI simulation. Material properties were determined 

with curve fitting of porcine tissue in axial and circumferential directions to further enhance 

the accuracy of the human lung FSI model. Conclusions from each case study, experimental 

testing, and human lung FSI are provided and serve to advance the interdisciplinary study of 

respiration kinetics. 
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Chapter 1: LITERATURE REVIEW 

1.1 Introduction 

Mechanical ventilation is used as a life support treatment when patients are unable to 

breathe effectively on their own. Various types of ventilators are used in the medical field. 

The focus of this study will be on pressure-controlled ventilation (PCV), with respect to the 

physical properties governing the movement of gas. Research has been done to quantify the 

effectiveness between PCV and other ventilators, such as high-frequency percussive 

ventilation (HFPV) in terms of gas exchange. Dutta et al. [1] experimentally determined 

HFPV provides better results in terms of gas exchange; based on nitrogen washout times. 

Lucangelo et al. [2] have also conducted experiments to quantify HFPV’s improvement in gas 

exchange compared to PCV. On the other hand, numerical simulations have also been 

conducted to better visualize the effects of air flow in the lung. Lambert et al. [3] and Calay et 

al. [4] have conducted computational fluid dynamics (CFD) simulations of the lungs, using a 

large eddy simulation (LES) and prescribed normal, as well as exercising breathing conditions 

to their models, respectively. Xia et al. [5] have performed a fluid structure interaction (FSI) 

simulation in a part of the lung airway tree with various wall thicknesses and Reynold’s 

numbers (Re). Malvè et al. [6] have also conducted an FSI simulation comparing normal 

breathing rate and mechanical ventilator flow in the trachea. However, an FSI simulation of 

more than just the trachea has never been directly in terms of numerical simulations. Some 

research has been conducted to show the difference either experimentally or through CFD. 

However, mechanical stresses on the lung walls themselves are equally as important. Reason 

being, the lung walls themselves are delicate in nature, inflammation can cause tissue damage 

to the walls. As stated previously, this study is aimed to quantify PCV through FSI; showing 

the differences in terms of the fluid pressure exerted on the tracheal walls and the respective 

stresses that are exerted on the internal walls of the airway. 

Many researchers have conducted FSI simulations for various situations, such as 

turbines, pumps, and biomechanics. FSI does not have to be between the two classic 

simulation methods: CFD and Finite Element Analysis (FEA). For example, FSI can be 

between thermal (heat transfer) or acoustics and solid mechanics; these simulations are also 

called Multiphysics simulations. For this study, the classical coupling between: CFD and FEA 

is employed. FSI takes into account both the fluid flow and the structural behaviors of 
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systems. These simulations allow researchers to visualize the various situations that cannot be 

experimentally or analytically performed. FSI is especially popular among biomedical and 

biomechanical studies, due to the complex, dynamic geometries. In addition, these complex 

situations are difficult and time consuming to accurately measure. Therefore, a validated 

numerical simulation is generally favored. In the case of human lungs, the geometry of the 

lower respiratory tract is intricate. This research is focused on simulating deformation and 

fluid flow field from the human trachea down to the 3rd generation of the human lung. In 

addition, couple case studies have been used to prove the validity of the human lung FSI 

simulation results. 

1.2 Background 

The focus of the study is to perform an FSI simulation for the lower respiratory tract. 

The first step would be to understand where in the respiratory tract the study and model is 

focused on and effectively represents. Second, would be to understand how an FSI simulation 

is performed.  

1.2.1 Respiratory System 

 The human respiratory system is divided into two regions: the upper respiratory tract 

and the lower respiratory tract. Shown in Figure 1.1, the parts that are above the cricoid 

cartilage, which is a part of the larynx, is in the upper respiratory tract, everything else below 

is in the lower respiratory tract. The lower respiratory tract consists of the trachea, bronchi, 

bronchioles, and the left and right lungs containing the alveoli. The focus of this research will 

be in the lower respiratory airway tract, specifically the trachea, main bronchi, and bronchi.  
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Figure 1.1: Respiratory system by J. Ladyof Hats [7]. 

Note: each bifurcation is also referred as a “generation”, or just “G”. For example, the trachea 

is G1. The region of interest is also part of what researchers would call the upper airway. The 

upper airway is from the trachea (G1) down to the seventh generation (G7). As stated 

previously, the focus will be the trachea, main bronchi, and bronchi; which is G1 through G4.  

1.2.2 Fluid Structure Interaction 

 This FSI study is a coupling between two classic simulation methods: CFD and FEA. 

FSI takes into account both the fluid flow and structural behaviors of systems. FSI has not 

been a dominating simulation method, mainly because of the scarcity of powerful computers. 

However, in the recent years of technological improvement, FSI simulations are not as time 

costly as before. In addition, most researchers’ focus is either in CFD or FEA. There are 

several reasons for the popularity of CFD and FEA over FSI. First, most researchers’ focuses 

are either in the fluid mechanics or solid mechanics field. Though in reality, the fluid and the 

solid closely interact with each other in most situations. Second, FSI is also difficult to 

converge if the geometry, flow field or, solid behavior is too complex. Combining these two 

reasons, results in costly simulations and possible inaccurate results.  
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Generally, an FSI simulation works through a portioned approach. Meaning, the fluid 

solver is separate from the solid mechanics solver, and the two are connected with a “coupling 

system”. The governing equations for the fluid solver will be solved and the results will be fed 

into the solid system solver. Once the solid mechanics system is solved, its output will 

become the fluid mechanic’s new input. This cycle repeats until either the set convergence is 

achieved or if the number of iterations are met, then the program moves onto the next time 

step. 

 

Figure 1.2: FSI coupling flow chart for simulations 

Shown in Figure 1.2 is the FSI coupling logic for the simulations conducted in this study. 

Note, not all FSI simulations will always have these as inputs and output. The input and 

outputs are dependent upon the study and the specific conditional parameters employed.  

1.3 Geometry for Simulations 

To run any kind of numerical simulation such as CFD, FEA, or FSI, geometry for the 

models must exist or else the geometry would have to be created. For the first two case 

studies, the quasi-2D balloon and 3D balloon, the geometries were modeled in SolidWorks 

2017. For the human lung simulation, the geometry was created from a program called 3D 

Slicer. The human lung geometry was created from a series of computerized tomography 

(CT) scans using 3D Slicer, and saved as a stereolithography (STL) file. Other methods, as 

Kitaoka et al. [8] used, is an algorithm to generate the airway tree. Though this method can 

generate the geometry to a fine detail, it is not as realistic as a geometry generated from a CT 
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scan, especially in three dimensions. Other researchers such as Xia et al. [5], Malvè et al.[6], 

and many others have relied on generating the lung geometry from CT scans for geometry 

accuracy.  

1.4 Fluid-Structure Interaction Simulations 

A couple of FSI validation case studies were simulated before applying the method to 

the human lung FSI simulation. The first case is a quasi-2D square balloon simulation. This 

simulation was first purposed by Küttler et al. [9]. The simulation was originally used as a test 

for an in-house FSI code. For this study, ANSYS was used to perform the same case study 

and results are then compared to Küttler et al. [9] and Bogaers et al. [10]. 

Another case study is a 3D balloon simulation. The boundary conditions (BCs) used in 

this simulation are applied to the lung geometry since the simulations themselves are similar 

in nature. The author was not able to find a journal paper that conducted the same study, 

however the results are reasonable with the given BCs. 

Lastly for the human lung simulation, several researchers have previously conducted 

rudimentary FSI simulations. However, direct comparisons cannot be made due to the 

difference in material properties and BCs used. General comparisons and conclusions are 

made in the chapter. For example, Malvè et al. [6] simulated a human lung geometry of a 70 

year old healthy man. The geometry was created from a series of CT scans, with normal and 

ventilation BCs prescribed in the simulation. The material applied to the lung was obtained 

from literature; based on tensile testing of human tracheas. However, the material values 

Malvè et al. [6] used were from Trabelsi et al. [11]; whose studies were based on previously 

frozen tissues. Whereas, this project applies experimental “fresh” ex vivo porcine tracheal 

properties. 

1.5 Material Testing 

Uniaxial tensile testing was performed to obtain material properties for the lung 

simulation. The tensile tests of the porcine tissue were performed using a mini-Instron. 

Afterwards, the data was curve fitted using the hyperelastic Ogden Material model. Other 

researchers have done similar testing; Lally et al. [12], Shi et al. [13], Teng, et al. [14], and 

Trabelsi et al. [11] have all conducted various types of tensile testing on porcine specimens. 

However, the techniques, both in terms of testing and curve fitting, used by the various 
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researchers are different than what was done in this current study. Please refer to Chapter 4 

for additional details. 

1.6 Limitations 

Many researchers have conducted various forms of simulations and experimentation on 

the airway. However, limitations of the conducted studies still exist. While material tensile 

testing has been conducted by several researchers, one of the most common hyperelastic 

models was not utilized: the Ogden model. Another instance would be simulating simple 

geometries such as a balloon simulation. FEA simulations have been conducted for balloon 

stents. However, a simple FSI simulation of a 3D balloon inflating has never been previously 

reported done before. Though the solid mechanics of the balloon is easy to visualize, the fluid 

flow is more complicated. A simple study like a 3D balloon is a good simulation to 

commence with prior to advancing on to something that is of greater complexity in geometry 

such as a human airway and lung. Lastly, FSI study of the human lung has some minor 

limitations as well. Malvè et al. [6] conducted FSI simulations to compare the structural 

differences between normal breathing and PCV. However, the focus was only on the trachea, 

while the other regions below, such as the bronchi, were neglected in Malvè et al. [6] 

simulation.  

1.7 Conclusion 

This study aims to further bridge the knowledge gap through FSI simulations and 

mechanical tissue testing. From existing studies certain methods and results were drawn upon 

for guidance. However, the current research also has its own unique methods for comparison. 

For example, using a commercial simulation program, ANSYS was used instead of in-house 

codes. Using an existing commercial program ensures the BCs and various setups can be 

consistent regardless of user. In addition, incorporating another curve fitting model will 

further diversify existing material databases just as Trabelsi et al.[11] and Lally et al.[12] 

have done with Neo-Hookean and Moony-Rivlin, respectively. Lastly, adding one more way 

of simulating an anatomically accurate lung geometry, provides further advancements in both 

simulation and experimental research. By comparing results that may validate results from 

Dutta et al. [1] and Lucangelo et al. [2], or possibly comparing simulation results with Malvè 

et al. [6]. Throughout this study, conclusions in each chapter are drawn and built upon with 

the next. By combining the results from each chapter, it creates a unique approach in 
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simulating the human lung behavior under certain ventilation conditions. The main objective 

of the study is to develop an FSI model for the human lung. The FSI model will incorporate 

tissue properties obtained from tensile testing, as well as a prescribed realistic PCV ventilator 

flow condition for increased modeling accuracy.  
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Chapter 2: THE QUANDARY OF COMPRESSIBILITY 

2.1 Incompressibility, Compressibility, and Artificial Compressibility 

Incompressible flow, also known as isochoric flow, is when the volume is constant 

throughout the fluid flow. The only way to maintain a constant volume, is if the material 

density is constant. Which means for a compressible flow, the volume/density is changing 

throughout the fluid flow. The change in density is caused by the change in pressure. Both 

forms of compressibility can be found in real-world physics: water (incompressible) and air 

(compressible). While the third form, artificial compressibility (AC), is mathematically in 

between incompressible and compressible. By adding a constant to the governing continuity 

equation, it relaxes the constraints of the conservation law. AC can only be mathematically 

proven and implemented.  

Küttler et al. [9] was the first to pose the incompressible dilemma. In summary, 

incompressible flows along with highly deformable structures cannot be solved with simple 

alternating FSI iterations. An obvious case is where incompressible gas is going into an 

enclosed surface, such as a balloon. Küttler et al. [9] proposed several different approaches to 

solve the dilemma. Later, Bogaers et al. [10] used the same case study for an AC FSI 

simulation. In Bogaers et al. [10], the Dirichlet Artificial Compressibility is when a relaxation 

source term is added to the fluid continuity equation. This allows the continuity equation to 

relax and converge. However, this is not a direct reflection of the behavior in the balloon. 

Therefore, in this case study of the square balloon, actual compressibility will be used. This 

means, instead of treating the fluid region as incompressible air, the fluid is going to be an 

ideal gas allowing compressibility to happen within the square balloon. 

 For this case study, the simulation was run with three different mesh sizes: 1 , 2, 

and 4. The 1 (Simulation 3) is the original mesh size that both Küttler et al. [9] and 

Bogaers et al. [10] used. While the 2 and 4 mesh sizes are mesh refinements for validating 

the results. 

2.2 2D Square Balloon Geometry 

In order to compare the results with Küttler et al. [9] and Bogaers et al. [10], the square 

balloon geometry and the location of the pressure measurement are the same, as shown in 

Figure 2.1. The simulation was run using ANSYS 19.1 with the System Coupling (SC) 
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module, as well as the Fluent and Transient Structural modules. However, due to a limitation 

of the ANSYS program, to perform a SC simulation, the geometry must be in 3D. Therefore, 

to accommodate the limitation, yet retain a geometry close to the literature geometry as much 

as possible, a thickness of 1 (mm) was added.  

 

Figure 2.1: Geometry of literature square balloon  

The geometry was modeled using SolidWorks 2017, a solid modeling program, as two 

separate regions. The structural region, hatched area, creates the outer boundary of the square 

balloon. The fluid region, non-hatched area, is the inner region of the balloon with an inlet.  

2.3 Methods 

The methods for this case study are divided into several sections: Mesh, Boundary 

Conditions, Material Properties, and Convergence Settings. The study has three different 

mesh sizes for the fluid and solid regions. Each simulation is labeled by their corresponding 

mesh refinements: 1, 2, and 4. Other than the mesh refinements, the other settings, such as 

materials and convergence tolerance, are the same and they are summarized in the subsections 

below. Three FSI simulations each with a different mesh refinement. The mesh refinements 

are later used for an error and uncertainty analysis for the fluid region.  

ANSYS uses existing analytical systems along with the SC module to perform FSI 

analyses. For this simulation, ANSYS Fluent and ANSYS Transient Structural are the main 

analytical systems, which are coupled using the SC module. 
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Figure 2.2: ANSYS Workbench layout for running a SC analysis  

In Figure 2.2 it is shown how the “Geometry” for Fluent and Transient Structural are 

linked, and this signifies that the two systems are using the same geometry. Then, the “Setup” 

from both systems are linked with the SC “Setup”. Various settings such as convergence 

tolerances, material selection, and boundary conditions must be defined inside Fluent and 

Transient Structural. ANSYS requires the simulation time, step size, number of steps to be 

defined in both systems in addition to what is set in the SC module. It is worth noting that 

inputs in SC, will override inputs in Fluent and Transient Structural.  

2.3.1 Mesh 

Using the meshing program in ANSYS Fluent and ANSYS Transient Structural, three 

different size meshes were used to validate the results with each other as well as with Küttler 

et al. [9] and Bogaers et al. [10]. The general mesh settings and properties for the fluid and 

structural regions are summarized in the following tables. Table 2.1 summarizes the general 

mesh settings for both the fluid and structural regions. 

Table 2.1: Square Balloon – Mesh settings for all fluid and structural regions 

Mesh Settings 

Element Order Linear 

Size Function Uniform 

Relevance Center Coarse 

Smoothing Medium 
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Generally, to capture the behavior of the fluid, the element sizes are smaller and tend 

to have more elements, in comparison to the solid region. In this case study, since the fluid 

and structural region are separate regions and use different analytical systems, the mesh sizes 

will be different. The fluid region will have more elements and smaller element sizes in 

comparison to the structural region.  

Table 2.2: Square Balloon – Mesh properties for the fluid and structural regions 

  Fluid Region 

Simulation Mesh Refinement Number of Elements Element Size 

1 4 17,600 0.025 (m) 

2 2 4,400 0.050 (m) 

3 1 1,100 0.100 (m)  

 Structural Region 

Simulation Mesh Refinement Number of Elements Element Size 

1 4 944 0.050 (m) 

2 2 236 0.100 (m) 

3 1 59 0.200 (m) 

 

Using the settings in Table 2.1 and Table 2.2 the mesh for Simulation 1 are shown below.  

 

Figure 2.3: Square Balloon – Simulation 1 fluid mesh 
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Figure 2.4: Square Balloon – Simulation 1 structural mesh 

The other two meshes and simulation results for Simulation 2 and Simulation 3, are shown in 

Appendix A – Chapter 2: The Quandary of Compressibility.  

2.3.2 Boundary Conditions 

 The BCs shown in Figure 2.5, are the same BCs that Küttler et al. [9] and Bogaers et 

al. [10] provided. However, for a quasi-2D simulation, the elements are free to move in the Z 

direction. Therefore, a “Frictionless Support” was added to the structural region on both sides 

of the square balloon. By adding a “Frictionless Support”, it constrains the elements in the Z 

direction, but still allows movement in the X and the Y direction. Similarly, a “Wall 

Symmetry” BC was added to the fluid region in the Z direction as well; for the same reason as 

stated for the structural region. These additional BCs are shown in Figure 2.6. 

 

Figure 2.5: Square Balloon – Boundary conditions 
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Figure 2.6: Square Balloon – Additional boundary conditions for quasi-2D simulation  

As shown at the inlet in Figure 2.5, the maximum velocity inlet is 1 (m/s). However, the 

prescribed velocity is not a uniform, constant velocity profile. The profile used in the 

literature is shown in Figure 2.7. The maximum velocity, umax, from 0 to 1 second is a 

sinusoidal curve defined by equation (2.1): 

max

3
sin( ( )) 1

2

2

t

u

  

 . 
(2.1) 

Subsequently after the first second, the velocity is then constant at 1 (m/s).  

 

Figure 2.7: Square Balloon – Velocity inlet profile 
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As stated by Bogaers et al. [10], the reason to have a sinusoidal profile in the beginning is to 

avoid pressure oscillations. Pressure oscillations can occur if there is a rapid influx of pressure 

in a short amount of time. Once the pressure inside the square balloon stabilizes, a constant 

velocity can then be applied for the remainder of the simulation time. The same logic for the 

velocity profiles applies to the 3D balloon, in Chapter 3 as well. 

The Re for this case study is 6.22 which makes the flow a laminar flow. Please 

reference Material Properties section for kinematic viscosity (υ) value. For the flow to be 

turbulent, Re must be 4000 or greater.  

Re 6.22
uL uL

 
    (2.2) 

where ρ is density, u is velocity, L is the characteristic dimension, in this case the diameter, μ 

is the dynamic viscosity, and υ is the kinematic viscosity.  

 In this quasi-2D simulation, a moving boundary was used in the fluid region. A dynamic 

mesh moves with the fluid such that the elements re-meshes after every iteration. Simulations 

with dynamic meshes are used to avoid negative volume, unwanted distortion in the elements, 

or for most cases a boundary in motion. For these FSI simulations, both smoothing and re-

meshing dynamic mesh methods were used. 

