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Abstract 

Fire is one of the most relevant disturbances affecting terrestrial ecosystems globally, altering 

vegetation, soil, water, and atmospheric composition. Fire causes a non-permanent land cover change, 

through the removal of vegetation, the deposition of charcoal and ashes, and the exposure of soil; the 

temporal persistence of these changes is highly variable, ranging from a few weeks in tropical savannas 

to years in boreal forests. Global burned area products have been systematically generated in the past 

20 years from several coarse spatial resolution (250 m - 1 km) Earth Observation (EO) systems. These 

products are the main input in global biomass burning atmospheric emission inventories, and in the 

most recent studies on the role of fire in the global carbon cycle and vegetation dynamics.  

Because of the non-permanent nature of burned areas, the algorithms employed for the 

generation of global burned area products rely on the availability of daily or near-daily observations 

from coarse resolution EO systems. The high revisit frequency ensures that a sufficient number of 

cloud-free observations are generally available globally before burned areas disappear, with few 

exceptions in known locations of persistent cloud cover. 

The systematic generation of moderate spatial resolution (10 m - 30 m) burned area products 

could potentially meet the needs of a variety of fire science and applications communities, and at 

different scales from global (e.g., pyrogenic carbon emissions estimation) to regional scale (e.g., 

environmental post-fire assessment and remediation decision support). Algorithms for the generation 

of moderate resolution burned area maps have been recently prototyped regionally and continentally, 

and have the potential for global implementation. However, ,moderate resolution sensors have reduced 

temporal resolution (e.g., 16 days for Landsat) compared to coarse resolution sensors (e.g., ~1 day for 

MODIS), which could potentially lead to omission errors in ecosystems where the spectral signal 

associated with burning events disappears quickly, and cloud cover limits the number of valid 

observations. 

My dissertation focuses on estimating the combined effect of the impermanent nature of land 

cover change typical of burning events and the cloud cover, which reduces the number of valid 

observations available to detect burns, on global burned area mapping using Landsat data. The 

dissertation has three objectives. The first objective (Chapter 2) is to estimate the temporal persistence 

time of the signal associated with burned areas, stratified by ecosystem and land cover type, making 

use of the global, multiyear MODIS data record. The second objective (Chapter 3) is to evaluate the 

suitability of the MODIS-derived cloud mask as a proxy for Landsat 7 cloud observations. Finally, the 
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third objective (Chapter 4) is to estimate the potential omission errors in a hypothetical global Landsat 

burned area product, due to the combined effect of reduced revisit frequency and cloud contamination.  

Chapter 2 presents a global analysis of the burned area persistence time defined as the duration 

of the spectral separability of the burned / unburned areas mapped by the MODIS Global Burned Area 

Product (MCD64). The separability was computed by analyzing time series of normalized burn ratio 

(NBR) from nadir BRDF-adjusted MODIS reflectances (MCD43). Results showed that, globally, the 

median burned area persistence time was estimated as 29 days and 86.6% of the global area, as detected 

by MODIS, can be detected accurately only for up to 48 days. Furthermore, the results indicated that 

early and late fires had a shorter persistence time compared to fires burning in the central portion of the 

fire season.  The results, therefore, indicate that the persistence time can be a limiting factor for mapping 

burned areas using moderate resolution satellite sensors, which have a low temporal resolution (e.g. 

Landsat 16 days, Sentinel 2A and 2B 10 days each, 5 days when used in combination).  

Chapter 3 presents a comparison of Landsat and MODIS cloud data. Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) image cloud fractions over land were compared with collocated 

MODIS cloud fractions, generated by combining the MODIS-Terra global daily cloud mask product 

(MOD35) with the Landsat 7 ETM+ image footprints and acquisition calendar. The results showed 

high correlation between the MODIS and Landsat 7 ETM+ cloud fractions (R2 = 0.83), negligible bias 

(median difference: < 0.01) and low dispersion around the median (inter-quartile range: [-0.02, 0.06]). 

These results indicated that, globally, the cloud cover detected by MODIS Terra data can be used as a 

proxy for Landsat 7 ETM+ cloud cover at the Landsat World Reference System (WRS) scale. 

Chapter 4 builds on the previous chapters and presents the potential omission error of a 

hypothetical Landsat global burned area product compared to the MODIS global burned area product. 

The Landsat omission error was estimated as the amount of burned area detected by MODIS that would 

not be detected by Landsat 7 because of the combined effect of the impermanent spectral signal 

associated with burned areas and missing observations due to cloud cover. The simulation was informed 

by the MODIS global burned area product (MCD64A1), used as fire mask to define the location and 

timing of burning, and the MODIS-Terra cloud product (MOD35), used to determine the number of 

post-fire cloud-free observations available following the Landsat 7 acquisition calendar and ground 

swath footprints. Globally, the resulting omission error was estimated as 19% of the average annual 

burned area detected by MODIS, with a maximum error over forest land cover (33%) and minimum 

over shrubland land cover (5%). The results were derived using the acquisition calendar of Landsat 7 

only, however, thanks to the aggregation of data from over 15 years of acquisitions, the results can be 

extended to the other existing Landsat sensors, which are positioned on the same orbit shifted by an 8-
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days lag, and also to Landsat 9, which is planned to be launched in the same orbit of Landsat 7 by 

Spring 2021. 

The findings of this research have implications for the future development of a global burned 

area product generated using moderate resolution EO data such as Landsat. The burned area persistence 

times provide an estimation of the period after the burning date in which burned areas can be mapped 

reliably and have implications on the length of the rolling periods, used in change detection algorithms 

to map burned areas. The potential omission error of a Landsat burned area product identified locations 

and times of the year in which the low revisit frequency of Landsat combined with the occurrence of 

clouds can have degrading effects on Landsat burned area maps accuracy. 
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Chapter 1: Introduction 

1.  

1.1. Fire in the earth system  

Fire is one of the most important disturbances for terrestrial ecosystems altering vegetation, 

soil, water and atmospheric composition (Andela et al. 2017; Bowman et al. 2009). Fire disturbances 

are included in global vegetation dynamics models, surface energy budget accounting and global 

emission inventories (Langmann et al. 2009; Mouillot et al. 2014; van der Werf et al. 2017). Although 

global, fire activity varies greatly depending on the ecosystem in terms of fire frequency and fire regime 

(Archibald et al. 2013; Skinner and Chang 1996) which, in the course of the centuries, have been altered 

by human activities (Bowman et al. 2011). On average ~ 3.5 – 4.5 106 km2 of burned area are detected 

each year globally by satellite burned area products, although the global estimations vary depending on 

the product considered (Andela et al. 2017; Humber et al. 2018). The majority of burning events are 

concentrated in tropical savannas and other ecosystems characterized by alternating dry and rainy 

seasons (Archibald et al. 2013; Moritz et al. 2012) where fine fuel and rapid growth of vegetation 

sustains frequent burning events (Archibald et al. 2018; Krawchuk and Moritz 2011). 

Fire activity is limited by a combination of fuel, climate, and ignition sources (Moritz et al. 

2012). Fuel conditions such as fuel moisture influence fire activity in subtropical/tropical biomes with 

mid-high net primary productivity whereas it has a lower influence in deserts, xeric shrublands, or 

grasslands and savannas where fuel load largely limits fire activity and the antecedent wet growing 

seasons shapes the fire activity in the following fire season (Krawchuk and Moritz 2011). In temperate 

and boreal biomes, fire activity has been linked to early snowmelt and precipitation amount in the 

winter months due to their influence on fuel load and conditions (Westerling et al. 2006). Climate 

influences fire activity directly, driving intra- to inter-annual variability in fuel moisture, and fine-fuel 

production through the growth of annual grasses (Littell et al. 2009), and indirectly influencing 

vegetation dynamics, and thus fuel type and fuel loading on large scale (Pausas and Fernández-Muñoz 

2012). Human activities such as land conversion and agriculture practices alter fire occurrence and 

timing at small scales (Hall et al. 2016) whereas, at large scales, they alter the fire regimes (Bowman 

et al. 2011). 

Depending on fuel, climate, and ignition sources, fire disturbances effects on vegetation are 

highly heterogeneous and have been quantified using several metrics and parameters such as fire 

intensity and burn severity (Keeley 2009). Measurable post-fire effects can be spatially ranging from 
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single burned perimeter scales to continental / global scales, which make remotely sensed data widely 

applied resources for fire science and management (Lentile et al. 2006). In particular, spaceborne Earth 

Observation (EO) data have greatly enhanced the possibility of including fire disturbances for a wide 

variety of global applications including studies on the global carbon cycle (Bowman et al. 2009) where 

fire activity information is used to model global vegetation distribution and succession (Goetz et al. 

2012; Thonicke et al. 2001). Global burned area estimates, together with combustion completeness, 

biomass load and emission factors (Seiler and Crutzen 1980), are primary inputs in biogeochemical 

models used for the estimation of global emissions of greenhouse gases and aerosols from biomass 

burning (van der Werf et al. 2017). Finally, several studies have used post-fire albedo observations to 

investigate fire-induced vegetation change influences on radiative forcing and local effects on climate 

(Jin et al. 2012; Jin and Roy 2005; Lyons et al. 2008; Randerson et al. 2006). 

1.2. Earth observation burned area maps 

Satellite remote sensing of burned area is mainly based on passive optical wavelength remotely 

sensed measure of reflected and emitted surface electromagnetic radiation captured by specific 

wavelength band-pass calibrated sensors. The spectral radiance sensed at wavelengths spanning from 

~0.3 μm to ~3.5 μm is due to reflected radiations from the surface and it can be converted to the spectral 

reflectance, i.e., the ratio of reflected to incident radiation (Roy et al. 2010). Spectral reflectance 

measures ability to discriminate between burned and unburned pixels was examined for a variety of 

satellite sensors such as Lansdsat (Chuvieco and Congalton 1988; Key and Benson 2002), AVHRR 

(Pereira et al. 1999), MODIS (Roy et al. 2005), and more recently Sentinel 2 (Huang et al. 2016). 

Spectral reflectance in the Near and Shortwave Infrared wavelength bands is more sensitive to the land 

cover change caused by fire events and spectral indices based on these bands, such as the Normalized 

Burn Ratio (NBR) (Key and Benson 2002), were designed to improve the detection of burned areas. 

A wide variety of algorithms for the systematic production of global burned area maps have 

been tested and developed based on the temporally persistent spectral reflectance changes before and 

after the fire event using different satellite dataset. Global burned area maps have been produced in the 

past 20 years from several coarse spatial resolution (250 m - 1 km) Earth Observation (EO) systems, 

including MERIS, Terra and Aqua MODIS, and SPOT-VGT (Alonso-Canas and Chuvieco 2015; 

Giglio et al. 2018; Giglio et al. 2009; Roy et al. 2005; Simon et al. 2004; Tansey et al. 2004; Tansey et 

al. 2008). Thanks to the significant effects of fire disturbances on terrestrial ecosystems and 

atmospheric processes, burned area maps are included in the list of the required Essential Climate 

Variables (ECV), defined by the World Meteorological Organization (WMO) as “a physical, chemical 



3 
 

or biological variable or a group of linked variables that critically contributes to the characterization 

of Earth’ s climate” (GCOS 2011) and are a primary variable for modeling fire disturbances in support 

of the work of the United Nations Framework Convention on Climate Change (UNFCCC) and the 

Intergovernmental Panel on Climate Change (IPCC) (GCOS 2011). Global coarse spatial resolution 

burned area maps improved the global long-term estimates of fire activity trends (Andela et al. 2017), 

however, total area burned, location, and timing of burning greatly vary between the different EO 

products available, especially at regional scales (Humber et al. 2018).  

Among others, the spatial resolution of EO data is a source of uncertainties in the currently 

available global burned area products because coarse spatial resolution leads to a trade-off between 

omission and commission errors on partially burned pixels (Boschetti et al. 2004). Pixels classified as 

burned are considered completely burned, which is often not the case. Due to the heterogeneous nature 

of fire, sub-pixel unburned patches may exist and result in overestimations of the burned area. 

Conversely, partially burned pixels can be undetected, resulting in underestimation of the burned area, 

especially in areas where small fires are common (Boschetti et al. 2019; Randerson et al. 2012; van der 

Werf et al. 2017). Different validation exercises evaluated the absolute uncertainties of EO burned area 

products comparing the burned area maps with collocated reference burned area maps generated 

independently from two or more moderate spatial resolution images (10 m – 30 m) (Boschetti et al. 

2019; Padilla et al. 2014). The independent reference maps are a result of semi-automatic classification 

algorithms refined by visual interpretation and should have minimal error (Boschetti et al. 2006; Padilla 

et al. 2014; Padilla et al. 2015). A high negative bias (~50%) was found in the global burned area 

estimate of the MODIS burned area product (MCD64A1) caused by the systematic under-detection of 

small fires (Boschetti et al. 2019; Giglio et al. 2018; Roy et al. 2019). Consequently, there is a strong 

need for moderate resolution (10 - 30 m) global burned area maps for fire and ecosystem management, 

improved emission estimations, and carbon accounting (Hyer and Reid 2009; Mouillot et al. 2014; 

Randerson et al. 2012). 

Automated mapping algorithms using Landsat and Sentinel data are currently being prototyped 

at continental scales (Boschetti et al. 2015; Hawbaker et al. 2017; Roteta et al. 2019; Roy 2015; Roy et 

al. 2019). Higher spatial resolution data have the benefits of increasing the detections of burned area 

(Roteta et al. 2019; Roy et al. 2019), reducing the occurrence of partially burned pixels and increasing 

the spectral separation of burned / unburned areas (Huang et al. 2016), but one of the challenges in 

generating a moderate resolution global burned area product is the limited revisit frequency of the 

sensors. Due to their narrow field of view (180 km – 300 km), moderate resolution sensors are 

characterized by low revisit frequency (10 - 16 days) which can translate into burned area potential 
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omission errors (Boschetti et al. 2015; Hawbaker et al. 2017) and can exacerbate the issues related to 

designing a robust and effective detection algorithm for mapping burned areas globally because the 

effects of fire on the vegetation spectral signal are not permanent (Melchiorre and Boschetti 2018). The 

persistence of the spectral signal of a burned area varies greatly across different ecosystems depending 

on climate and fuel burned. In the days or weeks after a fire, depending on vegetation type, phenology 

and climate, charcoal and ashes are removed and vegetation recovers (Chu et al. 2016; Fraser et al. 

2000; Pereira et al. 1997; Solans Vila and Barbosa 2010; Trigg and Flasse 2000). For example, annual 

grasses have the physiological capacity to regrow lost biomass quickly enough to sustain short fire 

return intervals (i.e., every 1–3 years) (Archibald et al. 2013), and the rapid regrowth will shorten the 

period in which the spectral reflectance sensed by optical instruments can be associated with burned 

areas.  

Previously published in situ spectral radiometer measurements indicate that the period of 

detectability of burned areas ranges from about two weeks in African savannas (Frederiksen et al. 1990; 

Langaas and Kane 1991; Trigg and Flasse 2000) to more than two years in boreal forests (Fuller and 

Rouse 1979). Similarly, studies using post-fire satellite observations indicate that the spectral changes 

induced by fire disappear rapidly in grasslands and savannas (Bowman et al. 2003; Pereira 2003; Trigg 

and Flasse 2000) but persist longer in forested ecosystems (Chen et al. 2011; Chu and Guo 2014; Röder 

et al. 2008). 

Additionally to the low revisit frequency, clouds, smoke, and other optically thick aerosols 

further limit the number of valid acquisitions within a defined period (Roy et al. 2008; Smith and 

Wooster 2005). Coarse resolution global burned area products rely on the availability of daily or near-

daily observations (Chuvieco et al. 2019) and it is generally assumed that a sufficient number of cloud-

free observations are available globally to map burned areas, with few exceptions in known locations 

of persistent cloud cover such as Indonesia and tropical areas in Brazil (Giglio et al. 2009), or at high 

latitudes locations such as Siberia (Chu and Guo 2014). Burned area mapping algorithms developed 

for moderate resolution sensors also generally detect temporal spectral signal changes due to fire and 

require at least one cloud-free acquisition before and after the fire event. However, the combined effect 

of the impermanent nature of burned areas, lower revisit frequency and cloud cover was not analyzed 

on global burned area mapping at moderate spatial resolution. 
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1.3. Objective and goals 

The systematic generation of moderate spatial resolution burned area products would improve 

the understanding of fire’s effects for a variety of applications. For example, for improved estimates of 

carbon emissions in the atmosphere due to biomass burning (van der Werf et al. 2017), for an improved 

assessment of fire feedbacks on global vegetation dynamics (Bowman et al. 2015), for improved 

environmental post-fire assessment and remediation decision support (Mouillot et al. 2014; Trigg and 

Roy 2007), and to improve land cover / land use change research (Archibald et al. 2009; Hantson et al. 

2015). However, the impermanent nature of the spectral signal associated with burned areas, combined 

with the lower revisit frequency of moderate resolution satellites (10 m – 30 m) and the effect of clouds, 

poses a major challenge for designing a global burned area mapping algorithms from moderate 

resolution satellites (Boschetti et al. 2015; Roy et al. 2019). 

My dissertation focuses on estimating the combined effect of the impermanent nature of land 

cover change typical of burning events and the cloud cover, which reduces the number of valid 

acquisitions sensed to detect burns, on global burned area mapping using Landsat data. The dissertation 

pursues three main objectives: the first objective is the analysis of the temporal persistence time of the 

signal associated with burned areas, stratified by ecosystem and land cover type, making use of the 

global, multiyear MODIS data record. The second objective is to evaluate the suitability of the MODIS-

derived cloud mask as a proxy of Landsat 7 cloud observations. The third objective is to estimate the 

potential omission errors in a hypothetical global Landsat burned area product compared to the MODIS 

burned area product, generated using daily observations, due to the combined effect of reduced revisit 

frequency and cloud contamination, considering the limited persistence time of burned areas. The 

acquisition calendar and viewing geometry of Landsat 7 were used because Landsat 7 and MODIS-

Terra are positioned on the same orbit, the time lag of their acquisitions is constant, and sufficiently 

small (15-30 minutes) (Chander et al. 2010) to make it reasonable to use the MODIS-Terra cloud mask 

as an approximation for the cloud cover affecting Landsat-7 data. There is no equivalent global dataset 

acquired within a constant time window for other moderate resolution sensors. Effects of cloud cover 

on data availability can also be estimated using cloud probability derived from MODIS observations 

(Whitcraft et al. 2015); however, it implicitly requires that, at each location, the average cloud 

probability is estimated using observation sensed at or around the overpass time of moderate resolution 

instruments. Satellite cloud cover detections vary depending on the overpass time (e.g., morning versus 

afternoon overpass) and they increase with the off-nadir sensor view angle (King et al. 2013; Maddux 

et al. 2010), hence the statistical analysis of clouds have reduced accuracy if the overpass time and the 

observation geometry (i.e., sun and sensor zenith and azimuth angles) are not similar.  
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The findings of this research have implications for the future development of a global burned 

area product generated using moderate resolution EO data such as Landsat. The burned area persistence 

times provides an estimation of the period after the burning date in which burned areas can be mapped 

reliably and the potential omission error of a Landsat burned area product highlight the locations in 

which the revisit frequency of Landsat is not sufficient for accurate global burned area mapping. 

The second chapter of my work presents the first global, systematic temporal analysis of the 

spectral signal persistence time associated with burned areas to determine the post-fire period in which 

burned pixels are detectable. The burned area persistence time was estimated as the maximum number 

of days in which the values of the NBR associated with burned and unburned areas are separable and, 

therefore, burned areas can be mapped reliably. The analysis was stratified spatially by ecoregions and 

land cover, and temporally to consider different post-fire effects occurring in different ecosystems and 

at different times of the year. 

The third chapter of the dissertation presents the systematic comparison of Landsat- and 

MODIS-derived cloud cover data, to assess whether the long-term record of daily MODIS cloud 

detections can be used as a proxy for cloud cover observed by Landsat. One year of global Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) image cloud cover fractions over land were compared with 

contemporaneous, collocated MODIS cloud fractions, generated by combining the MODIS-Terra 

global daily cloud mask product (MOD35) with the Landsat 7 ETM+ image footprints and acquisition 

calendar. The results indicate that, globally, the two datasets have high correlation, and low bias and 

low residuals when using linear and logistic models to predict the Landsat cloud fractions from MODIS 

cloud fractions. 

The fourth chapter of my dissertation builds on the results of the previous two chapters, 

estimating the omission errors of a hypothetical global Landsat 7 ETM+ burned area product, due to 

the combined effect of cloud cover, limited persistence time of burned areas, and revisit frequency of 

the sensor. The analysis was performed using the MODIS global burned area product to provide timing 

and location of the burned areas, and the MODIS daily cloud mask product to compute the number of 

cloud-free observations that are available post-fire on Landsat 7 ETM+ overpass days. This chapter 

provides a preliminary assessment of the potential limitations of a global Landsat burned area product. 

Finally, the last chapter summarizes and discusses the findings of the work, highlights some 

limitations in the analysis, and discusses future research and applications. 
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Chapter 2: Global Analysis of the Burned Area Persistence Time With 

MODIS Data 

1.  

Published in Remote Sensing as: 

Melchiorre, A., & Boschetti, L. (2018). Global Analysis of Burned Area Persistence Time with MODIS 

Data. Remote Sensing, 10, 750 

2.  

2.1. Abstract 

Biomass burning causes a non-permanent land cover change (burned area), through the removal 

of vegetation, the deposition of charcoal and ashes, and the exposure of soil; the temporal persistence 

of these changes is highly variable, ranging from a few weeks in savannas to years in forests. 

Algorithms for the generation of moderate resolution (10 - 30 m) continental and global burned area 

maps have been prototyped in the effort of meeting the needs of diverse users of fire information. 

Nevertheless, moderate resolution sensors have reduced temporal resolution (e.g. 16 days for Landsat), 

which could potentially lead to omission errors, especially in ecosystems where the spectral signal 

associated with burning disappears quickly and cloud cover limits the number of valid observations. 

This study presents a global analysis of the burned area persistence time defined as the duration of the 

spectral separability of the burned / unburned areas mapped by the MODIS MCD64 Global Burned 

Area Product. The separability was computed by analyzing time series of normalized burn ratio (NBR) 

from nadir BRDF-adjusted MODIS reflectances (MCD43 product). Results showed that, globally, the 

median burned area persistence time was estimated in 29 days and 86.6% of the global area, as detected 

by MODIS, can be detected accurately only for up to 48 days. Thus, results indicate that burned area 

persistence time can be a limiting factor for global burned area mapping from moderate resolution 

satellite sensors, which have a low temporal resolution (e.g. Landsat 16 days, Sentinel-2A/B 5 days). 

