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Abstract

Fiber-optic sensors are of interest in a wide range of fields. In particular, fiber-optic

interferometers are ideally suited for acoustic and vibration measurement applications, such as

in the oil exploration industry. Primary benefits of fiber-optic sensors include Electromagnetic

Interference (EMI) immunity, remote interrogation, and the ability to multiplex hundreds of

sensors on a single fiber. However, one issue impacting the adoption of fiber-optic sensing

technology is limited dynamic range.

This dissertation presents a novel approach to extending the dynamic range of heterodyne

modulated fiber-optic interferometers. By measuring and tracking the instantaneous

heterodyne carrier frequency, a correction factor can be obtained to mitigate excession errors

of the demodulator, thereby extending the high-end dynamic range.

Of particular importance to the dynamic range extension approach is how the carrier

frequency is measured. Three methods of frequency discrimination are presented as part of

this work. Two of the methods, Digital Instantaneous Frequency Measurement (DIFM) and

Discrete Fourier Transform (DFT), are shown to be well suited for the extension technique.

DIFM requires substantially fewer hardware resources, but DFT has a small performance

advantage.

A MATLAB simulation script was developed to test the theory of this work. Simulations were

conducted to test the viability of the individual frequency discrimination methods and the

dynamic range extension approach itself. The simulations demonstrated the ability of the

approach to provide a more than 20 dB dynamic range extension. The primary limitations of

the approach are the available system bandwidth and the hardware resources required to

measure that bandwidth.

The theory and simulations presented as part of this dissertation were verified through

experimental testing. Both the DIFM and DFT variants of the approach were implemented in

a Field Programmable Gate Array (FPGA) and tested under real-world conditions. The

experimental results closely matched the simulations, and verified both as being capable of

providing a reliable dynamic range extension of 20 dB or more.



iv

Acknowledgments

First and foremost, I would like to thank my major professor Dr. James Frenzel. His guidance

has helped me throughout my entire long and winding college experience. Without his

unwavering support for my non-traditional college path, none of this would have been possible.

I especially appreciate the added confidence boosts he provided when necessary.

I would also like to thank my entire committee, Dr. Gregory Donohoe, Dr. Suat Ay, and Dr.

Michael Anderson. Discussions with them early on were instrumental in focusing the direction

of my research. A special thank you also goes to the late Dr. Kenneth Noren, who served on

the committee before his untimely passing. I had the pleasure of having Dr. Noren as an

instructor for numerous courses.

Funding for this research was provided by the Naval Surface Warfare Center, Carderock

Division’s (NSWCCD), Section 219 fund. I would like to thank Dr. Jack Price, Dr. Paul

Shang, Dr. Steve Potashnik, and Steve Finley for their support and backing.

A thank you goes to the “Bos Newton” duo. I sincerely appreciate all of your support in

figuring out how to build the sensors and in helping setup the experimental tests for me.

Thanks also for keeping me laughing through all the stress.

Lastly, I want to thank my wife and family. I could not have done this without their support.

To my wife, thank you for picking up the slack at home during my long hours of work. Thank

you for also tolerating my mood swings when things weren’t going so well. Finally, thank you

to my little girl Elizabeth Hope. Your arrival time has done more to keep me motivated and

on schedule than anything else.



v

Table of Contents

Authorization to Submit ii

Abstract iii

Acknowledgments iv

Table of Contents v

List of Figures x

List of Acronyms xiv

List of Symbols xvi

Chapter 1: Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Fiber-Optic Interferometers 5

2.1 Fiber-Optic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mach-Zehnder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Heterodyne Mach-Zehnder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Pulsed Heterodyne Michelson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 In-Line Michelson TDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Heterodyne Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Analog Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Digital Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



vi

Chapter 3: Dynamic Range Limitations 20

3.1 Fiber-Optic Interferometer Dynamic Range . . . . . . . . . . . . . . . . . . . . . 20

3.2 Low-End Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Laser Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Laser RIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Oscillator Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 Fiber Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 Transimpedance Amplifier (TIA) Thermal Noise . . . . . . . . . . . . . . 23

3.2.6 Optical Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.7 EDFA Spontaneous-Spontaneous Noise . . . . . . . . . . . . . . . . . . . 24

3.2.8 EDFA Signal-Spontaneous Noise . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.9 Double Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.10 Finite Extinction Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.11 Polarization Fading and Noise . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.12 Total Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 High-End Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Dynamic Range Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Dynamic Range Extension Literature Review . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Derivative Pulse Interrogation . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Predictive Phase Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.3 Multi-wavelength Interrogation . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.4 Phase-Polarization Measurement . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4: Signal Fringe Rate Analysis 37

4.1 Single Sinusoidal Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Multi-tone Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Broadband Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Single Sinusoid with Broadband Noise . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 5: Instantaneous Heterodyne Carrier Frequency Measurement 44

5.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Digital Instantaneous Frequency Measurement . . . . . . . . . . . . . . . 45



vii

5.1.2 Digital PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Digital Instantaneous Frequency Measurement . . . . . . . . . . . . . . . . . . . 49

5.2.1 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Period Expansion/Contraction Measurement . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 6: Dynamic Range Extension Via Carrier Frequency Tracking 80

6.1 Demodulator Excessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Direction of Phase Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Angular Velocity Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Dynamic Range Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Excession Threshold Frequencies . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.2 Correction Factor Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.3 Maximum and Minimum Likelihood of Demodulated Rotational Direction 87

6.4.4 Determination of Tracking Frequencies . . . . . . . . . . . . . . . . . . . . 89

6.4.5 Frequency Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.6 Correction Factor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Dynamic Range Extension Via DIFM . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.4 DIFM Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Dynamic Range Extension Via DFT . . . . . . . . . . . . . . . . . . . . . . . . . 104



viii

6.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6.4 DFT Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 7: Dynamic Range Extension Experimental Results 118

7.1 Test Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Dynamic Range Extension Via DIFM Tests . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Noise Floor Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.2 2.5 kHz Waveform Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.3 10 kHz Waveform Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.4 60 kHz Waveform Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.5 Frequency Dependency Tests . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.6 Reliability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.7 DIFM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Dynamic Range Extension Via DFT Tests . . . . . . . . . . . . . . . . . . . . . . 128

7.3.1 Noise Floor Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.2 2.5 kHz Waveform Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.3 10 kHz Waveform Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3.4 60 kHz Waveform Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3.5 Frequency Dependency Tests . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3.6 Reliability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.7 DFT Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 8: Conclusion 134

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



ix

Bibliography 137

Appendix A: Derivation of Heterodyne Current Equation 140

Appendix B: DIFM MATLAB Simulation Code 143

Appendix C: DFT MATLAB Simulation Code 156

Appendix D: PECM MATLAB Simulation Code 175



x

List of Figures

2.1 Mach-Zehnder fiber-optic interferometer . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Interferometric signal fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Heterodyne modulated Mach-Zehnder interferometer . . . . . . . . . . . . . . . 9

2.4 Pulsed heterodyne Michelson interferometer . . . . . . . . . . . . . . . . . . . . 11

2.5 In-line Michelson TDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Analog heterodyne demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Digital heterodyne demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Arctangent output curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 IQ reprocessing heterodyne demodulation . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Phase noise with EDFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Phase noise without EDFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Calculated dynamic range with an EDFA . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Peak sinusoidal fringe rates at different fsamp rates . . . . . . . . . . . . . . . . 39

5.1 Digital Instantaneous Frequency Measurement receiver . . . . . . . . . . . . . . . 46

5.2 Digital phased locked loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 yout for different sample delays m . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 DIFM hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Simulated DIFM output with As = 0 radians, and CNR = 40 dB . . . . . . . . 54

5.6 Simulated DIFM output with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB 55

5.7 Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 40 dB 56

5.8 Simulated DIFM output with As = 32 radians, fs = 100 kHz, and CNR = 40 dB 57

5.9 Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 6 dB 58

5.10 Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 12 dB 59

5.11 Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 18 dB 59

5.12 Simulated DIFM output with As = 640 radians, fs = 10 kHz, and CNR = 40 dB 60

5.13 Simulated DIFM output with As = 1280 radians, fs = 10 kHz, and CNR = 40 dB 61

5.14 DFT processing hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.15 Simulated DFT output with As = 0 radians, and CNR = 40 dB . . . . . . . . . 65



xi

5.16 Simulated DFT output with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB 66

5.17 Simulated DFT output with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB

(Zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.18 Simulated DFT output with As = 320 radians, fs = 10 kHz, and CNR = 40 dB

(Zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.19 Simulated DFT output with As = 32 radians, fs = 100 kHz, and CNR = 40 dB

(Zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.20 Simulated DFT output with As = 0 radians, and CNR = 20 dB (Zoom) . . . . . 69

5.21 Simulated DFT output with As = 0 radians, and CNR = 6 dB (Zoom) . . . . . 70

5.22 Simulated PECM output with As = 0 radians, fadc = 100 MHz, and CNR = 40

dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.23 Simulated PECM output with As = 0 radians, fadc = 500 MHz, and CNR = 40

dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.24 Simulated PECM output with As = 0 radians, fadc = 100 MHz, and CNR = 60

dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.25 Simulated PECM output with As = 3200 radians, fs = 1kHz, fadc = 100 MHz,

and CNR = 60 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.26 Simulated PECM output with As = 3200 radians, fs = 1 kHz, fadc = 500 MHz,

and CNR = 60 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.27 Simulated PECM output with As = 320 radians, fs = 10 kHz, fadc = 500 MHz,

and CNR = 60 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.28 Simulated PECM output with As = 32 radians, fs = 100 kHz, fadc = 500 MHz,

and CNR = 60 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Excession threshold frequencies, expected demodulated direction of rotation, and

required correction factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Probability of demodulated output direction of rotation given actual direction of

rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Excession correction factor boundaries with maximum and minimum likelihood

demodulated directions of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Simulated DIFM DRE with As = 0 radians and CNR = 40 dB . . . . . . . . . . 96

6.5 Simulated DIFM DRE with As = 0 radians and CNR = 20 dB . . . . . . . . . . 97



xii

6.6 Simulated DIFM DRE with As = 0 radians and CNR = 12 dB . . . . . . . . . . 97

6.7 Simulated DIFM DRE with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB 98

6.8 Simulated DIFM DRE with As = 320 radians, fs = 10 kHz, and CNR = 40 dB 99

6.9 Simulated DIFM DRE with As = 32 radians, fs = 100 kHz, and CNR = 40 dB 100

6.10 Simulated DIFM DRE with BBN(shaped) = 22000 radians and CNR = 40 dB . 101

6.11 Simulated DIFM DRE with BBN(shaped) = 11000 radians, As = 160 radians,

fs = 10 kHz, and CNR = 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.12 Simulated DIFM DRE with As = 55 radians, fs = 60 kHz, and CNR = 40 dB . 103

6.13 Simulated DIFM DRE with As = 4 radians, fs = 164 kHz, and CNR = 40 dB . 103

6.14 Simulated DFT DRE with As = 0 radians and CNR = 40 dB . . . . . . . . . . 107

6.15 Simulated DFT DRE with As = 0 radians and CNR = 20 dB . . . . . . . . . . 108

6.16 Simulated DFT DRE with As = 0 radians and CNR = 12 dB . . . . . . . . . . 109

6.17 Simulated DFT DRE with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB . 109

6.18 Simulated DFT DRE with As = 320 radians, fs = 10 kHz, and CNR = 40 dB . 110

6.19 Simulated DFT DRE with As = 32 radians, fs = 100 kHz, and CNR = 40 dB . 111

6.20 Simulated DFT DRE with BBN(shaped) = 25000 radians and CNR = 40 dB . . 112

6.21 Simulated DFT DRE with BBN(shaped) = 12500 radians, As = 160 radians, fs

= 10 kHz, and CNR = 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.22 Simulated DFT DRE with As = 42 radians, fs = 80 kHz, and CNR = 40 dB . . 114

6.23 Simulated DFT DRE with As = 7 radians, fs = 164 kHz, and CNR = 40 dB . . 115

7.1 DIFM noise analysis, CNR ≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Experimental test with DRE disabled - As = 1300 radians, fs = 2.5 kHz, and

CNR ≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Experimental test with DRE enabled - As = 1300 radians, fs = 2.5 kHz, and

CNR ≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Experimental test with DRE disabled - As = 320 radians, fs = 10 kHz, and CNR

≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Experimental test with DRE enabled - As = 320 radians, fs = 10 kHz, and CNR

≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Experimental test with DRE disabled - As = 50 radians, fs = 60 kHz, and CNR

≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



xiii

7.7 Experimental test with DRE enabled - As = 50 radians, fs = 60 kHz, and CNR

≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.8 DFT noise analysis, CNR ≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.9 Experimental test with DFT DRE enabled - As = 1300 radians, fs = 2.5 kHz,

and CNR ≈ 40 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.10 Experimental test with DFT DRE enabled - As = 320 radians, fs = 10 kHz, and

CNR ≈ 40 dB (Zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.11 Experimental test with DFT DRE enabled - As = 50 radians, fs = 60 kHz, and

CNR ≈ 40 dB (Zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xiv

List of Acronyms

ADC Analog to Digital Converter

AOM Acousto-Optic Modulator

ASE Amplified Spontaneous Emission

CNR Carrier to Noise Ratio

DDS Direct Digital Synthesizer

DFT Discrete Fourier Transform

DIFM Digital Instantaneous Frequency Measurement

DPLL Digital Phase Locked Loop

DRE Dynamic Range Extension

DWDM Dense Wavelength Division Multiplexing

EDFA Erbium Doped Fiber Amplifier

EMI Electromagnetic Interference

EOM Electro-Optic Modulator

FBG Fiber Bragg Grating

FFT Fast Fourier Transform

FIR Finite Impulse Response



xv

FM Frequency Modulated

FPGA Field Programmable Gate Array

IFM Instantaneous Frequency Measurement

PECM Period Expansion/Contraction Measurement

PGC Phase Generated Carrier

PLL Phase Locked Loop

PMDI Path Matched Differential Interferometry

PMF Polarization-Maintaining Fiber

RIN Relative Intensity Noise

SDR Software Defined Radio

SMF Single-Mode Fiber

SOA Semiconductor Optical Amplifier

TDM Time Division Multiplexing

TIA Transimpedance Amplifier

TVR Transmit Voltage Response



xvi

List of Symbols

ν Laser frequency (Hz)

φr Reference arm phase (radians)

φs Sensor arm phase (radians)

τadc ADC sample time (seconds)

θm Multi-tone fringe rate (radians per second)

θn Broadband noise fringe rate (radians per second)

θdemod Demodulator fringe rate (radians per second)

θs+n Sinusoidal signal plus noise fringe rate (radians per second)

As Peak sinusoidal amplitude (radians)

Bif Instantaneous carrier frequency bandwidth (Hz)

c Free space speed of light (299,792,458 m / s)

fc Heterodyne carrier frequency (Hz)

fd Filtered output demodulation rate (Hz)

fs Sinusoidal modulation frequency (Hz)

fsamp Demodulator sample rate (Hz)

ipd Photodiode current (Amps)



xvii

k Optical wavenumber = 2πλ

Lr Length of fiber reference coil (Meters)

Ls Length of fiber sensing coil (Meters)

neff Effective fiber-optic index of refraction (≈ 1.465)

P Optical power at the photodiode (Watts)

q Electron charge (1.602 x 10−19 coulombs)

r Photodiode responsivity (Amps/Watt)

Rl Transimpedance amplifier load resistance (ohms)

Te Equivalent thermal temperature (◦K)

V Polarization visibility ranging from 0 to 1

yout DIFM output value



1

Chapter 1 Introduction

This dissertation presents an original approach to extend the dynamic range of heterodyne

fiber-optic sensors. Fiber-optic sensors are of significant interest to the research community

for their numerous potential advantages over traditional electronic-based sensors. However,

dynamic range limitations of fiber-optic sensors have prevented researchers and system

developers from capitalizing on their benefits in some applications. One example of these

limitations was encountered during the design and development of a new large-scale

fiber-optic hydrophone array to be utilized as an acoustic research and development platform.

It was determined that even after optimizing design parameters to maximize dynamic range,

the fiber-optic sensors would fail to meet the system requirements by nearly 20 dB. This led

to a review of current dynamic range extension approaches within the literature. After finding

few available options, the approach presented within was developed.

1.1 Motivation

Fiber-optic sensors are of significant interest to researchers and system developers because of

their benefits. One such benefit is their wide dynamic range. This wide dynamic range,

however, is still insufficient in a number of highly desirable applications. This is partially

evident by the number and type of fiber-optic sensor systems currently deployed in real-world

applications. Despite the fact that the majority of the research in the field was conducted in

the 1980’s and 1990’s, only a few select fiber-optic sensor systems have reached production

stage. These systems all have modest dynamic range requirements. There are currently no

large-scale fiber-optic interferometric sensor systems in use by the research and development

community, despite their significant benefits.

The motivation behind this dissertation is to increase the dynamic range of fiber-optic sensors

such that their benefits can be realized in a wider array of applications. One such application

where fiber-optic sensors are highly desired is in test and measurement systems for the

acoustic research community. Factors such as Electromagnetic Interference (EMI) immunity,
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remote sensor interrogation capabilities, and significantly lower system costs are commonly

stated as advantages. These benefits were primary justifications for the development of a new

large-scale hydrophone array utilizing fiber-optic sensing technology. However, it became

evident in the early stages of development that the new array would not be able to meet the

dynamic range requirements utilizing normal optimization techniques. Therefore, part of the

motivation behind this dissertation is to achieve the necessary dynamic range increase such

that this and other planned arrays will be able to fully meet their specified requirements. It

should also be noted that the dynamic range increases which can be achieved with the

proposed method can be utilized to develop larger Time Division Multiplexing (TDM) sensor

arrays without sacrificing additional dynamic range.

1.2 Contributions

The contents of this dissertation contains several unique contributions to the field of

fiber-optic interferometric sensing. While the issue of limited dynamic range has been

discussed in the literature, little documented work has been found which provides a viable

approach to dynamic range extension of large-scale interferometric systems. Therefore, the

primary contribution of this dissertation is presenting a low overhead, reliable approach to

extending the dynamic range of fiber-optic interferometers. It will be shown that this increase

can be as much as 20 dB while requiring minimal hardware resources in an all-digital

heterodyne demodulator. There are, however, limitations to the approach presented and they

will be documented in detail.

One critical requirement of the dynamic range extension approach presented here is the

ability to measure the instantaneous carrier signal in a heterodyne interferometer. The rate at

which it must be measured and tracked presents several challenges. This dissertation will

explore three unique methods for instantaneous carrier measurement. The first method is

known as Digital Instantaneous Frequency Measurement (DIFM) and is based on an

autocorrelation measurement of the digitized carrier signal. The second approach is based on

Discrete Fourier Transform (DFT) measurements of specific frequencies within the bandwidth

of heterodyne demodulator. The last method is known as Period Expansion/Contraction
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Measurement (PECM). This approach measures the amount of expansion or contraction in

the heterodyne carrier in the time domain. The advantages and limitations of all three

methods will be discussed.

The high-end dynamic range limitations of an interferometric system are typically determined

through a process known as fringe rate analysis. This process compares the fringe rate of the

demodulator to the fringe rate of the maximum anticipated received signals. Literature

covering fringe rate analysis typically only discusses the trivial case of single sinusoidal

modulation. Fringe rate analysis of more complicated waveforms has been discussed in the

literature, however, only recommended approaches have been suggested. No actual analysis

has been documented. This dissertation provides fringe-rate analysis of single-tone sinusoidal,

multi-tone sinusoidal, and broadband noise modulation. It also examines the case of single

sinusoidal modulation under the impact of broadband noise conditions.

This dissertation makes unique contributions to the field of fiber-optic interferometric sensing

in the areas of dynamic range extension and instantaneous carrier measurement.

Experimental evaluations of both are documented within. These results provide guidance on

selecting the most appropriate solution to fiber-optic system developers.

1.3 Dissertation Organization

Chapter 2 of this dissertation provides an overview of fiber-optic interferometric systems and

provides a basis for the research presented within. This chapter covers basic fiber-optic

interferometric configurations and TDM approaches. It also documents an all-digital

demodulation approach which enables the dynamic range extension approach presented

within this dissertation.

Chapter 3 examines the dynamic range considerations of fiber-optic interferometers. Various

noise sources are presented which define the low-end of the dynamic range. Demodulation

bandwidth limitations are analyzed which define the high-end of the dynamic range. With the

dynamic range limitations addressed, a review of current dynamic range extension techniques

found in the literature is provided.
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Signal fringe rate analysis is the basis of Chapter 4. Since most coverage of fringe rate

analysis found in the literature only address the simple case of single sinusoidal modulation,

this chapter provides a more in-depth coverage of the topic. Being able to correctly calculate

the expected fringe rate of a signal is critical in determining the maximum available dynamic

range of a system. This chapter provides fringe rate analysis for several common modulation

waveforms including single-tone sinusoidal, multi-tone sinusoidal, broadband noise, and

single-tone sinusoidal with broadband noise.

Chapter 5 examines at various options for measuring the instantaneous heterodyne carrier

frequency. The first part of the chapter is a literature review that explores different

approaches for the application at hand. Three unique methods are then introduced. The first

is based on an autocorrelation measurement of the carrier signal. This method is known as

DIFM. The second approach uses discrete Fourier analysis to track specific carrier frequencies

of the demodulator. A third method, known as PECM, involves determining the

instantaneous carrier frequency from the amount of expansion or contraction of the carrier

signal in the time domain. The advantages, limitations, and noise susceptibility of all three

methods are presented.

The novel dynamic range extension technique is presented in Chapter 6. By measuring the

instantaneous heterodyne carrier frequency, two critical pieces of information are obtained

about the interferometer: the direction of instantaneous phase rotation and the instantaneous

angular velocity. This chapter explores how these two pieces of information can be utilized to

increase the dynamic range. This approach, however, is not without its limitations. The

limitations to which this method can be utilized are defined.

Chapter 7 provides the experimental results for this dissertation. Dynamic range extension

testing is performed for both the DIFM and DFT methods of frequency discrimination. The

frequency tracking abilities are also tested and documented. An analysis is conducted to

compare the results of the simulations to the results of the experimental testing for both

techniques.

Chapter 8 concludes this dissertation. It includes a review of the contributions of this work

and addresses the potential for future research.
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Chapter 2 Fiber-Optic Interferometers

This chapter provides an introduction to fiber-optic interferometric technology. The

requirements and process for heterodyne modulation are addressed, as are demodulation

techniques for extracting the phase signal of interest. Of particular importance is the last

section of this chapter in which an all-digital demodulation process is discussed. This new

demodulation approach allows for the dynamic range extension technique presented

within.

2.1 Fiber-Optic Sensors

Much of the research in the field of fiber-optic sensors dates back more than 30 years. In that

time, numerous types of fiber-optic sensor technologies were developed. Fiber-optic sensors

have been designed to sense various parameters of light. These include intensity changes,

polarization states, and wavelength shifts [1]. Their popularity is due to their numerous

potential benefits. These benefits include EMI immunity, remote interrogation capabilities,

and the ability to multiplex hundreds of sensors in both time and wavelength on a single fiber.

Two of the most popular fiber-optic technologies are interferometers and Fiber Bragg

Gratings (FBGs).

Fiber Bragg gratings have had the most commercial success to date. FBGs are small changes

in the refractive index that are etched into the surface of a fiber-optic cable. Numerous types

of FBGs exist, each with their own unique characteristics. For optical sensing, the reflective

FBG is most often used. The changes in refractive index cause the grating to reflect a specific

wavelength of light [2]. Strains applied to the FBG will cause a shift in the wavelength

reflected. By measuring the reflected wavelength of the FBG as it is modulated, the signal of

interest can be recovered. FBGs have the benefits that they are simple to use, are inexpensive,

and thousands of sensors can easily be multiplexed on a single fiber. The problems with FBGs

are that they do not have the sensitivity or the dynamic range required by many applications.

Although not as simple or cheap as FBGs, fiber-optic interferometers are the primary option
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for applications that require high sensitivity and wide dynamic range.

Fiber-optic interferometers provide the highest sensitivity and widest dynamic range of any

available fiber-optic sensor technology. They are also capable of remote interrogation and can

be multiplexed into large-channel-count arrays. Because of these characteristics, fiber-optic

interferometers are generally well suited for applications such as large acoustic and vibration

sensing arrays. However, for some applications, even the wide dynamic range of the

interferometer is still insufficient. This is the primary motivation behind the dynamic range

extension approach presented within. An introduction to fiber-optic interferometer technology

is now provided.

2.2 Mach-Zehnder

Interferometers, as their name suggests, are based on the interference of sinusoidally

oscillating light waves. This involves combining two beams of light which travel separate

paths before being recombined. The simplest fiber-optic interferometer is based on the

popular bulk optic interferometer known as the Mach-Zehnder. Figure 2.1 shows the basic

fiber-optic Mach-Zehnder interferometer configuration. It is assembled using two coils of fiber,

two directional fiber-optic couplers, a light source, and one or more photodetectors. One of

the fiber coils is considered the signal arm while the other is the reference. The light source is

typically a long coherence laser such that when the light passes through the fiber arms and

recombines back at the photodetector the two beams will mix coherently. The photodetector

then generates an output current which, for an ideal lossless system using 50/50 couplers, is

given by 2.1 [3].

ipd = rP + rPV cos(φs − φr) (2.1)

P is the total amount of optical power hitting the photodetector with a responsivity of r. V is

known as the polarization visibility and can range in value from 0 to 1 depending on the

orthogonality of the polarization states between the signal and reference arms of the
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Figure 2.1: Mach-Zehnder fiber-optic interferometer

interferometer. For simplicity, V will always be assumed to be maximized at 1 within this

dissertation. The terms φs and φr are the relative phases of the light in the signal and the

reference arms, the magnitudes of which can be determined by 2.2.

φ = neffkL (2.2)

L is the total length of the fiber in the arm, neff is the effective refractive index of the fiber,

and k is the optical wavenumber (k = 2πλ) [4]. A change in any one of these variables will

shift the phase of the light exiting the arm, thereby changing the magnitude of ipd. This is the

basic mechanism utilized for fiber-optic interferometric sensing. For most fiber-optic

interferometers the strategy is to couple a mechanical strain to the fiber in order to induce a

change in L. However, strain applied to a fiber will also induce a change in neff . One problem

is that temperature also heavily influences neff , making it impossible to distinguish between

mechanical strains applied to the fiber and thermal fluctuations. But, since thermal

fluctuations are typically low frequency in nature, they can be high-pass filtered from the data

of interest. Because of the thermal effects and difficulties in making absolute measurements,

fiber-optic interferometers are generally only considered suitable for dynamic sensing

applications. Taking the derivative of equation 2.2 yields 2.3, the time varying phase

equation. Equation 2.3 is useful in determining an interferometer’s sensitivity to dynamic

fluctuations, both intended and unintended sources.
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dφ

φ
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dneff
neff

+
dk

k
(2.3)

Another problem encountered with the Mach-Zehnder interferometer is known as

interferometric signal fading. From 2.1, it can been seen that the photodetector output is

dependent on the cosine of the phase difference (∆φ = φs − φr). If ∆φ is biased around

±(2n+1)π
2 , also known as quadrature, then for a small change in ∆φ a large change in ipd will

occur. However, if ∆φ is biased at ±nπ, then the change in ipd will be much smaller and

heavily distorted. This is depicted in Figure 2.2. Early fiber-optic sensor researchers simply

waited for the phases to drift into quadrature before acquiring data. Since this was not really

practical, they developed several methods for overcoming interferometric signal fading [1].

One of the first approaches used was feedback to control a fiber-stretching phase modulator

inserted into the reference arm of the interferometer to maintain the quadrature bias point.

This, however, complicated the sensor design and made remote interrogation nearly

impossible. Researchers then began investigating different types of modulation.

Figure 2.2: Interferometric signal fading

Although numerous types of modulation schemes have been developed for fiber-optic

interferometers, the two most popular are known as heterodyne and Phase Generated

Carrier (PGC) homodyne. PGC homodyne was one of the first modulation schemes developed

for overcoming the signal fading problem. It uses a phase modulating device, often a

piezoelectric fiber-stretcher, to induce a phase shift carrier onto the light passing through the
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Figure 2.3: Heterodyne modulated Mach-Zehnder interferometer

reference arm. A demodulation technique commonly referred to as “differentiate and

cross-multiply” was used by the receiver to extract the phase signal of interest from the

carrier [3]. While PGC modulation is still widely used in fiber-optic sensor systems, it has in

recent years largely been replaced by heterodyne modulation.

2.3 Heterodyne Mach-Zehnder

Heterodyne modulation is one technique for overcoming the interferometric signal fading

problem in fiber-optic interferometers. Its popularity in recent years is largely due to its

reduced demodulation processing requirements when compared to PGC demodulation. PGC

also requires twice the bandwidth to achieve the same dynamic range when compared to the

heterodyne approach [5]. Figure 2.3 shows a basic heterodyne modulated Mach-Zehnder

fiber-optic interferometer.

The heterodyne modulated Mach-Zehnder includes the addition of an Acousto-Optic

Modulator (AOM) to each arm of the interferometer. The AOM shifts the frequency of the

incoming light by the frequency of the drive signal. The AOMs of Figure 2.3 are driven at

frequencies f1 and f2 such that a resulting carrier frequency of fc = f1 − f2 is generated in the

photodetector current1. The photodetector current ipd can now be determined from equation

2.4 [6].

1Appendix A provides the derivation of the heterodyne photodetector current equation.
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ipd(t) = rP + rPV cos(2πfct+ (φs(t)− φr(t))) (2.4)

Assuming the reference fiber arm is well isolated from mechanical strains and temperature

fluctuations, and ignoring the DC component of the output current, the time varying portion

of ipd can be written as

ipd sig(t) = rPV cos(2πfct+ φs(t)) (2.5)

The significance of heterodyne modulation can be determined by examining equation 2.5. The

ipd sig current is now a constant carrier at frequency fc which is phase modulated by the

phase of the light passing through the signal arm φs(t). This is in contrast to the basic

Mach-Zehnder configuration in which the recovered signal was amplitude dependent. The

phase modulated output of the heterodyne configuration not only mitigates the

interferometric signal fading problem, it also reduces noise associated with optical amplitude

fluctuations and polarization state changes.

While the heterodyne Mach-Zehnder is an improvement over the basic configuration, it does

not allow for two highly desirable features of fiber-optic sensing: remote interrogation and

TDM. Remote interrogation is not feasible since any additional fiber used, placed in either

arm, to remote the location of the coils would be susceptible to unintended signals. TDM is

not possible since the output of the heterodyne modulated Mach-Zehnder is continuous and

does not allow for time division between sensors. Both of these capabilities can be realized by

utilizing a pulsed heterodyne configuration.

2.4 Pulsed Heterodyne Michelson

Going to a pulsed heterodyne interferometer configuration allows for remote sensing and

TDM. To do this, however, a Mach-Zehnder interferometer can no longer be used. The

Mach-Zehnder is replaced with a Michelson interferometer. Figure 2.4 shows the basic



11

Figure 2.4: Pulsed heterodyne Michelson interferometer

configuration. In this configuration, the sensing fiber arm is removed from its normal

Mach-Zehnder position and is placed at some remote location. Mirrors are added to the end

of the sensor coil, creating a fiber-optic Michelson interferometer.