Table 2.3: Square Balloon – Smooth re-meshing settings for all simulations 

Smoothing 

Diffusion - 

Diffusion Function Boundary-distance 

Diffusion Parameter 2 

 

Smooth re-meshing methods include: Spring/Laplace/Boundary Layer, Diffusion, and 

Linearly Elastic Solid. For the square balloon case, the diffusion method was chosen. The 

mesh for the diffusion-based smoothing is governed by the diffusion equation  

( ) 0u    (2.3) 

Since the diffusion equation is velocity based, 𝑢⃗ , and the diffusion coefficient, γ, is based on 

boundary motion. It would be appropriate to use this smoothing method for this prescribed 

velocity, moving boundary simulation.  
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Table 2.4: Square Balloon – Re-meshing mesh parameters for various simulations 

Re-meshing Parameter 

 Simulation 1 Simulation 2 Simulation 3 

Minimum Length Scale (m) 0.0075 0.0107 0.0151 

Maximum Length Scale (m) 0.038 0.0760 0.1518 

Maximum Cell Skewness 0.7 0.7 0.7 

Maximum Face Skewness 0.7 0.7 0.7 

Size Re-meshing Interval 1 1 1 

 

The re-meshing method in the simulations will re-mesh every interval. The trigger for 

the program to re-mesh are the threshold values given in Table 2.4. The mesh must stay 

between the given thresholds after every iteration. To set the values for re-meshing method, 

the Minimum Length Scale (m) value must be smaller than the value provided. Similarly, for 

the Maximum Length Scale (m) the value must be larger than the value given. The Maximum 

Cell and Face Skewness dictates how warped the elements can be. Provided in Figure 2.8 are 

values calculated from Fluent for Simulation 1.  

 

Figure 2.8: Square Balloon – Mesh scale information for Simulation 1 from Fluent 

As shown in the above figure, there are no skewness in the elements. However, the re-mesh 

parameters are allowing skewness to occur. Allowing for skewness in the elements will 

eliminate unnecessary re-meshing during the simulation. Since the other parameters are 

already restricting. 

Lastly, with the Smoothing and Re-meshing parameters set, the Dynamic Mesh Zones 

(DMZ) will need to be set. The DMZs are what Fluent uses to map the fluid region(s) to the 
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FSI surface(s) in the solid region. DMZ also allows for the dynamic meshing to actually 

occur. For this case, there are two zones: the “Interior” and “Wall”. 

Table 2.5: Square Balloon – Dynamic Mesh Zones 

Dynamic Mesh Zones 

Zone Names Type 

Interior Deforming 

Wall System Coupling 

 

The “Interior” is set to “Deforming”, the elements will deform and move as needed to 

accommodate the change in the fluid. “Wall” is set to “System Coupling”, this BC is where 

Fluent will transfer the information to the structural module, where the FSI surface will 

receive the information, and perform its computation.  

2.3.3 Material Properties 

Material properties used for square balloon simulations are taken from literature. The 

material properties are not of any specific material. The properties, shown in Table 2.6, used 

are unique to the incompressible dilemma simulation of the square balloon.  

Table 2.6: Square Balloon – Material properties obtained from Küttler et al. [9] and Bogaers 

et al. [10] for simulations 

Material Properties Fluid Region Structural Region 

Density, ρ (kg/m3) 1.1 1000 

Kinematic Viscosity, υ (kg/m-s) 0.1606 - 

Elastic Modulus, E (MPa) - 0.7 

Poisson’s Ratio, υ - 0.45 

 

The material properties listed, closely resembles that of air in the fluid region. While the 

structural region’s properties, based on the density, closely resemble that of water. The elastic 

modulus value is near negligible in terms of real-world properties.  

Küttler et al. [9] and Bogaers et al. [10] used the material properties list above for 

their incompressible and artificial compressibility simulations, respectively. For the 

compressibility case studies, the ideal gas law will be implemented; thus having the following 

values. 
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Table 2.7: Square Balloon – Material properties for the fluid and structural regions 

Fluid Material Properties Parameters Value 

Density, ρ (kg/m3) Ideal-gas - 

Specific Heat, Cp (J/kg-K) Constant 1006.43 

Thermal Conductivity, κ (W/m-K) Constant 0.0242 

Dynamic Viscosity, μ (kg/m-s) Constant 0.1606 

Molecular Weight, M (kg/kmol) Constant 28.966 

Solid Material Properties Parameters Value 

Density, ρ (kg/m3) - 1000 

Isotropic Elasticity - - 

 Young’s Modulus, E (Pa) 7.0E+05 

 Poisson’s Ratio υ 0.45 

 Bulk Modulus, K (Pa) 2.333E+06 

 Shear Modulus, G (Pa) 2.414E+05 

 

The structural region in the simulation is simpler. The structural properties are the same as 

Küttler et al. [9] and Bogaers et al. [10] in their simulations. The linear elastic structural 

properties allow the balloon walls to move with less resistance, but still provide the needed 

structure to push back on the fluid.  

2.3.4 Convergence Settings 

To ensure the results comply with real world physics, the convergence settings provide 

the solver guidelines of when the results are satisfactory. Fluid behavior tends to be more 

complex therefore, most of the convergence settings are for the fluid region. In ANSYS 

Fluent, the Solution Methods are left at default. The Residual Convergence values are 

changed to such that the iterative error has negligible effect on the results. 

Table 2.8: Square Balloon – Fluid region main convergence settings 

Solution Methods 

Scheme SIMPLE 

Gradient Least Squares Cell Based 

Pressure Second Order 
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Continuation of Table 2.8 

Density Second Order Upwind 

Momentum Second Order Upwind 

Energy Second Order Upwind 

Transient Formulation First Order Implicit 

Residual Convergence 

Continuity 1e-05 

x-velocity 1e-05 

y-velocity 1e-05 

z-velocity 1e-05 

Energy 1e-06 

Table 2.9 has the convergence settings for the SC. The convergence criteria for data 

transfers are defaulted to RMS Convergence Target = 0.005. The convergence settings for the 

SC are independent of the fluid and structural systems.  

Table 2.9: Square Balloon – SC Data Transfer settings 

Data Transfer 1 Data Transfer 2 

Source: Fluent Source: Transient Structural  

Region: Wall-fff_solid 1 Region: Fluid Solid Interface 

Variable: Force Variable: Displacement 

Target: Transient Structural Target: Fluent 

Region: Fluid Solid Interface Region: Wall-fff_solid 1 

Variable: Force Variable: Displacement 

 

Data transfer between structural and fluid is completed the in SC. The defined 

source/target variable and regions are the participants in the FSI simulation. As shown above, 

Data Transfer 1 is between the “Force” generated by the pressure in fluid to the “FSI” region 

(the surface that interfaces the structural wall and fluid wall). While Data Transfer 2 is from 

the structure to the fluid. The displacement from the “FSI” region of the solid is then fed back 

to the “wall” of the fluid, providing the ‘new’ displacement. Shown in Table 2.10 are the 

simulation settings for the fluid region.  
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Table 2.10: Square Balloon – Fluid region simulation settings 

 Simulation 1 Simulation 2 Simulation 3 

Simulation Time (s) 9 9 9 

Time Step Size (s) 0.0125 0.025 0.05 

Number of Time Steps 720 360 180 

Max Number of Iterations 40 40 40 

 

Shown in Table 2.11 are the simulation settings for the structural region. Large 

deflection is specified to be ‘on’. The general rule for large deflections is when there are 

slender structures or large deflection, strain, and rotation. In these case studies, there are large 

deformation due to the high pressure from the fluid region. Hence, the large deflection 

function must be turned on.  

Table 2.11: Square Balloon – Structural region simulation settings 

Structural Region 

 Simulation 1 Simulation 2 Simulation 3 

Time/Step End time (s) 9 9 9 

Time Step (s) 0.0125 0.025 0.05 

Large Deflection On On On 

 

Table 2.12 specifies the time settings for the SC. It is important to note that even 

though the SC settings will override the fluid and structural settings; the step size and end 

times must still match the structural values. If the values do not match each other, the 

simulation will not run.  

Table 2.12: Square Balloon – System coupling settings 

System Coupling Time Settings 

 Simulation 1 Simulation 2 Simulation 3 

End Time (s) 9 9 9 

Step Size (s) 0.0125 0.025 0.05 

Minimum Iterations 1 1 1 

Maximum Iterations 25 25 25 
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When running an FSI simulation in ANSYS, the SC settings will override the 

structural and fluid simulation settings. However, for consistency, the settings for the fluid 

and structural regions should also be inputted before running the simulation. The step size for 

each simulation is different. Simulation 1 and 2 are used for the error and uncertainty analysis. 

Therefore, the reducing method for the grid and step sizes are to remain consistent between 

simulations, each with a reduction of 2.  

2.4 Results 

2.4.1 Pressure Comparison  

Both Küttler et al. [9] and Bogaers et al. [10] recorded the fluid pressure results at 

point A (shown in Figure 2.5). For comparison to the literature pressures, all the case studies’ 

fluid pressure have also been recorded at the same location (Point A) and compared.  

 

Figure 2.9: Square Balloon – All fluid pressures plotted on a logarithmic scale 

As shown in Figure 2.9, the fluid pressure record from Küttler et al. [9] is significantly further 

away from the ANSYS simulations as well as from Bogaers et al. [10] . Therefore, the focus 

of the analysis will be performed with the ANSYS case studies and the pressure values from 

Bogaers et al. [10]. 
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Figure 2.10: Square Balloon – Fluid pressure comparison. Values from Bogaers et al. [10] 

where regenerated using A. Rohatgi. [15]’s program. 

The pressures shown Figure 2.10, show that the fluid pressure between the ANSYS 

simulations and Bogaers et al. [10] are different from each other. The maximum pressure 

difference is at t = 9 seconds; where the difference in pressure is about 5,600 (Pa). The cause 

in the variation can be from numerous different variables. Such as, differences in the 

simulation programs and in-house code versus ANSYS, or the differences between a pure 2D 

simulation with a quasi-2D simulation with ANSYS.  

2.4.2 Ideal Gas Law 

As shown, the pressure results between AC and the case studies are fairly significant. 

To ensure that the ANSYS simulations are satisfying real world physics the ideal gas law can 

be applied as an analytical check. Using the idea gas law and density values obtained from the 

simulation, an ‘ideal gas pressure’ curve will be created and compared to Figure 2.10. The 

new curve will show what the idealistic ideal gas pressure is at and then the results will be 

compared.  

In order to apply the ideal gas equation, it is assumed the square balloon is a fully 

enclosed surface, the fluid is an ideal gas, the balloon is at room temperature, and is in 
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atmospheric pressure. (Note, the solid region is not considered in the ideal gas calculations). 

To ensure the density values obtained from the simulation is valid, a calculated ideal gas law 

value is used to compare with ANSYS’s prediction, shown in Figure 2.11.  

The general form of the ideal gas law is: 

PV Tn R   (2.4) 

Where, P is the pressure of the gas, V is the volume of the gas, n is the number of moles,  is 

the universal gas constant, and T is the absolute temperature of the gas. In addition, knowing 

that  

m
n

M
   (2.5) 

where m is the mass of the gas and M is the molar mass of the gas. As well as,  

m

V
    (2.6) 

where m is the mass of the gas and V is the volume of the gas. We then get an alternative form 

of equation (2.4): 

P RT   (2.7) 

where P is the pressure of the gas, ρ is the density, R is the specific gas constant, and T is the 

temperature. 

 Knowing the constants and dividing ρ over in equation (2.7) we can graph a 

Pressure/Density plot.  

P
RT


  (2.8) 

In order to calculate R, the following constants are used: 

3

8.31445
Pa m

mol K

 
  

 
R  and 28.966Air

g
M

mol

 
  

 
. 

 

3

0.2870
Air

Pa m
R

M g K

 
   

 

R
  (2.9) 

Lastly, the temperature, T is 300 (K), resulting in:  

3

86.1
Pa m

R T
g

 
   

 
. (2.10) 
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From equation (2.10), the values of pressure over density from ANSYS should be at a 

constant 86.1 (Pa-m3/g). 

 

Figure 2.11: Square Balloon – Pressure divided by density curve, values obtained from 

Simulation 1. 

 Based on Figure 2.11, the calculated constant and the data obtained from ANSYS are 

close to each other. The slight variation may be caused by a numerical error in the simulation. 

Overall the curve is constant and is comparable to the calculated constant: 86.1 (Pa-m3/g). 

 After showing that the density from the ANSYS simulation is plausible, we can use 

the density values and equation (2.7) to create the ideal gas pressure curve to overlay on 

Figure 2.10 to see where the “idealistic pressure” is supposed to be at with the made 

assumptions. 

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0 1 2 3 4 5 6 7 8 9 10

P
re

ss
u
re

/D
en

si
ty

Time (s)

Pressure/Density from ANSYS

Ideal Gas Law Calculation



24 

 

Figure 2.12: Square Balloon – Comparing Ideal Gas Pressure with literature and case study 

pressures 

Looking at Figure 2.12, the ideal gas pressure is slightly lower that the simulated 

pressures. This is likely due to the force from the solid region elastically pushing back on the 

fluid. As specified in the assumptions above, the solid region was not considered for the ideal 

gas calculation. The difference in pressure between Simulation 1 and the ideal gas equation is 

about 1,500 (Pa). As shown in the graph, the finer the mesh the better the results. The 

difference in pressure is not too much, if the mesh grid were to be refined more, the difference 

in pressure would be even smaller.  

2.4.3 Pressure Contour Comparison 

 Küttler et al. [9] provided a pressure contour plot of the square balloon at t = 15 

seconds. Though the case study simulations only go up to t = 9 seconds, general conclusion 

between contours plots can still be made. Provided are four different time steps of fluid 

pressure with their associated stress contours overlaid with each other. All contour plots were 

created using Tecplot 360 EX 2017 R2. 
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Figure 2.13: Square Balloon – Fluid pressure and structural stress for Simulation 1 at t = 0.5 

second  

 

 

Figure 2.14: Square Balloon – Fluid pressure and structural stress for Simulation 1 at t = 1 

second 
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Figure 2.15: Square Balloon – Fluid pressure and structural stress for Simulation 1 at t = 5 

seconds 

 

 

Figure 2.16: Square Balloon – Fluid pressure and structural stress for Simulation 1 at t = 9 

seconds 
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Figure 2.17: Square Balloon – Fluid pressure (kPa) contour plot at t = 15 seconds from 

Küttler et al. [9] 

Comparing Figure 2.16 and Figure 2.17, the last time step of the simulations, we can see that 

the deformed shape is very similar. The pressure contours are very close as well. The 

difference between the case studies, are about 4,000 (Pa). However, considering Küttler et al. 

[9] is at t = 15 seconds and Simulation 1 is at t = 9 seconds; it can be said that if the pressures 

where at the same t the values would be close. 

 In addition to the pressure contour, the figures also show the von Mises stresses at the 

respective time steps as well. As shown, the maximum stresses are occurring at the corners of 

the balloon where the fluid is pushing at a stress concentration point. It can be observed that 

the stresses between the four figures, started out in the four corners and as the balloon 

expands, the stresses slowly equalize on each side.  

2.4.4 Velocity Magnitude Contour Comparison 

Both Küttler et al. [9] and Bogaers et al. [10] provided velocity contours plots for their 

last time step. Similarly, four different time steps including the last time step are provided for 

comparison. Velocity magnitude figures are also overlaid with the equivalent strains at their 

respective time step.  
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Figure 2.18: Square Balloon – Fluid velocity magnitude and structural strain for Simulation 

1 at t = 0.5 second 

 

 

Figure 2.19: Square Balloon – Fluid velocity magnitude and structural strain for Simulation 

1 at t = 1 second 
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Figure 2.20: Square Balloon – Fluid velocity magnitude and structural strain for Simulation 

1 at t = 5 seconds 

 

 

Figure 2.21: Square Balloon – Fluid velocity magnitude and structural strain for Simulation 

1 at t = 9 seconds 
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 Figure 2.22: Square Balloon – Velocity (m/s) contour plot at t = 15 seconds from Küttler et 

al. [9] 

  

Figure 2.23: Square Balloon – Velocity (m/s) contour plot at t = 10 seconds from Bogaers 

et al. [10] 

 Comparing Figures 2.21-2.23, one can see that the velocities are almost the same in all 

three figures. Accordingly, the deformed shapes are similar to each other as well. From this, it 

can be concluded that the velocities applied and the behavior of the velocity contours agree 

with each other.  
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 Similar to before, in addition to the velocity contour, the figures also show the 

Equivalent Strain at the respective time steps as well. The highest strains are occurring at the 

corners of the balloon where the fluid is pushing on the stress concentration points. It should 

be noted that the strain between the four figures, started out in the four corners and as the 

balloon expands, the strain slowly equilibrates on each side of the balloon.  

2.4.5 Velocity Vector and Structural Deformation Contour  

Provided below are the velocity vectors and solid deformation contour plots for the 

four time steps. The velocity vectors show the general flow direction and magnitude of the 

fluid. While the deformation for the solid region shows the amount the balloon deformed from 

the original position. 

 

Figure 2.24: Square Balloon – Fluid velocity vector and structural deformation for 

Simulation 1 at t = 0.5 second 
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Figure 2.25: Square Balloon – Fluid velocity vector and structural deformation for 

Simulation 1 at t = 1 second 

 

 

Figure 2.26: Square Balloon – Fluid velocity vector and structural deformation for 

Simulation 1 at t = 5 seconds 
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Figure 2.27: Square Balloon – Fluid velocity vector and structural deformation for 

Simulation 1 at t = 9 seconds 

 Based on Figure 2.27, the maximum deformation of the square balloon is 1.09 (m). 

Which means, in t = 9 seconds, the balloon grew by about 1/3 of its original size.  

2.4.6 Solution Verification 

A convergence study for the fluid region was performed to determine the type of 

convergence and the accuracy of the simulations. Convergence studies requires a minimum of 

three (m = 3) solutions to evaluate convergence. For this analysis, the pressures at t = 9 

seconds in each simulation were used to evaluate the convergence.  

Table 2.13: Square Balloon – Convergence values obtained from pressure data 

Convergence Values 

1 Fine Mesh S1 = 8,026.53 (Pa) 

2 Medium Mesh S2 = 8,114.43 (Pa) 

3 Coarse Mesh S3 = 8,316.28 (Pa) 

 

There are four types of convergence that a set of solutions can provide. The type of 

convergence is dictated by the R value.  
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Table 2.14: For Square Balloon – Types of convergences for CFD 

Monotonic Convergence 0 < R < 1 

Oscillatory Convergence R < 0; |R| < 1 

Oscillatory Divergence R < 0; |R| > 1 

Monotonic Divergence R >1 

 

To calculate the R value, we need ε21 and ε32. 