2.2. Introduction 

Fire is a natural component of any ecosystem, and it has effects on vegetation, soil, water and 

atmospheric composition (Bowman et al. 2009; Certini 2005; DeBano et al. 1998). Fire contributes to 

the global carbon cycle through the emission of greenhouse gases and aerosols from biomass burning 

(van der Werf et al. 2010; van der Werf et al. 2006), and as an agent of ecological change influencing 
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the global vegetation dynamics (Bond et al. 2005; Goetz et al. 2012; Thonicke et al. 2001) and the 

surface energy budget (Jin and Roy 2005; Randerson et al. 2006). Earth Observation (EO) data allow 

the analysis of biodiversity, dynamics of biomass, productivity, and disturbances spatially from 

regional to global scales (Pfeifer et al. 2012). The application of satellite data to study vegetation fires 

greatly enhanced the possibility to introduce the effect of fire disturbances in global models of climate 

and atmospheric composition and dynamics estimation (Langmann et al. 2009). Several studies have 

used post-fire albedo observations to investigate fire-induced vegetation change impacts on radiative 

forcing and local effects on climate (Jin et al. 2012; Jin and Roy 2005; Lyons et al. 2008). Due to their 

significant effects on terrestrial ecosystems and atmospheric processes, fire disturbances are included 

in the list of the required Essential Climate Variables (ECV) in support of the work of the United Nation 

Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate 

Change (IPCC) (GCOS 2011). 

Burned area maps are defined as the primary variable of the Fire ECV (GCOS 2011), and are 

currently one of the main inputs for the estimation of atmospheric emissions due to biomass burning 

(GCOS 2011; Giglio et al. 2013; van der Werf et al. 2010). Systematic global burned area maps at 

coarse spatial resolution (350 m - 1 km) have been produced in the past 20 years from several EO 

systems, including ATSR, MERIS, MODIS, and SPOT-VGT (Alonso-Canas and Chuvieco 2015; 

Giglio et al. 2009; Roy et al. 2005; Simon et al. 2004; Tansey et al. 2004; Tansey et al. 2008). Burned 

area coarse resolution maps improved the global long-term estimates of fire activity trends (Andela et 

al. 2017) and they were used to build fire-related databases of aggregated burned area and emission 

estimates to help understand the interconnections between fire activity and the global carbon cycle (van 

der Werf et al. 2017). Such databases include the Global Fire Emissions Database (GFEDv4) (Giglio 

et al. 2013), the Global Fire Assimilation System (GFAS) (Kaiser et al. 2012), the Emission for 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) (Lamarque et al. 

2010) and the United Nation’s Food Agriculture Organization (UN-FAO) FAOSTAT Emission 

database (Rossi et al. 2016; Tubiello et al. 2013). 

Among others, the coarse resolution of the burned area products is a source of uncertainties in 

these emission databases (van der Werf et al. 2010) because it leads to a trade-off between omission 

and commission errors on partially burned pixels (Boschetti et al. 2004). Pixels classified as burned are 

considered completely burned, which is often not the case. Due to the heterogeneous nature of fire, sub-

pixel unburned patches may exist and result in overestimations of the burned area. Conversely, partially 

burned pixels can be undetected, resulting in underestimations of the burned area, especially in areas 

where small fires are common (Randerson et al. 2012; van der Werf et al. 2017). Consequently, there 
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is a strong need for moderate resolution (10 - 30 m) global burned area maps for fire and ecosystem 

management, improved emission estimations, and carbon accounting (Hyer and Reid 2009; Mouillot 

et al. 2014; Randerson et al. 2012). 

Automated mapping algorithms using Landsat and Sentinel data are currently being prototyped 

(Boschetti et al. 2015; Hawbaker et al. 2017; Roy 2015) but, among others, one of the challenges of 

designing a global burned area detection algorithm is the limited temporal resolution of moderate 

resolution sensors due to their narrow field of view. The limited number of acquisitions obtained by 

moderate resolution satellite translates into potential omission errors (Boschetti et al. 2015) because the 

effects of fire on the spectral signal of vegetation are not permanent. In the days or weeks after a fire, 

depending on vegetation type, phenology and climate, charcoal and ashes are removed and vegetation 

recovers (Chu et al. 2016; Fraser et al. 2000; Pereira et al. 1997; Solans Vila and Barbosa 2010; Trigg 

and Flasse 2000), decreasing the differences of the pre- and post-fire satellite observations over burned 

areas. Consequently, it is possible to detect burned areas within a limited period that varies across 

different ecosystems, and within the same ecosystem, it depends on the timing of the fire. Previously 

published in situ spectral measurements indicate that the period of detectability of burned areas ranges 

from about two weeks in African savannas (Frederiksen et al. 1990; Langaas and Kane 1991; Trigg and 

Flasse 2000) to more than two years in boreal forests (Fuller and Rouse 1979). Similarly, studies using 

post-fire satellite observations indicate that the spectral changes induced by fire disappear rapidly in 

grasslands and savannas (Bowman et al. 2003; Pereira 2003; Trigg and Flasse 2000) but are generally 

persistent in forested ecosystems (Chen et al. 2011; Chu and Guo 2014; Röder et al. 2008). 

The impermanent nature of the spectral signal associated with burned areas poses a major 

challenge for designing global burned area mapping algorithms from moderate resolution satellites 

(Boschetti et al. 2015). For example, Landsat satellites have a 16-days revisit time and the newly 

available Sentinel-2A and Sentinel-2B have 10-days revisit time (5 days when both satellites are used 

in combination) which can be a limiting factor for global burned area mapping from moderate 

resolution satellite sensors. Burned area mapping algorithms require at least one cloud-free acquisition 

before and after the fire event; and, using moderate resolution data, omission errors might result in areas 

where the spectral signal associated with burning disappears quickly due to the lower revisit frequency. 

This work presents the first global, systematic temporal analysis of the spectral signal associated with 

burned areas and the relative persistence time to determine the length of the period in which the burn 

class is spectrally distinct from the unburned and, therefore, detectable.  

The burned area persistence time was estimated as the maximum number of days in which the 

values of the spectral index Normalized Burn Ratio associated with burned and unburned areas are 
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separable and, therefore, burned areas can be mapped reliably. The primary input of the study was 

provided by 14 years of the MODIS burned area and surface reflectance products, from January 2003 

to December 2016, in order to use every full year where both MODIS-Terra and MODIS-Aqua data 

are available. The analysis was stratified spatially by ecoregions and land cover, and temporally 

considering the period of the year in which the fire occurred. Nadir Bidirectional Reflectance 

Distribution Function (BRDF)-adjusted reflectance product (MCD43A4) time series of burned pixels, 

as detected by the MODIS global burned area product (MCD64A1), within the same ecoregion and 

land cover were used to characterize the pre- post-fire temporal variations with the passing of time due 

to charcoal and ashes dissipation, vegetation regrowth and snow cover. Reflectance time series of 

unburned pixels within the same ecoregion and land cover were used to characterize the variations in 

reflectance due to vegetation phenology and other disturbances. Summary metrics were defined for 

reporting the results at the global scale, aggregating by global biome and realm. 

The paper is organized as follows. Section 2 describes the satellite datasets used for the analysis, 

and the ancillary datasets used as stratification variables. Section 3 describes the methods, establishing 

a rigorous probabilistic framework for the definition of the persistence time of burned areas at different 

scales, and presenting the formulae needed for a global, multiyear analysis. Section 4 presents the 

results and section 5 discusses the differences observed across land cover types, biomes and realms. 

The paper concludes with recommendations for future research and application. 

2.3. Data 

2.3.1. MODIS global burned area product 

The most recent Collection 6 MODIS Global Burned Area Product (MCD64A1) provides the 

estimated date of burn for the 500 m MODIS pixels that are classified as burned within a calendar 

month (Giglio et al. 2009; Roy et al. 2005). The global, monthly MCD64A1 data record from 2003 to 

2016 was used, to include every full year in which both MODIS instruments – on the Terra and Aqua 

platforms - were operating. The algorithm (Giglio et al. 2009) is designed to be extremely tolerant of 

cloud and aerosol contamination, which affected the Collection 5 MODIS 500 m burned area product 

(Roy et al. 2008). The algorithm applies dynamic thresholds to composite MODIS Terra and Aqua 

imagery generated from a burn-sensitive spectral band index derived from MODIS 1240 nm and 2130 

nm Terra and Aqua bands, and a measure of temporal variability. Cumulative MODIS 1 km active fire 

detections are used to guide the selection of burned and unburned training samples and to guide the 

specification of prior burned and unburned probabilities. The MCD64A1 product is distributed in the 

standard MODIS Level 3 10° × 10° Land tile format in the sinusoidal projection (Wolfe et al. 1998). 



18 
 

2.3.2. MODIS global nadir BRDF-adjusted reflectance product 

The MODIS Nadir BRDF-Adjusted Reflectance (NBAR) product provides estimates of the 

nadiral surface reflectance at local solar noon performing a Bidirectional Reflectance Distribution 

Function (BRDF) inversion of MODIS surface reflectance for each day using a 16-days moving 

window centered on the nominal product date (Schaaf et al. 2002; Wang et al. 2018). The Collection 6, 

Level 3 daily MODIS Terra and Aqua combined product (MCD43A4) was used in this work. The 

MCD43A4 product is defined in the MODIS Level 3 Land tile format in sinusoidal projection at 500 

m resolution. Per-pixel quality assessment information is provided by the MCD43A2 product, also 

defined in the MODIS Level 3 Land tile format in sinusoidal projection at 500 m resolution and, for 

each reflective band of the MCD43A4 product, reports the quality of the BRDF inversion for each pixel 

of the relative MCD43A4 product, and flags the presence of water and snow pixels. 

2.3.3. MODIS land cover product 

The MODIS Land Cover Type product (MCD12Q1) provides five land classification schemes, 

which describe land cover properties derived from one year of observations from Terra- and Aqua-

MODIS (Friedl et al. 2010). The Collection 5.1, Level 3 yearly land cover product is defined in the 

MODIS Level 3 Land tile format in sinusoidal projection at 500 m resolution. The International 

Geosphere and Biosphere Programme (IGBP) scheme, which identifies 16 land cover classes including 

11 natural vegetation classes, 3 developed and 2 non-vegetated land classes and has a reported 75% 

overall land cover classification accuracy (Friedl et al. 2010) was used in this work. 

2.3.4. Terrestrial ecoregions of the worlds 

The Terrestrial Ecoregions of the World (TEOW) map is a biogeographic division of the Earth's 

terrestrial biodiversity in 867 ecoregions, which belong to 14 biomes and 8 realms (Olson et al. 2001). 

Ecoregions are defined as biogeographic units containing a homogeneous population of natural 

communities (flora and fauna) sharing a large majority of species, dynamics, and environmental 

conditions. 

2.4. Methods 

2.4.1. Theoretical basis: definition of the burned area persistence time 

The burned areas persistence time was defined as the maximum time after a fire, during which 

burned pixels can be unambiguously separated from unburned ones (i.e., the length of the period when 

burned areas can be reliably mapped). 
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The spectral signature of vegetation is altered by burning events, and the magnitude of these 

changes is greater in some portions of the electromagnetic spectrum than in others. It has been 

demonstrated that the spectral bands more suitable for burned area mapping are the near infrared (NIR) 

and shortwave infrared (SWIR) for both coarse (Pereira et al. 1999; Roy et al. 2002; Stroppiana et al. 

2002) and moderate resolution satellites (Huang et al. 2016; Key and Benson 2006; Koutsias and 

Karteris 1998; Pereira and Setzer 1993). The spectral changes induced by fire are non-permanent: 

charcoal and ashes are removed by atmospheric agents exposing the bare soil, and vegetation regrows 

over time (Roy et al. 2010). Additionally, the spectral signature of unburned pixels also changes over 

time: vegetation phenology, senescence and other disturbances, such as forest management thinning 

and clear cuts, mortality due to insect outbreaks and land use conversion, cause spectral changes that 

can be confused with those due to fire (Goodwin et al. 2008; Wang et al. 2012). For these reasons, 

burned area spectral separability is sensitive to the time elapsed since the burning event (Bowman et 

al. 2003; Loboda et al. 2013; Roy et al. 2005): the detectability of burned areas is a function – among 

other factors – of the burned area persistence time. 

A wide variety of burned area mapping algorithms have been tested and developed for moderate 

resolution sensors including techniques that exploit single image analysis (Bastarrika et al. 2011; 

Chuvieco and Congalton 1988; Chuvieco et al. 2002; Koutsias and Karteris 2000; Mitri and Gitas 2004) 

and multi-temporal analysis (Boschetti et al. 2015; Chuvieco et al. 2002; Hudak and Brockett 2004; 

Koutsias and Karteris 1998; Miller and Yool 2002; Silva et al. 2005; Smith et al. 2007; Stroppiana et 

al. 2009). Although there is no agreement on the optimal burned area mapping algorithm, spectral 

indices are widely used in many studies. Among them, the Normalized Burn Ratio (NBR (Key and 

Benson 2002)) is widely used for burned area detection with moderate resolution satellite data 

(Bastarrika et al. 2011; Fraser et al. 2003; Henry 2008; Koutsias and Karteris 2000; Miller and Yool 

2002; Silva et al. 2005; Smith et al. 2007; Stroppiana et al. 2009). The index range is between -1 and 1 

and it is defined as: 

 
𝑁𝐵𝑅 =

𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅

 (1) 

where 𝜌𝑁𝐼𝑅 is the reflectance at 0.8 𝜇𝑚 and 𝜌𝑆𝑊𝐼𝑅 is the reflectance at 2.1 𝜇𝑚. The difference 

between pre-fire and post-fire NBR (dNBR) is an indication of the spectral changes due to fire. dNBR 

can assume values between -2 and 2. Because NBR drops after a fire due to the removal of vegetation, 

soil exposure and charcoal and ash deposition (Key and Benson 2006), positive dNBR values are 

associated with burning, thus making dNBR thresholding a simple burned area detection strategy 

(Escuin et al. 2008; Key and Benson 2002; Stroppiana et al. 2009). 
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In this study, daily time series of dNBR were generated for burned and unburned pixels from 

the Nadir BRDF-Adjusted Reflectance Albedo product (MCD43A4) to minimize the variability in 

reflectance due to different acquisition view geometry. Missing data, water and snow-covered pixels 

were discarded from further analysis. 

For burned pixels, at a generic location i, detected as burned on Julian day of the year jdoy in 

the MODIS global burned area product (MCD64A1), the post-fire dNBR yearly time series was defined 

as: 

 𝑑𝑁𝐵𝑅𝐵(Δ𝑡)𝑖,𝑗𝑑𝑜𝑦 =  [𝑁𝐵𝑅𝑖,𝑗𝑑𝑜𝑦−8 − 𝑁𝐵𝑅𝑖,𝑗𝑑𝑜𝑦+Δ𝑡] (2) 

where 𝑁𝐵𝑅𝑖,𝑗𝑑𝑜𝑦−8, is the pre-fire NBR value, obtained from the MCD43A4 product with the 

nominal date 8 days before the day jdoy of burning, and 𝑁𝐵𝑅𝑖,𝑗𝑑𝑜𝑦+Δ𝑡 is the value observed Δ𝑡 days 

after the fire, with Δ𝑡 ≥ 8. The 16-days minimum time difference between pre-fire and post-fire 

observation was needed to account for the 16-days inversion moving window used in the MCD43A4 

product and to ensure that the NBR pre-fire and post-fire values were respectively calculated only from 

the inversion of pre-fire and post-fire reflectances. 

Generally, vegetation spectral signature varies during the year depending on phenology (e.g. 

senescence, leaf-off) and stress conditions; as a result, the NBR of unburned vegetation is variable 

during the year. Equation 2 generates yearly time series of dNBR measuring only the changes from the 

pre-fire conditions regardless of the initial NBR value. 

Similarly, a generic unburned pixel j, observed synchronously with the burned pixel i of 

Equation 2, will describe spectral temporal variations determined by vegetation phenology and other 

non-fire related factors: 

 𝑑𝑁𝐵𝑅𝑈𝐵(Δ𝑡)𝑗,𝑗𝑑𝑜𝑦 = [𝑁𝐵𝑅𝑗,𝑗𝑑𝑜𝑦−8 − 𝑁𝐵𝑅𝑗,𝑗𝑑𝑜𝑦+Δ𝑡] (3) 

where 𝑁𝐵𝑅𝑗,𝑗𝑑𝑜𝑦−8 is the NBR value of the unburned pixel j on the same pre-fire date of 

Equation 2, and 𝑁𝐵𝑅𝑗,𝑗𝑑𝑜𝑦+Δ𝑡 is the value observed Δ𝑡 days after the starting day jdoy. 

Considering a set of burned pixels ba, all burning on the same day jdoy, the individual trends 

of Equation 2 were aggregated in a probability distribution function: 

 𝑃𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 = 𝑃(𝑑𝑁𝐵𝑅𝐵(Δ𝑡)𝑖,𝑗𝑑𝑜𝑦 =  𝑑𝑁𝐵𝑅, 𝑖 ∈ 𝑏𝑎 ) (4) 
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Figure 2-1: Illustration of the method for the estimation of the burned area persistence time. The plot is generated 

using observations of a set of burned pixels (ba) and unburned pixels (ub) in the Savanna land cover of the “Victoria Plains 

tropical savanna” ecoregion in northern Australia, starting on the day of detection of the burned pixels (jdoy=329, November 

25th). The red dotted lines show the distribution of dNBR of the burned pixels (𝑃𝐵(𝑑𝑁𝐵𝑅)𝛥𝑡,𝑗𝑑𝑜𝑦), observed at Δ𝑡= 10, 20, 

30 and 40 days after burning; the blue dotted lines show the distribution of dNBR of the unburned pixels (𝑃𝑈𝐵(𝑑𝑁𝐵𝑅)𝛥𝑡,𝑗𝑑𝑜𝑦) 

observed at the same time. The red and blue solid lines represent respectively the 10th percentile of the dNBR distribution of 

burned pixels (i.e., 𝐹𝐵(Δ𝑡)𝑗𝑑𝑜𝑦) and the 90th percentile of the dNBR distribution of the unburned pixels (i.e.,  𝐹𝑈𝐵(Δ𝑡)𝑗𝑑𝑜𝑦). 

The persistence time is calculated as the time 𝛥𝑡∗
𝑗𝑑𝑜𝑦 when the two distributions overlap by more than 20%, i.e., when 

𝐹𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 is equal to 𝐹𝑈𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 (𝛥𝑡∗
𝑗𝑑𝑜𝑦 = 31 𝑑𝑎𝑦𝑠 in this example). 

This is illustrated in Figure 2-1. Considering a set of burned pixels, detected on the same day 

jdoy in one spatial stratum of the analysis (‘Victoria Plains tropical savanna’ ecoregion in Northern 

Australia, savanna land cover), the histogram of the distribution 𝑃𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 is represented by 

the dashed red lines. Notably, the range of dNBR values assumed by the burned area increases as time 

from the fire (i.e., Δ𝑡 ), indicating heterogeneous post-fire trajectories, and the median value decreases, 

indicating a tendency to return to pre-fire conditions. The post-fire spectral signature varies depending 

on atmospheric events and vegetation regrowth following the fire, for example wind and rain can scatter 

the charcoal and ashes or a new layer of grasses can grow rapidly after a fire, these effects can have 

great variability also within the same burned area, resulting in a wider range of post-fire dNBR values. 

Similarly, considering a set of unburned pixels ua, the individual trajectories of Equation 3 

were also aggregated into a probability distribution: 
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 𝑃𝑈𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 = 𝑃(𝑑𝑁𝐵𝑅𝑈𝐵(Δ𝑡)𝑗,𝑗𝑑𝑜𝑦 =  𝑑𝑁𝐵𝑅, 𝑗 ∈ 𝑢𝑏 ) (5) 

In Figure 2-1, the histogram of the distribution of 𝑃𝑈𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 for a set of unburned 

pixels in the same analysis stratum, and observed from the same day jdoy as the burned pixels, is 

represented by the dashed blue line. The range of dNBR values assumed by the unburned pixels also 

increases with Δ𝑡 while the median remains stable around 0, indicating that the set of the unburned 

pixels shows increasingly heterogeneous trends as time passes: while some pixels show trends that 

cannot be confused with burning (i.e., negative dNBR changes), others do (i.e., positive dNBR 

changes), likely due to senescence and phenology.  

The separability of burned / unburned pixels was measured in terms of overlapping portion of 

the 𝑃𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 and 𝑃𝑈𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 distributions. As a result of the temporal variation, the 

overlap of the two distributions is minimal immediately after the fire, and increases as time passes, 

reflecting the fact that burned areas can be mapped reliably only for a limited time after the fire. The 

persistence time of the burned area was, therefore, estimated as the maximum number of days in which 

the two distributions have minimal or no overlap, and more specifically the number of days in which 

at least 90% of the burned area pixels have dNBR higher than 90% of the unburned pixels. Using this 

empirical threshold, the burned area persistence time was estimated as the number of days when the 

two distributions overlap by 20%. 

By definition, 90% of the burned area pixels have a dNBR value higher than the 10th percentile 

of the 𝑃𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦 distribution, which expressed as a function of Δ𝑡 is defined as:  

 𝐹𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 = 𝑑𝑁𝐵𝑅: {∫ 𝑃𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦

𝑑𝑁𝐵𝑅

−2

= 0.10} (6) 

Similarly, 90% of the unburned pixels have a dNBR value lower than the 90th percentile of the 

𝑃𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦: 

 𝐹𝑈𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 = 𝑑𝑁𝐵𝑅: {∫ 𝑃𝑈𝐵(𝑑𝑁𝐵𝑅)Δ𝑡,𝑗𝑑𝑜𝑦

𝑑𝑁𝐵𝑅

−2

= 0.90} (7) 

Finally, the persistence time of the burned areas was estimated as the number of days Δ𝑡𝑗𝑑𝑜𝑦
∗  in 

which 𝐹𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 is greater or equal to 𝐹𝑈𝐵(Δ𝑡)𝑗𝑑𝑜𝑦: 

 𝛥𝑡∗
𝑗𝑑𝑜𝑦 = max (𝛥𝑡: 𝐹𝐵 (𝛥𝑡 )𝑗𝑑𝑜𝑦 ≥  𝐹𝑈𝐵 (𝛥𝑡 )𝑗𝑑𝑜𝑦) (8) 
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In Figure 2-1, 𝐹𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 and 𝐹𝑈𝐵(Δ𝑡)𝑗𝑑𝑜𝑦 are represented by the solid red and blue lines 

respectively, and the persistence time Δ𝑡𝑗𝑑𝑜𝑦
∗  is defined by the intersection of the two lines. 

