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Abstract 

Species-specific nonlinear logistic growth models were developed for four cereal 

aphid species, Diuraphis noxia, Metopolophium dirhodum, Rhopalosiphum padi, and Sitobion 

avenae, to model the aphid accumulation process during the wheat growing season. Count 

data for these species were collected over 17 years via suction traps at 12 wheat fields 

throughout Idaho.  The model was parameterized to provide inference on three main 

parameters, the maximum accumulated aphid abundance, the onset of aphid accumulation, 

and the rate of aphid accumulation. Suction trap locations were aggregated into 5 

environments based on climate data.  Species-specific full models were then fitted to the data, 

incorporating an autoregressive structure for the maximum parameter and a dummy variable 

for the 5 environments. The resulting models were validated both externally and internally. 

Statistical models similar to those developed in this thesis can be used to better understand the 

accumulation process of cereal aphid species in Idaho. 
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Modeling the Occurrence of Four Cereal Crop Aphid Species in Idaho  

 

Chapter 1 

Introduction 

Idaho is well-known for its agriculture, in particular for its potato production.  Idaho is 

also one of the biggest producers of cereal crops, in particular wheat, in which it is ranked 5
th
 

in the U.S.A. for production (Idaho Wheat Commission, 2014).  Wheat production for Idaho 

averages approximately 100 million bushels with a total value of over $500 million, providing 

over 8,500 jobs (Idaho Wheat Commission, 2014).  Because wheat is such an important 

agricultural product in Idaho and the Pacific Northwest, the management of wheat crops is of 

great concern.   

The state of Idaho is unique geographically.  Large mountain ranges throughout the 

state define regions of Idaho that differ in terrain and climate.  Idaho’s cities include 

Lewiston (located at 227 meters) with a warm climate, and Tetonia at a high in elevation 

(1843 meters) with a cool climate.   Because of this geographic and climatic diversity, Idaho 

wheat producers use different methodologies and cultural practices for growing wheat, 

specific to a particular region of Idaho.  In southern Idaho, wheat is primarily grown using 

irrigation systems, whereas in northern Idaho, dry farming is practiced. The geographic 

variability of the state not only necessitates different growing techniques, but also allows 

farmers to grow different varieties of wheat.  As of 2008, there were five classes of wheat 

grown in Idaho: Hard Red Spring, Soft White, Hard Red Winter, Durum, and Hard White 

(Bechinski, 1998).  The largest wheat class in Idaho in 2008 was Soft White.   



2 

Among the challenges for wheat production are insect pests, weeds and diseases.  

Some of the common pest insects include aphids, cereal leaf beetles (Oulema melanopus), 

thrips (Thysanoptera), and wireworms (Elateridae) (Bechinski, 1998).  Aphids, one of the 

most harmful pests of wheat, are the focus of this study.  Aphids can damage crops both 

directly through feeding, as well as indirectly through the transmission of deadly viruses such 

as Barley yellow dwarf virus (Araya et al., 1986). Several of the most common aphid pest 

species of wheat, found nearly worldwide include: the bird cherry-oat aphid (Rhopalosiphum 

padi (Linnaeus)), the corn leaf aphid (Rhopalosiphum Maidis (Fitch)), the English grain aphid 

(Sitobion avenae (Fabricius)), the greenbug (Schizaphis graminum (Rondani)), the rose grain 

aphid (Metopolophium dirhodum (Walker)), and the Russian wheat aphid (Diuraphis noxia 

(Kurdjumov)) (Araya et al., 1986).  

Producers employ several preventative strategies for these problem species.  

Essentially, all Idaho wheat producers plant weed-free (certified) seed on more than half of 

their commercial wheat acreage (Bechinski, 1998) and most producers also tend to plant pest-

resistant varieties.  In addition, some producers alter their fall planting times to avoid peek 

aphid populations, and most spray pesticides to prevent establishment and spread of aphids in 

their crops (Bechinski, 1998).  According to a survey conducted in 1998, about 80 percent of 

wheat growers use field scouting and thresholds to determine the need for pesticide 

applications, 60 percent claim their fields are monitored weekly during growing seasons, and 

only about 14 percent use forecasts from the aphid suction trap network (Bechinski, 1998).  A 

better understanding of the populations of wheat pest species and how they fluctuate both 

within and across years could greatly advantage wheat producers of Idaho.    



3 

In an effort to monitor aphid population fluctuations and movement of invasive aphid 

species, a study was conducted in the Pacific Northwest (Halbert et al. 1990).  The wingless 

forms of pest aphids are of greatest concern as they can reach high abundances and produce 

the greatest damage to crops.  Nonetheless, these wingless forms result from colonization by 

winged individuals that migrate from their overwintering hosts to grasses and cereals during 

the early spring.  For this reason, the study used a network of suction traps consisting of 28 

sites across the Pacific Northwest (see the subsequent chapters for additional details) to 

document aphid occurrence and accumulation.  By using the data from this aphid suction trap 

network, a better understanding of the patterns and dynamics of occurrence for several pest 

aphid species may be developed.  The four focal species for this study were the bird cherry-

oat aphid (R. padi), the rose grain aphid (M. dirhodum), the English grain aphid (S. avenae), 

and the Russian wheat aphid (D. noxia) (see the subsequent chapters for additional details 

regarding these species).  This thesis research utilizes data from 12 of these suction trap 

locations, all within the state of Idaho: Aberdeen, Arbon Valley, Burley, Kimberly, Lewiston, 

Moscow, Parma, Picabo, Ririe, Rockland, Soda Springs, and Tetonia.  Aphid count data from 

these sites were obtained for the years 1986 through 2003, with the exception of 2002. 

The data collected at these 12 Idaho locations allow for statistical modeling of the 

weekly abundance and annual accumulation of trapped aphids.  Within each site, models can 

be developed to describe the intra-year variability of the accumulation of each species.  Each 

site has weekly aphid abundance data for a minimum of 13 years and a maximum of 17 years.  

Since these are replications in time (time series) the data permit temporal evaluations.  

Weather and environmental data for each site can also be used for classifying aphid sampling 

sites into similar regions (environments).   The use of statistical modeling techniques 



4 

incorporating aphid abundance and environmental correlates can help describe the patterns of 

aphid accumulation in time and space as a function of environmental drivers.  

The objectives of the study are as follows: 1. Modeling the occurrence and underlying  

autocorrelation structure associated with aphid species abundances across time using the data 

collected from suction traps throughout Idaho; 2. Developing site-specific cumulative 

population growth models for individual species of aphids, determination of potential inter-

annual variability, incorporating possible environmental correlates; and 3. Comparing 

individual or multiple species abundances over time and space as well as potential regional 

differences across Idaho. 
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Literature Review 

The development of the suction trap in the early 1950’s proved to be an effective 

tool for sampling migrating insects (Allison and Pike, 1988).  During development of the 

suction-trap network, it was shown through experiments that insect density tends to decrease 

with height but that at greater heights aphids form proportionately more of the aerial insect 

fauna (Bell et al., 2015).  The European suction trap network has been monitoring aphid 

populations since the 1960’s using 12.2m suction traps (Bell et al., 2015).  Historically, 

suction trap data have been used for a variety of applications, most often to determine the 

diversity of insects in a given location, and to provide the first records of new species 

entering a particular area (Teulon and Scott, 2006).   

Following the development of the European network, suction trap networks have 

been erected in western North America (Pacific Northwest suction trap network), north-

central USA, and New Zealand (Teulon and Scott, 2006).  The PNW suction trap network in 

particular, was patterned after the European system to detect and track the establishment of 

species new to the area and to provide a basis for alerting crop growers when flights of 

aphid pests occur (Halbert et al., 1990).  A  study conducted by Halbert et al. in 1990, used 

the suction trap data of Idaho to develop an understanding of invasive aphid species 

populations.  According to Halbert et al. (1990), D. noxia was first found in Idaho at a 

suction trap in Parma in June of 1987. In the following season the traps in Idaho collected 

over 27,000 D. noxia throughout the state.  Although aphid count data from the PNW 

suction trap network have become available to many producers, primitive methods such as 

field scouting are still predominant (Bechinski 1998).   
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Several statistical techniques have been used to analyze density dependence in aphid 

populations.  These techniques include Fisher’s G-test, autoregressive models, and 

detrended correspondence analysis (DCA) (Davis et al. 2014; Bommarco et al. 2007; Quinn 

et al. 1991).  Previous studies have also statistically analyzed spatial and environmental 

variables effecting cereal aphid populations.  Some popular techniques for spatial and 

environmental variable analysis are DCA, hierarchal clustering, and linear mixed models 

(Quinn et al. 1991; Davis et al. 2014; Harrington et al. 2007). 

Spatial and temporal inferences from the suction trap data of Idaho have been 

previously developed by Quinn and Halbert in 1991, who concluded that there is a specific 

association between species and sites, based only on data from a single year, 1988.  Davis et 

al. (2014) studied the density dependence structures of three pest aphid species in the Pacific 

Northwest based on suction trap data.  They suggested that some populations are regulated 

primarily by exogenous processes whereas others are regulated primarily by endogenous 

processes.  It is also suggested that different species respond differently to climate change.  

Rhopalosiphum padi, in particular, had shown to be insensitive to climate change relative to 

other pest aphids of the Pacific Northwest (Davis et al. 2014). 

Similar work was conducted in Europe by Harrington et al. (2007).  Forty years of 

standardized, daily data on the abundance of flying aphids was brought together from 

countries throughout Europe for analysis.  Linear mixed models were used to model the first 

record of aphid flight within a year as a function of environmental and spatial predictor 

variables (Harrington et al. 2007).  Harrington suggested that the predictive power of these 

models could be improved by creating site-specific models vs. the large pan-European model 
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that they developed.  Harrington et al. suggested that models for single sites would be 

expected to account for more variation in the date of first flight than the pan-European model 

because there is much greater variation in life-cycle type and host plants that will be seen on 

the pan-European compared with the local scale.  

Both Harrington et al. (2007) and Quinn et al. (1991) suggest that data from 

individual sites may be more useful for modeling aphid occurrence rather than larger models 

which aggregate data from multiple suction traps.  In this thesis, the entire aphid 

accumulation process was modeled by using aphid counts within years for a given site.  In 

contrast to Harrington et al. (2007), nonlinear logistic regression was used to model the 

aphid accumulation process as in relation to environmental correlates (such as temperature).  

In this thesis, the logistic growth model was parameterized to assess relative aphid 

abundance as a function of growing degree-days.  Shafii and Price (2001) have used the 

logistic function to determine the optimum and base (cardinal) temperatures in germination 

for common crupina (Crupina vulgaris).  Barney et al. (2001) also used the logistic function 

to evaluate the effects of drying and cold storage on germination of black hackberry seeds. 

Other examples of how the logistic function may be used include: estimation of dose-

response functions in agricultural applications (Price, et al. 2012), and estimation of 

Escherichia coli growth at various temperatures (Fujikawa et al. 2004).   

Individual site and species-specific nonlinear growth models were developed for this 

study to better describe the variation of the aphid accumulation process.   To analyze the 

spatial and temporal structure, the same nonlinear model was slightly modified.  Although 

Harrington et al. (2007) and Davis et al. (2014) built large scale models using data 
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aggregated from multiple suction trap sites; we first looked at sites individually, and then 

aggregated them into similar regions for further analyses. Sampling sites were grouped into 

regions using a clustering routine based on the climate data from each site.  The same type 

of nonlinear growth model was applied to the groups of sites to determine if sites with 

similar climates follow similar aphid accumulation processes, as indicated by Quinn et al. 

(1991).  To account for the temporal variation of the aphid accumulation process, the 

nonlinear function was re-parameterized with an autoregressive structure with lag 1 (year) to 

account for potential temporal dependence.  By starting the modeling process with 

individual site- and year- specific models and subsequent aggregation of the same to include 

all sites and years, the entire aphid accumulation process was described. 
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Chapter 2 

Material and Methods  

Source and Description of Data 

 The data used for this study consisted of two types: abiotic and biotic.  The biotic data 

pertain to cereal aphid pests. In Idaho some are anholocyclic, meaning they feed only on 

grassy hosts year around, while others are holocyclic or host-alternating species.  Host-

alternating aphids typically overwinter on woody plants (the so-called primary host) and feed 

on grains and grasses in the summer (secondary host).  Four cereal pest aphids that have been 

of economic concern (Pike et al., 1990) were selected for this study: Diuraphis noxia, 

Metopolophium dirhodum, Rhopalosiphum padi, and Sitobion avenae.  Of these four species, 

R. padi and M. dirhodum are host-alternating species, while S. avenae and D. noxia live 

primarily on grains and grasses.  Rhopalosiphum padi host alternates between chokecherry 

(Prunus virginiana) bushes in the winter and a variety of grain crops and grasses in the 

summer.  Metopolophium. dirhodum alternates between rose bushes (Rosa sp.) in the winter 

and small grain crops and grasses in the summer.  Upon emergence in the spring, the 

populations produce winged (alate) generations which then migrate to summer host plants of 

grains and grasses (Halbert et al. 1988). Host-alternating aphid species typically overwinter as 

eggs on their woody hosts. Year around, S. avenae and D. noxia colonize various small 

grains, annual and perennial wild grasses (Halbert et al., 1988).  Sitobion avenae also 

occasionally utilizes corn as a host (REF).  