21 2 1S S     (2.11) 

32 3 2S S     (2.12) 

21

32

R



   (2.13) 

ε21 and ε32 are the difference between the pressures (S1, S2, S3). With the give equations, ε21, ε32, 

and the R value can be calculated and then used to determine what type of convergence (Table 

2.14) was achieved. For this case, based on the R value, monotonic convergence was 

achieved.  

The next step is to determine the observed order of accuracy, PRE. The generalized 

Richardson extrapolation (RE) is used when the exact solution is unknown. However, with 

three numerical solutions and three different mesh sizes, the observed order of accuracy can 

be calculated. To calculate PRE, ε21, ε32, and grid refinement ratio (r), will be used. 

32

1 2
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x x


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 

  (2.14) 
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r





 
 
    

(2.15) 

r is the ratio between the meshes sizes. The mesh refinement between simulations must be 

consistent. For the square balloon case, the mesh sizes were refined by a factor of 2: x1 is 4, x2 

is 2, and x1 is 1.  
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Table 2.15: Square Balloon – Mesh refinement table 

Simulation Mesh Term Element Size 

1 Fine Mesh Δx1 0.025 (m) 

2 Medium Mesh Δx2 0.050 (m) 

3 Coarse Mesh Δx3 0.100 (m) 

 

Using information from Table 2.15 and equations (2.14) and (2.15), we obtain the values for r 

and PRE, shown in Table 2.16 below. The error estimate, δRE, over or under predicts the 

comparisons between the pressures by a certain percentage.  

21

1RE
RE P

r


 


  (2.16) 

Table 2.16: Square Balloon – Values for convergence study results 

 S1 S2 S3 ε21 ε32 R r PRE δRE 

1, 2, 3 8,026.53 8,114.43 8,316.28 87.9 201.85 0.435 2 1.199 67.79 

 

Next, using the values provided in Table 2.16, the uncertainty estimates can be calculated for 

the monotonic solution using the Factor of Safety (FS) method. The details of the FS method 

is described in Xing et al. [16] and [17]. In summary, the FS method has several constants: 

FS0, FS1, and FS2. Pth is the theoretical order of accuracy, for this simulation, a second order 

upwind scheme was used. So the theoretical order is Pth = 2. Using the constants and Pth, the 

final form of the FS method is equation (2.18). 

RE

th

P
P

P
   (2.17) 

 ( ) 2.45 0.85FS RE REU FS P P     

 For 0 < P <1 
(2.18) 

Using the Table 2.14 and equation (2.18) the results in Table 2.17 are obtained. 

Table 2.17: Square Balloon – Uncertainty estimation results 

 P UFS (%S1) Convergence Study 

1, 2, 3 0.599 1.64% Monotonic Convergence 
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For this study, the grid sizes converged monotonically, with a very small grid with an 

uncertainty of 1.64%S1, based on the results from the FS method. 

2.5 Conclusion 

The square balloon case study consists of three grid sizes for the fluid and the solid 

regions. Each time the mesh size is refined, the step size would also proportionally decrease 

due to the nature of a transient analysis. The results where then compared to Küttler et al. [9] 

and Bogaers et al. [10] with several different parameters: pressure at Point A, pressure 

contour plots, and velocity contour plots. For pressure comparison at Point A, Küttler et al. 

[9] was not compared due to the offset of their pressure data. However, comparing the 

pressures of the three simulations with Bogaers et al. [10], indicated that the pressures are 

relatively close to each other. After calculating what is to be the analytical pressure (ideal gas 

pressure) for the fluid, the simulations achieved a more acceptable degree of accuracy. 

Furthermore, based on the convergence study and the FS method from Xing et al. [16] and 

[17], the square balloon pressures are producing results that have a low percentage of 

uncertainty. This demonstrates the simulation done in ANSYS SC, has a better accuracy than 

Küttler et al. [9] and Bogaers et al. [10]. Lastly, the comparisons between the pressure and 

velocity contour, the ANSYS simulations and literature plots agree with each other with 

respect to the general deformed shape and the pressure values obtained from their respective 

simulations. After comparing the results of the pressure curves and contours plots; it can be 

concluded that AC is a good starting point for complex simulations but the results would not 

be realistic. Based on the ANSYS simulations, the results are more realistic, but not perfect. 

Though ANSYS results are not perfect, it more closely resembles that observed in reality. For 

this quasi-2D balloon case, it is near impossible to conduct an experimental study, but the 

calculations backs up the simulation results pretty well. Therefore, the simulation results are 

believable enough such that the square balloon FSI setup can be used in other FSI studies.  
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Chapter 3: THREE-DIMENSIONAL BALLOON EXPANSION 

3.1 Three-Dimensional Balloon Motivation 

Numerical simulations have gained popularity in the recent decades due to the increase 

in availability of computational power. What would have taken months or years now can take 

as little as a week, a few days, or even a few hours. However, even with today’s 

computational power, accurately simulating a simple 3D balloon geometry, is still quite 

challenging. Many researchers including Chua et al. [18], Gervaso et al. [19], Zahedmanesh 

et al. [20], and Wang et al. [21] have all conducted FEA simulations for stents in human 

arteries. The geometry of a stent, typically starts as a collapsed, cylindrical mesh around a 

tethered deflated balloon, known as a catheter. Once located, the balloon inflates, the 

cylindrical mesh will expand. Once the stent is in place the balloon deflates, and the catheter 

is then retrieved.  

In addition, to the research conducted by Chua et al. [18], Gervaso et al. [19], 

Zahedmanesh et al. [20], and Wang et al. [21], other researchers have also done FEA 

simulations. For example, Holzapfel et al.[22] conducted FEA simulations for arteries and Liu 

et al. [23] conducted a thermal FSI simulation of a balloon. Many researchers have run FEA 

simulations of an enclosed balloon, in one way or another. Not many have done an interaction 

that uses fluid, such as air and structural material like rubber in an enclosed boundary. Many 

researchers have modeled various types of complex balloon geometries with FEA, such as a 

balloon attached to a stent or simulations of arteries and thermal FSI. However, a situation 

involving a region with fluid and a structural region, such as biological simulations, FEA is 

only half of the equation. For a study such as a lung simulation; where the entire respiratory 

lobes are expanding it is desirable to have expanding lobes when air flow is prescribed. Such 

simulation requires an FSI simulation, that takes into account both the fluid and structure near 

simultaneously. Therefore as a first step in simulating the fluid and structure coupling, would 

be to inflate a regular shaped balloon, as shown in Figure 3.1. An FSI simulation of a simple 

3D balloon, has not been simulated that the author is able to find. The goal of this simulation 

is to provide a proof of concept for inflating a 3D balloon, without having to spend an 

abundant amount of computational resources. 
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3.2 3D Balloon Geometry 

The balloon simulation was run using ANSYS 19.1 with the SC module, along with the 

Fluent and Transient Structural modules. The geometry was modeled using SolidWorks 2017 

as two separate regions. The balloon geometry has a uniform geometry as shown in Figure 

3.1, the ‘x’ direction is formed by revolving the geometry about the ‘z’ axis. 

 

Figure 3.1: Section view of 3D Balloon geometry. 

The structural region, hatched area, creates the outer boundary of the balloon. The fluid 

region, non-hatched area, is the inner region of the balloon with an inlet.  

3.3 3D Balloon Methods 

The methods for this case study are divided into several sections: Mesh, Boundary 

Conditions, Material Properties, and Convergence Settings. For this simulation only one mesh 

size was used, this simulation is a stepping stone for the real lung geometry simulation 

(Chapter 5), refer to Chapters 5 and 6 for additional details. ANSYS uses existing analytical 

systems along with the SC module to perform FSI analyses. For this simulation, ANSYS 
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Fluent and Transient Structural are the main analytical systems, which are coupled using the 

SC module (shown in Chapter 2, Figure 2.2). 

3.3.1 Mesh 

As stated earlier, only one mesh size was used for this case study. Unlike the 2D 

balloon, the 3D geometry of this balloon and the balloon’s tendency to oscillate in the 

beginning requires a longer simulation time in comparison to the square balloon. The mesh 

settings given below are an attempt to balance a reasonable simulation run time and accurate 

results.  

Table 3.1: 3D Balloon – Mesh settings for all fluid and structural regions 

Mesh Settings 

Element Order Linear 

Element Size (m) 0.001 

Growth Rate 1.2 

Capture Curvature Yes 

Smoothing Medium 

 

Generally, to capture the behavior of the fluid, the element sizes are smaller and tend 

to have more elements, in comparison to the solid region. In this case, the fluid and structural 

region have the same element size. The main reason is to capture the rapid balloon wall 

expansion better. Generally speaking, more elements and smaller element sizes will 

numerically capture the behavior of the region better. In the case of this 3D balloon, the walls 

are growing rapidly, and if the elements are stretched too far then that can cause the 

simulation to fail. Likewise, if the elements are too small, rapid inflation can cause elements 

to collapse, which results in a negative volume element. When negative volume happens to an 

element, the simulation will error.  

Table 3.2: 3D Balloon – Mesh properties for the fluid and structural regions   

Fluid Region Structural Region 

Number of Elements Element Size Number of Elements Element Size 

101,407 0.001 (m)  33,255 0.001 (m) 
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Using the settings from Table 3.1 and Table 3.2, the mesh for the 3D balloon are shown in 

Figure 3.2. and Figure 3.3. 

 

Figure 3.2: 3D Balloon fluid mesh, side view 

 

 

Figure 3.3: 3D Balloon solid mesh, side view 

Additional mesh views are shown in Appendix B – Chapter 3: Three-Dimensional Balloon 

Expansion for this case study.  
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3.3.2 Boundary Conditions 

The BCs in this case study, includes an elastic support. The elastic support BC serves 

as a stabilizer for the balloon. Without the elastic support the balloon can expand too quickly 

and will start to physically oscillate, shown in Figure 3.4. In Figure 3.5 are the BCs used in 

the 3D balloon simulation. The balloon is fixed around the ‘neck’ as indicated with the 

triangles in the figure. An elastic support (bubbled region) surrounds the whole balloon to 

provide a stiffness that the balloon must overcome to expand. The elastic support is defined as 

a pressure that produces a normal force on the surface applied. Which means other forces 

such as tangential forces will not be affected, only the normal forces on the surface will 

experience resistance from the BC.  

 

Figure 3.4: 3D Oscillating balloon 

When the balloon starts to oscillate, the oscillating motion is near impossible to do in a 

reasonable amount of time. In order to capture the motion, the step size must be very small, 

which results in a longer simulation time. The motion is not only complicated and 

unnecessary but it complicates the results and requires an unfathomable amount of time to 

simulate. By adding an elastic support solves the oscillation issue that physics presents. Next, 

an FSI surface BC is on the inside walls of the balloon. This BC couples the fluid and solid 
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components together for the simulation. This surface is where the SC module will perform the 

computation. 

 

Figure 3.5: Boundary condition of 3D Balloon 

The elastic support value used for this simulation is 10,000 (N/m3). This value is calculated 

based on a vertical hydrostatic force, Fv, of water. Water is incompressible, and as the height 

changes the water pressure will change as well. Assuming the volume of the water can be 

displaced as the balloon expands, the elastic support parameter can be calculated with 

equation (3.1).  

 vF Vg   (3.1) 

 where ρ is the density, V is the volume, and g is gravity. Since the support is in terms of 

N/m3, and knowing ρ = 999 (kg/m3) and g is 9.806 (m/s2), Fv/V will come out to be 

approximately 10,000 (N/m3). 

Lastly, the maximum velocity inlet is 0.5 (m/s). However, the prescribed velocity is 

not a uniform, constant velocity profile. Similar to the velocity used for the square balloon in 

Chapter 2, the maximum velocity, umax, from 0 to 1 second is a sinusoidal curve: 

max

3
sin( ( )) 1

2

4

t

u

  

 . 
(3.2) 

Subsequently, after the first second the velocity is constant at 0.5 (m/s). 
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Figure 3.6: Velocity profile for the 3D Balloon 

Having a sinusoidal profile in the beginning is to avoid pressure oscillations. In addition, to 

the sinusoidal profile in the first second, the velocity is constant at 0.5 (m/s) because if the 

pressure inside the balloon grows too quickly then the elastic support will not be enough to 

stabilize the balloon. If the balloon is not stable, then it can cause elements in either the solid 

or fluid regions to change too rapidly, which then can cause negative cell volume or elements 

that get stretched too thin, in turn causing the simulation to error. Therefore, for this 

simulation, not only will the velocity have a slow ramping start, but the velocity itself is also 

fairly slow.  

The Re for this 3D balloon case is 3.37 which makes it laminar flow; similar flow to 

the quasi 2D square balloon. Refer to the Material Properties section for kinematic viscosity 

value. For the flow to be turbulent, Re must be 4000 or greater. 

Re 3.37
uL uL

 
     (3.3) 

In equation (3.3), ρ is density, u is velocity, L is the characteristic dimension, in this case the 

diameter, μ is the dynamic viscosity, and υ is the kinematic viscosity.  

Similar to Chapter 2, this simulation has a moving boundary that was added to the 

fluid region. A dynamic mesh moves with the fluid such that the elements re-mesh after every 

iteration. Simulations with dynamic meshes are used to avoid negative volume, unwanted 

distortion in the elements, or in most cases a boundary in motion. For this FSI simulation, 
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both smoothing and re-meshing dynamic mesh methods were used. Table 3.3 and Table 3.4 

summarizes the settings. 

Table 3.3: 3D Balloon – Smooth re-meshing settings 

Smoothing 

Diffusion - 

Diffusion Function Boundary-distance 

Diffusion Parameter 1.5 

 

There are several Smooth re-meshing methods, reference 2.3.2 for more details. For this case, 

the diffusion method was chosen. Next the re-meshing parameters are based upon the mesh 

scale information, shown in Figure 3.7.  

 

Figure 3.7: Mesh scale information of 3D Balloon from ANSYS Fluent 

With the given parameters the values in Table 3.4 were used for re-meshing. The mesh must 

stay between the given thresholds after every iteration. If the elements after every iteration do 

not meet the criteria in the re-meshing parameter, the mesh will be re-meshed. However, re-

meshing can be computational expensive, if possible, refrain from re-meshing every iteration. 

Re-meshing every iteration can increase the accuracy of the results. However depending the 

element sizes, number of iterations, and the geometry; it may not be advantageous to re-mesh 

every iteration.  
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Table 3.4: 3D Balloon – Re-meshing mesh parameters 

Re-meshing Parameter 

Minimum Length Scale (m) 7.6E-06 

Maximum Length Scale (m) 0.003 

Maximum Cell Skewness 0.7 

Maximum Face Skewness 0.7 

Size Re-meshing Interval 1 

 

Lastly, with the Smoothing and Re-meshing parameters set, the DMZs will also need to be 

set. The DMZs are what Fluent uses to map region(s) to the FSI surface(s) on the solid region 

and allows for the dynamic mesh to actual occur. For this case, there are two zones: the 

“Interior” and “Wall”. 

Table 3.5: 3D Balloon – Dynamic Mesh Zone settings 

Dynamic Mesh Zones 

Zone Names Type 

Interior Deforming 

Wall System Coupling 

 

Referencing Table 3.5, the “Interior” is set to “Deforming”, the elements will deform and 

move as needed to accommodate the change in the fluid. “Wall” is set to “System Coupling”, 

this BC is when Fluent will transfer the information to the structural module, where FSI 

surface will receive the information, and perform its computation.  

3.3.3 Material Properties 

The materials for the fluid and structural regions are given in Table 3.6 below. To 

keep the simulation simple, a linear elastic silicone rubber was chosen for the structural region 

and air is the driving fluid. 
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Table 3.6: 3D Balloon – Material properties for the fluid and structural regions 

Fluid Material Properties Parameters Value 

Density, ρ (kg/m3) Ideal - gas - 

Specific Heat, Cp (J/kg-K) Constant 1006.43 

Thermal Conductivity, κ (W/m-K) Constant 0.242 

Dynamic Viscosity, μ (kg/m-s) Constant 1.7894E-05 

Molecular Weight, M (kg/kmol) Constant 28.966 

Structural Material Properties Parameters Value 

Density, ρ (kg/m3) - 1250 

Isotropic Elasticity -  

 Young’s Modulus, E (Pa) 7.93E+07 

 Poisson’s Ratio, υ 0.48 

 Bulk Modulus, K (Pa) 6.6083E+08 

 Shear Modulus, G (Pa) 2.6791E+07 

 

The silicone rubber material properties were obtained from MatWeb, an online material 

property database.  

3.3.4 Convergence Settings 

To ensure the results comply with real world physics, the convergence settings provide 

the solver guidelines of when the results are satisfactory. Fluid behavior tends to be more 

complex, therefore most of the convergence settings are for the fluid region. In ANSYS 

Fluent, the Solution Methods are left at default. The Residual Convergence values are 

changed to such that the iterative error is minimized and has negligible effect on the results. 
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Table 3.7: 3D Balloon – Fluid region main convergence settings 

Solution Methods 

Scheme SIMPLE 

Gradient Least Squares Cell Based 

Pressure Second Order 

Density Second Order Upwind 

Momentum Second Order Upwind 

Energy Second Order Upwind 

Transient Formulation First Order Implicit 

Residual Convergence 

Continuity 1e-05 

x-velocity 1e-05 

y-velocity 1e-05 

z-velocity 1e-05 

Energy 1e-06 

 

Table 3.8 has the convergence settings for the SC. The convergence criteria for data transfers 

are defaulted to RMS Convergence Target = 0.005. The convergence settings for the SC are 

independent of the fluid and structural systems. For more details regarding how the SC data 

transfer works refer to section 2.3.4.  

Table 3.8: 3D Balloon – SC Data Transfer settings 

Data Transfer 1 Data Transfer 2 

Source: Fluent Source: Transient Structural  

Region: Wall-fff_solid 1 Region: Fluid Solid Interface 

Variable: Force Variable: Displacement 

Target: Transient Structural Target: Fluent 

Region: Fluid Solid Interface Region: Wall-fff_solid 1 

Variable: Force Variable: Displacement 
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Shown in Table 3.9 are the simulation settings for the fluid and structural regions, as well as 

the SC module. The end time for the simulation from Fluent, Transient Structural, and SC 

module, must match or the simulation will not run.  

Table 3.9: 3D Balloon – Simulation settings for the three modules 

 Fluid Region Solid Region SC 

Simulation Time (s) 2.5 2.5 2.5 

Time Step Size (s) 0.001 0.01 0.01 

Number of Time Steps 2500 - - 

Large Deflection - On - 

Minimum Iterations - - 1 

Maximum Iterations 75 - 30 

 

As stated in Chapter 2, when running an FSI simulation in ANSYS, the SC settings 

override the structural and fluid simulation settings. However, for consistency, the settings for 

the fluid and structural regions should also be inputted before running the simulation. The step 

size for each simulation is different.  