2.4.2. Global implementation 

The probabilistic method described in Section 3.1 was implemented globally using the 14 years 

of MODIS datasets described in Section 2 as shown in Figure 2-2. Because of the analysis scale, it was 

first necessary to stratify the analysis spatially and temporally using strata sufficiently fine to capture 

the variability of burned areas, limiting it to the times of the year where fire occurs (Section 3.2.1), and 

to define a sampling strategy to extract a representative set of burned and unburned pixels within each 

stratum (Section 3.2.2). The formulae of Section 3.1 were then used to build a set of summary metrics 

at the level of each ecoregion (Section 3.2.3) and globally at the biome scale (Section 3.2.4). 

 

Figure 2-2: Illustration of the procedure for the estimation of the burned area persistence time. The input data for 

the analysis are the MODIS burned area and NBAR product. The MODIS land cover product and the TEOW ecoregions are 

used to define each spatial stratum defined by ecoregion and land cover. The estimated burned date extracted from the MODIS 

burned area product are used to allocate the pixels in the different 16-days periods (Section 3.2.1). The median persistence 

time for each ecoregion and land cover is computed as the median value of the average annual burned area as a function of 

the persistence time (Section 3.2.3). 
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2.4.2.1. Spatial and temporal stratification of the analysis 

Spatial Stratification 

Burned areas have different spectral responses depending on the type and condition of fuels, 

and more broadly depending on the ecosystem and time of burning (Jin and Roy 2005; Krawchuk and 

Moritz 2011; Pereira 2003), the analysis was performed using spatial and temporal units sufficiently 

fine to capture such variability. The analysis was stratified spatially adopting a two-level stratification. 

The Terrestrial Ecoregions of the World (TEOW) (Olson et al. 2001) were used to define the first 

stratification level. Ecoregions are delineated according to endemic genera and families (higher taxa), 

distinct assemblages of species, and the influence of geological history, such as past glaciations, on the 

distribution of plants and animals (Olson et al. 2001). Consequently, they are more likely to accurately 

reflect the distribution of species and communities than alternative stratifications derived solely from 

biophysical variables, such as rainfall and temperature, vegetation structure, or spectral signatures from 

remote sensing data (Olson et al. 2001). 

The TEOW map is a broad simplification of the variability of habitats, and all contain a variety 

of vegetation types (Olson et al. 2001): for example, boreal ecoregions include forests, shrublands, and 

grasslands. Consequently, the MODIS MCD12Q1 land cover product was used to define a second level 

of stratification within each TEOW ecoregion. The land cover classes of the IGBP classification scheme 

were aggregated into three major classes of interest (Forest, Shrubland, Grassland & Savanna), or 

masked out and removed from the subsequent analysis (Urban areas, croplands, and miscellaneous non-

burnable surfaces) (Table 2-1). 

Table 2-1: Land cover aggregation scheme of the MODIS MCD12Q1 IGBP land cover classes used for the present study 

IGBP Land cover Aggregated land cover 

Evergreen Needleleaf forest 

Evergreen Broadleaf forest 

Deciduous Needleleaf forest 

Deciduous Broadleaf forest 

Mixed forest 

Forest 

Closed shrublands 

Open Shrublands 

Shrubland 

Woody savannas 

Savannas 

Grasslands 

Grassland & Savanna 

Permanent wetlands 

Croplands 

Urban and built-up 

Cropland/Natural vegetation mosaic 

Snow and ice 

Barren and sparsely vegetated 

Not considered 
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The spatial strata {Eco, LC}, defined by the generic land cover class LC within the generic 

ecoregion Eco, where at least 250 km2 of burned areas were cumulatively detected by the MCD64A1 

product over the entire 14 year study period (2003-2016) were considered, thus excluding land cover 

class / ecoregion combination with negligible fire activity. 

Temporal stratification and temporal extent of the analysis 

Fire activity is mainly driven by fuel abundance and structure and by climatic conditions that 

result in changes in fuel moisture and lightning activity (Moritz et al. 2012). Consequently, different 

regions of the globe have distinct fire seasons. At the global scale, the fire season peak months in the 

Southern hemisphere are August–September, primarily driven by the extensive burning in Southern 

Africa and Australia while in the Northern hemisphere the peak months are December–January due 

primarily to burning across Northern and Central Africa (Boschetti and Roy 2008). At the regional 

scale, fire seasons vary in terms of length, peak activity and numbers of peaks (Giglio et al. 2006). 

These differences are linked mainly to the different climatic and the pre-burning fuel conditions, which 

vary during the fire season (Archibald et al. 2013; Lambin et al. 2003). Generally, early season fires 

burn living, photosynthetically active vegetation, and dead vegetation that has a higher moisture 

content. During the dry season, vegetation senescence and climatic conditions lead to dryer living and 

dead vegetation (Schwartz and Reed 1999; White et al. 1997). As a result, fire-induced spectral changes 

for a given ecosystem and land cover vary within the fire season (Bucini and Lambin 2002; Dwyer et 

al. 2000; Lambin et al. 2003).  

In order to account for these variations, a temporal stratification grid was created by dividing 

the January-December calendar year into 23 periods of 16 days each (t) (the last period being 13 days). 

This 16-days temporal grid – which coincides with the return interval of the Landsat satellite – was 

sufficiently fine to characterize the spectral temporal variations of burned areas at different times of the 

year, while significantly reducing the computational load of a daily temporal grid. 

To further reduce the computational load, only burned areas occurring during the fire season of 

each ecoregion were considered. The fire season of each ecoregion was defined by adapting the method 

proposed by Archibald et al. (2013). All the 16-days periods of the year were ranked based on the 

average annual burned area detected by the MCD64A1 product, and the fire season was defined as the 

union of the periods in which 90% of the annual burned area is detected. This definition requires no 

assumption on the continuity of the fire season and is applicable to ecoregions having a variety of 

temporal patterns of fire activity (Figure 2-3). 
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Figure 2-3: Illustration of the procedure for the definition of the fire season, showing the burned area histogram, 

binned in 16-days intervals t, of three representative examples of fire season. Left, unimodal fire season fully contained in a 

single calendar year (“Angolan woodland” ecoregion in Southern Africa); center, bimodal fire season (“Victoria Plains tropical 

savanna” ecoregion in northern Australia); right, unimodal fire season spanning across calendar years (“Northern Congolian 

tropical forest-savanna mosaic” ecoregion in northern Africa). The fire season is identified by ranking the 16-days bins in 

decreasing order by burned area and including in the fire season the bins necessary to reach 90% of the burned area (shown 

in red). The 16-days periods outside the fire season (shown in blue) were not considered in the analysis. 

2.4.2.2. Sampling design 

The MODIS MCD64A1 global burned area product detects on average ~4.0 106 km2 per year 

(Giglio et al. 2013) of burned areas, corresponding to ~16 106 pixels per year. To make the analyses 

logistically possible, a sampling strategy was employed to sample both burned and unburned pixels in 

the spatial and temporal strata {Eco, LC, t} defined above as a combination of ecoregions, land cover 

classes, and time of the year quantized in 16-days periods. 

The total sample size in each ecoregion was 100’000 burned and 100’000 unburned pixels (or 

the entire population if fewer than 100’000 pixels exist in either class). This total sample size was then 

allocated to the spatial sub-strata (i.e., land cover classes with fire activity in the ecoregion) and 

temporal strata (i.e., number of 16-days periods of the fire season) proportionally to the area burned, 

and the sample was extracted randomly with no replacement. 

Under stratified random sampling, the probability of inclusion is constant within each stratum 

and is: 

 𝜋ℎ =
𝑛ℎ

𝑁ℎ

 (9) 

Where 𝑛ℎ and 𝑁ℎ are respectively the sample size and the population size in stratum h. 

It follows that within each stratum (i.e., each combination of ecoregion Eco, land cover LC, 

and 16-days period t) the inclusion probability was: 

 𝜋𝐸𝑐𝑜,𝐿𝐶,𝑡 =
𝑏𝑎𝐸𝑐𝑜,𝐿𝐶,𝑡

𝐵𝐴𝐸𝑐𝑜,𝐿𝐶,𝑡

 (10) 



27 
 

where 𝑏𝑎 is the extracted sample, and 𝐵𝐴 is the total population of the burned area in the 

stratum. It should be noted that the sample 𝑏𝑎𝐸𝑐𝑜,𝐿𝐶,𝑡 was drawn from the total population of burned 

areas detected in ecoregion Eco and land cover LC, burned in the 14 years of the study period in the 

same 16 days of the calendar year defined by the interval t. 

2.4.2.3. Ecoregion level estimation of the persistence time 

The persistence time is estimated for each stratum, by applying equations 1 through 8 using the 

sample of burned pixels 𝑏𝑎𝐸𝑐𝑜,𝐿𝐶,𝑡 and unburned pixels 𝑢𝑏𝐸𝑐𝑜,𝐿𝐶,𝑡. It should be noted that the 16-days 

grid was used solely only for the stratification of the sample, whereas the variation over time of the 

dNBR values (Equations 2 and 3) was evaluated from the daily MCD43A4 time series. As a 

consequence, for each land cover and ecoregion up to 23 persistence times (one for each 16-days period 

t) were obtained, each of them estimated from Equation 8 with daily resolution. This is exemplified in 

Figure 2-4 (top), showing the burned area persistence time for the TEOW “Victoria plains tropical 

savanna” in Northern Australia. The 16-days periods included in the fire season are shaded in gray, and 

for each of them the estimated persistence times Δ𝑡∗
𝐸𝑐𝑜,𝐿𝐶,𝑡 in “Shrubland” and “Grassland and 

Savannah” land cover classes are shown in gray and orange respectively. The persistence time was not 

computed for the ‘Forest’ land cover, because no time period t had the minimum number of burned 

area detections defined in Section 3.2.1. 

In order to obtain meaningful summary metrics of the persistence time Δ𝑡∗
𝐸𝑐𝑜,𝐿𝐶,𝑡, it was 

necessary to first take into consideration the actual area burned in each time period t (reported in Figure 

2-4, bottom) for the same ecoregion and land cover, and define an appropriate set of weights. This was 

done by estimating – in each ecoregion and land cover class - which proportion of the total burned area 

had a given persistence time Δ𝑡∗
𝐸𝑐𝑜,𝐿𝐶,𝑡. 

The average annual burned area with persistence time Δ𝑡∗ was estimated as follows: 

 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗) =
1

𝑛
∑

𝑏𝑎𝐸𝑐𝑜,𝐿𝐶,𝑡

𝜋𝐸𝑐𝑜,𝐿𝐶,𝑡

𝛿Δ𝑡∗
𝐸𝑐𝑜,𝐿𝐶,𝑡

(Δ𝑡∗)

23

𝑡=1

 (11) 
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Figure 2-4: Burned area persistence time as a function of the day of burning Δ𝑡𝐸𝑐𝑜,𝐿𝐶,𝑡
∗  (top) and average annual 

burned area for each 16-days period of the year (bottom), in the “ Victoria Plains tropical savanna “ ecoregion in Northern 

Australia, stratified by aggregated land cover class. The persistence time was defined only for the 16-days periods of the fire 

season (hatched gray area). The Forest land cover class was not considered in this ecoregion because of negligible fire activity 

(i.e., less than 250 km2 over the entire study period). 

Where 𝑛 is the number of years used in the analysis, 𝛿Δ𝑡∗
𝐸𝑐𝑜,𝐿𝐶,𝑡

(Δ𝑡∗) is the Dirac measure 

assuming value 1 if the persistence time for stratum {Eco, LC, t} is equal to Δ𝑡∗ and 0 elsewhere, 

𝑏𝑎𝐸𝑐𝑜,𝐿𝐶,𝑡 is the area of the sample extracted from each stratum, and 𝜋𝐸𝑐𝑜,𝐿𝐶,𝑡 is the inclusion probability 

defined as in Equation 10. Figure 2-5 (top) presents the histogram of 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗) obtained from the 

persistence times and average area burned of Figure 2-4. 
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Figure 2-5: Summary persistence time metrics at the ecoregion level, in the “Victoria Plains tropical savanna” 

ecoregion in Northern Australia, stratified by aggregated land cover class. Top: Histogram of 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗), i.e., the average 

annual burned area as a function of the burned area persistence time. The histogram is computed  using 16 day bins. Bottom 

boxplot of 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗), showing the median (i.e., ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗ ), interquantile range, minimum and maximum of the 

distribution. 

Finally, the estimated persistence time for each spatial stratum {Eco, LC} was the time 

corresponding to the 50th percentile of 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗): 

 ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗ =  Δ𝑡∗ ∶ { ∫ 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗)

Δ𝑡∗

0

= 0.5} (12) 

Additionally, the interquartile range was computed as the difference between the 25th and 75th 

percentile of 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗), and used to measure the variability of the burned area persistence time 

within each spatial stratum. Figure 2-5 (bottom) shows the estimated median persistence time (Equation 

12) and the interquartile range for the ecoregion Victoria plains tropical savanna for the two land cover 

Shrubland and Grassland & savanna. In this ecoregion, the estimated persistence time ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗  was 
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longer for Shrubland land cover (55 days) and 50% of the burned area had an estimated persistence 

within 42 and 74 days. In comparison, Grassland & savanna burned area had a shorter persistence (43 

days) and variability (30 – 54 days of interquartile range). 

2.4.2.4. Spatial aggregation by land cover and Biome/Realm 

Because of the large number of spatiotemporal strata, it was necessary to summarize the 

persistence time results meaningfully in order to present and discuss them. The results were first 

summarized at the ecoregion level by use of the estimated median persistence time (∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗ , Equation 

12), and interquartile range, and then aggregating them spatially by merging the ecoregions into larger 

spatial units based on the Olson’s biomes and realms (Australasia, Antarctic, Afrotropic, Indo-Malay, 

Neoarctic, Neotropic, Oceania, Paleoarctic) (Figure 2-6). 

Realms provide a subdivision of the main landmasses, and biomes are a convenient 

stratification unit because of their homogeneity of climate and vegetation and because “they provide a 

framework for comparisons among units and the identification of representative habitats and species 

assemblages” (Olson et al. 2001). The TEOW biomes have been used to stratify studies for vegetation 

mapping (Lefsky 2010) and animal species distributions (Schipper et al. 2008), climatic models 

(Guenther 2006; Loarie et al. 2009), anthropogenic urban growth (Schneider et al. 2009), deforestation 

(DeFries et al. 2010) and, recently, for remote sensing global burned area products validation (Boschetti 

et al. 2016; Padilla et al. 2014). Following the approach from Boschetti et al. (2016), the 14 Olson 

biomes were aggregated into 5 more general biomes: Tropical, Temperate, Boreal, Mediterranean and 

Desert/Xeric biomes (Table 2-2). 

Table 2-2: Biomes aggregation scheme of the Olson et al. (2001) biomes used for the present study. 

Olson biome Aggregated biome 

Tropical and subtropical moist broadleaf forest 

Tropical and subtropical dry broadleaf forest 

Tropical and subtropical coniferous forest 

Tropical and subtropical grasslands, savanna 

Flooded grasslands, savanna (Latitude < 23°) 

Mangroves 

Tropical 

Temperate broadleaf and mixed forest 

Temperate coniferous forest 

Temperate grasslands, savanna 

Flooded grasslands, savanna (Latitude > 23°) 

Montane grasslands, savanna 

Temperate 

Boreal forest / Taiga 

Tundra 

Boreal 

Mediterranean forests, woodlands, and shrublands Mediterranean 

Deserts and xeric shrublands Desert/Xeric 
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Figure 2-6: Realms and aggregated biomes used as spatial units to present the global summary metrics persistence 

time. Oceania and Antarctic realms (in gray) were not considered, because of negligible fire activity. 

The realms of Oceania and Antarctica were excluded from the analysis because of the lack of 

significant fire activity. Of the 30 possible combinations of the remaining 6 realms and 5 biomes, 25 

were valid (the Boreal biome is present only in the Paleoarctic and Neoarctic realms and the 

Mediterranean biome is not present in the Indo-Malay realm) and were adopted as aggregated spatial 

units for the summary of the analysis results (Figure 2-6). 

The distribution of annual burned area as a function of the spectral signal persistence time Δ𝑡∗ 

for each spatial unit defined by Biomes (B), Realms (R), and land cover (LC) was simply calculated by 

summation of all the ecoregions belonging to the spatial unit, and globally by summation over the 

realms: 

 
𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) = ∑ 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗)

𝐸𝑐𝑜 ∈𝑅,𝐵

 (13) 

The median persistence time for each Biome, Realm, and land cover ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗ is the time 

corresponding to the 50th percentile of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗), and is computed as in Equation 12. 

 
∆𝑡̂𝐵,𝑅,𝐿𝐶 

∗ =  Δ𝑡∗ ∶  {∫ 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗)
Δ𝑡∗

0

= 0.5} (14) 
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2.5. Results 

2.5.1. Fire activity distribution 

Globally, from 2003 to 2016, the MODIS MCD64A1 product detected on average 4.0 106 km2 

of burned area per year: 0.19 106 km2 in Forest, 0.31 106 km2 in Shrubland, 3.1 106 km2 in Grassland & 

Savanna, and the remaining 0.40 106 km2 occurring in croplands and other land covers not considered 

in this study. The average annual area burned, reported by land cover and biome and the geographic 

distribution of area burned by land cover and ecoregion are displayed in Figure 2-7. The full result 

tables are presented as supplementary online material (Table S1). Out of the 867 ecoregions defined by 

the TEOW map, 511 ecoregions had more than 250 km2 of burned area detected in at least one land 

cover class over the study period, and were considered in the analysis (Section 3.2.1): 300 ecoregions 

were considered for the Forest land cover class, 135 for Shrubland and 392 for Grassland & Savanna 

(Figure 2-7, right column). The majority of the burned area in Forest land cover was detected in the 

Tropical (65.9%), Boreal (19.1%) and Temperate (13.8%) biomes; the majority of the burned area in 

Shrubland was detected in the Desert/Xeric (50.0%) and Tropical biomes (41.6%). The majority of the 

burned area in Grasslands & Savannas was detected in the Tropical (93.4%) and Temperate (3.9%) 

biomes (Figure 2-7, left column). 
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Figure 2-7: Global burned area distribution, as detected by the MODIS global burned area product (MCD64A1) in 

the 2003-2016 period, stratified by aggregated land cover class. Left: histogram of the partition of the average annual burned 

area by biome and realm. Right: average annual burned area detected in each ecoregion. The ecoregions not considered in the 

analysis because of negligible fire activity are displayed in grey. 

The duration of the fire season was calculated in each ecoregion as described in section 3.2.1. 

(Table S2). Figure 2-8 shows the global distribution of the fire season duration at the ecoregion level. 

The median duration of the fire season of the ecoregions considered was 112 days (7 16-days periods), 

the shortest 32 days (2 periods) and the longest 304 days (19 periods). 
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Figure 2-8: Histogram (Left) and map (Right) of the fire season duration, computed for the ecoregions considered in 

the analysis. The ecoregions not considered in the analysis because of negligible fire activity are displayed in grey. 

2.5.2. Ecoregion level burned area persistence time 

The burned area persistence time Δ𝑡𝐸𝑐𝑜,𝐿𝐶,𝑡
∗  for each ecoregion (Eco), land cover class (LC) and 

16-days period (t) of the fire season (Table S3), as well as the summary metrics 𝐵𝐴̂𝐸𝑐𝑜,𝐿𝐶(Δ𝑡∗) 

and ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗  (Table S4) were estimated following the methodology described in Section 3.2.3. The 

median persistence time ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗  in each ecoregion and land cover, and the corresponding interquantile 

ranges, are displayed Figure 2-9. 

In Forest, 101 ecoregions (34%), 195 ecoregions (66%), and 230 ecoregions (77%) had a 

median persistence time shorter than 16, 32, and 48 days respectively (Figure 2-10, orange bars). 

Figure 2-9, top row, shows that the ecoregions with the shortest median persistence times are generally 

in the tropics and those with the longest persistence times are in North America, Western 

Mediterranean, and South Eastern Australia. The ecoregions with the highest interquartile range, which 

represents the persistence time variability during the fire season, are mostly located in Eurasia. 
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Figure 2-9: Burned area persistence time calculated for each ecoregion, stratified by aggregated land cover class: 

Forest (top row), Shrubland (middle row), and Grassland & Savanna (bottom row). The median persistence time ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗  (left 

column) and interquartile range (right column) are shown using a rainbow color scale; the ecoregions not considered in the 

analysis because of negligible fire activity are displayed in grey. 
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Figure 2-10: Histogram bars and cumulative lines of the estimated persistence time ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗  calculated for all the 

ecoregions and stratified by aggregated land cover class. The histograms were computed using 16-days bins, up to 96 days 

after the date of burn. 

In Shrubland, only 13 (10%), 36 (27%) and 57 (42%) ecoregions had a median persistence time 

under 16, 32, and 48 days respectively, whereas 31 ecoregions (23%) have a persistence time greater 

or equal than 96 days (Figure 2-10, gray bars). Figure 2-9, middle row, shows that the ecoregions with 

the shortest median persistence time are located in boreal regions, Southern Africa and South America. 

The longest persistence times correspond to sub-Saharan and Mediterranean ecoregions, North 

America, Western and Central Australia. 

Finally, in Grassland and Savanna 48 (12%), 223 (57%) and 306 (78%) ecoregions had a 

median persistence time under 16, 32, and 48 days respectively (Figure 2-10, yellow bars). Figure 2-9, 

bottom row, shows that the ecoregions with the shortest median persistence time are located in Boreal 

regions and South-East Asia; those with the longest persistence time are located in North Africa, North 

America and some regions in central Australia. For this land cover, the great majority of the burned 

area was detected in the tropical ecoregions of Africa, South America and Australia (Figure 2-7, bottom 

row). All these ecoregions, with few exceptions, have a median persistence time between 16 and 48 

days, with small variability (interquartile range) (Figure 2-9, bottom row). 

2.5.3. Biome/Realm aggregation of the burned area persistence time 

The ecoregion-level results were aggregated into summary metrics for each land cover and 

Realm/Biome spatial unit, applying the methods described in Section 3.2.4. (Table S5). These results 

are presented in the following section, which is organized by land cover class. 
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2.5.3.1. Forest land cover 

Forests are among the largest carbon pools of the globe (Dixon et al. 1994) and forest fires are 

one of the main carbon sources for the atmosphere, contributing to 24.8% of the total global carbon 

emission from fires (van der Werf et al. 2017) even though forests contribute to just 4.75% (0.19 106 

km2) of the MODIS global annual area burned. Of this area, the majority was detected in Tropical 

(65.9%), Temperate (13.8%) and Boreal (19.1%) biomes, with a negligible contribution of the other 

biomes (Figure 2-7, top left). Although from an ecological perspective fire effects persist for decades 

in most forests, the separability of the spectral signature of burned and unburned areas declines quickly. 