Optical pulses are used to interrogate the remote Michelson interferometer. The pulses are

generated by the addition of an optical pulsing unit placed after the laser. Electro-Optic

Modulators (EOMs), AOMs, or Semiconductor Optical Amplifiers (SOAs) can all be used for

pulse generation, each with their own significant trade-offs. The optical pulses are launched

into what is referred to as the compensating interferometer or the compensator. The

compensator is a heterodyne modulated Mach-Zehnder interferometer with the sensing coil

removed. The optical pulse that is launched into the compensator is split with an equal

amount of optical power passing through each arm. The light in the reference arm is

modulated by the AOM at f1, while the light passing in the other is modulated at f2. The

pulse traveling in the reference coil is delayed in time by τ seconds, where the delay time τ is

equal to the total delay time in the sensor coil, such that at the output of the compensator are

now two pulses. One of the pulses is modulated at f1. The other is modulated at f2.

The two optical pulses are then launched towards the remotely located Michelson
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interferometer. When the first pulse reaches the sensor 50% of the optical power is reflected

by a mirror at the output of a directional coupler placed before the sensing coil. The other

50% of the first optical pulse travels through the sensing coil and is reflected by another

mirror attached at the end of the coil. The optical delay time of the pulse in the sensing coil

is equal to the delay time τ of the reference coil. The second pulse to enter the interferometer

experiences the same power division and time delays. The reflected pulses then travel back to

the photodetector and are overlapped in time as shown in Figure 2.4. Where the f1 and the

f2 pulses overlap, the photodetector will generate a burst of heterodyne carrier signal at fc. In

this manner, for each optical pulse launched into the system a burst of heterodyne carrier is

generated that can be demodulated by the receiver, allowing the phase signal of interest to be

recovered.

The system architecture shown in Figure 2.4 is often referred to in the literature as Path

Matched Differential Interferometry (PMDI) [4]. This is a result of the fact that the two

optical pulses travel approximately the same path length, but that there can be a significant

physical separation between the reference and the sensing coil. This separation allows the

sensing coil to be located miles from the rest of the system and is one of the highly desirable

benefits of fiber-optic sensing. Another benefit yet to be discussed is time-division

multiplexing (TDM).

2.5 In-Line Michelson TDM

Time division multiplexing is one of the most desirable and most heavily researched areas of

fiber-optic interferometry [7, 6, 4]. While numerous TDM architectures have been developed,

this dissertation will primarily focus on the in-line Michelson array. In-Line Michelson TDM

is an extension of the pulsed heterodyne configuration presented in the last section. Figure 2.5

shows a three sensor in-line array. The launch and receive hardware is the same as that

depicted for the pulsed heterodyne Michelson interferometer in the last section.

Time division multiplexing is achieved by concatenating additional sensor coils together,

separated by directional couplers with one end mirrored. The coupler ratios are carefully
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Figure 2.5: In-line Michelson TDM

selected such that the amount of light reflected from each coupler is approximately equal.

However, in actual arrays, balancing the return light from the individual sensors is a

non-trivial matter. Assuming balanced return levels, an optical waveform as shown in Figure

2.5 will be received by the photodetector. Each sensor coil, therefore, produces one burst of

the heterodyne carrier. By properly gating the heterodyne bursts in time, the demodulator

can recover the phase signal of interest from the individual sensors.

Numerous papers have been written on fiber-optic interferometric TDM. Arrays containing

hundreds of sensors on a single fiber have been reported multiple times. Despite the

popularity of TDM within the research community, TDM has one very significant drawback

that is often overlooked. TDM reduces the maximum sample rate, and as will be shown later

in this dissertation, reducing the sample rate will limit the sensors’ maximum dynamic range.

In many of the large TDM arrays reported on in the literature, this dynamic range reduction

would greatly impact their viability for many applications.
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2.6 Heterodyne Demodulation

Heterodyne modulated fiber-optic interferometric signals require demodulation at the receiver,

also known as the demodulator or interrogation unit, in order to extract the phase signal of

interest from the heterodyne carrier. Various approaches have been reported on in the

literature to accomplish this task. The first widely used approach utilized a synchronous

Zero-IF (Intermediate Frequency) front-end receiver, with the processing being handled by

what is referred to as “differentiate and cross-multiply” analog circuitry [3]. This approach,

however, suffered from numerous problems and, as a result, other methods were explored. The

most widely used approach to date is referred to in the literature as a digital demodulator.

This uses a synchronous Zero-IF analog front end, the outputs of which are also low-pass

filtered in the analog domain. The low-pass filtered outputs are then digitized, with the

acquired data being processed in the digital domain. Although this type of demodulator is

referred to in the literature as digital, this dissertation will refer to them as analog since the

most critical parts of the demodulation process are still carried out in the analog domain.

However, a new type of all-digital demodulator was recently developed, as a part of this work,

which fully incorporates the analog front-end circuitry following the Transimpedance

Amplifier (TIA) into the digital domain, allowing for the dynamic range extension approach

being presented within this dissertation. Both the analog and the all-digital demodulators are

now presented.

2.6.1 Analog Demodulation

Figure 2.6 depicts the architecture of a heterodyne fiber-optic analog demodulator. This is

currently the most widely used approach found within the literature [6, 4]. The architecture is

known as a synchronous Zero-IF receiver. Some literature refers to this type of demodulator

as a homodyne demodulator since it utilizes only a single frequency conversion stage. This

should not be confused with PGC homodyne demodulation. Likewise, receivers which use

multiple conversion stages are often referred to as heterodyne. It should be noted that the

heterodyne component of the interferometers refers to the difference in modulated carrier

frequency components between the signal and the reference arm, not the number of conversion
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Figure 2.6: Analog heterodyne demodulation

stages in the receiver.

One reason heterodyne modulation has become popular for fiber-optic sensors is because of

the relatively low processing overhead required for demodulation. The incoming optical signal

is first converted to an output current, which is then converted to a usable voltage by the TIA.

Most actual demodulators will likely contain some additional gain, attenuation, or filtering

stages, however, for simplification these have been omitted. The voltage output of the TIA is

then fed to two analog mixers. These mixers are driven by what are known as the in-phase (I)

and quadrature (Q) components of fc, one at cos(2πfc) and the other at sin(2πfc). Frequency

mixing of the incoming heterodyne carrier at fc with the I/Q components is performed in

order to down convert it to baseband where it can be processed. However, in the

down-conversion process an additional high frequency term is generated at 2fc. This high

frequency signal must be removed and is, therefore, passed through a low-pass filter. After the

low-pass filters, the signals are digitized by two Analog to Digital Converters (ADCs). At the

input to one ADC now exists cos(φs(t)), at the other sin(φs(t)).

Extracting the phase signal of interest φs(t) from the cosine and sine can be accomplished in a

number of ways [4]. The most popular method is the use of a four-quadrant arctangent

calculation where
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φs(t) = arctan(
sin(φs(t))

cos(φs(t))
) (2.6)

Calculating the arctangent is usually one of the most computationally intensive aspects of

demodulation. Various techniques exist, each with their own tradeoffs in performance and

computational requirements. Several different approaches will be discussed in the following

section.

Analog demodulation suffers from several drawbacks. Small differences in the I/Q processing

paths can lead to noise in the demodulated output. Noise can arise from such issues as DC

offsets in the various stages and small phase differences in the transfer function of the

low-pass filters. Calibration of the analog circuitry is required to minimize the impact of such

effects. This can add significant cost and complexity to the demodulator design. One way to

mitigate these issues is to move the analog front-end circuitry into the digital domain.

2.6.2 Digital Demodulation

Digital demodulation resolves many of the problems typically encountered with analog

demodulators. By moving the synchronous front-end analog circuitry into the digital domain,

differences between the I/Q paths are eliminated and, therefore, less noise is produced in the

output. An all-digital approach also simplifies the hardware by eliminating much of the

required analog front-end and calibration circuitry.

Figure 2.7 depicts the basic all-digital demodulation architecture. The digitization now occurs

directly after the TIA, although in most practical systems some additional gain and filtering

stages may be inserted between. The analog mixers have been replaced with digital

multipliers, while the analog low-pass filters have been replaced with Finite Impulse

Response (FIR) filters. The FIR filters can be simple rectangular averaging filters or more

advanced implementations depending on the available input data and the system

requirements for high frequency noise suppression.

Since the arctangent processing is one of the most computationally intensive parts of the
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Figure 2.7: Digital heterodyne demodulation

digital demodulation process it must be carefully considered during the design stage.

Numerous approaches exist for arctangent calculation. Three common approaches to

arctangent computation are the CORDIC algorithm, look-up tables, and Taylor series

approximations. The amount of processing time required by each is a direct function of the

input value and the required output accuracy. Most implementations will require an output

which is accurate to approximately 1 µrad so as to not introduce an additional source of error.

The input value z will have the largest impact on the amount of required processing.

Figure 2.8: Arctangent output curve
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Figure 2.8 shows the output curve for the arctangent function. For input values of z between

±0.3, the output will be in the range of ± π
10 . It can be seen in the figure that within this

range the arctangent output is nearly linear. The further away from this region, the more the

output becomes non-linear. Regardless of the computational approach, arctangent

calculations within the linear section of the function will require far less processing than those

outside. For example, an arctangent calculation using a Taylor series approximation can be

defined as

arctan(z) = z − z3

3
+
z5

5
− z7

7
+ . . . (2.7)

If the input value z to the arctangent function is .3, then only the first three terms of the

Taylor series are sufficient to meet the 1 µrad error requirement. However, if z lies only

slightly in the non-linear part of the curve, at a value of .99, then as many 350 terms are

required. As this example shows, it is highly desirable to limit the arctangent processing to

the linear portion of the curve. One arctangent calculation is required for each demodulation

point. This may be as many as 1-2 million per second. Such processing requirements can pose

a problem if not handled properly.

Figure 2.9: IQ reprocessing heterodyne demodulation

One advancement in the all-digital demodulation approach, developed as part of this work, is

known as I/Q reprocessing. The purpose of the I/Q reprocessing is to significantly reduce the
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arctangent computational load by ensuring that all calculations be carried out in the linear

part of the curve. The I/Q reprocessing architecture is shown in Figure 2.9. This architecture

breaks down the demodulation process into two specific stages. The first stage is used to

determine an approximate phase offset with regards to the free-running I/Q clocks. While this

is being calculated, the incoming data is being stored in a FIFO memory for later processing.

Once the phase offset estimate has been determined, the digital multipliers of the second stage

are phase adjusted such that they are nearly in phase with the data contained in the FIFO,

thus ensuring that the magnitude of the z value passed to the arctangent processing circuitry

is always less than .3. The amount to which the multipliers were phase shifted is then added

back in to the final arctangent output. Using this technique, the arctangent computational

requirements can be met with a simple three term Taylor series calculation. Although the I/Q

reprocessing requires two stages and some additional hardware resources, the overall

computational simplification is significant. This is the approach taken in the digital

demodulator used in the experimental research portion of this dissertation.

Lastly, the all-digital demodulation approach has one very important advantage. In an analog

demodulation approach the frequency mixing is conducted prior to digitization. Thus, no

information about the received heterodyne carrier is available in the digital domain. In an

all-digital demodulator the heterodyne carrier is sampled directly, and any information

contained in it is therefore available for processing. Information such as the carrier’s

amplitude, frequency, and even noise content are all valuable. For this research, however, the

most important piece of information that is obtained is the instantaneous frequency of the

carrier, which will provide the dynamic range increases presented in this dissertation. Such a

technique would not be easily achievable in an analog demodulation approach.
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Chapter 3 Dynamic Range Limitations

Chapter 3 examines dynamic range issues encountered with fiber-optic sensors. Methods for

determining both the upper and lower bounds on the dynamic range of fiber-optic

interferometers are evaluated. A literature review is then provided which explores approaches

for extending the dynamic range found within the literature.

3.1 Fiber-Optic Interferometer Dynamic Range

The dynamic range of a heterodyne fiber-optic interferometer is defined as the difference

between the smallest and largest phase change that can be measured. Dynamic range

requirements vary widely by application. However, many papers found in the literature state

that the sensors should have a minimum dynamic range of 120 dB [3]. Most papers written on

fiber-optic interferometers demonstrate dynamic range levels that achieve this mark. Yet, for

some applications, as much as 160 dB or more is required to fully meet system specifications.

Achieving this level of dynamic range is a non-trivial task even after optimizing all available

design parameters.

Fiber-optic interferometric coils themselves have very large dynamic ranges. A 100 m

fiber-optic coil constructed of 80 µm bend insensitive fiber has been shown to have a

strain-induced failure limit of over 240 dB [3]. Therefore, the sensor is not a limiting factor.

Rather, the limitations are factors of the system used to interrogate the sensor. Such issues

will be presented later in the chapter.

One paper touted a fiber-optic system as having a dynamic range of 177 dB at 1 Hz [6].

Specifying dynamic range at a given frequency is required since fiber-optic sensors are said to

be bandwidth limited. This topic will be explored in depth in the following section; however,

it should be noted that with fiber-optic interferometers, the maximum dynamic range

decreases with frequency at a rate equal to 20 dB per decade for sinusoidal modulation.

Therefore, the system with a reported 177 dB dynamic range at 1 Hz only achieves a 110 dB

dynamic range at 10 kHz. As a result, the dynamic range specifications of fiber-optic sensors
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must always be accompanied by bandwidth requirements for proper evaluation.

Another common misconception about fiber-optic interferometer dynamic range is that it can

be compared to electronic-based system dynamic range. With traditional electronic-based

sensor systems, the dynamic range can be increased or decreased with additional gain and/or

attenuation stages. No such comparable approach exists with fiber-optic sensors. Before the

dynamic range extension techniques described within this dissertation were available, only a

few options existed. First, reduce the system noise floor. This increases the minimum

resolvable signal and allows for a less responsive sensor to be used. The second method is to

increase the maximum sample rate of the system and extend the high-end limitation. A third

option, which was only recently published in the literature, is known as derivative pulse

interrogation [8]. Derivative pulse interrogation will be discussed in the literature review. This

dissertation now examines the low-end system noise floor limitations, the high-end bandwidth

limitations, and the available dynamic range extension techniques found in the literature, such

as derivative pulse interrogation.

3.2 Low-End Limitations

Dynamic range increases can be achieved by reductions in the system noise floor. This section

introduces the numerous noise sources present in a fiber-optic interferometric system that

contribute to the overall noise floor and determine the minimum achievable phase

resolution.

3.2.1 Laser Phase Noise

Laser phase noise is generated from frequency noise of the laser being converted to a phase

through an optical length path mismatch between the signal and the reference arms. The

magnitude of the laser phase noise δφlaser phase can be determined from 3.1

δφlaser phase =
2πneff (Ls − Lr)δν

c
(3.1)



22

Most laser manufacturers will provide phase noise specifications with a standard 1 m path

differential. However, in many interferometer applications it is possible to achieve a less than

1 m differential and reduce the overall contribution of laser phase noise. Static strains must

also be considered when path matching as they will impose changes in neff that will be

indistinguishable from changes in the path length.

Recent advances in laser technology have significantly reduced the impact from laser phase

noise. High coherence lasers are now commercially available with frequency linewidths less

than 1 kHz [9]. The phase noise contributions from such lasers are below 1 µrad/
√

Hz for

frequencies above 100 Hz.

3.2.2 Laser RIN

Relative Intensity Noise (RIN) is the result of small fluctuations in the output power of the

laser. Its spectrum shows up as sidebands around the carrier, which appears as phase noise in

the measurement band after demodulation. Laser manufacturers provide RIN spectrum levels

in units of dB/Hz. The phase noise contribution from RIN can be determined from 3.2, where

RIN is the spectral levels provided by the manufacturer.

δφlaser rin = 10

√
RIN(f)

20 (3.2)

For RIN levels less than -130 dB, the phase noise contributions will be less than 1 µrad/
√

Hz .

As with laser phase noise, recent advances in laser technology have made RIN levels

sufficiently small. Typical RIN levels are now under -130 dB/Hz for frequencies above 100 Hz

[9].

3.2.3 Oscillator Phase Noise

Fiber-optic interferometric systems use a single master oscillator to drive both the modulation

of the AOMs and the synchronous demodulation electronics. Use of more than one oscillator
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within the system would generate significant phase noise as even highly stable oscillators will

drift relative to each other. But, phase noise of the single oscillator will still be present in the

demodulated output spectrum. Oscillator phase noise is provided by the manufacturer in

much the same way as RIN. The units are provided in dBc/Hz. Ultra-low phase noise

oscillators can now be purchased with phase noise levels of less than -140 dBc/Hz above 100

Hz. Such levels contribute sub 1 µrad/
√

Hz noise and can generally be ignored.

3.2.4 Fiber Thermal Noise

Fiber-thermal noise is an inherent property of the fiber itself, originating from small

fluctuations in neff as a result of small variations in temperature [10]. The magnitude of the

fiber thermal noise is dependent on numerous parameters. However, a generalized

approximation has been developed based solely on the length of the fiber [4].

δφfiber th = 10

√
−147+log(Ls)

20 (3.3)

The approximation assumes that the noise is purely white. However, there is substantial

role-off above 10 kHz in actual systems. This can typically be ignored since other sources of

noise will dominate above 10 kHz.

3.2.5 Transimpedance Amplifier (TIA) Thermal Noise

TIA thermal noise is associated with electronic noise from the photodetector’s

transimpedance amplifier. If a sufficiently quiet amplifier circuit is used, then the primary

source of thermal noise will be generated by the TIA load resistor [4].

δφtia th =

√
4kTe/Rl
rP

(3.4)

The minimum detectable phase shift as a result of TIA thermal noise can be found from
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equation 3.4. Te is the equivalent thermal temperature, k is Boltzmann’s constant, and Rl is

the TIA load resistance. For TIA circuits using load resistors 100k ohms or greater, the

contribution from TIA thermal noise will be below 1 µrad/
√

Hz for P > 1µW.

3.2.6 Optical Shot Noise

Optical shot noise is generated as a result of fluctuations in the average number of the

photons hitting the detector. Equation 3.5 can be used to determine the minimum detectable

phase shift based on the average amount of light received at the photodetector, where q is the

electron charge [6].

δφi shot =

√
2qrP

rP
(3.5)

It can be seen from this equation that as the received optical power is increased, the minimum

detectable phase shift improves. However, most practical systems which incorporate Erbium

Doped Fiber Amplifiers (EDFAs) will not be limited by shot noise.

3.2.7 EDFA Spontaneous-Spontaneous Noise

Erbium doped fiber amplifiers are widely used within large fiber-optic interferometric sensor

systems. EDFAs allow for optical amplification without the need to convert the signals to the

electrical domain and back. Although many different optical amplifier technologies have been

developed, the EDFA is still the preferred choice for interferometric systems. They provide

high levels of gain, low noise figures, and suffer little from non-linear optical effects. EDFAs

are used within fiber sensor systems as transmitter power boosters, mid-range extenders, and

receiver pre-amplifiers. The EDFA noise considerations presented in the following two sections

relate to EDFAs as pre-amplifiers to the receiving photodetectors. Such amplifiers are

common in large TDM and Dense Wavelength Division Multiplexing (DWDM) systems.

Several different sources of noise are introduced to the system with the use of EDFAs. The
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two most dominant sources are known as spontaneous-spontaneous and signal-spontaneous.

EDFAs generate low levels of amplified light known as Amplified Spontaneous

Emission (ASE) across the gain spectrum of the device. This ASE can then mix with itself on

the receiving photodiode. This is known as spontaneous-spontaneous noise. Its phase noise

contribution can be determined from equation 3.6, where h is Planck’s constant, F is the

noise figure of the amplifier, vopt is the frequency bandwidth of an ASE limiting filter, and D

is the duty cycle of the received optical pulses into the EDFA [6].

δφsp sp =
hvF
√
vopt

V PD
(3.6)

For a DWDM system, vopt will commonly be set at the channel bandwidth of 100 GHz. D is

dependent on the number of TDM multiplexed channels. For TDM systems with a large

number of channels, D will be small, and the contribution from spontaneous-spontaneous

noise will be significant. Even for non-TDM systems, use of an EDFA pre-amplifier will

introduce enough noise to be one of the primary limiting factors.

3.2.8 EDFA Signal-Spontaneous Noise

A second noise term generated by the use of an EDFA pre-amplifier is known as

signal-spontaneous. This develops from beating of the incoming optical signal with the ASE

[6].

δφsig sp =

√
2Fhv

V 2PD
(3.7)

The level of this phase noise can be determined from equation 3.7. In general,

spontaneous-spontaneous noise will dominate; however, if the polarization visibility V is

small, then its impact must be considered as well.
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3.2.9 Double Rayleigh Scattering

Photons encountering imperfections in the fiber itself can cause what is known as Rayleigh

scattering, in which the light can scatter in any direction. However, light scattered in the

reverse direction can create problems. If the reverse scattered light undergoes a second reverse

reflection, the light will then be traveling in the original direction but out of phase with the

incident wave. If a long coherence wavelength laser is used, and the fiber lengths between the

source and receiver are more than a few kilometers, the double Rayleigh scattered noise

contribution can be significant [4]. Quantifying the magnitude of this noise is difficult as it is

highly system-architecture dependent. Also, although not truly Rayleigh scattering, discrete

reflections from system components, fiber connectors, and fiber-splices complicate the

calculation. Double Rayleigh scattering effects can be reduced by the use of separate input

and output fiber leads from the optical pulse generator to the sensor and back to the receiver.

The insertion of directional optical isolators along the fiber leads can also reduce the impact

of scattering noise.

3.2.10 Finite Extinction Ratio

The modulation devices used to generate the optical interrogation pulses are generally treated

as perfect on/off switches. In reality, they suppress only a portion of the light. The ratio at

which the light is allowed to pass in the on state to the amount which is blocked in the off

state is known as the extinction ratio. Light which is allowed to pass during the off state

creates unintended continuous interferometers. Like Rayleigh scattering effects, determining

the impact of finite extinction noise is difficult. Experimental results have shown that finite

extinction ratios between 60 dB and 100 dB are required to minimize any noise [6]. Such

extinction levels require specialized devices or cascading of multiple units.
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3.2.11 Polarization Fading and Noise

Light in the signal and reference paths can become polarized as it travels down the fiber. If

the angle of the polarization states between the two paths becomes orthogonal, then mixing

will not take place on the photodetector. When this occurs, the Carrier to Noise Ratio (CNR)

is reduced, and the signal of interest will be unrecoverable. This is known as polarization

signal fading, the magnitude of which depends on the angle of polarization between the two

arms. This has been one of the most challenging aspects of fiber-optic interferometry. It has

also been one of the most heavily researched. Numerous approaches have been developed for

reducing the severity of polarization fading. These include polarization diversity receivers,

polarization switching, and Faraday rotator mirrors. Of them, Faraday mirrors are the

simplest to implement and provide nearly complete polarization fading mitigation [11]. Their

cost, however, has largely prohibited their use in the past. Though, their prices have dropped

in recent years to the point that their benefits now outweigh the costs in many applications.

For systems utilizing Faraday mirrors, this report will assume that the polarization visibility

will be maximized at V = 1.

In addition to polarization signal fading, polarization noise can also be introduced into the

system. Polarization changes generate amplitude modulations of the received carrier signal.

These amplitude modulations will show up as sidebands in the output spectrum. The same

techniques which are used to mitigate polarization fading also mitigate polarization noise.

Again, Faraday rotator mirrors are a near ideal solution since they eliminate polarization

fluctuations [4]. The effects of polarization fading and polarization noise will not be included

in the total noise analysis because they can largely be eliminated with the use of Faraday

mirrors.

3.2.12 Total Phase Noise

The lower limit of the dynamic range is determined by the system’s total phase noise floor.

This can be found by taking the square root of the sum of the squares of the individual noise

sources, since they are considered to be statistically uncorrelated [6].
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Figure 3.1: Phase noise with EDFA

δφtotal =
√
δφ2total (3.8)

δφ2total = δφ2laser phase + δφ2laser rin + δφ2osc + δφ2fiber th + δφ2tia th + δφ2i shot + δφ2sp sp + δφ2sig sp

(3.9)

Which source or sources of phase noise contribute most to the system noise floor is dependent

on a wide variety of factors, but can be separated into two cases: systems using an EDFA

preamplifier and those which do not. Phase noise plots are provided for the two cases in

Figure 3.1 and 3.2. The system parameters used in the generation of these plots are as

follows: Ls = 100 m, r = .9 A/W, P = 10uW, Te = 600◦K, Rl = 128 kΩ, V = 1, F = 2.5,

νopt = 100 GHz, and D = .5. Values for laser phase noise, laser RIN, and oscillator phase

noise were taken from manufacturer datasheets.

For systems where the optical power is sufficiently low at the input to the demodulator, it

may be desirable to boost the input power using a preamplifier. Using a preamplifier will
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Figure 3.2: Phase noise without EDFA

increase the CNR, but will introduce spontaneous-spontaneous and signal-spontaneous noise.

This noise will dominate all other sources above several hundred hertz as seen in Figure 3.1.

It should be noted that parameters used in Figure 3.1 are a best case scenario since only a

single sensor with perfect polarization visibility is used. In most systems using EDFAs this

will not be the case, and high levels of spontaneous generated noise will dominate the entire

frequency band, severely limiting the low-end noise floor.

Optical preamplifiers are not required if the input power to the demodulator is approximately

-30 dBm or more. In this scenario, and assuming that optimal system components are being

utilized, the noise floor will be determined by either the laser phase noise or fiber thermal

noise. Figure 3.2 shows the floor when using a 1 kHz linewidth laser, a 1 m path difference,

and a 100 m sensing coil. For this scenario, it can be seen that laser phase noise will dominate

below 1 kHz, and fiber thermal noise will dominate above. If, however, the linewidth of the

laser were reduced or the path differential minimized, the fiber thermal noise would dominate

a greater region of the spectrum. Likewise, if the sensor fiber length Ls were reduced, the

contribution from thermal noise would be less, and laser phase noise would dominate.
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In general, the other sources of noise discussed earlier will be lower than the laser phase noise

or fiber thermal noise. However, their magnitudes are all in the range of .1 µrad/
√

Hz and .5

µrad/
√

Hz . The total impact of these different noise sources establishes a limit just below 1

µrad/
√

Hz that is difficult, at best, to improve upon. In reality, other sources of noise, which

are more difficult to quantify, may dominate. This includes finite extinction ratio noise,

double Rayleigh scattering, and polarization effects. Increasing the high-end dynamic range

limitation is a more feasible approach for any significant dynamic range increases.

3.3 High-End Limitations

The high-end limitation of a fiber-optic interferometer’s dynamic range is based solely on the

interrogation sample rate fsamp. Each pulse of light used to interrogate the sensor results in a

single phase measurement. Since the demodulation process used in this work uses an

arctangent calculation to extract the phase information of interest from each pulse, the most

that the phase can change in either direction is limited to ±π. The maximum rate of phase

change is therefore determined by equation 3.10.

θdemod = ±πfsamp (3.10)

θdemod is often referred to in the literature as the fringe rate of the demodulator. This is the

maximum rate of phase change generated by the sensor for which the demodulator can

accurately recover the signal. If a signal generates a phase change greater than this limit, then

the demodulator output will be invalid. This is known as an “excession” of the demodulator

[4]. Determining the fringe rate of the signal θsig is often the challenging part. This is the

focus of Chapter 4. However, for sinusoidal modulation, it will be shown that the signal fringe

rate will be equal to the frequency of the sinusoid times its amplitude. Using this information,

it can be shown that the maximum sinusoidal amplitude As that can be measured at a

particular frequency is determined by equation 3.11.
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As =
fsamp
2fs

(3.11)

From equation 3.11, it can be seen that for a given frequency of fs the only option for

increasing As is to increase fsamp. However, the maximum sampling rate fsamp is determined

by numerous factors. The most critical of these are the sensor coil length Ls, the number of

TDM channels, the rise/fall times of the pulsing unit, and the ability of the demodulation

hardware to process the incoming data. Assuming no TDM is utilized and given the pulse

width requirements of 400-500 ns for the demodulation hardware used in this research, fsamp

is limited to around 1 MHz. Assuming fsamp = 1 MHz, the frequency dependent maximum

values of As can be determined. These values can be used as the high-end dynamic range

limitation for sinusoidal modulation. Different modulating waveforms will have different

dynamic range limitations.

3.4 Dynamic Range Determination

The overall system dynamic range is determined from the difference in the maximum and

minimum resolvable phase signal. The maximum signal was determined as As. The minimum

was found to be φtotal. Plotting the logarithmic values of each, and taking the difference

between the upper and lower limits, results in the dynamic range of Figure 3.3, labeled as

“DR”.

The calculated dynamic range of Figure 3.3 is valid only for single sinusoidal modulation and

the system parameters defined earlier in the chapter. These dynamic range values should also

be considered best case. Environmental conditions such as acoustic noise, vibrations, and

thermal fluctuations can dominate the lower phase noise limit and reduce the actual

measurable dynamic range.

Obtaining dynamic range levels above those presented in the section is difficult with present

technology. A few dB increase may be possible on either the high or the low side with further

optimizations. For systems which require dynamic range levels well above those presented
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Figure 3.3: Calculated dynamic range with an EDFA

within, only one other viable technique has been presented for substantial dynamic range

extension prior to this work. The following section examines previous attempts at dynamic

range extension and approaches used in similar applications.

3.5 Dynamic Range Extension Literature Review

Little research is found in the literature covering fiber-optic interferometric dynamic range

extension. Numerous papers have demonstrated how to calculate the available dynamic range,

however, most fail to mention the limitations or provide any extension techniques. Most of

the available literature in the area of fiber-optic interferometric systems has focused on the

development of large TDM systems. Such systems are comprised of hundreds of channels

multiplexed in both time and wavelength [7, 6, 4]. Unfortunately, TDM reduces fsamp for each

additional sensor multiplexed. Thus, the dynamic range of such systems is significantly

reduced. This reduced dynamic range impacts the type of applications where these large

arrays can be utilized. Even systems which do not utilize any TDM, and for which the other

system parameters are optimized, the maximum dynamic range may be insufficient.
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One recently published approach to dynamic range extension is known as derivative pulse

interrogation [8]. Prior to the method presented in this dissertation, derivative pulse

interrogation was the only viable extension technique. Details of this method are provided in

the following section. The other methods documented below are largely considered

impractical for large sensor systems. Their practicality is limited to single sensor systems for

lab applications. Several other papers have been written in recent years which explore the

dynamic range differences between PGC homodyne and heterodyne modulation and how to

optimize them [12, 5]. Such work does not actually provide for any range extensions beyond

what has previously been reported. The following sections discuss different methods found in

the literature for dynamic range extension.

3.5.1 Derivative Pulse Interrogation

Derivative pulse interrogation was the only viable dynamic range extension approach prior to

this work [8]. However, it was only recently published, being released after the completion of

most of this dissertation. According to the paper, it was derived from work presented in a

much older paper using Bessel function tracking for dynamic range extension [13]. It should

also be noted that the work presented in the recent paper was focused on phase noise

sensitivity measurements, not dynamic range extension. The derivative pulse interrogation

method was used in the paper to improve the lower phase noise limit, not extend the upper

range. It did, however, mention the use of derivative pulse interrogation for high-end dynamic

range extension, but provided only a few details. As such, the specifics regarding this

approach are not well understood.

The derivative pulse interrogation method works by generating additional pulses in the

received pulse stream which are lower in sensitivity than the standard pulses by a substantial

amount. This is accomplished by reducing the pulse widths used to interrogate the sensors

and adding an additional compensator stage at the receiver to generate the derivative pulses.