3.4 Results 

As stated previous, only one mesh was used for the simulation. For the BCs given, the 

simulation can only go up to 2.5 seconds before the simulation fails. This is mainly due to the 

step size and the element mesh sizes. The chosen material, mesh size, and step size were to 

optimize the run time. The results section for this chapter will be divided between the solid 

region and the fluid region. The solid region will focus on the von Mises stresses, equivalent 

strain, and displacement. While the fluid region will have velocity magnitude in 2D and 3D 

contours and pressure plots. All contour plots and graphs were created using Tecplot 360 EX 

2017 R2. 

3.4.1 3D Balloon – Structural Region 

Figure 3.8 shows the growth of the balloon and the change in von Mises stresses at six 

times.  
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t = 0.5 second 

 

t = 1 second 

 

t = 1.5 seconds 

 

t = 2 seconds 

 

t = 2.25 seconds 

 

t = 2.5 seconds 

 

Figure 3.8: 3D Balloon – von Mises stress at six different times 

(Note: The von Mises stress is displayed in MPa for legend simplicity.) 

It can be deduced from Figure 3.8, between t = 0.5 second and t = 1 second, that the 

balloon has minimal growth. Therefore, the stress is not very high. Once the time is greater 

than one second the stress increases rapidly. Reason being, once the balloon obtains adequate 

air flow to grow, the pressure from the constant flow of air expands the balloon exponentially. 
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The fluid pressure increase behavior is shown in Figure 3.24 (b). The maximum von Mises 

stress value at t = 1 second is ≈ 1 (MPa), then at t = 1.5 seconds the maximum stress is ≈ 7 

(MPa), and finally at t = 2.5 seconds the maximum stress is ≈ 34 (MPa). The difference 

between t = 1 second and t = 1.5 seconds is 6 (MPa), while the difference between t = 1.5 

seconds and t = 2.5 seconds is 27 (MPa). Even though the last two compared times are longer 

by 0.5 second, the growth is not linear. (Please refer to Appendix B – Chapter 3: Three-

Dimensional Balloon Expansion for all shown time steps in a larger format). 

 Shown in the figure below, the maximum stress is not around the transition point 

between the fixed neck and the body. The maximum stress is around the main body, where 

the maximum displacement of the body is located.  

 

Figure 3.9:  3D Balloon – Rotated isometric view of von Mises stress, t = 2.5 seconds 

The explanation for this is that the balloon geometry is similar to a cylindrical pressure vessel. 

For a cylindrical pressure vessel, the hoop stress (σhoop) is higher than the longitudinal stress 

(σlong).  
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Figure 3.10: 3D Balloon – Cylindrical pressure vessel stress orientation 

In Figure 3.10 above are the orientation of the stresses and the equation for the two stresses 

are shown below.  

4
long

pd

t
   (3.4) 

2
hoop

pd

t
    (3.5) 

From equations (3.4) and (3.5), it is shown that the hoop stress is twice the longitudinal stress, 

for certain geometries. For this particular case, the balloon, is more elliptical than cylindrical 

in geometry. However, analytical equations for elliptical pressure vessels are not readily 

available. Many researchers have approached this problem through the use of FEA and then 

analytically solved cylindrical or spherical stresses equations to estimate the stress. 

Next are the equivalent strains, similarly in Figure 3.11 the strains are showing 

exponential growth after 1 second. (Please reference Appendix B – Chapter 3: Three-

Dimensional Balloon Expansion for all shown time steps in larger format). 
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t = 0.5 second 

 

t = 1 second 

 

t = 1.5 seconds 

 

t = 2 seconds 

 

t = 2.25 seconds 

 

t = 2.5 seconds 

 

Figure 3.11: 3D Balloon – Equivalent strain from the same six times as the stresses 
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Comparing Figure 3.8 and Figure 3.11, it can be observed that the stress and strain 

have the same contour which is due to the material assignment. The silicone rubber properties 

are linear isotropic, which results in the stress and strain having proportional behaviors. 

Having linear properties, according Hooke’s Law equation (3.6), will result in a linear 

relationship for the stress and strain.  

E   (3.6) 

where σ is stress, E is the elastic modulus, and ε is the strain. Shown in Figure 3.12 is the 

stress-strain curve obtained from the ANSYS simulation of the 3D balloon. 

 

Figure 3.12: 3D Balloon – Stress-strain curve from simulation 

As shown in the figure, the stress-strain relationship follows Hooke’s Law. Hence, the stress 

and strain showing similar contours. 

Lastly, the displacement of the balloon is shown in Figure 3.13 below. It can be 

observed from Figure 3.13, at t = 2.5 second, the maximum displacement is in the center of 

the balloon body. Since the balloon is similar to a cylindrical pressure vessel, the Poisson 

Effect is in play. Roylance [24] showed that the Poisson effect can also be derived from 

Hooke’s Law and shows the relationship between deformation and strain. 
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t = 0.5 second 

 
t = 1 second 

 
t = 1.5 seconds 

 
t = 2 seconds 

 
t = 2.25 seconds 

 
t = 2.5 seconds 

 
Figure 3.13: 3D Balloon – Displacement from six different times 
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 From Figure 3.13, there is no change in displacement between t = 0.5 second and t = 1 

second. Based on the velocity profile graph, Figure 3.6, between t = 0 and t = 1 second, the 

change in velocity is slowly ramping up and the air has not filled the interior space of the 

balloon yet, so the change is minimal between these two time steps.  

 As previously stated, through Hooke’s Law the deformation has a Poisson’s effect. 

Roylance [24] demonstrated this derivation with the following equations.  

2

pr

tE
    (3.7) 

2
2

C

pr
C r

tE
  

 
   

 
  (3.8) 

2

C
r





   (3.9) 

2

2
r

pr

tE
   (3.10) 

Note, θ in equation (3.7) means “hoop” and in equation (3.8), C is for the circumference of 

the cylinder. Equation (3.10) relates the change in circumference and the corresponding 

change in radius. Since ANSYS results will be showing the deformation from the reference 

point, which is the centerline of the balloon, the deformation should be in terms of either 

diameter or radius. Lastly, equation (3.10) states that the deformation should have a parabolic 

behavior because of the r2 value. Shown below is the deformation from the ANSYS 

simulation. 

 

Figure 3.14: 3D Balloon – Deformation with time 
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As represented in Figure 3.14 the deformation is indeed parabolic as stated in equation (3.10). 

Additional analysis can be done beyond what this chapter has described to verify the 

simulation. 

A future goal would be to use nonlinear material properties for the rubber and add 

turbulence to the air flow. Please see the Fluid Region results for further explanation of the 

behavior of the air inside the balloon.  

3.4.2 3D Balloon – Fluid Region 

For the Fluid region, the main focus will be the velocity and pressure behavior inside 

the balloon. Since the velocity of the air going into the balloon is laminar, and the solid region 

has linear isotropic properties, the flow of air is relatively symmetric. However, the geometry 

still has sharp corners where the FSI region is. In addition, the “nose” of the balloon provides 

a “cushion” for the air; also known as a stagnation point, which can cause asymmetric flow in 

the returning air. If the reverse flow becomes asymmetric, that can cause the incoming flow to 

become asymmetric as well. 

 

Figure 3.15: 3D Balloon – Behavior of air flow in balloon 

The stagnation point can be seen in Figure 3.16 between t = 0.7 second and t = 1.5 seconds; 

other figures in the chapter also shows this phenomenon.  
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Starting with the direction of flow for the air, the flow is prescribed in the Z axis 

direction. Therefore, Figure 3.16 only shows the direction of flow with respect to the Z axis. 

The figure is from six different times sliced with two planes. The balloon is sliced in the x and 

y direction to show the flow of the air.  
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t = 0.5 second 

 

t = 0.7 second 

 

t = 0.9 second 

 

t = 1 second 

 

t = 1.5 seconds 
 

t = 2.5 seconds 
 

 

Figure 3.16: 3D Balloon – Velocity contour of fluid region at six different times 

(Please reference Appendix B – Chapter 3: Three-Dimensional Balloon Expansion for all 

shown time steps in larger format).The flow of air can be seen flowing backwards along the 
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wall starting at t = 0.7 second. Additionally, at t = 0.9 second and t = 1 second, vortex 

shedding can be seen around the “bluff” of prescribed air and the reverse flowing air. 

 Shown in Figures 3.17 – 3.21, are the velocity magnitude from various times. The 

figures are divided between a 3D isosurface (range between -0.55 and 0.3), two directional 

slices: horizontal and vertical slice, and the velocity and time of the flow. 

  

(a) (b) 

  

(c) (d) 

Figure 3.17: 3D Balloon – Velocity magnitude at t = 0.5 second. (a) 3D isosurface (range 

between -0.55 and 0.3), (b) horizontal slice, (c) vertical slice, and (d) velocity and time of 

flow 
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(a) (b) 

  

(c) (d) 

Figure 3.18: 3D Balloon – Velocity magnitude at t = 0.7 seconds. (a) 3D isosurface (range 

between -0.55 and 0.3), (b) horizontal slice, (c) vertical slice, and (d) velocity and time of 

flow 

From Figure 3.18 (a), it can be observed that at t = 0.7 second, the velocity is slowly ramping 

up to 0.5 (m/s). While figure (b) is showing some reverse flow of the air. Furthermore, the 

described stagnation point from Figure 3.15, is also visible in Figure 3.18. 
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(a) (b) 

  

(c) (d) 

Figure 3.19: 3D Balloon – Velocity magnitude at t = 1 second. (a) 3D isosurface (range 

between -0.55 and 0.3), (b) horizontal slice, (c) vertical slice, and (d) velocity and time of 

flow 

From Figure 3.19, now that t = 1 second, the flow has reached the maximum velocity as seen 

in (b) and (c). It is also noteworthy, from (a) the isosurface is showing the air has not 

completely expanded into the balloon yet, so there is not any visual expansion of the balloon 

that can be observed.  
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(a) (b) 

  

(c) (d) 

Figure 3.20: 3D Balloon – Velocity magnitude at t = 1.5 seconds. (a) 3D isosurface (range 

between -0.55 and 0.3), (b) horizontal slice, (c) vertical slice, and (d) velocity and time of 

flow 

From Figure 3.20, (b) and (c) are showing slight expansion in the balloon and still 

maintaining the velocity at 0.5 (m/s). Note from (b) that the air in the entire balloon is 

moving, pushing against the walls of the balloon, causing the expansion. This can be observed 

in Figure 3.21 as well. 
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(a) (b) 

  

(c) (d) 

Figure 3.21: 3D Balloon – Velocity magnitude at t = 2.5 seconds. (a) 3D isosurface (range 

between -0.55 and 0.3), (b) horizontal slice, (c) vertical slice, and (d) velocity and time of 

flow 

Lastly, from Figure 3.21, this is the last time step for the simulation, however it can be 

deduced that the balloon will continue to expand if the simulation time were to continue (if 

the mesh can accommodate as well).  

 Similarly to the square balloon in Chapter 2, the pressure for the 3D balloon is almost 

the same everywhere, the difference is minuscule; this can be observed been within Figure 
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3.22 and Figure 3.23. In addition, the velocity vectors are displayed on top of the pressure to 

show the flow direction at the chosen times. 

 

Figure 3.22: 3D Balloon – Pressure contour and velocity vector at t = 1 second 
 

 

Figure 3.23: 3D Balloon – Pressure contour and velocity vector at t = 1.5 seconds 
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The two time steps that show the most “drastic change” in pressure were chosen for Figure 

3.22 and Figure 3.23. Unfortunately, because the pressure is nearly the same everywhere and 

is changing rapidly, the scale on the two contours are different. The purpose of the two figures 

is to show the pressure distribution, with the direction of the velocity. Also note, that the 

pressure is displayed in MPa, to avoid the use of large numbers. (In Tecplot, if values are too 

high, the program is unable to show the distribution properly). 

Since the pressure changes rapidly, Figure 3.24, the pressure (and velocity) is graphed 

with time to show the pressure increase. 

 

(a) Solution Time has units of (s) 
 

 

(b) Solution Time has units of (s) 

Figure 3.24: 3D Balloon – Velocity (a) and Pressure (b) curve from simulation 
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As shown in Figure 3.24, the pressure change is significant throughout the simulation. The 

balloon will continue to expand rapidly until infinity if the elements in the mesh can handle 

the change. It is also noteworthy, from Figure 3.13, the balloon does not start expanding until 

t = 1 second. The corresponding pressure at the same time is about 1.76E+05 (Pa). This 

means it takes more than 1.76E+05 (Pa) to overcome the elastic stiffness BC on the structural 

side to expand the balloon noticeably.  

3.5 Conclusion 

Although the 3D balloon case study cannot be directly compared to literature balloons, 

such as stents and pressure vessels; the simulation still provides a good insight into the fluid 

behavior inside balloon and stress distribution on the exterior balloon wall. The general 

behavior of the structural portion of the balloon can be modeled as a pressure vessel. The 

pressure applied is from the fluid region, which can be further calculated through the ideal gas 

law beyond what this chapter encompasses. For general explanation of the ideal gas law, 

please reference Chapter 2. A note on the structural region, the material is modeled as a linear 

isotropic material. Since silicone rubber is nonlinear in nature, this simulation is not very 

accurate. Future research potential for this simulation would be to apply nonlinear properties 

to the balloon walls, and then compare the differences. Another improvement would be to add 

turbulence to the air flow, since there is mostly likely turbulent behavior inside the balloon. 

This can be seen in Figure 3.21 (b), where the flow becomes asymmetric and turbulent. 

This simulation setup can be further developed to model the two lobes in the respiratory 

system. The purpose of modeling a balloon is to apply the concept to biological studies, like 

Chua et al. [18], Gervaso et al. [19], Zahedmanesh et al. [20], and Wang et al. [21] have 

attempted. The predominant difference is using an FSI study rather than FEA. Also, similar to 

Chapter 2 being the stepping stone for this chapter, this simulation will be the stepping stone 

for Chapter 5 and any future simulations that involves enclosed boundaries.  
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Chapter 4: PORCINE TRACHEAL MATERIAL PROPERTIES 

4.1 Porcine Material Property Characterization 

Numerous different attempts have been made to characterized biological tissue, 

specifically tracheal tissues. Codd et al. [25] have characterized ovine tracheal tissue, with 

linear elastic properties through axial tensile testing. Holzhäuser et al. [26] analyzed the 

mechanics of the trachea cartilage in rabbits through A-Ptm curves. Codd et al. [25] and 

Holzhäuser et al. [26] are one of several researchers to look into animal tracheal tissues other 

than porcine. Lally et al. [12], Shi et al. [13], Teng et al. [14], and Trabelsi et al. [11] are 

among some researchers that characterized porcine tracheal tissue. Lastly, several researchers 

tested with human tracheal tissue obtained from cadavers. The time from harvest was as short 

as within 24 hours to tissue being frozen for a short period of time until testing. Different 

techniques and procedures where use to analyze the human trachea. Begis et al. [27] 

conducted tests within 15 hours of death, and used a hyperelastic model: Mooney-Rivlin for 

characterization to apply in a FEA of the tracheal cartilage. Lambert et al. [28] used segments 

of the human trachea and based on thin curved beam theory analyzed the predicted deformed 

shapes. Rain et al. [29] tensile stiffness of cartilage rings as well as observing the age effect 

on the tissue. Saraf et al. [30] conducted dynamic loading on human tissues, trachea being 

one of the tested tissues. Teng et al. [31] conducted uniaxial tension test on the axial and 

circumferential directions of the trachea. Teng et al. [31] along with a couple other 

researchers’ described below, will have techniques that this case study drew from. 

Unfortunately, results from this study cannot be directly compared to the results in the 

publications due to either the material samples, test method, or the loading pattern being 

different. However, some general conclusions can be observed between all the studies. 

For this study, the focus is to obtain hyperelastic constants for FEA and FSI 

simulations. Generally, a simulation require material property inputs such as density (ρ), 

elastic modulus (E), Poisson’s Ratio (ν), etc. For a lot of simulations, a linear material 

constant such as E is enough to describe the material behavior. However, for non-linear 

materials, E is not powerful enough to describe the behavior of the material, so stress-strain 

curves or material models are necessary for those cases. In the case of biological materials, 

the behavior is typically nonlinear. In Teng et al. [32], the trachea’s collapsibility and 

compliance was studied using linear and nonlinear material properties. It was shown that 
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although assuming linear does not deviate from the nonlinear properties, there is still some 

inaccuracies. As many researchers have shown using with both porcine and human tracheal 

tissue, the elastic properties are nonlinear regardless of the type of loading. To minimize the 

inaccuracies as much as possible, nonlinearity should be considered. To characterize the 

nonlinear curve, testing will need to be conducted for validation. Lally et al. [12] conducted 

biaxial testing, Teng et al. [14] performed cyclic loading on the cartilage rings themselves, 

and Trabelsi et al. [11] did uniaxial tension testing; all showed the stress-strain/stress-stretch 

curves to be nonlinear. Moreover, various material curve fitting modelling was also 

performed by Lally et al. [12] and Trabelsi et al. [11]; Mooney-Rivlin and Neo-Hookean, 

respectively. Both hyperelastic models are commonly used, however, another common model, 

the Ogden model has not been popularly used in the biological curve fitting field. Teng et al. 

[14] used the Ogden model as part of the boundary conditions, however, the ultimate sought-

after model in the journal is the Fung-type strain energy density function, which is yet another 

material characterization. As illustrated in Figure 4.1, to obtain and verify the curve fitting it 

is a three phase process, which will be described in the sections below. 

 

Figure 4.1: Tensile Testing – Material curve fitting and verification approach 

The approach for this testing done primarily on the axial direction of the trachea, 

however some circumferential testing was also conducted as well.  

4.2 Phase 1: Lab Experiments – Uniaxial Tensile Testing of Porcine 

Trachea  

As described in section 4.1, various types of experiments have been conducted on 

biological tissue by many researchers to determine and describe the behavior of the tissue. 
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However, the input for this case study has not been satisfactorily identified. This study is an 

attempt to establish a baseline of constants for the Ogden model that can be applied to various 

types of simulations that may involve tracheal geometry. 

4.2.1 Specimen Sample Preparation  

To evaluate mechanical properties of porcine trachea, n = 6 adult porcine tracheal 

specimen were harvested from the University of Idaho Vandal Meats abattoir. The porcine 

were harvested with the lungs and the trachea still attached. The tracheal tissues were 

removed, placed in plastic bags to retain moisture and immediately placed in refrigeration 4 

(°C) until testing occurred within the next couple of hours to ensure freshness of tissue. The 

whole tracheal length, measured from the carina to the base of the first sample cut, was 

recorded.  

Table 4.1: Tensile Testing – Length of porcine trachea used in tests 

Trachea Length (cm) 

1 143 

2 149 

3 152 

4 160 

5 137 

6 126 

Average  144.5±11.98 

 

The specimen 1, 3, and 5 were then cut using a 3D printed stencil and a scalpel (in the axial 

direction), approximately 50 (mm) 10 (mm) were cut along the superior-inferior axis of the 

trachea (Figure 4.2). Likewise, specimen 2, 4, and 6 were cut (in the circumferential 

direction). The width and length of the circumferential cuts varied; due to the nature of 

cartilage rings (Figure 4.3). The soft connective tissue on the dorsal side of the trachea was 

also cut, to allow the tissue to be flattened for further sample procurement.  
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Figure 4.2: Axial samples 

 

Figure 4.3: Circumferential samples 

The location of each sample, with respect to the carina was also recorded. Each carina is used 

as a reference point for the samples. Recording the location is to determine whether or not 

location of the tissue effects the strength of the material.  