The global distribution of 𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) (including all the 5 aggregated biomes) (Figure 2-11, bottom 

right) indicated that 66.4% of the annual burned area (0.09 106 km2  per year) had a persistence time of 

less than 32 days, and less than 48 days for 79.4% of the annual burned area (0.10 106 km2 per year); 

only 7.2% had a persistence time greater than 96 days. The biome level distribution of 𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) 

is also displayed in Figure 2-11 and complemented by the corresponding box plots reporting the median 

time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  and interquantile range (Figure 2-12). In Tropical biomes the distribution of 

𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) was unimodal, with short persistence times (80.5% of the area has a persistence under 

32 days). In temperate biomes the distribution was largely bimodal; the first mode is largely due to 

burned areas detected in the Paleoarctic realm (where 28.0% of the area has a persistence of less than 

16 days), the second mode, at Δ𝑡∗ ≥ 96 days, was mainly due to burned area detected in Australasia 

and Neoarctic realm. In boreal biomes, the distribution is trimodal, due to different behavior in the 

Neoarctic and Paleoarctic realms. The Paleoarctic realm was characterized by shorter persistence time 

(∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  is 44 days) and bimodal distribution with a first peak at Δ𝑡∗ < 16 and a second peak at 48 ≤

Δ𝑡∗ < 64. The Neoarctic had longer persistence time (∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  is >96 days) and unimodal distribution. 

As a result, the global distribution of 𝐵𝐴̂ 𝐵,𝐿𝐶(Δ𝑡∗) (Figure 2-11, bottom right) was a combination of 

short persistences, mainly from Tropical and Paleoarctic Temperate and Boreal burned areas, and long 

persistences, mainly from Australasia Temperate and Neoarctic Temperate and Boreal burned areas. 
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Figure 2-11: Histograms of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗) in the Forest aggregated land cover class, presented for each aggregated 

biome and globally. The colors represent, in each bar of the histograms, the stratification by realm. 

 

Figure 2-12: Boxplots of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗) in the Forest aggregated land cover, organized by aggregated biome and 

globally. The boxplots show the median (i.e., ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗ ), interquantile range, minimum and maximum of the distribution. 
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2.5.3.2. Shrubland land cover 

The vast majority of the burned area in the Shrubland aggregated land cover class occurred in 

the Australasia (73.1%) and Afrotropic (18.7%) realms. In particular, it was a very significant class in 

the Australasian realm, where it contributed to 46.7% of the average annual burned area. The area 

burned was almost evenly split between the Tropical (41.6%) and Desert/Xeric (50.0%) biomes, with 

a negligible contribution of the other biomes (Figure 2-7, center left). Different persistence times were 

found in different biomes: shorter in the Tropical biomes, where the mode of the 𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) 

histogram was between 16 and 32 days; and longer in the Desert/Xeric biomes, where the mode was 

greater than 96 days. The global histogram is bimodal, and reflects the distinct distribution of these two 

dominant biomes (Figure 2-13). 

 

Figure 2-13: Histograms of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗) in the Shrubland aggregated land cover class, presented for each 

aggregated biome and globally. The colors represent, in each bar of the histograms, the stratification by realm. 
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Figure 2-14: Boxplots of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗) in the Shrubland aggregated land cover, organized by aggregated biome and 

globally. The boxplots show the median (i.e., ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗ ), interquantile range, minimum and maximum of the distribution. 

2.5.3.3. Grassland & savanna land cover 

The greater majority (93.4 %) of the burned area for Grassland & savanna was detected in the 

Tropical biome. Only 3.9% was detected in the Temperate biome, with a negligible contribution of the 

other biomes (Figure 2-7, bottom row). In particular, the majority of the global burned area detections 

were concentrated in the Tropical biome of the Afrotropic realm (76%). Globally, the mode of the 

𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) histogram (Figure 2-15, bottom right) was between 16 and 32 days (60.5% of the annual 

burned area). Overall, the persistence time was short: 91% of the area burned had a persistence time 

within 16 and 48 days, resulting in a median estimated time ∆𝑡̂ 
∗ of 29 days (Figure 2-15, Figure 2-16). 

At biome level, the histograms of 𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) for Tropical and Temperate biomes were both 

unimodal. The histogram of 𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) had the maximum within 16 and 32 days for Tropical 

biomes and within 32 and 48 days for Temperate biomes. A total of 92.7% of 𝐵𝐴̂ 𝐵,𝑅,𝐿𝐶(Δ𝑡∗) for 

Tropical biomes and 80.5% for Temperate biomes was associated with Δ𝑡∗ within 16 and 48 days. The 

global histogram was unimodal, and reflects the distribution of the dominant Tropical biomes and a 

small contribution from the Temperate biomes (Figure 2-15). 
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Figure 2-15: Histograms of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗) in the Grassland & savanna aggregated land cover class, presented for 

each aggregated biome and globally. The colors represent, in each bar of the histograms, the stratification by realm. 

 

Figure 2-16: Boxplots of 𝐵𝐴̂𝐵,𝑅,𝐿𝐶(Δ𝑡∗) in the Grassland & savanna aggregated land cover, organized by aggregated 

biome and globally. The boxplots show the median (i.e., ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗ ), interquantile range, minimum and maximum of the 

distribution. 
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2.6. Discussion 

2.6.1. Ecoregion level burned area persistence time 

The results at ecoregion level confirmed that the separability of burned and unburned surfaces 

quickly decreases after burning, even in ecosystems where the fire effects on the vegetation are 

persistent for several years. In addition to the dissipation of the charcoal and ashes, vegetation regrowth 

in burned areas, phenology of unburned vegetation, and several other factors might have contributed to 

these results. 

In this study, the post-fire spectral temporal variations were analyzed by using NBR time series 

of burned and unburned pixels, as identified by the MCD64A1 global burned area product. Detection 

errors in the MCD64A1 product influenced the results, by reducing the separability of the burned 

(Equation 4) and unburned (Equation 5) probability distributions. More specifically, omission errors 

resulted in the inclusion of burned pixels in the unburned population ub, and biased positively the 

function FUB (Equation 7). Conversely, commission errors caused the inclusion of unburned pixels in 

the burned population ba, biasing negatively the function FB (Equation 6). As a result, both omission 

and commission errors in the MCD64A1 product resulted in a shorter estimated persistence time 

(Equation 8). 

Furthermore, the maximum persistence time 𝛥𝑡∗
𝑗𝑑𝑜𝑦 (Equation 8) is limited by the length of 

the post-fire time series of nadir BRDF-adjusted reflectances (MCD43A4). Because at least 7 cloud-

free MODIS observations within 16-days period are needed to perform a valid BRDF inversion (Wang 

et al. 2018), in regions with clearly defined dry and wet seasons, or with persistent snow cover in the 

winter months, no MCD64A4 data were available for part of the year. If the fire season was close to 

the beginning of the wet or snow season, the estimated persistence time was effectively limited to the 

duration of the cloud-free period. 

Cropland land cover was not considered in our analysis since the MODIS burned area product 

is not suited to capture the size and heterogeneity of cropland burned area (Giglio et al. 2009; Lasko et 

al. 2017) because of its geometrical resolution, and because other agricultural practices (e.g. tilling) 

often follow immediately the fires (Hall et al. 2016) and have similar spectral signatures (Vanderhoof 

et al. 2017). Omission errors in the cropland class of the MCD12Q1 land cover product, therefore, led 

to the inclusion of MCD64A1 detections over agricultural areas in the burned population ba. Some of 

these were genuine detections, but had a very short persistence time; some were commission errors and 

– as detailed above – negatively biased the FB function; in either case, the result was an underestimation 
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of the persistence time. Additional errors in the MCD12 land cover map also influenced the estimated 

persistence time, by reducing the effectiveness of the stratification by aggregated land cover type. 

Finally, caution should be used in considering the estimated burned area persistence time, as 

defined in the present work: it should not be confused with the ecological concept of vegetation 

recovery to pre-fire level (Engel and Abella 2011; Meney et al. 1994; West and Hassan 1985). The 

duration of the persistence time can be limited by the recovery of NBR values to pre-fire levels after 

rapid re-vegetation or other factors, such as snowfall, that occlude the charcoal and bare soil and mask 

the spectral signature associated with burned areas. Additionally, errors in the MODIS burned area and 

land cover product could have influenced the stratification of the analysis and the division in the two 

population of burned and unburned pixels reducing the estimated persistence time. 

2.6.2. Biome/Realm level burned area persistence time 

2.6.2.1. Forest land cover 

The majority of the burned area in Tropical biomes was detected in the Afrotropic, Indo-Malay 

and Neotropic realms (Figure 2-7, top left). In these three realms, the median persistence time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  

was respectively 8, 24 and 26 days (Figure 2-11 and 2-12, top left). Compared to the other biomes, 

tropical forests had shorter persistence times, arguably due to several factors. Many tropical forests 

have dense canopies that keep surface fuels moist and humidity high, limiting fire spread and duration, 

and allowing vegetation to recover quickly (Cochrane 2003). New photo-synthetically active vegetation 

can alter the post-fire spectral signature sensed by EO satellites and deteriorates their ability to detect 

burned areas. For example, after a tropical forest fire in the Congo Basin, a new surface layer of 

vegetation established (Marantaceae) and covered the burned area in less than 3 months after the 

burning event (Verhegghen et al. 2016). 

Additionally, the estimated persistence time was influenced by the nature of tropical forest 

fires. Anthropogenic activities account for the majority of burning events in the tropical Amazon 

rainforest (Cochrane et al. 1999; Kumar et al. 2014), African rainforests (Bucini and Lambin 2002; Eva 

and Lambin 2000; Tovar et al. 2014) and Indo-Australian rainforests (Hope et al. 2004). In central 

Africa, human-ignited rainforest fires are strongly associated with land cover changes and they are 

influenced by fire activity along the edges of the forest (Bucini and Lambin 2002). In Amazonia, fire 

activity is connected to other disturbances having spectral similarities to burned areas such as logging 

and deforestation which only complex algorithms can discriminate (Morton et al. 2011). In both these 

cases, post-fire NBR may recover rapidly in areas planted immediately after clearing, where vegetation 

regrows within weeks (Cochrane 2003). In Southern China, various forest fire regimes were found 
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(Chen et al. 2017); regions characterized by long fire season and frequent fires, mainly due to human 

activity, show lower estimates of persistence time compared to regions characterized by shorter fire 

season and infrequent fires. 

The majority of the burned area in Temperate biomes was detected in Australasia, Neoarctic 

and Neotropic realms (Figure 2-7, top left). In these three realms, the median persistence time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  

was respectively >96, 67 and 29 days (Figure 2-11 and 2-12, top center). In Australasia, these results 

were consistent with the occurrence of high intensity, low frequency fires in dense, shade-tolerant 

understory vegetation in many temperate forests in Australia (Archibald et al. 2013; Close et al. 2009). 

For the Neoarctic realm temperate forests, the median persistence time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  was the result of 

variable ∆𝑡̂𝐸𝑐𝑜,𝐿𝐶 
∗  at ecoregion level. The longest persistence time estimates occurred in mid-elevation, 

Northern Rockies ecoregions typically affected by large crown fires (Clark et al. 2016; Westerling et 

al. 2006). The shortest persistence times were in the southeast US, which is consistent with frequent 

surface fires and rapid post-fire grass regeneration observed in that region (Glitzenstein et al. 1995; 

Slocum et al. 2003). ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  estimated for the Paleoarctic realm temperate forests was largely 

influenced by the presence of anthropogenic fires linked to land conversion for roads and croplands in 

the western China and Russia-China borders regions (Li et al. 2012), in which the MODIS MCD64A1 

product detects the majority of burned areas for this combination of realm and realm (Figure 2-7, top 

right).  

The Boreal biome is present only in the Neoartic and Paleoartic realms, accounting for 29.9% 

and 70.1% percent of the annual burned area respectively (Figure 2-7, top left). The estimated median 

persistence time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  was 44 days in the Paleoartic realm, and > 96 days in the Neoarctic (Figure 

2-11 and 2-12, top right). This large difference was likely due to the different burning conditions in 

these two realms. Fires in Paleoarctic boreal forests are dominated by low intensity surface fires, and 

typically result in smaller sized fires than Neoarctic boreal forests fires, where instead high intensity 

crown fires are predominant (de Groot et al. 2013; Wierzchowski et al. 2002). Furthermore, the fire 

temporal distribution in the Paleoarctic realm was consistent with anthropogenic agricultural fires that 

typically occur in spring and fall to clear extensive areas of surface fuels (de Groot et al. 2013; Hall et 

al. 2016). The size and timing of Paleoarctic fire reduced the spectral separability of burned/unburned 

pixels in boreal biomes because of limited data quality (e.g. mixed pixels resulting from land-snow 

patterns and vegetation phenology) and availability (e.g. spatial resolution, cloud-free data availability) 

(Chu and Guo 2014). For the Boreal biomes, fire season is often followed closely by the snow season. 

As discussed in Section 4.2, the estimated persistence time was influenced by missing data due to snow 
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cover, especially when the majority of burned areas were detected at the end of the fire season, such as 

in the Paleoarctic Boreal realm. 

2.6.2.2. Shrubland land cover 

The median persistence time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  for the Australasia realm was 55 days for the Tropical 

biome and >96 days for the Desert/Xeric biome. Tropical fires in Shrubland land cover are typically 

characterized by a shorter persistence of char on the ground due to removal by wind and atmospheric 

agents; the observability is also limited by cloud cover immediately following the fire season (Pereira 

2003). For example, Bowman et al. (2003) found the temporal persistence of the burned areas in tropical 

regions of the Australian northern territories to be less than 100 days. Conversely, fire scars in arid 

zones are typically more persistent as – once the charcoals and ash are dissipated – there is little 

vegetation regrowth until the wet season, leading to persistent soil exposure. The NBR value of soil is 

significantly different from unburned vegetation (Burrows et al. 2006), leading to a longer estimated 

persistence time.  

The median persistence time ∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  in the Afrotropic realm was 48 days and 37 days for the 

Tropical and the Desert/Xeric biomes respectively. In both biomes, the persistence time had a large 

variability with 37-77 days and 35-62 days interquartile ranges (Figure 2-14, grey boxplot of Tropical 

and Desert/Xeric plots). Tropical shrubland fires are concentrated in the Sahelian zone in North 

equatorial Africa, including areas in East Africa, and the Kalahari region in the South equatorial Africa 

(Houghton and Hackler 2006). In the central Kalahari, the majority of fire events can interest only the 

herbaceous vegetation while woody fuels are unburned; and only higher intensity fires are able to burn 

even the woody-cover dominated areas (Mishra et al. 2016). The NBR time series over burned areas 

showed variable changes in magnitude depending on the amount of unscorched vegetation within a 

MODIS pixel, and, as a result, the persistence time duration was variable. Finally, the persistence time 

large variability is potentially due to the different anthropogenic influence of fire activity over managed 

and protected land (Grégoire and Simonetti 2010). 

2.6.2.3. Grassland & savanna land cover 

Grasslands and savannas are fire-prone ecosystems and fire is an essential factor contributing 

to the maintenance of the ecosystem: where resources availability and climatic control would allow tree 

seedling establishment, fire decreases tree cover density and maintains grassland and savanna 

ecosystems (Bond et al. 2005; Bond and Keeley 2005; Staver et al. 2011). The short estimate and the 

small variability of the burned area persistence time for this land cover (Figure 2-16, bottom right) 

could be explained by the common features that grassland and savanna share across the continents. Fine 
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fuels and low fuel loadings result in a shorter persistence of the char residue signal; cloud cover and 

the frequent presence of extensive smoke aerosol layers result in a limited availability of satellite optical 

data, and the dominance of surface fires exacerbate the problem of detecting burns in woody savannas 

(Pereira 2003). 

The majority of the burned area in Tropical biomes was detected in the Afrotropic, Australasia 

and Neotropic realms (Figure 2-7, bottom left ). In these three realms, the median persistence time 

∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  was respectively 28, 42 and 27 days (Figure 2-15 and 2-16, top left). In the tropics and 

subtropics, the total amount of burned area and the interannual variability are controlled by the complex 

interaction between climate, fuel, and human activity (Giglio et al. 2013; van der Werf et al. 2006; van 

der Werf et al. 2008). The spectral characteristics of vegetation and burned areas change depending on 

the acquisition date (Roy and Landmann 2005) and they are highly dynamic: rapid re-vegetation after 

a fire and the presence of unburned fuel loads can significantly impact the spectral signal (Pereira 2003; 

Trigg and Flasse 2000).  

The persistence time for Grasslands & savanna was in accordance with other studies in tropical 

savannas. Scholes and Walker (2004) reported a recovery to pre-fire albedo values 42 days after a fire 

in a southern Africa savanna. Likewise, ground-based reflectance was observed to be within 20% of 

pre-fire values within 14 days of burning events in western African savannas (Frederiksen et al. 1990; 

Langaas and Kane 1991). Eva and Lambin (1998) analyzed the spectral reflectance temporal dynamics 

of burned and unburned woodland savannas in Central Africa using ATSR data and concluded that the 

discrimination between burned and unburned areas was affected by an error of 20% after 35 days from 

the fire event. Majority of the burned area persistence time for Tropical Australasia realm was longer 

than the Afrotropic realm (Figure 2-16, top left). This difference was likely caused by the different 

dominant fire regimes of the two realms. In both realms, savanna’s fire frequency is annual/biannual; 

Australia has larger, more intense fires whereas Africa is characterized by smaller, less intense fires 

(Archibald et al. 2013). Australia tropical savanna fire intensity rises as the dry season progresses due 

to more extreme fire weather and fire-prone fuel conditions in the later season (Cheney et al. 1993; Gill 

et al. 1996; Williams et al. 1999). A variable degree of change in the spectral signal caused by the action 

of fire was reported in Tropical grasslands and savanna (Roy and Landmann 2005), which is consistent 

with the variability of Grassland & savanna persistence time results over Afrotropic and Australasia 

Tropical biomes (Figure 2-16, top left). 

The majority of the burned area in Temperate biomes was detected in the Afrotropic, Neoarctic, 

and Paleoarctic realms (Figure 2-7, bottom left). In these three realms, the median persistence time 
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∆𝑡̂𝐵,𝑅,𝐿𝐶 
∗  was respectively 30, 21 and 33 days (Figure 2-15 and 2-16, top center). Like other biomes, 

Grassland & Savanna fire activity in temperate biomes is mainly driven by climate and human activity. 

In North American temperate grassland ecoregions, antecedent precipitation amount and the drought 

index significantly influence fire activity as high-precipitation years can increase fuel load and 

subsequent fire intensity in drought years that follow (Littell et al. 2009).  

Agricultural fires detected in the MODIS land cover product were discarded in this work. 

Nevertheless, misclassified crop, managed prairie and pasture fires were likely included in the analysis 

and could reduce the estimated burned area persistence time, especially in ecoregions of the Paleoarctic 

realm where the use of fire is widespread as agricultural management tool for removal of excess residue 

and the control of diseases and pests (McCarty et al. 2012). Typically, temperate grasslands are 

intensively managed, including fire and grazing practices that alter nutrient cycling and the distribution 

of organic matter (Bond and Keeley 2005; Wessman et al. 1997). The relatively short burned area 

persistence time for temperate grassland was also observed in Canadian grassland fires. In these 

grasslands, Lu and He (2014) estimated the post-fire vegetation recovery using multi-temporal Landsat 

imagery (one, two and three months after the fire) and concluded that grassland has a strong post-fire 

recovery capacity, especially if there is an adequate water availability. Prescribed fires are commonly 

used in tallgrass prairie ecosystem and they are characterized by a relatively small size high degree of 

combustion heterogeneity, for this reason, the MODIS coarse resolution could be not sufficient for an 

adequate mapping of this type of fires (Mohler and Goodin 2012). 

2.7. Conclusions 

Coarse resolution sensors typically have daily temporal resolution, and it is generally assumed 

that a sufficient number of observations will be available to map burned areas globally. However, 

moderate resolution satellites have reduced temporal resolution (e.g. 16 days for Landsat, Sentinel-

2A/B 5 days), which could potentially lead to large burned area omission errors in ecosystems where 

the spectral signal associated with burning disappears quickly, especially if more than one post-fire 

observation is required to detect the burn. This paper attempted to calculate the burned area persistence 

time to estimate the period of time after the burn date in which burned areas are detectable using 

remotely sensed data change detection. 

The presented methodology estimated the burned area persistence time defined as the duration 

of the spectral separability of burned / unburned areas, using time series of Normalized Burn Ratio 

(NBR) spectral index computed from MCD43A4 BRDF-adjusted MODIS reflectances. Burned and 
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unburned areas were defined based on the MCD64A1 MODIS global burned area product. The full 

global MODIS record for the years 2003-2016 was used. 

Among the novel aspects of the proposed methods, a probabilistic method for the analysis of 

spectral separability over time and space was developed, which can be extended to the analysis of other 

disturbances and, in general, of other non-permanent land use or land cover changes. The methods were 

stratified spatially (ecoregion and land cover) and temporally (time of the year) and provided for a 

rigorous generalization at coarser units. 

The results showed that the persistence time was highly variable in time and space. Not only it 

was different across land cover classes, but within the same class, it depended on biome and realm. The 

shortest burned area persistence times were found over Tropical Forests confirming that the separability 

of burned and unburned surfaces quickly decreases after burning, even in ecosystems where the fire 

effects on the vegetation are persistent for several years. The persistence times in Tropical forests were 

mostly limited by the rapid surface vegetation regrowth and the influence on the spectral signal of 

unscorched canopies. The longest persistence times were found in Desert/Xeric Shrublands, 

characterized by little vegetation regrowth until the wet season, leading to persistent soil exposure 

spectrally different from the unburned. Burned area persistence times over Grassland & savanna, 

mostly detected in the African continent, were short and with small variability (16 – 48 days) due to 

the fine fuels and fuel loadings typical of savanna fires. 