Standard pulses are formed by overlapping two pulses that hit two different mirrors at the

same time. Derivative pulses are generated by overlapping two different pulses on the same

mirror at two different times. Since the derivative pulses interrogate the same mirror at two



34

different times, the pulse that is generated can be considered a phase derivative. Derivative

pulses taken from both mirrors of a sensor are subtracted in order to obtain the reduced

sensitivity phase measurement. This reduced sensitivity is documented to be as much as 78

dB less at 100 Hz but increase by 6 dB per octave. The details behind these numbers were

not presented in the paper, neither were the specifics of how the reduced sensitivity

measurements should be used to increase the dynamic range. However, this is currently the

only other documented source which discusses a viable technique for overcoming the ±π

limitations in a pulsed heterodyne fiber-optic interferometric system.

Although few details have yet to be provided regarding derivative pulse interrogation, several

drawbacks are evident. First, twice the number of optical interrogation pulses are required,

thus reducing the maximum achievable fsamp. Therefore, to obtain an overall increase in

dynamic range requires an initial reduction. Also, the additional compensation coil required

at the receiver is a potential problem. Besides the requirement of additional hardware, the

extra compensator coil introduces a path imbalance which increases the laser phase noise.

The derivative interrogation method can reportedly subtract out the added laser phase noise,

but the coil itself can be another source for picking up environmental noise. No additional

compensation coils or hardware are required for the dynamic range extension approach

presented in this dissertation.

3.5.2 Predictive Phase Algorithms

One paper identifies the potential dynamic range limitations and discusses an extension

approach explored by the researchers. This was an overview paper of high performance

fiber-optic sensing [4]. However, the dynamic range extension technique briefly mentioned in

this paper was found to not be viable by the researchers. The approach was to use predictive

waveform tracking algorithms for predetermined signals. They found that this method was

only viable in a few select situations. The details provided in the article were largely omitted

since they determined it to be of little value and not relevant to the larger paper.
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3.5.3 Multi-wavelength Interrogation

Multi-wavelength interrogation approaches are common in the literature. Their popularity

arise from the fact that they feature unambiguous absolute phase resolution. This allows for

interferometric measurements down to DC in some applications [14]. They are also touted as

having wider dynamic ranges. Multi-wavelength interrogation approaches generate beat

frequencies with wavelengths longer than the frequencies of the individual lasers, leading to a

larger dynamic range. Despite this advantage, the dynamic ranges of multi-wavelength

techniques are relatively small. A dynamic range of 93 dB was reported in one paper using

two wavelengths [15]. For a four wavelength system, a 152 dB dynamic range was achieved

[16]. More than 160 dB is estimated for a five wavelength system [17].

Despite the interest in multi-wavelength interrogation approaches, they are not without issue.

The use of multiple lasers and additional interrogation hardware makes them less than ideal

for large multiplexed systems. The multi-wavelength approaches demonstrated to date are

also passively interrogated and subject to interferometric signal fading. Lastly, the resolution

and the ability of multi-wavelength systems to achieve wide dynamic ranges are dependent on

the coherence of the lasers. For interferometric systems interrogated remotely over more than

a few miles, the laser coherence requirements become quite challenging. As a result of these

issues, multi-wavelength interrogation approaches are not well suited for large scale remotely

interrogated fiber-optic interferometric systems.

3.5.4 Phase-Polarization Measurement

One of the earliest attempts at dynamic range extension was the combined use of

interferometric and polarization measurements on the same sensor [18]. The interferometric

sensing provides the high resolutions needed while the polarization sensing, being much less

sensitive, provides a large unambiguous measurement range. Researchers were able to

successfully implement this approach in the lab using bulk optics. However, practical

fiber-optic sensors based on this approach would be much more challenging. Remotely

interrogated sensor systems which utilize EDFAs, mux/demux units, optical circulators, and
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Single-Mode Fiber (SMF) complicate polarization measurements. Additionally, most large

interferometric sensor systems require some form of polarization signal fading mitigation to

stabilize the phase measurement, which would prevent any potential implementation of this

type of dynamic range extension.

3.5.5 Summary

Both the high and low-end dynamic range limitations were presented in this chapter. The

low-end was shown to be limited by numerous sources at the 1 µrad/
√

Hz noise level. The

high-end was shown to be bandwidth limited. Little dynamic range improvement can be

achieved on either end with current technology. A literature review also showed few viable

options. The details of the most promising option, derivative pulse interrogation, have not yet

been fully published.

It was stated previously that the available dynamic range is dependent on the fringe rate of

the modulating waveform itself. This dissertation now provides a fringe rate analysis for

several different waveform types.
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Chapter 4 Signal Fringe Rate Analysis

It was shown in Chapter 3 that the fringe rate of the demodulator must always be greater than

the fringe rate of the measured signal. A violation of this requirement will result in an error in

the recovered signal. Determining the fringe rate of the demodulator is straight forward since

it is based entirely on the sample rate fsamp. Determining the fringe rate of the signal can be

much more challenging. However, knowing the fringe rate of the expected received signals is

critical in accurately determining the high-end dynamic range limitations.

Several papers have previously demonstrated fringe rate analysis of single-tone sinusoidal

modulation [3, 6, 4]. Little work has been found which addresses more complicated

waveforms. Of particular interest is fringe rate determination of broadband noise and its

dynamic range reduction factor. The remainder of the chapter explores fringe rate analysis on

several commonly encountered waveforms including single-tone sinusoidal, multi-tone

sinusoidal, and broadband noise. The impact of broadband noise on single-tone sinusoidal

modulation is also analyzed.

4.1 Single Sinusoidal Modulation

For a heterodyne interferometer system, it was shown in Chapter 2 that the time varying

component of the photodetector current ipd sig can be determined from equation 4.1. The

current is comprised of a continuous carrier signal at fc which is modulated by the phase of

the light in the sensor arm φs(t).

ipd sig(t) = rPV cos(2πfc(t) + φs(t)) (4.1)

If φs(t) is sinusoidally modulated then it will take the form of equation 4.2.

φs(t) = As sin(2πfs(t)) (4.2)
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The fringe rate of the signal θs is determined by taking the derivative of φs(t).

θs(t) = 2πfsAs cos(2πfs(t)) (4.3)

Since the peak fringe rate is typically what is of interest, the above equation can be reduced

to equation 4.4 [4].

θs = 2πfsAs (4.4)

Equation 4.4 is what was defined as the sinusoidal fringe rate in the previous chapter. As can

be seen, it is a function of both the signal’s amplitude and frequency. Thus, the maximum

amplitude signal As that the demodulator can properly recover is dependent on the signal

frequency fs. This gives the high-end dynamic range limitation a 20 dB per decade roll-off. It

was also shown previously that since the maximum measurable phase between any two

demodulated points is ±π, the fringe rate of the demodulator is given by equation 4.5 .

Therefore, the maximum sinusoidal amplitude As that can be measured is determined by

setting equation 4.4 equal to 4.5.

θdemod = ±πfsamp (4.5)

As =
fsamp
2fs

(4.6)

Equation 4.6 specifies the maximum measurable sinusoidal amplitude based on the frequency

of the signal and the system sample rate. A plot of maximum sinusoidal amplitudes versus

system samples rates is shown in Figure 4.1. Three different common fsamp rates are

provided. A 10 kHz sample rate limit is typical for very large scale TDM multiplexed systems,

100 kHz is an approximate limit for large scale TDM multiplexing, and 1 MHz is typical of a

non-TDM multiplexed system. As can be seen in the figure, there is a 40 dB dynamic range
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Figure 4.1: Peak sinusoidal fringe rates at different fsamp rates

differential between a very large scale TDM multiplexed system and a non-TDM multiplexed

system. Such considerations are critical in the initial development stages of a fiber-optic

sensor system. Still, this fact has largely been ignored in the existing literature.

4.2 Multi-tone Modulation

Calculating a fiber-optic interferometric system’s dynamic range based only on single

sinusoidal modulation does not accurately model most real-world situations. For example,

multi-tone waveforms are often used in acoustic and vibration testing to reduce the total

amount of time needed to collect spectral information. Therefore, it is critical to be able to

determine the multi-tone dynamic range in order to properly limit the exciter’s drive

levels.

If all of the sinusoids in a multi-tone waveform start in phase, then determining the multi-tone
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fringe rate is straightforward. All of the individual peak fringe rates will line up in time and

add together. For a waveform comprised of m sinusoids, the multi-tone fringe rate value then

becomes

θm = 2π
m∑
n=1

fmAm (4.7)

Equation 4.7 can be considered the worst case scenario for multi-tone dynamic range. Use of

this value is recommended when the phases of the driving exciters are either unknown or

unsynchronized. In the case that the phase alignment between the waveforms is known and

can be controlled, some dynamic range improvement can be realized. However, the magnitude

of the improvement is generally small and is dependent on a wide range of factors including

the number of sinusoids, the frequencies and amplitudes, and the duration of the waveforms.

It has been determined through simulations, as part of this work, that dynamic range

improvements achieved through phase adjustments is typically only on the order of 1

dB.

The use of multi-tone waveforms will decrease the maximum dynamic range of a fiber-optic

interferometer system. For systems which require the absolute highest peak dynamic ranges,

the use of multi-tone waveforms should be avoided.

4.3 Broadband Noise

Broadband noise fringe rates have not been addressed previously in the literature. Yet, all

systems will be influenced by some level of broadband noise. This noise can be the result of

undesired ambient conditions such as background acoustics or from intentional noise

generating sources. System noise sources such as those identified in the previous chapter will

also introduce a level of broadband noise. Distinguishing system noise from measured noise is

usually impossible. Regardless of the source, determination of the broadband fringe rate is

critical since it can have an impact on the overall measurable dynamic range. As will be

shown later, it will also have an impact on the dynamic range extension approach.
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The following broadband noise fringe rate analysis assumes only band-limited white noise.

This can be simulated as a series of uniformly distributed random numbers occurring between

peak amplitudes ±An, at a rate of fsamp. Since only the peak fringe rate is of interest, this

can be determined as the largest phase shift occurring between any two demodulated data

points. This results in the maximum broadband noise fringe rate θn of equation 4.8.

θn = 2Anfsamp (4.8)

Equating 4.5 and 4.8 yields the maximum peak noise level.

An pk =
π

2
(4.9)

Since An pk is a constant, increasing fsamp will not result in an increased dynamic range as it

did with sinusoidal modulation. However, increasing fsamp will still increase the maximum

broadband fringe rate θn. This is a result of the highest measurable frequency fnyq =
fsamp

2

dominating the fringe rate and setting the limitation on the dynamic range.

The above analysis assumes band-limited white noise with a sharp high frequency roll-off fh

that exists at fnyq. In most practical systems this will not be the case. The location, or the

lack thereof, of the high frequency roll-off within the measurement band is critical. If the

roll-off occurs at a frequency greater than fnyq, aliasing can create the potential for both noise

and demodulator excessions. If the roll-off occurs below fnyq, then it may be possible to

increase the peak noise level without overloading the demodulator. Such considerations

should be examined for each system. For the ideal case where fh occurs at or below fnyq, 4.8

can be generalized to determine the maximum fringe rate based on fh.

θn = 4Anfh (4.10)

For a peak broadband noise of amplitude An pk = π
2 and a demodulator resolution of 1

µrad/
√

Hz , the measurable dynamic range is 124 dB. Such high levels of noise do not occur
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naturally in most physical systems. Generating these levels of noise can even be a challenge.

The real concern with broadband noise is how it can potentially reduce the available dynamic

range of other high fringe rate signals.

4.4 Single Sinusoid with Broadband Noise

This section explores the potential impact of broadband noise on high fringe rate sinusoids.

As with multiple sinusoids, the peak fringe rates of a single sinusoid and broadband noise

(with a high frequency roll-off at fh) are additive. Thus, the total peak fringe rate for a

sinusoid plus noise θs+n becomes

θs+n = 2πfsAs + 4Anfh (4.11)

It was shown in the last section that the peak measurable noise amplitude is An pk = π
2 . As

stated previously, such high levels are not encountered in most system. However, if we assume

An = π
4 and fh =

fsamp

2 , and again equate equations 4.5 to 4.11, it can be shown that the

maximum amplitude of the sinusoid that can be measured is

As =
fsamp
4fs

(4.12)

It should be noted that equation 4.12 is only a factor of 2 less than that derived previously for

single sinusoidal modulation alone. This shows that, even for large amplitude broadband

noise, the reduction in dynamic range available for the sinusoid is minimal. In this example,

the amplitude of the noise was reduced by 6 dB from the maximum measurable limit, and the

high frequency roll-off occurred at the Nyquist frequency, yet, resulted in only a 6 dB

reduction in the sinusoidal dynamic range.

The significance of this analysis is that for most real world applications the impact of even

moderate levels of broadband noise can be ignored. What is still to be answered is the
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potential impact of the broadband noise on the dynamic range extension technique presented

in this paper. This will be addressed in a later chapter.
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Chapter 5 Instantaneous Heterodyne Carrier Frequency Measurement

The dynamic range extension approach presented in Chapter 6 requires frequency

discrimination of the received heterodyne carrier signal. Consequently, for the dynamic range

extension approach to be feasible, a method must first be determined for measuring the

instantaneous carrier frequency. This chapter explores potential options based on the system

requirements. The first part of the chapter is a literature review. It explores two unique

approaches to instantaneous carrier discrimination in the digital domain. However, as will be

discussed, only one of the two is well suited for the application at hand. Two additional

approaches will also be explored as part of this chapter. The first is based on Discrete Fourier

Transform (DFT) analysis. The second is an approach to discriminate frequency via

measurement of the amount of expansion or contraction in the carrier signal. Limitations to

the different techniques will be addressed.

An understanding of the requirements for frequency discrimination is critical in determining

an appropriate measurement approach. It is common in heterodyne modulated interferometric

sensor systems for the carrier frequency to have a bandwidth that exceeds 10 MHz.

Measurement of this wide of a bandwidth, with a high resolution and accuracy, can be a

challenge. Knowing the rate, resolution, and bandwidth with which the carrier must be

measured is important. Some of these questions will not be able to be fully addressed until

Chapter 6. However, some general rules can be stated. First, an instantaneous carrier

frequency measurement must be made for every demodulation point. Second, the entire

bandwidth must be measurable, but the resolution requirements are forgiving. Rather than

measuring every frequency in the required bandwidth with a high resolution, only select

frequencies or frequency bands will actually have to be measured. Lastly, averaging of the

frequency measurements between two or more demodulation points is required for the

extension approach to work. This averaging further simplifies the need for absolute frequency

determination.
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5.1 Literature Review

Prior to the start of this dissertation, a literature review was conducted to locate potential

methods for measuring the instantaneous carrier frequency that would meet the requirements

stated previously. Since Fourier analysis was previously determined to be a suitable

candidate, it was not included as part of the literature review. It will be discussed later in the

chapter as one of the primary measurement techniques.

Instantaneous frequency measurement is a topic of high interest in the Software Defined

Radio (SDR) literature. Software defined radio is a recent area of research that focuses on

radio communication systems in which the processing is performed almost entirely in the

digital domain. Such research has been facilitated in recent years with the advent of

high-speed digital electronics. The potential benefits of SDR include lower-cost hardware,

more efficient utilization of the available spectrum, and more flexible communication systems.

Because of these benefits, SDR has received substantial research interest in recent years.

Discrete frequency discrimination is a topic which has been addressed in numerous SDR

papers. Two methods which have been explored include Digital Instantaneous Frequency

Measurement (DIFM) and Digital Phase Locked Loops (DPLLs).

5.1.1 Digital Instantaneous Frequency Measurement

The ability to quickly discriminate the frequency of an incoming signal has long been a

requirement in communication, radar, and electronic warfare systems. One of the most widely

used techniques to date is known as Instantaneous Frequency Measurement (IFM). IFM is

based on an autocorrelation measurement of the received signal with a fixed time delay of τd.

Early IFM receivers operated entirely in the analog domain. However, as early as the 1960’s,

developers began digitizing the output of the analog receivers, thus giving them the name

DIFM receivers [19]. DIFM technology has evolved significantly since the early days. Today, a

true DIFM receiver is considered one in which the entire processing is conducted in the digital

domain. Although different DIFM architectures exist, the standard form is depicted in Figure

5.1 [20, 21].
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Figure 5.1: Digital Instantaneous Frequency Measurement receiver

The digitized incoming signal is split between two paths. One path is fed directly to a digital

multiplier unit. The other path contains one or more delay elements before sending the signal

to the same multiplier. In an analog IFM approach the time delay τd of the path can be set at

any continuous value. However, in the all-digital version described within this dissertation,

the delay path can only be set to multiples of the ADC sample time interval τadc. Thus, the

path may contain one or more delay registers, the number of which will determine the usable

frequency detection bandwidth. This will be analyzed further later in the chapter.

It has been shown that for an input carrier signal of y(t) = Ac cos(2πfct)), after digitization

and mixing, the resulting output signal will be of the form [20]

ymix[n] =
A2
c

D2
22N−1[cos(2πfcτadcm) + cos(4πfcτadcmn− 2πfcτadcm)]

+
A2
c

D2
22N [cos(2πfcτadcmn)εq(n−m) + cos(2πfcτadcm(n−m))εq(n)]

+ εq(n)εq(n−m) (5.1)

For equation 5.1, Ac is the carrier amplitude, N is the number of ADC bits, D is the

input-voltage dynamic range, and εq is the quantization error. The number of ADC delay

samples is specified by m. As can be seen from the equation, two terms exist near DC. One

contains the instantaneous carrier frequency information, the other, the quantization error

magnitude. The DC terms are extracted from the output of the mixing stage by running the

signal through a low-pass FIR filter, resulting in equation 5.2, where |HLPF (0)| is the low-pass

filter gain at DC.
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yfilt[n] = |HLPF (0)|[A
2
c

D2
22N−1[cos(2πfcτadcm)] + εq(k)εq(n−m)] (5.2)

It was shown in [20] that, for even a 10-bit ADC, the quantization error is negligible.

However, most all-digital demodulators will utilize 12-16 bit ADCs to maximize the low-end

dynamic range. Thus, the contribution from quantization noise can usually be ignored. Using

this assumption, and performing some algebraic reorganizing, the resulting equation provides

the instantaneous carrier frequency as its output.

fc ≈
1

2πτadcm
arccos

(
yfilt[n]

|HLPF (0)|A
2
c

D2 22N−1

)
(5.3)

One issue that arises with DIFM receivers is their dependence on the amplitude of the carrier

Ac. It can be seen from equation 5.3 that the arccos term is a function of both yfilt[n] and Ac.

In early DIFM receivers utilizing analog front-ends this dependency was compensated for with

the use of auto gain controllers and equalization filters. Recently, an all-digital approach to

amplitude correction was published [20]. This technique uses the fact that if m = 0 in

equation 5.2, it can be reduced to

yamp[n] = |HLPF (0)|A
2
c

D2
22N−1 (5.4)

Equation 5.4 is in fact the peak amplitude output of equation 5.2 . Therefore, dividing

equation 5.2 by 5.4 yields an amplitude independent output equation.

yout[n] = cos(2πfcτadcm) (5.5)

Most DIFM implementations utilize lookup tables in order to extract the instantaneous

carrier frequency fc from the cosine term. However, as will be discussed later in the chapter,

such steps are not required within this work. The value yout[n] can be used directly in the

dynamic range extension approach.
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Figure 5.2: Digital phased locked loop

The literature review has shown that the DIFM method of frequency discrimination is well

suited for the research within. Literature was also identified which demonstrated a reliable

approach to removing the standard DIFM carrier amplitude dependency issues. It should also

be noted the efficiency at which the DIFM output value can be processed. The output can be

calculated in real-time and at high-speeds with as little as a single multiplier, adder, and

divider circuit. Because of this efficiency, DIFM will be evaluated as one of the primary

frequency measurement techniques later in the chapter.

5.1.2 Digital PLLs

Phased locked loop technology has long been used for frequency discrimination. With the

recent interest in SDR, researchers have published numerous papers covering the topic of

DPLLs. Their implementation largely follows that of their analog counter part. Figure 5.2

depicts one recently reported DPLL implementation [22].

A DPLL is comprised of three main components: a phase detector, a loop filter, and a Direct

Digital Synthesizer (DDS) circuit. The first component is the phase detector. The phase

detector is typically implemented as a digital multiplier, where the incoming digitized signal is

multiplied by both the in-phase and quadrature version of the reference signal. The output of

the phase detector contains both the low frequency signal of interest and an unwanted high
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frequency component. As a result, the output of the phase detector is passed through the

second main component, the loop filter. The loop filter is a 1st order low-pass digital filter,

the output of which is an error signal used to frequency adjust the DDS. The DDS is

responsible for producing the sine and cosine versions of the reference frequency, given the

error input from loop filter. DDS circuits are commonly implemented as large lookup tables in

memory.

The published reports on DPLL technology has largely been underwhelming [22, 23]. While it

may serve its purpose in some applications such as FM receivers, it is not well suited for

instantaneous frequency measurement when compared to other available options. The

literature has shown that the processing time is significant and the output rate is slow. While

the performance could be improved with additional hardware, the typical DPLL already uses

significantly more resources than a DIFM receiver. There are also issues with tracking large

phase and frequency excursions. Because of these issues, DPLL technology is not considered a

viable option for frequency discrimination in the dynamic range extension approach.

5.2 Digital Instantaneous Frequency Measurement

It was shown previously in this chapter that DIFM is a viable and efficient technique for

measuring the instantaneous carrier frequency. The process involves making two

autocorrelation measurements and dividing the results. One autocorrelation measurement is

made with a fixed number of ADC delay samples given by m. The other is made with a zero

delay (i.e. m = 0). The zero delay measurement determines the peak output value of the

autocorrelation process and is used to normalize the non-zero delay autocorrelation value.

Using this approach, one obtains the following:

yout[n] = cos(2πfcτadcm) (5.6)

Further processing could be performed in order to extract fc; however, it is not required. As

will be shown, the output value yout can be used directly. What is left to be determined is the
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Figure 5.3: yout for different sample delays m

optimal value of m. For most systems fc and τadc will be fixed based on the available

hardware. This then leaves the value of m to determine the usable range of yout. For example,

the heterodyne interrogation hardware and demodulation electronics used in the experimental

portion of this research use a nominal carrier frequency of fc = 10 MHz and an ADC sample

rate of fadc = 100 MHz. Given these values, Figure 5.3 shows the usable yout range for

m = 1, 2, and 3.

In selecting the optimal value of m, the bandwidth Bif of the instantaneous carrier frequency

about the nominal carrier frequency must be considered. For sinusoidal modulation, the

bandwidth can be determined from Bif = 2Asfs, twice the peak fringe rate of the signal. A

bandwidth of Bif = 5 MHz will be assumed for the moment. The optimal choice of m is one

which provides a nearly linear output of yout over the range of Bif , around the nominal carrier

value. It must also provide a large differential in the output yout. As can be seen in Figure 5.3,

for m = 1, the output is in the non-linear part of the curve, and the differential output over
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the bandwidth around fc is very limited. For m = 2, the output operates much closer to the

linear part of the curve. The differential output over the given bandwidth has also significantly

increased. The optimal value, however, is obtained for a value of m = 3. This value provides a

highly linear and wide differential output over the required measurement bandwidth. As such,

a value of m = 3 will be utilized for the following simulations and experimental tests.

It should be noted that the issue of optimal m selection was addressed in [20]. It was shown

that a DIFM receiver should use m = 1, provided that fc = fadc/4. It can be seen in Figure

5.3 that if fc = 25 MHz, the output will be linearly optimized for m = 1. However, the

differential output over the bandwidth would be much less than that for fc = 10 MHz and

m = 3. The lower differential output will be shown in the next chapter to make the dynamic

range extension approach more susceptible to noise. Therefore, a proper evaluation based on

system parameters should be conducted when selecting a value for m.

5.2.1 Hardware Implementation

A value of m = 3 was just shown to be optimal for the DIFM application at hand. Other

design implementation considerations must still be addressed. In a typical implementation,

such as that shown in Figure 5.1, a low-pass FIR filter is placed after the digital multiplier

performing the frequency mixing. The performance of this filter is critical in suppressing

high-frequency components from generating noise in the output. While complex FIR filter

types could be utilized, a simple rectangular (boxcar) filter provides sufficient attenuation

levels provided the input data is properly windowed. In the all-digital demodulation

architecture used within this dissertation, proper windowing of the incoming data is required

for the rectangular FIR filters following the I/Q multipliers. Thus, the windowed data is

already available to the DIFM receiver with no additional processing required. The

rectangular FIR filters can therefore be reduced to a simple summing circuit. Figure 5.4

shows the DIFM hardware architecture, implemented within an FPGA, as part of the

experimental portion of this dissertation.

One advantage of the DIFM implementation in Figure 5.4 is the limited number of hardware

resources required. The entire receiver can be constructed with as little as one multiplier, one
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Figure 5.4: DIFM hardware implementation

adder, and one divider circuit. However, for the demodulator presented within this

dissertation, a parallel processing approach is required to reduce the overall computation

time. The additional summing and divider circuitry at the end of the processing chain is used

to implement a two-point instantaneous frequency average. This will be shown in the

following chapter to improve the reliability of the dynamic range extension technique. The

required hardware resources for the parallel processing approach is still significantly less than

for the other frequency measurement techniques presented later in the chapter. In addition to

the hardware efficiency, the DIFM method also provides excellent frequency tracking, as will

now be shown in the following simulations.

5.2.2 Simulations

A heterodyne demodulation simulation script was developed in MATLAB. This simulator can

be configured to evaluate a wide range of system parameters and operating conditions. The

simulations were configured to match the parameters of the available heterodyne

demodulation hardware used in the experimental portion of this work. These system

parameters are as such: fc = 10 MHz, fadc = 100 MHz, and Nadc = 16 bits. The

demodulation hardware output sample rate is fd = 81920 Hz. However, it was determined

early in the development of this system that the high-end dynamic range would not be met

with this sample rate. Therefore, a demodulation oversample rate of fsamp = 655360 Hz (

81920 Hz * 8x oversample rate) was utilized. This was determined to be the fastest

interrogation rate achievable without impacting the low-end noise floor, given the



53

demodulation approach and available hardware. The oversampled data is filter decimated

back down to the desired rate of 81920 Hz. The use of oversampling and filter-decimating the

data not only provides a higher upper-end dynamic range, it also provides a low-end dynamic

range improvement as some of the noise is averaged out.

The simulations within will be conducted using the oversample rate since this is the rate at

which the demodulation hardware must be able to perform. Given fsamp = 655360 Hz, the

maximum optical pulse width at the demodulator will be 763 nsec; however, edge transition

times and transient effects will limit this to a lesser window. A 500 nsec window within each

pulse is utilized, equaling 50 ADC data samples at 100 MHz of the received 10 MHz nominal

carrier signal. The MATLAB code used to simulate the DIFM hardware of Figure 5.4 is

shown below, where D samp is the 50-point Nuttall-windowed carrier signal data. The full

simulation code is provided in Appendix A.

Listing 5.1: DIFM MATLAB simulation code

DIFM auto = sum ( [ D samp , 0 , 0 , 0 ] . ∗ [ 0 , 0 , 0 , D samp ] ) ;

DIFM cf = sum(D samp .∗D samp ) ;

DIFM last = DIFM cur ;

DIFM cur = DIFM auto/DIFM cf ;

DIFM avg = mean ( [ DIFM cur DIFM last ] ) ;

As was stated earlier, the dynamic range extension approach requires an average

instantaneous carrier frequency measurement between the current and the previous

demodulation point. Thus, the output value of both the simulator and the actual hardware

implementation is a two point average. Therefore, the following simulations plot the given

input waveform versus the average instantaneous carrier frequency.

The first simulation to be conducted is a carrier noise floor analysis. The level of noise in the

output must be sufficiently small in order to ensure that errors are not potentially introduced

by the dynamic range extension approach itself into the demodulated output. Figure 5.5 shows

the DIFM noise floor with no input signal. A 40 dB CNR is used since this will be shown to

be a minimum receive level for most fiber-optic interferometer systems. As can be seen from

the figure, the peak-to-peak noise level of yout is approximately .004. This will be shown in
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Figure 5.5: Simulated DIFM output with As = 0 radians, and CNR = 40 dB

the next chapter to equal 3% noise in the dynamic range extension technique. This low level

of noise is well tolerated by the interferometer system presented within this dissertation.

The nominal output value of yout in Figure 5.5 is also of interest. Based on equation 5.6, a

nominal value of -.309 would be expected for m = 3 and fc = 10 MHz; however, a value of

-.295 is actually obtained. It was determined via simulations that this small difference is the

result of windowing the input data. Experimental testing has confirmed these findings.

Experimental testing has also found that the windowed boxcar filtering approach provides

substantially lower high-frequency noise components in the output when compared to other

FIR filter types. As a result, the windowed boxcar approach provides the best results despite

the small offset in the output.

The next three simulations were conducted with a sine wave signal input that results in a

peak carrier bandwidth of Bif = 6.4 MHz. This value represents the bandwidth required for a

20 dB dynamic range extension. The input waveforms have been Hanning weighted to reduce

startup transients. A CNR of 40 dB was assumed. Figure 5.6 shows the simulation results for

an input of 3200 radians at 1 kHz. As can be seen, the output yout closely tracks the
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Figure 5.6: Simulated DIFM output with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB

waveform shape of the input. The apparent phase shift in the output is a result of the

instantaneous frequency being the derivative of the phase. When the input is at a minimum

or maximum, the instantaneous carrier frequency approaches its nominal yout value. Likewise,

when the input crosses the x axis, the rate of phase change is at its maximum, resulting in the

peak instantaneous values.

The output values obtained for yout match those expected from the plot of Figure 5.3 over the

bandwidth of interest. A nominal output value of -.295 is obtained. The simulation peaks are

at values of 0.252 and -0.757. Calculated peak values are at 0.285 and -0.794. These small

variations are primarily the result of the input waveform not being sampled exactly at the

peak frequencies. Simulations using either higher sample rates or lower input frequencies have

confirmed this analysis.

Figure 5.7 shows the simulation for a sine wave of 320 radians at 10 kHz. The carrier

bandwidth has been maintained at Bif = 6.4 MHz. As expected, the peak yout values obtained

are now 0.258 and -0.756, nearly identical to that measured in the previous simulation.
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Figure 5.7: Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 40 dB

If the input frequency is increased by another factor of 10, but the peak bandwidth is again

maintained, we see the same results as the previous two simulations. Figure 5.8 plots the

results for an input sine wave of 32 radians at 100 kHz. The simulated peak yout values are at

0.20 and -0.711. These reduced numbers are, again, the result of the sampling points relative

to the peak values of the waveform and are not an issue.

These simulations have shown that the instantaneous carrier frequency can be accurately

tracked over a wide bandwidth. This approach works well for both low-frequency and

high-frequency input waveforms. There are, however, limitations to this approach, which will

now be addressed.

5.2.3 Limitations

Two potential limitations to the DIFM approach are the minimum CNR requirements and the

peak maximum bandwidth. The first issue to be addressed is the CNR requirement. It is well

known that Frequency Modulated (FM) and phase modulated systems require a minimum
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Figure 5.8: Simulated DIFM output with As = 32 radians, fs = 100 kHz, and CNR = 40 dB

CNR ratio to operate. It is also known that the quality of the received signal in an FM

system improves as the CNR increases. Therefore, there are two issues to be addressed

regarding CNR levels in a DIFM receiver. First, what is the minimum CNR requirement to

operate? Second, what CNR levels are required such that the noise levels do not introduce

error in the demodulated output?