In 1986, a network of traps was established in the PNW consisting of 27 sites throughout 

the states of Idaho and Oregon. The data for this study were from a subset of this trap 

network. Each sampling location consisted of one suction trap of 8 meters in total height.  The 

traps used a fan to draw air down the 8 meter, 30 cm in diameter tube through a screen funnel 



10 

where the insects were collected in a jar of ethylene glycol (Allison & Pike, 1988).  The 

suction traps extended into the air above local insect populations to target migrating insect 

populations.  Each of the suction traps was placed in a cereal grain-dominated field, primarily 

wheat. The PNW trap network was operated each year from May to November from 1986 

through 2003 with the exception of 2002. During the periods of operation, each trap was 

serviced weekly.   

The subset of traps used for this study was selected for completeness of the sampling 

record and to focus on the dynamics of aphids in the state of Idaho (see Appendix A for the 

table of original data).  Of the 21 sites in Idaho, data from 12 sites were retained, each of 

which had continuous and consecutive collections of aphid data for a minimum of 13 years 

and a maximum of 17 years.  The minimum record of 13 years of data was to support a robust 

time series analysis.  Among the 12 Idaho sites, Lewiston had the minimum of 13 years of 

data (from 1988 to 2001, excluding 1999).  Aberdeen, Rockland, Parma, Arbon Valley, and 

Kimberly each had data for 17 years, and Moscow, Burley, and Tetonia each had 16 years of 

data from the time period 1986 to 2001.  Picabo had 15 years of data recorded from 1988 to 

2003 and data from Soda Springs included15 years,from 1986 to 2001, excluding 1995.  Ririe 

had 14 years of data collected from 1986 to 2001, excluding years 1990 and 1995.  Figure 1 

shows a map of the final suction trap locations selected for subsequent analyses.   
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Figure 1. Map of the suction trap locations. 1: Aberdeen 2: Arbon Valley 3: Burley 4: Kimberly 5: Lewiston 6: 

Moscow 7: Parma 8: Picabo 9: Ririe 10: Rockland 11: Soda Springs 12: Tetonia 

The suction traps were operated throughout the cropping season of spring wheat and 

winter wheat varieties (May to November).  Approximately weekly during this period, 

samples were collected from the traps and mailed to the University of Idaho’s Southwest 

Idaho Research Extension Center in Parma, to be sorted, and identified to species when 

possible. Table 1 below shows the number of times each site was sampled during each year.  

Appendix B contains tables depicting the prevalence of each species per site and year.  
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Table 1. Table of final selected data: Each cell represents the number of times a site was sampled per year. 

Empty cells indicate that no samples were taken. 

 

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 9 16 16 14 16 19 14 21 23 16 14 12 17 14 16 17 14 

Arbon Valley 7 16 15 16 15 18 11 20 20 15 13 7 17 14 16 16 12 

Burley 11 16 5 16 18 22 13 20 21 16 13 13 17 14 16 17 

 

Kimberly 12 16 16 11 13 15 12 21 22 15 14 13 13 13 16 13 11 

Lewiston 

  

13 11 15 20 9 19 20 15 13 13 17 

 

13 15 

 

Moscow 14 18 17 16 22 22 14 21 22 13 11 11 13 22 15 12 

 

Parma 14 18 17 16 22 22 13 19 21 16 14 13 16 14 16 16 11 

Picabo 

  

14 11 22 22 13 20 22 16 13 13 13 9 12 17 13 

Ririe 3 14 16 10 

 

18 12 20 20 

 

13 10 17 12 15 14 

 

Rockland 14 16 16 16 17 21 13 21 20 16 12 13 17 14 16 17 13 

Soda Springs 11 10 9 14 15 14 7 14 14 
 

13 13 17 14 16 15 
 

Tetonia 14 14 13 16 20 22 14 20 22 16 14 9 17 14 17 17 
 

Low  High 

 

 The abiotic data consisted of climatic variables measured daily from 1986 to 2003 for 

each trap location.  Directly measured climatic data were not available for some of the suction 

trap locations, so a gridded surface meteorological data model, developed by Abatzoglou 

(2011) was used to supplement the directly measured climatic data.  These observed and 

modeled meteorological data contain daily measurements of: maximum temperature, 

minimum temperature, precipitation, wind speed, and wind direction.  Calculations such as 

growing degree days were calculated using these data.  All the data used in this study were 

acquired through the Regional Approaches to Climate Change (REACCH) for Pacific 

Northwest Agriculture project, a USDA-funded Coordinated Agricultural Project 

(https://www.reacchpna.org/)    

 

 

 

https://www.reacchpna.org/
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Statistical Analysis 

 Data Management  

 In order to model the accumulation of aphid abundance through time, some data 

management was necessary.  Within each aphid species, the raw aphid counts for each year at 

each sampling site were accumulated as follows:            
      where      are the raw 

aphid counts at sample event time  , for year   and site  , and       are the corresponding 

cumulative counts of aphids up to the     sampling event.  The abiotic data were managed to 

develop a standardized growing degree-day scale for the intra-annual variability in the aphid 

accumulation process.  Growing degree days measure the daily accumulation of average 

temperature relative to a base temperature of the subject of interest.  In this case, both the host 

(wheat) and the organism (aphids) have a similar base temperature, considered here to be 4°C 

(Slafer & Rawson, 1995; Honek & Martinkova, 2004). 

Cumulative growing degree days were calculated as follows: 

          
                                   

        
        

 
      (1) 

where      represents the cumulative growing degree day of the     sampling event at site   in 

year  ,           and          represent the daily high and low temperatures, respectively for 

the     day of the year, and   being the day of the year corresponding to the     sample event. 

The value 4 represents the base temperature (C°).  Growing degree days were calculated at 

each site beginning with January 1       for each day the average temperature was above 

the base temperature. 
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 Nonlinear Model 

  A nonlinear logistic model was chosen to model the process of aphid abundance 

accumulation within a year.   A logistic model form is parsimonious (has reasonable number 

of parameters) while having relevant biological or ecological interpretations for the 

parameters.  The logistic model presented below, takes on an increasing sigmoidal “S” shaped 

curve.  

 

Figure 2. Example of logistic curve used to model the data in this study. The units for 

the x axis would be time in this study, and cumulative aphid abundance would be on 
the y-axis. 

 Initially, models were developed separately for each site-year-species combination as 

follows: 

     
  

   

   
              

                 (2) 
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Where        represents the estimated cumulative aphid abundance as defined above, for a 

given species, at a particular growing degree day (    ) as defined above, given parameters  

   ,    , and     within a year,  , and site,  .  The parameter     represents the theoretical 

maximum value of the aphid accumulation, and controls the upper asymptote of the “S” 

shaped curve. The parameter     represents the value of cumulative growing degree days at 

which the rate of aphid accumulation is greatest, and is visually represented by the inflection 

point in the “S” shaped curve.  Interpretation of     is particularly important in dose-response 

studies as it represents the median lethal dose (Price et al., 2012). In our model,     can also 

be interpreted as the value of cumulative growing degree days at which half of the 

accumulation of aphids has occurred.  The parameter     represents a rate related parameter 

for accumulation of aphid abundance.   

 Both least squares (Procedure NLIN) and maximum likelihood (Procedure 

NLMIXED) in SAS ver. 9.3 were used to estimate and assess the fit of Eq (2) to each data set. 

Procedure NLIN was used to fit the data using an iterative Gauss-Newton nonlinear least 

squares estimation routine, under the assumptions of uncorrelated, zero mean, homoskedastic, 

and normally distributed errors.  While least squares estimation provided an initial assessment 

of the adequacy of Eq (2), a more data appropriate approach was employed using Procedure 

NLMIXED to fit Eq (2) under the process of maximum likelihood estimation.  Procedure 

NLMIXED estimated the parameters of Eq (2) by maximizing the likelihood function with a 

dual quasi-Newton algorithm (SAS Ver. 9.3 documentation).  A general form of the 

likelihood is given as follows: 

          
       

     
      

        (3) 
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Eq (3) states that the likelihood of the data given a vector of parameters, is proportional to the 

product of the density function evaluated for each cumulative aphid count, where     is a 

vector of unknown parameters,     
  is the observed     cumulative aphid count for a given 

site and year, and      is the total number of sampling events. Estimation proceeds by 

identifying the parameter values that maximize the likelihood assuming the mean of the 

distribution is the nonlinear function given by Eq (2). Several likelihood forms were 

evaluated, including: normal, negative binomial, and Poisson forms.  

 The model fit was first assessed by determining if the iterative estimation methods 

presented above converged successfully.  The estimated model was also inspected visually by 

overlaying the predicted model on the observed data points.  The ideal structure of this plot is 

to have the predicted model centered on the data and follow the pattern of the data well.  In 

conjunction with the observed versus predicted plots, plots of the residuals were also assessed 

to determine if the assumptions of uncorrelated, normally distributed, zero mean, and constant 

variance of residuals were met.  Furthermore, the significance and adequacy of the parameter 

estimates were assessed using asymptotic 95% confidence intervals and inter-parameter 

correlations, respectively. 

Cluster Analysis. In order to develop regional aphid accumulation models, a grouping of 

sampling sites into similar environments was carried out.  Cluster analysis is a common 

multivariate technique used to find natural groupings in data where the observations within 

each cluster are similar, while the clusters are dissimilar to each other (Rencher and 

Christensen, 2012).  We used clustering to group observations (aphid sampling sites) 

conditionally based on a set of covariates (abiotic climate data).  The covariates used in the 
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cluster analysis were minimum temperature, maximum temperature, average temperature, 

precipitation, elevation, latitude, wind speed, and wind direction.  The SAS Procedure 

CLUSTER was used to conduct the cluster analysis by means of an agglomerative 

hierarchical clustering procedure.  In this procedure, each site was initially considered as its 

own cluster, and then each pair of clusters closest to each other was merged repeatedly until 

one cluster was left.  Both the mean and median clustering algorithms were used and each 

yielded the same results.  For simplicity only the formula for the average method is displayed 

as follows: 

    
 

    
      

      
              ;                            

 
               (4) 

Where     is the distance between clusters    and   ,    and     are the number of 

observations in clusters    and    respectively, and            is the Euclidean distance 

between the two observed vectors     and     of the two clusters.   

The results from this hierarchical clustering procedure are typically displayed in a tree 

diagram or dendrogram, which shows all the steps in the hierarchical procedure and the 

corresponding distances (Rencher and Christensen, 2012).  A generic dendrogram is displayed 

below. 
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Figure 3. Example of dendrogram resulting from a cluster analysis.  The values on the 

vertical axis represent the distance between clusters, and the values on the horizontal 

axis represent the subjects to be clustered. 

 

These techniques of clustering have been applied to data in many fields in including medicine, 

criminology (Hartigan, 1975), geology, geography, economics, and market research.   

 Regional Nonlinear Model.  

The nonlinear model mentioned previously was refitted to data clustered into 

environments.  Prior to utilizing these clustered data, where each cluster covered multiple 

sites and years, it was necessary to standardize the data to a common scale.    Scaling was 

achieved by dividing each cumulative aphid count of a given site (      ) by the maximum 

cumulative aphid count observed for that site, assessed across all available years.  Hence, all 

data values over all sites and years were rescaled to proportional values between 0.0 and 1.0.  

Scaling the data this way was helpful in minimizing both the temporal variability present 

across the multiple years of each site, as well as site-to-site variability within a year.  Model 
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estimation was then carried out on data pooled across sites within each environmental region 

(previously identified through cluster analysis) using a maximum likelihood algorithm as 

described above (Procedure NLMIXED). Three potential likelihood forms were assessed for 

the scaled data: the beta, binary, and normal likelihoods.   

 Analysis of Autocorrelation.  

 In regression analysis, it is particularly important to determine if the data contain an 

autocorrelation structure.  When observations are measured for the same subject over time it 

is unreasonable to assume that the observations are independent.  Time periods that are closer 

to each other are more likely to be similar than time periods that are farther apart (Fox, 2008). 