Ultimately, the results indicated that, globally, burned areas can be detected for a limited time 

by optical satellite sensors: globally the median burned area persistence time was estimated in 29 days 

and 86.6% of the area detected as burned in the MODIS MCD64A1 product can be mapped accurately 

only for a maximum of 48 days. Thus, results indicate that burned area persistence time can be a limiting 

factor for global burned area mapping from moderate resolution satellite sensors, which have a low 

temporal resolution. Future research is suggested to investigate the effect of cloud cover which further 

limits the burned area mapping capability of moderate resolution sensor for the majority of burned areas 

that can be detected reliably only for a relatively short time. 
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Chapter 3: Global Evaluation of the Suitability of MODIS-Terra Detected 

Cloud Cover as a Proxy for Landsat 7 Cloud Conditions 

2.  

Published in Remote Sensing as: 

Melchiorre, A., Boschetti, L. & Roy, D.P. (2020). Global evaluation of the suitability of MODIS-Terra 

detected cloud cover as a proxy for Landsat 7 cloud conditions. Remote Sensing, 12(2), 202 

3.  

3.1. Abstract 

Clouds limit the quality and availability of optical wavelength surface observations from Earth 

Observation (EO) satellites.  This limitation is particularly relevant for the generation of systematic 

thematic products from EO medium spatial resolution polar orbiting sensors, such as Landsat, which 

have reduced temporal resolution compared to coarser resolution polar orbiting sensors such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS on the Terra satellite is in the same 

orbit as Landsat 7 with an approximately 30 minute overpass difference. In this study, one year of 

global Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image cloud fractions over land are 

compared with collocated MODIS cloud fractions, generated by combining the MODIS-Terra global 

daily cloud mask product (MOD35) with the Landsat 7 ETM+ image footprints and acquisition 

calendar. The results show high correlation between the MODIS and Landsat 7 ETM+ cloud fractions 

(R2 = 0.83), negligible bias (median difference: < 0.01) and low dispersion around the median (inter-

quartile range: [-0.02, 0.06]). These results indicate that, globally, the cloud cover detected by MODIS 

Terra data can be used as a proxy for Landsat 7 ETM+ cloud cover. 

3.2. Introduction 

Earth Observation (EO) data sensed in the optical portion of the electromagnetic spectrum are 

widely used for studying the Earth’s biosphere, its dynamics and disturbances from regional to global 

scale. Cloud obscuration affects the quality and availability of EO optical data over land which presents 

a challenge for global land monitoring. Thanks to the systematic acquisition strategy and free data 

access policy of currently available moderate resolution optical data such as Landsat (Roy et al. 2014) 

and Sentinel-2 (Drusch et al. 2012), global systematic land monitoring products at moderate resolution 

are being developed (Wulder et al. 2019). Landsat-8, Sentinel-2A, and Sentinel-2B provide 16-day, 10-
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day and 10-day global median average revisit intervals, respectively, and 2.9 days when combined 

together (Li and Roy 2017).  These revisit cycles are not particularly high, particularly for individual 

sensors, and consequently cloud obscuration may remain an issue for monitoring applications using 

these data, for example, for monitoring features that evolve with a fast temporal dynamics, such as 

certain burned areas (Boschetti et al. 2015; Melchiorre and Boschetti 2018; Roy et al. 2019), ephemeral 

water bodies (Pekel et al. 2016), or agricultural crops (Roy and Yan 2018). 

The near daily global coverage 1 km cloud product derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Ackerman et al. 2010) has been used in feasibility studies to 

assess the potential impact of cloud obscuration on other land monitoring satellites, using the MODIS 

time series to generate a spatially explicit climatology of cloud cover probabilities (Whitcraft et al. 

2015a). Moderate resolution data such as Landsat cannot be directly used for generating such a 

climatology because of the limited number of available acquisitions, due to the low revisit frequency 

and to the fragmentary state of the archive outside the United States (Wulder et al. 2016). For example, 

researchers have used the MODIS global cloud mask product as a proxy to estimate the effect of cloud 

cover on the HyspIRI mission design (Mercury et al. 2012), and to define the observation requirements 

for operational cropland monitoring from medium resolution systems (Whitcraft et al. 2015b). 

However, the use of MODIS cloud data as a proxy assumes that the MODIS 1 km cloud mask 

is representative of cloud conditions experienced by other satellites. A recent regional study on the 

probability of Landsat cloud-free over the Eastern United States found a strong correlation between the 

cloud cover observed by Landsat 7 ETM+ and MODIS, but the intercomparison was limited to three 

Landsat path/row locations (Goward et al. 2019). 

Several factors can contribute to differences among satellite cloud products. Wind can displace 

clouds and other atmospheric constituents in the time between different satellite overpasses (Feidas and 

Cartalis 2005; Li et al. 2019).  Clouds evolve over time and in many parts of the world cloud cover 

increases during the day over land (King et al. 2013).  The MODIS Terra and Aqua satellites have 10.30 

am and 1.30 pm equatorial overpass times respectively and although globally they observe similar cloud 

amounts, in many regions they reveal different cloud amounts at the time of overpass (King et al. 2013; 

Roy et al. 2006).  Observations from the afternoon-train (A-train) polar orbiting CloudSat and 

CALIPSO sensors, that are designed for cloud monitoring, show good agreement of total horizontal 

cloud fraction retrievals at 2° resolution with the A-train MODIS-Aqua 1 km cloud mask product 

(Hagihara et al. 2010). This is likely because of the small 3 minute (CloudSat) and 1 minute (CALIPSO) 

overpass time differences relative to MODIS-Aqua. Other differences are due to the size and spatial 

distribution of clouds relative to the sensor spatial resolutions. For example, the 1 km MODIS cloud 
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product may not detect sub-pixel or spatially fragmented clouds that are detectable at 30 m Landsat 

resolution.  Differences in sensor spectral resolution may also introduce cloud detection differences. 

For example Zhao and Di Girolamo (2006) compared 15 m cloud detections from Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with the MODIS cloud 

product and found that MODIS systematically overestimated the cloud fraction relative to ASTER, 

with a mean difference of 0.18 and large variations across scenes associated with the spatial cloud 

patterns. Because ASTER is onboard the same Terra platform as MODIS, these discrepancies were 

attributed to the differences in spatial and spectral resolution of the two instruments. Nominally, clouds 

have high reflectance at visible and SWIR wavelengths, and generally are cold, and so sensors with 

visible to SWIR bands and thermal bands provide more reliable cloud detection than sensors that have 

only a subset of these bands (Ackerman et al. 1998). Finally, cloud detection algorithm differences may 

result in different cloud masks at coarse (Holz et al. 2008) and at medium resolution (Foga et al. 2017). 

In this study, we evaluate the assumption that the MODIS-Terra 1 km cloud product can be 

used globally to predict Landsat 7 ETM+ image cloud fractions over land. This is a reasonable 

expectation as both sensors are in the same orbit and have an overpass time difference of approximately 

30 minutes (Chander et al. 2010). The fraction of cloud cover in every global Landsat image acquired 

in 2002 is compared to cloud cover fractions in the contemporaneous MODIS Terra cloud cover product 

(MOD35). The relationship between the MODIS and Landsat 7 ETM+ cloud fractions is characterized 

using both linear and logistic models, and the corresponding regression coefficients and residual errors 

are examined.  

3.3. Data 

3.3.1. Landsat cloud data 

The Landsat 7 is in a polar sun-synchronous orbit with approximately a 705 km altitude, 98.2° 

inclination, and 10:00 a.m. ±15 min descending equatorial overpassing local time (Goward et al. 2001).  

The Landsat 7 carries the Enhanced Thematic Mapper Plus (ETM+) instrument which senses 

multispectral data over a 15° field of view. The orbit altitude and sensor field of view result in an 

approximately 185 km swath and 16-day nadiral overpass revisit frequency. Landsat data are distributed 

as 185 km × 170 km images defined in the Worldwide Reference System (WRS) that divides the globe 

into 233 paths (orbital ground-tracks) and 248 rows (latitude parallels) (Arvidson et al. 2001). 

The most recent Landsat Collection 1 cloud mask information was used; it is generated using 

the Fmask algorithm (Zhu et al. 2015; Zhu and Woodcock 2012) that was found to have better 

performance than other algorithms (Foga et al. 2017). Fmask is a two-step object-based algorithm. First, 
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a potential cloud layer is generated by combining spectral tests based on cloud physical properties, and 

a cloud probability mask based on temperature, brightness and spectral variability. The final cloud mask 

is subsequently generated through segmentation of the potential cloud layer.  The percentage of clouds 

over only the land pixels in each image defined by the CLOUD_COVER_LAND metadata was used 

and scaled in the range 0 to 1. This is henceforth referred to as the “Landsat 7 cloud fraction”. 

3.3.2. MODIS cloud mask and geolocation product 

The MODIS Terra satellite is in the same descending orbit as Landsat 7 with a nominal period 

of 99 minutes, and a 16-days nadiral overpass revisit frequency, and trails Landsat 7 by approximately 

30 minutes (Chander et al. 2010). MODIS has a 110° field of view and senses a 2330 km swath with 

overlapping swaths at latitudes >30° (Wolfe et al. 1998). The Collection 6 MODIS-Terra 1 km cloud 

mask product (MOD35) (Ackerman et al. 2010) was used. The MOD35 cloud detection algorithm 

involves five steps: (1) a series of spectral and spatial variability tests to detect the presence or absence 

of clouds are applied independently; (2) confidence scores are computed for each test applied; (3) the 

confidence scores of each test are combined into a preliminary overall confidence of the presence or 

absence of clouds for each pixel; (4) additional spatial and spectral tests (‘restoral tests’) are applied to 

reduce commission errors due to particular scene conditions (e.g. sun-glint, presence of bright surfaces); 

(5) a final cloud detection confidence level is generated, combining the results of the all the cloud 

detection tests. 

The MOD35 product classifies each 1 km MODIS observation into four possible states of 

decreasing confidence of cloud detection: “Cloudy” (confidence clear ≤ 66%), “Probably Cloudy” 

(66% < confidence clear ≤ 95%), “Probably Clear” (95% < confidence clear ≤ 99%), and “Clear” 

(confidence clear > 99%%). In addition, ancillary data layers that describe the viewing and illumination 

geometry, and the land/water status of each 1 km observation are included in the product (Ackerman et 

al. 2010). The MOD35 product is a Level 2 product and so is defined in the MODIS orbit swath 

geometry. The MODIS Geolocation product (MOD03) that defines the geographic location of the 

MODIS Level 2 swath products (Masuoka et al. 1998; Wolfe et al. 2002) was also used in this study. 

3.3.3. Spatial and temporal extent of the analysis 

The analysis was performed using all available Landsat and MODIS data acquired from 1 

January to 31 December 2002.  This study period was selected because year 2002 was the last complete 

year of Landsat 7 ETM+ acquisitions before the Scan Line Corrector (SLC) failure that resulted in a 

systematic failure to sense 22% of each image (Markham et al. 2004) and reduced the reliability of 

SLC-off Landsat image cloud metadata information (Kovalskyy and Roy 2013).  In 2002 the MODIS-

Terra data were globally available as MODIS-Terra was launched in 1999.  The greater majority of the 
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global Landsat image archive is acquired over land masses between 70° S and 70° N (Wulder et al. 

2016) and so the study was restricted to this latitudinal range. 

3.4. Methods 

3.4.1. Computation of MODIS cloud fractions for each Landsat image 

The MOD35 1 km cloud and land/water masks for each orbit swath for each global day of 2002 

were reprojected into the 1 km MODIS sinusoidal equal area projection (Wolfe et al. 1998) using the 

corresponding MOD03 swath geolocation files. The data were reprojected by nearest neighbor 

resampling to preserve the input 1 km data values.  The Landsat 7 ETM+ ground swaths coincide with 

the central nadir-looking portion of the MODIS-Terra swath acquired on the same day from the same 

orbit.  The footprint of each Landsat image was reprojected into the gridded 1 km MODIS sinusoidal 

equal area projection. The 1 km land pixels falling under each Landsat image for each orbit were 

derived from the reprojected 1 km MOD35 MODIS land/water mask, and the 1 km MODIS cloud mask 

values were summed to derive the MODIS land cloud fraction for each Landsat image. 

The MOD35 land/water mask has four possible values, namely “Land”, “Desert”, “Coastal 

area”, and “Water”. To ensure consistency with the land pixel definition used to compute the Landsat 

7 cloud fractions, only the MOD35 1 km pixels labelled as “Land”, “Desert” or “Coastal area” in the 

MOD35 land/water mask were used to derive the MODIS cloud fractions. 

The MODIS cloud fractions were defined for each Landsat image in three ways using different 

combinations of the MODIS cloud mask cloud detection confidence states (Table 3-1).  For each 

definition the MODIS cloud fraction was derived as the number of 1 km pixels labeled as cloud, divided 

by the total number of 1 km land pixels (labelled as “Land”, “Desert” or “Coastal area” in the MOD35 

land/water mask) encompassing the Landsat image. The three definitions include a conservative cloud 

definition (#1), an intermediated definition (#2) and a much less conservative definition (#3). 

Table 3-1: The three MODIS cloud fraction definitions derived by different combinations of MODIS cloud mask (MOD35) 

detection confidence states 

Definition MOD35 confidence state combination 

#1 Cloudy 

#2 Cloudy, Probably Cloudy 

#3 Cloudy, Probably Cloudy, Probably Clear 

3.4.2. MODIS-Landsat cloud fraction comparison methodology 

First, histograms of the Landsat cloud fractions and the MODIS cloud fractions were computed 

to verify that the whole range [0,1] of cloud fractions was represented in the dataset.  Subsequently, the 
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cloud fraction difference, defined as the Landsat cloud fraction minus the MODIS cloud fraction, was 

computed for all the global 2002 study data.  The distribution of the cloud differences was summarized 

through non-parametric summary statistics (median, interquartile range, and 5th-95th quantile range). 

The relationship between the Landsat and MODIS cloud fractions was investigated using linear 

and logistic models, where the Landsat cloud fraction is the response variable and the MODIS cloud 

fraction is the predictor variable. A logistic regression was used because, in general, coarse resolution 

detection products, compared to higher resolution products, are affected by saturation issues. Thus a 

logistic regression would be appropriate if the cloud fraction is over-estimated at high cloud proportions 

and under-estimated at low cloud proportions. The regression residuals were analyzed to investigate 

the presence of heteroscedasticity in the relationship between Landsat and MODIS cloud fractions. 

Standard metrics and coefficients were reported.  For the linear models, these include the linear 

regression β0 (intercept) and β1 (slope) coefficients, the standard error of the regression coefficients, the 

coefficient of determination of the linear regression (R2), and the significance of the regression (p-

value).  In addition, the standard error of the residuals, i.e., the observed minus the predicted Landsat 7 

cloud fraction, were derived.  For the logistic models, these include the logistic regression coefficients 

β0 (intercept term of the log-odds function) and β1 (slope term of the log-odds function), the standard 

error of the regression coefficients, and the significance of the regression (p-value). Since there is no 

direct analog of R2 in a logistic regression, the residual deviance was reported as a goodness-of-fit 

statistic for the model. In addition, the null deviance was reported, i.e., the deviance of a model when 

only a single coefficient (the intercept term of the log-odds function) is estimated. The difference 

between the null deviance and the residual deviance provides an indication of the overall performance 

of the model, with large differences indicating good performance and small differences indicating poor 

performance. 

The presence of spatial patterns in the residuals were investigated by analyzing the distribution 

of the residuals at each Landsat WRS path/row location. Summary parameters of the distribution 

(median, interquartile range and 5th - 95th quantile range) were calculated as a function of the land 

fraction, defined as the number of 1 km land pixels over the total footprint of the image, to verify 

whether the behavior of linear and logistic models was significantly different in coastal and inland 

areas. Finally, the distribution of the residuals was calculated as a function of the time of acquisition, 

using three-month seasonal intervals. 
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3.5. Results 

3.5.1. Landsat 7 ETM+ image availability and global cloud histograms 

A total of 109,814 Landsat 7 ETM+ images acquired in 2002 between 70° S and 70° N were 

considered in this study (Figure 3-1). Nominally, the Landsat 7 ETM+ overpasses each WRS path/row 

22 or 23 times per year but in many regions fewer images are available in the Landsat archive for a 

variety of reasons (Ju and Roy 2008; Wulder et al. 2016).  In 2002, most acquisitions occur over the 

Conterminous United States (CONUS), much of South America, Central and Southern Europe, 

Australia and Eastern Asia, whereas the coverage is reduced in parts of Africa, Central America and 

Central, and Northern Asia. 

 

Figure 3-1: Spatial distribution and number of Landsat 7 ETM+ images acquired from 1 January to 31 December 

2002 between 70° S and 70° N. The number of images for each Landsat WRS path/row is depicted with a rainbow color scale. 

Figure 3-2 shows histograms of the Landsat 7 and also the MODIS cloud fractions (defined for 

the three MODIS cloud definitions) for the 109,814 Landsat 7 ETM+ images acquired in 2002 and 

illustrated in Figure 3-1.  The histograms exhibit a full range of cloud fraction values, i.e., from 0 to 1, 

and have bimodal distributions.  Except for the least conservative MODIS cloud definition (#3) the first 

mode corresponds to images with 0% cloud fractions and the second mode correspond to 100% cloud 

fractions.  The MODIS cloud fraction histograms have progressively fewer cloud-free images for the 

less conservative cloud definitions. 
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Figure 3-2: Histograms of Landsat 7 (top) and MODIS (bottom row) cloud fractions, observed in all the 2002 study 

data (Figure 3-1). The histograms are quantized using 100 bins of equal width. The three MODIS cloud fraction histograms 

are for the three MODIS cloud definitions (Table 3-1). 

3.5.2. MODIS and Landsat cloud fraction differences 

Figure 3-3 shows summary statistics of the MODIS cloud fraction minus the Landsat 7 cloud 

fraction derived for all the global 2002 study data. The smallest differences are observed for the most 

conservative MODIS cloud fraction definition (#1, median difference = 0.00, interquartile range = [-

0.02, 0.06]), and increases for the less conservative MODIS cloud fraction definitions (#2: median 

difference = 0.04, interquartile range = [0.00, 0.14]; #3: median difference = 0.12, interquartile range 

= [0.03, 0.25]). 

 

Figure 3-3: Box and whisker plots summarizing the distribution of the difference between the MODIS and Landsat 

7 cloud fractions for all the global 2002 data (Figure 3-1) considering the three MODIS cloud fraction definitions (Table 3-

1). The thick vertical lines show the median of the distribution, the boxes show the interquartile range, and the whiskers show 

the 5th to 95th quantile range. 
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3.5.3. Regression analysis 

Figure 3-4 shows scatterplots comparing the Landsat 7 cloud fractions and the MODIS cloud 

fractions for the three MODIS cloud fraction definitions and considering all the study data. The point 

density distribution, calculated using a 100 x 100 quantization of the axes, is plotted using a rainbow 

color scale. Linear and logistic regressions are shown plotted as dotted and continuous lines 

respectively. The correlation and regression coefficients are summarized in Table 3-2. Consistent with 

the boxplot results presented in Figure 3-3, the scatterplots indicate that the MODIS cloud fraction is 

closest to the Landsat cloud fractions when the most conservative MODIS cloud fraction definition is 

used (#1).  Generally, MODIS overestimates the cloud fraction compared to Landsat and there is a 

progressive overestimation from definition #1 to #3, as shown by the majority of the point distribution 

(green to purple colors) positioned below the identity line (dashed line) for #2 and #3. This is also 

reflected by the linear regression lines: the regression lines of #2 and #3 are noticeably further apart 

from the identity line than the regression line for #1. 

 

Figure 3-4: Scatterplot of the Landsat 7 cloud fraction plotted against the MODIS cloud fraction, considering all the 

2002 study data, plotted for each MODIS cloud fraction definition (Table 3-1).  The logistic regression (solid) linear regression 

(dotted) and the identity line (dashed) are shown superimposed on point density distributions that are generated using a 100 × 

100 quantization of the axes, and are displayed with a rainbow logarithmic color scale. 

Table 3-2: Regression results of the Landsat 7 and MODIS cloud fraction scatterplots shown in Figure 3-4 

 Definition Coefficients 
Standard Error of the 

Coefficients 

Standard Error 

of the Residuals 
R2 p-value 

Linear  #1 β0: 0.02, β1: 0.89 β0: 0.0007, β1: 0.0012 0.149 0.83 <2^-16 

Model #2 β0: -0.02, β1: 0.87 β0: 0.0008, β1: 0.0012 0.157 0.82 <2^-16 

 #3 β0: -0.10, β1: 0.90 β0: 0.0011, β1: 0.0016 0.186 0.74 <2^-16 

 Definition Coefficients 
Standard Error of the 

Coefficients 

Residual 

deviance 

Null 

devia

nce 

p-value 

Logistic  #1 β0: -2.79, β1: 4.97 β0: 0.016, β1: 0.026 18194 76678 <2^-16 

Model #2 β0: -3.26, β1: 5.11 β0: 0.019, β1: 0.027 18199 76678 <2^-16 

 #3 β0: -3.91, β1: 5.50 β0: 0.023, β1: 0.031 22146 76678 <2^-16 
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The logistic regression results are consistent with the results of the linear regression, with a 

similar residual deviance for definitions #1 (18194) and #2 (18199) and considerably higher residual 

deviance for #3 (22146).  For all three MODIS cloud definitions the residual deviance is considerably 

smaller than the null deviance, indicating that the MODIS cloud fraction is an effective predictor for 

the Landsat 7 cloud fraction. For all three MODIS cloud definitions the standard errors of the 

coefficients are smaller than the estimated values of the coefficients, and the regressions are significant 

(p < 0.05). 

For all three MODIS cloud definitions, the linear regressions between the MODIS and the 

Landsat 7 cloud fractions are significant (p < 0.05). The highest coefficient of determination (R2) is 

observed for MODIS cloud definition #1 (R2 = 0.83), with a progressively lower coefficient of 

determination for definition #2 (R2=0.82) and #3 (R2 = 0.74).  While the 1 (slope) coefficient is similar 

in the three definitions, with values of 0.89 (#1), 0.87 (#2) and 0.90 (#3), the 0 (intercept) coefficient 

decreases from 0.02 (#1), to -0.02 (#2) and -0.10 (#3), reflecting that the MODIS cloud fractions 

become systematically higher than the Landsat cloud fractions when the less conservative cloud 

definitions #2 and #3 are considered.  The standard error of the residuals is also lower for definition #1 

(0.149) compared to #2 (0.157) and #3 (0.186). 