 

Figure 4.4: Tensile Testing – Example of locational measurements from carina 

The width and thickness were measured with a set of digital calipers and recorded. 

The axial tissue was assumed to have a rectangular cross-section. Each end of the sample was 
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mounted into the top and bottom screw action grip of a mini-Instron load frame. The load 

frame, software, and load cell used to collect the data are all from made and manufactured by 

Instron based in Norwood, MA.  

 

Figure 4.5: Mini-Instron load frame 

 

Figure 4.6: Mounted specimen 

A 2 kilonewton (kN) capacity load cell was used to measure force data and Bluewood 

software recorded force and displacement data, and allowed for control of test parameters. 

The axial tissue samples were preloaded to 1 Newton (N). Front and side view digital images 

of each trachea sample were obtained. With the calipers, mounted tissue length were then 

measure and recorded. The length was then used to calculate the velocity, v, based on a set 

strain rate; . All axial samples were then pulled to failure and a force-displacement data were 

record for each sample. Similarly, cartilage rings (circumferential direction) of the trachea 

were dissected and mounted into the mini-Instron and preloaded to 0.1 (N), then pulled to 

failure at a rate that ensured the same strain rate as the axial specimen. Lastly, few bronchi 

samples were also tested using the same procedure as the cartilage rings. All tissue samples 

were kept hydrated with saline throughout testing. Any samples that maybe an invalid 

specimen were discarded this included specimens with nicks/notches or aperture with-in the 

samples.  

As stated earlier in the chapter, the purpose of doing the testing is to use the data for 

material model curve fitting. The curve fitted model could then be used in numerical 

simulations. Some basic and known properties are used to do the calculation in the section for 
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data processing. Similar testing was done prior to this experiment to obtain values in Table 

4.2. Which are used in the calculations for the described tests.  

Table 4.2: Tensile Testing – Preliminary material properties of porcine trachea 

Fluid Pressure of Human Airway, P (MPa) 0.00294 

Diameter of Trachea, d (mm) 20 

Thickness of Tracheal Wall, t (mm) 4 

Breathing Rate, BR (s) 2 

Elastic Modulus, E (MPa) 0.02778 

Poisson’s Ratio, υ 0.49 

Longitudinal Stress,
long  (MPa) 0.00368 

Longitudinal Strain,
long  (mm/mm) 0.0437 

 

(Note: Fluid Pressure of Human Airway was converted from 30 cmH2O). Please see 

Appendix C – Chapter 4: Porcine Tracheal Material Properties for calculations presented in 

Table 4.2. Using the values from Table 4.2, the strain rate can be calculated using the 

following equation. 

long

BR


   (4.1) 

Using equation (4.1) the strain rate is calculated to be 10.0219( )s  . 

4.2.2 Uniaxial Tensile Testing – Post Processing and Results  

From tensile testing the axial specimens on the Instron, force and displacement data 

was obtained for each curve, example shown in Figure 4.7.  
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Figure 4.7: Ideal data – Force-Displacement curve of an axial test 

From the force displacement data, engineering strain, engineering stress, and stretches 

were calculated using the following equations. 

Engineering Strain, ε (mm/mm) 
L


    (4.2) 

Engineering Stress, σ (MPa) 
o

F

A
    (4.3) 

Stretch, λ (mm/mm) 1
l

L
      (4.4) 

where, δ is displacement, L is the original length of the specimen, F is the force, oA  is the 

original area, and l is the current length. The calculated and trimmed results of each individual 

sample was then plotted, shown in Figure 4.8 and Figure 4.9. The curves have been trimmed 

up until to the maximum stress, currently failure modeling is not included the study. 

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18

F
o

rc
e 

(N
)

Displacement (mm)



74 

 

Figure 4.8: Ideal data – Stress-Strain curve of an axial test 

In most engineering disciplines stress-strain curves are the primarily the graph to use and 

obtain information from. However, when graphing biological material or materials that can 

endure high strains, such as rubbers, it is more common to report and represent the data 

collected using stress-stretch curves. 

 

Figure 4.9: Ideal data – Stress-Stretch curve of an axial test 

 The figures shown above are for each individual sample, in order to combine all the 

samples into one graph for curve fitting, and to avoid using global maximum stress values 

another method was used to trim the data. The reason for avoiding the use of maximum stress 
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is because the behavior of each sample under loading is different. Some samples will have a 

smooth transition to the maximum stress as shown in Figure 4.8. Others may have a behavior 

shown in Figure 4.10 and Figure 4.11 that requires extra trimming to the data.  

 

Figure 4.10: Extra trimming required – Force-Displacement curve of an axial test 

From the figure above, the stress-strain curve will also show the corresponding local and 

global maximum. (Note, the stress-stretch curve will look very similar to Figure 4.11, accept 

the x axis will start from 1, instead of 0). 

 

Figure 4.11: Extra trimming required – Stress-Strain curve of an axial testing 
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If all the axial data were to be trimmed to the maximum stress, the global maximum Point B, 

will be taken. However knowing that the desired value is actually at Point A; it means the data 

will need to be trimmed up to Point A. Without having to manually go through the data to do 

this action, a MATLAB script was written to aid this process. (Please see Appendix C – 

Chapter 4: Porcine Tracheal Material Properties for the MATLAB code).  

The downside of this method is when “good data” can get thrown out. Certain data 

may have a sharp change in slope towards the beginning of the test. For example, the behavior 

can be from the sample relaxing or a cartilage ring is breaking. Thus resulting a negative 

change in slope. The program would automatically set the cut point to the beginning value. To 

avoid this from happening, the cut point is set to be the first negative slope after half way 

point. This way possible “good data” can be retained. However, another down side of cutting 

the data in half and then finding the negative slope, is if there is “bad data” in the beginning 

that should be thrown out. The “bad data” will not be thrown out, because of the set mid-data 

cut off point. Even though the cutoff point can be set to any location in the data, the midpoint 

was chosen because most of the “bad data” in the collect are towards the end of testing. The 

script used to trim the data is described in Figure 4.12.  

 

Figure 4.12: Tensile Testing – Flow chart of data trimming for MATLAB code 

Based on Figure 4.12, after the slope of the data points are calculated, the value is then 

fed through a ‘for’ loop to determine the cut point. The cut point is determined when the slope 
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of a nonlinear curve goes negative as shown in Figure 4.13. If the slope changes too quickly, 

it will result in a sharp, negative change in the slope graph. Using the “slope method”, results 

in a clear definition of where the data is cut off: at the point where there is a rapid negative 

change in slope.  

 

Figure 4.13: Tensile Testing – Graphed slope values, graph created in MATLAB R2016a, x 

axis is Strain, ε (mm/mm), y axis is Stress, σ (MPa) 

After the data is trimmed, the new σ-ε (or σ-λ) curve the data from all the axial testing can be 

graphed onto one graph to be used for curve fitting. 
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Figure 4.14: All axial data from tensile testing 

Some caliper measurements were taken prior to the tensile test to determine whether 

or not the location of the sample with respect to the trachea mattered. Based on the spreading 

of Figure 4.14, all the samples regardless of location on the trachea, does not affect the 

behavior of the material. Since the spread of data is grouped more so by the individual 

tracheas than the location of the sample. Additional example figures and graphs showing the 

locations of the samples are in Appendix C – Chapter 4: Porcine Tracheal Material Properties. 

Comparing the axial data with uniaxial tension test data from Lally et al. [12], the stretch 

values are close to each other, but the stress from this study is lower compared to Lally et al. 

[12].  
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Figure 4.15: Stress-Stretch curve, figure obtained from Lally et al. [12] 

 

 

Figure 4.16:  Stress-Stretch curve of the axial direction. 

The data from Lally et al. [12] are seemingly more scattered, in comparison to this study. This 

is most likely due to preconditioning that Lally et al. [12] conducted on their specimen. 

Another observation between the two studies are the curves are more closely grouped together 
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in this study verses those reported by Lally et al. [12]. Again, this is most likely due to the 

preconditioning.  

In addition to testing the trachea axial direction, some circumferential direction were 

also tested. Using the same procedure as the axial direction the resulting circumferential 

stress-strain curves are shown in Figure 4.17. 

 

Figure 4.17: All circumferential data from tensile testing 

Similar to the axial direction, the location of the sample with respect to the carina does not 

seem to matter.  
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Figure 4.18: Stress-Stretch curve, figure obtained from Trabelsi et al. [11] 

 

 

Figure 4.19: Stress-Stretch curve of circumferential data 

Similar to Lally et al. [12]’s axial direction, Trabelsi et al [11] also conducted uniaxial 

tension tests and curve fitted the data for the circumferential direction. However, there are 

several differences between the current study and Trabelsi et al [11]. First, Trabelsi et al [11] 
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conducted tests with human tracheal tissue, while this study used porcine. Second, Trabelsi et 

al [11] obtained tissues after autopsy and the tissues were frozen. The current study harvested 

the tissue immediately after the animals were harvested, kept moist, and was placed into 

refrigeration at 4 (°C), with testing occurring on the same day. Lastly, Trabelsi et al [11] 

preconditioned the material, while samples shown in Figure 4.19 were not preconditioned. As 

stated before, due to differences a direct comparison cannot be performed. It is interesting to 

note that the difference in behavior is significant given the same material. Each one of the 

differences, can play a major role in changing the data. 

4.3 Phase 2: Curve Fitting – Hyperelastic Material Model 

Many material behaviors are modeled with linear elastic stress-strain relationships, up 

until the yield strength. However, for most materials, linear elastic models do not accurately 

describe the observed material behavior; especially with hyperelastic materials. Hyperelastic 

materials in general have a non-linear stress-strain curve. Some regions of the stress-strain 

curve can be linear, but for the most part the curve is nonlinear. Elastomers and biological 

materials are classic hyperelastic materials. Most biological material will have a ‘toe region’ 

on the stress-strain curve followed by a small linear portion, then the curve goes nonlinear, 

finally peaks at maximum stress, followed by the failure region (Figure 4.20).  

 

Figure 4.20: Stress-Strain regions 

For nonlinear curves, various material models are used to capture the true material 

behavior. For hyperelastic materials, models such as Neo-Hookean, Moony-Rivlin, Ogden, 
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Arruda-Boyce, and couple of other material models are used commonly. For this study, the 

Ogden Material Model was chosen because this model is more direct in using experimental 

data to determine its constants. For this study, the toe region and linear region is the main 

focus, since modeling failure requires failure models, which is separate from the typical 

material models such as hyperelastic. 

4.3.1 Ogden Material Model 

The Ogden material model assumes the material’s stress-strain relationship can be 

described by the strain energy density function. The strain energy density function relates the 

strain energy (the energy stored) of the material to the deformation gradient. Since, the model 

assumes a relationship between the energy stored and the deformation, the stress-strain 

relationship can then be derived as well. The Ogden model uses experimental data in terms of 

stretches (λ). For the curve fitting described in this chapter, strains (ε) will be used. λ and ε can 

be converted between each other using equation (4.4). There are several forms of the Ogden 

material model, the form that ANSYS uses is equation (4.5). Ogden et al. [33] and Teng et al. 

[32] used this form of the Ogden strain energy density equation for their experimental study 

and derivation, respectively. Note, that the full strain energy density equation has a second 

half that takes into account compressibility/volumetric change. For this study, the trachea 

samples are assumed to be incompressible; thus neglecting the second half resulting in 

equation (4.5).  

   1 2 3 1 2 3

1

, ,   3p p p

N

p p

W
  

     
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     (4.5) 

For hyperelastic materials the strain energy density function (W) can be derived and expressed 

in terms of stress (σ). Equations (4.6) and (4.7) shows this relationship.   
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According to Ogden et al. [33], the difference between equation (4.6) and (4.7) is dependent 

on whether the area of each sample was measured or not. If area is assumed the same, uniform 

across all samples, one would use equation (4.6). If the area of each sample was measured, 
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then one would use equation (4.7). Incompressible is an assumption made when deriving the 

model therefore, equation (4.8) was used to calculate λ. 

1 2 3 1      (4.8) 

1 1      (4.9) 

2 3

1
 


    (4.10) 

For this, study the Ogden model was taken to the second order for better accuracy in 

the curve fit. Notice, that equations (4.9) and (4.10) are derived from equation (4.8) by 

assuming incompressibility; as stated previously. By using equations (4.4), (4.5), (4.7), (4.9), 

and (4.10), and taking the Ogden model to the 2nd order, equation (4.11) is obtained.  

       
1 2

1 21 1 1 1
2 2

1 1 2 2  1   1   1   1  
 

 
        

     
         (4.11) 

Please see Appendix C – Chapter 4: Porcine Tracheal Material Properties for derivation.  

4.3.2 MATLAB Curve Fitting Toolbox 

Using equation (4.11) and MATLAB R2016a curve fitting toolbox, and the custom 

equation setting; the constants for the axial direction is described in Table 4.3. 

Table 4.3: 2nd Order Ogden material constants for the axial direction. 

Constants Values 

1  (MPa) 5.334 

2  (MPa) -5.136 

1   11.53 

2   11.63 

D1 (MPa-1) 0 

D2 (MPa-1) 0 

 

D1 and D2 are constants that are in the volumetric change portion of the Ogden equation. As 

stated before, the samples are considered to be incompressible. Even though, the material 

considered incompressible ANSYS still requires an input for constants D1 and D2. It is stated 

in the ANSYS theory manual that, if the material is assumed to be incompressible, D1 and D2 
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need to be set to zero. Using the constants in Table 4.3, the following curve is generated and 

overlaid on top of the data.  

 

Figure 4.21: Ogden Model curve fit on axial data 

Since failure modeling was not incorporated in the curve fitting; values past ε = 0.3 should not 

be used.  

In the MATLAB curve fitting toolbox, the fit options are show in Table 4.4. The 

Levenberg-Marquardt algorithm is chosen as the algorithm for curve fitting this data. In 

addition, Wu et al. [34] used the same algorithm for their study into using Ogden model for 

curve fitting as well. According to the MATLAB R2016a curve fitting toolbox, the R2 values 

is 0.9962 for this curve fit, which is a desirable number.  

Table 4.4: Fit Option settings for axial curve fit in MATLAB 

Fit Options for MATLAB Curve Fitting Toolbox 

Robust LAR 

Algorithm Levenberg-Marquardt 

DiffMinChange 1E-08 

DiffMaxChange 1E-05 

MaxFunEvals 10000 

MaxIter 1000 
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Continuation of Table 4.4 

TolFun 1E-06 

TolX 1E-06 

Coefficients StartPoint Lower Upper 

1  11 -Inf Inf 

2  12 -Inf Inf 

1  2 -Inf Inf 

2  -2 -Inf Inf 

 

Similarly, the constants for the circumferential direction was computed with similar settings 

in the curve fitting toolbox. The constants for the circumferential direction are summarized in 

Table 4.5. Again, D1 and D2 are 0, assuming incompressibility of the material.  

Table 4.5: 2nd Order Ogden material constants for the circumferential direction 

Constants Values 

1  (MPa) 18.53 

2  (MPa) 18.887 

1   0.313 

2   0.2881 

D1 (MPa-1) 0 

D2 (MPa-1) 0 
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Figure 4.22: Ogden model curve fit for circumferential data 

The procedure and settings for the circumferential fit option are the same as the axial 

direction (Table 4.4). The only differences are the starting points for the coefficients, which 

are summarized in Table 4.6. Likewise, according to MATLAB, the R2 values is 0.9831 for 

this curve fit, which is a desirable number. 

Table 4.6: Starting values of the constants for the circumferential direction  

Coefficients StartPoint 

1   0.1419 

2   0.4218 

1  
0.9157 

2  
0.7922 

 

Similar to the axial curve fitting, values past ε = 0.3 should not be used since failure modeling 

was not incorporated in the curve fitting.  

With known constants, the next step is to verify the numbers in a simple simulation 

before using the values in a complex simulation. After the values are verified, knowing the 

elements are going to behave the way the curve fit says it will, the values can then be applied 
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in Chapter 5 – FSI Human Trachea Simulation. Note that, since both the axial and 

circumferential material properties are nonlinear, putting in a different guess, if the algorithm, 

or the robust setting gets changed, the constants will be different than the ones obtained in this 

study. 

4.4 Phase 3: Single Element Model 

Simple single element models (SEMs) in FEA are often used to evaluate the accuracy of 

a material model before applying the material model to complex simulations. This concept 

was first introduced by Robinson [35]. The purpose of the SEM is to test the material model’s 

accuracy in terms of the behavior of the elements and other defined material properties such 

as incompressibility. SEM models can be 2D or 3D, for this case, a 3D model was selected. 

There is not a major different between running a 2D element simulation versus a 3D. 

Robinson [35] used a 2D simulation example, however for this case, the material model is 

going to be used in a 3D geometry therefore a 3D selection was chosen. 

4.4.1 Geometry, Mesh, Boundary Conditions, and Material 

The geometry for this simulation is a 1 (mm3) cube. The mesh size is one element. The 

BCs for the element are shown in Figure 4.23 and summarized in Table 4.7. 

 

Figure 4.23: Boundary conditions for SEM simulation 
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The following table below describes the BCs as shown in the figure above. The constraints 

prescribed on the element are done on the eight corners of the cube. It is worthy to note, that 

this “corner” method is not the only way of prescribing the BCs. Another method would be to 

prescribe proper conditions on the surfaces in the respective axis directions as shown in 

Figure 4.23. However for possible debugging purposes the “corner” method was used. 

Table 4.7: BCs for SEM 

 A B C D E F G H 

X Axis 0 Free Free 0 0 Free Free 0 

Y Axis 0 0 0 0 Input Input Input Input 

Z Axis Free Free 0 0 Free Free 0 0 

 

Described in Table 4.7, nodes E, F, G, and H are prescribed with various 

displacements or forces in the Y direction. (For this case, displacement was used.) Nodes A, 

D, E, and H are all fixed in the X direction, creating a plane of symmetry on the element. 

Similarly for Nodes C, D, G, and H are fixed in the Z direction creating a symmetry BC there.  

 The material used in the single element simulation (SES) are the constant from the 2nd 

order Ogden material model curve fitted in the axial and circumferential directions. Two 

different SES were simulated using the respective constants from the two testing directions. 

The constants can be found in Table 4.3 and Table 4.5. In addition to the Ogden constants, a 

density, ρ, must be supplied even though the value is not used. For the two simulations, a ρ = 

1.05 E-06 (kg/mm3) was used. The density value can be an arbitrary value, however for the 

two SEM simulations, the density was estimated by approximating cartilage to be composed 

of 80% water. Fox et al. [36] described the abundance of water in the articular cartilage. 