The simulations shown previously utilized a CNR of 40 dB. The simulation shown in Figure

5.7 is now repeated at CNR levels of 6,12, and 18 dB. Figure 5.9 shows the DIFM output with

only a 6 dB CNR level. As can be seen, while the carrier signal still appears to be tracked, the

levels of high-frequency noise is significant and would result in substantial error being

introduced into the dynamic range extension approach. Figure 5.10 shows an improvement in

the output by increasing the CNR to 12 dB. However, this still contains levels of noise which

are incompatible with the approach presented in the next chapter. By increasing the

minimum CNR to 18 dB, such as in Figure 5.11, the noise levels are sufficiently low so that

DIFM output can reliably be used to extend the dynamic range. Increasing the CNR levels

further only helps to eliminate noise and improve reliability in the process.
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Figure 5.9: Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 6 dB

The CNR is one of the most critical parameters in a fiber-optic interferometric systems. A

high CNR must be maintained in order to obtain a low-noise floor in the measurement band

of interest. Such systems will typically have a CNR level that exceeds 40 dB. Therefore, since

noise in the DIFM approach is only an issue for CNR levels below 20 dB, it can be assumed

that this will be a non-issue for most practical systems.

The second limitation of the DIFM approach which must be addressed is the maximum

bandwidth that can be utilized. It was shown previously that the DIFM technique worked

well over a bandwidth Bif = 6.4 MHz. This bandwidth will be shown in the next chapter to

facilitate a 20 dB dynamic range improvement over the standard demodulator output for the

specified system parameters. The question that must now be addressed is, what is the

maximum increase that can be achieved? This is, again, largely related to the selection of the

delay value m. The value of m is chosen to bias the output in the linear part of the cosine

curve. It is also chosen to provide a large differential in the yout output over the desired

bandwidth of the system. As will be shown, a large differential provides noise immunity in the

tracked output and improves reliability in selecting the appropriate phase correction factor.

However, increasing the differential output reduces the maximum bandwidth Bif that can be
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Figure 5.10: Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 12 dB

Figure 5.11: Simulated DIFM output with As = 320 radians, fs = 10 kHz, and CNR = 18 dB
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Figure 5.12: Simulated DIFM output with As = 640 radians, fs = 10 kHz, and CNR = 40 dB

measured. A 26 dB dynamic range extension would require a bandwidth Bif = 12.8 MHz.

Figure 5.12 shows the non-linear effects that would be introduced into the DIFM output at

this bandwidth. While some non-linearity in the output can be tolerated, when the

differential in the output between specified frequencies becomes less than the noise levels of

the receiver, no additional gains can be achieved. Figure 5.13 shows the case when extending

the bandwidth for a dynamic range extension of 32 dB. In this case, not only has the usable

linear frequency range been exceeded, so has the range of the cosine output. Therefore, it can

be shown that a hard bandwidth limitation exists for outputs that approach ±1. The point at

which this occurs is dependent on numerous system parameters.

The DIFM approach has been shown to have only one primary limitation: the maximum

bandwidth that can be tracked. Its implementation requires few hardware resources, while its

output has been shown to be able to successfully track both low and high frequency

waveforms. The DIFM method is, therefore, well suited to the dynamic range extension

approach presented in the next chapter.
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Figure 5.13: Simulated DIFM output with As = 1280 radians, fs = 10 kHz, and CNR = 40 dB

5.3 Discrete Fourier Transform

Fourier analysis can be used for determining the instantaneous carrier frequency. In

particular, a Fast Fourier Transform (FFT) could be utilized to track the carrier signal with a

high degree of accuracy and resolution. However, the hardware requirements of such an

approach would be excessively demanding when considering the bandwidth that must be

covered and the rate at which it must carried out. Despite this, a reduced overhead DFT

approach can be used. As stated previously, while the entire bandwidth of the carrier must be

tracked, only a select set of frequencies must be measured. Determining which frequencies to

track is a topic addressed in Chapter 6. However, to obtain a 20 dB dynamic range extension

for the interferometer system used in the experimental portion of this dissertation, a total of

22 discrete frequencies must be tracked over a bandwidth of 6.4 MHz. This is feasible with

most modern programmable hardware.

Equation 5.7 provides the DFT in a form that will be implemented within this

dissertation.
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Figure 5.14: DFT processing hardware

X[k] =
N−1∑
n=0

x(n)

(
cos(

2πkn

N
)− j sin(

2πkn

N
)

)
(5.7)

By multiplying the received carrier signal by the sine and cosine of the frequency being

tracked and computing the magnitude, the Fourier coefficient of that frequency can be

determined. If this operation is conducted for each of the selected frequencies in the desired

bandwidth, the approximate instantaneous carrier frequency can be determined by selecting

the largest coefficient. This approach works since the absolute frequency of the carrier signal

is not required. Only the location of the instantaneous carrier signal within specific frequency

bands of the system bandwidth is important.

5.3.1 Hardware Implementation

Numerous hardware implementations exist for computing a DFT. For an application such as

this, where the results are needed at the same rate as the demodulator output, a high

throughput approach is required. To meet the performance requirements of the demodulator

used within this dissertation, a parallel processing DFT technique is used.

Figure 5.14 shows the hardware implementation of the DFT processing for the first two

frequencies tracked. As can be seen from the figure, each frequency tracked requires two
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dedicated multiplier and summing circuits. The reference frequency waveforms are stored in

on-chip memory. The data being supplied to the DFT circuitry in Figure 5.14 is assumed to

be windowed at the input to the demodulator. If this is not the case, then the data must also

be windowed for the DFT processing to operate without significant errors being

introduced.

A total of 44 dedicated multipliers and summing circuits are required to track the 22 DFT

frequencies. Although the hardware requirements are not insignificant, they are

implementable in most modern programmable devices. It should be noted that a significant

reduction in the required hardware could be achieved with serialized hardware if the

demodulation rates were reduced.

As with the DIFM approach, each DFT computation must be averaged between the current

instantaneous frequency measurement and the previous one. This will again be shown to

improve the reliability in the dynamic range extension approach. The averaging computations

are conducted using the same hardware resources that perform the DFT processing for this

implementation. Additional comparator circuitry is, however, required in selecting the highest

DFT coefficient as the approximate instantaneous carrier frequency. This additional hardware

is usually minimal.

5.3.2 Simulations

The MATLAB heterodyne demodulation scripts used in the last section were modified to

support simulation testing of the DFT frequency tracking. The system parameters used were

the same as those specified previously. Twenty-two frequencies were tracked over a bandwidth

of Bif = 6.4 MHz. Half of the 22 frequencies tracked are where the expected demodulated

output direction of rotation is positive, the other half are where the demodulated outputs are

expected to have negative rotational directions. This will be explained further in Chapter 6.

The MATLAB code for one positive frequency and one negative frequency is provided below.

A full listing of the DFT simulation code is provided in Appendix C.
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Listing 5.2: DFT MATLAB simulation code

fp = f c + 1∗ fsamp /4 ;

fn = f c − 1∗ fsamp /4 ;

DFT c = cos (2∗ pi ∗ fp ∗ t e x t ) . ∗D samp ;

DFT s = s i n (2∗ pi ∗ fp ∗ t e x t ) . ∗D samp ;

DFT m = s q r t (sum(DFT s)ˆ2 + sum(DFT c ) ˆ 2 ) ;

DFT p buf = [ DFT p buf ( 2 : end ) , DFT m ] ;

DFT p avg = mean( DFT p buf ) ;

DFT p = [ DFT p , DFT p avg ] ;

DFT c = cos (2∗ pi ∗ fn ∗ t e x t ) . ∗D samp ;

DFT s = s i n (2∗ pi ∗ fn ∗ t e x t ) . ∗D samp ;

DFT m = s q r t (sum(DFT s)ˆ2 + sum(DFT c ) ˆ 2 ) ;

DFT n buf = [ DFT n buf ( 2 : end ) , DFT m ] ;

DFT n avg = mean( DFT n buf ) ;

DFT n = [ DFT n , DFT n avg ] ;

The first simulation conducted of the DFT frequency discrimination approach is a carrier

noise floor analysis. The analysis is again carried out using a CNR of 40 dB since this is a

typical minimum level required by most fiber-optic interferometer systems. To demonstrate

the noise performance of the system, four of the 22 frequencies being tracked are shown in

Figure 5.15.

The displayed frequencies are the four closest to the nominal carrier at fc = 10 MHz. Two of

the frequencies tracked are with expected demodulated outputs of positive rotation. These

occur at frequencies of 9.51 MHz and 10.16 MHz. The two frequencies tracked with expected

demodulated outputs of negative rotation occur at 9.84 MHz and 10.49 MHz. Although

difficult to see from the figure, the top trace is actually comprised of the DFT coefficients for

both the 9.84 MHz and the 10.16 MHz frequencies. The bottom trace is comprised of the

coefficients for 9.51 MHz and 10.49 MHz. These results are to be expected since the 9.84 MHz
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Figure 5.15: Simulated DFT output with As = 0 radians, and CNR = 40 dB

and 10.16 MHz frequencies are an equal 1
4fsamp away from the nominal carrier of fc = 10

MHz. Likewise, the 9.51 MHz and 10.49 MHz are an equal 3
4fsamp away. With no input

signal, the instantaneous carrier frequency should remain at the nominal carrier frequency,

and any DFT coefficients taken at an equal distance from the carrier signal should remain

equal. Therefore, these results are consistent.

As can be seen from Figure 5.15, the peak noise levels of the top two traces are equal to those

of the bottom two. These levels, however, can be shown to cover approximately 30% of the

dynamic range extension bands. This is a magnitude higher than that obtained for the DIFM

approach. Still, this high level of noise will be shown to be satisfactory for a 20 dB dynamic

range extension since the noise is common to all coefficients.

The next three simulations were conducted using the same waveforms as for the DIFM

approach. These waveforms test the DFT instantaneous carrier frequency tracking abilities

over a bandwidth of 6.4 MHz, that which is required for a 20 dB dynamic range extension.

The first simulation is shown in Figure 5.16. The waveform is a Hanning weighted 1 kHz 3200

radian pulse. Plotted are the input phase signal and the DFT coefficients for the first four
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Figure 5.16: Simulated DFT output with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB

frequencies tracked, as discussed previously. This figure shows the ability of the DFT approach

to successfully track the waveform over the specified bandwidth. As expected, where the

angular velocity of the input waveform is at its highest, at the positive slope of the waveform,

the DFT coefficient at 10.49 MHz is the highest. Likewise, when the angular velocity is at a

minimum, the DFT coefficient at 9.51 MHz is the highest. This is as anticipated.

Figure 5.17 shows a zoomed in selection of the previous figure to clearly demonstrate how the

DFT coefficients vary with the input waveform.

Figure 5.18 is a simulation with a 10 kHz 320 radian input waveform. The figure has, again,

been zoomed in on a particular part of the waveform to more clearly show the changing

coefficients. The results show that the coefficients accurately track the signal.

The last waveform test was conducted with a 100 kHz 32 radian input. The results are shown

in Figure 5.19. This shows that even for high frequency input signals, the DFT approach can

successfully track the instantaneous carrier frequency.
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Figure 5.17: Simulated DFT output with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB

(Zoom)

Figure 5.18: Simulated DFT output with As = 320 radians, fs = 10 kHz, and CNR = 40 dB

(Zoom)
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Figure 5.19: Simulated DFT output with As = 32 radians, fs = 100 kHz, and CNR = 40 dB

(Zoom)

5.3.3 Limitations

The primary limitation of the DFT method of frequency measurement is the required

hardware resources. For the DFT hardware implementation used in this dissertation, each

frequency tracked will require two dedicated multipliers and two summing circuits. The

number of frequencies tracked depends on the desired dynamic range extension and the

bandwidth that is required. Each additional 6 dB dynamic range that is added requires a

doubling of the system bandwidth and the number of hardware resources. For dynamic range

increases above 20 dB, the amount of hardware required can become excessive. This is in

contrast to one the primary benefits of the DFT approach, which is that it is highly extensible

to wide bandwidths. This allows, in theory, for much larger dynamic range increases than the

other two frequency discrimination methods presented. However, the hardware requirements

put a practical limit to the achievable gains.

The second limitation of the DFT approach is the CNR requirement. It was shown earlier

that for a CNR of 40 dB, the noise floor of the DFT outputs was nearly 30% of the band
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Figure 5.20: Simulated DFT output with As = 0 radians, and CNR = 20 dB (Zoom)

between adjacent measurement frequencies. This, at first, appears to be significant; however,

dynamic range extension simulations have shown that this level of noise is well tolerated. This

can be explained since the dynamic range extension approach takes only the highest DFT

coefficient as the instantaneous carrier. It is also the result of the noise being common to all

DFT measurements. Figure 5.20 show a zoomed in plot of the DFT noise floor with a 20 dB

CNR.

It should be noted that the DFT dynamic range extension approach works in simulations with

a 20 dB CNR. In fact, only a 6-12 dB CNR level is actually required for marginal operation

despite the visibly high levels of noise. However, higher CNR levels will provide significantly

improved levels of reliability. Figure 5.21 shows the noise floor with a 6 dB CNR.

Despite the apparently high levels of noise in the DFT measurement outputs, both the DFT

and DIFM frequency discrimination techniques have roughly the same CNR requirements.

Both can potentially operate with as little as 6 dB; but for higher reliability, a minimum of 20

dB is recommended. However, once again, since a minimum of 40 dB is generally required for

low-noise interferometer operations, this limitation will not normally be an issue.
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Figure 5.21: Simulated DFT output with As = 0 radians, and CNR = 6 dB (Zoom)

The only significant limitation the DFT approach is the amount of required hardware

resources. Although the DFT outputs have higher levels of noise than the DIFM method, this

does not appear to have an impact on its frequency tracking abilities. Therefore, the DFT

method has been determined to be well suited for use in the dynamic range extension

approach.

5.4 Period Expansion/Contraction Measurement

A unique method of frequency discrimination called Period Expansion/Contraction

Measurement (PECM) was developed as part of this dissertation. This approach measures the

amount of expansion or contraction of the carrier signal in the time domain. It was initially

developed as a low hardware resource alternative to the DFT approach presented previously,

before the DIFM method had been properly evaluated. While PECM is a viable approach, it

will be shown that it suffers from more limitations than the other two methods presented, and

the hardware resources utilization is only slightly less than that of DIFM. As such, it is being

presented only for completeness of the chapter.
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The PECM frequency discrimination technique is based on the standard definition for a

periodic signal, where

x(t) = x(t+ T ) (5.8)

If x(t) is replaced with a sampled carrier signal (where N = fadc/fc), Equation 5.8

becomes

sin(2πn/N) = sin(2π(n+N)/N) (5.9)

Equation 5.9 states that for a carrier signal which is sampled an integer N number of times

per cycle, if a point on the curve is selected, then N points later the same value will be

present. However, if the carrier signal deviates from its nominal frequency, then this

assumption will be false and a difference between the two points will be measured. This

difference can be determined from equation 5.10, where Amax is the maximum ADC value,

and Ac is the peak sampled carrier amplitude.

y[n] =

(
Amax
Ac

)(
sin

(
2πn

fi
fadc

)
− sin

(
2π

(
n+

fadc
fc

)
fi
fadc

))
(5.10)

This approach requires that the samples be taken in the linear part of the curve. Ideally, the

first sample would be taken directly at the zero crossing in order to maximize the usable range

and minimize non-linear noise. This, however, is not generally possible and is one of the

primary limitation of this method. How close to the zero crossing the signal can be sampled is

dependent on the ratio of fi
fadc

. If the deviation from the zero crossing is small, then the

equation above can be simplified to

y[n] =

(
Amax
Ac

)(
sin

(
2π
fi
fc

))
(5.11)

Equation 5.11 shows that if the zero crossing is used as the reference point, the output value
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y[n] will vary according to the ratio of the instantaneous carrier frequency to the nominal

carrier frequency. The value of y[n] can be used directly in the dynamic range extension

approach.

One technique that was found to minimize the zero crossing error and to maximize the linear

output range is to measure the differential across only a half carrier cycle. Using this

approach, equation 5.10 becomes

y[n] =

(
Amax
Ac

)(
sin

(
2πn

fi
fadc

)
+ sin

(
2π

(
n+

fadc
2fc

)
fi
fadc

))
(5.12)

The half carrier cycle approach was determined to be a substantial improvement over the full

carrier cycle approach. Yet, there are still several issues which limit its overall usability. These

will now be addressed in the following simulations.

5.4.1 Hardware Implementation

Although an actual hardware implementation of the PECM method will not be tested as part

of this dissertation, the following hardware implementation can be simulated. A half-cycle

PECM method will be utilized for the simulations. For the PECM method to operate as

designed, the carrier signal must be sampled as close to zero crossing as possible in order to

maximize the linear output range. The carrier should also be sampled at the same relative

point on each cycle of the carrier to reduce noise. These two requirements lead to an efficient

implementation where the zero crossing is used as the reference point. The sample point

either before or after the zero crossing can be utilized, provided the same point is used

consistently. However, the maximum distance from the zero crossing to the carrier samples is

dependent on the samples per carrier cycle. Therefore, simulations will be conducted at

several different fs sample rates.
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5.4.2 Simulations

The following PECM MATLAB simulations utilize the same system parameters as outlined in

the previous examples with two exceptions. First, the data samples have not been windowed.

Windowing of the data samples for this approach does not provide any benefit; it only

complicates the analysis. Second, the carrier sample rate fadc will be varied to demonstrate

the requirements for a high fadc
fc

ratio.

The following MATLAB code was used in the PECM simulations.

Listing 5.3: PECM MATLAB simulation code

PECM last = PECM cur ;

f o r j = 1 : samples

i f ( D samp( j ) < 0 ) && ( D samp( j +1) > 0 )

PECM cur = D samp( j ) + D samp( j +( fadc / f c ) / 2 ) ;

break ;

e n d i f ;

endfor ;

PECM avg = ( PECM last+PECM cur ) / 2 ;

PECM lst = [ PECM lst PECM avg ] ;

A noise floor analysis was first conducted for the PECM method. The first simulation was

conducted using fadc = 100 MHz and a CNR of 40 dB. Figure 5.22 shows that under these

conditions the peak-to-peak noise levels are roughly .04. This translates to a 10% error in the

frequency measurement band of the dynamic range extension approach and can lead to noise

in the demodulated output.

Increasing fadc does not make a significant improvement in the noise floor. Figure 5.23 shows

that for increasing fadc to 500 MHz, only a slight improvement in the noise floor can be

detected. This suggests the the high levels of noise are not related to the location of the

samples relative to the zero crossing.

The high noise floor is a result of the CNR. While a 20 dB CNR was sufficient for both the
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Figure 5.22: Simulated PECM output with As = 0 radians, fadc = 100 MHz, and CNR = 40

dB

Figure 5.23: Simulated PECM output with As = 0 radians, fadc = 500 MHz, and CNR = 40

dB
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Figure 5.24: Simulated PECM output with As = 0 radians, fadc = 100 MHz, and CNR = 60

dB

DIFM and DFT approach, for the PECM method, a 40 dB CNR is only marginally sufficient.

Figure 5.24 shows the noise floor improvement by increasing the CNR to 60 dB. Under these

conditions, the noise error has dropped to less than 1%, making PECM a potentially viable

option for frequency discrimination. The issue, however, is that obtaining a CNR greater than

40 dB can be difficult in some applications.

For the remaining simulations, a 60 dB CNR will be assumed to eliminate it as a possible

source of noise. A peak bandwidth Bif = 6.4 MHz is, again, used since this will be required to

facilitate a 20 dB dynamic range extension. Figure 5.25 shows the ability of the PECM

method to track a 3200 radian 1 kHz waveform using a carrier sample rate of fadc = 100 MHz.

Substantial noise can be seen in the output. This noise increases with the bandwidth of the

waveform and is most severe at the peaks. Unfortunately, the peaks of yout, or the inflection

points of the input waveform, will be shown in the next chapter to be the most susceptible to

generating errors in the dynamic range extension approach.

Since the noise of Figure 5.25 increases with the bandwidth of the signal, it can be shown to
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Figure 5.25: Simulated PECM output with As = 3200 radians, fs = 1kHz, fadc = 100 MHz,

and CNR = 60 dB

be generated by non-linearities as a result of the sampling points relative to the zero crossing.

This can be improved by increasing the fadc sample rate to minimize this effect. Figure 5.26

shows the reduction in the output noise by increasing the sample rate to fadc = 500

MHz.

Figures 5.27 and 5.28 show the PECM output for waveforms at 10 kHz and 100 kHz, both

with Bif = 6.4 MHz.

As has been shown, the PECM method of frequency discrimination can successfully track the

incoming waveforms and produce a low-noise output, provided the carrier signal has a high

CNR and is significantly oversampled. These limitations are now addressed.

5.4.3 Limitations

The preceding simulations demonstrated the two primary limitations of the PECM frequency

discrimination method; the first of which is a requirement for a high CNR. With both the
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Figure 5.26: Simulated PECM output with As = 3200 radians, fs = 1 kHz, fadc = 500 MHz,

and CNR = 60 dB

Figure 5.27: Simulated PECM output with As = 320 radians, fs = 10 kHz, fadc = 500 MHz,

and CNR = 60 dB
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Figure 5.28: Simulated PECM output with As = 32 radians, fs = 100 kHz, fadc = 500 MHz,

and CNR = 60 dB

DIFM and the DFT methods demonstrated previously, only a 20 dB CNR was required for

successful operation. Higher CNR levels reduced the output noise levels further but was

generally not required for successful implementation of the dynamic range extension.

However, with PECM, the minimum CNR for operation is 40 dB, with 50-60 dB providing a

higher reliability output. This can potentially become an issue for systems which already have

a low CNR or for which may generally have a high CNR but momentarily drop as result of

polarization signal fading.

The second significant limitation of the PECM method is the requirement for a high sample

rate of the carrier signal. It was shown that for a 10 MHz carrier signal being sampled at 100

MHz, the non-linear noise generated at high bandwidths was high enough to make the

method impractical. By increasing the sample rate to 500 MHz, the non-linear noise could be

reduced to levels which made the approach feasible. However, increasing the demodulator

sample rate can present several new challenges.

Because of the significant limitations of the PECM approach and because even with these
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limitations, the output has a higher noise level than the DIFM method, PECM is not deemed

as a viable frequency discrimination approach for most systems. Likewise, because a sample

rate of fadc = 500 MHz or greater is required for successful operation, the PECM method will

not be tested in the experimental portion of this dissertation. The demodulator hardware

available for the experimental testing is limited to fadc = 100 MHz and would, therefore, only

be viable for a dynamic range increase of approximately 6 dB.

5.5 Summary

Three methods of tracking the instantaneous carrier frequency have been successfully

demonstrated. The DIFM approach provides a wide measurement bandwidth, a low noise

output, and requires minimal hardware resources. The DFT method allows for the widest

measurement bandwidth and, therefore, the largest potential dynamic range increase, but

requires significantly more hardware resources than the other techniques presented. PECM

offers the lowest hardware resource approach, but suffers from limited bandwidth and high

noise. Both the DIFM and DFT methods of frequency measurement are considered viable

options for the dynamic range extension technique. Both of these will also be evaluated

experimentally in Chapter 7.
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Chapter 6 Dynamic Range Extension Via Carrier Frequency Tracking

It was shown in Chapter 5 that the instantaneous carrier frequency in a heterodyne

interferometer can be measured to the stated requirements. This chapter addresses how

knowledge of the instantaneous heterodyne carrier frequency can be utilized to extend the

high-end dynamic range. The first part of the chapter explores how phase excessions at the

input of the demodulator introduce deterministic errors in the demodulated output. It is then

shown how the instantaneous carrier frequency can be used to determine two valuable pieces

of information: the instantaneous direction of phase rotation and the instantaneous angular

velocity. These two pieces of information can be used to determine an excession correction

factor which can be added to the standard demodulator output, thereby mitigating any

errors. This will be shown to provide both an effective and efficient method of dynamic range

extension. Dynamic range extension simulations are presented for both the DFT and DIFM

methods of carrier frequency tracking. The efficiency and limitations of both are

explored.

6.1 Demodulator Excessions

Knowledge of demodulator excession characteristics is vital for understanding the dynamic

range extension approach presented within this dissertation. An excession occurs when the

fringe rate of the signal being demodulated exceeds ±π radians between samples. In general,

there are two types of excessions: those where the demodulated phase rotation direction is in

error and those for which it correct.

The first type of excession encountered by a demodulator is one in which the demodulated

output direction is in error. When the phase difference between two points is greater than ±π,

the demodulator, which uses a shortest path traveled algorithm to compute direction of phase

rotation, will generate a demodulated output which is in error by 2π. For example, a positive

phase rotation of 3
2π will result in a demodulated output of −1

2π. Thus, the difference

between the actual phase rotation and demodulated output is −2π. A correction factor of 2π
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must be added to the demodulated output to correct for the apparent phase reversal.

Detecting that this type of excession has occurred and determining the appropriate correction

factor can both be accomplished with knowledge of the actual phase rotation direction. It will

be shown later in the chapter that this information can be obtained from the instantaneous

carrier frequency.

With the second type of excession, the demodulated direction of rotation is valid. However,

the input phase shift has still exceeded the limitations of the demodulator. This type of

excession occurs when the phase difference between two sample points is greater than ±2π.

Since the demodulator only has a measurement range of ±π, a 2π rotation will cause a

full-cycle phase wrap and will effectively be subtracted from the demodulated output. For

example, a phase shift of 5
2π will be demodulated as 1

2π. A 2π correction factor must again be

added to the demodulated output to account for the phase wrap. Determining when a full

cycle rotation has occurred and whether or not a correction factor must be added in is made

possible by tracking the instantaneous angular velocity. Like the direction of rotation, it will

be shown that the angular velocity can be acquired from the instantaneous carrier

frequency.

In both excession examples provided above, the phase correction factor was 2π. If, however,

the input phase shift exceeded ±3π, the demodulated phase would, again, undergo an

apparent phase reversal. The correction factor now required would be 4π. Likewise, a phase

shift greater than ±4π would see the demodulated direction of phase rotation right itself. The

correction factor would also be 4π. This pattern of phase reversal continues for each

additional π radians added to the input signal. The required correction factor also increases

by 2π for every 2π added to the input signal. Thus, the required correction factor will always

be a multiple of 2π. These two patterns will play an important role in determining the

appropriate correction factor for high fringe rate signals.
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6.2 Direction of Phase Rotation

In the standard demodulation process, the direction of phase rotation can only be assumed. A

shortest path traveled algorithm is used to predict the current direction of rotation. If,

however, the phase advances by more than ±π radians between samples, this assumption will

be false, and the demodulated output will be in error. As shown previously, this will introduce

an apparent phase reversal in the output.

The instantaneous carrier frequency can, however, provide information regarding the actual

instantaneous direction of rotation. The instantaneous direction of rotation can be

determined from the instantaneous carrier frequency in equation 6.1 [24].

fi(t) = fc +
1

2π

dφs(t)

dt
(6.1)

For sinusoidal phase modulation of φs(t) = As sin(2πfst), equation 6.1 becomes

fi(t) = fc +Asfs cos(2πfst) (6.2)

Since the value of fc is fixed, and it has been shown that the instantaneous carrier frequency

fi can be measured, this allows the value of Asfs cos(2πfst) to be computed. If

Asfs cos(2πfst) > 0 , or (fi > fc), then the angular phase rotation is determined to be in the

positive direction. Likewise, if Asfs cos(2πfst) < 0 , or (fi < fc), the angular phase rotation is

in the negative direction. The instantaneous direction of rotation can therefore be determined

simply by checking whether the nominal carrier frequency is greater than or less than the

instantaneous carrier frequency. Since absolute frequency values are not required, this

approach is well suited to all three frequency discrimination methods discussed in the previous

chapter.

Information regarding the actual direction of rotation eliminates the guessing of the standard

demodulator output. This, alone, can be used to achieve a 6 dB dynamic range increase. If
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the actual direction of rotation and the demodulated direction of rotation do not match, then

an excession has been detected. If the actual direction of rotation is in the positive direction,

then 2π must be added to the demodulated output to correct for the excession error.

Likewise, if the direction of rotation is negative, then −2π must be added. This simple

approach, however, does not work for phase excursions exceeding ±2π.

6.3 Angular Velocity Determination

As was just shown, determining the actual direction of phase rotation allows for correcting the

first excession point of the demodulator where the phase shifts exceed ±π. However, it cannot

correct for excessions that exceed ±2π. Correction of such excessions requires tracking of the

instantaneous carrier frequency to determine the angular velocity. The instantaneous angular

velocity can be used to estimate the magnitude of the phase shift between demodulation

points. This will allow for determination of higher order 2π correction factors.

The instantaneous angular velocity ωi can be derived from equation 6.2 for sinusoidal

modulation.

ωi(t) = ωc +Asωs cos(ωst) (6.3)

However, since the carrier frequency is removed from the equation during demodulation, the

only angular velocity component that is of importance is that which is contributed by the

input signal. This was shown previously to be simply the derivative of the input. Therefore,

the instantaneous angular velocity of a sinusoidal signal ωis is

ωis(t) = Asωs cos(ωst) (6.4)

Since the units of ωis are radians per second, if multiplied by the time step between

demodulation sample points, an estimate can be obtained of the phase change between the

two. The accuracy of this estimate, however, is dependent on several factors. First, since the
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angular velocity of the signal is also sinusoidal in nature, the location at which the samples

are taken is important. If the samples are taken in the linear part of the sinusoid, then the

phase estimate will be much closer than for samples taken in the non-linear part of the curve.

This leads to the second issue, which is the time step between samples. If the time step

between samples is small, then the error will be small. If the time step is large, then the error

will be large. Whether the time step is considered small or large depends on the frequency of

the signal, relative to the demodulation rate. The higher the signal frequency, the higher the

error in the estimate for a given sample rate. This effect will be shown to impose a frequency

dependent limitation later in the chapter.

In general, multiplying the instantaneous angular velocity by the demodulation time step will

result in a large error in the phase change estimate. As will be discussed later, some form of

averaging of the instantaneous angular velocities must be utilized to improve the estimate.

This averaging will reduce estimation error in the non-linear parts of the input signal, such as

at inflection points. Provided that the signal’s angular velocity is averaged over two or more

points, a 2π excession correction factor can be calculated from equation 6.5, where n is the

number of 2π that must be added or subtracted from the demodulated output. The plus or

minus sign in the equation depends on the instantaneous direction of rotation, which was

shown could be determined previously.

n = floor(
fis avg
fsamp

± 1

2
) (6.5)

Therefore, by computing the average instantaneous angular velocity, an estimated excession

correction factor can be obtained, which allows for phase excursions greater than ±2π. While

this approach could be implemented to provide a dynamic range increase, a simplified and

more robust technique has been developed, which is now presented.
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6.4 Dynamic Range Extension

Information obtained from the instantaneous carrier frequency can be used in a variety of

ways to provide a high-end dynamic range increase. One approach was already presented.

However, since the instantaneous direction of rotation and the instantaneous angular velocity

are derived from the instantaneous carrier frequency, the excession correction factors can be

determined directly from the carrier frequency. That is the approach taken within this

dissertation.