If an unaccounted for correlation structure exists in a regression analysis, the parameter 

estimates obtained will not be statistically efficient and their associated estimated standard 

errors will be biased.  An autoregressive model can help mitigate these conditions. A general 

form of the autoregressive model with lag n (AR(n)) may be given as follows: 

  
                 ;                                  

           (5) 

 Eq (5) represents a simple linear regression model where   
  is the     response,    is the 

intercept,    is the regression coefficient,    is the     ordered data observation, and    is the 

autoregressive error term.  The second part of Eq (5) represents the autoregressive function of 

the error term of the simple linear model; where   is the autoregressive coefficient,      is 

the error of the previous observation, and    is the independent and normally distributed 

random error term with zero mean, and constant variance, given    points in time.  AR(n) 

models assume that  observations closer in time are more correlated than observations farther 

apart in time.  Equation (5) also satisfies the condition       , and therefore, the 
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autoregressive coefficient approaches zero for observations of increasing distance from one 

another in time.  

Analysis of autocorrelation has been used in many areas of research such as 

marketing, economics, ecology and criminology.  Autocorrelation correction in regression 

analysis was pioneered previously by Cochrane and Orcutt (1949). One example of analysis 

of autocorrelation is presented using data from Fox and Hartnagal (1979) in which Canadian 

women’s crime rate was analyzed over time. 

Analyses to assess autocorrelation were carried out within the environmental groups 

resulting from the cluster analysis.  In particular, the previously obtained estimates of 

parameter    , which represents the maximum aphid count within a given year and site, was 

modeled using Procedure AUTOREG in SAS Ver. 9.3.  Conditional heteroskedasticity at lag 

1, lag 2, and lag 3 were assessed for each environment group across all years of available 

data.  

 Nonlinear Regression Analysis with Autocorrelation 

To further adapt the model presented in Eq (2) and build a more comprehensive 

model, the temporal variation over years was incorporated into the nonlinear logistic growth 

model.   The distribution of the response (relative cumulative aphid abundance) was 

considered to be normal for this model.  Previously, equation 2 was assessed using a Poisson 

density function to model the raw aphid counts for each year.  The relative, cumulative 

abundance data, however, is scaled on a fine increment between 0.0 and 1.0, and it is 

reasonable to assume normality of the data within each sample time point.  The model below 
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was also assessed under the assumptions of the beta and binary distributions, but they yielded 

poor results and, hence, are not presented here.  

Eq (2) was adapted such that the     parameter accounted for an autocorrelation 

structure of lag 1.  That is, the relative maximum aphid count for a given year and site is a 

function of the relative maximum aphid count of the previous year.  The modified model in 

Eq (2) then becomes: 

    
  

   

   
            

                                   (6) 

Where     is given as  

         
                                (7) 

In Eq (6),     
  is the relative cumulative aphid abundance for the     region (         ), 

the     year, and the     sampling event, the term      represents the growing degree day for 

the     region,     year,     sampling event, and     is now the relative maximum aphid 

count for a given year.       is an auto-correlated function, based on Eq (7), of the relative 

cumulative maximum aphid count of the previous year,        , an intercept term,      
 , and 

an autoregressive coefficient,      .       
 is the mean of the maximum relative cumulative 

aphid abundances for the region across all years.  The       term represents the degree that 

the maximum aphid count changes for a given year based on the previous year’s maximum 

aphid count for the region (i.e.    from Eq (5)).  The     term is a random error associated 

with the     parameter and is assumed to be a normally distributed random effect with zero 
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mean and constant variance.  This model was fitted to each environment across all sites and 

years of data within those environments.    

 Dummy Variable Regression Analysis 

 Dummy variable regression is a technique used to make inference on data that are both 

qualitative and quantitative (Fox, 2008).  In this case, it was of interest to make inference on 

aphid prevalence while incorporating both spatial and temporal variation.  The temporal 

variation was considered quantitative, while the spatial variation (environmental groups) was 

treated as a qualitative factor.   Dummy variables were then assigned according to the 

environment for which the aphid data were recorded.  By creating a dummy variable for 

environment, a full dummy variable regression model that incorporated all the data across all 

sites and years was specified.  A simplified example of the dummy variable regression model 

is presented as follows: 

      
 
       

 
         

 
                         (7) 

In the expression above,    represents the estimated response for the     region.  The term     

represents the dummy variable for the regression (0 or 1), and the terms   
    represent the 

estimated reduced model for the     region.  When the dummy variable    is equal to 1, the 

rest of the    terms in the regression are set to zero.  This means that when modeling the 

effect of    
   ,    = 1, indicating the effect for region 1is present while the rest of the 

remaining regional effects are absent. 

  Likelihood ratio tests can then be carried out to determine if there is a substantial 

improvement in the likelihood from a reduced model form relative to the full model 
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specification.   Through this construct, a full-model dummy variable regression allowed for 

statistical inferences and comparisons of the parameters across the environments.    For 

example, the full model allows comparison of the parameter estimate for the lag of one 

environment being equivalent to the corresponding estimate of a second environment.  

 Validation.  

Validation was conducted to assess the predictive capabilities of the constructed 

models.  The model was validated externally using independent data as well as internally 

using bootstrapping of the residuals.   

Internal Validation 

The regression models were validated internally using a bootstrap simulation of the 

residuals of each initial fit.  The bootstrap method is a simple computational method used to 

generate samples from an existing sample.  The bootstrap method proceeds by sampling with 

replacement such that every observation in the initial sample has equal probability of being 

selected, thus it is possible to select a single observation multiple times (Efron & Tibshirani, 

1986). This resampling procedure is designed to parallel the process by which the sample 

observations were drawn from the underlying population (Fox, 2008). 

The bootstrap technique was used to generate new data sets for each 

region/environment and species combination to assess the fit of each model.  The process 

proceeds by first fitting the region/environment model to the data which was scaled and 

accumulated as discussed previously.  The residuals from these fits were then scaled back to 

their actual count values by multiplying them by the observed maximum for each site across 
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all years of data at each respective site.  The count values were then transformed back into un-

accumulated counts such that the resulting values take the original data form.   

Once the residuals were in original data form, they were then sampled with 

replacement using PROCEDURE SurveySelect (SAS Ver. 9.3), generating a new sample of 

the same size.  These residual values were then randomly aligned and added to the predicted 

values generated from the initial fit of the respective region/environmental model.  Negative 

simulated counts resulting from this step were set to zero.  The new bootstrap simulated data 

were then re-accumulated and scaled as was previously done with the original data.  The 

regional model (Eq(6), Eq(7)) was then fitted to the bootstrap data, and the resulting residuals 

were stored.  This process was repeated until        bootstrap samples were achieved.  

These residuals were then examined to assess the model fitting process.   

 External Validation 

 External validation is used to determine how effective a model is at making 

predictions based on data that were not used to build the model.  Before modeling, numerous 

aphid sampling sites were left out of the original analysis because of insufficient data for 

some years.  Of the sites that were omitted from modeling, five having the most years of data 

were selected for external validation of the nonlinear environment/region level model.    

Linear Discriminant Analysis 

 Linear discriminant analysis, a technique commonly used in multivariate statistics to 

differentiate between observations, was used to classify newly obtained aphid sampling sites 

into the environments that had been previously determined through cluster analysis. Given a 



25 

classification into an environmental region, these new sites would allow for external 

validation of the estimated nonlinear aphid abundance model.   

   The purpose of a linear discriminant analysis is to develop a function of variables that 

most effectively separates the observations into the predefined groups.  The linear 

discriminant analysis takes the form: 

        
 

     
 
 

        
    

               
 
 
            

                                       (8) 

Where    is the likelihood that a subject with a vector of observations, q, is classified into 

group  , p is the number of variables considered, and    is the pooled covariance of the 

variables measured at the new group.  The term   
 
 
    is the squared Mahalanobis distance of 

the vector   to group  .  Once the likelihood of membership in each group is calculated for a 

subject, that subject is then assigned to the group with which it has the greatest likelihood.  

The classification process is assessed by determining an error rate for the classifications; this 

is done by comparing the number of misclassified subjects to the total number of 

classifications.   

 Following discriminant analysis and classification of new validation sites into the 

previously defined environmental groups, predictions of relative aphid abundance were made.  

As was done in the model building process, plots of the predicted model overlaid on the 

observed data points were used for visual assessment of the predictive capability of the model.  

In addition,  plotting the validation residuals allowed for assessment of the assumptions of 

uncorrelated, normally distributed, zero mean and constant variance residuals.  This validation 

provided an assessment of the predictive accuracy of the regression model.   
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Chapter 3 

Results and Discussion 

Nonlinear Model 

 The nonlinear model presented in equation (2) was fitted to the cumulative aphid 

abundances for each site-species-year combination.  As discussed previously, the model was 

first estimated using least squares in order to assess overall model adequacy, which was 

subsequently followed with a maximum likelihood estimation, where distributional forms 

such as the Normal, Poisson, and Negative Binomial likelihood forms could be  assessed and 

evaluated.   While the Negative Binomial likelihood provided an over-dispersed, discrete 

likelihood form that appropriately matched the count nature of the data, its implementation 

proved difficult in the estimation process due to the limited replications within sampling 

events.  The Poisson likelihood, on the other hand, also matched the discrete count nature of 

the aphid data, but had no estimation problems. Because the data consisted of discrete values, 

the Normal likelihood was deemed less appropriate.  An example of the nonlinear model fit 

using the Poisson likelihood (assuming a logarithmic link function) for the site Parma and 

aphid species R. padi in the year 1999 is given in Table 2 and  Figure 4.   

Table 2. Example of parameter estimates with approximate standard errors, significance, and 

asymptotic 95% confidence intervals for model fit  (Parma data for R. padi in 1999). 

Parameter Estimates for R. padi in Parma in 1999 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

m 270.38 7.7073 14 35.08 <.0001 0.05 253.85 286.91 

  0.009247 0.000633 14 14.61 <.0001 0.05 0.007890 0.01060 

L 1585.51 16.0805 14 98.60 <.0001 0.05 1551.02 1620.00 

 

All parameter estimates in Table 2 are significantly different from zero. The estimated 

maxim cumulative aphid, m, count for 1999 is approximately 270 aphids. The growing degree 
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day, L to reach 50% of this maximum is estimated to be 1585 growing degree units.  

Correlations of the parameter estimates are given in Table 3. 

Table 3.  Correlation matrix of the parameter estimates obtained from model fit to Parma data 

for R. padi in 1999. 

Correlation Matrix of Parameter Estimates 

Parameter m   L 

m 1.0000 -0.3755 0.5761 

  -0.3755 1.0000 -0.6552 

L 0.5761 -0.6552 1.0000 

 

A commonly used acceptable range for inter-parameter correlation is <0.8 or >-0.8, 

but correlation is often of little concern when <0.99 or <-0.99 (Bates and Watts, 1988).  All 

the inter-parameter correlations given in Table 3 are well within the smaller bounds of -0.8 

and 0.8, indicating the three parameters are sufficiently un-correlated, and that there are no 

parameter redundancies in equation (2). 



28 

Figure 4. Example observed versus predicted plot (fit plot) of nonlinear model to data from Parma for R. padi in 

1999. 

The fitted curve in Figure 4 follows the observed data pattern well and the associated 

residual pattern in Figure 5 demonstrates a fairly random pattern with no extreme values.    
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Figure 5. Example of residual plot from fit of nonlinear model to Parma data for R. padi in 1999. 

 The parameter estimates and diagnostics for the remaining 3 species for 1999 in Parma 

are available in Appendix B, accompanied by additional tables summarizing the site-year-

species model fits.  Because Parma is one of the westernmost sites, parameter estimates and 

diagnostics for Burley, 1988 (a Southeastern site) are also available in Appendix B.  

Additional matrix plots were also generated to summarize the model fits for each site-species 

combination for all years of data.  An example of one of these summary matrix plots of model 

fits for species R. padi at Moscow is presented in Figure 6.  
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Figure 6.  Example of fit plot summary of all years of data (Moscow, species R. padi). 

 Figure 6 is useful for assessing model fits across years, showing the temporal 

variability in the maximum cumulative abundance across years, as well as the adequacy of the 

model fit for most cases.  Estimation and diagnostics were assessed for all site-year-species 

combination for a total of 725 model fits.  Additional matrix plots for species R. padi at Parma 

and Burley can be viewed in Appendix C. 
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 After all site-year-species combinations of data were fitted to equation (2); each fit 

was classified as good, bad, or “non-estimable”.  The nonlinear model was considered a 

“good fit” for scenarios in which: the maximization algorithm converged, parameter estimates 

were uncorrelated; the fitted curve followed the data well; and there were no extreme residual 

values.  The model was considered a “bad” fit when; parameter estimates were highly 

correlated, or the fitted curve did not follow the data, or when there were extreme residual 

values.  Scenarios were considered non-estimable when maximum likelihood algorithm failed 

to converge, and no subsequent diagnostics could be carried out.  Scenarios in which 

researchers sampled the suction trap through the entire growing season but counted less than 

ten aphids total were omitted from these evaluations.  Table 4 shows the percentages of good, 

bad, and un-estimable fits for each species. 