To further investigate the behavior of the linear and logistic models, the regression residuals, 

i.e., the observed minus the predicted Landsat 7 cloud fractions, are summarized in Figure 3-5 for the 

global year of  study data.  The scatter plots in Figure 3-5 were obtained by plotting the regression 

residuals as a function of the MODIS cloud fraction. The scatter plots separately consider the linear 

(top row) and logistic models (bottom row), for MODIS cloud definitions #1 (left column), #2 (center 

column) and #3 (right column). In all plots the majority of the data points (green to purple colors) 

corresponds to low residuals (i.e., y axis values close to 0), and only isolated data points (red colors) 

correspond to large residuals (up to 1.0 and -1.0). Consistent with the results of Figure 3-4 and Table 

3-2, the most conservative MODIS cloud fraction definition (#1) has residuals that are clustered around 

0 on the y axis, whereas definitions #2 and #3 have  more dispersed  residuals. 
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Figure 3-5: Scatterplot of the regression model residuals, defined as the observed minus the predicted Landsat 7 

cloud fraction, plotted against the MODIS cloud fraction for the linear (top row) and the logistic regression model (bottom 

row) considering the 3 MODIS cloud fraction definitions (Table 3-1). The median (+) and interquartile range (x) of the 

residuals are shown for four MODIS cloud fraction bins: [0, 0.25], [0.25, 0.50], [0.5, 0.75], and [0.75, 1]. 

The median (denoted by + symbols) and interquartile range (x symbols) of the residuals over 

four subdivisions of the MODIS cloud fraction range from [0, 0.25], [0.25, 0.50], [0.5, 0.75], and [0.75, 

1] are shown in Figure 3-5. These four ranges are used to broadly verify whether the distribution of the 

residuals changes as a function of the MODIS cloud fraction, i.e., to identify any potential 

heteroscedasticity of the data, which would violate some of the underlying assumptions of the 

regression analyses. The residual median and interquartile range values do not significantly change 

across the MODIS cloud fraction range, indicating that no marked heteroscedasticity is present for both 

the linear and logistic models and for any of the three MODIS cloud mask definitions. 

The most conservative MODIS cloud fraction definition (#1) has the highest linear regression 

R2, and lowest logistic regression residual deviance (Table 3-2).  Table 3-3 summarizes for this 
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definition the median and interquartile range of the residuals for both regressions.  The linear model 

has lower residuals than the logistic model for very low cloud fraction (<0.25), but slightly higher 

residuals at higher cloud fraction; overall, however, the two models have similar performance, with 

identical value of the median error (-0.003 linear and logistic) and comparable interquartile ranges ([-

0.032, 0.085] linear model, [-0.058, 0.091] logistic model). Thus, the most conservative MODIS cloud 

fraction definition (#1) is an effective predictor of the Landsat 7 cloud fraction, both when fitting a 

linear and a logistic model. 

Table 3-3: Median, 25th and 75th quantiles of the residuals for the linear (top) and logistic (bottom) models. The residuals 

were calculated globally and divided in MODIS definition #1 cloud fraction intervals 

Linear model MODIS cloud definition #1 Cloud fraction interval 

Residual value [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1] [0, 1] 

25th quantile -0.022 -0.097 -0.100 -0.007 -0.032 

Median -0.018 -0.005 0.004 0.077 -0.003 

75th quantile 0.015 0.079 0.084 0.096 0.085 

Logistic model MODIS cloud definition #1 Cloud fraction interval 

Residual value [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1] [0, 1] 

25th quantile -0.058 -0.036 -0.105 -0.031 -0.058 

Median -0.047 0.057 -0.001 0.062 -0.003 

75th quantile 0.019 0.142 0.079 0.101 0.091 

Figure 3-6 shows the geographic distribution of the minimum (top row), median (middle row) 

and maximum (bottom row) residuals for the linear (left column) and logistic (right column) regression 

using the most conservative MODIS cloud definition (#1). Negative residuals (red, yellow colors) 

indicate that the linear and logistic models overestimate the observed Landsat cloud fraction, whereas 

positive residuals (cyan and blue colors) indicate the linear and logistic models underestimate the 

Landsat cloud fraction. Large minimum and maximum residuals (top and bottom row) are 

predominantly observed at WRS path/rows locations over coastlines, or at high latitude, or over snow 

prone mountain ranges. This is discussed further in Section 3.6. 

The minimum and maximum residual values are driven by outliers whereas the median values 

correspond to the 50th percentile of the residual distribution and are robust to outliers; as indicated by 

the prevalence of green colors in the Figure 3-6 middle row figures, the median of the residuals is close 

to 0 at most locations. This is further illustrated by Figure 3-7, which summarizes the distribution of 

the median residuals shown in the middle row of Figure 3-6. The global median residual is slightly 

negative (-0.002 in both models), with a small interquartile range ([-0.019; 0.043] for the linear model, 

[-0.048; 0.047] for the logistic model) and small 5th-95th quantile range ([-0.065; 0.095] for the linear 

model, [-0.060, 0.101] for the logistic model). This indicates that, while large median residuals 
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occasionally occur , the most conservative MODIS cloud fraction definition (#1) is usually an effective 

predictor of the median Landsat 7 cloud fraction not only globally, but also at each WRS path/row 

location. 

 

Figure 3-6: Spatial distribution of the minimum (top row), median (middle row) and maximum (bottom row) 

residuals observed at each WRS path/row location for the linear (left column) and logistic (right column) regression using the 

most conservative MODIS cloud definition (#1). The residuals are depicted using the same rainbow color scale for easier 

comparison. 

 

Figure 3-7: Box and whisker plots summarizing the distribution of the median residual of the linear and logistic 

models at each WRS path/row location (i.e., Figure 3-6, middle row). The thick vertical lines show the median of the 

distribution, the boxes show the interquartile range, and the whiskers show the 5th- 95th quantile range. 

Figure 3-8 shows scatterplots of the linear and logistic regression residuals as a function of the 

land fraction in each Landsat image. The median, interquartile range and 5th- 95th quantile range of the 

distribution summarize the distribution of the residuals. The residual median and interquartile ranges 
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are stable, albeit with a small positive median residual (0.042 with both models) at small land fractions 

(0 to 0.05), and a small negative median residual (-0.009 linear, -0.014 logistic) for large land fractions 

(0.95 to 1.00). Consistent with Figure 3-6, the 5th−95th quantile range indicates that at small land 

fractions (0 to 0.05) there are large outliers in the residuals (range [−0.556, 0.394] linear, [−0.573, 

0.412] logistic). The 5th−95th quantile range, however, drops quickly as the land fraction increases, and 

it remains substantially stable for land fractions >0.25. 

 

Figure 3-8: Scatterplot of the linear (left) and logistic (right) regression residuals plotted against the land fraction in 

each Landsat path/row, considering all the 2002 study data, for the most conservative MODIS cloud fraction definition (#1). 

The median (+), interquartile range (x) and 5th- 95th quantile range (°) of the residuals are shown for 0.05 land fraction bins. 

The point density distributions are generated using a 100 × 100 quantization of the axes, and are displayed with a rainbow 

logarithmic color scale. 

Finally, in order to verify the presence of seasonal pattern, Figure 3-9 shows the residuals of 

the linear (top row) and logistic (bottom row) models as function of the acquisition date for the Landsat 

images in the northern (left column) and southern (right column) hemispheres. Median, interquartile 

range, and 5th- 95th quantile ranges of the residuals are plotted for quarterly intervals, defined as 

{[January - March], [April - June], [July - September], [October - December]}, and are summarized in 

Table 3-4. 
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Figure 3-9: Scatterplot of the linear (top row) and logistic (bottom row) regression residuals divided between the  

northern (left column) and southern hemisphere (right column) plotted against the Landsat acquisition day of year, considering 

all the 2002 study data, plotted for the most conservative MODIS cloud fraction definition (#1) (Table 3-1). The point density 

distributions are generated using a 25 x 25 quantization of the axes, and are displayed with a rainbow logarithmic color scale. 

It should be noted that the artifact visible in all plots for days  75-90 is due to a gap from March 19th to 28th in the MODIS 

Terra data acquisition. The median (+), interquartile range (x) and the 5th- 95th quantile range (°) of the residuals are shown 

for quarterly acquisition intervals, defined as {[Jan - Mar], [Apr - Jun], [Jul - Sep], [Oct - Dec]}. 

While no seasonal pattern is detected in the southern Hemisphere, in the Northern Hemisphere 

the residuals exhibit a slight seasonal pattern, with higher residual in the winter months. The median of 

the residuals changes from 0.020 (linear) and 0.027 (logistic) in July – September to - 0.019 (linear) 

and -0.030 (logistic) in January – March. Furthermore, while the 25th, 75th and 95th quantile are 

substantially stable, the 5th percentile shows the largest seasonal trend, with a variation from -0.161 

(linear) and -0.150 (logistic) in July-September to -0.394 (linear) and -0.390 (logistic). These results 

indicate that the large minimum residuals at high latitude shown in Figure 3-6, top row, are 

predominantly observed on images acquired in the Northern Hemisphere in January-March, i.e., in the 

winter months. 
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Table 3-4: Median, 5th, 25th, 75th and 95th quantiles of the residuals for the linear (top) and logistic (bottom) models. The 

residuals were calculated globally and divided in quarterly acquisition date intervals. 

 
Acquisition date interval 

Jan–Mar Apr–Jun Jul–Sep Oct–Dec Year 

Linear 

model 

Northern 

Hemisphere 

5th quantile −0.394 −0.217 −0.161 −0.264 −0.258 

25th quantile −0.086 −0.036 −0.020 −0.044 −0.038 

Median −0.019  0.002  0.020 −0.009  0.001 

75th quantile  0.079  0.089  0.095  0.081  0.089 

95th quantile  0.180  0.172  0.175  0.164  0.173 

Southern 

Hemisphere 

5th quantile −0.170 −0.172 −0.147 −0.154 −0.159 

25th quantile −0.022 −0.019 −0.019 −0.022 −0.020 

Median  0.005 −0.015 −0.016 −0.008 −0.009 

75th quantile  0.088  0.054  0.053  0.071  0.069 

95th quantile  0.174  0.163  0.158  0.152  0.161 

Logistic 

model 

Northern 

Hemisphere 

5th quantile −0.390 −0.205 −0.150 −0.251 −0.244 

25th quantile −0.073 −0.058 −0.049 −0.058 −0.058 

Median −0.030  0.008  0.027 −0.012  0.003 

75th quantile  0.085  0.095  0.101  0.087  0.094 

95th quantile  0.192  0.189  0.197  0.184  0.192 

Southern 

Hemisphere 

5th quantile −0.164 −0.165 −0.129 −0.141 −0.150 

25th quantile −0.058 −0.058 −0.058 −0.058 −0.058 

Median  0.004 −0.034 −0.038 −0.012 −0.021 

75th quantile  0.093  0.063  0.062  0.079  0.075 

95th quantile  0.201  0.191  0.186  0.178  0.188 

3.6. Discussion 

Linear and logistic models were used to predict the Landsat 7 ETM+ cloud fraction from 

MODIS MOD35 observations, and a non-parametric analysis of the residuals was performed. Overall, 

the analysis indicates a high degree of correspondence between the Landsat and MODIS cloud 

fractions, with the best results observed when only the pixels confidently labeled as cloudy in the 

MOD35 product are used. This case resulted in the highest coefficient of determination and lowest 

residuals, when fitting the linear and the logistic models. The difference between the MODIS and 

Landsat cloud fractions increases when less conservative MOD35 cloud definitions are used, i.e., when 

MODIS pixels flagged as potentially cloudy and potentially clear are counted in the cloud fraction. 

Arguably, this can be explained considering that the MOD35 cloud masking algorithm makes use of 

the multiple thermal bands and the water vapor/CO2 absorption bands which are available on the 

MODIS instrument. These bands are missing from the Landsat ETM+ instrument, resulting in low 

sensitivity to thin clouds (Zhu and Woodcock 2012). 
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The analysis of the residuals indicates that the performance of the linear and logistic models 

were substantially similar, with the linear model marginally better at low cloud fraction conditions, and 

the logistic model marginally better for higher cloud fraction conditions. In the case of the linear model, 

the intercept of the regression line is small (0.02), the slope is close to unity (0.87), and the median of 

the residuals is also small (-0.002); this small positive error indicates that the use of MODIS to predict 

the Landsat cloud fraction results in a small overestimation of the cloud cover. With either model, the 

MODIS-Terra cloud mask underestimates the Landsat cloud fraction at low cloud levels, and 

overestimates it at high cloud levels. Arguably this is due to the MODIS coarse resolution: small, sparse 

clouds are not detected, and similarly small gaps in cloud cover are missed. These findings are 

consistent with previous studies reporting that the MODIS cloud masking algorithm results in some 

degree of overestimation on fragmented and optically thin clouds (King et al. 2013; Zhao and Di 

Girolamo 2006). Further, this is a well known scale issue whereby coarse resolution detection products 

tend to over- and under-estimate the area detected, compared to higher resolution products, when the 

areal proportions being detected are high and low respectively. For example this has been observed in 

comparison of MODIS and Landsat derived burned areas (Roy and Boschetti 2009), snow cover (Hall 

and Riggs 2007), and comparison of AVHRR and Landsat derived forest maps (Mayaux and Lambin 

1997). 

The geographic analysis of the residuals revealed that the largest differences between the 

MODIS and Landsat cloud fraction occur along the coastlines, and at high latitude. In the case of coastal 

areas, further analysis indicated that the errors are mostly observed at WRS path/row locations with 

land fractions ≤0.05. In these cases, cloud movement in the 30 minutes between the MODIS-Terra and 

Landsat 7 overpasses may result in large discrepancies of the estimated cloud percentage over land. 

Furthermore, false positives in the MOD35 cloud mask over coastlines, rivers and lakes regions are 

known issues of the MOD35 product (Ackerman et al. 2010; Ault et al. 2006). Additionally, the 

temporal analysis of the residuals showed the presence of a seasonal effect in the northern hemisphere: 

the overestimation of the Landsat cloud fraction by the MODIS cloud mask is greater in winter than in 

summer. Visual inspection of the MODIS and Landsat images where large discrepancies were observed 

confirmed that, at high latitudes and over mountain ranges, ice and snow were flagged as clouds by the 

MODIS MOD35 product, also a known issue of the MOD35 product (Ackerman et al. 2010; Li et al. 

2004; Stillinger et al. 2019). 

The results of this study indicate that the MODIS-Terra 1 km cloud product can be used to 

predict Landsat 7 ETM+ image cloud fractions over land.  Thus, the consistent, long term (2000 

onwards) daily cloud observations from the MODIS-Terra instrument can be used to  assess the impact 
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of cloud on moderate resolution land monitoring products from the Landsat satellites.  

Recommendations for the next (after Landsat 9) mission design are currently being developed (Wulder 

et al. 2019).  Due to the high cost of thermal wavelength sensors a possible design option may be to 

have separate satellites carrying thermal infrared (TIR) and visible to shortwave infrared wavelength 

(VSWIR) detectors. The degree of temporal overpass separation between the TIR and the VSWIR 

observations will be considered in application specific terms, but also to minimize overpass cloudiness 

differences. The results of this study indicate that, in the morning sun-synchronous orbit, an 

approximately 30 minute overpass time difference does not, globally on average, result in significant 

differences in observed cloud fraction over land. We finally note that some cautions must be used in 

considering these results, as high residuals of the linear and logistic regression models were observed 

on individual images, especially in the presence of snow or on coastal areas. 

3.7. Conclusions 

In this paper a systematic global comparison between the Landsat 7 ETM+ image cloud fraction 

over land, and equivalent cloud fractions derived from contemporaneous MODIS-Terra (MOD35) 

cloud observations was undertaken. Three MODIS cloud fraction definitions were considered, 

including a conservative cloud definition, an intermediated definition and a much less conservative 

definition. Due to the similar acquisition orbits and overpass times, the MODIS MOD35 global cloud 

mask product is a good predictor of the Landsat 7 ETM+ image cloud fraction over land. The most 

conservative MODIS cloud fraction definition was the best predictor of the Landsat 7 ETM+ cloud 

fraction, resulting in high coefficient of determination (R2 = 0.83), negligible bias (median difference: 

<0.01) and low dispersion around the median (inter-quartile range: [-0.02, 0.06]) of the estimated linear 

model.  These results suggest that it is possible to use the daily probability of cloud cover, as observed 

by MODIS-Terra, as a proxy of the cloud cover observed by Landsat 7. 
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Chapter 4: Potential Landsat Global Burned Area Omission Error due to 

Reduced Revisit Frequency and Cloudy Observations 

4.  

4.1. Abstract 

Global burned area products have been generated in the past 20 years from daily coarse 

resolution satellite data. The transition to moderate resolution (10-30 m) global burned area products 

would lead to very significant improvements for a variety of fire information users, from global 

applications to regional and local studies. Higher spatial resolution clearly has benefits, reducing the 

occurrence of partially burned pixels and increasing the spectral separation of burned / unburned areas 

compared to coarse resolution sensors. However, moderate resolution satellites have reduced temporal 

resolution (e.g. 16 days for Landsat), which could potentially lead to large omission errors in 

ecosystems where the spectral signal associated with burns fades rapidly and there is a high occurrence 

of clouds.  

The objective of this study was to estimate the potential burned area omission error of a 

hypothetical Landsat 7 global burned area product due to the combined effect of the limited persistence 

time of the burned area spectral signal, and cloud cover. The simulation was informed by MODIS 

observations, and by the Landsat acquisition calendar and ground swath footprints. The MODIS global 

burned area product (MCD64A1) was used as a fire mask, defining the location and timing of burning, 

whereas the MODIS cloud product (MOD35) was used to determine the number of post-fire cloud-free 

observations available on Landsat 7 overpass days within the burned area spectral signal persistence 

time, estimated in Chapter 2. MODIS burned pixels with no cloud-free post-fire observations on 

Landsat overpass days within the persistence time were considered as potential omission errors, 

regardless of the detection algorithm adopted.  

The result is a spatially explicit map of the burned area omission error. The terrestrial 

ecoregions of the world (Olson et al. 2001) were used as spatial analysis unit, and within each ecoregion 

the analysis was further stratified by land cover class (Forest, Shrubland, Grassland & Savanna). 

Globally, the omission error of the hypothetical Landsat global burned area product was 19%, and 

presented large variability across the different land covers, with a maximum error over Forest (33%) 

and minimum over Shrubland (5%).  
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4.2. Introduction 

Global burned area maps have been produced in the past 20 years from several coarse spatial 

resolution (250 m - 1 km) Earth Observation (EO) systems, including ATSR, MERIS, Terra and Aqua 

MODIS, and SPOT-VGT (Alonso-Canas and Chuvieco 2015; Giglio et al. 2018; Giglio et al. 2009; 

Roy et al. 2005; Simon et al. 2004; Tansey et al. 2004; Tansey et al. 2008). Burned area products have 

been used for a wide variety of applications including global carbon cycle studies (Bowman et al. 2009), 

estimation of the emission of greenhouse gases and aerosols from biomass burning (van der Werf et al. 

2017), modelling ecological changes for global vegetation dynamics (Goetz et al. 2012; Thonicke et al. 

2001) and for surface energy budgets (Jin and Roy 2005; Randerson et al. 2006), and studies on fire 

disturbances effects in global climate models on atmosphere composition and dynamics (Langmann et 

al. 2009). 

Although there is no agreement on an optimal burned area mapping algorithm, coarse 

resolution global burned area products rely on the availability of daily or near-daily observations 

(Chuvieco et al. 2019). It is generally assumed that a sufficient number of cloud-free observations are 

available globally to map burned areas, with few exceptions in known locations of persistent cloud 

cover such as Indonesia and tropical areas in Brazil (Giglio et al. 2009), or at high latitudes locations 

such as Siberia (Chu and Guo 2014). There is, however, a strong need for moderate resolution (10 - 30 

m) global burned area maps for fire management and environmental restoration, in order to improve 

emissions estimations, and in support of carbon accounting (Bowman et al. 2015; Hyer and Reid 2009; 

Mouillot et al. 2014; Randerson et al. 2012; van der Werf et al. 2017). A wide variety of burned area 

mapping algorithms have been tested and developed for moderate resolution sensors including 

techniques that exploit single image analysis (Bastarrika et al. 2011; Chuvieco and Congalton 1988; 

Chuvieco et al. 2002; Koutsias and Karteris 2000; Mitri and Gitas 2004) and multi-temporal analysis 

(Boschetti et al. 2015; Chuvieco et al. 2002; Hudak and Brockett 2004; Koutsias and Karteris 1998; 

Miller and Yool 2002; Silva et al. 2005; Smith et al. 2007; Stroppiana et al. 2009). Moderate resolution 

sensors are characterized by lower revisit frequency (10 - 16 days) due to their narrow field of view 

(180 – 300 km), which can translate into burned area potential omission errors (Boschetti et al. 2015; 

Hawbaker et al. 2017) and exacerbates the issues related to designing a robust and effective detection 

algorithm for mapping burned areas globally. 

Recently prototypes of continental scale burned area algorithms were developed using Sentinel 

2 and Landsat 8 data (Roteta et al. 2019, Roy et al. 2019). Detection issues linked to observations sparse 

time series were mitigated using datasets with higher revisit frequency, such as the MODIS daily active 

fire (Roteta et al. 2019), or using temporal consistency checks between pre- and post-fire acquisitions 
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(Roy et al. 2019). The extent of the burned area detected with Sentinel 2 and Landsat 8 data is larger 

than the area detected by MODIS. Roteta et al. (2019) and Roy et al. (2019) estimated a burned area 

extent increase greater than 70% of the total MODIS (MCD64A1) product burned area due to the 

detection of smaller and more fragmented fires, but also noted the presence of omission errors in areas 

of persistent cloud cover. 

Among others, two main factors limiting the accuracy of burned area mapping with moderate 

resolution sensors are the impermanent nature of fire effects on the spectral signature of land 

(Frederiksen et al. 1990; Langaas and Kane 1991; Melchiorre and Boschetti 2018; Trigg and Flasse 

2000) and the availability of cloud-free acquisitions in a limited period (Kovalsky and Roy 2013). Fire 

effects are generally persistent in forested ecosystems (Chen et al. 2011; Chu and Guo 2014; Fraser et 

al. 2000; Loboda et al. 2011; Röder et al. 2008) but can disappear rapidly in grasslands and savannas 

(Bowman et al. 2003; Laris 2005; Pereira 2003; Trigg and Flasse 2000), due to vegetation phenology 

and vegetation post-fire recovery, and as a result of the removal of charcoal and ashes by atmospheric 

agents. Additionally to the lower revisit frequency, clouds, smoke, and other optically thick aerosols 

further limit the number of valid acquisitions within a defined period (Roy et al. 2008; Smith and 

Wooster 2005).  