6.4.1 Excession Threshold Frequencies

It has been stated previously that an excession will occur if the fringe rate of a signal, also

known as the angular velocity, is greater than that of the demodulator. This was shown in

Chapter 4 to happen at a fringe rate equal to ±πfsamp. This peak fringe rate of the

demodulator can be converted to an equivalent frequency by dividing by 2π. Thus, the first

excession of the demodulator will occur when the instantaneous carrier frequency deviates

from the nominal frequency by ±fsamp

2 . It has also been shown that for each additional π

increase in the input phase shift, the demodulated output will undergo an apparent phase

reversal. The carrier frequencies at which these phase reversals occur are considered the

excession threshold frequencies. The excession threshold frequencies can be found from

equation 6.6, where fe is the instantaneous carrier frequency at the excession crossing.

fe(m) = fc +
m

2
fsamp for m = ±1,±2, . . . (6.6)

The excession threshold frequencies will be important in determining the appropriate

correction factors. They will also help to define the optimal carrier frequencies or frequency

bands within the system bandwidth to track.
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Figure 6.1: Excession threshold frequencies, expected demodulated direction of rotation, and

required correction factors

6.4.2 Correction Factor Boundaries

The dynamic range extension approach presented here relies on determining an appropriate

correction factor to mitigate excession error offsets. It was discussed at the beginning of this

chapter that following the first excession point, a 2π correction factor was needed to correct

for the demodulator output phase reversal. Following the second excession point, a 2π offset

was needed to account for the full cycle phase wrap. A 4π correction factor was needed after

both the third and fourth excession points. This pattern of increasing the correction factor by

2π continues for every two excession threshold frequencies crossed by the instantaneous carrier

frequency. Figure 6.1 shows the carrier spectrum of an interferometer system. Included in the

figure are the excession threshold frequencies, the correction factors and boundaries, and the

demodulated direction of rotation.

The general approach to dynamic range extension is to select the correction factor based on

where the measured instantaneous carrier frequency falls within the system spectrum.

However, there are three additional considerations which will be addressed that can be used

to improve the selection. These include the statistical likelihood of the demodulated direction

of rotation, the frequencies that are tracked, and the frequency averaging approach. These

issues are now presented.
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6.4.3 Maximum and Minimum Likelihood of Demodulated Rotational Di-

rection

When the input phase signal to the demodulator is near zero, the demodulated output will be

a low level of phase noise centered around ±0 radians, and the instantaneous carrier frequency

will remain close to the nominal value fc. Under these conditions, the probability that the

demodulator will experience a small positive rotation is equally likely to it experiencing a

small negative rotation. If, however, a large phase signal is applied to the input, the likelihood

of experiencing either a positive rotation or a negative rotation will no longer be equal when

considering a small portion of the waveform. For example, with sinusoidal modulation, during

the positive slopes of the waveform, the probability is highest for a positive rotation. On the

negative slopes of the waveform, the probability will be highest for a negative rotation. At the

maximum and minimum points of the waveform, the probabilities are again equal.

What is of real interest is not the actual rotational probabilities of the waveform, but rather

the probability of the demodulated output direction of rotation. Again, with no input signal

to the demodulator, the demodulator is equally likely to produce an output with either a

positive or negative direction of rotation. If, however, sinusoidal modulation is considered, as

the phase between demodulated points begins to increase in the positive direction, the

probability of the demodulator producing a demodulated output with a positive direction of

rotation also begins to increase. This likelihood continues to increase until the phase shifts

between samples reaches π
2 radians. This is the first maximum likelihood point of

demodulated positive rotation. If the phase continues to increase further in the positive

direction, the probability will begin to decline until it, again, reaches an equal likelihood at a

phase shift of π radians. This is at the first excession threshold point of the demodulator. As

a result, even though the actual direction of rotation was in the positive direction, if the phase

shift is just slightly greater than π, the demodulator will produce an output value

approaching −π. Therefore, at the excession threshold frequencies, where the demodulated

output phase reversals occur, the probability of the demodulator producing an output of

positive direction is equally likely as a negative one.

Beyond the first excession threshold, if the input phase advances continue to increase in the
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Figure 6.2: Probability of demodulated output direction of rotation given actual direction of

rotation

positive direction, the probability of the demodulator producing a positive value will continue

to decrease until it hits the positive rotation minimum likelihood point at a positive phase

advance of 3π
2 . This is the point at which the demodulator is most likely to interpret this

positive phase rotation as a negative rotation of −π
2 . Additional increases in the positive

rotational phase advances will see the probability of the demodulator producing a positive

rotational value begin to increase. As the positive phase advances approach 2π, the

probabilities will again be equal at the second excession threshold. This pattern of maximum

and minimum likelihood of demodulated rotational direction will continue to repeat for

further phase increases in the given direction. A similar analysis could be conducted for the

case of the negative rotational direction. The difference between the two cases is in where the

maximum and minimum probabilities occur. The points of equal probability are the same for

both cases and are located at the excession threshold frequencies. Figure 6.2 shows the

expected direction of the demodulated output for both positive and negative rotation.

The points of equal probability were stated as occurring at the excession threshold frequencies.

Likewise, the signal fringe rates that equate to the maximum and minimum probabilities can

also be converted to equivalent instantaneous carrier frequency values by dividing by 2π.
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Figure 6.3: Excession correction factor boundaries with maximum and minimum likelihood

demodulated directions of rotation

These frequencies can then be overlaid with the correction factor boundaries shown previously

in Figure 6.1. The result is Figure 6.3. As can be seen, the maximum and minimum likelihood

points occur at frequencies between the excession threshold frequencies. It can also be seen

that from one maximum to the next, or from one minimum to the next, for a given rotational

direction, the total bandwidth is twice the bandwidth between excession threshold frequencies.

This increase in bandwidth will be useful for reducing ambiguity in selecting the appropriate

correction factor when the demodulated output direction of rotation is in one direction, but

the measured instantaneous carrier frequency falls between excession threshold frequencies

where the expected direction of rotation is opposite. Both the maximum and minimum

likelihood frequencies are, therefore, useful in helping to establish the correction factor bands

and in determining the optimal frequencies within the system bandwidth to track.

6.4.4 Determination of Tracking Frequencies

It was stated previously that only select frequencies within the spectrum of the system must

be measured. Which frequencies or frequency bands should be tracked is dependent on the
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frequency tracking method itself. There are two primary types of frequency tracking methods:

those with continuous tracking ranges and those which track discrete frequencies.

The DIFM approach is an example of a frequency discrimination method with a continuous

tracking range. The yout value of the DIFM receiver can range in value between ±1. The

magnitude of the output is directly related to the instantaneous carrier frequency and, as

such, can be used to track any frequency within the designed bandwidth of the receiver. For

frequency tracking methods that have continuous output ranges, the dynamic range extension

approach will place the measured frequency into one of a number of designated frequency

bands, which relate to specific correction factors. These bands are generally established by the

excession threshold frequencies. The DIFM dynamic range extension approach presented later

in the chapter uses two specific sets of frequency bands. One set is used for determining the

correction factor given a positive rotation demodulated output, while the other is used for a

negative rotation demodulated output. The positive rotation frequency bands are established

between the positive rotation minimum likelihood frequencies. The negative rotation

frequency bands are established between the negative rotation minimum likelihood

frequencies. This method of establishing the correction factor boundaries based on the

demodulated output direction increases the effective bandwidth of the correction factor bands

by a factor of two over using the excession threshold frequencies alone. Other continuous

output tracking methods, such as PECM, would also follow this same approach in selecting

tracking frequencies.

The minimum likelihood frequencies, for both positive and negative rotation, can be

determined from equations 6.7 and 6.8. These frequencies can then be translated to specific

DIFM yout values to be used directly in the dynamic range extension process.

fp(m) = fc −
fsamp

4
+mfsamp for m = 0,±1,±2, . . . (6.7)

fn(m) = fc −
3

4
fsamp +mfsamp for m = 0,±1,±2, . . . (6.8)

The DFT frequency measurement approach tracks discrete frequencies. With this approach,
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the Fourier coefficients of the specific frequencies are measured and compared to one another.

The largest coefficient is selected as the instantaneous carrier frequency, determining which

excession correction factor is selected. Like the DIFM approach, two sets of frequencies will

still need to be monitored. Which one will be used, again, depends on the demodulated

output direction of rotation. For positive rotation demodulated output values, the DFT

frequencies that must be tracked are those at the maximum likelihood positive rotation

locations. Likewise, the negative set of frequencies to be tracked are those at the maximum

likelihood negative rotation direction locations. This is done to increase the bandwidth of the

correction factor selection bands.

With the DFT method, the number of Fourier coefficients that must be computed is

determined by the bandwidth requirement of the dynamic range extension approach and the

sampling rate of the system. The frequencies defining the positive and negative bands can be

determined from equations 6.9 and 6.10.

fp(m) = fc +
fsamp

4
+mfsamp for m = 0,±1,±2, . . . (6.9)

fn(m) = fc −
fsamp

4
+mfsamp for m = 0,±1,±2, . . . (6.10)

6.4.5 Frequency Averaging

Selecting the correction factor based solely on the location of the instantaneous carrier

frequency within the spectrum will lead to a high error rate. The measured instantaneous

carrier frequency only provides the angular velocity at the time of the current demodulation

sample point. It does not account for the angular velocity changes that have occurred since

the previous demodulation point. For high fringe rate signals, the change in angular velocity

between points can be significant. In particular, the minimums, maximums, and inflection

points of sinusoidal signals can all be problematic. Such errors, however, can largely be

mitigated by considering the instantaneous frequency or angular velocity at the previous

demodulation point.



92

A two-point, equally-weighted, instantaneous carrier frequency average has been determined

to substantially reduce potential errors in correction factor selection. There is, however, a

frequency dependency that must be considered. As the frequency of the input signal

increases, the number of demodulation samples per cycle is reduced. If the number of samples

becomes too few, then averaging will fail to determine an accurate averaged angular velocity,

and the selected correction factor will likely be in error. It will be shown later in the chapter

that for full dynamic range extension, a minimum of 8-12 samples per sinusoidal cycle are

required, depending on the frequency measurement technique utilized. A reduced dynamic

range extension is possible with fewer data points.

More complex averaging techniques may provide improved angular velocity tracking

capabilities. However, these were not explored as part of this dissertation since the two point

average provided very good results. Potential improvements include multipoint and weighted

averages. One high potential approach is a weighted three-point average that utilizes the

previous, the current, and the following demodulation points. This would require delaying the

correction factor selection by one demodulation point but could be easily achieved. Such an

approach would likely handle higher fringe rate inflection points.

6.4.6 Correction Factor Selection

Selection of the appropriate excession correction factor requires determining the demodulated

output direction of rotation and the location of where the averaged instantaneous carrier

frequency falls within the system bandwidth. However, how this information is used varies

depending on the frequency measurement approach. The specifics of determining the

appropriate correction factor, for both the DIFM and the DFT methods, are now

provided.

6.5 Dynamic Range Extension Via DIFM

Dynamic range extension via DIFM frequency tracking will be shown to be an efficient and

effective technique. Proper selection of the excession correction factor requires two pieces of



93

information: the demodulated output direction of rotation and the averaged instantaneous

carrier frequency. The demodulated output direction of rotation is used to narrow down the

potential locations of the correction factor and increase the bandwidth of the measurement

frequency bands by a factor of two. If the demodulated output direction of rotation is

positive, then the location of the averaged instantaneous carrier frequency will be determined

relative to the minimum likelihood positive rotation frequency bands. Likewise, if the

direction of rotation is negative, then the location will be determined relative to the minimum

likelihood negative rotation frequency bands. The frequency band in which the carrier falls

will determine the excession correction factor. The correction factor bands, along with the

maximum and minimum likelihood frequencies, were provided earlier in Figure 6.3.

6.5.1 Implementation

The DIFM receiver used in the following simulations is the same as presented in Chapter 5.

The output yout was designed to be linear over a bandwidth of Bif = 6.4 MHz and facilitate a

minimum 20 dB dynamic range increase. Values of yout were calculated for both the positive

and negative minimum likelihood frequencies. These values are provided in the following

simulations. The simulations utilize an if-else comparative statement to determine within

which band the averaged instantaneous carrier falls. The hardware implementation utilizes a

similar approach.

6.5.2 Simulations

The system parameters of the following simulations were configured to match the

demodulation hardware used in the experimental portion of this dissertation. These values are

the same as presented in the last chapter; however, they are now repeated for convenience:

fc = 10 MHz, fadc = 100 MHz, and fsamp = 655360 Hz.

The MATLAB code used in the selecting the correction factor is provided below, where

phase diff is the demodulated phase output and DIFM avg is the averaged instantaneous

carrier value of y out.
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Listing 6.1: DIFM MATLAB simulation correction factor selection code

i f ( p h a s e d i f f < 0) % Negative demodulated phase r o t a t i o n

i f DIFM avg < −.792

pha s e c f = 12∗ pi ;

e l s e i f DIFM avg < −.722

pha s e c f = 10∗ pi ;

e l s e i f DIFM avg < −.638

pha s e c f = 8∗ pi ;

e l s e i f DIFM avg < −.544

pha s e c f = 6∗ pi ;

e l s e i f DIFM avg < −.441

pha s e c f = 4∗ pi ;

e l s e i f DIFM avg < −.330

pha s e c f = 2∗ pi ;

e l s e i f DIFM avg < −.215

pha s e c f = 0∗ pi ;

e l s e i f DIFM avg < −.096

pha s e c f = −2∗pi ;

e l s e i f DIFM avg < . 023

pha s e c f = −4∗pi ;

e l s e i f DIFM avg < . 140

pha s e c f = −6∗pi ;

e l s e i f DIFM avg < . 253

pha s e c f = −8∗pi ;

e l s e i f DIFM avg < . 361

pha s e c f = −10∗pi ;

e l s e

pha s e c f = −12∗pi ;

e n d i f ;

e l s e % P o s i t i v e demodulated phase r o t a t i o n

i f DIFM avg < −.825

pha s e c f = 12∗ pi ;
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e l s e i f DIFM avg < −.759

pha s e c f = 10∗ pi ;

e l s e i f DIFM avg < −.682

pha s e c f = 8∗ pi ;

e l s e i f DIFM avg < −.593

pha s e c f = 6∗ pi ;

e l s e i f DIFM avg < −.494

pha s e c f = 4∗ pi ;

e l s e i f DIFM avg < −.386

pha s e c f = 2∗ pi ;

e l s e i f DIFM avg < −.273

pha s e c f = 0∗ pi ;

e l s e i f DIFM avg < −.156

pha s e c f = −2∗pi ;

e l s e i f DIFM avg < −.036

pha s e c f = −4∗pi ;

e l s e i f DIFM avg < . 082

pha s e c f = −6∗pi ;

e l s e i f DIFM avg < . 197

pha s e c f = −8∗pi ;

e l s e i f DIFM avg < . 308

pha s e c f = −10∗pi ;

e l s e

pha s e c f = −12∗pi ;

e n d i f ;

e n d i f ;

One concern of the dynamic range extension approach is the possibility that it may itself

introduce errors in the demodulated output. Therefore, the first dynamic range extension

simulation conducted was a carrier noise floor analysis. Figure 6.4 shows the results for a zero

input radian signal and a typical interferometer CNR of 40 dB. The figure shows that the low

level of noise in yout does not introduce errors in the output of the demodulator. Such errors
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Figure 6.4: Simulated DIFM DRE with As = 0 radians and CNR = 40 dB

would appear as random 2π shifts in the data.

A second carrier noise floor test was conducted with a CNR of 20 dB. Figure 6.5 confirms the

results of the DIFM simulations presented in the last chapter, as no errors are

introduced.

Reducing the CNR to 12 dB, as in Figure 6.6, demonstrates the potential errors that can be

introduced if the CNR drops low enough.This should not occur in most interferometric

systems. However, in systems which do not implement some form of polarization fading

mitigation, it is recommended that the dynamic range extension corrections be disabled when

the CNR drops below a given level.

The next three simulations were conducted using the three waveforms tested (1 kHz, 10 kHz,

and 100 kHz) in the previous chapter. These waveforms test the dynamic range extension

approach over a bandwidth of 6.4 MHz. Each test represents a 20 dB dynamic range

extension at the given frequency.

The results of the first simulation are shown in Figure 6.7. The input waveform consists of a
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Figure 6.5: Simulated DIFM DRE with As = 0 radians and CNR = 20 dB

Figure 6.6: Simulated DIFM DRE with As = 0 radians and CNR = 12 dB
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Figure 6.7: Simulated DIFM DRE with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB

Hanning-weighted 3200 radian sinusoid at 1 kHz. The top plot of the figure shows the

demodulated output without the dynamic range extension correction factors added in. As can

be seen, without the excession correction factors, the demodulated output quickly loses the

ability to track the input waveform, and the final output at the end of waveform is

significantly off. However, with the dynamic range extension correction factors added in, the

demodulated output is able to correctly track the input waveform. This confirms the ability of

the presented approach to successfully extend the dynamic range.

The second waveform test consists of a 320 radian sinusoid at 10 kHz. The results are the

same as the previous test. Without the correction factors added in, the demodulated output

quickly loses track of the input waveform. With them added in, the demodulator is able to

successfully recover the input waveform without any errors. This is shown in Figure 6.8.

The third simulation was conducted with a 32 radian 100 kHz sinusoid. The results of this test

are not as successful as the two previous ones. It can be seen from Figure 6.9 that while the

dynamic range extended demodulated output initially tracks the input waveform better than

the non-extended output, it too loses track at some point. This leads to the large offset at the
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Figure 6.8: Simulated DIFM DRE with As = 320 radians, fs = 10 kHz, and CNR = 40 dB

end of the waveform. Even though the peak bandwidth of the signal was the same as the

previous two simulations, the high frequency signal failed to be correctly demodulated. This

demonstrates a limitation of the dynamic range extension approach, a frequency dependence

related to fsamp of the input waveform. This limitation will be addressed later.

The last two types of simulations conducted were designed to test the dynamic range

extension’s susceptibility to broadband noise input signals. There are two primary concerns

with broadband noise. First, how will the dynamic range extension approach handle high

levels of broadband noise? Second, how will it impact the demodulation of other high fringe

rate signals such as sinusoids?

The first broadband noise simulations conducted were designed to test the peak levels that

could be handled by the dynamic range extension approach. The noise was shaped to have a

sharp roll-off between 10 kHz and 50 kHz. This was done to give the noise a more realistic

shape when compared to actual physical systems. Simulations were first conducted to test the

level of noise at which non-dynamic range extended output would fail to correctly track the

input waveform. Once this level was established, simulations were then conducted to test the
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Figure 6.9: Simulated DIFM DRE with As = 32 radians, fs = 100 kHz, and CNR = 40 dB

peak levels of noise that could be properly demodulated with the dynamic range extension

correction factors enabled. The dynamic range extension capability for broadband noise was

found to just exceed 20 dB. The results of one of the dynamic range extended broadband

noise tests are provided in Figure 6.10.

The second set of broadband noise tests were designed to test the impact of the noise on the

demodulation of other high fringe rate signals. The noise for these simulations was, again,

designed to have a passband frequency of 10 kHz and a stopband of 50 kHz. Previous

simulations have shown that a peak sinusoid of 320 radians at 10 kHz could properly be

demodulated with the dynamic range extension approach. Likewise, the analysis provided in

Chapter 4 of the impact of broadband noise on sinusoidal modulation showed that for a 6 dB

reduction in the peak sinusoid, an equal level of broadband noise could be tolerated.

Therefore, the simulations were conducted with both the sinusoid and noise reduced by 6 db

from their maximum amplitudes. The results of one of these simulations is provided in Figure

6.11. As can be seen from the figure, the dynamic range extension approach is able accurately

track the input waveform without any resulting offsets. The results of this and the previous

noise test confirms that the impact of broadband noise on the dynamic range extension



101

Figure 6.10: Simulated DIFM DRE with BBN(shaped) = 22000 radians and CNR = 40 dB

approach are minimal at best. These results also confirm the broadband fringe rate analysis

provided in Chapter 4.

6.5.3 Limitations

There are a few limitations to the DIFM dynamic range extension approach. The primary

limitation is the maximum bandwidth which can be tracked by the DIFM receiver, limiting

the overall dynamic range increase that can be obtained. This issue was addressed previously

in Chapter 5. However, one other issue was identified in the preceding simulations. Of the

three sinusoidal waveforms tested, only the waveforms at 1 kHz and 10 kHz were successfully

demodulated. The dynamic range extension approach failed to properly demodulate the

waveform at 100 kHz despite the fact that all three waveforms had the same total bandwidth.

This suggests that there is a frequency dependence to the dynamic range extension

method.
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Figure 6.11: Simulated DIFM DRE with BBN(shaped) = 11000 radians, As = 160 radians, fs

= 10 kHz, and CNR = 40 dB

Frequency Dependence

The dynamic range extension technique was shown in Figure 6.9 to not properly determine

the appropriate correction factors for a waveform at 100 kHz. With a 100 kHz waveform and

fsamp = 655360 Hz, only 6.5 samples of the waveform are obtained per cycle. Given these few

points and given that these points are then averaged, it is difficult for the dynamic range

extension approach to calculate the actual correction factors at the non-linear parts of the

input waveform. It has been determined, primarily through simulations, that to correctly

demodulate the input waveform with a high reliability, a minimum of 11-12 samples per

waveform is required for the DIFM method. Figure 6.12 shows that a full 20 dB dynamic

range increase can be obtained for a sinusoidal waveform at 60 kHz.

While the full dynamic range increase requires a minimum 11-12 samples per waveform, some

increase can be obtained with fewer points. Figure 6.13 shows the results for a sinusoid at

fsamp
4 . Even at this high a frequency, a dynamic range increase of 8 dB is achieved.
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Figure 6.12: Simulated DIFM DRE with As = 55 radians, fs = 60 kHz, and CNR = 40 dB

Figure 6.13: Simulated DIFM DRE with As = 4 radians, fs = 164 kHz, and CNR = 40 dB
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Despite the apparent frequency dependence of the dynamic range approach, this will not

generally be an issue. For the application at hand, after fsamp has been filter decimated down

to the desired output rate of 81920 Hz, the full dynamic range extended bandwidth will still

be greater than the Nyquist frequency. Even for systems which are not oversampled, a

minimum number of samples per waveform are generally required such that the data is not

acquired at or near the Nyquist rate. As such, the frequency dependency should not be a

limiting factor.

6.5.4 DIFM Summary

The DIFM dynamic range extension method was just shown to provide a more than 20 dB

dynamic range increase. The approach required determining the demodulated direction of

rotation and the averaged instantaneous carrier frequency. From these two pieces of

information, an excession correction factor could be determined which was added to the

standard demodulated output. This technique was successfully demonstrated through various

simulations. While a high frequency waveform limitation was identified, it should not be an

issue for most practical systems. As a result, the DIFM dynamic range extension approach

has been demonstrated to successfully provide a 20 dB dynamic range increase, while

requiring minimal hardware resources and having few limitations.

6.6 Dynamic Range Extension Via DFT

Dynamic range extension via DFT frequency tracking largely follows that defined earlier for

DIFM. Proper selection of the excession correction factor again requires two pieces of

information: the demodulated output direction of rotation and the averaged instantaneous

carrier frequency. The difference between the two methods is in how the averaged

instantaneous carrier frequency is determined. With the DIFM approach, the carrier

measurement bands were defined by the minimum likelihood frequencies. With DFT, the

instantaneous carrier frequency is determined by measuring the DFT coefficients at the

maximum likelihood frequencies. The previous and current measurements are averaged
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together to provide an averaged instantaneous carrier frequency. The DFT frequency with the

largest averaged coefficient is then used to select the appropriate correction factor.

6.6.1 Implementation

The DFT implementation used in the following simulations is the same as that presented in

Chapter 5. A total of 22 frequencies are used to track the instantaneous carrier frequency over

a bandwidth of 6.4 MHz. Eleven of the 22 frequencies measure the carrier frequencies where

the expected demodulated output direction of rotation is positive; the other 11 frequencies

measured are where the expected demodulated output direction of rotation is negative. The

tracking of both the positive and negative directions of rotation is, again, done to reduce

potential ambiguity when the demodulated direction of rotation is in one direction, but the

averaged instantaneous carrier falls at a contradictory location. It also provides a doubling of

the bandwidth in which the appropriate correction factor can be selected from.

6.6.2 Simulations

As previously, the system parameters for the following simulations were designed to match the

demodulation hardware used in the experimental portion of this dissertation. These values are

the same as presented in the last chapter and the preceding simulations.

The MATLAB code used in the selecting the correction factor is provided below, where

phase diff is the demodulated phase output, p lst is the list of expected positive rotation

frequency coefficients, and n lst is the list of expected negative rotation frequency

coefficients.

Listing 6.2: DFT MATLAB simulation correction factor selection code

%Determine d i r e c t i o n o f r o t a t i o n and s e l e c t

%peak DFT c o e f f from appropr ia t e l i s t

i f ( p h a s e d i f f > 0 )

[ max val , f r i n d e x ] = max( p l s t ) ;
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e l s e

[ max val , f r i n d e x ] = max( n l s t ) ;

end

%S e l e c t c o r r e c t i o n f a c t o r

i f f r i n d e x == 11

phas e c f = 10∗ pi ;

e l s e i f f r i n d e x == 10

phas e c f = 8∗ pi ;

e l s e i f f r i n d e x == 9

phas e c f = 6∗ pi ;

e l s e i f f r i n d e x == 8

phas e c f = 4∗ pi ;

e l s e i f f r i n d e x == 7

phas e c f = 2∗ pi ;

e l s e i f f r i n d e x == 6

phas e c f = 0∗ pi ;

e l s e i f f r i n d e x == 5

phas e c f = −2∗pi ;

e l s e i f f r i n d e x == 4

phas e c f = −4∗pi ;

e l s e i f f r i n d e x == 3

phas e c f = −6∗pi ;

e l s e i f f r i n d e x == 2

phas e c f = −8∗pi ;

e l s e

pha s e c f = −10∗pi ;

end ;

It was shown in Chapter 5 that the DFT frequency measurement approach has a substantially

higher noise level output, when compared to DIFM, for a given input. As a result, there was a

high concern that the DFT approach may itself introduce errors in the demodulated output.
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Figure 6.14: Simulated DFT DRE with As = 0 radians and CNR = 40 dB

Therefore, the first set of DFT dynamic range extension simulations were conducted to

evaluate the approach at the different CNR levels tested previously in Chapter 5. The first

simulation, shown in Figure 6.14, shows the results for a zero input radian signal at a CNR of

40 dB. The figure shows that despite the visibly high levels of noise in the DFT coefficients,

no DC offsets are present in the dynamic range extended output.

Figure 6.15 shows the effects of reducing the CNR to 20 dB. The simulated DFT coefficients

were presented previously in Figure 5.20. Even though the magnitude of the noise in both the

DFT coefficients and the demodulated has increased by an order of magnitude, surprisingly,

no offsets have been introduced in the dynamic range extended outputs.

By reducing the CNR to a level of only 12 dB, the dynamic range extension approach actually

begins introducing errors in the demodulated output. This is depicted in Figure 6.16. From

the figure, it can be determined that only three errors where introduced over the waveform.

This is substantially better than the DIFM approach in which errors were introduced across

the entire simulation at this CNR level. However, as stated previously, this will not be an

issue for most interferometer systems since a high CNR is required for normal operation. In
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Figure 6.15: Simulated DFT DRE with As = 0 radians and CNR = 20 dB

the event that the CNR does drop this low, such as in systems without polarization fading

mitigation, it is recommended that an option be available for disabling the dynamic range

extension correction factors.

The next set of DFT dynamic range extension simulations were conducted using the three

waveforms previously identified at 1 kHz, 10 kHz, and 100 kHz. All three waveforms were

scaled to demonstrate a 20 dB dynamic range increase. The simulation results of the 1 kHz

waveform are shown in Figure 6.17. This figure confirms the ability of the dynamic range

extension approach, using DFT as the frequency discrimination method, to correctly recover

the input signal. As can be seen in the top of the figure, with the correction factors disabled,

the demodulated output quickly loses track of the waveform. However, with the correction

factors added in to the output, the input is accurately demodulated.

The simulation results for the waveform testing at 10 kHz is similar. With the dynamic range

extension correction factors added in, the waveform is properly tracked. These results are

shown in Figure 6.18.
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Figure 6.16: Simulated DFT DRE with As = 0 radians and CNR = 12 dB

Figure 6.17: Simulated DFT DRE with As = 3200 radians, fs = 1 kHz, and CNR = 40 dB
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Figure 6.18: Simulated DFT DRE with As = 320 radians, fs = 10 kHz, and CNR = 40 dB

Much like the simulated waveform tests conducted for the DIFM method, the DFT method

fails to properly demodulate the entire input waveform at 100 kHz. This is evident from the

results shown in Figure 6.19. However, there are two points of interest regarding this

simulation. First, as with the DIFM method, DFT also fails at 100 kHz. This will, again, be

shown to be related to a frequency dependency of the dynamic range extension approach

itself. The second item of interest is that although both methods fail, the DFT method does a

better job at tracking the waveform. The final offset for the DFT output is much less than

that of the DIFM. This provides some early indication that the DFT method will provide

slightly better results overall when compared to DIFM.

The same concerns exist regarding the impact of broadband noise for the DFT approach as

those documented previously for DIFM. The first broadband noise simulation was, therefore,

to test the peak levels of noise that could be correctly demodulated by the dynamic range

extension approach. Although both the DIFM and DFT methods were designed for a 20 dB

dynamic range extension, the DFT method, again, provided slightly better results. These

results are displayed in Figure 6.20. Where as the DIFM approach could handle a peak

shaped noise input of 22,000 radians, DFT was capable of reliably demodulating levels of
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Figure 6.19: Simulated DFT DRE with As = 32 radians, fs = 100 kHz, and CNR = 40 dB

25,000 radians. In both cases, not only did the broadband noise not negatively impact the

dynamic range extension approach, the peak noise levels were shown to be extended by more

than the designed 20 dB.

The second broadband noise simulation conducted was to evaluate the impact of the noise on

a high fringe rate signal. However, from the results of the similar DIFM test, the impact was

believed to be low. The results shown in Figure 6.21 confirm this. The 320 radian peak

sinusoid at 10 kHz, tested previously, was reduced by 6 dB and combined with a 6 dB reduced

level of broadband noise. For the DFT simulation, this peak level was 12,500 radians, where

the noise was shaped the same as in the previous simulations. These results also confirmed

that the DFT method, again, had a slight performance edge over the DIFM approach, which

could only tolerate a peak noise level of 11,000 radians.
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Figure 6.20: Simulated DFT DRE with BBN(shaped) = 25000 radians and CNR = 40 dB

Figure 6.21: Simulated DFT DRE with BBN(shaped) = 12500 radians, As = 160 radians, fs

= 10 kHz, and CNR = 40 dB
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6.6.3 Limitations

The dynamic range extension approach, using DFT as the frequency discrimination method,

suffers from two primary limitations. First, as was shown in the previous simulations, the

DFT method experiences the same frequency dependent limitation as was found with DIFM.

The second limitation is the amount of hardware resources required. Although this issue was

partially addressed in the previous chapter, it will be quantified in a moment.

One additional limitation alluded to earlier was the level of noise present in the DFT

coefficients. However, while the relative magnitude of the DFT coefficient noise is

substantially higher than that of the DIFM yout output, the simulations have actually shown

that the DFT method marginally out performs the other. As such, the apparently high levels

of noise impose no actual limitation. The minimal impact of the noise is believed to be related

to the fact that the noise is common to all coefficients. Although, why the DFT method

performs slightly better than the DIFM is not well understood.

