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Abstract

Sorghum is an important crop mainly grown for food, animal feed, bioenergy, and fiber requirements.
The production of a higher yield is compromised by its stalk lodging. Stalk lodging, the permanent
displacement and mechanical failure of stems from their natural position prior to harvesting, poses a
serious agronomic challenge leading to substantial yield losses annually. Despite its enormous
economic impact on commercial crops, stalk lodging mechanisms are not clearly understood.
Previous studies used methods such as bending tests, histochemical methods, rind penetrometer, and
crushing strength measurements to understand stem biomechanical behavior. However, these
approaches are inadequate to fully understand lodging, as the structural composition of the stalks was
not considered. Approaches involving compositional analysis together with biomechanical behavior
will improve our understanding of lodging mechanisms. This study evaluated stem biomechanical,
compositional, and microstructural traits to assess their relationship with mechanical strength and/or
loading. The whole biomass composition of Della (D) and its mutant REDforGREEN (RG) sweet
sorghum stalks grown in 2018 (D1, RG1) and 2019 (D2, RG2) were examined employing different
analytical instruments. Noticeable changes in the composition of fatty acids, structural carbohydrates
(glucan, and xylan), and lignin content and structure were found, attributable to growing season and
mutation factors. The results revealed that D2 had the highest lignin content, while RG1 had the
lowest lignin content. Particularly in RG1, Klason lignin reduction by 16-44 % at the internode was
detected. Lignin from the sorghum stalks were enriched in guaiacyl units and syringyl/guaiacy! ratio
was increased in RG1 and RG2 respectively by 96% and more than two-fold at IN. In addition, the
chemical composition, biomechanical properties of rinds, and the microfibril angle (MFA) of the S2
cell wall were determined. The flexural modulus (FM) and flexural strength (FS) showed a significant
reduction for RG. Particularly, a reduction of FS by (16-37%) and FM (22-41%) were detected for
RG1. Changes in the stalk rind biomechanical properties were found positively correlated with total
lignin and glucan/cellulose contents, and inversely proportional to MFA. However, the contents of
xylan/hemicellulose in the rinds were not significant for the strength. The result suggested that the
lodging resistance of sorghum stalk would be improved by increasing the amount of cellulose and
lignin. The results can also provide biotechnological targets in breeding programs aimed at improving

lodging resistance in sorghum.
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Chapter 1: Introduction

1.1 Background

Lodging is the permanent displacement and mechanical failure of crops from their upright position
before harvesting [1]. There are two types of lodging; namely stalk lodging and root lodging [2]. Root
lodging happens when the mechanical failure occurs at the root-soil interface while stalk lodging
occurs when the structural stability of the plant is lost by the structural or material failure of the stalk
[3]. Lodging severely reduces grain production, and quality of the major cereal crops; subsequently
leading to substantial economic losses worldwide. Annual crop yield losses because of lodging is
estimated from 5 to 43% [4], [5]. Lodging is caused by external factors (wind, rain, topography, soil,
etc.), field management practices, plant characters (morphology, anatomical traits, and cell wall
composition), and by the interactions of these factors [6], [7]. Lodging-inducing external factors
might be uncontrollable as they could be related to geographical and meteorological conditions [3],
while plant characters (anatomical, morphological, and compositional) are genetic controllable traits
of the plant associated with material properties. Lodging occurs when externally applied loads surpass
the maximum load that the stalks can withstand. The mechanical failure of crop is a multiscale
phenomenon that starts at the cellular level, and propagates ultimately to the whole plant [8]. The
structural rigidity and flexibility of stalks and the roots are vital for providing frameworks to support
the aboveground components and retain their vertical position, otherwise, the crops may fail by
buckling and/or breakage of the lower internodes or roots [9]. Differences in the cell wall
microstructure and cellular structure can give rise to a wide range of plant mechanical properties [10].
It is thus important to understand compositional, molecular, and microstructural attributes affecting

the mechanical response of plant tissues, thereby the stalk lodging.