As detailed in Chapter 2, the burned area spectral signal persistence time, as observed by 

MODIS, was estimated globally across different ecosystems and periods of the year: 58% of the 

MODIS global annual burned area can be accurately detected for up to 32 days after the day of burning 

and 29% for a period between 32 and 48 days after burning (Melchiorre and Boschetti 2018). When 

considering the 16-days Landsat revisit time, this means that 87% of the annual global burned area is 

imaged by Landsat only up to three times after burning, and before the burned area spectral signal fades. 

Hence, the limited availability of data due to low temporal revisit frequency and cloud obscuration, in 

combination with the limited burned area spectral signal persistence time, could potentially result in 

large burned area omission errors over areas of short persistence time and high cloud occurrence. This 

work builds on Chapter 2 and calculates the potential burned area omission error for a hypothetical 

global burned area product informed only by observations acquired on Landsat 7 overpass days (up to 

16-days apart), within the burned area spectral signal persistence time, compared to the MODIS global 

burned area product, generated with daily observations.  

The chapter is structured as follows. Section 4.3 describes the datasets used to stratify and 

perform the analysis. Section 4.4 describes the definition of the omission error for a global Landsat 

burned area mapping product. Section 4.5 describes the results at two different scales to highlight 
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regional and global differences. The chapter concludes with discussion and recommendations for future 

research and applications. 

4.3. Data 

4.3.1. MODIS global burned area product 

The Collection 6 Terra and Aqua MODIS Global Burned Area Product (MCD64A1) provides 

the estimated day of burning for the 500 m MODIS pixels that are classified as burned within a calendar 

month (Giglio et al. 2018). The algorithm (Giglio et al. 2018) is designed to be extremely tolerant of 

cloud and aerosol contamination, which affected the Collection 5 and 5.1 MCD45A1 MODIS 500 m 

burned area product (Roy et al. 2008). The algorithm applies dynamic thresholds to composite MODIS 

Terra and Aqua imagery generated from a burn-sensitive spectral band index derived from MODIS 

shortwave infrared bands, and a measure of temporal variability. Cumulative MODIS 1 km active fire 

detections are used to guide the selection of burned and unburned training samples and to guide the 

specification of prior burned and unburned probabilities. The MCD64A1 product is distributed in the 

standard MODIS Level 3 10° x 10° land tile format in the sinusoidal projection (Wolfe et al. 1998). 

4.3.2. MODIS land cover product 

The MODIS Land Cover Type product (MCD12Q1) provides five land classification schemes, 

which describe land cover properties derived from one year of observations from Terra and Aqua 

MODIS (Friedl et al. 2010). The Collection 5.1, Level 3 yearly MCD12Q1 is distributed in the standard 

MODIS Level 3, 10° x 10° Land tile format in the sinusoidal projection at 500 m resolution. In this 

work, the International Geosphere and Biosphere Programme (IGBP) scheme was used, which 

identifies 16 land cover classes including 11 natural vegetation classes, 3 developed and 2 non-

vegetated land classes and has a reported 75% overall land cover classification accuracy (Friedl et al. 

2010). 

4.3.3. MODIS cloud mask 

The Collection 6, Level 2, MODIS-Terra cloud mask product (MOD35) (Ackerman et al. 2010) 

provides for each 1km pixel four possible values in decreasing confidence of cloud detection: “Cloudy”, 

“Probably Cloudy”, “Probably Clear” and “Clear”. In this study a conservative definition of the cloud 

mask was used where only pixels labeled as “Cloudy” in the MOD35 product were considered as cloud 

covered since it provides the best correlation between MODIS and Landsat 7 cloud detections (see 

Chapter 3 for more details). The MOD35 product also provides information about the set of 

multispectral test results informed by the 19 MODIS spectral bands, the decision tree used to generate 
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the cloud mask, and limited ancillary information such as day/night, land/ocean, sun glint, and snow 

pixel flags. 

Terra and Landsat 7 are on the same sun-synchronous 16-days revisit period orbit and their 

overpasses lag only 15-30 minutes globally. Because of this orbit configuration, the Landsat 7 ETM+ 

ground swaths coincide with the central nadir-looking portion of the MODIS-Terra swath acquired on 

the same day from the same orbit (Figure 4-1), therefore, the acquisition geometry (sensor’s zenith and 

azimuth angles) is similar and the overpass time lag is within 30 minutes globally. 

 

Figure 4-1: MODIS-Terra ground swaths for 03/21/2016 (red) and the daily overlapping Landsat 7 ETM+ ground 

swaths within 30 minutes (green). The ground swaths were generated using the Committee on Earth Observation System 

(CEOS) COVE Tool (Kessler et al. 2013). The figure illustrates that the nadir (< 8°) portion of the MODIS-Terra swaths 

always coincides with the Landsat 7 ETM+ swaths and there is a 30 minutes lag between Terra and Landsat 7 overpasses 

(Mercury et al. 2012). 

The MOD35 product is a Level 2 product and so is defined in the MODIS orbit swath geometry. 

For each orbit swath of the MOD35 1 km cloud mask, the central portion corresponding to the Landsat 

7 ETM+ swath was extracted (Figure 4-1) and reprojected into the 1 km MODIS sinusoidal equal-area 

projection (Wolfe et al. 1998) using the corresponding MOD03 swath geolocation files (Masuoka et al. 

1998; Wolfe et al. 2002). Nearest neighbor resampling was used, to preserve the input 1 km data values. 

It should be noted that, while in general the reprojection of MODIS swaths to a fixed-Earth projection 

requires compositing because daily swaths overlap at latitudes greater than 30° N/S, the central portion, 

corresponding to the daily Landsat-7 ETM+ swaths, only overlap at latitudes over 80° N/S (Figure 4-

1). Because the MODIS MCD64A1 burned area product is only defined between the latitudes of 70° 

N/S, no compositing was necessary. 
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The output was a daily gridded and tiled cloud mask product, defining the presence of absence 

of clouds as detected by the MOD35 product in correspondence with each  Landsat 7 ETM+ overpass. 

This dataset is henceforth referred to as the MOD35-L7 cloud mask. 

4.3.4. Terrestrial ecoregions of the world map 

The Terrestrial Ecoregions of the World (TEOW) map is a biogeographic division of the 

Earth’s terrestrial biodiversity in 867 ecoregions, which belong to 14 biomes and 8 realms (Olson et al. 

2001). Ecoregions are defined as biogeographic units containing a homogeneous population of natural 

communities (flora and fauna) sharing a large majority of species, dynamics, and environmental 

conditions. Realms provide a subdivision of the main landmasses, and biomes are a convenient 

stratification unit because of their homogeneity of climate and vegetation (Olson et al. 2001). 

In this work, the spatial division of the burned area persistence time, described in Chapter 2, 

was adopted: the TEOW were used as spatial units of the analysis whereas biomes and realms were 

used to present the results at a larger spatial scale. Also following the burned area persistence time 

analysis, the 14 Olson’s biomes were aggregated in 5 larger biomes: Tropical, Temperate, Boreal, 

Mediterranean and Desert/Xeric biomes (Figure 4-2). 

 

Figure 4-2:  Map delineating the borders of the realm (red lines) and the aggregated biomes (color-coded). Oceania 

and Antarctic realms were not considered for this study. From Melchiorre and Boschetti (2018). 
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4.3.5. Burned area persistence time 

The persistence of the spectral signal associated with burned areas was estimated by Melchiorre 

and Boschetti (2018) as the duration of the spectral separability of the burned/unburned areas mapped 

by the MODIS MCD64A1 global burned area product. The separability was computed by analyzing 

time series of Normalized Burn Ratio (NBR) from nadir BRDF-adjusted MODIS reflectances 

(MCD43A4 product). The persistence time was calculated independently for each TEOW ecoregion 

and a second level spatial stratification by land cover was adopted by aggregating the IGBP classes of 

the MODIS land cover product (MCD12Q1) in Forests, Shrublands, and Grasslands & Savanna (Table 

4-1). 

Table 4-1: Land cover aggregation scheme of the MODIS MCD12Q1 IGBP land cover classes used in this study. From 

Melchiorre and Boschetti (2018). 

IGBP Land cover Aggregated land cover 

Evergreen Needleleaf forest 

Evergreen Broadleaf forest 

Deciduous Needleleaf forest 

Deciduous Broadleaf forest 

Mixed forest 

Forest 

Closed shrublands 

Open Shrublands 

Shrubland 

Woody savannas 

Savannas 

Grasslands 

Grassland & Savanna 

Permanent wetlands 

Croplands 

Urban and built-up 

Cropland/Natural vegetation mosaic 

Snow and ice 

Barren and sparsely vegetated 

Not considered 

The persistence time t*
Eco,LC,j was estimated for each ecoregion (Eco), land cover (LC), and 

day of burning j (Table S3, Melchiorre and Boschetti 2018). 

4.4. Methods 

The potential global Landsat burned area omission error was estimated as the average annual 

burned area, detected by the MCD64A1 product, without a post-fire cloud-free observation on Landsat 

overpass days in the period starting from the estimated day of burning, and lasting the duration of the 

associated burned area spectral signal persistence time. At each location, the burned area omission error 

was estimated using the MCD64A1 burned area product and the MOD35-L7 cloud mask from January 

2002 to December 2016. Because of the scale of the analysis, a spatial stratification was adopted, using 
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strata sufficiently fine to capture the variability of burned areas and cloud dynamics (Section 4.4.1). 

The potential burned area omission error was estimated for each stratum, defined by the ecoregions and 

land cover (Section 4.4.2). Finally, the burned area omission error was aggregated at the broader scale 

of biomes and realms to summarize the results (Section 4.4.3). 

4.4.1. Spatial stratification 

The effect of cloud cover on satellite data availability is highly variable regionally and depends 

on the time of the year (Ju and Roy 2008), therefore, following the stratification adopted in Chapter 2, 

the analysis was stratified spatially adopting a two levels stratification. At the first level, burned pixels 

across different ecosystems of the world were stratified by using Olson’s TEOW. Only the ecoregions 

with a valid estimate of the burned area persistence time were considered (Figure 4-3). 

 

Figure 4-3: TEOW map used to stratify the analysis. Ecoregions considered in the analysis are random color-coded, 

ecoregions with negligible fire activity were discarded and are shown in light grey. 

Within each ecoregion, a second level of stratification was introduced, based on land cover as 

defined by the MODIS land cover product (MCD12Q1). Following Melchiorre and Boschetti (2018), 

the land cover classes of the IGBP classification scheme were aggregated into three major classes of 

interest (Forest, Shrubland, Grassland & Savanna), or masked out and removed from the subsequent 

analysis (Urban areas, croplands, and miscellaneous non-burnable surfaces) (Table 4-1). 
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4.4.2. Burned area omission error estimation 

Each MODIS MCD64A1 burned pixel (XB,j) in each combination of Ecoregion (Eco) and land 

cover (LC) considered (XB,j ∈ [Eco, LC]), and with an estimated day of burning j within the ecoregion 

fire season was analyzed. The burned area persistence time t*
Eco,LC,j is defined for each burned pixel 

based on its location (i.e., ecoregion and land cover) and burning date j. The MOD35-L7 cloud mask 

time series for each generic burned pixel XB,j ∈ [Eco, LC] detected as burned on the generic Day of 

Year (DOY) j was extracted starting from the day of burning j and for t*
Eco,LC,j days; that is, the 

estimated persistence time for the given stratum [Eco, LC, j]. Only the observations acquired on Landsat 

overpass days were used (Figure 4-4). 

 

Figure 4-4: MOD35-L7 cloud mask time series extraction over each burned pixel XB,j. The time series started on 

the day of burning j and lasted t*
Eco,LC,j days; i.e., the burned area persistence time. MOD35-L7 cloud data observed on 

Landsat overpass days are extracted for the whole duration of  the period considered. 

From the observations extracted from the MOD35-L7 cloud mask time series, the number of 

post-fire cloud-free observations was calculated for all the burned pixels of the stratum [Eco, LC]. The 

procedure is illustrated in Figure 4-5. The number of times each burned pixel XB,j was cloud-free 

(CFXB,J) after the burning date (j) and within the burned area persistence time t*
Eco,LC,j) was defined 

as (Equation 1): 

 
𝐶𝐹𝑋𝐵,𝑗

= ∑ 𝑀𝑂𝐷35 − 𝐿7(𝐷𝑂𝑌)𝑋𝐵,𝑗
 

𝑗+Δ𝑡𝑏𝑎,𝑗
∗

𝐷𝑂𝑌=𝑗
 

(1) 

where 𝑀𝑂𝐷35 − 𝐿7(𝐷𝑂𝑌)𝑋𝐵,𝑗
 assumes value 1 if the pixel XB,j was cloud-free in the MOD35-

L7 cloud mask time series on day DOY and 0 otherwise. If there are no post-fire cloud-free observations 

within t*
Eco,LC,j days (i.e., 𝐶𝐹𝑋𝐵,𝑗

 = 0), the burned pixel XB,j is considered as omission error in a 

hypothetical Landsat global burned area product. 
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Figure 4-5: Schematic representation of the cloud-free observations count. At each location XB,j classified as burned 

in the MCD64A1 product on Day Of Year (DOY) j, cloud mask observations were extracted following the Landsat 7 ETM+ 

geometry and acquisition calendar within the time series defined by the day of burning and the persistence time. The burned 

pixel is classified as detected from Landsat if at least one cloud-free acquisition is retrieved (green pixels) or omitted if all the 

acquisitions extracted are flagged as cloudy (red pixel). 

𝐶𝐹𝑋𝐵,𝑗
 was calculated for each pixel detected as burned by the MCD64A1 product between 

2002 and 2016, and it was subsequently used to calculate the average annual area burned, where at least 

a given number of post-fire observations are available. The average area burned, calculated as a function 

of the Number of Cloud-Free (NCF) observations for each stratum [Eco, LC] is defined as (Equation 

2).  

 
𝐴𝐸𝑐𝑜,𝐿𝐶(𝑁𝐶𝐹) =

1

𝑌
∑ 𝐴𝑋𝐵,𝑗

𝛿𝐶𝐹𝑋𝐵,𝑗
(𝑁𝐶𝐹)

𝑋𝐵,𝑗∈𝐸𝑐𝑜,𝐿𝐶

  
(2) 

Where Y is the number of years considered in the analysis, 𝐴𝑋𝐵,𝑗
 is the area of the generic pixel 

XB,j of a given stratum [Eco, LC], 𝛿𝐶𝐹𝑋𝐵,𝑗
(𝑁𝐶𝐹) is the Dirac measure assuming value 1 if 𝐶𝐹𝑋𝐵,𝑗 (i.e., 

the number of cloud-free observations associated with the generic pixel XB,j) is equal to NCF and 0 

elsewhere. 

Finally, the burned area omission error for each stratum [Eco, LC] was calculated as the average 

annual burned area having no cloud-free observations (Equation 3). 

 𝑂𝐸𝐸𝑐𝑜,𝐿𝐶 = 𝐴𝐸𝑐𝑜,𝐿𝐶(𝑁𝐶𝐹 = 0) (3) 
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Figure 4-6 shows an example of the average annual burned area calculated as a function of the 

NCF observations and the relative omission error for a combination of ecoregion and land cover. 

 

Figure 4-6: Example of Landsat omission error estimate from a set of burned pixels extracted from the TEOW 

Kimberly Tropical Savanna, Northwest Australia, for the Grassland & Savanna land cover. The graph shows the average 

annual burned area calculated as a function of the number of cloud-free (NCF) observations. The estimated omission error is 

the average annual burned area with no cloud-free observations (NCF = 0). 

4.4.3. Biome/Realm level aggregation of the results 

The average annual burned area potentially omitted by Landsat 7 ETM+ calculated in each 

ecoregion was aggregated at a larger spatial scale using the aggregated Biomes and Realms as defined 

in Section 4.3.4. (Figure 4-2), while maintaining the stratification by land cover. 

The average annual burned area as a function of the number of cloud-free observations for each 

spatial unit defined by Biomes (B), Realms (R), and land cover (LC) was simply calculated by 

summation of all the ecoregions belonging to the spatial unit, and globally by summation over the 

realms (Equation 4): 

 AB,R,LC(NCF) = ∑ AEco,LC(NCF)

Eco∈B,R

 
(4) 

Finally, the burned area omission error for each Biome, Realm and land cover was calculated 

as the average annual burned area having no cloud-free observations (Equation 5). 

 𝑂𝐸B,R,LC = 𝐴B,R,LC(𝑁𝐶𝐹 = 0) (5) 

4.5. Results 

4.5.1. Burned area omission error at the ecoregion scale 

Globally, for the 2002-2016 period and limited to the ecoregions and land cover considered, 

the MCD64A1 average annual burned area analyzed was ~3,470 103 km2, of which ~170 103 km2 (5.0 
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%), ~290 103 km2 (8.6 %), and ~3,000 103 km2 (86.4 %) over Forest, Shrubland, and Grassland & 

Savanna land cover, respectively. Figure 4-7 shows the estimated potential omission error of a Landsat 

global burned area product compared to the MCD64A1 product for each ecoregion and aggregated land 

cover class in terms of average annual burned area omitted (Equation 3) (left column) and in terms of 

average annual omission error percentage of the total MCD64A1 average annual burned area detected 

(right column). The full result tables are presented as supplementary material (Table S1). 

 

Figure 4-7: Potential average annual burned area omission error of Landsat 7 with respect to the MCD64A1 global 

burned area product (left column) and relative percentage (right column) for each aggregated land cover: Forest (top row), 

Shrubland (middle row) and Grassland & Savanna (bottom row). Ecoregions excluded from the analysis are depicted in gray 

for geographic reference. 
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The Forest land cover has the lowest amount of MCD64A1 burned area detected. The 

equatorial ecoregions have large omission errors with peak values of 90%, 80%, and 83% in the 

Peruvian, Northern Congo, and Indonesian tropical forest ecoregions respectively (Figure 4-7, top row). 

Large omission errors (18%) were estimated also in the East Siberian taiga ecoregion. The largest 

omission errors in the North American continent were 30% and 17% respectively in the boreal forest 

ecoregions of Alaska and in the South-East United States respectively. 

The Shrubland land cover had the lowest omission error globally, with values ranging from 3% 

in the Kalahari savanna to 15% in the Sub-Saharian ecoregions. 

Because of the prevalence of burned area in the Grassland & savanna land cover class in the 

Tropical ecoregions, this land cover had the largest omission errors, when expressed in terms of area 

rather than percentage (Figure 4-7, bottom row, left column). Some ecoregions in Zambia, Congo, and 

Sudan have an average annual burned area omission error over 30 103 km2, with the maxim value (71 

103 km2 ) observed in Sudan. Expressed in percentage, these errors range 15 % to 25 % (Figure 4-7, 

bottom row, right column). The Cerrado ecoregion in Brazil has the largest estimated burned area 

omission error in South America with ~25 103 km2 (25 %) and the tropical savanna ecoregions of 

Northern Australia have similar results with ~5 103 km2 average annual omission error (10 % to 15 % 

when expressed as percentage). Equatorial ecoregions in South America and Africa have the largest 

omission errors (in the order of 80% and 70% respectively). In North America, the largest errors (30%) 

are observed in the boreal forest ecoregions of Alaska and in the South-East United States.  

4.5.2. Burned area omission error at the Realm/Biome scale 

The results were aggregated spatially using the Biomes and Realms of the TEOW (section 

4.4.3) maintaining the stratification in the three aggregated land cover classes considered (Table 4-1). 

Figure 4-8 shows the histogram of the average annual burned area as a function of the number 

of cloud-free observations for the Forest land cover in all the biomes and realms considered (Equation 

4). For the Forest land cover, the majority of the MCD64A1 burned area was detected in the Tropical, 

Temperate, and Boreal biomes. The histogram was unimodal for the Tropical biome with a mode of 0 

cloud-free observations within the persistence time and 43.3% of the total average annual MCD64A1 

burned area omission error. The histogram for the Temperate biomes was also unimodal, with a peak 

at 1 cloud-free observation, mainly due to burned area detected in the Paleoarctic realm and omission 

error equal to 24.3% of the total average MCD64A1 burned area detected. Only 7.8% of the average 

annual burned area had more than 7 cloud-free observations, mainly located in the Australasia and 

Neoarctic realm. Finally, the histogram for the Boreal biomes showed different values for the two 

realms of Neoarctic and Paleoarctic; the Neoarctic realm is characterized by a larger number of cloud-
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free acquisitions compared to the Paleoarctic. The difference is partially explained by longer persistence 

times of the Neoarctic realm and, therefore, a higher probability of sensing cloud-free observations 

compared to the Paleoarctic realm. 

 

Figure 4-8: Average annual burned area detected in Forest aggregated land cover class as a function of the number 

of cloud-free observations, presented for each aggregated biome and globally. The histograms were computed with bins of 1 

observation, and overflow bin of 7 cloud-free observations. The colors represent, in each bar of the histograms, the aggregation 

by realm. 

Figure 4-9 shows the histogram of the average annual burned area as a function of the number 

of cloud-free observations for the Shrubland land cover in all the biomes and realms considered 

(Equation 4). For the Shrubland land cover, the majority of the burned area was detected in the Tropical 

and Desert/Xeric biomes of the Australasia and Afrotropic realms. The histogram was unimodal for 

both biomes, the mode for the Tropical biome was 2 cloud-free observations and it was 4 for the 

Desert/Xeric biome. The largest omission error was found in Tropical biomes with ~10 103 km2 average 

annual omission error (~9 % of the total MCD64A1 average annual burned area). 
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Figure 4-9: Average annual burned area detected in Shrubland aggregated land cover class as a function of the 

number of cloud-free observations, presented for each aggregated biome and globally. The histograms were computed with 

bins of 1 observation, and overflow bin of 7 cloud-free observations. The colors represent, in each bar of the histograms, the 

aggregation by realm. 

Finally, Figure 4-10 shows the histogram of the average annual burned area as a function of 

the number of cloud-free observations for the Grassland & Savanna land cover in all the biomes and 

realms considered (Equation 4). For the Grassland & savanna land cover, the majority of the burned 

area was detected in the Tropical and Temperate biomes. The histogram in the Tropical biomes was 

dominated by the detections in the Afrotropic realm. The mode was 2 cloud-free observations and only 

6.0 % of the burned area analyzed had 3 or more cloud-free observations. The omission error for the 

Afrotropic Tropical biome was ~422 103 km2 average annual omission error (~19 % of the total 

MCD64A1 average annual burned area). Similarly, for the Temperate biomes, the histogram of the 

burned area was unimodal with a mode of 1 cloud-free observation, corresponding to 27.7% of the 

average annual burned area; 25.6% had 2 cloud-free observations and only 14.5% had more than 3 

cloud-free observations. The omission error for Temperate biomes was ~20 103 km2 average annual 

omission error (~15 % of the total MCD64A1 average annual burned area). 
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Figure 4-10: Average annual burned area detected in Grassland & Savanna aggregated land cover class as a function of 

the number of cloud-free observations, presented for each aggregated biome and globally. The histograms were computed 

with bins of 1 observation, and overflow bin of 7 cloud-free observations. The colors represent, in each bar of the histograms, 

the aggregation by realm. 