Table 4. Summary of the good, bad, and un-estimable fit percentages by species. 

Species bad good Non-estimable %bad %good %non-estimable 

D_noxia 10 147 12 5.9% 87.0% 7.1% 

M_dirhodum 7 168 14 3.7% 88.9% 7.4% 

R_padi 22 156 12 11.6% 82.1% 6.3% 

S_avenae 6 136 43 3.2% 73.5% 23.2% 

Low  High 

 

 Table 4 indicates that the nonlinear model fit well to the majority of data for each 

species with all the percentages of good fits between 73.5% and 88.9%.  Overall, 83% were 

considered good.  None of the sites, years, or species had particularly low percentages of good 

fits, and therefore all data (refer to Table 1) were considered suitable for further analysis.  

Cluster Analysis 
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 Cluster analysis was used to group sites based on environmental covariates and to 

investigate how environmental differences impact the aphid accumulation process (Figure 7). 

A clustering analysis was implemented using equation (4) based on minimum temperature, 

maximum temperature, mean temperature, wind speed, wind direction, precipitation, 

elevation, and latitude.  

Figure 7. Dendrogram displaying results from hierarchical clustering algorithm used to group sites based on 

climatic data.  Sites clustered together are indicated by the colors. 

  

The results displayed in Figure 7 show how the 12 sites were grouped into 5 clusters   

defined as follows: 1. Moscow and Parma, 2. Lewiston, 3. Tetonia and Soda Springs, 4. 

Kimberly and Burley, 5. Ririe, Rockland, Picabo, Arbon Valley, and Aberdeen.  Figure 8 

displays the geographical distribution of the sites and their environment membership.   
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Figure 8.  Geographical distribution of sites with their corresponding cluster memberships indicated by colors. 

 From Figures 7 and 8, environment 2 is the only group with just one site (Lewiston); 

the rest of the groups contain at least 2 sites.  Classifying Lewiston into a group by itself is not 

unexpected because it is the lowest point in Idaho (227m) with a distinctive, warmer climate 

than the rest of the state.  Also, evident from the map in Figure 8, no sites in the Southeastern 

region were grouped with sites in the Northwestern region.  This is likely because 

Southeastern Idaho is significantly higher in elevation than the rest of the state.  Also notable 

the Moscow and Parma sites were classified together even though they are geographically 

distant.  This classification is reasonable because Moscow (786m) and Parma (680m) are 

close in elevation in comparison to other Southeastern sites (all of which are over 1000m). 

Regional/Environmental Nonlinear Model 
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   To investigate the similarities in patterns of aphid accumulation from sites classified 

into a common cluster, the nonlinear model from equation (2) was fitted to the aggregated 

data, utilizing clustered environments in place of sites.  In order to mitigate variability across 

the sites and years within each region, the data were expressed in relative values between 0 

and 1 as described previously. A Beta likelihood form, having variates restricted to the 0.0 to 

1.0 range, was considered a natural choice for these data.  The estimation process, however, 

was unstable when using the Beta, so a Normal likelihood form was selected as a reasonable 

approximation for the continuous scaled relative accumulation data.  Initially, equation (2) 

was fitted to each clustered environment, incorporating all years of data for the respective 

cluster sites.  The parameter estimates of one such fit is presented in Table 5. 

Table 5. Parameter estimates and corresponding, approximate t-values, p-values, and confidence intervals 
generated from the fitting of equation (2) to data for environment 4, R. padi.   

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

m 0.1260 0.02246 494 5.61 <.0001 0.05 0.08191 0.1702 

  0.01141 0.006172 494 1.85 0.0650 0.05 -0.00071 0.02354 

L 1280.22 98.3585 494 13.02 <.0001 0.05 1086.97 1473.47 

 

Table 5 shows that the standard errors of the parameter estimates are quite large. This 

is expected because the aggregated, cluster data encompass more variability due to the 

presence of multiple sites and years within any given fit.  Figure 9 gives an example fit, and 

visually shows how the model from Eq (2) fits the aggregated data.  
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Figure 9. Example of nonlinear model fit to all years of data for species R. padi, environment 4 (Kimberly and 

Burley). 

 From Figure 9, it is clear that the model from equation (2) does not account for all the 

variability of the aggregated data.  The inadequacy of the fit is primarily due to site-to-site and 

year-to-year variability in aphid accumulation.  More specifically, this unaccounted variation 

seems to occur primarily on the upper asymptote of the curve, which is parametrically 

controlled by the relative maximum parameter    .  Figure 10 shows the residual values from 

the fit in Figure 9. 
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Figure 10. Residuals from model fit to all years of data for species R. padi, environment 4 (Kimberly 

and Burley). 

Figure 10 depicts the inadequacy of the model fit to the aggregated data as there are 

many extreme residual values.  The residuals also show a pattern similar to the sigmoidal 

curve presented in Figure 2, indicating this model does not account for the underlying 

structure of the data. 

In order to develop an understanding of this variability, plots across years of the 

relative maximum parameters obtained in previous year-species estimations were generated.  

These plots, displayed for sites belonging to the same environment, were useful for visual 

assessment of common patterns in the estimation of relative maximum aphid abundance 

across years.  An example for Burley and Kimberly (environment 4) is given in Figure 11. 
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Figure 11.  Relative maximum parameter estimates plotted across years for R. padi, environment 4. 

From Figure 11, it is clear that the relative maximum parameter of both sites in 

environment 4 follow a similar pattern across years for sites of the same environment.  

Generally, years with large relative maximums are followed by years with small relative 

maximums, and vice versa.  This pattern could be a form of density dependence of the aphid 

populations due to factors such as heavy pesticide use in years with higher aphid counts 

(Davis et al., 2014).   

The temporal variability was investigated further through autoregressive modeling of 

correlation structure across years.  It was determined that for the most ecologically sensible 

interpretation, the dependencies at lag (1), lag (2) and lag (3) should be assessed. As an 
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example, Table 6 gives the estimates of the autocorrelations associated with the relative 

maximum parameter across years for environment 4, and species R. padi.   

Table 6. Autocorrelation estimates for the relative maximum parameter for region 4, R. padi at 

lag (1), lag (2) and lag (3) dependencies respectively. 

Estimates of Autocorrelations 

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 0.0511 1.000000 |                    |********************| 

1 -0.0174 -0.339952 |             *******|                    | 

2 -0.00525 -0.102735 |                  **|                    | 

3 -0.00355 -0.069477 |                   *|                    | 

 

 Table 6 shows that lag (1) had an estimate farthest from zero, indicating that the 

strongest correlation in time exists between       and        , which is similar to the 

findings of Davis et al. (2014).  The estimate for the autocorrelation at lag (1) is          

which means that the relative maximum at       is inversely correlated with the relative 

maximum at         by a factor of approximately        .  This can be seen visually in 

Figure 11 where data points, one time increment apart, tend to be in the opposite direction 

from one another.  Similar autoregressive analyses were conducted on all 20 of the 

environment-species combinations.  Of the 20 combinations, 14 showed the strongest 

autocorrelation at a dependence of lag (1). Hence, a lag (1) autoregressive structure was 

imposed on the relative maximum parameter within the model (refer to equations (6) and (7)).  

Corresponding plots and associated tables for the relative maximum parameter estimates of 

the remaining 3 species in environment 4 can be viewed in Appendix C. 

Nonlinear Regression Analysis with Autocorrelation 

 To account for the temporal variability in the relative maximum parameter across 

years, the model represented in equation (6) was fit to each of the five environments.  Table 7 
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gives the parameter estimates and corresponding approximate asymptotic 95% confidence 

intervals, standard errors, t-values and p-values of the model fit to environment 4, species R. 

padi (same data as Figure 9). 

Table 7. Parameter estimates and corresponding, approximate t-values, p-values, and confidence intervals 

generated from the fitting of equation (6) to data for environment 4, R. padi.   

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

  0.008437 0.000501 30 16.83 <.0001 0.05 0.007413 0.009460 

L 1334.89 7.9965 30 166.93 <.0001 0.05 1318.56 1351.22 

AR1 -0.1925 0.1870 30 -1.03 0.3114 0.05 -0.5744 0.1893 

int_M 0.1958 0.05452 30 3.59 0.0012 0.05 0.08444 0.3071 

ln_Var_M -2.7969 0.2555 30 -10.95 <.0001 0.05 -3.3188 -2.2751 

  

 All the parameter estimates are significant in this case, except for the AR1 term.  

Although the AR1 term is not significant at the       significance level, the AR1 was 

retained in the model because it is important for the model fit and essential to the model 

structure.  Although the AR1 term is not significant in this estimation, the other two terms 

(int_M, and ln_var_M), which comprise the autoregressive aspect of the relative maximum, 

do show statistical significance.   Due to the scaling of the data, all the values associated with 

the relative maximum parameter are very small; therefore the random error term was 

parameterized in a logarithmic form (ln_var_M) in order to stabilize the estimation process. 

As with previous model estimations, it was important to assess the inter-parameter 

correlation.  When there are more model parameters being estimated, the possibility of having 

higher inter-parameter correlation, i.e. redundancy within the model, increases.  The resulting 

correlation matrix of the parameter estimates from Table 6 is presented in Table 7. 
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Table 8. Estimated parameter correlations from model fit to environment 4, species R. padi. 

Correlation Matrix of Parameter Estimates 

Parameter   L AR1 int_M ln_Var_M 

  1.0000 -0.3462 0.007066 -0.02376 -0.05301 

L -0.3462 1.0000 -0.00765 0.02516 0.05395 

AR1 0.007066 -0.00765 1.0000 -0.5790 -0.00069 

int_M -0.02376 0.02516 -0.5790 1.0000 0.002238 

ln_Var_M -0.05301 0.05395 -0.00069 0.002238 1.0000 

  

The inter-parameter correlation presented in Table 8 shows that all the parameters 

estimated had low correlations, were well within the bounds of -0.8 and 0.8,  and the 

parameterization of the model was not redundant.  In the case of fitting equation (6), all inter-

parameter correlations satisfied the first criteria for all 20 environment-species combinations.  

Figure 12 shows the two dimensional fit plot of equation (6) fit to region 4, and species R. 

padi.   
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Figure 12. Nonlinear model with incorporation of autoregressive structure on the relative maximum parameter fit 

to environment 4, species R. padi 

 From Figure 12, it is evident that the autoregressive structure imposed on the relative 

maximum parameter successfully accounted for more variability in the upper end of the 

sigmoidal curve than did the other estimation.  The 19 remaining 3D observed and predictive 

surfaces of the autoregressive-environmental model accompanied by the remaining 3 full-

model parameter estimate tables can be viewed in Appendix D. 

 The 3D surface of the model fit to the same data and the corresponding observed 3D 

surface are presented in Figure 13 and Figure 14 respectively. 
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Region 4: Observed Relative R. Padi Abundance
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Figure 13. Example of predicted surface generated when fitting model from equation (6) to data from 

environment 4, species R. padi.     
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Figure 14.  Observed surface of data from environment 4, species R. padi. 
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 The surfaces presented in Figure 13 and Figure 14 are nearly identical, indicating that 

the model from equation (6) is a good fit to the data.  The 19 remaining 3D observed and 

predictive surfaces of the autoregressive-environmental model can be viewed in Appendix D.  

To further assess the adequacy of the fit, residual plots were also evaluated.  Figure 15 shows 

the residuals obtained from the model fit presented in Figure 12 and Figure 13. 

Figure 15. Residual plot generated from fitting equation (6) to data for environment 4, R. padi. 

 While the residuals show some patterning, the majority of values are close to zero and 

random in distribution. There is no sigmoidal shape to the residuals and much fewer extreme 

residual values in comparison to the residuals of the non-autoregressive model form presented 

in Figure 10.   
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Dummy Variable Regression Analysis 

 The purpose of conducting a dummy variable regression is to allow for the 

comparisons of the aphid accumulation process among environments.  To enable these 

comparisons, a dummy variable was created for environment, resulting in 4 full models (one 

model for each species).  Parameter estimates for the full, dummy variable model, fit to 

species R. padi are presented in Table 9 with their corresponding approximate standard errors, 

asymptotic 95% confidence intervals, t-values, and p-values.  Parameter estimates for the 

remaining 3 full models fitted to the other species can be viewed in Appendix D. 
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Table 9. Parameter estimates and corresponding approximate standard errors, t-values, p-values, and 

asymptotic 95% confidence intervals for full model fit to species R. padi. The suffix of each parameter 

refers to the environment number from which each estimate came.   