1.2 Stalk lodging

Late stalk lodging refers to breakage/buckling of plant stem prior to harvest at late plant stages [11].
Distinct failure patterns and mechanisms are typically obscured in different crops [7]. Stalk lodging is
caused by the breaking of internodes and occurs when the stem bending moment exceeds the strength
of the stem base [2]. For crops to be lodging resistant, their stalks need to be not only
biomechanically rigid enough to support their own weight but also be resilient enough to resist
external forces [7]. Biomechanical rigidity-flexibility trade-offs are dependent on the cell wall
composition and the structural properties of its building polymers. The structural integrity and
biomechanical properties of plants arise from the physico-chemical features of the cell wall building

polymers and the complex interactions among those components.



The growth of plant cells requires the synthesis and deposition of structural multilayers

surrounding the cell. These protective extracellular matrixes are called cell walls [12]. The
biomechanical properties of the cell wall are of special interest in plant biomechanics, and changes in
cell wall building materials are influencing the stalk biomechanical properties and ultimately its
failure [13]. The cell walls are predominantly composed of structural polymers (cellulose,
hemicellulose, and lignin), which are woven into an organized and highly cross-linked network
allowing them providing mechanical support to the plant [14]. Cell walls constitute the majority of
plant biomass and significantly vary in their composition, architecture and microstructure depending
on the species of origin, tissue type, and stage of development [15]. They play a crucial role in
determining the mechanical strength of plants. The composition, integrity, and architecture of the
macromolecular matrix of cell walls and distinctions in their physico-chemical, mechanical,
rheological, and structural features are largely governed by the organization and relative proportion of

cell wall main polymeric components as well as their interactions [16].

1.3 Chemistry of stalk lodging

The stalk is one of the most important parts of crops performing multiple architectural and
physiological functions that encompasses complex structural, compositional heterogeneity and
anisotropy, viscoelasticity, and rheology [17]. Stalk strength is an important agronomic trait in
determining the resistance against lodging, which is a well-known factor in affecting harvesting
efficiency, yield, and quality. In line with cell wall composition, the biomechanical strength of stalks
arises from (1) metabolic factors such as lignin, cellulose, and hemicelluloses contents, (2) structural
and supramolecular factors such as cellulose crystallinity index (CI), degree of polymerization (DP),
microfibril angle (MFA), and lignin structure and syringyl/guaiacyl (S/G) composition, and (3)
component interactions such as lignin-carbohydrates complexes. Stalks endowed with
biomechanically stiff character can prevent crops from breaking. Thus, knowing the role of cell wall
compositions and structural features on stalk lodging might lead to comprehensive understanding

about the phenomena.

Stalks should be strong enough to maintain the crop’s upright position as well as flexible to bend
without breaking to withstand strong winds and other loads [18]. These range of properties are
conferred by three main molecular components — cellulose, hemicelluloses and lignin which are
arranged by an exquisite hierarchical organization in the plant cell walls from the nanoscale to the
macroscopic scale [19]. Cellulose constitutes the main structural component of plant fibers and is
formed by long linear polymeric chains of glucose units linked by B-(1—4) glycosidic linkages. This

linear conformation of the cellulose chains enables their arrangement in semicrystalline microfibrils



during biosynthesis. Lignin, on the other hand, is a complex three-dimensional amorphous,
heteroaromatic and branched biopolymer composed of monolignols mainly coniferyl, sinapyl and p-
coumaryl alcohols, which are respectively polymerized to guaiacyl (G), syringyl (S) and
hydroxypheny! (H) units through dehydrogenative polymerization reactions [20]. Hemicelluloses are
similar in some ways to cellulose linked by B-(1—4) glycosidic linkages consisting of arabinose,
mannose, galactose, glucose, and xylose. Thus, cell wall materials are conceptualized as a fiber
reinforced composite structure, where cellulose fibrils act as stiff fibers, while hemicellulose and
lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction
(microfibril angle, MFA) has been found to be the key factor controlling the mechanical properties
[21]. It is thus important to evaluate the influence of molecular scale arrangement and composition on
macroscale biomechanical properties of the stalk. These include lignin content and its monomer

composition (S/G ratio, H/G/S/), glucan content, MFA of cellulose, and hemicellulose/xylan content.