Frequency Dependence

In the DIFM extension simulations, it was shown that a full 20 dB dynamic range increase

could be obtained out to a frequency of 60 kHz. A similar round of DFT simulations were

conducted to determine the highest frequency that could still achieve the full 20 dB increase.

These tests showed that the full increase could be obtained at a frequency of 80 kHz. The

results are shown in Figure 6.22. From this, it can be determined that approximately 8-9

samples per waveform cycle are needed for full dynamic range extension. This can be used to

estimate the usable frequency range for other fsamp rates.

At the maximum dynamic range extended frequency of
fsamp

4 , simulations determined that a

peak 7 radians could be measured. This is nearly 6 dB higher than the level achieved by the

DIFM approach at the same frequency. The 7 radians also equals a nearly 13 dB dynamic

range extension at this frequency. Therefore, between 80 kHz and 164 kHz, the maximum

dynamic range extension that can be achieved is only reduced by 7 dB. Likewise, this should
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Figure 6.22: Simulated DFT DRE with As = 42 radians, fs = 80 kHz, and CNR = 40 dB

not be an issue for most interferometric systems where the primary measurement band is

typically lower in frequency. It may be a concern where fsamp is substantially lower, such as in

large scale TDM systems.

Hardware Resources

Each 6 dB increase in dynamic range requires a doubling of the carrier bandwidth. As a

result, each 6 dB increase in dynamic range also requires roughly a doubling in the amount of

hardware resources to compute the DFT coefficients. Likewise, a doubling of the logic used in

selecting the largest coefficient is required. This leads to a limitation of the dynamic range

increase that can be achieved based on the available hardware.

The DFT FPGA hardware implementation used within this dissertation was presented in

Chapter 5. The DFT computations are performed as integer operations since they require

fewer clock cycles than floating-point. The problem with using integer operations, however, is

in the number of bits required at each stage for accurate results. For 16 bit integer input data,
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Figure 6.23: Simulated DFT DRE with As = 7 radians, fs = 164 kHz, and CNR = 40 dB

which is windowed by 16 bits and where the DFT reference waveforms are 16 bit, the required

DFT multipliers are 32 x 16 bit. The 48 bit multiplier output is then fed to a summing circuit;

the bit size of which is dependent on the total number of samples of the carrier acquired. A 64

x 64 bit secondary multiplier was used to compute the square of each DFT component. Only

a single squaring multiplier was required for all frequencies to meet the required data rate.

The bit size of the squaring multiplier output is 128. Bit truncation was used to reduce the

final DFT coefficient outputs to 64 bits. Although 64 bit processing can be tolerated by most

modern programmable logic devices, the required resources are not insignificant.

The DFT processing used within the experimental portion of the dissertation was

implemented in an Altera Cyclone V 5CEA7 FPGA device. This is one of the largest FPGAs

in the low-cost device family. The standard demodulation process, which includes the I/Q

reprocessing, a 160 point FIR low-pass filter, and second order IIR high-pass output filter,

required 19% of the total device resources and 38% of the available DSP blocks. With 22

DFT coefficients being processed, the total device resource usage increased to 42%, and 63%

of the DSP blocks. Therefore, a 20 dB dynamic range improvement increased the total device

usage more than double. This is is the hardware required to process only a single channel.
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This makes implementation of more than a single channel in a low-cost device difficult. It also

imposes a dynamic range extension limitation in that obtaining a 26 dB increase would be

difficult with the resources remaining within the selected device.

6.6.4 DFT Summary

Dynamic range extension via DFT frequency discrimination was just shown to provide a more

than 20 dB dynamic range increase. The averaged instantaneous carrier frequency was able to

be determined from the largest DFT coefficient. As with the DIFM method, the averaged

instantaneous carrier frequency and the demodulated direction of rotation were used to

determine an excession correction factor that could be added to the standard demodulated

output. Simulations were presented to verify the approach. A high frequency waveform

limitation was identified. However, it should, again, not be an issue for most practical

systems. A second limitation was shown to be related to the amount of hardware resources

required. While a 20 dB extension could be implemented as part of this work, additional

increases could not be obtained with the available resources. Regardless of the two

limitations, the DIFM dynamic range extension approach has been demonstrated to

successfully provide a 20 dB dynamic range increase.

6.7 Summary

Chapter 6 presented a novel approach to dynamic range extension of heterodyne fiber-optic

interferometers. It was shown how the deterministic nature of the demodulator excessions

could be used to help determine an n2π correction factor. By measuring the instantaneous

carrier frequency and calculating an average value, the averaged instantaneous frequency

could be used to obtain the number of 2π radians that had occurred between demodulation

points. It was also shown that determination of the correction factor could be enhanced by

using information about the current demodulated direction of rotation. Information about the

demodulated direction of rotation allowed for a doubling of the correction factor bin

bandwidths and helped to reduce ambiguity in the correction factor selection process.
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The dynamic range extension approach was successfully demonstrated using two separate

methods of frequency discrimination. Both methods, DIFM and DFT, were able to achieve a

20 dB dynamic range extension under simulated conditions. The DIFM method, however, has

an advantage in that the number of hardware resources required is substantially less. Likewise,

the DFT method has the advantage regarding a frequency dependent limitation. DFT requires

only 8-9 samples of the waveform for full dynamic range extension, where as DIFM requires

12-13. The DFT approach is also capable of handling slightly higher levels of broadband

noise. However, both approaches are well suited for dynamic range extension implementations

and, as such, will be tested as part of the experimental work of Chapter 7.
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Chapter 7 Dynamic Range Extension Experimental Results

Chapter 7 documents the dynamic range extension experimental tests results. These in-water

fiber-optic hydrophone tests were designed to verify the theoretical and simulated work

presented in the previous chapters. However, equipment and environmental limitations

prevented direct comparison in some of the tests. Despite this, both the DIFM and DFT

variants of the approach are experimentally validated. Differences between the simulated and

experimental results are discussed.

7.1 Test Configuration

A custom-manufactured fiber-optic hydrophone was used as the receiving element for the

following in-water tests. The sensor has a high responsivity of 1.6 radians per Pascal and a

corner frequency of 20 kHz. Interferometric signals received from the fiber-optic sensor were

demodulated using a custom I/Q reprocessing demodulator, implemented in an Altera

Cyclone V 5CEA7 FPGA. The dynamic range extension hardware was added within the same

device.

Under normal operation, the demodulator streams the processed data out over Ethernet at a

rate of 81920 samples per second. However, the interrogation rate of the sensor occurs at an

8x oversample rate of 655360 Hz. The oversampled data is then filter-decimated down and

passed through an IIR high-pass filter with a 100 Hz corner frequency. The high-pass filter

removes large static offsets that can occur through either temperature changes of the fiber

coils or demodulator excessions. The raw, unfiltered data could not be streamed from the

demodulator continuously at the oversample rate, as was needed for the experimental testing.

Likewise, information such as the DIFM yout value and the DFT coefficients needed to be

acquired to fully evaluate both approaches.

The Altera SignalTap-II software was used to collect the necessary data. The SignalTap

software allows for implementing an embedded logic analyzer within the FPGA device.

Acquired data is stored to memory blocks within the device before being read using one of
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Altera’s programming dongles and the SignalTap software. This approach allowed for

acquisition of all of the necessary pieces of information. However, memory requirements

limited the number of DFT coefficients that could be obtained to four.

The high fringe rate acoustic waveforms used for the tests were generated by an International

Transducer Corp. ITC-1007 sound source. An Instruments Inc. L40 power amplifier was used

to drive the ITC-1007. However, this configuration resulted in several issues. First, the

ITC-1007 source has a poor Transmit Voltage Response (TVR) below several kilohertz.

Therefore, the transducer would have needed to be driven with a substantial amount of power

for the 1 kHz waveform tests. The L40 amplifier and the ITC-1007 transducer both supported

the required power levels. However, the available cabling and connectors were only rated at

600 Volts. Testing confirmed that the breakdown voltage was just over 800 Volts, limiting the

total amount of power that could be supplied to the transducer. Higher voltage rated cabling

and connectors could not be procured in time for these tests. Likewise, a much larger sound

source could have been used to improve the TVR at 1 kHz. However, deployment of the

different source would have created several new challenges. As a result of these issues, it was

decided to move the 1 kHz waveform test to 2.5 kHz. This resulted in an improvement in the

TVR and an increase in the fringe rate, such that it could be used to drive the demodulator

more than 20 dB past the excession point at that frequency.

A standard RESON TC-4032 hydrophone was used as a reference to determine the actual

acoustic signal applied to the fiber-optic sensor. A National Instruments PXIe-4461 card was

used to both record the analog signal of the reference hydrophone and generate the analog

output waveform. This card has a maximum input and output rate of 204.8 kSPS. However,

the card was configured for 163,840 SPS, an integer rate of the fiber-optic system. This

imposed a practical limitation on the highest frequency tests that could be conducted to

around 60 kHz. Likewise, since the fiber-optic sensor has a sharp roll-off above 20 kHz, higher

frequency testing would have been impractical.

The site where the tests were conducted was determined by three primary requirements: the

need for fiber access, the need for power, and the size of the available acoustic free-field. A

suitable site was located off the end of a shore-side tethered barge. The free-field at this
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location was approximately 20 ft, enough to ensure that no reflections would influence the

direct path of the waveform for the 2.5 kHz tests.

The fiber-optic hydrophone, the RESON reference hydrophone, and the ITC-1007 sound

source were all deployed off the end of the barge to an approximate depth of 20 ft. The

reference and fiber-optic hydrophones were located at roughly an equal distance from the

source. However, exact measurements were not made since this was not intended to be a

calibrated test. Likewise, all three units were freely suspended from the barge. No attempt

was made to fix their positions since it was not a requirement of the test.

The location of the test elements was approximately 200 ft from shore, in the middle of a busy

bay. As a result, several different sources of noise were present during the testing. High levels

of transformer hum at 60 Hz and harmonics were present throughout all of the tests.

Likewise, low levels of background boat traffic was consistently present. Higher levels of

transient boat noise was also experienced, as was transient wave slap off of the nearby shore

and barges. The noise was viewed as beneficial to the tests since this is the type of

environment that the dynamic range extension approach must be able to work in. However,

as would be expected, the noise reduced the overall peak levels of the input waveform that

could be demodulated when compared to the simulated results.

Polarization fading mitigation was not implemented in the fiber-optic test sensor. As a result,

the CNR experienced variations during testing and could not be accurately controlled.

Therefore, the CNR values specified for each test is only an approximation. Some degree of

CNR control was possible by adjusting the output power of an EDFA within the interrogation

system. This, however, would not guarantee the CNR during the duration of the actual test

window. This was particularly true for the 100 pulse reliability tests.
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Figure 7.1: DIFM noise analysis, CNR ≈ 40 dB

7.2 Dynamic Range Extension Via DIFM Tests

7.2.1 Noise Floor Test

The first DIFM experimental test conducted was to evaluate the nominal output value and

degree of noise of yout. This test was conducted with an approximate CNR of 40 dB. The

background noise addressed previously was present, but there were no high level transients

during the acquisition. Figure 7.1 shows the results. The yout output shows a nominal value of

.295 with a variation of ±.003. This is essentially identical to the simulated values determined

in the previous chapter.

7.2.2 2.5 kHz Waveform Test

The next three tests were designed to experimentally validate the approach at the three

frequencies used in the previous simulations. However, as was discussed earlier, generating a
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Figure 7.2: Experimental test with DRE disabled - As = 1300 radians, fs = 2.5 kHz, and CNR

≈ 40 dB

high enough fringe rate signal at 1 kHz turned out to be impossible with the available

equipment. Therefore, it was determined that the lowest frequency that could generate a high

enough signal was at 2.5 kHz. This is actually a more stringent test since it is known that a

frequency dependent limitation exists.

The first waveform test conducted was at 2.5 kHz. A peak drive level of 1300 radians was

used. An attempt was made to collect the data when the CNR was approximately 40 dB.

First, Figure 7.2 shows the demodulated output with the dynamic range extension correction

factors disabled. The large DC offset in the fiber-optic output clearly shows that the

demodulator has been been driven well into excession. The first DC shift in the demodulated

output, occurring before the pulse, is the result of an excession caused by a gate enable

transient of the L40 amplifier. Figure 7.3 now shows the same waveform with the dynamic

range extension correction factors added in. The demodulated output and the reference

waveform are in exact agreement. The figure also shows that the yout output values are as

expected. This provides an initial confirmation of the dynamic range extension approach via

DIFM.
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Figure 7.3: Experimental test with DRE enabled - As = 1300 radians, fs = 2.5 kHz, and CNR

≈ 40 dB

7.2.3 10 kHz Waveform Test

The second waveform test was conducted at 320 radians, 10 kHz. Figures 7.4 and 7.5 show

the results with and without the dynamic range extension enabled. As expected, with it

disabled, the demodulator quickly loses track of the waveform. With it enabled, the correct

waveform is recovered.

7.2.4 60 kHz Waveform Test

As described earlier, the 100 kHz waveform simulation tests could not be experimentally

validated as the result of limitations of the available hardware. Rather, it was determined that

60 kHz was the highest frequency that could accurately be tested. Figures 7.6 and 7.7, again,

show the results of the waveform tests at this frequency, both with the extension approach

enabled and disabled. As can be seen in Figure 7.7, the demodulator is able to correctly

recover the signal at 60 kHz. All three of the previous waveform tests have, therefore, been
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Figure 7.4: Experimental test with DRE disabled - As = 320 radians, fs = 10 kHz, and CNR

≈ 40 dB

Figure 7.5: Experimental test with DRE enabled - As = 320 radians, fs = 10 kHz, and CNR

≈ 40 dB
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Figure 7.6: Experimental test with DRE disabled - As = 50 radians, fs = 60 kHz, and CNR ≈

40 dB

shown to achieve the stated dynamic range increase, validating the simulation results.

7.2.5 Frequency Dependency Tests

Simulation results from the previous chapter showed that dynamic range extension via DIFM

required a minimum of 12-13 samples of the waveform for full extension. For the system at

hand, the simulations showed that 60 kHz was the highest frequency that could achieve the

full 20 dB extension. As the experimental tests just confirmed, 20 dB extension at 60 kHz is

possible. However, limitations of the test system prevented higher frequency testing. As such,

the frequency dependent roll-off of the dynamic range extension approach could not be

experimentally validated.
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Figure 7.7: Experimental test with DRE enabled - As = 50 radians, fs = 60 kHz, and CNR ≈

40 dB

7.2.6 Reliability Tests

The previous experimental waveform tests confirmed the ability of the dynamic range

extension approach to achieve the maximum designed increase. However, these tests were

conducted under low ambient noise conditions, with a moderately high CNR level. Such

conditions are ideal and not typical. To better determine the reliability of the approach, an

additional round of testing was conducted.

A series of 100 pulses at each of the three test frequencies was used to test the reliability of

the approach. These pulses were transmitted over several hours. During this time, the

ambient and transient noise conditions varied widely. Likewise, the polarization visibility

drifted over this period, varying the overall CNR.

Initial testing showed that ambient and transient acoustic noise conditions consumed as much

as 2 dB of the available demodulator bandwidth. As a result, tests conducted with the

maximum peak sinusoidal amplitude were likely to fail. This is as expected. Therefore, it was
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determined that a more realistic test would be to reduce the peak sinusoidal drive levels by 3

dB and allow for high level transients.

The first round of reliability tests were conducted with a nominal CNR of 40 dB. During the

test period, the CNR was observed varying by only ± 3 dB. The background ambient was

significantly high but was considered desirable to more rigorously test the overall reliability.

Of the three different waveforms transmitted, it was expected that the reliability of correctly

demodulating the input would have some dependence on the waveform frequency. However,

this was not observed. All 300 pulses transmitted were correctly recovered without any

detected excessions.

A second round of reliability tests was conducted with a reduced CNR of 20 dB. The same

polarization induced CNR variations of approximately ±3 dB were observed during the test.

It was anticipated that some failures would be observed with the reduced level. However, all

300 pulses were again demodulated correctly.

The CNR level had to be reduced to nearly 12 dB before significant errors were introduced by

the dynamic range extension approach. As stated previously, such low CNR levels are

uncommon in most interferometric systems . The overall conclusion from this testing is that

the reliability of the approach is very high.

7.2.7 DIFM Analysis

The DIFM experimental tests largely confirmed the simulated work of the previous chapter.

All three sinusoidal waveforms could be demodulated with a 20 dB extension over the

standard output process. Extended reliability tests, conducted over various CNR levels,

confirmed the approach to be viable in applications subjected to high levels of ambient and

transient noise. One aspect of the approach that could not be tested was the frequency

dependency. The experimental tests were, however, able to demodulate the highest frequency

signals that could be generated. The excellent results provided by the approach, combined

with the minimal hardware resources required for implementation, makes DIFM ideal for

dynamic range extension.
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7.3 Dynamic Range Extension Via DFT Tests

The same set of experimental tests used to validate the DIFM method were conducted for

DFT. However, correct interpretation of the DFT coefficients is more challenging than the

yout value of DIFM. Complicating matters is the fact that the FPGA only had enough

internal memory to acquire four of the 22 coefficients. Therefore, the figures in the following

experimental tests only display the four coefficients closest to the nominal carrier

frequency.

7.3.1 Noise Floor Test

The first DFT experimental test was to determine the nominal output and noise levels of the

DFT coefficients. Figure 7.8 shows the results for a typical low acoustic noise measurement

and nominal CNR of 40 dB. The results are largely as expected. The high levels of noise are

consistent with the simulated results. However, what was not as apparent from the

simulations was how the nominal values varied with the magnitude of the received carrier

signal. As a modulating signal was applied to the sensor, the CNR would vary based on the

polarization states, and as a result, the nominal DFT coefficients would also track the

waveform. While this issue was initially a concern, subsequent testing has shown it to have

little to no impact on the ability of the approach to correctly demodulate waveforms.

7.3.2 2.5 kHz Waveform Test

The second test conducted was the 1300 radian, 2.5 kHz waveform pulse. The results without

the correction factors added in were presented earlier in the chapter and will not be repeated

in this section. Figure 7.9 shows that with the dynamic range extension correction factors

added in the waveform is correctly recovered. Closer analysis confirmed that no DC offsets

were present over the duration of the waveform. This, again, provides an initial confirmation

that dynamic range extension via DFT carrier measurement is feasible.
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Figure 7.8: DFT noise analysis, CNR ≈ 40 dB

Figure 7.9: Experimental test with DFT DRE enabled - As = 1300 radians, fs = 2.5 kHz, and

CNR ≈ 40 dB
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Figure 7.10: Experimental test with DFT DRE enabled - As = 320 radians, fs = 10 kHz, and

CNR ≈ 40 dB (Zoom)

7.3.3 10 kHz Waveform Test

Figure 7.10 shows the results of the 10 kHz waveform test. The figure confirms that the

approach is able to accurately track the incoming wave. Likewise, the DFT coefficient plot of

the figure has been zoomed in over a small section of the waveform to more clearly show the

transitions. These transitions match the expected results as obtained previously from the

simulations.

7.3.4 60 kHz Waveform Test

The last waveform test that was conducted was, again, at 60 kHz. Figure 7.11 shows that the

DFT method is able to correctly demodulate the high frequency signal. Therefore, the DFT

approach has been shown to successfully demodulate all three of the waveforms, and as such,

the simulated results of the previous chapter have been validated.
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Figure 7.11: Experimental test with DFT DRE enabled - As = 50 radians, fs = 60 kHz, and

CNR ≈ 40 dB (Zoom)

7.3.5 Frequency Dependency Tests

Simulation results from the previous chapter showed that dynamic range extension via DFT

required a minimum of 8-9 samples of the waveform for full extension. The simulations

showed that 80 kHz was the highest frequency that could achieve the full 20 dB extension for

the given system. However, hardware limitations prevented experimental testing beyond 60

kHz. While the DFT approach was able to successfully demodulate the 60 kHz waveform, the

highest frequency that could actually be handled could not be determined. Likewise,

determining the degree of frequency dependent roll-off was not possible. Therefore, it was not

possible to validate the apparent high-frequency advantage that DFT has over DIFM; as

determined through simulations in the previous chapter.
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7.3.6 Reliability Tests

The same set of reliability tests conducted for the DIFM method were repeated for DFT.

This included transmitting and demodulating a series of 100 pulses of each of the three test

waveforms. However, as discussed previously, the peak sinusoidal drive levels were reduced by

3 dB to account for the bandwidth consumed by the ambient and transient acoustic noise

present during the tests. The test was conducted at two nominal CNR levels.

The experimental reliability test results were the same as determined previously for the DIFM

method. The 300 pulse tests were conducted at both 40 dB and 20 dB CNR nominal levels.

All pulses were successfully demodulated. Therefore, the dynamic range extension via DFT

method has also been shown to provide a very high level of reliability. Experimental testing

was not able to determine any reliability differences between the two methods, as was

detected by the simulated results.

7.3.7 DFT Analysis

The DFT experimental tests confirmed the simulated work of the previous chapter. All three

sinusoidal waveforms could be demodulated with a 20 dB extension over the standard output

process. Extended reliability tests conducted over various CNR levels confirmed the approach

to be viable in applications subjected to high levels of ambient and transient noise. However,

as with the DIFM testing, the frequency dependent roll-off could not be verified as a result of

hardware limitations. While experimental tests were able to demodulate the highest frequency

signals that could be generated at 60 kHz, the maximum simulated frequency of 80 kHz could

not be confirmed. However, the experimental testing did validate the dynamic range extension

approach via DFT as being highly reliable within the primary measurement band.
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7.4 Summary

Both the DIFM and the DFT variants of the dynamic range extension approach were

experimentally validated. Waveform tests conducted at low, mid, and high frequencies all

confirmed the ability of both variants to successfully extended the dynamic range by more

than 20 dB. Few differences were detected between the two approaches. Both achieved 100%

success during the extended reliability testing. However, the previous simulations showed that

the DFT method had a slight frequency dependent improvement above 60 kHz. While sensor

and system limitations prevented higher frequency testing, both methods are deemed as

viable candidates for systems which require dynamic range extension.
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Chapter 8 Conclusion

8.1 Contributions

This dissertation has made several contributions to the field of fiber-optic sensing, the

primary of which is the successful development and demonstration of a technique for

extending the dynamic range of heterodyne fiber-optic sensors by more than 20 dB. In the

process of completing such work, multiple tasks have been accomplished.

First, the development of a heterodyne fiber-optic demodulation MATLAB simulation script

was completed. Using this simulator, three methods of instantaneous carrier measurement

and two methods of dynamic range extension were successfully tested and evaluated. The

results of the simulator matched closely with the experimental results. This simulator can,

therefore, be used in the design and testing of future demodulation hardware.

Three unique methods of instantaneous carrier measurement were presented and tested as

part of this dissertation. The DIFM approach was shown to require minimal hardware, yet,

provide low-noise wide-bandwidth frequency tracking capabilities. The DFT method provided

the widest bandwidth tracking but was limited by the amount of required hardware resources.

The last method presented, PECM, required the fewest hardware resources but was found to

have significant performance limitations when compared to the other two methods.

Both the DIFM and the DFT methods of instantaneous carrier measurement were

experimentally tested for use in the dynamic range extension approach. They were found to

provide comparable results. Both were able to achieve bandwidth limited dynamic range

increases in excess of 20 dB. The DIFM approach required substantially less hardware

resources and was determined to be the optimal solution for dynamic range extension

applications. DFT did have a small frequency dependent performance advantage in the

simulated results. However, hardware limitations prevented the experimental validation of

this advantage. The experimental dynamic range testing, therefore, largely confirmed the

analysis and theory of this dissertation.
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8.2 Future Work

The work completed as part of this dissertation has not addressed all issues related to the

topic. Several potential areas of future research need to be addressed.

The simulated results showed a frequency dependent roll-off of the available dynamic range

extension. This is as expected given the carrier averaging requirement of the extension

approach. The simulations showed that the DIFM approach could provide full dynamic range

extension to 60 kHz, while DFT was out to 80 kHz. A lesser degree of extension was possible

at higher frequencies. However, limitations of both the fiber-optic sensor and the hardware

used to generate the acoustic pulses prevented testing beyond 60 kHz. Therefore, work

remains to experimentally test the high-frequency roll-off.

For large dynamic range extensions, the bandwidth required by the demodulator can be

substantial. It is also well known that for wideband modulated systems, distortion can be

introduced from the phase response of the communication channel and/or system

components. With an all-digital heterodyne demodulator, the front-end still requires several

analog stages that can present differing phase delays over a wide bandwidth. Digital filtering

stages of the demodulator can also introduce wideband modulation phase errors. These were

not addressed as part of this work; however, the carrier frequency tracking methods presented

could be used to help equalize such errors.

In a heterodyne modulated system where TDM is not utilized, two types of pulses are

received at the demodulator. The first occurs when the two overlapping optical pulses have

traveled an equal distance from the pulse generator to the receiver. In the second type, one of

the two overlapping optical pulses has traveled twice the length of the sensor more than the

other pulse. This large differential in path lengths generates high levels of phase noise as a

result of laser frequency noise within these pulses. As a result, these pulses are discarded.

However, although the phase noise of these pulses may be too high for the standard

demodulation process, they may be suitable for obtaining carrier frequency information and

further dynamic range increases.
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It was mentioned previously that the dynamic range extension approach presented in this

dissertation utilized a two-point, equally-weighted average of the current and the previous

instantaneous carrier measurements. Although this was shown to reliably provide more than a

20 dB dynamic range increase, a more advanced averaging approach may provide additional

improvements. One potential method mentioned previously is the use of the current, the

previous, and the following instantaneous carrier measurements. This approach could be

coupled with utilizing the discarded heterodyne pulses, as just discussed. This combination

could potentially provide dynamic range increases well in excess of 20 dB.

8.3 Conclusion

This dissertation documented a method of extending the dynamic range of a heterodyne

fiber-optic interferometer by tracking the instantaneous carrier frequency. The demonstrated

dynamic range increase was in excess of 20 dB. In addition, the results of the simulated and

experimental tests matched with a high level of agreement, further validating the technique.

Because of the success of this research, the DIFM dynamic range extension approach has

already been implemented in a new large-scale heterodyne fiber-optic sensor array.
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Appendix A Derivation of Heterodyne Current Equation
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This appendix provides a derivation of the heterodyne photodetector current. The following

has been derived largely from the Mach-Zehnder current derivation presented in [3].

The heterodyne current ipd is generated from two optical pulses overlapping and mixing on

the demodulator’s photodetector. One of the pulses is considered the signal and is modulated

at f1, using an AOM, to a frequency of fT + f1. The value fT is the natural oscillation

frequency of the light and is in on the order of several hundred Terahertz. The second pulse is

the reference pulse, and is modulated to a frequency of fT + f2. Assuming the power levels in

the both the reference and the signal pulses are equal to P , the optical fields can be

determined from the following equations.

Es(t) =
√
P cos(2π(fT + f1)t+ φs(t)) (A.1)

Er(t) =
√
P cos(2π(fT + f2)t+ φr(t)) (A.2)

The two pulses travel difference paths within the interferometer but arrive simultaneously at

the demodulator’s photodetector. The photodetector, being a square-law device, will produce

an output which is the square of the total input, provided the optical polarization states are

not orthogonal. Therefore, the amount of current produced by the photodetector will be equal

to the square of the total input optical field, times the responsivity r of the photodetector

itself.

ipd(t) = r ∗ (Es(t) + Er(t))
2 (A.3)

ipd(t) = r ∗ (
√
P cos(2π(fT + f1)t+ φs(t)) +

√
P cos(2π(fT + f2)t+ φr(t)))

2 (A.4)
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ipd(t) = rP cos2(2π(fT + f1)t+ φs(t)) + rP cos2(2π(fT + f2)t+ φr(t)) +

2rP cos(2π(fT + f1)t+ φs(t)) ∗ cos(2π(fT + f2)t+ φr(t)) (A.5)

Using the cosine power reduction and the product-to-sum identifies, the above equation can

be reduced to

ipd(t) =
rP

2
+
rP

2
cos(4π(fT + f1)t+ 2φs(t)) +

rP

2
+
rP

2
cos(4π(fT + f2)t+ 2φr(t)) +

rP cos(2π(f1 − f2)t+ φs(t)− φr(t)) +

rP cos(2π(2fT + f1 + f2)t+ φs(t) + φr(t)) (A.6)

All of the terms in equation A.6 containing fT can be omitted by taking the time average of

the output over the photodetector’s time constant. This effectively removes the high

frequency components which cannot be observed. The equation therefore reduces to

ipd(t) = rP + rP cos(2π(f1 − f2)t+ φs(t)− φr(t)) (A.7)

The difference between f1 and f2 is designed to be the heterodyne interferometer carrier

frequency, thus f1 − f2 can be replaced with fc. It was also mentioned previously that proper

mixing of the optical fields on the photodetector will only take place if the polarization states

between the signal and the reference pulses are not orthogonal. When they are, the time

varying component will fade. As a result, a polarization visibility factor V is added to the

equation. This factor can range from 0 ≤ V ≤ 1, depending on the degree of orthogonality.