Therefore, a fair approximation for density of porcine trachea, which is composed of mostly 

cartilage and some connective tissue, both of which are hydrophilic, is close to that of water.  
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Figure 4.24: Axial – single element simulation results 

 

Figure 4.25: Circumferential – single element simulation results 
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It can be seen in Figure 4.24 and Figure 4.25 that the SEM results matches perfectly with the 

material constants. Which means when the material models are applied, the elements will 

behave properly.  

4.5 Conclusion 

Many attempts have been made to characterize tracheal tissue, though only a few studies 

have been conducted for curve fitting the data. Curve fitting data will allow others to use the 

constants in FEA and FSI simulations; therefore it is desirable to curve fit the data. Lally et al. 

[12], Teng et al. [14], and Trabelsi et al [11] are researchers who have conducted experiments 

and curve fit the data. For this study, the Ogden model was the desired model to use for future 

simulations therefore, new testing was conducted and the data was curve fitted. There are 

several differences between this case study and usual biological testing. First, only a small 

preload was applied and no preconditioning was done. Secondly, the samples were pulled to 

failure, without doing cyclic loading. Lastly, the curve fit for this study was verified through a 

FEA simulation. It is important to verify the behavior of the elements, to ensure accuracy of 

simulation models. From this study which involves testing, curve fitting and simulation, the 

individual processes provided a verification process. With the verified constants, they can be 

applied to a real lung geometry.  
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Chapter 5: FSI HUMAN UPPER AIRWAY SIMULATION 

5.1 Human Airways 

The human lung and conducting airway is comprised of a series of complex tubular 

structures that eventually terminate in the alveoli where the majority of respiratory gas 

exchange occurs. From a purely mechanical standpoint; the complexity of the structural 

geometry itself offers many challenges. To include other studies such as mucus clearance, 

inflammation of alveolar tissue, or a diseased lung/loss of physiological compliance would 

increase the complexity even more. Researchers such as Button et al. [37] have conducted 

studies specifically on mucus clearance. Mucus clearance is essential to enhance efficiency 

and ease of respiratory gas exchange. However, as Button et al. [37] concluded, further 

studies still need to be conducted to fully grasp how the viscoelastic material behaves. 

Similarly, Aghasafari et al. [38] have conducted a study on strain-induced inflammation of 

alveoli tissue due to mechanical ventilation. Both researchers utilized a reductionist approach 

and targeted a specific area of the lung. However, for this FSI study the main focus is on the 

upper airway.  

 As stated earlier, researchers have conducted FSI or FEA simulations on the human 

lung in various locations in the airway tree. Malvè et al.[6] used a CT scan geometry for an 

FSI simulation and reported the differences between normal breathing and PCV ventilation; 

specifically on the trachea. Later Malvè et al. [39] conducted an FSI simulation on a healthy 

and stenotic (abnormal narrowing) human trachea under impedance-based boundary 

conditions. Similar to the first study, the focus was on the trachea alone. Yoshihara et al. [40] 

conducted an FSI study for local deformation imposed from a volumetric constraint 

standpoint onto the bifurcated airway and in the overall lung itself (left and right lobes). Other 

researchers such as Xia et al. [5] and Liu et al. [41] have also conducted FSI simulations in 

the airway, but at specific chosen locations. Xia et al. [5] chose the 3rd and 4th bifurcation for 

laminar flow conditions. The reason being, is that the initial generation (the trachea) has 

turbulent flow which once again adds complexity to the flow in the airway. While Liu et al. 

[41] chose the 5th-11th branch to simulate for a similar reason. In addition, Calay et al. [4] 

conducted CFD simulations of the first and second bifurcation in the human lung. Since CFD 

simulations only look at fluid flow, the structural portion of the lung wall was not taken into 

account. Lastly, Teng et al. [32] and Sera et al. [42] each have conducted simulations on the 
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material properties and diseased lungs, respectively. Similar to Button et al. [37] and 

Aghasafari et al. [38] these simulations focused on a specific aspect of the lung.  

 For this study, material properties, velocity ventilator flow profile, and geometry up to 

the 4th generation (G4) of the lung airway are taken into account. The simulation applies 

material properties from the tensile testing study and BCs used for the 3D balloon are also 

incorporated in addition to the ventilation flow conditions. The main goal of this study is to 

conduct a feasibility study on the stresses and air flow for PCV flow condition. 

5.2 Lung Geometry 

The lung geometry is derived from a CT scan of a human lung. CT images are DICOM 

files, which are encrypted medical files. In order to use the geometry for simulations, the 

DICOM file must be converted to a STL file. This process was done using an open source 

software, 3D Slicer [43, 44].  

 

Figure 5.1: 3D Slicer [43, 44] generated human lung geometry 

Figure 5.1 shows the anterior (front) view of the lung. A way to determine the orientation is 

by looking in the lateral (side to side) direction of Figure 5.1, the right bronchus is slightly 
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elongated while the left bronchus veers laterally. The lateral component is for the heart that is 

also located on the anatomical left side of the human.  

For this study, the focus is to simulate the first three generations of the model, therefore the 

model was further trimmed and processed such that thin sections/branches were also removed. 

This is because thin sections and branches are hard to mesh and causes complications during 

simulations. Future studies can correct these complications for a more realistic approach.  

 

Figure 5.2: Fluid geometry for human lung model 

Similar to Figure 5.1, the view shown in Figure 5.2 is an anterior view of the upper airway. 

Shown in Figure 5.2 is the fluid region. The fluid geometry was then imported into Pointwise, 

a meshing generating software, to create the structural region. A “shell” was created over the 

fluid region with a uniform thickness of 1 (mm). Creating multi-thickness shell will add more 

complexity to the model. Since the current research is just a feasibility study, the thickness 

was kept uniform for simplicity.  



95 

 

Figure 5.3: Structural geometry for human lung model 

Note that Figure 5.3 is showing the STL geometry and not the mesh. An STL file only 

describes the surface geometry, hence the unstructured triangular surface. Lastly, both the 

fluid and structural geometries are imported into ANSYS for meshing. 

5.3 Lung FSI Methods 

Similar to pervious chapter Method sections, it is divided into several sections: Mesh, 

Boundary Conditions, Material Properties, and Convergence Settings. Like the 3D balloon, 

this simulation only has one mesh size. ANSYS uses existing analytical systems along with 

the SC module to perform FSI analyses. For this simulation, ANSYS Fluent and Transient 

Structural are the main analytical systems, which are coupled using the SC module (shown in 

Chapter 2, Figure 2.2). 

5.3.1 Mesh 

Unstructured elements were used for both the fluid and solid regions. Similar to the 

3D balloon, the mesh settings given below are an attempt to balance a reasonable simulation 

run time and accurate results. Table 5.1 are the general settings for both the fluid and 

structural regions. 
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Table 5.1: Mesh settings for lung geometry 

Mesh Settings 

Element Order Linear 

Element Size (m) 0.0005 

Growth Rate 1.2 

Capture Curvature Yes 

Smoothing Medium 

 

Same logic as the 3D balloon, in this simulation the fluid and structural region have 

the same element size. The main goal is to capture the behavior of the structural region, 

hence, the structural region having more elements. 

Table 5.2: Human Lung – Mesh properties for the fluid and structural regions 

Fluid Region Structural Region 

Number of Elements Element Size Number of Elements Element Size 

215,772 0.5 - 1 (mm) 422,235 0.5 (mm) 

 

Table 5.2 shows that the element size for the fluid region is in between 0.5 and 1 (mm). This 

is because on certain regions a “Meshing sizing” was added to refine the mesh in the specified 

regions, the FSI surface is set at 0.5 (mm); everything else is set to 1 (mm). Since the 

geometry of the lung is not a regular uniform geometric shape like the balloons, it will be 

difficult to display the entire mesh in detail. Therefore, only certain regions where magnified 

to show the detail of the meshes. One last thing to note in regard to the mesh, is the use of 

unstructured elements. Using unstructured elements, can play into numerical difficulties. 

However, given the geometry the use of an unstructured mesh is more convenient. For future 

studies, a better mesh should be created. 

Using the settings from Table 5.1 and Table 5.2, the mesh for the lung geometry are 

shown in Figure 5.4. and Figure 5.5.  
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(a) (b) 

  

(c) (d) 

Figure 5.4: Human Lung – Fluid region mesh: (a) Isometric view of mesh, (b) upper trachea, 

(c) lower left bronchi, and (d) lower right bronchi. 

Similar to the fluid mesh, shown in Figure 5.5 are zoomed in regions of the structural mesh. 

Areas similar to the fluid region where chosen for consistency.  
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(a) (b) 

  

(c) (d) 

Figure 5.5: Human Lung – Structural region mesh: (a) Isometric view of mesh, (b) upper 

trachea, (c) lower left bronchi, and (d) lower right bronchi. 

5.3.2 Boundary Conditions  

The BCs shown in Figure 5.6 are the conditions used in the lung simulation. The lung 

is fixed on the top surface of the trachea as indicated with the triangles in the figure. An 

elastic support (bubbled region) surrounds the whole lung to act as the support from the 

pleural cavity fluid. More details in regards to the elastic support are presented in Chapter 3. 

Next, an FSI surface BC is on the inside walls of the lung. This BC couples the fluid and solid 
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components together for the simulation. This surface is where the SC module will perform the 

computation. 

 

Figure 5.6: Human Lung Model – Boundary condition 

The same elastic support value from the 3D balloon simulation was used: 10,000 (N/m3). 

Since the value is that of water for the 3D balloon, similar values can be used for the pleural 

cavity fluid, since it closely resembles water.  

Lastly, the velocity profile prescribed is a PCV ventilator flow condition. Only one 

breathing cycle was simulated. Shown Figure 5.7 is the velocity profile used in the simulation.  
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Figure 5.7: Human Lung Model – Prescribed PCV velocity 

Shown in the graph above are three profiles: flowmeter measured PCV, a Fourier 

Approximation, and Fourier Approximation Halved. The velocity profile used for the 

simulation is the Fourier Approximation Halved (Code for Fourier velocity profile can be 

found in Appendix D – Chapter 5: FSI Human Upper Airway Simulation). The flowmeter 

measured PCV velocity has a lot of noise and the step size is not flexible. The noise causes 

fluctuations and additional computation time; both are unnecessary aspects to add to the 

simulation. Secondly, having a flexible step size will allow the simulation to be simulated to 

user’s desired accuracy. Generally smaller time step means higher accuracy. The flowmeter 

velocity is set at 0.002 (s), the step size, resulting in a fixed step size. The Fourier 

approximation has the step size flexibility but lacks the “true” behavior of the PCV flow 

condition, as seen in the figure. A better approach would be using a piecewise function, which 

allows for more flexibility in the shape of the profile; this would be a future study. Lastly, as 

stated previously, the flow that is actually used is the “Fourier Approximation Halved”. Due 

to the sensitive mesh, used in this case study, a peak velocity of 2 (m/s) will crash the 

simulation. Therefore, it was decided that the shape of the profile will be halved to simulate 

the general behavior. However, an eventual study should incorporate a piecewise function and 

a better mesh should be used to simulate the PCV flow condition.  
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5.3.3 Material Properties 

The materials for the fluid and structural regions are given in Table 5.3 below. The 

fluid region is left at default for the air properties. In the structural region, a 2nd Order Ogden 

Material was used. 

Table 5.3: Human Lung Model – Material properties for the fluid and structural regions 

Fluid Material Properties Parameters Value 

Density, ρ (kg/m3) Ideal - gas - 

Specific Heat, Cp (J/kg-K) Constant 1006.43 

Thermal Conductivity, κ (W/m-K) Constant 0.242 

Dynamic Viscosity, μ (kg/m-s) Constant 1.7894E-05 

Molecular Weight, M (kg/kmol) Constant 28.966 

Structural Material Properties Parameters Value 

Density, ρ (kg/mm3) - 1.05E-06 

2nd Order Ogden Material Model -  

 μ1 (MPa) 5.334 

 μ2 (MPa) 11.53 

 α1 (MPa) -5.136 

 α2 (MPa)) 11.63 

 D1 (MPa-1) 0 

 D2 (MPa-1) 0 

 

The material properties for the 2nd order Ogden model is for axial tracheal tissue. The 

constants are obtained through testing. The density is an estimation based on cartilage being 

composed of mostly water. For the structural properties used, refer to Chapter 4 for further 

explanation.  

5.3.4 Convergence Settings 

To ensure the results comply with real world physics, the convergence settings provide 

the solver guidelines of when the results are satisfactory. Fluid behavior tends to be more 

complex, therefore most of the convergence settings are for the fluid region. In ANSYS 
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Fluent, the Solution Methods are left at default. The Residual Convergence values are 

changed to such that the numeric error is reduced and solution is achieved. 

Table 5.4: Human Lung Model – Fluid region main convergence settings 

Solution Methods 

Scheme SIMPLE 

Gradient Least Squares Cell Based 

Pressure Second Order 

Density Second Order Upwind 

Momentum Second Order Upwind 

Energy Second Order Upwind 

Transient Formulation First Order Implicit 

Residual Convergence 

Continuity 1e-05 

x-velocity 1e-05 

y-velocity 1e-05 

z-velocity 1e-05 

Energy 1e-06 

 

Figure 5.5 has the convergence settings for the SC. The convergence criteria for data transfers 

are defaulted to RMS Convergence Target = 0.005. The convergence settings for the SC are 

independent of the fluid and structural systems. For more details regarding how the SC data 

transfer works refer to section 2.3.4.  

Table 5.5: Human Lung Model – SC Data Transfer settings 

Data Transfer 1 Data Transfer 2 

Source: Transient Structural Source: Fluent 

Region: Fluid Solid Interface Region: Wall 

Variable: Displacement  Variable: Force 

Target: Fluent Target: Transient Structural 

Region: Wall Region: Fluid Solid Interface 

Variable: Displacement Variable: Force 
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Shown in Table 5.5 are the simulation settings for the fluid and structural regions, as well as 

the SC module. The end time for the simulation from Fluent, Transient Structural, and SC 

module, must match or the simulation will not run.  

Table 5.6: Human Lung – Simulation settings for the three modules 

 Fluid Region Solid Region SC 

Simulation Time (s) 2.5 2.5 2.5 

Time Step Size (s) 0.005 0.01 0.01 

Number of Time Steps 500 - - 

Large Deflection - On - 

Minimum Iterations - - 1 

Maximum Iterations 50 - 2 

 

As stated in Chapter 2, when running an FSI simulation in ANSYS, the SC settings 

override the structural and fluid simulation settings. However, for consistency, the settings for 

the fluid and structural regions should also be inputted before running the simulation. The step 

size for each simulation is different.  

5.4 Results 

Only one mesh was used for this simulation. With the given BCs, the simulation run for 

2.5 seconds, since that is the duration of one inhale and exhale for PCV ventilation. The 

results section for this chapter will be divided between the solid region and the fluid region. 

The solid region will focus on the von Mises stresses, equivalent strain, and displacement. 

While the fluid region will have velocity magnitude and pressure shown in 3D contour plots 

with slices to show the fluid behavior inside the lung. All contour plots and graphs were 

created using Tecplot 360 EX 2017 R2. 

5.4.1 Human Lung Model – Structural Region 

Figure 5.8 shows the selected time the stress, strain, and displacement graphs are 

obtained. There are 10 different time steps to show the respected results of the lung model. 

The locations are chosen to observe the maximum change in stress, strain, and displacement.  
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Figure 5.8: Human Lung – Reference for the selected time steps. 

Shown in Figure 5.9 are the von Mises stresses in the structural region if the upper 

airway. The legend is fixed, to show the overall change in stress throughout the simulation 

time.  
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(b) t = 0.25 second  

 

 

(c) t = 0.4 second 
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(d) t = 0.5 second 

 

 

(e) t = 0.7 second 
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(f) t = 1.5 seconds 

 

 

(g) t = 1.9 seconds 
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(h) t = 2 seconds 

 

 

(i) t = 2.15 seconds 
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(j) t = 2.3 seconds 

Figure 5.9: von Mises Stress of the Human Lung model 

Looking at the von Mises stresses, the maximum stress is occurring at t = 0.4 second, 

which is at the peak of the curve. Hence having the higher stress at that point is reasonable. 

Correspondingly, the stress at t = 2 second is not as high, but that is also because the peak 

time is a little before t = 2 second. Additionally, the highest stress is occurring on a flat region 

of the outer wall. This observation is reasonable, since the lung is mostly cylindrical in shape, 

with the exception of the small flat portion on the back side of the upper airway. 

Lastly, the location of the maximum stress (flat region on the back side of the upper 

airway) was probed to create a time series plot of the stress at the specified location. A time 

series plot will show the change in stress over time. An advantage of looking at a time series 

plot instead of the just contours is the unbiased number that a contour plot sometimes cannot 

provide.  
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Figure 5.10: Time series plot of maximum stress for human lung model 

As shown in Figure 5.10, the maximum stress peaked out at t = 0.4 second, which 

corresponds to the maximum inhalation velocity. While the lower peak occurring around t = 2 

seconds is the maximum exhalation velocity. In theory, the stress should be closer to one 

another in terms of magnitude. There are several reasonable explanations, first the plot was 

created on the surface of the lung. Which may not be an accurate location to probe, a more 

appropriate location would the same area, but on inside of the lung. Another explanation, 

could be the geometry and material of the lung. The nonlinear material properties and uneven 

surfaces are causing the lung to easily expand, but hard to collapse. Last reason could be that 

the stress is in compression at t = 2 seconds, however again because of the material and 

geometry it can only collapse to a certain amount, resulting in a lower stress at t = 2 seconds 

compared to t = 0.4 second.  

Shown in Figure 5.11 are the equivalent strains for the structural region of the lung 

model. The same time locations were chosen for the figure (reference Figure 5.8). Notice the 

maximum strain value on the legend is set to be the same value as the maximum stress: 0.002. 

This is to show that the material is behaving nonlinearly. If the material were to be linear, then 

the stress and strain will have the same contour in the same regions. 
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(a) t = 0.15 second 

 

 

(b) t = 0.25 second 
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(c) t = 0.4 second 

 

 

(d) t = 0.5 second 
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(e) t = 0.7 second 

 

 

(f) t = 1.5 seconds 
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(g) t = 1.9 seconds 

 

 

(h) t = 2 seconds 
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(i) t = 2.15 seconds 

 

 

(j) t = 2.3 seconds 

Figure 5.11: Equivalent Strains of the human lung model 

 As stated previously, the maximum strain value on the legend is set to be the same 

value as the maximum stress: 0.002. If the material were to be linear, then the stress and strain 

fields will have the same contour in the same regions. However, looking at the corresponding 

stress and strain contour plots, at t = 0.4 second, the contours are different. The strain is 
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significantly lower than the stress in the same regions. Similar to the stress, the strain is fairly 

low, which indicates that the lung material can stretch even more than what is shown prior to 

failure. In the context of this case study for ventilator flow, this is a good thing. This means, at 

the velocity provided the flow is unlikely to cause significant damage to the lung.  