Sorghum stems have sclerenchyma tissue (rinds with many sub-epidermal cell layers) as well as
parenchyma tissue (pith, consisting of vascular bundles and soft tissues) [22]. Although pith
parenchyma cells play a vital role in stabilizing the stem and reducing the risk of local buckling and
collapse, up to 80% of the biomechanical strength of a stalk comes from the rind [13], [23]. Thus, the
mechanical strength of stalks primarily depends on the cell wall of the rinds. The rinds are dense and
fibrous tissue having higher mechanical strength. The rind provides the principal structure supporting
plants against tension and bending loads. Studies based on dissection of stalk strength into its
constituent features showed that the structural composition of the rind, not the pith or total girth,
appears to be the most important stalk strength determining component [24]. Therefore, it is
necessary to evaluate the biomechanical and viscoelastic nature of sorghum rinds to reveal
macromolecular and lodging variation of stems. Cell wall layers are considered as a nanofiber-
reinforced composite material consisting of helically wound cellulose microfibrils embedded in a
matrix of amorphous cellulose, hemicelluloses, and lignin [25]. Dynamic mechanical analysis (DMA)
can be used to examine composite properties and the response of individual cell wall components in
situ and enlightens the individual cell wall polymer contributions as well as their interactions. For
example, DMA has been applied to investigate the viscoelastic and mechanical properties of barley
stems [26].

Despite the significant body of literature on stalk lodging [3], [6], [7]. a detailed compositional
investigation of sorghum stalks has not been reported. This research involves evaluating the cell wall
chemistry of the sorghum stalk, investigating the biomechanical and viscoelastic behavior of the

stalk’s main structural component (rind), developing strength — composition correlations, and



identifying key structural elements of cell walls with a high impact on strength of sorghum stalks.
Cellulose, lignin, and hemicelluloses are essential constituents of plant cell walls, but their individual
roles on the biomechanical strength of sorghum remain not fully understood. Even though the
microfibril angle of the main secondary cell wall (SCW) S2 layer has been highly associated with the
mechanical properties of wood [27], it remains uninvestigated in crop stalks. Thus, this research aims
to investigate the cell wall chemistry of the sorghum stalks, microfibril angle and correlate to the
biomechanical property of rinds, which is the main structural component of the stalk, contributing
about 80% of the strength [28].

1.4 Objectives

Stalk biomechanical properties determine the structural stability of crops. To understand physical
failure mechanisms of sorghum stalks at macroscale, evaluation of cell wall chemistry and correlating
with their corresponding biomechanical properties is selected. Identifying the key contributing
parameters for structural integrity and biomechanical stiffness of the stalks, besides to creating
comprehensive insight to the phenomena of lodging, are crucial for the development of robust
cultivars with higher lodging resistance capability. The objectives of this research are compositional
analysis of sorghum stalks to gain a better understanding of the relationships between cell wall

components and stalk lodging. The specific objectives include:

I.  Statistical analysis of fatty acid-based chemometrics for predicting compositional and
metabolic variations in sorghum varieties
Il.  Evaluation of compositional and cell wall structural analysis of whole sorghum stalks of

different lodging-behaviors using ranges of analytical tools

I1l.  Investigation of cell wall compositions, rheological and biomechanical strength based on the
main structural components of stalks and evaluating composition-mechanical property
performance correlation

IV.  Evaluating the molecular, supramolecular, and microstructural attributes of cell walls

influencing strength

Chapter 1 provides a general background of stalk lodging, chemistry of lodging, and the objectives of
the research. Chapter 2 reviews the current body of literature and analysis of the effect of cell wall
composition on the lodging resistance of different cereal crops. It also presents the effect of chemistry
of cell wall polymers on the mechanical strength of different cereal stalks. The chapters thereafter are
entirely based on experiments and findings of sorghum stalks grown in 2018 and 2019. Chapter 3
discusses the application of fatty acid compositions as fingerprints to assess the compositional and

metabolic variations associated with the mutation and growing season. Fatty acid-based



chemometrics was conducted using different statistical analyses. Chapter 4 covers the comprehensive
chemical compositional analysis and evaluation of molecular structural attributes pertaining to the
main polymers of the cell walls in whole stalks. Chapter 5 discusses the biomechanical strength,
rheological properties, and composition-biomechanical property performance relation to identify key
cell wall polymers influencing the strength of the stalk rind. Chapter 6 outlines microstructural
properties and nanoindentation results to explore the effect of cell wall organization on nano-
mechanical properties. Chapter 7 summarizes the conclusions and potential further work beyond this

dissertation. Chapters 2 through 5 were written as separate journal manuscripts.
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