Making these replacements, the final heterodyne current equation is obtained.

ipd(t) = rP + rPV cos(2πfct+ (φs(t)− φr(t))) (A.8)
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Appendix B DIFM MATLAB Simulation Code
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Listing B.1: DIFM MATLAB simulation code

%Use FIR ( odd ) f i l t e r or ( even ) s imple BOX FIR f i l t e r

f i l t e n = 0 ;

%Set time s e r i e s and sample ra t e parameters

N = 8 ;

M = 1 ;

c y c l e s = 64∗N; %fsamp samples

f c = 10 e6∗M; %10nsec

pw = 76∗M; %10nsec

de lay = 10∗M; %10nsec

samples = 50∗M+1;

%Set d i g i z i t e r parameters

d i g b i t s = 16 ;

peak dig = 2ˆ( d i g b i t s −1);

i q b i t s = 16 ;

peak iq = 2ˆ( i q b i t s −1);

f i r b i t s = 16 ;

p e a k f i r = 2ˆ( f i r b i t s −1);

%Set the d i g i t i z a t i o n sample ra t e

f s = 100 e6∗M;

t s = (0 : ( 1 / f s ) : ( 1 / f s )∗pw∗( c y c l e s ) ∗ 2 ) ;

t s = t s ( 1 : end−1);

%Time s e r i e s o f i nd i v i dua l acqu i red pu l s e s

t e x t = (0 : ( 1 / f s ) : ( 1 / f s )∗ ( samples −1)) ;

%Time s e r i e s o f demodulated pu l s e s

fsamp = 1/(pw∗2∗(1/ f s ) ) ;

tsamp = (0 : ( 1 / fsamp ) : ( 1 / fsamp )∗ ( c y c l e s ) ) ;

tsamp = tsamp ( 1 : end−1);

fr demod = fsamp∗ pi

%Window the input s i g n a l be ing demodulated

%to avoid i n i t i a l t r a n s i e n t s

data win = tukeywin ( s i z e ( ts , 2 ) , 1 ) ’ ;

data win sampled = tukeywin ( s i z e ( tsamp , 2 ) , 1 ) ’ ;



145

%Window the i nd i v i dua l pu l s e s to s imulate

%the ramp and f a l l t imes o f the c a r r i e r

win = tukeywin (pw , . 1 ) ’ ;

%Create the time s e r i e s windows to sample the

%incoming s i g n a l

window = [ ] ;

f o r i = 0 : cyc l e s −1

window = [ window , win ] ;

window = [ window , z e ro s (pw, 1 ) ’ ] ;

end ;

%Window the acqu i red samples o f the pu l s e s

%to reduce e r r o r

%iq win = ones ( samples , 1 ) ’ ;

%iq win = tukeywin ( samples , 1 ) ’ ;

%iq win = blackman ( samples ) ’ ;

%iq win = f l a t t opw in ( samples ) ’ ;

%iq win = hanning ( samples ) ’ ;

i q win = nut ta l lw in ( samples ) ’ ;

i q win = f l o o r ( iq win .∗ p e a k f i r ) ;

box win = nut ta l lw in ( samples −1) ’ ;

box win = f l o o r ( box win .∗ p e a k f i r ) ;

%Create the low−pass f i l t e r s i f s imple BOX averag ing

%f i l t e r i s not used

i f f i l t e n == 1

% n f i l t = samples −1;

% fnyq = f s /2 ;

% fch = 18 e6 ; %20MHz nu l l

% f c l = 2e6 ; %3MHz bandwidth max

% f = [0 ( f c l / fnyq ) ( f ch / fnyq ) 1 ] ;

% w = [1 1 0 0 ] ;

% b = remez ( n f i l t , f , w) ;

% b = f l o o r (b∗ p e a k f i r ) ;

a = 1 ;

f i r = load ( ’ f i r 5 1 p t .mat ’ , ’ b ’ ) ;

b = f i r . b ;
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% f i g u r e ;

% f r e q z (b ) ;

end ;

f i r = load ( ’ f i r 5 1 p t .mat ’ , ’ b ’ ) ;

%Create the ambient no i s e shaping low−pass f i l t e r s

n f i l t = 1000 ;

fnyq = f s /2 ;

f ch = 200 e3 ; %20MHz nu l l

f c l = 1e3 ; %3MHz bandwidth max

f = [0 ( f c l / fnyq ) ( f ch / fnyq ) 1 ] ;

w = [1 1 0 0 ] ;

%bn = remez ( n f i l t , f , w) ;

h = load ( ’ f i l t c o e f f 1 k 5 0 k 8 0 0 1 .mat ’ , ’ h ’ ) ;

bn = h . h ;

an = 1 ;

%f i g u r e ;

%f r e q z (bn ) ;

%Car r i e r amplitude f o r CNR t e s t i n g and

%au t o c o r r e l a t i o n c o r r e c t i o n

Ac = . 5 ;

%Create s i g n a l and no i s e waveforms

Asig = 160 ; %

f s i g = 10000 ; %81920 or 10 e3

phi = 0 ;

f r s i g = 2∗ pi ∗Asig∗ f s i g

bw = Asig∗ f s i g

%S igna l no i s e

An sig = 26000 ;

s i g n o i s e = f i l t e r (bn , an , An sig ∗( rand ( s i z e ( t s ) ) − . 5 ) ) ;

s i g n o i s e = f i l t e r (bn , an , s i g n o i s e ) ;

s i g n o i s e = f i l t e r (bn , an , s i g n o i s e ) ;

%Car r i e r Noise

An = . 0 1 ;
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fn = 10 e6+157e3 ;

phin = 0 ;

%no i s e = An∗ s i n (2∗ pi ∗ fn ∗ t s + phin ) ;

c a r n o i s e = An∗( rand ( s i z e ( t s ) ) − . 5 ) ;

%Create mult i tone no i s e components ( i f used )

An1 = 0 . 0001 ;

fn1 = 10 e6+157e3 ;

An2 = 0 . 0001 ;

fn2 = 10e6−157e3 ;

An3 = 0 . 0001 ;

fn3 = 157 e3 ;

%no i s e = An1∗ s i n (2∗ pi ∗ fn1 ∗ t s ) + An2∗ s i n (2∗ pi ∗ fn2 ∗ t s ) + An3∗ s i n (2∗ pi ∗ fn3 ∗ t s ) ;

%Create the pulsed c a r r i e r waveform

%used f o r t e s t i n g the c a r r i e r spectrum

pu l s e d c a r r i e r = s i n (2∗ pi ∗ f c ∗ t s ) . ∗window − . 5 ;

%Create the ” analog ” s i g n a l and only keep

%data at the pu l s e s

s i g = ( Asig∗ s i n (2∗ pi ∗ f s i g ∗ t s + phi ) + s i g n o i s e ) . ∗ data win ;

data = (Ac∗ s i n (2∗ pi ∗ f c ∗ t s + s i g ) ) . ∗window + ca r n o i s e ;

%Create a copy o f the incoming s i g n a l at the

%actua l demodulation ra t e f o r comparison t e s t i n g

%of the output

%s ig sampled = Asig∗ s i n (2∗ pi ∗ f s i g ∗tsamp ) . ∗ data win sampled ;

s i g sampled = [ ] ;

f o r i = 1 : s i z e ( tsamp , 2 )

s ig sampled = [ s ig sampled s i g (pw+(i −1)∗pw ∗ 2 ) ] ;

end

%D i g i t i z e the acqu i red pu l s e s

data = f l o o r ( data∗ peak dig ) ;

%Create the d i g i t a l I /Q components

I = f l o o r ( cos (2∗ pi ∗ f c ∗ t s )∗ peak iq ) ;
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Q = f l o o r ( s i n (2∗ pi ∗ f c ∗ t s )∗ peak iq ) ;

I da ta = I .∗ data ;

Q data = Q.∗ data ;

%I n i t i a l i z e loop parameters

acqu i r e = 0 ;

de l ay cn t = 0 ;

num samples = 0 ;

pha s e l a s t = 0 ;

phase cur = 0 ;

p h a s e d i f f = 0 ;

phase accum = 0 ;

phase accum no dre = 0 ;

pha s e c f = 0 ;

demod = [ ] ;

demod no dre = [ ] ;

I samp = [ ] ;

Q samp = [ ] ;

D samp = [ ] ;

d i f f l s t = [ ] ;

%I n i t i a l DR extens i on v a r i a b l e s

%AVG must be 2 or more

navg = 2 ;

DIFM last = − .295;

DIFM cur = − .295;

DIFM lst = [ ] ;

D auto = [ ] ;

%Process over a l l d i g i t i z e d samples o f

%the incoming c a r r i e r s i g n a l

f o r i = 1 :pw∗ c y c l e s ∗2

%Only s e l e c t samples f o r demodulation with in

%the s p e c i f i e d window

i f ( de l ay cnt >= delay )&&( de l ay cnt <= delay+samples−1 )

acqu i r e = 1 ;

e l s e

acqu i r e = 0 ;
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end ;

%The sample window s t a r t s on the r i s i n g edge o f

%re c e i v ed op t i c a l pu l s e

i f ( window( i ) > . 5 )

de l ay cnt = de lay cn t + 1 ;

e l s e

de l ay cnt = 0 ;

end ;

%The number o f s p e c i f i e d d i g i t a l samples has been

%rece ived , begin demodulating the pu l s e

i f ( num samples == samples−1 ) && ( acqu i r e == 1 )

pha s e l a s t = phase cur ;

%Obtain I /Q components and the c a r r i e r s i g n a l f o r DR ext

I samp = [ I samp , I da ta ( i ) ] ;

Q samp = [Q samp , Q data ( i ) ] ;

D samp = [D samp , data ( i ) ] ;

%I f f i l t e r enable i s enabled , used an N ( odd ) po int

%FIR f i l t e r to p roce s s the I /Q data , o therwi s e use

%use and N ( even ) po int BOX FIR f i l t e r

i f f i l t e n == 1

i f i l t = f i l t e r (b , a , I samp ) ;

q f i l t = f i l t e r (b , a , Q samp ) ;

phase cur = atan2 ( i f i l t ( end ) , q f i l t ( end ) ) ;

e l s e

i sum = sum( I samp ( 1 : end−1).∗ box win ) ;

q sum = sum(Q samp ( 1 : end−1).∗ box win ) ;

phase cur = atan2 ( i sum , q sum ) ;

end ;

%Compute the phase change and unwrap the s i g n a l

p h a s e d i f f = phase cur − pha s e l a s t ;

i f ( p h a s e d i f f > pi )

p h a s e d i f f = ph a s e d i f f − 2∗ pi ;

e l s e i f ( p h a s e d i f f < −pi )
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ph a s e d i f f = ph a s e d i f f + 2∗ pi ;

end ;

d i f f l s t = [ d i f f l s t , p h a s e d i f f ] ;

%Peform the DIFM DR approach

D samp = D samp ;

D samp = D samp .∗ i q win ;

DIFM auto = sum ( [ D samp , 0 , 0 , 0 ] . ∗ [ 0 , 0 , 0 , D samp ] ) ;

DIFM cf = sum(D samp .∗D samp ) ;

DIFM last = DIFM cur ;

DIFM cur = DIFM auto/DIFM cf ;

DIFM avg = mean ( [ DIFM cur DIFM last ] ) ;

DIFM lst = [ DIFM lst , DIFM avg ] ;

i f ( p h a s e d i f f < 0)

i f DIFM avg < −.792

pha s e c f = 12∗ pi ;

e l s e i f DIFM avg < −.722

pha s e c f = 10∗ pi ;

e l s e i f DIFM avg < −.638

pha s e c f = 8∗ pi ;

e l s e i f DIFM avg < −.544

pha s e c f = 6∗ pi ;

e l s e i f DIFM avg < −.441

pha s e c f = 4∗ pi ;

e l s e i f DIFM avg < −.330

pha s e c f = 2∗ pi ;

e l s e i f DIFM avg < −.215

pha s e c f = 0∗ pi ;

e l s e i f DIFM avg < −.096

pha s e c f = −2∗pi ;

e l s e i f DIFM avg < . 023

pha s e c f = −4∗pi ;

e l s e i f DIFM avg < . 140

pha s e c f = −6∗pi ;

e l s e i f DIFM avg < . 253
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phas e c f = −8∗pi ;

e l s e i f DIFM avg < . 361

pha s e c f = −10∗pi ;

e l s e

pha s e c f = −12∗pi ;

end ;

e l s e

i f DIFM avg < −.825

pha s e c f = 12∗ pi ;

e l s e i f DIFM avg < −.759

pha s e c f = 10∗ pi ;

e l s e i f DIFM avg < −.682

pha s e c f = 8∗ pi ;

e l s e i f DIFM avg < −.593

pha s e c f = 6∗ pi ;

e l s e i f DIFM avg < −.494

pha s e c f = 4∗ pi ;

e l s e i f DIFM avg < −.386

pha s e c f = 2∗ pi ;

e l s e i f DIFM avg < −.273

pha s e c f = 0∗ pi ;

e l s e i f DIFM avg < −.156

pha s e c f = −2∗pi ;

e l s e i f DIFM avg < −.036

pha s e c f = −4∗pi ;

e l s e i f DIFM avg < . 082

pha s e c f = −6∗pi ;

e l s e i f DIFM avg < . 197

pha s e c f = −8∗pi ;

e l s e i f DIFM avg < . 308

pha s e c f = −10∗pi ;

e l s e

pha s e c f = −12∗pi ;

end ;

end ;



152

%Accumulate the phase us ing the DR extens i on

%co r r e c t i o n f a c t o r

phase accum = phase accum + pha s e d i f f + phas e c f ;

demod = [ demod , phase accum ] ;

phase accum no dre = phase accum no dre + pha s e d i f f ;

demod no dre = [ demod no dre , phase accum no dre ] ;

%Reset v a r i ab l e f o r next pu l s e

I samp = [ ] ;

Q samp = [ ] ;

D samp = [ ] ;

num samples = 0 ;

e l s e i f ( a cqu i r e == 1)

%Continue to acqu i r e data samples

num samples = num samples + 1 ;

I samp = [ I samp , I da ta ( i ) ] ;

Q samp = [Q samp , Q data ( i ) ] ;

D samp = [D samp , data ( i ) ] ;

end ;

end ;

%subt rac t out dc o f f s e t

%demod = demod − (max(demod)+min (demod ) ) / 2 ;

%f i g u r e ;

%p lo t ( ts , window , ’ r ’ , ts , p u l s e d c a r r i e r , ’ g ’ ) ;

%f i g u r e ;

%p lo t ( tsamp , demod , ’ r ’ )

% i f 0

% f i g u r e ;
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% NFFT=1024∗2ˆ10;

% f = f s /2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

% Y = 20∗ l og10 (2∗ abs ( f f t (window ,NFFT))/NFFT) ;

% p lo t ( f ,Y( 1 :NFFT/2+1)) ;

% xlim ( [ 0 12 e6 ] ) ;

% ylim ([−100 0 ] ) ;

% end ;

%

% i f 0

% f i g u r e ;

% NFFT=1024∗2ˆ10;

% f = f s /2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

% Y = 20∗ l og10 (2∗ abs ( f f t ( pu l s e d c a r r i e r ,NFFT))/NFFT) ;

% p lo t ( f ,Y( 1 :NFFT/2+1)) ;

% xlim ( [ 8 e6 12 e6 ] ) ;

% ylim ([−100 0 ] ) ;

% end ;

%

f i g u r e ;

NFFT = cy c l e s ;

win = hanning (NFFT) ’ ;

f = fsamp/2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

i f isempty ( Y curr ) == 1

Y curr = 20∗ l og10 ( (2∗ abs ( f f t ( win .∗demod ,NFFT))/NFFT)/1 e−6);

p l o t ( f , Y curr ( 1 :NFFT/2+1) , ’ r ’ ) ;

e l s e

Y la s t = Y curr ;

Y curr = 20∗ l og10 ( (2∗ abs ( f f t ( win .∗demod ,NFFT))/NFFT)/1 e−6);

p l o t ( f , Y la s t ( 1 :NFFT/2+1) , ’ g ’ , f , Y curr ( 1 :NFFT/2+1) , ’ r ’ ) ;

end ;

xl im ( [ 0 320 e3 ] ) ;

yl im ([−20 2 0 0 ] ) ;

%f i g u r e ;

%p lo t ( s i g ) ;

% f i g u r e ;

% subplot ( 5 , 1 , 1 ) ;

% p lo t ( tsamp , demod , ’ b ’ ) ;
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% t i t l e ( ’ demod ’ ) ;

% subplot ( 5 , 1 , 2 ) ;

% p lo t ( tsamp , d i f f l s t , ’ r ’ ) ;

% t i t l e ( ’ d i f f l s t ’ ) ;

% subplot ( 5 , 1 , 3 ) ;

% p lo t ( tsamp , s ig sampled , ’ k ’ ) ;

% t i t l e ( ’ s i g o r i g ’ ) ;

% subplot ( 5 , 1 , 4 ) ;

% p lo t ( tsamp , [ 0 , d i f f (demod ) ] , ’ r ’ ) ;

% t i t l e ( ’ d i f f o f demod ’ ) ;

% subplot ( 5 , 1 , 5 ) ;

% p lo t ( tsamp , DIFM lst , ’ g ’ ) ;

% t i t l e ( ’ DIFM lst ’ ) ;

%p lo t ( tsamp , demod , ’ b ’ , tsamp , d i f f l s t , ’ r + ’ , tsamp , s ig sampled , ’ k ’ , . . .

% tsamp , [ 0 , d i f f (demod ) ] , ’ b ’ , tsamp , DIFM lst , ’ g ’ ) ;

f i g u r e ;

[ haxes , h l ine1 , h l i n e2 ] = plotyy ( tsamp , s ig sampled , tsamp , DIFM lst ) ;

s e t ( h l ine2 , ’ L ineSty le ’ , ’−− ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

axes ( haxes ( 1 ) ) ;

y l ab e l ( ’ Radians ’ ) ;

yl im ([− .5 . 5 ] ) ;

axes ( haxes ( 2 ) ) ;

y l ab e l ( ’ y\ out (n ) ’ ) ;

yl im ( [ −.4 − . 2 ] ) ;

l egend ( ’ y\ out (n ) ’ , ’ Input Waveform ’ ) ;

f i g u r e ;

subplot ( 2 , 1 , 1 ) ;

p l o t ( tsamp , s ig sampled , ’ r ’ , tsamp , demod no dre , ’ g∗ − ’) ;

y l ab e l ( ’ Amplitude ( Radians ) ’ , ’ FontSize ’ , 2 4 ) ;

l egend ( ’ Input Waveform ’ , ’DRE Disabled Output ’ )

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

subp lot ( 2 , 1 , 2 ) ;

p l o t ( tsamp , s ig sampled , ’ r ’ , tsamp , demod , ’ g∗ − ’) ;

y l ab e l ( ’ Amplitude ( Radians ) ’ , ’ FontSize ’ , 2 4 ) ;

s e t ( gca , ’ FontSize ’ , 1 8 ) ;
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x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 2 4 ) ;

l egend ( ’ Input Waveform ’ , ’DRE Enabled Output ’ )

cnr = 20∗ l og10 (Ac∗2/(An) )

e r r o r = 20∗ l og10 (max(demod)/max( s i g ) )

db ext = 20∗ l og10 ( f r s i g / fr demod )

max difm = max(DIFM lst )

min difm = min (DIFM lst )

mean difm = mean(DIFM lst )

d i f f d i fm = max(DIFM lst ) − min(DIFM lst )
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Appendix C DFT MATLAB Simulation Code
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Listing C.1: DFT MATLAB simulation code

%Use FIR ( odd ) f i l t e r or ( even ) s imple BOX FIR f i l t e r

f i l t e n = 0 ;

%Set time s e r i e s and sample ra t e parameters

N = 8 ;

M = 1 ;

c y c l e s = 64∗N; %fsamp samples

f c = 10 e6∗M; %10nsec

pw = 76∗M; %10nsec

de lay = 10∗M; %10nsec

samples = 50∗M+1;

%Set d i g i z i t e r parameters

d i g b i t s = 16 ;

peak dig = 2ˆ( d i g b i t s −1);

i q b i t s = 16 ;

peak iq = 2ˆ( i q b i t s −1);

f i r b i t s = 16 ;

p e a k f i r = 2ˆ( f i r b i t s −1);

%Set the d i g i t i z a t i o n sample ra t e

f s = 100 e6∗M;

t s = (0 : ( 1 / f s ) : ( 1 / f s )∗pw∗( c y c l e s ) ∗ 2 ) ;

t s = t s ( 1 : end−1);

%Time s e r i e s o f i nd i v i dua l acqu i red pu l s e s

t e x t = (0 : ( 1 / f s ) : ( 1 / f s )∗ ( samples −1)) ;

%Time s e r i e s o f demodulated pu l s e s

fsamp = 1/(pw∗2∗(1/ f s ) ) ;

tsamp = (0 : ( 1 / fsamp ) : ( 1 / fsamp )∗ ( c y c l e s ) ) ;

tsamp = tsamp ( 1 : end−1);

fr demod = fsamp∗ pi

%Window the input s i g n a l be ing demodulated

%to avoid i n i t i a l t r a n s i e n t s

data win = tukeywin ( s i z e ( ts , 2 ) , 1 ) ’ ;
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data win sampled = tukeywin ( s i z e ( tsamp , 2 ) , 1 ) ’ ;

%Window the i nd i v i dua l pu l s e s to s imulate

%the ramp and f a l l t imes o f the c a r r i e r

win = tukeywin (pw , . 1 ) ’ ;

%Create the time s e r i e s windows to sample the

%incoming s i g n a l

window = [ ] ;

f o r i = 0 : cyc l e s −1

window = [ window , win ] ;

window = [ window , z e ro s (pw, 1 ) ’ ] ;

end ;

%Window the acqu i red samples o f the pu l s e s

%to reduce e r r o r

%iq win = ones ( samples , 1 ) ’ ;

%iq win = tukeywin ( samples , 1 ) ’ ;

%iq win = blackman ( samples ) ’ ;

%iq win = f l a t t opw in ( samples ) ’ ;

%iq win = hanning ( samples ) ’ ;

i q win = nut ta l lw in ( samples ) ’ ;

i q win = f l o o r ( iq win .∗ p e a k f i r ) ;

box win = nut ta l lw in ( samples −1) ’ ;

box win = f l o o r ( box win .∗ p e a k f i r ) ;

%Create the low−pass f i l t e r s i f s imple BOX averag ing

%f i l t e r i s not used

%Enable remez or f irpm i f s i g n a l too lbox i s a v a i l a b l e

i f f i l t e n == 1

% n f i l t = samples −1;

% fnyq = f s /2 ;

% fch = 18 e6 ; %20MHz nu l l

% f c l = 2e6 ; %3MHz bandwidth max

% f = [0 ( f c l / fnyq ) ( f ch / fnyq ) 1 ] ;

% w = [1 1 0 0 ] ;

% b = remez ( n f i l t , f , w) ;

% b = f l o o r (b∗ p e a k f i r ) ;

a = 1 ;



159

f i r = load ( ’ f i r 5 1 p t .mat ’ , ’ b ’ ) ;

b = f i r . b ;

% f i g u r e ;

% f r e q z (b ) ;

end ;

f i r = load ( ’ f i r 5 1 p t .mat ’ , ’ b ’ ) ;

%Create the ambient no i s e shaping low−pass f i l t e r s

%Enable remez or f irpm i f s i g n a l too lbox i s a v a i l a b l e

n f i l t = 1000 ;

fnyq = f s /2 ;

f ch = 200 e3 ; %20MHz nu l l

f c l = 1e3 ; %3MHz bandwidth max

f = [0 ( f c l / fnyq ) ( f ch / fnyq ) 1 ] ;

w = [1 1 0 0 ] ;

%bn = remez ( n f i l t , f , w) ;

h = load ( ’ f i l t c o e f f 1 k 5 0 k 8 0 0 1 .mat ’ , ’ h ’ ) ;

bn = h . h ;

an = 1 ;

%f i g u r e ;

%f r e q z (bn ) ;

%Car r i e r amplitude f o r CNR t e s t i n g and

%au t o c o r r e l a t i o n c o r r e c t i o n

Ac = . 5 ;

%Create s i g n a l and no i s e waveforms

Asig = 160 ;

f s i g = 10 e3 ;

phi = 0 ;

f r s i g = 2∗ pi ∗Asig∗ f s i g

bw = Asig∗ f s i g

%S igna l no i s e

An sig = 25000 ;

s i g n o i s e = f i l t e r (bn , an , An sig ∗( rand ( s i z e ( t s ) ) − . 5 ) ) ;

s i g n o i s e = f i l t e r (bn , an , s i g n o i s e ) ;

s i g n o i s e = f i l t e r (bn , an , s i g n o i s e ) ;
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%Carr i e r no i s e

An = . 0 1 ;

fn = 10 e6+157e3 ;

phin = 0 ;

%no i s e = An∗ s i n (2∗ pi ∗ fn ∗ t s + phin ) ;

no i s e = An∗( rand ( s i z e ( t s ) ) − . 5 ) ;

%Create mult i tone no i s e components ( i f used )

An1 = 0 . 0001 ;

fn1 = 10 e6+157e3 ;

An2 = 0 . 0001 ;

fn2 = 10e6−157e3 ;

An3 = 0 . 0001 ;

fn3 = 157 e3 ;

%no i s e = An1∗ s i n (2∗ pi ∗ fn1 ∗ t s ) + An2∗ s i n (2∗ pi ∗ fn2 ∗ t s ) + An3∗ s i n (2∗ pi ∗ fn3 ∗ t s ) ;

%Create the pulsed c a r r i e r waveform

%used f o r t e s t i n g the c a r r i e r spectrum

pu l s e d c a r r i e r = s i n (2∗ pi ∗ f c ∗ t s ) . ∗window − . 5 ;

%Create the ” analog ” s i g n a l and only keep

%data at the pu l s e s

s i g = ( Asig∗ s i n (2∗ pi ∗ f s i g ∗ t s + phi ) + s i g n o i s e ) . ∗ data win ;

data = (Ac∗ s i n (2∗ pi ∗ f c ∗ t s + s i g ) ) . ∗window + no i s e ;

%Create a copy o f the incoming s i g n a l at the

%actua l demodulation ra t e f o r comparison t e s t i n g

%of the output

%s ig sampled = Asig∗ s i n (2∗ pi ∗ f s i g ∗tsamp ) . ∗ data win sampled ;

s i g sampled = [ ] ;

f o r i = 1 : s i z e ( tsamp , 2 )

s ig sampled = [ s ig sampled s i g (pw+(i −1)∗pw ∗ 2 ) ] ;

end

%D i g i t i z e the acqu i red pu l s e s

data = f l o o r ( data∗ peak dig ) ;

%Create the d i g i t a l I /Q components
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I = f l o o r ( cos (2∗ pi ∗ f c ∗ t s )∗ peak iq ) ;

Q = f l o o r ( s i n (2∗ pi ∗ f c ∗ t s )∗ peak iq ) ;

I da ta = I .∗ data ;

Q data = Q.∗ data ;

%I n i t i a l i z e loop parameters

acqu i r e = 0 ;

de l ay cn t = 0 ;

num samples = 0 ;

pha s e l a s t = 0 ;

phase cur = 0 ;

p h a s e d i f f = 0 ;

phase accum = 0 ;

phase accum no dre = 0 ;

pha s e c f = 0 ;

demod = [ ] ;

demod no dre = [ ] ;

I samp = [ ] ;

Q samp = [ ] ;

D samp = [ ] ;

d i f f l s t = [ ] ;

%Create Four i e r components

p l1 = f c − 19∗ fsamp /4 ;

p l2 = f c − 15∗ fsamp /4 ;

p l3 = f c − 11∗ fsamp /4 ;

p l4 = f c − 7∗ fsamp /4 ;

p l5 = f c − 3∗ fsamp /4 ;

p l6 = f c + 1∗ fsamp /4 ;

p l7 = f c + 5∗ fsamp /4 ;

p l8 = f c + 9∗ fsamp /4 ;

p l9 = f c + 13∗ fsamp /4 ;

p l10 = f c + 17∗ fsamp /4 ;

p l11 = f c + 21∗ fsamp /4 ;

n l1 = f c − 21∗ fsamp /4 ;

n l2 = f c − 17∗ fsamp /4 ;

n l3 = f c − 13∗ fsamp /4 ;

n l4 = f c − 9∗ fsamp /4 ;
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nl5 = f c − 5∗ fsamp /4 ;

n l6 = f c − 1∗ fsamp /4 ;

n l7 = f c + 3∗ fsamp /4 ;

n l8 = f c + 7∗ fsamp /4 ;

n l9 = f c + 11∗ fsamp /4 ;

n l10 = f c + 15∗ fsamp /4 ;

n l11 = f c + 19∗ fsamp /4 ;

DFT pc1 = [ ] ;

DFT nc1 = [ ] ;

DFT pc2 = [ ] ;

DFT nc2 = [ ] ;

DFT pc3 = [ ] ;

DFT nc3 = [ ] ;

DFT pc4 = [ ] ;

DFT nc4 = [ ] ;

DFT pc5 = [ ] ;

DFT nc5 = [ ] ;

DFT pc6 = [ ] ;

DFT nc6 = [ ] ;

DFT pc7 = [ ] ;

DFT nc7 = [ ] ;

DFT pc8 = [ ] ;

DFT nc8 = [ ] ;

DFT pc9 = [ ] ;

DFT nc9 = [ ] ;

DFT pc10 = [ ] ;

DFT nc10 = [ ] ;

DFT pc11 = [ ] ;

DFT nc11 = [ ] ;

%AVG must be 2 or more

navg = 2 ;

p1 buf = ze ro s ( navg , 1 ) ’ ;

n1 buf = ze ro s ( navg , 1 ) ’ ;

p2 buf = ze ro s ( navg , 1 ) ’ ;

n2 buf = ze ro s ( navg , 1 ) ’ ;

p3 buf = ze ro s ( navg , 1 ) ’ ;

n3 buf = ze ro s ( navg , 1 ) ’ ;



163

p4 buf = ze ro s ( navg , 1 ) ’ ;

n4 buf = ze ro s ( navg , 1 ) ’ ;

p5 buf = ze ro s ( navg , 1 ) ’ ;

n5 buf = ze ro s ( navg , 1 ) ’ ;

p6 buf = ze ro s ( navg , 1 ) ’ ;

n6 buf = ze ro s ( navg , 1 ) ’ ;

p7 buf = ze ro s ( navg , 1 ) ’ ;

n7 buf = ze ro s ( navg , 1 ) ’ ;

p8 buf = ze ro s ( navg , 1 ) ’ ;

n8 buf = ze ro s ( navg , 1 ) ’ ;

p9 buf = ze ro s ( navg , 1 ) ’ ;

n9 buf = ze ro s ( navg , 1 ) ’ ;

p10 buf = ze ro s ( navg , 1 ) ’ ;

n10 buf = ze ro s ( navg , 1 ) ’ ;

p11 buf = ze ro s ( navg , 1 ) ’ ;

n11 buf = ze ro s ( navg , 1 ) ’ ;

n7 buf (2 ) = 4.459 e9 ;

p5 buf (2 ) = 4.459 e9 ;

n6 buf (2 ) = 4 .67 e9 ;

p6 buf (2 ) = 4 .67 e9 ;

n5 buf (2 ) = 4.405 e9 ;

p7 buf (2 ) = 4.405 e9 ;

%Process over a l l d i g i t i z e d samples o f

%the incoming c a r r i e r s i g n a l

f o r i = 1 :pw∗ c y c l e s ∗2

%Only s e l e c t samples f o r demodulation with in

%the s p e c i f i e d window

i f ( de l ay cnt >= delay )&&( de l ay cnt <= delay+samples−1 )

acqu i r e = 1 ;

e l s e

acqu i r e = 0 ;

end ;

%The sample window s t a r t s on the r i s i n g edge o f
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%rec e i v ed op t i c a l pu l s e

i f ( window( i ) > . 5 )

de l ay cnt = de lay cn t + 1 ;

e l s e

de l ay cnt = 0 ;

end ;

%The number o f s p e c i f i e d d i g i t a l samples has been

%rece ived , begin demodulating the pu l s e

i f ( num samples == samples−1 ) && ( acqu i r e == 1 )

pha s e l a s t = phase cur ;

%Obtain I /Q components and the c a r r i e r s i g n a l f o r DR ext

I samp = [ I samp , I da ta ( i ) ] ;

Q samp = [Q samp , Q data ( i ) ] ;

D samp = [D samp , data ( i ) ] ;

%I f f i l t e r enable i s enabled , used an N ( odd ) po int

%FIR f i l t e r to p roce s s the I /Q data , o therwi s e use

%use and N ( even ) po int BOX FIR f i l t e r

i f f i l t e n == 1

i f i l t = f i l t e r (b , a , I samp ) ;

q f i l t = f i l t e r (b , a , Q samp ) ;

phase cur = atan2 ( i f i l t ( end ) , q f i l t ( end ) ) ;

e l s e

i sum = sum( I samp ( 1 : end−1).∗ box win ) ;

q sum = sum(Q samp ( 1 : end−1).∗ box win ) ;

phase cur = atan2 ( i sum , q sum ) ;

end ;

%Compute the phase change and unwrap the s i g n a l

p h a s e d i f f = phase cur − pha s e l a s t ;

i f ( p h a s e d i f f > pi )

p h a s e d i f f = ph a s e d i f f − 2∗ pi ;

e l s e i f ( p h a s e d i f f < −pi )

p h a s e d i f f = ph a s e d i f f + 2∗ pi ;

end ;
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d i f f l s t = [ d i f f l s t , p h a s e d i f f ] ;

p l s t = [ ] ;

n l s t = [ ] ;