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

 1 0.004222 0.000238 176 17.75 <.0001 0.05 0.003753 0.004692 

L1 1288.83 16.0431 176 80.34 <.0001 0.05 1257.17 1320.49 

AR11 -0.2369 0.1922 176 -1.23 0.2194 0.05 -0.6162 0.1424 

int_M1 0.4887 0.09868 176 4.95 <.0001 0.05 0.2940 0.6835 

ln_Var_M -2.3694 0.1124 176 -21.09 <.0001 0.05 -2.5912 -2.1477 

 2 0.008206 0.001035 176 7.93 <.0001 0.05 0.006164 0.01025 

L2 1495.16 14.7948 176 101.06 <.0001 0.05 1465.96 1524.36 

AR12 0.1036 0.3168 176 0.33 0.7442 0.05 -0.5217 0.7289 

int_M2 0.2646 0.1343 176 1.97 0.0504 0.05 -0.00051 0.5296 

 3 0.006626 0.000531 176 12.48 <.0001 0.05 0.005578 0.007674 

L3 1025.38 16.6614 176 61.54 <.0001 0.05 992.50 1058.27 

AR13 -0.5727 0.1849 176 -3.10 0.0023 0.05 -0.9376 -0.2079 

int_M3 0.5659 0.08340 176 6.79 <.0001 0.05 0.4014 0.7305 

B4 0.008436 0.000878 176 9.61 <.0001 0.05 0.006703 0.01017 

L4 1333.14 14.0142 176 95.13 <.0001 0.05 1305.49 1360.80 

AR14 -0.1855 0.2319 176 -0.80 0.4248 0.05 -0.6431 0.2721 

int_M4 0.1943 0.06765 176 2.87 0.0046 0.05 0.06078 0.3278 

 5 0.006430 0.000487 176 13.20 <.0001 0.05 0.005469 0.007391 

L5 1243.38 15.0181 176 82.79 <.0001 0.05 1213.74 1273.02 

AR15 -0.3982 0.1350 176 -2.95 0.0036 0.05 -0.6646 -0.1317 

int_M5 0.3383 0.04839 176 6.99 <.0001 0.05 0.2428 0.4338 

 

Within each full model, contrasts were conducted using likelihood ratio tests to 

compare various characteristics of the aphid accumulation process among environments.  The 

motivation of the following contrasts arose from the natural geographic separation of 

environments provided by the cluster analysis.  Environments 1 and 2 occupy the 

Northwestern part of Idaho, while environments 3, 4, and 5 occupy the Southeastern part of 



46 

Idaho (refer to Figure 8).  Therefore contrasts were conducted comparing characteristics of 

the aphid accumulation process for the Northwestern environments to that of the Southeastern 

environments.  Table 10 shows the contrasts of the onset parameter ( ), the relative maximum 

parameters (AR1 and int_M), as well as the regression lines (                   ,  , 

AR1, and int_M), between the two Northwestern environments (1 and 2) and the three 

Southeastern environments (3,4, and 5) for species R. padi. 

Table 10. Contrasts of parameter estimates for R.padi of environments 1 and 2 versus environments 3, 4, and 5.  

Row 1 shows the contrast of all four key parameters ( ,  , AR1, and int_M) between the two groups of 

environments.  Row 2 shows the contrast of the onset parameter (L) between the two groups of environments.  

Row 3 shows the contrast of the relative maximum parameters (AR1 and int_M) between the two groups of 

environments.   

Contrasts 

Label 

Num 

DF 

Den 

DF F Value Pr > F 

Coincidence of Regression lines: All Parameters NW vs SE 4 176 50.58 <.0001 

Onset of Northwest Environments vs Southeast Environments 1 176 182.59 <.0001 

Max Parms of Northwest Environments vs. Southeast 

Environments 

2 176 2.72 0.0690 

 

Row 1 of the table shows that the average of at least one of the 4 primary parameters 

of the Northwestern environments is significantly different from the average of at least one of 

the 4 primary parameters of the Southeastern environments for both species.  Row 2 of Table 

10 shows that the average of the onset parameter for the Northwestern environments was 

significantly different from the average of the onset parameter for Southeastern environments 

at significance level        .  Row 3 of the table shows the average of both the relative 

maximum parameters for Northwestern environments was not significantly different from the 

average of both the relative maximum parameters for the Southeastern environments.  These 

parameter contrasts were also carried out on the other 3 species, and yielded the same results.   
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 To quantify the significant difference in the onset parameter displayed in Table 10, the 

actual difference in parameter estimates was calculated.  Table 11 shows the estimated 

difference in the average of the onset parameter between the Northwestern and Southeastern 

environments. 

Table 11. Estimated difference in onset parameter between Northwestern environments and Southeastern 

environments with approximate standard error, t-value, and p-value. 

Additional Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Onset of Northwest Environments 
vs Southeast Environments 

191.36 14.1616 176 13.51 <.0001 0.05 163.41 219.31 

  

Table 11 indicates that the difference in the average of the onset parameters between 

the Northwestern environments and the Southeastern environments is between 163 and 219 

growing degree days.  The same contrasts for all three of the remaining species yielded 

similar results with the estimated difference in the average of the onset parameters between 

the Northwestern and Southeastern environments being 179, 227, and 291 for D. noxia, M. 

dirhodum, and S. aevnae, respectively.  Because this estimated difference is positive, it can be 

concluded the average onset is greater for the Northwestern environments than the 

Southeastern environments.  Given that the three suction trap sites with the lowest elevations 

comprise the Northwestern environments, it is logical that the onset of aphid accumulation 

occurs at a higher temperature for the Northwestern sites, because growing degree days 

accumulate faster at the lower, warmer climates of the Northwestern environments.  During 

the middle of the wheat growing season 200 growing degree days would be approximately 14 

calendar days. This difference is relatively large and could indicate that aphid populations in 

Idaho have become relatively localized and are driven by local climatic factors.  The 
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implications of these contrasts are consistent with the inferences made by Halbert et al. in 

1990 who indicated that suction trap collections reflect emigration of aphids from local 

colonies (20-50 miles from trap sites) rather than long distance migration. Tables containing 

the same parameter contrasts for the remaining three species along with the additional 

corresponding estimates can be seen in Appendix E.  

Internal Validation 

 Internal validation was implemented through a bootstrap simulation of the residuals 

from each of the 20 species-environment models as described above.  Once 1000 

bootstrapped samples of residuals were obtained for each of the 20 models, summary statistics 

were calculated.  Histograms and box-plots were also created to show the distribution of the 

residuals from each of the 20 models.  Figure 16 gives an example of the residual distribution 

histogram for B=1000 bootstrapped residual samples obtained from the environment 4, 

species R. padi. 
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Figure 16. Histogram of the distribution of bootstrapped residuals for species R. padi, environment 4. 

 

  

Figure 16 shows that the bootstrapped residuals from species R. padi in environment 4 

were tightly distributed about zero.  The mean and standard deviation for these residuals were 

0.001092 and 0.02845 respectively.  The first and third quartiles of the same residuals were -

0.00451 and 0.00572 respectively.  The remaining 19 environment-species combinations 

yielded similar results with residuals tightly distributed about zero.  The results indicate that 

the model was stable and adequately fitted the simulated data sets.  Residual distributions for 

the remaining 3 species for environment 4 can be viewed in Appendix F. 
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External Validation 

 To validate each of the 4 full models, the Idaho suction trap sites that were not used in 

the analyses previously were classified into the environments created by the cluster analysis.  

The sites used included: Bonners Ferry, Caldwell, Conda, Craigmont, Holbrook, Mountain 

Home, Neely, and Preston.  A summary of the suction trap data for the validation sites is 

presented in Table 12. 

Table 12. Sampling summary for all species at validation sites.  Cells in the table represent the number of times 

researchers sampled each site and found    aphid. 

Row Labels 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Bonners Ferry     17 10 19 19 8 14 11 11               

Caldwell   15 17 16 19                         

Conda               16 22 16               

Craigmont     17 14 21 22 14 21 21                 

Holbrook   16 17 12 17                         

Mountain Home   12 15 12 20                         

Neeley 10 17 15 14 16                         

Preston 9 16 16 15 22 10 11 19 22                 

Low  High 

  

Table 12 shows that the sites excluded from the analysis had significantly less data 

than those used for modeling (Table 1). Only those sites with the several years of consecutive 

data were considered for inclusion in the external validation process. Even under this 

criterion, however, there were considerably fewer years available in the validation sites. 

Linear Discriminant Analysis  

 Before validation could proceed, the validation sites needed to be classified into the 

environments previously defined by the cluster analysis. A linear discriminant analysis (LDA) 
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was therefore carried out to accomplish this task.  LDA was performed under the assumption 

that the independent variables used to classify the sites (climate data) were approximately 

normally distributed with a common covariance structure.  Because of the small number of 

observations, the assumption of normality was likely violated, and other non-parametric 

methods (k-nearest neighbor) were explored but yielded identical results, and therefore are not 

presented here.  The LDA analysis was considered suitable to use with proportional prior 

probabilities (i.e. each site has an initial probability of .2 to be classified into each of the 5 

environments). 

The discriminant function was developed by using all climate data spanning 1986 to 

2003 for each site (same variables as cluster analysis) and the corresponding environment 

memberships of each site as defined from the cluster analysis.  The discriminant function was 

then used to classify the validation sites into the most appropriate environments.  Table 13 

shows the results of the LDA performed on the validation sites. 
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Table 13. Posterior probabilities of membership in corresponding environments resulting from 

linear discriminant analysis on validation data. 

Posterior Probability of Membership in Environment 

Site 

Classified 

into 

Environment 1 2 3 4 5 

Bonners Ferry 2  0.0446 0.9554 0.0000 0.0000 0.0000 

Caldwell 1  1.0000 0.0000 0.0000 0.0000 0.0000 

Conda 3  0.0000 0.0000 1.0000 0.0000 0.0000 

Craigmont 1  1.0000 0.0000 0.0000 0.0000 0.0000 

Holbrook 5  0.0000 0.0000 0.0000 0.0000 1.0000 

Mountain Home 1  1.0000 0.0000 0.0000 0.0000 0.0000 

Neeley 4  0.0000 0.0000 0.0000 0.8483 0.1517 

Preston 5  0.0000 0.0000 0.0000 0.0000 1.0000 

  

The 5 rightmost columns of Table 13 show the posterior probabilities of membership 

in the corresponding 5 environments.  For example, Neeley was determined to have an 85% 

probability of membership in environment 4 while also having a 15% probability of 

membership in environment 5.  Table 13 shows Caldwell, Craigmont, and Mountain Home 

were classified into environment 1, Bonners Ferry into environment 2, Conda into 

environment 3, Neeley into environment 4, and Holbrook and Preston into environment 5.  

Because environments 1 and 5 both had multiple sites classified into them, the sites with the 

most data were selected for validation; Caldwell was selected for environment 1, and Preston 

was selected for environment 5.  Typically the true membership of observations (sites) is 

known when performing a discriminant analysis, and therefore error rates can be calculated to 

assess the performance of the discriminant function.  In this case, the true membership of the 

sites was unknown and consequently error rates were not calculable.  Figure 17 shows the fit 

of the model for species R. padi in environment 4 to the data for Neeley. 
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Figure 17. Fit plot of model fit to validation data for environment 4 (Neeley) species R. padi. 

 Figure 17 shows that the model for environment 4, species R. padi covers the data for 

Neeley containing smaller relative maximums, but does not cover the data from the year with 

the highest relative maximum.  Table 12 indicates that the maximum number of consecutive 

years of data for any validation site is 9 years for Preston. Because there are so few years of 

data from the validation sites, the maximum aphid count observed over the span of these data 

is likely not representative of the true maximum aphid count.  Therefore when we scale the 

validation data, the data do not show the same patterns as the model building data which 

having between 13 and 17 years of data.  It is also desirable to have a longer time series of 

data similar to that of the 12 sites selected for model building, because the relative maximum 
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parameter is dependent on an autoregressive structure.  Observed versus predicted plots 

resulting from the external validation for the 3 remaining species for environment 4 can be 

seen in Appendix F. 
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Chapter 4 

Conclusions 

 Species-specific nonlinear regression models were developed to predict 

cumulative aphid abundances based on growing degree days and the relative maximum aphid 

abundance of the previous year.  Models were developed for each combination of the 4 aphid 

species and 5 environments, resulting in a total of 20 predictive models.  Internal validation 

was carried out using a bootstrap of the residuals for each of the 20 species-environment 

models and yielded tight residual distributions centered about zero.  The results from the 

internal validation indicate that the modeling process implemented in this study provides 

unbiased estimates of predicted aphid abundances and can be applied to other datasets.   

As of 1998, about 80 percent of wheat growers in Idaho implemented their pest 

management strategies based on field scouting thresholds of aphid abundances (Bechinski, 

1998).  The regression models developed in this study suggest the potential for modeling and 

generating forecasts that could decrease time and effort allocated to scouting prior to 

prediction of aphid movement.  If these forecasts prove reliable, wheat producers could 

potentially time the pesticide application more accurately, alter planting effectively, and 

therefore, save money and time in the process.  