In Figure 5.12 are the displacements for the structural region. Main item to note for the 

displacement is the location of the maximum displacement. The maximum displacement is 

side the lung that has a straighter bronchi branch than the other side.  

 

(a) t = 0.15 second 
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(b) t = 0.25 second 

 

 

(c) t = 0.4 second 
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(d) t = 0.5 second 

 

 

(e) t = 0.7 second 
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(f) t = 1.5 seconds 

 

 

(g) t = 1.9 seconds 
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(h) t = 2 seconds 

 

 

(i) t = 2.15 seconds 
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(j) t = 2.3 seconds 

Figure 5.12: Displacements of the human lung model 

The maximum displacement is occurring on the right side with the straighter bronchi. 

This observation is potentially a representation that the airflow is following the path of least 

resistance, again as would be physically expected with conventional ventilation. 

5.4.2 Human Lung Model – Fluid Region 

For the Fluid region, the main focus will be the velocity and pressure behavior inside 

the human lung. Slices were added to the contour plots to show the behavior inside the fluid 

region. Same time locations as the structural region were selected for consistency. In addition, 

the referenced fluid point for the graph shown in the figure, is obtained from the origin of the 

geometry, which is at the center of the velocity inlet. 
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(a) t = 0.15 second 

 

 

(b) t = 0.25 second 
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(c) t = 0.4 second 

 

 

(d) t = 0.5 second 
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(e) t = 0.7 second 

 

 

(f) t = 1.5 seconds 
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(g) t = 1.9 seconds 

 

 

(h) t = 2 seconds 
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(i) t = 2.15 seconds 

 

 

(j) t = 2.3 seconds 

Figure 5.13: Velocity Magnitude contour plots for human lung model 

The maximum prescribed velocity is around 1 (m/s). However, as shown in Figure 5.13, 

the maximum velocity is beyond 1 (m/s). The peak value is around 6 (m/s) around the tips of 
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the bronchi. The velocity at the tip is higher because the diameter is small, which in turn 

forces the air to go through a narrower channel, creating a higher velocity. 

Pressure contours are provided below. Similar to the other contour plots thus far, the 

time locations are the same. The figures shown below all have the same contour legend, thus 

making the pressure look uniform on several of the plots. Additional pressure contour plots 

are provided in Appendix D – Chapter 5: FSI Human Upper Airway Simulation to show the 

difference in pressure for every time location.  

 

(a) t = 0.15 second 

 



128 

 

(b) t = 0.25 second 

 

 

(c) t = 0.4 second 
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(d) t = 0.5 second 

 

 

(e) t = 0.7 second 
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(f) t = 1.5 seconds 

 

 

(g) t = 1.9 seconds 
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(h) t = 2 seconds 

 

 

(i) t = 2.15 seconds 
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(j) t = 2.3 seconds 

Figure 5.14: Fluid pressure contour plots for human lung model 

Shown in Figure 5.14, the pressure again peaked at t = 0.4 second while the peak 

negative pressure is at t = 2 seconds. The pressure is mostly uniform, with the exception of 

the pressure outlets (tip of the bronchi). The difference in pressure can be clearly observed in 

Figure 5.14 (d) at t = 5 seconds. This difference in pressure is most likely the BCs prescribed 

to the outlets. The BCs for the outlets are defined pressure outlets (static gauge pressure). The 

gauge pressure is a reference to the atmospheric pressure, and the pressure will remain 

constant throughout the simulation time. If the pressure inside of the lung is not the same as 

the reference pressure then there will be pressure differences.  

5.5 Conclusion 

Direct comparisons to literature was not performed due to the differences in BCs and 

geometry. However, our results indicate that the values obtained are reasonable given the 

BCs. It was observed that the stress and strains were relatively low given the ventilator 

velocity conditions. This shows that the prescribed velocity is unlikely to damage the lungs 

especially if they are healthy, given the velocity magnitude. As previously stated, the velocity 
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magnitude was decreased by half due to the sensitive mesh. For a more accurate prediction of 

the stress and strain, the velocity should be simulated at proper magnitude.  

Next, looking at the fluid velocity and pressure of the air inside the lung, differences can 

be can be observed. The velocity contours are showing maximum velocity at the outlets. This 

is expected since the diameter of the outlets are significantly smaller than the diameter of the 

trachea. Lastly, looking at the fluid pressure and structural stresses, the maximum pressure is 

at t = 0.4 second; correspondingly the maximum stress is at the same time and same general 

location as the fluid pressure. Similarly the maximum displacement is occurring at the time 

and location as the peak velocity, also at t = 0.4 second. Thus far, all observations are 

indicating that the simulation is showing the correct behavior in terms of stress/pressure and 

displacement/velocity at the various selected locations. The simulation will need to be further 

refined prior to yielding a perfectly accurate model that can be used for validation against in 

situ or in vivo experiments.  
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Chapter 6: CONCLUSIONS AND FUTURE RESEARCH 

This chapter focuses on future studies as well as some general thesis project conclusions 

that can be reported following these experiments. The conclusion section will provide a 

summary of the overall conclusions of both the individual studies and overall project. It is 

also of interest how the individual case studies can be built upon for better accuracy and have 

even more realistic characteristics to further improve the models.  

6.1 Summary and Conclusions 

Each case study was unique, but yet necessary to perform the real lung geometry 

simulation. The square balloon provided the basic methodology for the 3D balloon. Since the 

square balloon was able to achieve monotonic convergence that ensured the values and 

approach for the FSI simulation was accurate enough to use the methodology elsewhere. 

Therefore, when simulating the 3D balloon the same methodology was used. The only 

drawback was the time it took to run the 3D simulation. The square balloon took around three 

hours to run the finest mesh, while the 3D balloon with the coarsest possible mesh without 

divergence took a week to simulate.  

The tensile testing and curve fitting provided the necessary confidence to use the material 

properties from testing. The tensile testing method can be improved upon as well as the curve 

fitting. However, given the knowledge, the tensile testing was adequate and the curve fitting 

resulted in a good approximation of the experimental behavior. Then, using a one-element 

simulation to verify the model gave confidence in applying calculated material constants to 

the lung geometry. 

Lastly, when simulating the lung with different ventilation flows one can achieve great 

insight into the behavior of the lung, distribution of structural stresses, and the air flow. 

Further improvements can be made, however since this is the first FSI simulation using 

ANSYS, the results are satisfactory. 

In conclusion, square balloon simulation, 3D balloon simulation, the tensile testing and 

the real lung simulation would be considered a very successful first step for ANSYS FSI 

simulations and testing. Many more variations in any of the cases studies can be done to 

improve upon what has already been shown in this thesis. The project started with a simple 

quasi 2D simulation, and through various forms of verification and validation, was built upon 

to the complex lung geometry simulation. This shows, that simplicity is always a good 
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starting point for any project, it is also important to thoroughly understand some of the theory 

and physics behind the simulations and models before fully applying the knowledge without a 

solid foundation. 

This study aimed to further bridge the knowledge gap through FSI simulations and 

mechanical tissue testing. The current studies drew upon and expanded on methods from the 

limited number of studies reported by other researchers. Using case studies such as the qusi-

2D balloon and curve fitting are among some examples of how the current study is built on 

some of the previous research. Relatively new methods such as using ANSYS for FSI 

simulation and conducting a 3D balloon simulation would be considered unique to this study. 

Though direct comparison cannot be made, the methods, results, and conclusions can 

generally be compared to other studies as well. Even though more detailed simulations and 

testing can be conducted, due to some limitations stated above, the overall conclusion of this 

study is that the goal has been achieved, with some traditional techniques as well as with 

some relatively new ones. Ultimately, this thesis provides tissue properties and modeling 

methods that are essential towards the ability to model gas exchange in a complex structure 

such as the human respiratory tract.  

6.2 Potential Future Research 

This section is split between the individual case studies; as each case study is unique but 

they are all vital for the final simulation presented in Chapter 5 – FSI Human Trachea 

Simulation. 

6.2.1 3D Balloon 

The 3D balloon uses linear elastic properties as the material for the balloon walls. 

Silicone rubber in reality is a hyperelastic material and cannot be effectively quantified by an 

elastic modulus alone. Through simple testing, such as uniaxial tension testing, nonlinear 

material properties can be applied to the model. Or alternatively we can apply chosen material 

properties that already exists in literature to the model. Nonlinear materials can stretch beyond 

what the elastic modulus would allow. Uniaxial tension testing is the simplest test that solid 

mechanics researchers can perform, there are more accurate experimental testing such as 

biaxial testing and cyclic loading that may ultimately improve our model accuracy. Although 

cyclic loading is not generally done on hyperelastic material. It would be useful because even 
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hyperelastic materials will have a cyclic failure rate and it can be determined with fatigue 

testing. 

The 3D balloon simulation was run using only one mesh size, for both the fluid and 

structural regions. Additional mesh refinement and, if possible, a solution verification study 

similar to that of the square balloon can be conducted for estimating the grid/time-step errors 

and uncertainties. In addition, the mesh used for this study for both regions was extremely 

coarse. This was done to allow the simulation to run in a shorter amount of time, to facilitate 

replication time. Solution verification study on systematically refined grids and time-step 

sizes will be needed to estimate the numerical errors and uncertainties. The model should be 

validated using experimental data as available. These will allow assessing the true accuracy of 

the simulation results. A figure in Appendix B – Chapter 3: Three-Dimensional Balloon 

Expansion (Figure B.1.c) shows a “pole” on the fluid mesh. A pole is generally undesirable in 

meshes, however, due to the elliptical geometry, a pole may be unavoidable; but it can be 

improved upon. For example by using either (or a combination of both) linear and quadratic 

elements or using mesh facing features in ANSYS the region can be further improved. 

Also, this simulation was only run with one velocity profile. Additional profiles can 

also be used for comparing results. Profiles such as the PCV and HFPV are good candidates. 

Since a balloon has the capability to expand in size in a relatively short time, the balloon 

simulations with the ventilator profiles are good visualization tools to use before applying the 

profiles to the lung geometry. 

6.2.2 Tensile Testing and Curve Fitting 

The testing done on the axial samples were preloaded to 1 Newton (N) and the 

circumference were preloaded to 0.1 (N). Though not shown, but was mentioned, in Chapter 

4, some unrecorded axial testing was done prior to the actual testing. Those samples were 

preloaded to 0.1 (N) then pulled to failure. Comparing the data, it would appear that the axial 

specimens should be preloaded to somewhere between 0.1 (N) and 1 (N). If another round of 

testing were to occur, a preload value in between 0.1-1 (N) should be the starting point. As 

stated previously, uniaxial tensile testing is the simplest but yet a powerful mechanical test. 

However, to obtain more accurate data for materials, other tests such as biaxial testing and 

cyclic testing should also be done for the tracheal material. Further, since there is natural 

variability in tissue across individuals evaluation of this in a greater number of samples would 
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improve the general utility of the data. Since this research has the potential to be expanded 

into lung damage, or even diseased lungs, having the proper mechanical properties for 

comparison will be beneficial.  

The axial and circumferential samples were curve fitted using the Ogden material 

model. Various other models such as the Mooney-Rivlin model or the Neo-Hookean model 

could also be used. The Ogden model was chosen, because the author thought it fits the data 

better. However, without comparing the curve fit directly with other models, it remains an 

unknown if the Ogden model provides the best fit or not. In addition, a more detailed 

statistical analysis of the Ogden curve fit can also be done to verify the model, further than the 

single element model.  

6.2.3 FSI Human Lung 

For the human lung FSI simulation chapter, having a more refined mesh for the 

structural region and ensuring the fluid region mesh is also optimal would help with the 

simulation. In the chapter, only one breathing cycle of the PCV was simulated. Better results 

of the air flow behavior would require longer simulated time. For the PCV velocity profile, a 

Fourier approximation was used to estimate the PCV velocity profile. A better way estimating 

the velocity profile would be to create a piecewise function, instead of using Fourier 

approximation. A piecewise function is easier to control and prescribe than a Fourier 

approximation. Also, since the study is only done with a conventional ventilation flow, 

another ventilation flow should be done for comparison, such as a HFPV flow. In addition, 

other flow profiles can be applied for verification purposes. Also, to simulate certain lung 

conditions, a good starting point would be to “plug” or cap one or more of the outlets to 

simulate mucus blockage. Other improvements to ensure a more accurate model would be to 

incorporate multiple materials and more generations (branches). An improvement on the 

structural side would be to have multiple thicknesses, currently the lung has a uniform shell of 

1 (mm), when in reality the thickness actually varies. One last thing that can be incorporated, 

is a proper value or boundary condition for the trachea. Instead of using a “water elastic 

support” a proper value or proper tracheal support can be added to increase the accuracy of 

the model.  

To summarize, some limitations of the current study would include the 3D balloon 

simulation that has not been validated with experimental results. A solution verification study 
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should be conducted for the 3D balloon as well. For material testing, the experiments were 

only conducted with uniaxial tension testing, when other testing such as biaxial maybe more 

accurate. In addition, the material model curve fitting is only fitted with the Ogden material 

model, when other models such as Moony-Rivlin may provide more accurate results. Lastly, a 

convergence study for the lung simulation should be performed and the detail lung geometry 

can be more accurate (more generations). Other researchers have conducted similar studies, 

specifically on tensile testing porcine tissue or different regions of FSI simulations of the 

upper airway. However, most are not directly comparable to this study, which in turn makes it 

a limitation as well.  
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APPENDIX A – Chapter 2: The Quandary of Compressibility 

The following are supplemental materials for Chapter 2: The Quandary of Compressibility. 

Summary of Figures Page 

Square Balloon Meshes 143 

Simulation 3 - Fluid pressure and structural stress contour plot 144 

Simulation 3 - Fluid velocity magnitude and structural strain contour plot 146 

Simulation 3 - Fluid velocity vector and structural deformation contour plot 148 

Simulation 2 - Fluid pressure and structural stress contour plot 150 

Simulation 2 - Fluid velocity magnitude and structural strain contour plot 152 

Simulation 2 - Fluid velocity vector and structural deformation contour plot 154 

Square Balloon Velocity Inlet Profile Code 156 
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Square Balloon Meshes 

Fluid Region Solid Region 

 
 

  

  

  

Simulation 3 

Simulation 2 

Simulation 1 
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Simulation 3 - Fluid pressure and structural stress contour plot 

 

Figure A.2: Simulation 3 – Fluid pressure and structural stress contour plot at t = 0.5 second  

 

Figure A.3: Simulation 3 – Fluid pressure and structural stress contour plot at t = 1 second  



145 

 

Figure A.4: Simulation 3 – Fluid pressure and structural stress contour plot at  t = 5 seconds 

 

Figure A.5: Simulation 3 – Fluid pressure and structural stress contour plot at  t = 9 seconds 
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Simulation 3 - Fluid velocity magnitude and structural strain contour plot 

 

Figure A.6: Simulation 3 – Fluid velocity magnitude and structural strain contour plot for t 

= 0.5 second 

 

Figure A.7: Simulation 3 – Fluid velocity magnitude and structural strain contour plot for t 

= 1 second 
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Figure A.8: Simulation 3 – Fluid velocity magnitude and structural strain contour plot for t 

= 5 seconds 

 

Figure A.9: Simulation 3 – Fluid velocity magnitude and structural strain contour plot for t 

= 9 seconds 
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Simulation 3 - Fluid velocity vector and structural deformation contour plot 

 

Figure A.10: Simulation 3 – Fluid velocity vector and structural deformation contour plot 

for t = 0.5 second 

 

Figure A.11: Simulation 3 – Fluid velocity vector and structural deformation contour plot 

for t = 1 second 
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Figure A.12: Simulation 3 – Fluid velocity vector and structural deformation contour plot 

for t = 5 seconds 

 

Figure A.13: Simulation 3 – Fluid velocity vector and structural deformation contour plot 

for t = 9 seconds 
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Simulation 2 - Fluid pressure and structural stress contour plot 

 

Figure A.14: Simulation 2 – Fluid pressure and structural stress contour plot at t = 0.5 

second 

 

Figure A.15: Simulation 2 – Fluid pressure and structural stress contour plot at t = 1 second 
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Figure A.16: Simulation 2 – Fluid pressure and structural stress contour plot at t = 5 

seconds 

 

Figure A.17: Simulation 2 – Fluid pressure and structural stress contour plot at t = 9 

seconds 
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Simulation 2 - Fluid velocity magnitude and structural strain contour plot 

 

Figure A.18: Simulation 2 – Fluid velocity magnitude and structural strain contour plot for t 

= 0.5 second 

 

Figure A.19: Simulation 2 – Fluid velocity magnitude and structural strain contour plot for t 

= 1 second 
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Figure A.20: Simulation 2 – Fluid velocity magnitude and structural strain contour plot for t 

= 5 seconds 

 

Figure A.21: Simulation 2 – Fluid velocity magnitude and structural strain contour plot for t 

= 9 seconds 
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Simulation 2 - Fluid velocity vector and structural deformation contour plot 

 

Figure A.22: Simulation 2 – Fluid velocity vector and structural deformation contour plot 

for t = 0.5 second 

 

 

Figure A.23: Simulation 2 – Fluid velocity vector and structural deformation contour plot 

for t = 1 second 
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Figure A.24: Simulation 2 – Fluid velocity vector and structural deformation contour plot 

for t = 5 seconds 

 

 

Figure A.25: Simulation 2 – Fluid velocity vector and structural deformation contour plot 

for t = 9 seconds 
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Square Balloon Velocity Inlet Profile Code 

/*********************************************************************** 

UDF for specifying parabolic sinusoidal velocity profile boundary condition 

************************************************************************/ 

#include "udf.h" 

DEFINE_PROFILE(Square_Balloon_velocity, thread, position) 

{ 

 real x[ND_ND]; 

 real y; 

 real umax; 

 face_t f; 

 real t = CURRENT_TIME; 

 begin_f_loop(f, thread) 

 { 

  F_CENTROID(x, f, thread); 

  y = x[1]; 

  if (t < 1.) 

  { 

   umax = (sin(3.1412*(t + 1.5)) + 1) / 2; 

  } 

  else 

  { 

   umax = 1.0; 

  } 

  F_PROFILE(f, thread, position) = umax - y*y / (0.5*0.5)*umax; 

 } 

 end_f_loop(f, thread) 

} 
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APPENDIX B – Chapter 3: Three-Dimensional Balloon Expansion 

The following are supplemental materials for Chapter 3: Three-Dimensional Balloon 

Expansion. 