Globally, the burned area omission error was 19% of the total average annual burned area 

detected by the MODIS MCD64A1 product. The omission error was largely dependent from the biome 

and land cover analyzed and, globally, it was 33.4 %, 5.4 % and 19.4 % in Forest, Shrubland, and 

Grassland & savanna, respectively (Table 4-2). In all biomes, the highest estimated omission errors 

were observed in Forest, ranging from 6.4% in the Mediterranean biomes to 43.3% in the Tropical 

biomes. Conversely, in all biomes the lowest errors were observed in the Shrubland land cover, ranging 

1.3% in the Desert/Xeric biomes to 11.6% in Temperate biomes.  

Table 4-2: Average annual burned area omission error for each of the aggregated Biomes and land cover considered. 

103 km2 

(%) 
Tropical Temperate Boreal Mediterranean Desert/Xeric Global 

Forest 
46.8 

(43.3) 

6.1 

(24.4) 

5.1 

(13.2) 

0,09 

(6.4) 

0.21 

(16.9) 

58.3 

(33.4) 

Shrubland 
10.0 

(9.1) 

1.5 

(11.6) 

0.92 

(6.2) 

0.09 

(1.8) 

1.6 

(1.3) 

14.2 

(5.3) 

Grassland 

& 

Savanna 

551.9 

(20.1) 

20.2 

(15.0) 

3.1 

(12.7) 

0.18 

(3.2) 

4.0 

(5.6) 

579.5 

(19.4) 

Total 
608.8 

(20.5) 

27.9 

(16.1) 

9.2 

(11.8) 

0.37 

(3.0) 

5.8 

(3.0) 

652.0 

(19.0) 



99 
 

Overall, the Desert/Xeric and Mediterranean biomes had the lowest omission errors (3%). 

Tropical biomes were the most affected, with 20.5 % omission error. Tropical biomes, having the 

largest amount of MCD64A1 average annual burned area detected, had also the highest omission error 

when expressed in terms of area (608.8 103 km2 per year) (Table 4-2). 

4.6. Discussion 

This Chapter estimated the potential omission error of a global burned area product informed 

by observations on Landsat 7 overpass days, compared to the MCD64A1 MODIS global burned area 

product. The Landsat geometry of acquisition and 16-days revisit calendar was used to establish the 

location and timing of the overpasses, the MODIS MCD64A1 monthly burned area product and daily 

MODIS MOD35-L7 cloud mask from January 2002 to December 2016 were used to identify burned 

and cloudy pixels, respectively.  

Globally, 81% of the total MCD64A1 burned area analyzed had at least one cloud-free Landsat 

acquisition within the persistence time of burned areas, hence the global omission error was estimated 

as 19% of the total MCD64A1 average annual burned area detected. The maximum error was estimated 

for burned areas detected over Forest (33%) and the minimum over Shrublands (5.3%). 

The burned area omission error was above 50% for ecoregions in equatorial Amazon forest, 

Western Central Africa, and Indonesia where the cloud occurrence and persistence, combined with a 

rapid post-fire vegetation regrowth, affect also the burned area detection capability of the MODIS 

product (Giglio et al. 2009), informed by daily observations. The high cloudiness of these regions also 

influences the availability of cloud-free observations limiting the potential ability of Landsat land 

monitoring applications requiring more than one cloud-free acquisition per year (Kovalskyy and Roy 

2013). 

4.6.1. Realm/Biome scale 

For the forest land cover, the majority of the MCD64A1 burned area in Tropical biomes was 

detected in the Afrotropic, Indo-Malay and Neotropic realms. Anthropogenic activities account for the 

majority of burning events in the tropical Amazon rainforest (Cochrane et al. 1999; Kumar et al. 2014), 

African rainforests (Bucini and Lambin 2002; Eva and Lambin 2000; Tovar et al. 2014) and Indo-

Australian rainforests (Hope et al. 2004). Due to the anthropogenic nature, these fires have larger 

omission error rates, due to a combined effect of post-fire treatments (e.g. land clearing, tilling) and 

cloud cover (Cochrane 2003), even for the MCD64A1 product informed by daily observations.  

The majority of the forest burned area in Temperate biomes was detected in Australasia, 

Neoarctic and Paleoarctic realms. 
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In the Neoarctic realm, the highest omission errors were found in Alaska and the southeast US, 

which is a good example for the combination of short persistence of burned area spectral signal and 

cloud cover effect. In the southeast US, the omission error is likely linked to the short persistence time 

estimate found in the southeast US, which is consistent with frequent surface fires and rapid post-fire 

grass regeneration observed in that region (Glitzenstein et al. 1995; Slocum et al. 2003). In Alaska, 

early snowfall immediately after the fire season can cover the burned land which remains undetectable 

until snowmelt. 

The large differences found in the omission error for the Neoarctic and Paleoarctic boreal forest 

is likely due to the different burning conditions in these two realms, which also influenced the length 

of the persistence time of the spectral signal (Melchiorre and Boschetti 2018). Fires in Paleoarctic 

boreal forests are dominated by low intensity surface fires and typically result in smaller sized fires (Li 

et al. 2012) than Neoarctic boreal forests fires, where high intensity crown fires are predominant instead 

(de Groot et al. 2013; Wierzchowski et al. 2002). 

For the Shrubland land cover, the majority of the MCD64A1 burned area was detected in the 

Tropical and Desert/Xeric biomes of the Australasia and Afrotropic realm. In Australasia, Shrubland 

Tropical fires are typically characterized by a shorter persistence of char on the ground due to rapid 

regrowth of vegetation and due to removal by wind and atmospheric agents (Pereira 2003) which, in 

combination with cloud cover effect, limited the number of cloud-free observations and the resulting 

omission error is larger compared to Desert/Xeric fires. 

The great majority of global MCD64A1 burned area in Grassland & Savanna land cover was 

detected in the Afrotropic realm. Cloud cover limits the number of available post-fire observations to 

1 or 2 for 67% of the total MCD64A1 burned area whereas the omission error is 19%. The persistence 

time for the Afrotropic Grassland and Savanna had small variability (Melchiorre et al. 2018) and the 

omission error differences were mostly due to the different cloud cover occurrences. The highest 

omission error was estimated in the Afrotropic equatorial regions (>30% of the total MCD64A1 annual 

average burned area) and it was reduced for Tropical and subtropical regions. 

4.7. Conclusions 

In this work, we estimated the omission error of a hypothetical Landsat global burned area 

product due to the combined effect of the impermanent spectral signal associated with burned area and 

cloud cover. The omission error was estimated as the average annual burned area detected by the 

MODIS MCD64A1 product with no post-fire cloud-free observations within the burned area 

persistence time, estimated in Chapter 2. MCD64A1 burned pixels were considered detected by the 
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hypothetical Landsat 7 if at least one post-fire cloud-free observation was available, hence the omission 

error estimated is due solely to the limited availability of data caused by the combined effect of the 

lower revisit frequency of Landsat and cloud cover. Globally, the omission error was 19% of the 

MCD64A1 average annual burned area (33.4% in Forest, 5.4% in Shrublands and 19.4% in Grassland 

& Savanna).  

The revisit frequency of moderate resolution satellites can be virtually increased using data 

fusion of different sensors (Li and Roy 2017). Thanks to the successful launches of Landsat 8 (Roy et 

al. 2014), Sentinel 2A and Sentinel 2B (Drusch et al. 2012) and the planned launch of Landsat 9 in 

2020, the number of operative moderate resolution satellites designed for terrestrial monitoring is 

increasing. The techniques necessary to use time series of harmonized data from different virtual 

constellations of satellites are constantly improving (Claverie et al. 2018; Franch et al. 2019), in 

particular for the design of global burned area detection algorithms (Roy et al. 2019). 

Virtual constellations are defined by the Committee on Earth Observation Satellites (CEOS) as 

a “set of space and ground segment capabilities that operate in a coordinated manner to meet a combined 

and common set of Earth Observation requirements” and, when they are composed by sensors with 

similar spatial and spectral characteristics, they are able to mitigate limitations of any one particular 

sensor (Wulder et al. 2015). A possibility for future research would be to estimate the benefit, in terms 

of reduction of the expected burned area omission errors, of using data from different virtual 

constellations of existing and new sun-synchronous, near-polar orbiting satellites.  
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Chapter 5: Conclusion and Future Work 

5.  

5.1. Summary and conclusion  

My dissertation focused on estimating the combined effect of the impermanent nature of burned 

areas, revisit frequency and cloud cover on global burned area mapping using Landsat data. In 

particular, I first analyzed the temporal persistence of the spectral signal associated with burned areas, 

which provides an estimation of the period after the burning date in which burned areas can be mapped 

reliably. Using the results of the persistence time analysis, I then estimated the potential omission error 

of a hypothetical global Landsat burned area product due to low revisit frequency and cloud cover, 

performing a simulation where daily MODIS data are combined with the Landsat acquisition calendar 

and observation geometry. The findings of this simulation highlighted the locations in which the low 

revisit frequency of Landsat, combined with the reduced data availability due to cloud cover, is not 

sufficient for accurate global burned area mapping. 

Chapter 2 presented a global estimation of the burned area persistence time, defined as the 

duration of the spectral separability of the burned / unburned areas mapped by the MODIS global 

burned area product. The separability was computed by analyzing time series of Normalized Burned 

Ratio (NBR) derived from nadir BRDF-adjusted MODIS reflectances. Results showed that, globally, 

the median burned area persistence time was 29 days and 86.6% of the MODIS global area can be 

detected accurately only for up to 48 days. The results, therefore, indicate that the persistence time can 

be a limiting factor for mapping burned areas using moderate resolution satellite sensors, which have a 

low temporal resolution (e.g. Landsat 16 days, Sentinel 2A and 2B 10 days each). The analysis 

highlighted the importance of the burning date on burned area mapping: early and late fires had lower 

persistence time compared to fires burning in the central portion of the fire season. The effect was 

prevalent in ecoregions with clearly defined and alternated dry and wet seasons, or with persistent snow 

cover in the winter months. Persistent clouds and snow can cover the burned area spectral signature for 

long periods, reducing the accuracy of burned area mapping algorithms based on change detection 

techniques over rolling periods of time.  

Chapter 3 presented a global intercomparison of MODIS Terra and Landsat 7 Enhanced 

Thematic Mapper (ETM+) cloud detections. The results showed high correlation between MODIS and 

Landsat cloud fractions (R2 = 0.83), negligible bias (median difference: < 1%) and low dispersion 

around the median (inter-quartile range: [-2%, 6%]). The results indicate that the cloud cover detected 

by MODIS data can be used as a proxy for Landsat 7 cloud cover, globally at the Landsat WRS scale. 



110 
 

The geographic analysis of the results revealed that the largest differences between the MODIS 

(MOD35) and Landsat cloud fraction occur along the coastlines, and at high latitude. In the case of 

coastal areas, further analysis indicated that the errors are mostly observed at WRS path/row locations 

with land fractions ≤0.05. In these cases, cloud movement in the 30 minutes between the MODIS-Terra 

and Landsat 7 overpasses may result in large discrepancies of the estimated cloud percentage over land. 

At high latitudes and over mountain ranges, ice and snow were flagged as clouds by the MODIS 

MOD35 product introducing large discrepancies with the Landsat cloud cover fraction. 

Finally, Chapter 4 presented the potential omission error of a hypothetical Landsat global 

burned area product estimated as the amount of burned area detected by MODIS that would not be 

detected by Landsat 7 because of the combined effect of the impermanent spectral signal associated 

with burned area and missing observations due to cloud cover. Globally, the resulting omission error 

was estimated in 19% of the average annual burned area detected by MODIS, with a maximum error 

over forest land cover (33%) and minimum over shrubland land cover (5%). The potential omission 

error should be considered conservative for the design of a global burned area product using Landsat 7 

acquisitions after 2003 because of the Scan Line Corrector (SLC) failure that resulted in a systematic 

failure to sense 22% of each image (Markham et al. 2004). The results were derived using the 

acquisition calendar of Landsat 7 only; however, thanks to the aggregation of data from over 15 years 

of acquisitions, the results can be extended to the other existing Landsat sensors, which are positioned 

on the same Landsat 7 orbit shifted by an 8-days lag, and also to Landsat 9, which is planned to be 

launched in the same orbit as Landsat 7 (Wulder et al. 2019) by Spring 2021. 

5.2. Limitations and future research 

The magnitude of the potential omission error estimated for a Landsat global burned area 

product suggested that the revisit frequency of Landsat is too low to generate accurate global burned 

area maps. However, the potential omission error analysis, described in Chapter 4, used as input the 

burned area persistence time estimated in Chapter 2, which has some caveats and limitations. Burned 

area persistence time can be limited by the recovery of NBR values to pre-fire levels after rapid re-

vegetation or other factors, such as snowfall, that occlude the charcoal and bare soil masking the 

spectral signature associated with burned areas. However, the analysis was performed comparing the 

post-fire spectral signal temporal trajectories to unburned pixel trajectories within the same ecoregion 

and land cover assuming they had similar characteristics of burned pixels. Pre-fire fuel conditions can 

be different from unburned areas: different vegetation types, fuel moisture, and load can alter temporal 
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trends of burned and unburned pixels (Archibald et al. 2018) potentially with the effect of reducing the 

estimated persistence time.  

The persistence time was estimated using MODIS data at 500 m spatial resolution and the effect 

of partially burned pixels, understory burns, land-snow patterns, and vegetation phenology can reduce 

the estimated persistence time (Chu and Guo 2014). Higher spatial resolution data have the benefits of 

increasing the detections of burned area (Roteta et al. 2019; Roy et al. 2019), reducing the occurrence 

of partially burned pixels and increasing the spectral separation of burned / unburned areas (Huang et 

al. 2016); therefore, it is reasonable to expect longer estimates of burned area persistence computed 

using moderate resolution data.  

The persistence time analysis did not account for further post-fire land cover and land use 

changes. Anthropogenic activities account for the majority of burning events in tropical rainforests 

(Cochrane et al. 1999; Eva and Lambin 2000; Hope et al. 2004) and human-ignited rainforest fires are 

strongly associated with further land cover changes (Bucini and Lambin 2002). The persistence time 

estimates are influenced by other post-fire activities that alter burned areas spectral signatures. For 

example, in Amazonia fire activity is connected to other disturbances having spectral similarities to 

burned areas such as logging, deforestation, and land conversion which only complex algorithms can 

discriminate (Morton et al. 2011).  

Cropland land cover was not considered in the persistence time analysis since the MODIS 

burned area product is not suited to capture the size and heterogeneity of cropland burned area (Giglio 

et al. 2009; Lasko et al. 2017) because of its spatial resolution, and because other agricultural practices 

(e.g. tilling) often follow immediately (Hall et al. 2016) and have similar spectral signatures 

(Vanderhoof et al. 2017). However, croplands and other managed land were considered in the analysis 

if not correctly mapped in the MODIS land cover product and the inclusion of fires over these land 

cover could have had a shortening effect on the estimated persistence time in ecoregions where 

agricultural fires are predominant. 

Finally, both omission and commission errors in the MCD64A1 product, used to separate the 

population of burned and unburned pixels, caused the inclusion of post-fire temporal trajectories in the 

unburned class and the inclusion of unburned trajectories in the burned class with a shortening effect 

on the estimated persistence time. 

The estimation of the potential burned area omission error with moderate resolution sensors 

could be expanded to other sensors used independently and in virtual constellations, which are defined 

by the Committee on Earth Observation Satellites (CEOS) as a “set of space and ground segment 
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capabilities that operate in a coordinated manner to meet a combined and common set of Earth 

Observation requirements”, since virtual constellations having similar spatial and spectral 

characteristics are able to mitigate the limitations of any one particular sensor (Wulder et al. 2015). It 

should be noted that the approach described in Chapter 4 exploits the fact that Terra trails Landsat 7 on 

the same orbit with 30 minutes lag. Landsat 7 ETM+ ground swaths always coincide with the central 

nadir-looking part of MODIS-Terra ground swaths, and the time lag between MODIS-Terra and 

Landsat 7 ETM+ acquisitions is constant and sufficiently small to approximate the cloud cover affecting 

Landsat 7 data using MODIS-Terra cloud mask data. This approximation is not realistic for other 

sensors with variable and longer overpass lag with MODIS-Terra. 

Future research should establish a statistical framework for the analysis of cloud-free data 

availability to virtual constellations of moderate resolution (10 – 30 m) sensors within the burned area 

persistence time as calculated in Chapter 2. The goal would be to estimate the benefit, in terms of 

reduction of expected omission errors, of using data from different virtual constellations of existing 

(e.g. Landsat 8, Sentinel 2A/B) and planned (e.g., Landsat 9) sun-synchronous, near-polar orbiting 

satellites. The effect of cloud cover on data availability for mapping burned areas using data from 

different constellations of moderate resolution satellites can be assessed using statistical metrics at a 

lower spatial resolution, similar to the metrics proposed for defining the revisit frequency requirements 

for global agricultural monitoring (Whitcraft et al. 2015a; Whitcraft et al. 2015b). However, due to 

cloud cover detections variability with sensors’ overpass time and geometry of acquisitions, estimates 

of the burned area differences with global products will present bias and uncertainties difficult to 

estimate accurately. 

When the orbits and acquisition calendars of other satellites (e.g., Landsat 8, Sentinel 2A and 

2B) are compared to the MODIS Terra overpasses, the time lag is not constant, and, in extreme cases, 

it is longer than 1 day. The reduced number of cloud free observations for moderate resolution sensors 

can be estimated using cloud probability derived from MODIS observations (Whitcraft et al. 2015b); 

however, this approach requires additional assumptions on cloud detections (e.g., spatial and temporal 

independence of cloud occurrences (Roy et al. 2006)) and might produce inaccurate results due to 

several factors such as the dynamics of clouds. Statistical analysis of moderate resolution sensors cloud 

cover using MODIS data should take into account that clouds move, evolve and, on average, cloud 

cover increases during the day over land (Feidas and Cartalis 2005; King et al. 2013; Li et al. 2019). 

Additionally, satellite cloud detections increase with the off-nadir sensor view angle (King et al. 2013; 

Maddux et al. 2010), hence the statistical analysis of clouds have reduced accuracy if the overpass time 
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and the observation geometry (i.e., sun and sensor zenith and azimuth angles) of MODIS and the 

simulated moderate resolution sensor are not similar.  

Also, satellite cloud detections vary depending on the sensor's spatial resolution. MODIS 

observations, having a coarser spatial resolution, fail to detect small and sparse clouds at low cloud 

levels and miss small gaps in cloud cover at high cloud levels, with an overall overestimation of cloud 

detections compared to the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) (Zhao and Di Girolamo 2006) and Landsat 7 (Melchiorre et al. 2020). The MODIS cloud 

detection overestimation can also be partly explained by false positive detections in the MODIS cloud 

mask over snow, coastlines, rivers and lakes regions, known issues of the MODIS cloud product 

(Ackerman et al. 2010; Ault et al. 2006). Finally, multispectral bands available and different spectral 

resolution can result in different cloud detections (Nakajima et al. 2011; Zhao and Di Girolamo 2006). 

MODIS cloud masking algorithm uses multiple thermal bands and the water vapor/CO2 absorption 

bands, typically not available on moderate resolution sensors. For example, these bands are missing 

from the Landsat 7 instrument, resulting in low sensitivity to optically thin clouds (Zhu and Woodcock 

2012). In general, cloud detection algorithm differences may result in different cloud masks at coarse 

(Holz et al. 2008) and at moderate spatial resolution (Foga et al. 2017) 

Frequent acquisitions of geostationary satellites could be used in future works to estimate the 

expected occurrence and variability of cloud cover at the overpass time of specific moderate resolution 

sensors. Cloud cover detections from geostationary satellites have been historically used to build the 

International Satellite Cloud Cover Project (ISCCP) dataset (Rossow and Schiffer 1999; Schiffer and 

Rossow 1985) and their data are used in cloud cover forecast with good accuracy (Escrig et al. 2013); 

however, cloud detection differences due to the different geometry of acquisition, bands availability 

and spatial / radiometric resolution should be addressed. For example, different cloud fractions were 

detected between MODIS and the ISCCP, especially over optically thin clouds (Pincus et al. 2012) and 

between MODIS and the geostationary Advanced Himawari Imager (AHI) over the Tibetan plateau 

(Shang et al. 2018). 

In the future, when the moderate spatial resolution sensors period of activity will allow robust 

multi-year analysis globally, it will be possible to estimate burned area persistence times and perform 

statistical analysis of cloud-free data availability using moderate resolution data. Thanks to the open 

policy of the ESA/EU Copernicus Sentinels (Berger et al. 2012) and USGS Landsat (Zhu et al. 2019) 

data, global moderate resolution burned area mapping algorithms are being developed using different 

optical multi-spectral sensors (Roteta et al. 2019; Roy et al. 2019) and can include radar data 
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acquisitions to improve detection accuracy in areas with persistent cloud cover (Belenguer-Plomer et 

al. 2019; Tanase et al. 2020).  

The results presented and discussed in this work have implications on the length of the rolling 

periods, used in change detection algorithms to detect burned areas, and identified locations where the 

occurrence of clouds can have degrading effects on burned areas mapping accuracy. While burned area 

maps generated from moderate resolution sensors data have been traditionally used for local 

applications (Chuvieco et al. 2019; Mouillot et al. 2014) or for the validation of global coarse resolution 

products (Boschetti et al. 2016; Padilla et al. 2014; Roy and Boschetti 2009), global moderate resolution 

burned area products will be generated in the foreseeable future. This task is facilitated by the 

harmonization of the data streams generated by the NASA/USGS Landsat program and by the ESA/EU 

Copernicus missions (Claverie et al. 2018), leading to a virtual constellation of moderate resolution 

satellites having less than 3 days median average revisit time (Li and Roy 2017). The first prototype 

algorithms exploiting the virtual constellation of Landsat 8 and Sentinel 2 for global burned area 

mapping are under development (Roy et al. 2019); once the products are available to the scientific 

community, they will enable improved estimates of global burned areas to all the fire information user. 
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