 In addition to the predictive capabilities of these nonlinear regression models, some 

ecological inferences could be made based on the parameter estimates.  For example, it has 

been documented that host-alternating (holocyclic) cereal aphids can travel great distances 

between their winter and summer host plants (Bommarco et al., 2007), but it is not clear 

exactly how far for specific aphids and systems.  This study detected significant regional 

differences in the onset parameter for each of the aphid species.  The significant difference in 
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onset suggests that aphid populations respond to temperature differently depending on the 

region, and therefore may be relatively local.  Although it is difficult to statistically test these 

implications, it provides a motivation for future investigations.   Furthermore, as a follow up 

to this study, one may consider modeling the cumulative aphid abundances based on Julian 

days, and conduct the same parameter estimate contrasts as reported in this study.  Such an 

investigation would potentially provide insight into the magnitude of the migration of host-

altering cereal aphids.  It may also further our understanding of how the climates of the 

overwintering locations drive the aphid accumulation process compared to local climates of 

suction trap sites. 

 Although the modeling process described in this study was effective, there were 

limitations that should be considered when replicating this process on similar data.  In this 

study, the suction traps were not operated consistently over the entire time period for all sites.  

For example, in 1986 the traps were not operated until August, because they were being 

assembled that year.  There were also numerous sites that had years in which the traps were 

not operated at all.  Because the data were scaled to proportions of the observed maximum 

aphid count for all years of data for each site, the gaps in the data could result in 

miscalculating these proportions.   For subsequent analyses, it is recommended to use data 

consisting of consecutive years of data for as many years as possible.  Also, suction traps do 

not capture the entire population of cereal aphids, but only those moving in the air column at 

the height of the traps. In general the numbers of aphids collected at suction traps are 

considered to be highly associated with the true total number of aphids on a given crop 

(Bommarco et al., 2007).  For future research, it is advised to incorporate other aphid 

collecting methods such as sweep netting and pan trapping in addition to the suction traps to 
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obtain a sample that better represents the aphid population.  Sampling via sweep netting 

targets established populations of aphids (rather than migrating aphids). Thus, integrating 

sweep netting with suction trapping could provide for a more complete understanding on the 

aphid accumulation process. 

 Proper assessment of the research limitations of this study and subsequent procedural 

adjustments could potentially enhance future research in this area. Because there were only 

individual suction traps set up at each sampling site, there were no replications within 

sampling events.  In future studies, it is recommended to include multiple suction traps per 

sampling site, if programmatically feasible, to allow for a more appropriate likelihood form to 

be constructed for the data.  Given proper replications (more than one suction trap per site), a 

negative binomial likelihood form may allow for a more robust analysis of the site-year-

species differences.  Finally, when conducting the discriminant analysis to classify the 

validation sites into the environments determined by the cluster analysis, the accuracy of the 

classifications could not be assessed because the true memberships of the validation sites were 

unknown.  For this reason, it is advised to interpret the results of classification methods, such 

as like LDA cautiously as the effectiveness of the method is relatively difficult to determine in 

this case. 
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Appendix A 

Pivot table of original data and pivot tables of sites selected for analyses 
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 Original data  

Table A1. Pivot table of original data: Each cell represents the number of times a site was sampled per year 

  1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 9 16 16 14 16 19 14 21 23 16 14 12 17 14 16 17 14 

Arbon Valley 7 16 15 16 15 18 11 20 20 15 13 7 17 14 16 16 12 

Bonners Ferry     17 10 19 19 8 14 11 11               

Burley 11 16 5 16 18 22 13 20 21 16 13 13 17 14 16 17   

Caldwell   15 17 16 19                         

Conda               16 22 16               

Corvallis             18 20 22   3             

Craigmont     17 14 21 22 14 21 21                 

Hermiston             13 16 20 7 11             

Holbrook   16 17 12 17                         

Kimberly 12 16 16 11 13 15 12 21 22 15 14 13 13 13 16 13 11 

Klamath Falls             18 21 22 6 12             

Lewiston     13 11 15 20 9 19 20 15 13 13 17   13 15   

Madras             18 21 22 8 10             

Moro             18 21 22 8 12             

Moscow 14 18 17 16 22 22 14 21 22 13 11 11 13 22 15 12   

Mountain Home   12 15 12 20                         

Neeley 10 17 15 14 16                         

Parma 14 18 17 16 22 22 13 19 21 16 14 13 16 14 16 16 11 

Pendleton             14 21 23 8 10             

Picabo     14 11 22 22 13 20 22 16 13 13 13 9 12 17 13 

Preston 9 16 16 15 22 10 11 19 22                 

Ririe 3 14 16 10   18 12 20 20   13 10 17 12 15 14   

Rockland 14 16 16 16 17 21 13 21 20 16 12 13 17 14 16 17 13 

Shelley 8 17 11 8                           

Soda Springs 11 10 9 14 15 14 7 14 14   13 13 17 14 16 15   

Tetonia 14 14 13 16 20 22 14 20 22 16 14 9 17 14 17 17   

Low  High 
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 Data selected for analyses 

Table B1. Rhopalosiphum padi prevalence displayed as a percentage of sampling events recording 1 or more 

insects. 

R. padi 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 100% 88% 81% 64% 44% 74% 71% 71% 52% 50% 64% 58% 53% 86% 50% 65% 64% 

Arbon Valley 100% 69% 67% 81% 47% 61% 64% 55% 70% 53% 62% 86% 53% 79% 44% 50% 67% 

Burley 100% 94% 60% 81% 56% 59% 77% 80% 52% 56% 62% 62% 65% 64% 56% 65%   

Kimberly 100% 75% 63% 55% 54% 67% 67% 71% 59% 40% 64% 69% 85% 62% 44% 85% 82% 

Lewiston     92% 64% 80% 55% 67% 89% 75% 53% 54% 62% 53%   62% 47%   

Moscow 86% 78% 82% 75% 59% 82% 57% 86% 36% 77% 73% 73% 69% 86% 47% 33%   

Parma 100% 94% 100% 100% 91% 86% 92% 79% 81% 69% 64% 77% 69% 79% 56% 75% 100% 

Picabo     64% 82% 77% 64% 85% 60% 59% 63% 38% 69% 46% 78% 50% 47% 77% 

Ririe 100% 79% 81% 80%   72% 75% 60% 80%   46% 70% 41% 83% 33% 79%   

Rockland 93% 63% 56% 63% 41% 57% 62% 62% 15% 13% 17% 62% 41% 64% 44% 47% 54% 

Soda Springs 100% 60% 89% 93% 60% 79% 86% 86% 79%   69% 62% 53% 93% 56% 67%   

Tetonia 93% 79% 92% 88% 45% 77% 79% 60% 59% 50% 64% 56% 59% 86% 53% 65%   

Low  High 

 

 

Table B2. Metopolophum dirhodum prevalence displayed as a percentage of sampling events recording 1 or 

more insects. 

M. dirhodum 

198

6 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 44% 38% 44% 50% 19% 32% 36% 67% 22% 50% 57% 58% 18% 57% 31% 53% 36% 

Arbon Valley 57% 44% 13% 38% 13% 17% 18% 55% 20% 47% 62% 86% 35% 50% 38% 31% 33% 

Burley 36% 56% 40% 50% 11% 45% 23% 55% 43% 44% 54% 46% 35% 64% 38% 47%   

Kimberly 33% 56% 44% 55% 23% 33% 33% 48% 50% 53% 50% 54% 31% 62% 6% 77% 64% 

Lewiston     85% 73% 47% 50% 22% 58% 30% 73% 69% 77% 53%   77% 60%   

Moscow 14% 44% 59% 63% 36% 32% 14% 57% 18% 69% 45% 64% 54% 73% 47% 25%   

Parma 43% 67% 88% 100% 50% 73% 31% 42% 67% 56% 79% 46% 31% 71% 38% 50% 55% 

Picabo     50% 55% 27% 27% 31% 50% 23% 44% 54% 54% 31% 78% 58% 59% 54% 

Ririe 

100

% 43% 50% 80%   39% 42% 70% 20%   54% 60% 35% 83% 20% 57%   

Rockland 21% 31% 6% 38% 18% 10% 15% 33% 5% 0% 8% 46% 12% 43% 44% 24% 31% 

Soda Springs 45% 70% 67% 50% 47% 79% 57% 79% 29%   62% 54% 35% 64% 25% 40%   

Tetonia 71% 43% 54% 63% 35% 59% 50% 50% 27% 44% 36% 56% 53% 57% 47% 59%   

Low  High 
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Table B3. Sitibion avenae prevalence displayed as a percentage of sampling events recording 1 or more insects. 

S. avenae 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 56% 69% 50% 64% 25% 32% 36% 43% 22% 31% 57% 33% 18% 50% 19% 6% 21% 

Arbon Valley 71% 19% 13% 13% 20% 17% 27% 40% 35% 7% 46% 57% 12% 36% 13% 19% 25% 

Burley 45% 50% 20% 31% 11% 18% 15% 35% 43% 19% 38% 38% 12% 43% 6% 12%   

Kimberly 33% 44% 50% 55% 8% 33% 17% 38% 41% 20% 57% 54% 31% 38% 0% 38% 36% 

Lewiston     69% 64% 40% 30% 22% 58% 40% 60% 54% 54% 47%   54% 53%   

Moscow 21% 56% 65% 63% 50% 32% 36% 52% 41% 62% 55% 64% 46% 59% 40% 33%   

Parma 36% 67% 65% 69% 36% 36% 23% 74% 38% 38% 64% 62% 25% 50% 19% 31% 45% 

Picabo     29% 55% 14% 27% 23% 50% 23% 19% 38% 38% 8% 67% 17% 12% 15% 

Ririe 67% 43% 13% 50%   17% 42% 40% 15%   38% 60% 18% 50% 13% 0%   

Rockland 29% 31% 6% 13% 6% 10% 8% 24% 10% 6% 8% 31% 6% 43% 19% 0% 8% 

Soda Springs 36% 70% 22% 36% 27% 43% 43% 57% 36%   23% 23% 35% 57% 13% 0%   

Tetonia 57% 29% 15% 44% 25% 32% 36% 45% 14% 25% 36% 33% 29% 43% 0% 6%   

Low  High 

 

Table B4. Diuraphus noxia prevalence displayed as a percentage of sampling events recording 1 or more insects. 

D. noxia 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 0% 6% 44% 36% 31% 21% 36% 0% 30% 19% 43% 50% 29% 36% 25% 35% 43% 

Arbon Valley 0% 0% 93% 63% 93% 61% 82% 5% 65% 33% 69% 100% 35% 43% 44% 31% 42% 

Burley 0% 0% 60% 50% 44% 36% 38% 30% 43% 44% 69% 54% 47% 43% 38% 47%   

Kimberly 0% 6% 94% 73% 85% 60% 25% 14% 36% 7% 43% 54% 31% 38% 13% 46% 64% 

Lewiston     69% 55% 47% 20% 44% 32% 50% 40% 62% 31% 35%   46% 40%   

Moscow 0% 0% 76% 88% 50% 68% 79% 67% 73% 69% 73% 91% 69% 59% 60% 33%   

Parma 0% 28% 100% 63% 100% 41% 31% 21% 57% 25% 43% 31% 31% 57% 44% 31% 45% 

Picabo     57% 73% 55% 55% 69% 20% 50% 38% 46% 46% 38% 33% 50% 24% 54% 

Ririe 0% 7% 25% 20%   61% 42% 0% 40%   38% 20% 18% 0% 33% 29%   

Rockland 0% 0% 69% 38% 59% 57% 38% 0% 50% 0% 25% 54% 47% 36% 50% 65% 46% 

Soda Springs 0% 0% 78% 14% 73% 79% 43% 7% 57%   38% 23% 35% 43% 56% 60%   

Tetonia 0% 0% 23% 13% 45% 36% 64% 5% 23% 6% 36% 22% 24% 21% 41% 35%   

Low  High 
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Appendix B 

Site-species-year model fit to Parma 1999 for D. noxia, M. dirhodum, and S. avenae, along 

with same model fit to Burley 1988 for all 4 species 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Parameter Estimates 

Paramete

r Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

m 42.7181 2.7284 14 15.66 <.0001 0.05 36.8662 48.5699 

  0.01212 0.002870 14 4.22 0.0009 0.05 0.005963 0.01828 

L 1430.75 38.1306 14 37.52 <.0001 0.05 1348.97 1512.53 
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Parameter m   L 

m 1.0000 -0.3812 0.5217 

  -0.3812 1.0000 -0.7556 

L 0.5217 -0.7556 1.0000 

Table B1. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Parma data for D. noxia in 1999. 