%%Extension approach

f r c = cos (2∗ pi ∗ pl1 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl1 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p1 buf = [ p1 buf ( 2 : end ) , f r l ] ;

p1 avg = mean( p1 buf ) ;

DFT pc1 = [DFT pc1 , p1 avg ] ;

p l s t = [ p l s t , p1 avg ] ;

f r c = cos (2∗ pi ∗ nl1 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl1 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n1 buf = [ n1 buf ( 2 : end ) , f r l ] ;

n1 avg = mean( n1 buf ) ;

DFT nc1 = [DFT nc1 , n1 avg ] ;

n l s t = [ n l s t , n1 avg ] ;

f r c = cos (2∗ pi ∗ pl2 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl2 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p2 buf = [ p2 buf ( 2 : end ) , f r l ] ;

p2 avg = mean( p2 buf ) ;

DFT pc2 = [DFT pc2 , p2 avg ] ;

p l s t = [ p l s t , p2 avg ] ;

f r c = cos (2∗ pi ∗ nl2 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl2 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n2 buf = [ n2 buf ( 2 : end ) , f r l ] ;

n2 avg = mean( n2 buf ) ;

DFT nc2 = [DFT nc2 , n2 avg ] ;

n l s t = [ n l s t , n2 avg ] ;

f r c = cos (2∗ pi ∗ pl3 ∗ t e x t ) . ∗D samp .∗ i q win ;
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f r s = s i n (2∗ pi ∗ pl3 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p3 buf = [ p3 buf ( 2 : end ) , f r l ] ;

p3 avg = mean( p3 buf ) ;

DFT pc3 = [DFT pc3 , p3 avg ] ;

p l s t = [ p l s t , p3 avg ] ;

f r c = cos (2∗ pi ∗ nl3 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl3 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n3 buf = [ n3 buf ( 2 : end ) , f r l ] ;

n3 avg = mean( n3 buf ) ;

DFT nc3 = [DFT nc3 , n3 avg ] ;

n l s t = [ n l s t , n3 avg ] ;

f r c = cos (2∗ pi ∗ pl4 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl4 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p4 buf = [ p4 buf ( 2 : end ) , f r l ] ;

p4 avg = mean( p4 buf ) ;

DFT pc4 = [DFT pc4 , p4 avg ] ;

p l s t = [ p l s t , p4 avg ] ;

f r c = cos (2∗ pi ∗ nl4 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl4 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n4 buf = [ n4 buf ( 2 : end ) , f r l ] ;

n4 avg = mean( n4 buf ) ;

DFT nc4 = [DFT nc4 , n4 avg ] ;

n l s t = [ n l s t , n4 avg ] ;

f r c = cos (2∗ pi ∗ pl5 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl5 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p5 buf = [ p5 buf ( 2 : end ) , f r l ] ;

p5 avg = mean( p5 buf ) ;

DFT pc5 = [DFT pc5 , p5 avg ] ;

p l s t = [ p l s t , p5 avg ] ;
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f r c = cos (2∗ pi ∗ nl5 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl5 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n5 buf = [ n5 buf ( 2 : end ) , f r l ] ;

n5 avg = mean( n5 buf ) ;

DFT nc5 = [DFT nc5 , n5 avg ] ;

n l s t = [ n l s t , n5 avg ] ;

f r c = cos (2∗ pi ∗ pl6 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl6 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p6 buf = [ p6 buf ( 2 : end ) , f r l ] ;

p6 avg = mean( p6 buf ) ;

DFT pc6 = [DFT pc6 , p6 avg ] ;

p l s t = [ p l s t , p6 avg ] ;

f r c = cos (2∗ pi ∗ nl6 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl6 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n6 buf = [ n6 buf ( 2 : end ) , f r l ] ;

n6 avg = mean( n6 buf ) ;

DFT nc6 = [DFT nc6 , n6 avg ] ;

n l s t = [ n l s t , n6 avg ] ;

f r c = cos (2∗ pi ∗ pl7 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl7 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p7 buf = [ p7 buf ( 2 : end ) , f r l ] ;

p7 avg = mean( p7 buf ) ;

DFT pc7 = [DFT pc7 , p7 avg ] ;

p l s t = [ p l s t , p7 avg ] ;

f r c = cos (2∗ pi ∗ nl7 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl7 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n7 buf = [ n7 buf ( 2 : end ) , f r l ] ;

n7 avg = mean( n7 buf ) ;

DFT nc7 = [DFT nc7 , n7 avg ] ;

n l s t = [ n l s t , n7 avg ] ;
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f r c = cos (2∗ pi ∗ pl8 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl8 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p8 buf = [ p8 buf ( 2 : end ) , f r l ] ;

p8 avg = mean( p8 buf ) ;

DFT pc8 = [DFT pc8 , p8 avg ] ;

p l s t = [ p l s t , p8 avg ] ;

f r c = cos (2∗ pi ∗ nl8 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl8 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n8 buf = [ n8 buf ( 2 : end ) , f r l ] ;

n8 avg = mean( n8 buf ) ;

DFT nc8 = [DFT nc8 , n8 avg ] ;

n l s t = [ n l s t , n8 avg ] ;

f r c = cos (2∗ pi ∗ pl9 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ pl9 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p9 buf = [ p9 buf ( 2 : end ) , f r l ] ;

p9 avg = mean( p9 buf ) ;

DFT pc9 = [DFT pc9 , p9 avg ] ;

p l s t = [ p l s t , p9 avg ] ;

f r c = cos (2∗ pi ∗ nl9 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗ nl9 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n9 buf = [ n9 buf ( 2 : end ) , f r l ] ;

n9 avg = mean( n9 buf ) ;

DFT nc9 = [DFT nc9 , n9 avg ] ;

n l s t = [ n l s t , n9 avg ] ;

f r c = cos (2∗ pi ∗pl10 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗pl10 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p10 buf = [ p10 buf ( 2 : end ) , f r l ] ;

p10 avg = mean( p10 buf ) ;

DFT pc10 = [ DFT pc10 , p10 avg ] ;
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p l s t = [ p l s t , p10 avg ] ;

f r c = cos (2∗ pi ∗nl10 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗nl10 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n10 buf = [ n10 buf ( 2 : end ) , f r l ] ;

n10 avg = mean( n10 buf ) ;

DFT nc10 = [ DFT nc10 , n10 avg ] ;

n l s t = [ n l s t , n10 avg ] ;

f r c = cos (2∗ pi ∗pl11 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗pl11 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

p11 buf = [ p11 buf ( 2 : end ) , f r l ] ;

p11 avg = mean( p11 buf ) ;

DFT pc11 = [ DFT pc11 , p11 avg ] ;

p l s t = [ p l s t , p11 avg ] ;

f r c = cos (2∗ pi ∗nl11 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r s = s i n (2∗ pi ∗nl11 ∗ t e x t ) . ∗D samp .∗ i q win ;

f r l = sq r t (sum( f r s )ˆ2 + sum( f r c ) ˆ 2 ) ;

n11 buf = [ n11 buf ( 2 : end ) , f r l ] ;

n11 avg = mean( n11 buf ) ;

DFT nc11 = [ DFT nc11 , n11 avg ] ;

n l s t = [ n l s t , n11 avg ] ;

%Determine d i r e c t i o n o f r o t a t i on and s e l e c t

%peak DFT c o e f f from appropr ia t e l i s t

i f ( p h a s e d i f f > 0 )

[ max val , f r i n d e x ] = max( p l s t ) ;

e l s e

[ max val , f r i n d e x ] = max( n l s t ) ;

end

%Se l e c t c o r r e c t i o n f a c t o r

i f f r i n d e x == 11

phas e c f = 10∗ pi ;

e l s e i f f r i n d e x == 10

phas e c f = 8∗ pi ;
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e l s e i f f r i n d e x == 9

phas e c f = 6∗ pi ;

e l s e i f f r i n d e x == 8

phas e c f = 4∗ pi ;

e l s e i f f r i n d e x == 7

phas e c f = 2∗ pi ;

e l s e i f f r i n d e x == 6

phas e c f = 0∗ pi ;

e l s e i f f r i n d e x == 5

phas e c f = −2∗pi ;

e l s e i f f r i n d e x == 4

phas e c f = −4∗pi ;

e l s e i f f r i n d e x == 3

phas e c f = −6∗pi ;

e l s e i f f r i n d e x == 2

phas e c f = −8∗pi ;

e l s e

pha s e c f = −10∗pi ;

end ;

%Accumulate the phase us ing the DR extens i on

%co r r e c t i o n f a c t o r

phase accum = phase accum + pha s e d i f f + phas e c f ;

demod = [ demod , phase accum ] ;

phase accum no dre = phase accum no dre + pha s e d i f f ;

demod no dre = [ demod no dre , phase accum no dre ] ;

%Reset v a r i ab l e f o r next pu l s e

I samp = [ ] ;

Q samp = [ ] ;

D samp = [ ] ;

num samples = 0 ;

e l s e i f ( a cqu i r e == 1)

%Continue to acqu i r e data samples

num samples = num samples + 1 ;
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I samp = [ I samp , I da ta ( i ) ] ;

Q samp = [Q samp , Q data ( i ) ] ;

D samp = [D samp , data ( i ) ] ;

end ;

end ;

%subt rac t out dc o f f s e t

%demod = demod − (max(demod)+min (demod ) ) / 2 ;

%f i g u r e ;

%p lo t ( ts , window , ’ r ’ , ts , p u l s e d c a r r i e r , ’ g ’ ) ;

%f i g u r e ;

%p lo t ( tsamp , demod , ’ r ’ )

% i f 0

% f i g u r e ;

% NFFT=1024∗2ˆ10;

% f = f s /2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

% Y = 20∗ l og10 (2∗ abs ( f f t (window ,NFFT))/NFFT) ;

% p lo t ( f ,Y( 1 :NFFT/2+1)) ;

% xlim ( [ 0 12 e6 ] ) ;

% ylim ([−100 0 ] ) ;

% end ;

%

% i f 0

% f i g u r e ;

% NFFT=1024∗2ˆ10;

% f = f s /2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

% Y = 20∗ l og10 (2∗ abs ( f f t ( pu l s e d c a r r i e r ,NFFT))/NFFT) ;

% p lo t ( f ,Y( 1 :NFFT/2+1)) ;

% xlim ( [ 8 e6 12 e6 ] ) ;

% ylim ([−100 0 ] ) ;

% end ;

f i g u r e ;

NFFT = cy c l e s ;
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win = hanning (NFFT) ’ ;

f = fsamp/2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

i f isempty ( Y curr ) == 1

Y curr = 20∗ l og10 ( (2∗ abs ( f f t ( win .∗demod ,NFFT))/NFFT)/1 e−6);

p l o t ( f , Y curr ( 1 :NFFT/2+1) , ’ r ’ ) ;

e l s e

Y la s t = Y curr ;

Y curr = 20∗ l og10 ( (2∗ abs ( f f t ( win .∗demod ,NFFT))/NFFT)/1 e−6);

p l o t ( f , Y la s t ( 1 :NFFT/2+1) , ’ g ’ , f , Y curr ( 1 :NFFT/2+1) , ’ r ’ ) ;

end ;

xl im ( [ 0 320 e3 ] ) ;

yl im ([−20 2 0 0 ] ) ;

%f i g u r e ;

%p lo t ( s i g ) ;

% f i g u r e ;

% subplot ( 5 , 1 , 1 ) ;

% p lo t ( tsamp , demod , ’ b ’ ) ;

% t i t l e ( ’ demod ’ ) ;

% subplot ( 5 , 1 , 2 ) ;

% p lo t ( tsamp , d i f f l s t , ’ r ’ ) ;

% t i t l e ( ’ d i f f l s t ’ ) ;

% subplot ( 5 , 1 , 3 ) ;

% p lo t ( tsamp , s ig sampled , ’ k ’ ) ;

% t i t l e ( ’ s i g o r i g ’ ) ;

% subplot ( 5 , 1 , 4 ) ;

% p lo t ( tsamp , [ 0 , d i f f (demod ) ] , ’ r ’ ) ;

% t i t l e ( ’ d i f f o f demod ’ ) ;

% subplot ( 5 , 1 , 5 ) ;

% p lo t ( tsamp , DFT nc6 , ’ g ’ , tsamp , DFT pc6 , ’ r ’ ) ;

% t i t l e ( ’DFT pc6 ’ ) ;

%p lo t ( tsamp , demod , ’ b ’ , tsamp , d i f f l s t , ’ r + ’ , tsamp , s ig sampled , ’ k ’ , . . .

% tsamp , [ 0 , d i f f (demod ) ] , ’ b ’ , tsamp , DIFM lst , ’ g ’ ) ;

%f i g u r e ;

%[haxes , h l ine1 , h l i n e2 ] = plotyy ( tsamp , s ig sampled , tsamp , DFT nc6 ) ;

%[haxes , h l ine1 , h l i n e2 ] = plotyy ( tsamp , DFT pc6 , tsamp , DFT nc6 ) ;
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%se t ( h l ine2 , ’ L ineSty le ’ , ’−− ’ ) ;

%x l ab e l ( ’Time ( s ) ’ ) ;

%axes ( haxes ( 1 ) ) ;

%y l ab e l ( ’ Radians ’ ) ;

%axes ( haxes ( 2 ) ) ;

%y l ab e l ( ’ y out [ k ] ’ ) ;

%legend ( ’ Input Waveform ’ , ’ y out ’ ) ;

%o f f s e t = 3000 ;

%s c a l e = min (DFT nc7 )/1000 ;

%p lo t ( tsamp , s ig sampled , ’m’ , . . .

% tsamp , DFT pc6/ s c a l e − o f f s e t , ’ r ’ , . . .

% tsamp , DFT nc6/ s c a l e − o f f s e t , ’ g ’ , . . .

% tsamp , DFT pc5/ s c a l e − o f f s e t , ’b ’ , . . .

% tsamp , DFT nc7/ s c a l e − o f f s e t , ’ k ’ ) ;

% f i g u r e ;

% subplot ( 2 , 1 , 1 ) ;

% p lo t ( tsamp , s ig sampled ) ;

% y l ab e l ( ’ Input Waveform ( Radians ) ’ , ’ FontSize ’ , 2 4 ) ;

% xlim ( [ 2 e−4 4e−4 ] ) ;

% s e t ( gca , ’ FontSize ’ , 1 8 ) ;

% subplot ( 2 , 1 , 2 ) ;

% % % plo t ( tsamp , DFT pc6 , ’−ro ’ , tsamp , DFT nc6 , ’−g ∗ ’ , . . .

% % % tsamp , DFT pc5 , ’−bd ’ , tsamp , DFT nc7 , ’−kx ’ ) ;

% p lo t ( tsamp , DFT pc6 , ’−r ’ , tsamp , DFT nc6,’−−g ’ , . . .

% tsamp , DFT pc5 , ’−.b ’ , tsamp , DFT nc7 , ’ : k ’ ) ;

% y l ab e l ( ’DFT\ COEFF’ , ’ FontSize ’ , 2 4 ) ;

% s e t ( gca , ’ FontSize ’ , 1 8 ) ;

% x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 2 4 ) ;

% legend ( ’DFT\ P1 ’ , ’DFT\ N1 ’ , ’DFT\ P2 ’ , ’DFT\ N2 ’ ) ;

% xlim ( [ 2 e−4 4e−4 ] ) ;

f i g u r e ;

subplot ( 2 , 1 , 1 ) ;

p l o t ( tsamp , s ig sampled , ’ r ’ , tsamp , demod no dre , ’ g∗ − ’) ;

y l ab e l ( ’ Amplitude ( Radians ) ’ , ’ FontSize ’ , 2 4 ) ;

l egend ( ’ Input Waveform ’ , ’DRE Disabled Output ’ )

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

subp lot ( 2 , 1 , 2 ) ;



174

p lo t ( tsamp , s ig sampled , ’ r ’ , tsamp , demod , ’ g∗ − ’) ;

y l ab e l ( ’ Amplitude ( Radians ) ’ , ’ FontSize ’ , 2 4 ) ;

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 2 4 ) ;

l egend ( ’ Input Waveform ’ , ’DRE Enabled Output ’ )

cnr = 20∗ l og10 (Ac∗2/(An) )

e r r o r = 20∗ l og10 (max(demod)/max( s i g ) )

db ext = 20∗ l og10 ( f r s i g / fr demod )

max dft = max(DFT pc1)

min dft = min (DFT pc1)
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Appendix D PECM MATLAB Simulation Code
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Listing D.1: PECM MATLAB simulation code

%Use FIR ( odd ) f i l t e r or ( even ) s imple BOX FIR f i l t e r

f i l t e n = 0 ;

%Set time s e r i e s and sample ra t e parameters

N = 1 ;

M = 5 ;

c y c l e s = 64∗N; %fsamp samples

f c = 10 e6 ∗1 ; %10nsec

pw = 76∗M; %10nsec

de lay = 10∗M; %10nsec

i f f i l t e n == 0

samples = 50∗M;

e l s e

samples = 50∗M+1;

end ;

%Set d i g i z i t e r parameters

d i g b i t s = 16 ;

peak dig = 2ˆ( d i g b i t s −1);

i q b i t s = 16 ;

peak iq = 2ˆ( i q b i t s −1);

f i r b i t s = 16 ;

p e a k f i r = 2ˆ( f i r b i t s −1);

%Set the d i g i t i z a t i o n sample ra t e

f s = 100 e6∗M;

t s = (0 : ( 1 / f s ) : ( 1 / f s )∗pw∗( c y c l e s ) ∗ 2 ) ;

t s = t s ( 1 : end−1);

%Time s e r i e s o f i nd i v i dua l acqu i red pu l s e s

t e x t = (0 : ( 1 / f s ) : ( 1 / f s )∗ ( samples −1)) ;

%Time s e r i e s o f demodulated pu l s e s

fsamp = 1/(pw∗2∗(1/ f s ) ) ;

tsamp = (0 : ( 1 / fsamp ) : ( 1 / fsamp )∗ ( c y c l e s ) ) ;

tsamp = tsamp ( 1 : end−1);

fr demod = fsamp∗ pi
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%Window the input s i g n a l be ing demodulated

%to avoid i n i t i a l t r a n s i e n t s

data win = tukeywin ( s i z e ( ts , 2 ) , 1 ) ’ ;

data win sampled = tukeywin ( s i z e ( tsamp , 2 ) , 1 ) ’ ;

%Window the i nd i v i dua l pu l s e s to s imulate

%the ramp and f a l l t imes o f the c a r r i e r

win = tukeywin (pw , . 1 ) ’ ;

%Create the time s e r i e s windows to sample the

%incoming s i g n a l

window = [ ] ;

f o r i = 0 : cyc l e s −1

window = [ window , win ] ;

window = [ window , z e ro s (pw, 1 ) ’ ] ;

end ;

%Window the acqu i red samples o f the pu l s e s

%to reduce e r r o r

%iq win = tukeywin ( samples , 1 ) ’ ;

%iq win = blackman ( samples ) ’ ;

%iq win = f l a t t opw in ( samples ) ’ ;

%Nutta l l window

n = ( 1 : 1 : samples ) ;

N = samples − 1 ;

a0 = 0 .355768 ;

a1 = 0 .487396 ;

a2 = 0 .144232 ;

a3 = 0 .012604 ;

iq win = a0 − a1∗ cos (2∗ pi .∗n/N) + . . .

a2∗ cos (4∗ pi .∗n/N) − a3∗ cos (6∗ pi .∗n/N) ;

iq win = f l o o r ( iq win .∗ p e a k f i r ) ;

%Create the low−pass f i l t e r s i f s imple BOX averag ing

%f i l t e r i s not used

i f f i l t e n == 1
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n f i l t = samples −1;

fnyq = f s /2 ;

f ch = 18 e6 ; %20MHz nu l l

f c l = 2e6 ; %3MHz bandwidth max

f = [0 ( f c l / fnyq ) ( f ch / fnyq ) 1 ] ;

w = [1 1 0 0 ] ;

b = remez ( n f i l t , f , w) ;

b = f l o o r (b∗ p e a k f i r ) ;

a = 1 ;

%f i g u r e ;

%f r e q z (b ) ;

end ;

%Car r i e r amplitude f o r CNR t e s t i n g and

%au t o c o r r e l a t i o n c o r r e c t i o n

Ac = . 5 ;

%Create s i g n a l and no i s e waveforms

Asig = 32 ;

f s i g = 100 e3 ;

phi = 0 ;

f r s i g = 2∗ pi ∗Asig∗ f s i g

bw = Asig∗ f s i g

An = . 0 0 1 ;

fn = 10 e6+157e3 ;

phin = 0 ;

%no i s e = An∗ s i n (2∗ pi ∗ fn ∗ t s + phin ) ;

no i s e = An∗( rand ( s i z e ( t s ) ) − . 5 ) ;

%Create mult i tone no i s e components ( i f used )

An1 = 0 . 0001 ;

fn1 = 10 e6+157e3 ;

An2 = 0 . 0002 ;

fn2 = 10e6−157e3 ;

An3 = 0 . 0 0 1 ;

fn3 = 157 e3 ;

%no i s e = An1∗ s i n (2∗ pi ∗ fn1 ∗ t s ) + An2∗ s i n (2∗ pi ∗ fn2 ∗ t s ) + An3∗ s i n (2∗ pi ∗ fn3 ∗ t s ) ;



179

%Create the pulsed c a r r i e r waveform

%used f o r t e s t i n g the c a r r i e r spectrum

pu l s e d c a r r i e r = s i n (2∗ pi ∗ f c ∗ t s ) . ∗window − . 5 ;

%Create a copy o f the incoming s i g n a l at the

%actua l demodulation ra t e f o r comparison t e s t i n g

%of the output

s ig sampled = Asig∗ s i n (2∗ pi ∗ f s i g ∗tsamp ) . ∗ data win sampled ;

%Create the ” analog ” s i g n a l and only keep

%data at the pu l s e s

s i g = Asig∗ s i n (2∗ pi ∗ f s i g ∗ t s + phi ) . ∗ data win ;

data = (Ac∗ s i n (2∗ pi ∗ f c ∗ t s + s i g ) ) . ∗window + no i s e ;

%D i g i t i z e the acqu i red pu l s e s

data = f l o o r ( data∗ peak dig ) ;

%Create the d i g i t a l I /Q components

I = f l o o r ( cos (2∗ pi ∗ f c ∗ t s )∗ peak iq ) ;

Q = f l o o r ( s i n (2∗ pi ∗ f c ∗ t s )∗ peak iq ) ;

I da ta = I .∗ data ;

Q data = Q.∗ data ;

%I n i t i a l i z e loop parameters

acqu i r e = 0 ;

de l ay cn t = 0 ;

num samples = 0 ;

pha s e l a s t = 0 ;

phase cur = 0 ;

p h a s e d i f f = 0 ;

phase accum = 0 ;

pha s e c f = 0 ;

demod = [ ] ;

I samp = [ ] ;

Q samp = [ ] ;

D samp = [ ] ;

d i f f l s t = [ ] ;

%I n i t i a l DR extens i on v a r i a b l e s
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%AVG must be 2 or more

navg = 2 ;

PECM lst = [ ] ;

PECM cur = 0 ;

%Process over a l l d i g i t i z e d samples o f

%the incoming c a r r i e r s i g n a l

f o r i = 1 :pw∗ c y c l e s ∗2

%Only s e l e c t samples f o r demodulation with in

%the s p e c i f i e d window

i f ( de l ay cnt >= delay )&&( de l ay cnt <= delay+samples−1 )

acqu i r e = 1 ;

e l s e

acqu i r e = 0 ;

end ;

%The sample window s t a r t s on the r i s i n g edge o f

%re c e i v ed op t i c a l pu l s e

i f ( window( i ) > . 5 )

de l ay cnt = de lay cn t + 1 ;

e l s e

de l ay cnt = 0 ;

end ;

%The number o f s p e c i f i e d d i g i t a l samples has been

%rece ived , begin demodulating the pu l s e

i f ( num samples == samples−1 ) && ( acqu i r e == 1 )

pha s e l a s t = phase cur ;

%Obtain I /Q components and the c a r r i e r s i g n a l f o r DR ext

I samp = [ I samp , I da ta ( i ) ] ;

Q samp = [Q samp , Q data ( i ) ] ;

D samp = [D samp , data ( i ) ] ;

%I f f i l t e r enable i s enabled , used an N ( odd ) po int

%FIR f i l t e r to p roce s s the I /Q data , o therwi s e use

%use and N ( even ) po int BOX FIR f i l t e r
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i f f i l t e n == 1

i f i l t = f i l t e r (b , a , I samp ) ;

q f i l t = f i l t e r (b , a , Q samp ) ;

phase cur = atan2 ( i f i l t ( end ) , q f i l t ( end ) ) ;

e l s e

i sum = sum( I samp .∗ i q win ) ;

q sum = sum(Q samp .∗ i q win ) ;

phase cur = atan2 ( i sum , q sum ) ;

end ;

%Compute the phase change and unwrap the s i g n a l

p h a s e d i f f = phase cur − pha s e l a s t ;

i f ( p h a s e d i f f > pi )

p h a s e d i f f = ph a s e d i f f − 2∗ pi ;

e l s e i f ( p h a s e d i f f < −pi )

p h a s e d i f f = ph a s e d i f f + 2∗ pi ;

end ;

d i f f l s t = [ d i f f l s t , p h a s e d i f f ] ;

pha s e c f = 0 ;

PECM last = PECM cur ;

f o r j = 1 : samples

i f ( D samp( j ) < 0 ) && ( D samp( j +1) > 0 )

PECM cur = D samp( j ) + D samp( j+( f s / f c ) / 2 ) ;

PECM cur = PECM cur/max(D samp ) ;

break ;

end ;

end ;

PECM avg = (PECM last+PECM cur ) / 2 ;

PECM lst = [ PECM lst PECM avg ] ;

%Accumulate the phase us ing the DR extens i on

%co r r e c t i o n f a c t o r

phase accum = phase accum + pha s e d i f f + phas e c f ;

demod = [ demod , phase accum ] ;
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%Reset v a r i ab l e f o r next pu l s e

I samp = [ ] ;

Q samp = [ ] ;

D samp = [ ] ;

num samples = 0 ;

e l s e i f ( a cqu i r e == 1)

%Continue to acqu i r e data samples

num samples = num samples + 1 ;

I samp = [ I samp , I da ta ( i ) ] ;

Q samp = [Q samp , Q data ( i ) ] ;

D samp = [D samp , data ( i ) ] ;

end ;

end ;

%subt rac t out dc o f f s e t

%demod = demod − (max(demod)+min (demod ) ) / 2 ;

%f i g u r e ;

%p lo t ( ts , window , ’ r ’ , ts , p u l s e d c a r r i e r , ’ g ’ ) ;

%f i g u r e ;

%p lo t ( tsamp , demod , ’ r ’ )

i f 0

f i g u r e ;

NFFT=1024∗2ˆ10;

f = f s /2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

Y = 20∗ l og10 (2∗ abs ( f f t (window ,NFFT))/NFFT) ;

p l o t ( f ,Y( 1 :NFFT/2+1)) ;

xl im ( [ 0 12 e6 ] ) ;

yl im ([−100 0 ] ) ;

end ;

i f 0
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f i g u r e ;

NFFT=1024∗2ˆ10;

f = f s /2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

Y = 20∗ l og10 (2∗ abs ( f f t ( pu l s e d c a r r i e r ,NFFT))/NFFT) ;

p l o t ( f ,Y( 1 :NFFT/2+1)) ;

xl im ( [ 8 e6 12 e6 ] ) ;

yl im ([−100 0 ] ) ;

end ;

% f i g u r e ;

% NFFT = cy c l e s ;

% win = hanning (NFFT) ’ ;

% f = fsamp/2∗ l i n s p a c e (0 , 1 ,NFFT/2+1);

% i f isempty ( Y curr ) == 1

% Y curr = 20∗ l og10 ( (2∗ abs ( f f t ( win .∗demod ,NFFT))/NFFT)/1 e−6);

% p lo t ( f , Y curr ( 1 :NFFT/2+1) , ’ r ’ ) ;

% e l s e

% Y la s t = Y curr ;

% Y curr = 20∗ l og10 ( (2∗ abs ( f f t ( win .∗demod ,NFFT))/NFFT)/1 e−6);

% p lo t ( f , Y la s t ( 1 :NFFT/2+1) , ’ g ’ , f , Y curr ( 1 :NFFT/2+1) , ’ r ’ ) ;

% end ;

% xlim ( [ 0 320 e3 ] ) ;

% ylim ([−80 6 0 ] ) ;

%f i g u r e ;

%p lo t ( s i g ) ;

% f i g u r e ;

% subplot ( 5 , 1 , 1 ) ;

% p lo t ( tsamp , demod , ’ b ’ ) ;

% t i t l e ( ’ demod ’ ) ;

% subplot ( 5 , 1 , 2 ) ;

% p lo t ( tsamp , d i f f l s t , ’ r ’ ) ;

% t i t l e ( ’ d i f f l s t ’ ) ;

% subplot ( 5 , 1 , 3 ) ;

% p lo t ( tsamp , s ig sampled , ’ k ’ ) ;

% t i t l e ( ’ s i g o r i g ’ ) ;

% subplot ( 5 , 1 , 4 ) ;

% p lo t ( tsamp , [ 0 , d i f f (demod ) ] , ’ r ’ ) ;
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% t i t l e ( ’ d i f f o f demod ’ ) ;

% subplot ( 5 , 1 , 5 ) ;

% p lo t ( tsamp , PECM lst , ’ g ’ ) ;

% t i t l e ( ’ PECM lst ’ ) ;

%p lo t ( tsamp , demod , ’ b ’ , tsamp , d i f f l s t , ’ r + ’ , tsamp , s ig sampled , ’ k ’ , . . .

% tsamp , [ 0 , d i f f (demod ) ] , ’ b ’ , tsamp , DIFM lst , ’ g ’ ) ;

% f i g u r e ;

% [ haxes , h l ine1 , h l i n e2 ] = plotyy ( tsamp , s ig sampled , tsamp , PECM lst ) ;

% s e t ( h l ine2 , ’ L ineSty le ’ , ’−− ’ ) ;

% x l ab e l ( ’Time ( s ) ’ ) ;

% axes ( haxes ( 1 ) ) ;

% y l ab e l ( ’ Radians ’ ) ;

% axes ( haxes ( 2 ) ) ;

% y l ab e l ( ’ y out [ k ] ’ ) ;

% legend ( ’ Input Waveform ’ , ’ y out ’ ) ;

f i g u r e ;

subplot ( 2 , 1 , 1 ) ;

p l o t ( tsamp , s ig sampled ) ;

y l ab e l ( ’ Input Waveform ( Radians ) ’ , ’ FontSize ’ , 2 4 ) ;

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

subp lot ( 2 , 1 , 2 ) ;

p l o t ( tsamp , PECM lst ) ;

y l ab e l ( ’ y\ out (n ) ’ , ’ FontSize ’ , 2 4 ) ;

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 2 4 ) ;

cnr = 20∗ l og10 (Ac∗2/(An) )

e r r o r = 20∗ l og10 (max(demod)/max( s i g ) )

db ext = 20∗ l og10 ( f r s i g / fr demod )

max difm = max(PECM lst )

min difm = min (PECM lst )