Summary of Figures Page 

3D Balloon Meshes 158 

3D Balloon Structural Region: von Mises Stress 159 

3D Balloon Structural Region: Equivalent Strain 162 

3D Balloon Structural Region: Deformation 165 

3D Balloon Fluid Region: Z Velocity Contour 168 

3D Balloon Fluid Region: Velocity Magnitude Contour 172 

3D Balloon Fluid Region: Velocity Vector 176 

3D Balloon Velocity Inlet Profile Code 180 
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3D Balloon Meshes 

Fluid Region Solid Region 

  

(a) Fluid Mesh Side View (b) Solid Mesh Side View 

 

 
 

(c) Fluid Mesh Angled View (d) Solid Mesh Angled View 

Figure B.1: Additional 3D balloon meshes  
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3D Balloon Structural Region: von Mises Stress

 

Figure B.2: von Mises stresses at t = 0.5 second  

 

 

Figure B.3: von Mises stresses at t = 1 second 
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Figure B.4: von Mises stresses at t = 1.5 seconds 

 

 

Figure B.5: von Mises stresses at t = 2 seconds 
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Figure B.6: von Mises stresses at t = 2.25 seconds 
 

 

Figure B.7: von Mises stresses at t = 2.5 seconds 
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3D Balloon Structural Region: Equivalent Strain 

 

Figure B.8: Equivalent strain at t = 0.5 second 
 

 

Figure B.9: Equivalent strain at t = 1 second 



163 

 

Figure B.10: Equivalent strain at t = 1.5 seconds 
 

 

Figure B.11: Equivalent strain at t = 2 seconds 
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Figure B.12: Equivalent strain at t = 2.25 seconds 
 

 

Figure B.13: Equivalent strain at t = 2.5 seconds 
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3D Balloon Structural Region: Deformation 

 

Figure B.14: Displacement at t = 0.5 second 

 

 

Figure B.15: Displacement at t = 1 second 
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Figure B.16: Displacement at t = 1.5 seconds 

 

 

Figure B.17: Displacement at t = 2 seconds 
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Figure B.18: Displacement at t = 2.25 seconds 

 

 

Figure B.19: Displacement at t = 2.5 seconds 
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3D Balloon Fluid Region: Z Velocity Contour 

 

Figure B.20: Z velocity contour (m/s) at t = 0.5 second 
 

 

Figure B.21: Z velocity contour (m/s) at t = 0.7 second 
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Figure B.22: Z velocity contour (m/s) at t = 0.9 second 
 

 

Figure B.23: Z velocity contour (m/s) at t = 1 second 
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Figure B.24: Z velocity contour (m/s) at t = 1.5 seconds 
 

 

Figure B.25: Z velocity contour (m/s) at t = 2 seconds 
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Figure B.26: Z velocity contour (m/s) at t = 2.25 seconds 
 

 

Figure B.27: Z velocity contour (m/s) at t = 2.5 seconds 
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3D Balloon Fluid Region: Velocity Magnitude Contour 

 

Figure B.28: Velocity magnitude contour at t = 0.5 second 
 

 

Figure B.29: Velocity magnitude contour at t = 0.7 second 
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Figure B.30: Velocity magnitude contour at t = 0.9 second 
 

 

Figure B.31: Velocity magnitude contour at t = 1 second 
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Figure B.32: Velocity magnitude contour at t = 1.5 seconds 
 

 

Figure B.33: Velocity magnitude contour at t = 2 seconds 
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Figure B.34: Velocity magnitude contour at t = 2.26 seconds 
 

 

Figure B.35: Velocity magnitude contour at t = 2.5 seconds 
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3D Balloon Fluid Region: Velocity Vector 

 

Figure B.36: Velocity Vectors at t = 0.5 second 

 

Figure B.37: Velocity Vectors at t = 0.7 second 
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Figure B.38: Velocity Vectors at t = 0.9 second 

 

Figure B.39: Velocity Vectors at t = 1 second 
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Figure B.40: Velocity Vectors at t = 1.5 seconds 

 

Figure B.41: Velocity Vectors at t = 2 seconds 
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Figure B.42: Velocity Vectors at t = 2.26 seconds 

 

Figure B.43: Velocity Vectors at t = 2.5 seconds 
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3D Balloon Velocity Inlet Profile Code 

/*********************************************************************** 

UDF for specifying parabolic sinusoidal velocity profile boundary condition 

************************************************************************/ 

#include "udf.h" 

 

DEFINE_PROFILE(ThreeDim_Balloon_velocity, thread, position) 

{ 

 real x[ND_ND]; 

 real y; 

 real umax; 

 face_t f; 

 real t = CURRENT_TIME; 

 

 begin_f_loop(f, thread) 

 { 

  F_CENTROID(x, f, thread); 

  y = x[1]; 

  if (t < 1.) 

  { 

   umax = (sin(3.1412*(t + 1.5)) + 1) / 4; 

  } 

  else 

  { 

   umax = 0.5; 

  } 

 

  F_PROFILE(f, thread, position) = umax - y*y / (0.5*0.5)*umax; 

 } 

 end_f_loop(f, thread) 

}  
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APPENDIX C – Chapter 4: Porcine Tracheal Material Properties 

The following are supplemental materials for Chapter 4: Porcine Tracheal Material Properties. 

Summary of Figures Page 

Calculations for Preliminary Strain Rate 182 

MATLAB code for Trimming Data 184 

MATLAB code for Ogden Model Curve Fitting for an Individual Dataset 186 

Examples of Location and Data Measurements  189 

2nd Order Ogden Material Model Derivation  191 
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Calculations for Preliminary Strain Rate 

Table C.1: Known/measured properties of porcine trachea 

Fluid Pressure of Human Airway, P (cmH2O) 

Fluid Pressure of Human Airway, P (MPa) 

30 

0.00294 

Diameter of Trachea, d (mm) 20 

Thickness of Tracheal Wall, t (mm) 4 

Breathing Rate, BR (s) 2 

 

Table C.2: Initial sample properties to determine strain rate 

Thickness, t (mm) 4 

Width, w (mm) 9 

Area, A (mm2) 36 

Length, l (mm) 22 

 

 

Figure C.1: Stress-Strain curve of a sample  
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Table C.3: Stress and strain values for toe region 

Strain (mm/mm) Stress (MPa) 

0.3 0.008 

0.4 0.011 

 

Elastic Modulus Calculation for Linear Toe Region: 

2 1

2 1

0.028( )E MPa
 

 


 


 (C.1) 

Longitudinal Stress Calculation for Linear Toe Region 

0.0037( )
4

long

pd
MPa

t
    (C.2) 

 

Hoop Stress Calculation for Linear Toe Region 

0.0098( )
2

hoop

pd
MPa

t
    (C.3) 

 

Longitudinal Strain calculation for Linear Toe Region 

 
1

0.044( / )long long hoop mm mm
E

       (C.4) 

 

Strain Rate 

10.02187( )
long

BR
s



     (C.5) 

 

Note, strain rate was calculated based on the toe region because strains that will occur in a 

healthy (non-diseased) airway are within the toe region.  
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MATLAB Code for Trimming Data 

clc 
close all 
clear all  

  
DataStress = 0; 
DataStrain = 0; 
Predicted = 0; 
Error = 0; 
StressData = []; 
StrainData = []; 

  
DataFileName = 'AllAxial_Data_EngineeringStrain';   %Excel File Name 

  
for TestNumber = 1 
    tic 
    Name = strcat('Test',num2str(TestNumber));  %Name of Sheet in Excel 
    ExcelName = strcat(DataFileName); 
    StressDataTemp = xlsread(ExcelName,Name,'P:P'); %Column for Stress 
    StrainDataTemp = xlsread(ExcelName,Name,'O:O'); %Column for Strain 
    [MaxNumber,MaxPosition] = max(StressDataTemp); 

  
    for i = 1:MaxPosition 
        DataStressTemp(i,1) = StressDataTemp(i,1); 
        DataStrainTemp(i,1) = StrainDataTemp(i,1); 
    end 

     
    slope = zeros(length(DataStrainTemp),1); 

  
for n = 2:length(DataStrainTemp); 
    slope(n,1) = [DataStressTemp(n)-DataStressTemp(n-

1)]/[DataStrainTemp(n)-DataStrainTemp(n-1)]; 
end 

  
Threshold = 0; 
CutPoint = length(DataStrainTemp); 

  
for n = round(length(DataStrainTemp)/2):length(DataStrainTemp); 
    if slope(n,1) < Threshold 
        CutPoint = (n)-2; 
        break 
    end 
end 

  
for n = 1:CutPoint 
    CroppedDataStress(n,1) = DataStressTemp(n); 
    CroppedDataStrain(n,1) = DataStrainTemp(n); 
end 

  
clear DataStressTemp DataStrainTemp slope 

  
DataStressTemp = CroppedDataStress; 
DataStrainTemp = CroppedDataStrain; 
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    StressData = [StressData ;DataStressTemp]; 
    StrainData = [StrainData; DataStrainTemp]; 
    toc 
end  
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MATLAB Code for Ogden Model Curve Fitting for an Individual Dataset 

clc 
close all 
clear all  

  
StressData = 0; 
StrainData = 0; 
DataStress = 0; 
DataStrain = 0; 
Predicted = 0; 
Error = 0; 

  
% Inputs 
DataFileName = 'Axial_TestData_20180611_Matlab';    %Excel File Name 
GraphTitle = 'June 11, 2018: 2nd Order Ogden Model Test - '; %Title on 

Matlab Charts 
FileName = '20180611_2ndOrderOgden_Axial_Test_Number_'; 
% Change lines 17-20  
A1 = 18;    %Inital Guess - Ogden Model Constant: Alpha 
A2 = 20; 
M1 = 1e-3;  %Inital Guess - Ogden Model Constant: Mu 
M2 = 1e-3; 
% ! ! ! Also change line 23 before running ! ! ! % 

  
%OptimizationCode 
for TestNumber = 1:37; 
clear StressData StrainData DataStress DataStrain Predicted Error; 
%Importing Data 
Name = strcat('Test',num2str(TestNumber)); 
ExcelName = strcat(DataFileName); 
StressData = xlsread(ExcelName,Name,'O:O'); 
StrainData = xlsread(ExcelName,Name,'P:P'); 
[MaxNumber,MaxPosition] = max(StressData); 

  
for i = 1:MaxPosition 
    DataStress(i) = StressData(i); 
    DataStrain(i) = StrainData(i); 
end 

  
%Setup 
S = DataStress; 
syms Alpha1 Mu1 Alpha2 Mu2 E real 

  
%Inital Guesses 
InitalGuess =[A1;M1;A2;M2]; 
Ogden = [Alpha1;Mu1;Alpha2;Mu2]; %Optimization Variables 

  
%Strain Energy Density Function - 2nd Order Ogden 
Stress = Mu1*(1+E)^(Alpha1-1)-Mu1*(1+E)^(((-Alpha1)/2)-1)+... 
    Mu2*(1+E)^(Alpha2-1)-Mu2*(1+E)^(((-Alpha2)/2)-1); 
matlabFunction(Stress,'File','Function_Stress','vars',{[Alpha1,Mu1,... 
    Alpha2,Mu2,E]}); 

  
%Guess-CollectedData 
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for n = 1:length(DataStrain) 
Error(n)= abs((Function_Stress([Ogden',DataStrain(n)]))-S(n)); 
end 

  
%RSS of errors (square term-by-term, sum, root) 
TheCostFunction = [E]*0; %Initialize cost vector (the symbolic matrix) 
for m = 1:length(Error) 
    TheCostFunction = TheCostFunction+((Error(m)));   
end 

  
TheCostFunction = abs(TheCostFunction); 

  
%Cost Function 
matlabFunction(TheCostFunction,'File','FunctionCost','vars',{[Alpha1,Mu1,Al

pha2,Mu2]'}); 
FunctionCost(InitalGuess) %Used for testing evaluate the initial cost (at 

the guess) 

  
%Options = optimoptions('fmincon','Display','iter','Algorithm','interior-

point','MaxIterations',100); 
Options = optimoptions('fminunc','Display','iter','Algorithm','trust-

region','MaxFunctionEvaluations',1000,'MaxIterations',3000,'StepTolerance',

1e-8); 
OgdenOutput = fminunc(@FunctionCost,InitalGuess,Options); 

  
for i = 1:length(DataStrain) 
    Predicted(i) = Function_Stress([OgdenOutput;DataStrain(i)]'); 
end 

  
%Chart Naming 
ChartTitle = strcat(GraphTitle,num2str(TestNumber)); 
plot(DataStrain,DataStress) 
grid on 
hold on 
plot(DataStrain,Predicted,'--') 
legend('Data','Curve Fit') 
title(ChartTitle) 
xlabel('Strain [mm/mm]') 
ylabel('Stress [MPa]') 

  
%Saving 
PlotFileTitle = strcat(FileName,num2str(TestNumber),'.jpg'); 
saveas(figure(1),PlotFileTitle,'jpg') 
close all 
FileTitle = strcat(FileName,num2str(TestNumber),'.txt'); 
fileID = fopen(FileTitle,'wt'); 
fprintf(fileID,'2nd Order Ogden Model Constants \n\n Alpha1 = '); 
fileID = fopen(FileTitle,'at'); 
fprintf(fileID,'%f', OgdenOutput(1)); 
fprintf(fileID,'\n\n Mu1 = '); 
fprintf(fileID,'%f', OgdenOutput(2)); 
fprintf(fileID,'\n\n Alpha2 = '); 
fprintf(fileID,'%f', OgdenOutput(3)); 
fprintf(fileID,'\n\n Mu2 = '); 
fprintf(fileID,'%f', OgdenOutput(4)); 
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fclose(fileID); 
end 
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Examples of Location and Data Measurements  

 

 

Figure C.2: Tools used for specimen preparation 

 

Figure C.3: Location of samples recorded for the axial direction 
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Figure C.4: Location of samples recorded for the axial direction 
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2nd Order Ogden Material Model Derivation 

Ogden Material Model Equation: 

     
2

1 2 3 1 2 3

1 1

1
, , 3 1i i i

N N
k

i ki k

W J
d

  
     

 

        (C.6) 

Where μ, α, and d are constants and λ are the stretches. J is the determinant of the deformation 

gradient, F. 

Assuming incompressible material, the Ogden Material Model equation becomes: 

   1 2 3 1 2 3

1

, , 3i i i

N

i i

W
  

     


     (C.7) 

In addition, by assuming incompressibility: 

1 2 3 1     (C.8) 

1   (C.9) 

2 3

1
 


   (C.10) 

The final form of the Ogden equation used becomes: 

1
2 3

i

W






 

  
       

 (C.11) 

To determine the stress from a strain energy density equation: 

i

i

W








 (C.12) 

After taking partial derivative twice (2nd Order): 

1 2

1 2
1 1

1 12 2
1 1 2 2

 
         

   
 

     (C.13) 

To get the equation in terms of strain: 

1    (C.14) 

Final form of the 2nd Order Ogden Material Model used: 

       
1 2

1 21 1 1 1
2 2

1 1 2 2  1   1   1   1  
 

 
        

     
         (C.15) 
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APPENDIX D – Chapter 5: FSI Human Upper Airway Simulation 

The following are supplemental materials for Chapter 5: FSI Human Upper Airway 

Simulation. 

Summary of Figures Page 

Pressure Contour Plots for the Human Lung Model 193 

UDF: Velocity Inlet Profile Code for PCV (Fourier Approximation) 198 

UDF: Velocity Inlet Profile Code for PCV (Fourier Approximation Halved) 199 
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Pressure Contour Plots for the Human Lung Model 

 

Figure D.1: Fluid pressure contour at t = 0.15 second 

 

 

Figure D.2: Fluid pressure contour at t = 0.25 second 
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Figure D.3: Fluid pressure contour at t = 0.4 second 

 

 

Figure D.4: Fluid pressure contour at t = 0.5 second 
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Figure D.5: Fluid pressure contour at t = 0.7 second 

 

 

Figure D.6: Fluid pressure contour at t = 1.5 seconds 
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Figure D.7: Fluid pressure contour at t = 1.9 seconds 

 

 

Figure D.8: Fluid pressure contour at t = 2 seconds 
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Figure D.9: Fluid pressure contour at t = 2.15 seconds 

 

 

Figure D.10: Fluid pressure contour at t = 2.3 seconds 
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UDF: Velocity Inlet Profile Code for PCV (Fourier Approximation) 

/**********************************************************************/ 

/* unsteady.c                                                         */ 

/* UDF for specifying a transient velocity profile boundary condition */ 

/**********************************************************************/ 

 

#include "udf.h" 

 

DEFINE_PROFILE(PCV_Fourier, thread, position)  

{ 

  face_t f; 

 

  begin_f_loop(f, thread) 

    { 

      real t = RP_Get_Real("flow-time"); 

      F_PROFILE(f, thread, position) = -(((-0.08878) + (-0.5299)*cos(t*1.757+.235) + (-

0.6037)*sin(t*1.757+.235) + 0.2958*cos(2*t*1.757+.235*2) + (-

0.07053)*sin(2*t*1.757+.235*2) + 0.3301*cos(3*t*1.757+.235*3) + (-

0.348)*sin(3*t*1.757+.235*3) + 0.06015*cos(4*t*1.757+.235*4) + 

0.2963*sin(4*t*1.757+.235*4) + 0.1689*cos(5*t*1.757+.235*5) + 

0.1301*sin(5*t*1.757+.235*5) + (-0.1878)*cos(6*t*1.757+.235*6) + 

(0.04543)*sin(6*t*1.757+.235*6) + (-0.0195)*cos(7*t*1.757+.235*7) + 

0.05028*sin(7*t*1.757+.235*7) + (-0.03108)*cos(8*t*1.757+.235*8) + (-

0.06483)*sin(8*t*1.757+.235*8))); 

    } 

  end_f_loop(f, thread) 

} 
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UDF: Velocity Inlet Profile Code for PCV (Fourier Approximation Halved) 

/**********************************************************************/ 

/* unsteady.c                                                         */ 

/* UDF for specifying a transient velocity profile boundary condition */ 

/**********************************************************************/ 

 

#include "udf.h" 

 

DEFINE_PROFILE(PCV_Fourier_Halved, thread, position)  

{ 

  face_t f; 

 

  begin_f_loop(f, thread) 

    { 

      real t = RP_Get_Real("flow-time"); 

      F_PROFILE(f, thread, position) = (-(((-0.08878) + (-0.5299)*cos(t*1.757+.235) + (-

0.6037)*sin(t*1.757+.235) + 0.2958*cos(2*t*1.757+.235*2) + (-

0.07053)*sin(2*t*1.757+.235*2) + 0.3301*cos(3*t*1.757+.235*3) + (-

0.348)*sin(3*t*1.757+.235*3) + 0.06015*cos(4*t*1.757+.235*4) + 

0.2963*sin(4*t*1.757+.235*4) + 0.1689*cos(5*t*1.757+.235*5) + 

0.1301*sin(5*t*1.757+.235*5) + (-0.1878)*cos(6*t*1.757+.235*6) + 

(0.04543)*sin(6*t*1.757+.235*6) + (-0.0195)*cos(7*t*1.757+.235*7) + 

0.05028*sin(7*t*1.757+.235*7) + (-0.03108)*cos(8*t*1.757+.235*8) + (-

0.06483)*sin(8*t*1.757+.235*8)))/2); 

    } 

  end_f_loop(f, thread) 

} 