 

Table B2.  Correlation matrix of the parameter estimates 

obtained from model fit to Parma data for D. noxia in 1999. 

 

Figure B1. Fit plot of nonlinear model fit to data from Parma 
for D. noxia in 1999. 

Figure B2. Residual plot from fit of nonlinear model to Parma data 
for D. noxia in 1999. 
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Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

m 1621.58 15.1358 14 107.14 <.0001 0.05 1589.12 1654.05 

  0.01464 0.000455 14 32.18 <.0001 0.05 0.01367 0.01562 

L 1362.93 4.2744 14 318.86 <.0001 0.05 1353.77 1372.10 
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Parameter m   L 

m 1.0000 -0.2101 0.3929 

  -0.2101 1.0000 -0.5661 

L 0.3929 -0.5661 1.0000 

Table B3. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Parma data for M. dirhodum in 1999. 

 

Table B4.  Correlation matrix of the parameter estimates 

obtained from model fit to Parma data for M. dirhodum in 1999. 

 

Figure B3. Fit plot of nonlinear model fit to data from Parma 
for M. dirhodum in 1999. 

Figure B4. Residual plot from fit of nonlinear model to Parma data 
for M. dirhodum in 1999. 
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Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

m 51.3290 3.0841 14 16.64 <.0001 0.05 44.7143 57.9436 

  0.009113 0.001378 14 6.61 <.0001 0.05 0.006158 0.01207 

L 1483.22 34.7474 14 42.69 <.0001 0.05 1408.70 1557.75 
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Parameter m   L 

m 1.0000 -0.3228 0.5329 

  -0.3228 1.0000 -0.6304 

L 0.5329 -0.6304 1.0000 

Table B5. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Parma data for S. avenae in 1999. 

 

Table B6.  Correlation matrix of the parameter estimates 

obtained from model fit to Parma data for S. avenae in 1999. 

 

Figure B5. Fit plot of nonlinear model fit to data from Parma 
for S. avenae in 1999. 

Figure B6. Residual plot from fit of nonlinear model to Parma data 
for S. avenae in 1999. 
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Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

m 98.9958 7.0356 5 14.07 <.0001 0.05 80.9102 117.08 

  0.05670 0.01739 5 3.26 0.0225 0.05 0.01199 0.1014 

L 1327.79 10.0588 5 132.00 <.0001 0.05 1301.93 1353.64 
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m 1.0000 -0.01617 0.1682 

  -0.01617 1.0000 -0.8670 

L 0.1682 -0.8670 1.0000 

Table B7. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Burley data for D. noxia in 1988. 

 

Table B8.  Correlation matrix of the parameter estimates 

obtained from model fit to Burley data for D. noxia in 1988. 

 

Figure B7. Fit plot of nonlinear model fit to data from Burley 
for D. noxia in 1988. 

Figure B8. Residual plot from fit of nonlinear model to Burley data 
for D. noxia in 1988. 
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Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

m 42.9915 4.6369 5 9.27 0.0002 0.05 31.0721 54.9110 

  0.04830 0.01778 5 2.72 0.0419 0.05 0.002595 0.09400 

L 1325.52 13.8902 5 95.43 <.0001 0.05 1289.82 1361.23 
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m 1.0000 -0.03111 0.2348 

  -0.03111 1.0000 -0.7990 

L 0.2348 -0.7990 1.0000 

Table B9. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Burley data for R. padi in 1988. 

 

Table B10.  Correlation matrix of the parameter estimates 

obtained from model fit to Burley data for R. padi in 1988. 

 

Figure B9. Fit plot of nonlinear model fit to data from Burley 
for R. padi in 1988. 

Figure B10. Residual plot from fit of nonlinear model to Burley 
data for R. padi in 1988. 
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Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

m 12.9999 2.5496 5 5.10 0.0038 0.05 6.4459 19.5540 

  0.3278 27.7819 5 0.01 0.9910 0.05 -71.0879 71.7435 

L 1303.14 39.8387 5 32.71 <.0001 0.05 1200.73 1405.55 
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Parameter m   L 

m 1.0000 -0.01323 0.01932 

  -0.01323 1.0000 0.9975 

L 0.01932 0.9975 1.0000 

Table B11. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Burley data for M. dirhodum in 1988. 

 

Table B12.  Correlation matrix of the parameter estimates 

obtained from model fit to Burley data for M. dirhodum in 1988. 

 

Figure B11. Fit plot of nonlinear model fit to data from Burley 
for M. dirhodum in 1988. 

Figure B12. Residual plot from fit of nonlinear model to Burley 
data for M. dirhoudm in 1988. 
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Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

m 1.0000 0.7071 5 1.41 0.2164 0.05 -0.8177 2.8176 

  0.08672 220.26 5 0.00 0.9997 0.05 -566.11 566.28 

L 1526.41 566980 5 0.00 0.9980 0.05 -1455943 1458996 
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Parameter m   L 

m 1.0000 -0.00019 0.000200 

  -0.00019 1.0000 -0.9481 

L 0.000200 -0.9481 1.0000 

Table B13. Parameter estimates with approximate standard errors, and asymptotic 

95% confidence intervals for model fit to Burley data for S. avenae in 1988. 

 

Table B14.  Correlation matrix of the parameter estimates 

obtained from model fit to Burley data for S. avenae in 1988. 

 

Figure B13. Fit plot of nonlinear model fit to data from Burley 
for S. avenae in 1988. 

Figure B14. Residual plot from fit of nonlinear model to Burley 
data for S. avenae in 1988. 
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 Goodness of fit summary tables 

Table B15. Summary of good fits by site 

Site bad good unestimable %bad %good %unestimable 

Aberdeen 1 59 6 1.5% 89.4% 9.1% 

Arbon 

Valley 

 

55 11 0.0% 83.3% 16.7% 

Burley 3 55 4 4.8% 88.7% 6.5% 

Kimberly 7 51 8 10.6% 77.3% 12.1% 

Lewiston 1 49 2 1.9% 94.2% 3.8% 

Moscow 4 56 2 6.5% 90.3% 3.2% 

Parma 5 57 5 7.5% 85.1% 7.5% 

Picabo 5 50 5 8.3% 83.3% 8.3% 

Ririe 7 36 9 13.5% 69.2% 17.3% 

Rockland 2 45 15 3.2% 72.6% 24.2% 

Soda Springs 6 47 4 10.5% 82.5% 7.0% 

Tetonia 4 47 10 6.6% 77.0% 16.4% 

Low  High 

 

Table B16. Summary of good fits by year 

Year bad good unestimable %bad %good %unestimable 

1986 8 21 1 26.7% 70.0% 3.3% 

1987 3 27 4 8.8% 79.4% 11.8% 

1988 5 33 10 10.4% 68.8% 20.8% 

1989 

 

44 4 0.0% 91.7% 8.3% 

1990 1 37 6 2.3% 84.1% 13.6% 

1991 2 41 5 4.2% 85.4% 10.4% 

1992 6 36 6 12.5% 75.0% 12.5% 

1993 6 36 3 13.3% 80.0% 6.7% 

1994 3 39 6 6.3% 81.3% 12.5% 

1995 1 32 5 2.6% 84.2% 13.2% 

1996 2 43 3 4.2% 89.6% 6.3% 

1997 3 44 1 6.3% 91.7% 2.1% 

1998 3 34 11 6.3% 70.8% 22.9% 

1999 

 

43 

 

0.0% 100.0% 0.0% 

2000 2 36 8 4.3% 78.3% 17.4% 

2001 

 

39 6 0.0% 86.7% 13.3% 

2003 

 

22 2 0.0% 91.7% 8.3% 

Low  High 
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Appendix C 

Matrix plots of site-species-year models, relative maximum parameter plots, and 

autocorrelation estimation tables 
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 Matrix plots of site-species-year models 

 

Figure C1.  Fit plot summary of Burley for R. padi. 
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Figure C2.  Fit plot summary of Parma for R. padi. 
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 Relative maximum parameter plots and autocorrelation estimation tables 

 

 

Figure C3.  Relative maximum parameter estimates plotted across years for D. noxia, environment 4. 

 

 

Table C1. Autocorrelation estimates for the relative maximum parameter for region 4, D. noxia 

at lag (1), lag (2) and lag (3) dependencies respectively. 

Estimates of Autocorrelations 

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 0.0669 1.000000 |                    |********************| 

1 0.0127 0.190339 |                    |****                | 

2 0.0214 0.319504 |                    |******              | 

3 0.00812 0.121525 |                    |**                  | 
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Figure C4.  Relative maximum parameter estimates plotted across years for M. dirhodum, environment 4. 

 

 

Table C2. Autocorrelation estimates for the relative maximum parameter for region 4, M. 
dirhodum at lag (1), lag (2) and lag (3) dependencies respectively. 

Estimates of Autocorrelations 

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1  

0 0.0733 1.000000 |                    |********************| 

1 -0.0314 -0.427609 |           *********|                    | 

2 0.000401 0.005473 |                    |                    | 

3 0.00432 0.058893 |                    |*                   | 
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Figure C5.  Relative maximum parameter estimates plotted across years for S. avenae, environment 4. 

 

 

Table C3. Autocorrelation estimates for the relative maximum parameter for region 4, S. 
avenae at lag (1), lag (2) and lag (3) dependencies respectively. 

Estimates of Autocorrelations 

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 0.0784 1.000000 |                    |********************| 

1 -0.0422 -0.538868 |         ***********|                    | 

2 0.00875 0.111679 |                    |**                  | 

3 -0.0115 -0.146529 |                 ***|                    | 
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Appendix D 

Parameter estimates of full models and corresponding observed and predicted surfaces of 

species-region combinations 
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 Full model parameter estimate tables 

 

Table D1. Parameter estimates and corresponding approximate standard errors, t-values, p-values, and 

asymptotic 95% confidence intervals for full model fit to D. noxia.  The suffix of each parameter refers 

to the environment number from which each estimate came.   

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

 1 0.01043 0.000628 134 16.61 <.0001 0.05 0.009186 0.01167 

L1 1164.85 7.6125 134 153.02 <.0001 0.05 1149.79 1179.91 

AR11 -0.04850 0.1763 134 -0.28 0.7836 0.05 -0.3971 0.3001 

int_M1 0.1613 0.06728 134 2.40 0.0179 0.05 0.02824 0.2944 

ln_Var_M -2.5523 0.1415 134 -18.04 <.0001 0.05 -2.8322 -2.2724 

 2 0.007315 0.000596 134 12.28 <.0001 0.05 0.006137 0.008493 

L2 1526.35 10.6019 134 143.97 <.0001 0.05 1505.38 1547.32 

AR12 -0.3435 0.3008 134 -1.14 0.2555 0.05 -0.9384 0.2514 

int_M2 0.5384 0.1424 134 3.78 0.0002 0.05 0.2568 0.8200 

 3 0.01393 0.001465 134 9.51 <.0001 0.05 0.01103 0.01683 

L3 1156.04 8.3905 134 137.78 <.0001 0.05 1139.45 1172.63 

AR13 -0.04989 0.2826 134 -0.18 0.8601 0.05 -0.6088 0.5090 

int_M3 0.2674 0.1424 134 1.88 0.0626 0.05 -0.01422 0.5490 

B4 0.01549 0.001831 134 8.46 <.0001 0.05 0.01187 0.01911 

L4 1264.09 7.4192 134 170.38 <.0001 0.05 1249.42 1278.76 

AR14 0.1841 0.2090 134 0.88 0.3800 0.05 -0.2293 0.5975 

int_M4 0.1243 0.07097 134 1.75 0.0822 0.05 -0.01607 0.2647 

 5 0.006789 0.000303 134 22.41 <.0001 0.05 0.006190 0.007388 

L5 1078.09 8.1887 134 131.66 <.0001 0.05 1061.89 1094.29 

AR15 -0.2375 0.1925 134 -1.23 0.2194 0.05 -0.6182 0.1432 

int_M5 0.2805 0.05748 134 4.88 <.0001 0.05 0.1668 0.3942 
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Table D2. Parameter estimates and corresponding approximate standard errors, t-values, p-values, and 

asymptotic 95% confidence intervals for full model fit to M. dirhodum.  The suffix of each parameter 

refers to the environment number from which each estimate came.   

Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

 1 0.007711 0.000389 161 19.84 <.0001 0.05 0.006943 0.008478 

L1 1189.33 7.6776 161 154.91 <.0001 0.05 1174.17 1204.49 

AR11 -0.3180 0.1740 161 -1.83 0.0695 0.05 -0.6616 0.02567 

int_M1 0.5262 0.08939 161 5.89 <.0001 0.05 0.3497 0.7027 

ln_Var_M -2.5669 0.1177 161 -21.80 <.0001 0.05 -2.7994 -2.3344 

 2 0.007740 0.000800 161 9.68 <.0001 0.05 0.006161 0.009319 

L2 1569.89 16.2192 161 96.79 <.0001 0.05 1537.86 1601.92 

AR12 0.2853 0.2977 161 0.96 0.3394 0.05 -0.3026 0.8731 

int_M2 0.2268 0.1294 161 1.75 0.0816 0.05 -0.02880 0.4824 

 3 0.01152 0.000884 161 13.03 <.0001 0.05 0.009777 0.01327 

L3 1055.54 9.8879 161 106.75 <.0001 0.05 1036.01 1075.07 

AR13 -0.04780 0.1851 161 -0.26 0.7966 0.05 -0.4134 0.3178 

int_M3 0.2521 0.07209 161 3.50 0.0006 0.05 0.1097 0.3944 

B4 0.007536 0.000487 161 15.47 <.0001 0.05 0.006574 0.008498 

L4 1225.14 10.1372 161 120.86 <.0001 0.05 1205.12 1245.16 

AR14 -0.3004 0.1794 161 -1.67 0.0960 0.05 -0.6547 0.05391 

int_M4 0.3109 0.06564 161 4.74 <.0001 0.05 0.1813 0.4405 

 5 0.007890 0.000405 161 19.47 <.0001 0.05 0.007090 0.008690 

L5 1175.52 7.6116 161 154.44 <.0001 0.05 1160.49 1190.55 

AR15 -0.1983 0.1302 161 -1.52 0.1297 0.05 -0.4555 0.05880 

int_M5 0.3523 0.05160 161 6.83 <.0001 0.05 0.2504 0.4542 
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Table D3. Parameter estimates and corresponding approximate standard errors, t-values, p-values, and 

asymptotic 95% confidence intervals for full model fit to S. avenae.  The suffix of each parameter refers 

to the environment number from which each estimate came.   

Parameter Estimates 

Parameter Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

 1 0.008494 0.000492 125 17.26 <.0001 0.05 0.007520 0.009467 

L1 1288.81 7.0769 125 182.12 <.0001 0.05 1274.80 1302.82 

AR11 0.2363 0.1851 125 1.28 0.2041 0.05 -0.1300 0.6026 

int_M1 0.1944 0.07387 125 2.63 0.0096 0.05 0.04819 0.3406 

ln_Var_M -2.6956 0.1544 125 -17.46 <.0001 0.05 -3.0013 -2.3900 

 2 0.01219 0.001584 125 7.70 <.0001 0.05 0.009054 0.01532 

L2 1696.12 11.6974 125 145.00 <.0001 0.05 1672.97 1719.27 

AR12 -0.2594 0.3223 125 -0.80 0.4225 0.05 -0.8973 0.3785 

int_M2 0.3159 0.1182 125 2.67 0.0085 0.05 0.08206 0.5497 

 3 0.04680 0.008844 125 5.29 <.0001 0.05 0.02929 0.06430 

L3 1025.45 6.0818 125 168.61 <.0001 0.05 1013.41 1037.49 

AR13 0.1604 0.2812 125 0.57 0.5695 0.05 -0.3962 0.7170 

int_M3 0.1562 0.08055 125 1.94 0.0547 0.05 -0.00322 0.3156 

B4 0.01056 0.000717 125 14.74 <.0001 0.05 0.009144 0.01198 

L4 1333.14 7.5226 125 177.22 <.0001 0.05 1318.25 1348.03 

AR14 -1.4545 0.5036 125 -2.89 0.0046 0.05 -2.4512 -0.4578 

int_M4 0.9154 0.1898 125 4.82 <.0001 0.05 0.5398 1.2910 

 5 0.008080 0.000341 125 23.67 <.0001 0.05 0.007404 0.008755 

L5 1243.46 6.3950 125 194.44 <.0001 0.05 1230.80 1256.12 

AR15 0.1901 0.1519 125 1.25 0.2132 0.05 -0.1106 0.4908 

int_M5 0.3720 0.07997 125 4.65 <.0001 0.05 0.2137 0.5303 
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 Environment-species observed and predictive surfaces 

 

Region 1: Observed Relative D_noxia Abundance
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Figure D1. Observed surface of data from environment 1, D. noxia. 

 

Region 1: Predictive Relative D_noxia Abundance
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Figure D2. Predictive surface of data from environment 1, D. noxia. 

 



84 

 

 

Region 2: Observed Relative D_noxia Abundance
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Figure D3. Observed surface of data from environment 2, D.noxia. 

 

 

Region 2: Predictive Relative D_noxia Abundance
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Figure D4. Predictive surface of data from environment 2, D. noxia. 
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Region 3: Observed Relative D_noxia Abundance
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Figure D5. Observed surface of data from environment 3, D. noxia. 

 

 

Region 3: Predictive Relative D_noxia Abundance

59

662

1266

1869

cdd

1988.12

1992.41

1996.71

2001.00

Year

Predicted Value

-0.098

0.164

0.425

0.686

Pr
ed

ic
te

d 
Cu

m
ul

at
iv

e 
Re

la
ti

ve
 A

bu
nd

an
ce

Environment 3 Predictive Surface D. noxia

 

Figure D6. Predictive surface of data from environment 3, D. noxia. 
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Region 4: Observed Relative D_noxia Abundance
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Figure D7. Observed surface of data from environment 4, D. noxia. 

 

 

Region 4: Predictive Relative D_noxia Abundance
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Figure D8. Predictive surface of data from environment 4, D. noxia. 
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Region 5: Observed Relative D_noxia Abundance
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Figure D9. Observed surface of data from environment 5, D. noxia. 

 

 

Region 5: Predictive Relative D_noxia Abundance
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Figure D10. Predictive surface of data from environment 5, D. noxia. 
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Region 1: Observed Relative M_dirhodum Abundance
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Figure D11. Observed surface of data from environment 1, M. dirhodum. 

 

 

Region 1: Predictive Relative M_dirhodum Abundance
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Figure D12. Predictive surface of data from environment 1, M. dirhodum. 
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Region 2: Observed Relative M_dirhodum Abundance
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Figure D13. Observed surface of data from environment 2, M. dirhodum. 

 

 

Region 2: Predictive Relative M_dirhodum Abundance
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Figure D14. Predictive surface of data from environment 2, M. dirhodum. 
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Region 3: Observed Relative M_dirhodum Abundance
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Figure D15. Observed surface of data from environment 3, M. dirhodum. 
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Figure D16. Predictive surface of data from environment 3, M. dirhodum. 
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Region 4: Observed Relative M_dirhodum Abundance
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Figure D17. Observed surface of data from environment 4, M. dirhodum. 
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Figure D18. Predictive surface of data from environment 4, M. dirhodum. 
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Region 5: Observed Relative M_dirhodum Abundance
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Figure D19. Observed surface of data from environment 5, M. dirhodum. 
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Figure D20. Predictive surface of data from environment 5, M. dirhodum. 
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Region 1: Observed Relative R. Padi Abundance
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Figure D21. Observed surface of data from environment 1, R. padi. 
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Figure D22. Predictive surface of data from environment 1, R. padi. 
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Region 2: Observed Relative R. Padi Abundance
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Figure D23. Observed surface of data from environment 2, R. padi. 
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Figure D24. Predictive surface of data from environment 2, R. padi. 
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Region 3: Observed Relative R. Padi Abundance
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Figure D25. Observed surface of data from environment 3, R. padi. 
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Figure D26. Predictive surface of data from environment 3, R. padi. 
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Region 5: Observed Relative R. Padi Abundance
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Figure D27. Observed surface of data from environment 5, R. padi. 
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Figure D28. Predictive surface of data from environment 5, R. padi. 
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Region 1: Observed Relative S_avenae Abundance
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Figure D29. Observed surface of data from environment 1, S. avenae. 
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Figure D30. Predictive surface of data from environment 1, S. avenae. 
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Region 2: Observed Relative S_avenae Abundance
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Figure D31. Observed surface of data from environment 2, S. avenae. 
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Figure D32. Predictive surface of data from environment 2, S. avenae. 
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Region 3: Observed Relative S_avenae Abundance
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Figure D33. Observed surface of data from environment 3, S. avenae. 
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Figure D34. Predictive surface of data from environment 3, S. avenae. 
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Region 4: Observed Relative S_avenae Abundance
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Figure D35. Observed surface of data from environment 4, S. avenae. 
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Figure D36. Predictive surface of data from environment 4, S. avenae. 

 



101 

 

 

Region 5: Observed Relative S_avenae Abundance
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Figure D37. Observed surface of data from environment 5, S. avenae. 
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Figure D38. Predictive surface of data from environment 5, S. avenae. 
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Appendix E 

Parameter contrasts and estimated differences between regional parameters 
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Table E1. Contrasts of parameter estimates for D. noxia of environments 1 and 2 versus environments 3, 4, and 

5.  Row 1 shows the contrast of all four key parameters ( ,  , AR1, and int_M) between the two groups of 

environments.  Row 2 shows the contrast of the onset parameter (L) between the two groups of environments.  

Row 3 shows the contrast of the relative maximum parameters (AR1 and int_M) between the two groups of 

environments.   

Contrasts 

Label 

Num 

DF 

Den 

DF F Value Pr > F 

Onset of Northwest Environments vs Southeast Environments 1 134 503.80 <.0001 

Max Parms of Northwest Environments vs. Southeast Environments 2 134 0.87 0.4217 

Coincidence of Regression line: All Parameters NW vs SE 4 134 127.35 <.0001 

 

 

 

Table E2. Estimated difference in onset parameter for D. noxia between Northwestern environments and 

Southeastern environments with approximate standard error, t-value, and p-value. 

Additional Estimates 

Label Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

Onset of Northwest 

Environments vs Southeast 
Environments 

179.53 7.9984 134 22.45 <.0001 0.05 163.71 195.35 
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Table E3. Contrasts of parameter estimates for M. dirhodum of environments 1 and 2 versus environments 3, 4, 

and 5.  Row 1 shows the contrast of all four key parameters ( ,  , AR1, and int_M) between the two groups of 

environments.  Row 2 shows the contrast of the onset parameter (L) between the two groups of environments.  

Row 3 shows the contrast of the relative maximum parameters (AR1 and int_M) between the two groups of 

environments.   

Contrasts 

Label 

Num 

DF 

Den 

DF F Value Pr > F 

Onset of Northwest Environments vs Southeast Environments 1 161 474.26 <.0001 

Max Parms of Northwest Environments vs. Southeast Environments 2 161 2.52 0.0836 

Coincidence of Regression line: All Parameters NW vs SE 4 161 123.56 <.0001 

 

 

 

Table E4. Estimated difference in onset parameter for M. dirhodum between Northwestern environments and 

Southeastern environments with approximate standard error, t-value, and p-value. 

Additional Estimates 

Label Estimate 

Standard 
Error DF t Value Pr > |t| Alpha Lower Upper 

Onset of Northwest 

Environments vs Southeast 
Environments 

227.54 10.4485 161 21.78 <.0001 0.05 206.91 248.18 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 

 

 

Table E5. Contrasts of parameter estimates for S. avenae of environments 1 and 2 versus environments 3, 4, and 

5.  Row 1 shows the contrast of all four key parameters ( ,  , AR1, and int_M) between the two groups of 

environments.  Row 2 shows the contrast of the onset parameter (L) between the two groups of environments.  

Row 3 shows the contrast of the relative maximum parameters (AR1 and int_M) between the two groups of 

environments.   

Contrasts 

Label 

Num 

DF 

Den 

DF F Value Pr > F 

Onset of Northwest Environments vs Southeast Environments 1 125 1380.84 <.0001 

Max Parms of Northwest Environments vs. Southeast Environments 2 125 2.67 0.0734 

Coincidence of Regression line: All Parameters NW vs SE 4 125 358.59 <.0001 

 

 

 

Table E6. Estimated difference in onset parameter for S. avenae between Northwestern environments and 

Southeastern environments with approximate standard error, t-value, and p-value. 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Onset of Northwest 
Environments vs Southeast 

Environments 

291.78 7.8521 125 37.16 <.0001 0.05 276.24 307.32 
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Appendix F 

Internal validation residual distributions and external validation fit plots 
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 Internal validation residual distributions 

 

Figure F1. Histogram of the distribution of bootstrapped residuals for species D. noxia, environment 4. 

 

 

 

Figure F2. Histogram of the distribution of bootstrapped residuals for species M. dirhodum, environment 4. 

 

 



108 

 

 

 

Figure F3. Histogram of the distribution of bootstrapped residuals for species S. avenae, environment 4. 
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External validation fit plots 

 

Figure F4. Fit plot of model fit to validation data for environment 4 (Neeley)  species D. noxia. 

 

 

 

Figure F5. Fit plot of model fit to validation data for environment 4 (Neeley) species M. dirhodum. 
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Figure F6. Fit plot of model fit to validation data for environment 4 (Neeley) species S. avenae. 
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